

1 **Main manuscript**

2

3 **Title**

4 Volcanic deposits select for woodiness on islands

5

6 **Authors**

7 Simon Biedermann^{1,*}, Frederic Lens^{2,3}, Nicolai M. Nürk^{4,5}, Carl Beierkuhnlein^{1,5,6,7}

8

9 *Corresponding Author: Simon Biedermann, simon.biedermann@uni-bayreuth.de

10

11 **Author Affiliations**

12 1 Dept. of Biogeography, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth,
13 Germany

14 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands

15 3 Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE
16 Leiden, The Netherlands

17 4 Plant Systematics, Universitätsstr. 30, 95440 Bayreuth, Germany

18 5 Bayreuth Center of Ecology and Environmental Research BayCEER, Universitätsstr. 30,
19 95440 Bayreuth, Germany

20 6 Geographical Institute Bayreuth GIB, Universitätsstr. 30, 95440 Bayreuth, Germany

21 7 Departamento de Botánica, Universidad de Granada, Avenida de Fuentenueva S/N 18071,
22 Granada, Spain

23

24 **Abstract**

25 Oceanic islands' unique biodiversity often arises from woody plant radiations derived from
26 non-woody continental ancestors. Since Darwin, various theories have tried to explain the
27 evolution of woodiness on islands (insular woodiness). Recently, frequent volcanic activity and
28 burial of vegetation by volcanic ash (tephra) depositions were linked to the abundance of
29 woody species on islands. In a chronosequence of five tephra fields on the island of La Palma
30 (Canary Islands), we found a trend towards woody growth form, providing first evidence that
31 volcanism favors woody species. Endemic insular woody species prevail on young fields,
32 whereas woody species with woody colonizers become dominant on older fields. High
33 similarity in functional traits is detected between fields. This highlight that endemic insular
34 woody species show increased colonization and establishment ability on extreme habitats after
35 volcanic eruptions, illustrating acquired functional advantages of endemic lineages that
36 evolved woodiness on islands and sheds light on the role of environmental filtering during
37 evolution.

38

39 **Main Text**

40 **Introduction**

41 Islands make up only 5.3 % of terrestrial habitats but approximately 21 % of Earth's total plant
42 species diversity is endemic to islands¹. Oceanic islands – through repeated formation through
43 volcanic processes, spatial isolation and dynamic geological histories – act as cradles and
44 museums for biodiversity, promoting both rapid speciation and high endemism¹⁻³. At the same
45 time, their isolation, small population sizes and relatively fast geological turnover can turn
46 them into “evolutionary graveyards” with increased extinction rates^{3,4}. This constant
47 reshuffling of taxonomic cards by idiosyncratic processes is why islands, and their ecosystems,
48 are perceived as “evolutionary arenas”^{3,5,6}. On islands, plants have repeatedly evolved
49 characteristic traits – often referred to as “island syndromes”⁷. This indicates a selective
50 convergence towards certain plant traits on islands globally⁷⁻¹¹. All oceanic islands are
51 comparable in terms of low geodiversity resulting from their volcanic origin, despite significant
52 differences in climatic conditions¹²⁻¹⁴. Understanding the evolutionary drivers that result in
53 island syndromes is crucial for global island biodiversity and its conservation.

54 The most striking global island syndrome in plants is the in-situ evolution of woodiness after
55 the arrival of a non-woody (i.e., herbaceous) continental population that established on the
56 island (insular woodiness), which happened independently in at least 175 lineages within
57 angiosperms¹⁵⁻¹⁷. Insular woody species co-exist with two other types of woody island species
58 that originate from woody ancestors: some of the woody island species descended from woody
59 colonisers that belong to lineages that have always been woody (ancestral woody species on
60 islands), and other woody island species belong to lineages that evolved their woodiness on
61 nearby continents (derived woodiness on islands)¹⁸.

62 The mechanisms driving the evolution of insular woodiness are, in contrast to other island
63 syndromes⁷, incompletely understood^{15,16}. Several hypotheses have been put forward to
64 explain insular woodiness, most of them without experimental evidence¹⁹: (a) competition: in
65 vegetations with few trees and dense herbaceous populations, increased stem woodiness in
66 these herbaceous populations allows for taller growth to capture more sunlight^{20,21}; (b)
67 promotion of outcrossing: plants in isolated, pollinator-poor islands require increased flowering
68 time to allow cross pollination, which in turn favors plant longevity and stimulates woodiness^{22,23};
69 (c) climatic stability: the buffering effect of the surrounding ocean enable frost-free
70 temperatures, thereby promoting continuous growth^{15,24}; (d) lack of herbivory: large native
71 mammal herbivores are absent on isolated islands, meaning that herbaceous species are not
72 removed by grazers, which again promotes continuous plant growth¹⁵; (e) drought tolerance:
73 increased stem woodiness allows for better preservation of intact root-to-shoot water transport
74^{18,25,26}, and recently (f) burial avoidance: volcanic activity and consequential burial of smaller,
75 herbaceous plants by tephra selects for taller (insular, derived and ancestrally) woody plants to
76 project over or penetrate through the volcanic depositions²⁷.

77 Volcanoes and their pyroclastic ejecta – especially tephra – can have strong impacts on
78 vegetation²⁸⁻³⁵. Ecosystems close to an active crater are most strongly affected, as the thickness
79 of the tephra layer increases towards the crater^{29,32,33,36,37}. On every island with volcanic

80 activity, burial of plants smaller than the tephra layer has been occurring frequently over
81 evolutionary time. This could be a selective process promoting taller, persistent, woody life
82 forms and their functional traits, independent of their phylogenetic relatedness, indicating a
83 true ecological selection ^{12,27,38–40}.

84 According to the burial avoidance hypothesis ²⁷, recurrent tephra deposits and the ecosystems
85 they affect can be used as a model system to better understand why herbaceous lineages
86 repeatedly evolved into insular woody species on volcanic archipelagoes. To test the burial
87 avoidance hypothesis, we used a chronosequence of five tephra fields (54 – 6000 years old) on
88 the island of La Palma (Canary Islands). We assessed whether the distinct evolutionary
89 trajectories of woody island species (insular woody with herbaceous colonizer vs. woody island
90 species with woody island colonizers) have a different impact on their burial survival and
91 establishment in these extreme tephra habitats after volcanic eruptions.

92 We test the following assumptions predicted by the burial avoidance hypothesis:

93 (a) Woody species dominate plant communities on tephra fields as woody species are taller and
94 more persistent than herbs and therefore better able to overcome burial by recurrent volcanic
95 deposits.

96 (b) The predicted dominance of woody species on tephra fields is modulated by temporal and
97 spatial factors irrespective of phylogenetic relatedness: we expect more woody species on
98 younger fields (shorter time since eruption, meaning the selection for woody species by tephra
99 occurred recently) and in areas closer to the crater (stronger impact of volcanic eruption with
100 thicker tephra layer where only taller woody plants can overcome burial) than on older fields
101 and areas further away.

102 (c) The higher occurrence of woody species and their associated traits according to the temporal
103 and spatial pattern described in (b) should lead to a more constrained trait space on younger
104 fields than on older fields.

105 **Results**

106 Woody species dominate, but their distribution changes with distinct evolutionary trajectories

107 In the 123 plots examined on five tephra fields on the island of La Palma, in total 38 plant
108 species were recorded (Fig. 1a). Of these, 13 species are insular woody, 13 are woody species
109 with woody colonizers and 12 are herbaceous (Supplement Table S1). Most species occur on
110 only one tephra field. Each tephra field forms an individual plant community (Fig. 1b, Stress
111 score = 0.104), with significant differences between the sites inferred by the overall analysis of
112 similarities (ANOSIM, $p = 9.99e-5$, $R = 0.543$), and by pairwise ANOSIM comparisons (all p
113 values < 0.0009 , Supplement Table S2).

114 All tephra fields are dominated by woody species, with no significant trend in age (Kruskal-
115 Wallis rank sum test, $p = 0.104$) (Figure 2a). Teneguia and Pico Birigoyo show a higher
116 variance in the relative abundance of woody species, including more herbaceous species, but
117 this is not significant (Kruskal-Wallis rank sum test, $p = 0.104$) (Figure 2b).

118 A significant shift in the relative abundance of insular woody species and woody species with
119 woody colonizers is observed across the tephra fields (Kruskal-Wallis rank sum test, $p < 0.05$)
120 (Figure 2c, d). The significant highest relative abundance of insular woody species is observed
121 on the three youngest fields of Teneguia, Hoyo Negro, and San Antonio, and significantly drops
122 on San Martin and especially on the oldest field of Pico Birigoyo. The relative abundance of
123 woody species with woody colonizers shows the opposite pattern with age: on Teneguia, Hoyo
124 Negro, and San Antonio almost no woody species with woody colonizers are observed,
125 whereas their relative abundance significantly increases on San Martin and more particularly
126 on Pico Birigoyo (Kruskal-Wallis rank sum test, $p < 0.05$).

127 Using regression analysis, the relative abundance of insular woody species significantly
128 decreases with distance to the crater ($p = 0.021$, Nagelkerke Pseudo-R² = 0.094), whereas the
129 relative abundance of woody species with woody colonizers shows a significant opposite
130 pattern ($p = 0.043$, Nagelkerke Pseudo-R² = 0.068) (Supplement Fig. S1). The relative
131 abundance of woody and herbaceous species does not show a pattern with distance to the crater
132 (relative abundance of woody vs. herbaceous species: $p = 0.385$, Nagelkerke Pseudo-R² =
133 0.0099).

134 On Teneguia, plots near the crater are almost exclusively dominated by insular woody species.
135 By contrast, plots near the coast and far away from the crater show a higher abundance of herbs,
136 explaining the highest variance in the relative abundance of insular woody species on this
137 tephra field.

138 To understand the relative importance of abiotic predictors (age, distance to crater as a proxy
139 for thickness of tephra deposition, and elevation) for relative abundance of plant growth forms,
140 hierarchical partitioning was performed (Fig. 2e). Explained variance ranges between 37.6 %
141 for the relative abundance of insular woody species and 3.6 % for woody / herbaceous species.
142 The age of the tephra fields is the most important unique predictor for growth form: 3.3 % of
143 explained variance for relative abundance of woody and herbaceous species, 20.9 % for insular
144 woody species, and 14.1 % for other woody island species. Significance of predictors was

145 assessed using permutation tests (Supplement Table S3a). For relative abundance of woody
146 and herbaceous species, age is the only significant predictor. For relative abundance of insular
147 woody species and for other woody island species, age and distance to the crater are the only
148 significant predictors.

149 Functional convergence across the tephra fields

150 Functional trait hypervolumes were constructed using a one-class support vector machine
151 (SVM) learning model based on field measurements of plant height, leaf length, and length of
152 reproductive unit (Fig. 3a). The occupied multidimensional space by the hypervolumes of the
153 vegetation (functional richness) is highest on the oldest tephra field Pico Birigoyo and lowest
154 on San Martin (Table 1). Functional dispersion level is similar for the five tephra fields and
155 varies between 48.9 for the oldest Pico Birigoyo and 26.2 for the youngest Teneguia. Centroid
156 location differs between the tephra fields. For leaf length, centroid location varies between 8.66
157 cm for San Martin and 3.31 cm for Hoyo Negro. For plant height, centroid location varies
158 between 61.81 cm for Pico Birigoyo and 37.95 cm for Hoyo Negro. For length of the
159 reproductive unit, centroid location varies between 12.1 mm for Hoyo Negro and 3.2 mm for
160 San Martin.

161 Pairwise overlap of hypervolumes of the vegetation of the respective tephra fields was analyzed
162 using Jaccard-Index as well as permutations. Pairwise overlap between the hypervolumes
163 varies between 0.388 for the combination Pico Birigoyo and San Antonio, and 0.005 for the
164 combination San Martin and Teneguia (Supplement Table S4, Supplement Fig. S2). Significant
165 differences in the Jaccard Index between two hypervolumes (meaning that the two
166 hypervolumes do not origin from a common trait probability function) is observed for the
167 combinations of Pico Birigoyo – Hoyo Negro, Pico Birigoyo – San Martin, Pico Birigoyo –
168 Teneguia, Hoyo Negro – San Martin, San Martin – San Antonio, and San Martin – Teneguia.

169 Using Gaussian Kernel density estimation (KDE) as an alternative algorithm to estimate the
170 hypervolumes, the findings are confirmed (Supplement Fig. S3, Supplement Table S5).
171 Functional richness and dispersion are lowest on Hoyo Negro, both are highest on the oldest
172 field of Pico Birigoyo. A higher overlap between the hypervolumes is observed in comparison
173 to SVM-derived hypervolumes, however, all the differences in Jaccard index are significant
174 (Supplement Table S6).

175 To assess the occupancy of the different hypervolumes in functional trait space, occupancy
176 analysis was performed (Fig. 3b). Occupied functional trait space is to 57.8 % occupied by one
177 hypervolume, 43 % are occupied by at least two hypervolumes (20.9 % occupied by two
178 hypervolumes, 16.4 % by three hypervolumes, 4.7 % by four hypervolumes, and 0.1 % by all
179 five hypervolumes). Using KDE hypervolumes, a higher overlap is observed: 46.3 % of trait
180 space is occupied by one hypervolume, 53.7 % by at least two hypervolumes (12.3 % occupied
181 by two hypervolumes, 17.1 % by three hypervolumes, 16.6 % by four hypervolumes, and 7.8 %
182 by five hypervolumes). Vegetation of Pico Birigoyo and San Martin add unique trait
183 combinations not detected in other fields.

184 On plot level, significant differences (Kruskal-Wallis rank sum test, $p < 0.05$) are observed for
185 all functional diversity indices (Fig. 4a-e). For functional richness and functional dispersion,

186 no clear pattern emerges. For total functional beta diversity within one single tephra field, the
187 youngest Teneguia and the oldest Pico Birigoyo have significantly the highest beta diversity.
188 For total beta diversity between the fields and replacement beta diversity between the fields,
189 no pattern is observable. Most of the total beta diversity between the fields is due to
190 replacement and not due to gain or loss of species richness.

191 For functional richness, most of the explained variance is uniquely predicted by elevation
192 (9.5 %). For functional dispersion, age best predicts the explained variance, but with a very
193 low value (1 %). Distance to the crater is the most important predictor for total functional beta
194 diversity (2.7 %) (Fig. 4f). For functional richness elevation is the only significant predictor,
195 for function dispersion none of the predictors is significant, for total functional beta diversity
196 it is distance to the crater (Supplement Table S3b).

197 Phylogenetically independent patterns

198 All the detected patterns occur independent of phylogenetic relatedness (Supplement Fig. S4a).
199 Standard effect size (SES) of Mean Pairwise Distance (MPD) and Mean Nearest Taxon
200 Distance (MNTD) was used to assess phylogenetic dispersion (Supplement Fig. S4b). Positive
201 values significantly different from zero indicate phylogenetic overdispersion (species are more
202 distantly related as expected by chance), whereas negative values significant different from
203 zero indicate phylogenetic clustering (species are more closely related). SES of MPD varies
204 between -2.84 for Hoyo Negro and 0.929 for Pico Birigoyo. SES of MNTD varies between -
205 2.19 for San Martin and 1.26 for Pico Birigoyo. Significant SES are observed for SES MPD
206 for Hoyo Negro (SES MPD = -2.84, $p = 0.012$) and for SES MNTD for San Martin (SES
207 MNTD = -2.19, $p = 0.007$).

208 **Discussion**

209 Using a chronosequence of five tephra fields on the island of La Palma (54 – 6000 years old),
210 we show for the first time that volcanic deposits select towards woodiness on islands as all
211 studied tephra fields are dominated by woody species. Interestingly, the evolutionary origin of
212 woody species changes on the studied tephra fields, which is determined predominately by the
213 age of the tephra fields and the proximity to the crater: insular woody species (stemming from
214 herbaceous ancestors) are significantly more abundant on younger tephra fields and in areas
215 closer to the crater with thicker tephra depositions, whereas the other woody island species
216 (stemming from woody colonizers) become the dominant woody growth form on older tephra
217 fields and in areas further away from the crater. These results confirm our first hypothesis that
218 woody species are selected by volcanic tephra deposits but reject our second hypothesis
219 suggesting that the dominance of woody species depends on both temporal (more on younger
220 fields) and spatial proximity to the eruption (more in areas closer to the crater).

221 Vegetation on the five tephra fields forms distinct plant communities. The occupied functional
222 trait space based on original measurements of plant height, leaf length and length of the
223 reproductive unit shows high overlap between the studied fields, with some unique trait
224 combinations added by some craters. No trend in functional richness and functional dispersion
225 is detected, indicating functional convergence and filtering for traits associated with woody
226 growth. Consequently, our third hypothesis states that the trait space is more constraint because
227 of the proposed temporal and spatial patterns can be rejected. Phylogenetic dispersion on tephra
228 field level is mostly statistically indifferent from neutral dispersion, so neither phylogenetic
229 clustering nor overdispersion are observed, indicating that the observed patterns in woody
230 species abundances and their traits occur independently of phylogenetic relatedness – likely
231 reflecting an ecological selection for these, in addition to the rampant number of evolutionary
232 shifts towards insular woodiness on the Canary Islands, and the fact that woody species with
233 woody colonizers are common in many distantly related families ^{17,41,42}.

234 Our findings highlight the strong abiotic filtering of volcanic tephra depositions towards woody
235 species and their traits independent of phylogenetic origin. Shrubs constitute the bulk of woody
236 species and can dominate succession on barren ground (primary succession) ^{43–45}. Generally,
237 the repeated burial of vegetation by tephra should favor the woody growth form, irrespective
238 of evolutionary origin ²⁷. Interestingly, at young fields and areas close to the crater, where the
239 tephra layer may be so deep that the whole vegetation and its seed bank is covered, and
240 dispersal of new seeds is needed for vegetation re-establishment ^{30,35,46,47}, insular woody
241 species dominate. One option to explain this is that insular woody species exhibit an increasing
242 colonization and establishment ability on freshly deposited tephra, as we did not observe any
243 species penetrating through the deep tephra layers at sites close to the crater. In contrast, on
244 older plots and areas further away from the crater, woody species with woody colonizers
245 become dominating and herbs occur, indicating weaker abiotic filtering at shallow deposits and
246 increasing importance of seed sources in the vicinity, as even shallow tephra layers can remove
247 the seed bank ^{35,47}.

248 Priority effects may explain differences in community composition ⁴⁸, in addition to the
249 potential differences in colonization ability among woody species with a distinct evolutionary
250 history. Under initial conditions with strong abiotic filtering and limited niches, early arriving,
251 insular woody species – which have potentially higher establishing potential on fresh tephra –
252 can occupy the few available niches rapidly after volcanic eruption and prevent later arriving
253 species from establishing as niche overlap is expected between species ^{48,49}. As soil conditions
254 ameliorate, woody species stemming from woody island colonizers may be able to enter the
255 system.

256 Despite the distinct community composition across the studied tephra fields, functional trait
257 overlap is high, without a trend in functional richness or functional dispersion over > 6000
258 years of succession – indicating functional convergence due to persistent abiotic filtering for
259 woody species and their traits. These findings contrast with ecological theory also observed on
260 islands, that predicts that trait convergence is expected in early successional communities due
261 to abiotic filtering (only certain traits are able to establish), and trait divergence becomes
262 important in later successional communities due to increasing importance of biotic interactions
263 (facilitation and competition, which can lead to the exclusion of functionally similar species)
264 ^{40,43,50–61}. Therefore, we would expect a constrained functional trait space in some of the
265 younger fields as in young volcanic ecosystems with poor, initial soils, strong abiotic filtering
266 should prevail, and a transition to trait divergence with age (as seen on La Palma’s lava flows),
267 which we do not observe ^{15,57,58,62–64}. This discrepancy may be due to persistent strong abiotic
268 filtering for woody species and their traits. Schrader et al. ⁵⁸ hypothesized that all islands filter
269 towards early-successional establishment strategies (in addition to dispersal filters), which
270 would in turn lead to functional convergence ¹⁵. This filter may be frequent tephra depositions.

271 The unexpected outcomes of the functional traits space analyses may be due to the selection of
272 measurements recorded in the field. We focused on easy-to-score traits which cover different
273 axes in the plant functional spectrum (plant growth form, plant height, length of leaves (as a
274 proxy for leaf area), and length of the reproductive unit) during our field work campaigns to
275 cover as many plots as possible ^{54,65,66}.

276 We find that abiotic filtering and priority effects jointly shape community and trait assemblage
277 on these tephra fields. The observed trait convergence is independent from community
278 composition if trait assemblage occurs due to deterministic assembly rules and differences in
279 community composition are due to priority effects ^{48,49}. This may explain why individual tephra
280 fields perform highly individual successional stabilities as well in terms of endemism,
281 woodiness, and plant functional traits. Tephra fields can be seen as “smoking gun” ecosystems
282 for the frequent habitat destruction and creation on oceanic islands. The frequent, recurring
283 filtering through tephra depositions, initial habitat creation and colonization throughout
284 evolutionary history can filter for certain traits and plant strategies associated with woody
285 growth forms ^{39,65}, which could explain why islands proportionally harbor more woody species
286 than nearby continents.

287

288 **Conclusion**

289 On the five tephra fields investigated on the island of La Palma (50 - 6000 years old), a high
290 abundance of woody species is observed, irrespective of the distance to the crater and age.
291 Interestingly, the distinct evolutionary trajectories of the woody island species, either
292 originating from an herbaceous (insular woody) or woody island colonizer, impact the location
293 of the woody species and is best determined by the age of the tephra fields along with distance
294 to the volcanic crater. Younger tephra fields and areas closer to the crater are significantly more
295 occupied by insular woody species, whereas the other woody island species dominate older
296 fields and areas further away from the crater. Unexpectedly, a high functional convergence is
297 observed based on the traits scored in the field, suggesting a strong selection of volcanic activity
298 and tephra depositions towards woody species and their associated traits. These patterns occur
299 independently of phylogenetic relatedness.

300 Why insular woody species predominate on the initial, highly disturbed tephra sites remains
301 unanswered. It could be due to an increased colonization and establishment ability of these
302 species in comparison to the other woody and herbaceous island species, but the traits driving
303 these differences are not known. Including additional traits, including also below-ground traits,
304 may reveal differences in functional trait space that could explain why insular and other woody
305 island species behave differently in the five tephra fields studied. Research on the drivers of
306 community and trait assemblage is needed to better understand why tephra fields are unique in
307 their community composition and similar in their trait composition. This would also directly
308 link to one of the questions already posed by Darwin ²² why species became woody on islands.
309 Tephra fields may be a good model system to provide answers to one of the most conspicuous
310 aspects of insular floras. Understanding the global extent of tephra fields and its vegetation
311 patterns may be crucial for a better understanding of the unique woody biodiversity on volcanic
312 islands across the world.

313

314 **Methods**

315 Study site

316 All field data was recorded on the island of La Palma, Canary Islands, Spain. La Palma is
317 located at the northwestern edge of the Canary Islands archipelago and can be divided into an
318 older part in the north (ca. 2.0 Ma) as well as a younger part in the south (ca. 0.54 Ma)⁵⁴.
319 Besides El Hierro, La Palma is the only island of the Canary Islands at present in the juvenile
320 shield stage and is the most active of the archipelago due to continuous eruptions^{13,38}. In
321 contrast to the northern part of the island, volcanism is still very active today in the south.
322 Numerous eruptions were recorded in recent centuries (1585, 1646, 1677, 1712, 1949 and
323 1971), the last one occurring in 2021^{33,67,68}. La Palma is characterized by its subtropical-
324 Mediterranean climate, which leads to humid winters and dry summers⁶⁹. The study sites are
325 located in the sunnier and drier southern half of the island which are influenced by high solar
326 radiation.

327 The plots (n = 123) are located on the southern Cumbre Vieja ridge on five different aged tephra
328 fields (from North to South: Pico Birigoyo (4025 ± 2000 BC, n = 45), Hoyo Negro (1949, n =
329 32), San Martin (1646, n = 26), San Antonio (1677, n = 10), and Teneguia (1971, n = 10; Fig.
330 6)). All plots are located on the slopes of the respective crater to reduce the influence of more
331 recent volcanic depositions.

332

333 Data acquisition and preparation

334 Field work took place in March to April 2023 and February to March 2024, which is the best
335 period to study annual herbaceous plants⁶⁴. We tried to cover the whole vegetation on the five
336 tephra fields, meaning that sampling took place from the edge of the tephra field towards the
337 crater. In this area, plots were distributed randomly⁷⁰. Areas within 20 m distance to roads,
338 hiking paths, and visible human disturbance were excluded. The plots had a size of 4 x 4 m.
339 Within this area, plant species identities, abundance, and damage (e.g., due to wind throw or
340 herbivory) were recorded. Slope (measured with SUUNTO PM-5/360 PC Clinometer), altitude
341 above sea level (measured with Polar Pacer Pro), and geographic location (measured with
342 Garmin Oregon 300) were recorded. Areas with slopes exceeding 30 ° were excluded due to
343 safety reasons. On San Antonio, sampling was only possible on the eastern slopes. This may
344 lead to an underestimation of the vegetation covering this specific tephra field. However, our
345 distant observations on the excluded sites showed similar vegetation patterns around all craters,
346 thereby validating that our sampling strategy did not bias our results.

347 Depth of the tephra layer could not be determined in the field as the tephra layers could not be
348 differentiated by eye in the field and the slopes of craters were too steep to dig holes. We
349 therefore used distance to the crater as a proxy for tephra depth, which is a valid estimation
350 based on the strong correlation between distance and depth in several publications^{29,32,33,37}.

351 Plant functional traits of the vegetation were sampled *in situ* (following⁷¹). In 2023 trait
352 sampling was conducted on Pico Birigoyo, Hoyo Negro, and San Martin, one year later we

353 performed field work on San Antonio and Teneguia. Growth form of the species (woody,
354 herbaceous) was recorded in the field. Furthermore, plant height, leaf length, and length of the
355 reproductive unit were recorded. These traits cover different axes in the plant functional
356 spectrum^{54,65,66}. For the flower length of Asteraceae species, we used ligule length of the ray
357 flower as the analogue for single flower length. For *Pinus canariensis*,. For non-flowering
358 plants, like *Pinus canariensis*, we used the length of the microsporangia of the male cone as
359 the analogue for single flower length (length of the reproducing organ as an analogue to flower
360 length). Removing conifers with their unique traits compared to angiosperms, such as needle-
361 like leaves and reproductive cones, did not change the results.

362 Traits were collected from randomly chosen adult individuals for each species on plot level
363 that did not display significant damage from herbivores or wind, had no dead plant parts, and
364 offer a representative subsample of the community. In 2024 additional vegetation sampling was
365 conducted on Pico Birigoyo, Hoyo Negro, and San Martin without trait sampling, however.
366 For these additional plots, averages of the traits sampled in 2023 at the respective crater were
367 used.

368 To assess which species are insular or ancestral woody, first, a literature survey was performed
369^{17,18}. For the species where the woodiness status (ancestral / insular) could not be obtained from
370 the literature, ancestral state estimations were performed (see Data analysis).

371

372 Data analysis

373 For 18 species it can be confirmed that they are insular or ancestral woody. For other species
374 with unknown woodiness status, phylogenies and plant life forms (woody / herbaceous) were
375 acquired from the literature and online herbaria (Supplement Methods).

376 The phylogenies were used to assess evolutionary trajectories of life-history strategies across
377 the studied clades. For this, an ancestral state reconstruction – focusing on the phylogenetic
378 positions of shifts from herbaceous to woody life histories within each group – was performed
379 using the package “phytools” (Version: 1.5-1, function *make.simmap()*,⁷²). Stochastic
380 character mapping with a Markov Chain Monte Carlo (MCMC) algorithm was used to sample
381 the transition rate Q and life form histories from the posterior probability distribution^{73,74}. For
382 each species 1,000 iterations of the MCMC sampling on the acquired phylogenies that include
383 the species and the closest relatives from the continent were performed.

384 Differences in plant community composition on the different tephra fields were analysed using
385 ordination. First, a Bray-Curtis dissimilarity was calculated⁷⁵ (function *vegdist()*, package
386 “vegan”,⁷⁶). This was followed by a Non-metric Multidimensional Scaling (NMDS) using k =
387 2 dimensions and at least 1000 random starts (function *metaMDS()*, package “vegan”,⁷⁶). Data
388 points were grouped to the respective aged tephra fields where they were sampled. We had to
389 remove one plot (PB_027_2023) because this singularity would overshadow the ordination.
390 On this plot, we recorded *Silene vulgaris* with an abundance of 17 individuals.

391 Phylogenetic dispersion was assessed on a Canary Island angiosperm phylogeny⁷⁷
392 (Supplement Methods). However, multiple species could not be included. We opted to add

these species using the VPhyloMaker2 package ⁷⁸, which may underestimate the true evolutionary relationships. *Pinus canariensis* as a conifer needed to be excluded from the analysis. This may underestimate the true phylogenetic dispersion. However, we assume that adding *Pinus canariensis* to the analysis would make the phylogenetic dispersion even more neutral, as it occurs on almost every tephra field and is distantly related to all other plant species recorded. First, pairwise distance between the tips of the tree were calculated (function *cophenetic.phylo()*, package “ape”, ⁷⁹). Then, abundance weighted standard effect sizes of Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD) were estimated using the independent swap algorithm with 1000 runs with 10000 iterations each (function *ses.mpd()* and *ses.mntd()*, package “picante”, ⁸⁰).

To assess the differences between the communities on the tephra fields, an analysis of similarity (ANOSIM) was performed using 10,000 permutations (function *anosim()*, package “vegan”, ⁷⁶). This was followed up by a pairwise multilevel comparison to assess which tephra field community differs significantly from others using 10,000 permutations and Bonferroni’s p-value correction method (function *anosim.pairwise()*, package “vegan.ex”).

Differences in relative abundances of woody, herbaceous, ancestral woody, and insular woody species with the age of the tephra fields were analysed using a Kruskal-Wallis rank-sum test with the function *kruskal.test()*. This was followed up by a post-hoc test (Dunn test, function *dunnTest()*, package “FSA”, ⁸¹). Furthermore, to assess the influence of distance from the crater on the relative abundance of life forms, univariate regressions were performed using Generalized Linear Models (GLM) (function *glm()*, family binomial).

To assess the functional diversity between the respective aged tephra fields, the functional trait space was calculated using the n-dimensional hypervolume algorithm in the “hypervolume” package ^{82,83}. For hypervolume calculations, maximum trait values are often used ^{54,84}. However, this neglects the displayed phenotypic plasticity in functional traits of a species between different sites. Therefore, we opted to use the mean values of sampled traits per plot to estimate the trait hypervolumes. If traits were or could not be sampled on plot level, mean values of the respective trait of the respective species on the respective tephra field were used.

The functional trait space occupied by the vegetation of the different tephra fields was quantified using a one-class support vector machine (SVM) and Gaussian kernel density estimation (KDE) (function *hypervolume_svm()*, *hypervolume_gaussian()*, package “hypervolume”, ⁸³). 1,000 Monte Carlo points per data point were used.

For KDE, a quantile threshold was chosen, that ensured that 95 % of the estimated probability density was enclosed by the chosen boundaries ⁸⁵. To make the hypervolumes comparable, we used a fixed kernel density estimate bandwidth of 0.5 standard deviations of the functional traits ^{54,86}.

SVM parameters (v , γ) influence size and shape of the hypervolume and therefore, values were varied (following ⁸²) and chosen by visual examination of the resulting hypervolumes, paying attention to the wrap around data points and projection into negative trait space, and used for all tephra fields for comparability reasons ⁸². The final parameters are $v = 0.01$ and $\gamma = 0.5$.

433 The two algorithms were compared visually. We opted to use the SVM-derived hypervolumes
434 for comparison of occupied trait space between the tephra fields, as they offer a tighter fit to
435 the data points and do not show a projection into negative trait space. All other analyses on
436 tephra field level were conducted the SVM-derived hypervolumes. Hypervolumes were
437 compared with the centroid location (function *get_centroid()*, package “hypervolume”, ⁸³). The
438 overlap between the hypervolumes for the different tephra fields (Jaccard-Index) was
439 quantified using the functions *hypervolume_set()* and *hypervolume_overlap_statistics()*
440 (package “hypervolume”, ⁸³). To assess if the calculated hypervolumes stem from a common
441 trait probability distribution, pairwise comparison of hypervolumes were permuted 1,000 times
442 (function *hypervolume_permute()*, package “hypervolume”, ⁸³), and overlap statistics were
443 calculated using the *hypervolume_overlap_test()* function and the Jaccard-Index (package
444 “hypervolume”, ⁸⁷).

445 We additionally used the occupancy framework of functional trait space to assess the overlap
446 between the hypervolumes of the different tephra fields. Occupancy represents the mean
447 number of individuals occupying a given point in multidimensional space. Mean occupancy
448 was calculated using the function *hypervolume_n_occupancy()* (package “hypervolume”, ⁸³).

449 To assess functional diversity on plot level, for each plot a hypervolume was calculated using
450 Gaussian kernel density estimations with the function *hypervolume_gaussian()* (package
451 “hypervolume” ^{83,88}). Here we opted for the KDE hypervolumes as the computational costs for
452 SVM hypervolumes on plot level were too high and we did not compare the different
453 algorithms directly (plot level vs. tephra field level). For comparability reasons of the KDE
454 hypervolumes on plot level, a fixed kernel bandwidth was used of 0.5 standard deviations
455 (following ^{54,86}).

456 Three components of functional diversity, namely functional richness, functional dispersion,
457 and functional beta diversity, were calculated on tephra field and plot level using the functions
458 *kernel.alpha()*, *kernel.dispersion()*, and *kernel.beta()* (package “BAT”, ^{89,90}). Functional
459 richness is the total volume of trait space. Functional dispersion is a measure of how spread or
460 dense the trait space is. Both measures were scaled between 0 and 1.

461 Functional beta diversity was computed as the pairwise comparisons of dissimilarities between
462 communities. This was done for (a) only the plots in a specific tephra field, and (b) for all plots.
463 We then calculated the mean dissimilarity of all comparisons of a community with the rest of
464 the communities. We analyzed the total beta diversity, which reflects both the volume
465 replacement and the loss / gain (richness differences), and the replacement beta diversity.

466 Differences in functional richness, functional dispersion, and functional beta diversity on plot
467 level between the tephra fields were analyzed using a Kruskal-Wallis rank-sum test based on
468 the function *kruskal.test*, followed up by a post-hoc test (Dunn test, function *dunnTest()*,
469 package “FSA”, ⁸¹).

470 To assess the relative importance of abiotic predictors (age, distance to the crater, and height)
471 on life form abundances and functional diversity metrices, hierarchical partitioning was
472 performed using the function *rdacca.hp()* (package “rdacca.hp”, ⁹¹). The significance of the

473 predictors was assessed using permutation tests with the function *permu.hp()* (package
474 “rdacca.hp”,⁹¹).

475 Assessment of insular woodiness

476 To assess the abundance patterns of insular and ancestral woody species, first, ancestral state
477 estimations for species with unknown woodiness status were performed. *Pterocephalus*
478 *porphyranthus* Svent., 1969 is part of a woody subclade and its closest relatives on the
479 continent (*Pterocephalus spathulatus*, *Pterocephalus depressus*, *Pterocephalus strictus*,
480 *Pterocephalus perennis*, and *Pterocephalus frutescens*) are all woody, leading to a posterior
481 probability for being a shrub of 0.975 and an herb of 0.025 at the node *P. porphyranthus* – *P.*
482 *frutescens* (Supplement Fig. S5). Including the continental herbaceous *Scabiosa* clade and the
483 herbaceous *Pterocephalus* species (*P. papposus*, *P. brevis*, and *P. pulverulentus*), this leads to a
484 posterior probability of 0.075 for being a shrub and 0.925 for being a herb at the node *P.*
485 *porphyranthus* and *P. papposus*, and a probability of 0.002 for being a shrub and 0.998 for
486 being a herb at the node *P. porphyranthus* – *Scabiosa africana*. This indicates a derived
487 woodiness of *P. porphyranthus* which likely evolved on the continent.

488 *Euphorbia balsamifera* is nested in a woody clade and its closest relatives on the continent (*E.*
489 *larica*, *E. schefflera*, *E. smithii*) are all woody, leading to a posterior probability for being a
490 shrub of 0.964 and an herb of 0.036 at the node *E. balsamifera* – *E. smithii* (Supplement Fig.
491 S6). Evidently, *E. balsamifera* is derived woody also because of its wide range along
492 continental coastlines.

493 For *Schizogyne sericea* the closest relatives on the continent (*Limbara crithmoides*, *Pulicaria*
494 *incisa*, *P. mauritanica*, *Jasonia tuberosa*) are all herbaceous. This leads to a posterior
495 probability for being an herb of 0.877 and a shrub of 0.123 at the node *S. sericea* – *L.*
496 *crithmoides* and a posterior probability of 0.802 (herb) and 0.198 (shrub) at the node *S. sericea*
497 – *Lifago dielsii* (Supplement Fig. S7), indicating that *S. sericea* is insular woody. For
498 *Schizogyne sericeae*, the outgroup sampling is poor in the phylogeny that was available⁹².

499 *Bystropogon origanifolius* closest relatives from the continent are all herbaceous (*Acinos*
500 *arvensis*, *Ziziphora clinopodioides*, *Clinopodium gracile*, *C. chinese*, *C. gracile*), leading to a
501 posterior probability of 0.462 being a shrub and 0.538 being an herb at the node *B. origanifolius*
502 – *C. gracile*. Including the New World Menthinae clade leads to a posterior probability of 0.521
503 being a shrub and 0.479 being an herb at the node New World Menthinae – *B. origanifolius*
504 (Supplement Fig. S8). For *Bystropogon origanifolius* we used a phylogeny based on ITS and
505 ETS sequences⁹³. However, the phylogeny needs to be interpreted with caution as phylogenies
506 inferred from nuclear and chloroplast DNA differ⁹³.

507 For *Polycarphaea divaricata* and *Polycarphaea aristata* most of the closest relatives from the
508 continent are woody (e.g., *Polycarphaea nivea*, *Pollichia campestris*, *Sphaerocoma hookeri*, *S.*
509 *aucheri*; exception *Polycarpon prostratum* and *Polycarphaea filifolia*). This leads to a posterior
510 lifeform probability of 0.998 being a shrub and 0.002 being an herb at the node *Sphaerocoma*
511 *hookeri* – *Polycarphaea divaricata* / *aristata*. Including a broader part of the tree leads to a
512 posterior probability of 0.998 being a shrub and 0.002 being an herb at the node *Polycarpon*

513 *suffruticosum* – *Polycarpaea divaricata* / *aristata*, indicating that these species are ancestrally
514 woody (Supplement Fig. S9).

515 Following a maximum parsimony approach and visual tracking of character evolution,
516 *Forsskaolea angustifolia* is classified as ancestrally woody. This was done as for this species
517 no phylogenetic tree could be obtained from the literature. Better resolved phylogenies may
518 alter the inferred character evolution.

519

520 **References**

521 1. Schrader, J. *et al.* Islands are key for protecting the world's plant endemism.
522 *Nature* **634**, 868–874 (2024).

523 2. Kier, G. *et al.* A global assessment of endemism and species richness across
524 island and mainland regions. *Proc. Natl. Acad. Sci.* **106**, 9322–9327 (2009).

525 3. Whittaker, R. J. *et al.* *Island Biogeography: Geo-Environmental Dynamics,*
526 *Ecology, Evolution, Human Impact, and Conservation.* (Oxford University Press, Oxford,
527 New York, 2023).

528 4. Fernández-Palacios, J. M. *et al.* Scientists' warning – the outstanding biodiversity
529 of islands is in peril. *Glob. Ecol. Conserv.* **31**, e01847 (2021).

530 5. Nürk, N. M. *et al.* Diversification in evolutionary arenas — assessment and
531 synthesis. *Ecol. Evol.* **10**, 6163–6182 (2020).

532 6. Beierkuhnlein, C. Speciation happens in company – not in isolation. *Npj*
533 *Biodivers.* **3**, 1–7 (2024).

534 7. Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. *Nature*
535 **457**, 830–836 (2009).

536 8. Shaw, K. L. & Gillespie, R. G. Comparative phylogeography of oceanic
537 archipelagos: hotspots for inferences of evolutionary process. *Proc. Natl. Acad. Sci.*
538 **113**, 7986–7993 (2016).

539 9. Crawford, D. J. & Archibald, J. K. Island floras as model systems for studies of
540 plant speciation: prospects and challenges. *J. Syst. Evol.* **55**, 1–15 (2017).

541 10. Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. &
542 Triantis, K. A. Island biogeography: taking the long view of nature's laboratories. *Science*
543 **357**, eaam8326 (2017).

544 11. Baeckens, S. & Damme, R. V. The island syndrome. *Curr. Biol.* **30**, R338–R339
545 (2020).

546 12. Carracedo, J. C., Badiola, E. R., Guillou, H., Nuez, J. de la & Torrado, F. J. P.
547 Geology and volcanology of La Palma and El Hierro, Western Canaries. *Estud.*
548 *Geológicos* **57**, 175–273 (2001).

549 13. Hoernle, K. & Carracedo, J.-C. Canary Islands, Geology. in *Encyclopedia of*
550 *Islands* (eds Gillespie, R. & Clague, D.) 133–143 (University of California Press, 2009).
551 doi:10.1525/9780520943728-032.

552 14. Kienle, D. *et al.* Geodiversity and biodiversity on a volcanic island: the role of
553 scattered phonolites for plant diversity and performance. *Biogeosciences* **19**, 1691–
554 1703 (2022).

555 15. Carlquist, S. *Island Biology*. (Columbia University Press, New York, 1974).
556 doi:10.5962/bhl.title.63768.

557 16. Burns, K. C. *Evolution in Isolation: The Search for an Island Syndrome in Plants*.
558 (Cambridge University Press, Cambridge, 2019). doi:10.1017/9781108379953.

559 17. Zizka, A. *et al.* The evolution of insular woodiness. *Proc. Natl. Acad. Sci.* **119**,
560 e2208629119 (2022).

561 18. Hooft van Huysduynen, A. *et al.* Temporal and palaeoclimatic context of the
562 evolution of insular woodiness in the Canary Islands. *Ecol. Evol.* **11**, 12220–12231
563 (2021).

564 19. Lens, F., Davin, N., Smets, E. & del Arco, M. Insular woodiness on the Canary
565 Islands: a remarkable case of convergent evolution. *Int. J. Plant Sci.* **174**, 992–1013
566 (2013).

567 20. Darwin, C. *The Origin of Species*. (John Murray, UK, 1859).

568 21. Givnish, T. J. Adaptive plant evolution on plants - classical patterns, molecular
569 data, new insights. in *Evolution of Islands* (ed. Grant, P. R.) 281–304 (2001).

570 22. Wallace, A. R. *Tropical Nature, and Other Essays*. (Macmillan and co, London,
571 1878). doi:10.5962/bhl.title.1261.

572 23. Böhle, U. R., Hilger, H. H. & Martin, W. F. Island colonization and evolution of the
573 insular woody habit in *Echium* L. (Boraginaceae). *Proc. Natl. Acad. Sci.* **93**, 11740–11745
574 (1996).

575 24. Carlquist, S. How wood evolves: a new synthesis. *Botany* **90**, 901–940 (2012).

576 25. Lens, F. *et al.* Embolism resistance as a key mechanism to understand adaptive
577 plant strategies. *Curr. Opin. Plant Biol.* **16**, 287–292 (2013).

578 26. Dória, L. C. *et al.* Embolism resistance in stems of herbaceous Brassicaceae and
579 Asteraceae is linked to differences in woodiness and precipitation. *Ann. Bot.* **124**, 1–14
580 (2019).

581 27. Beierkuhnlein, C. *et al.* Volcanic ash deposition as a selection mechanism
582 towards woodiness. *Npj Biodivers.* **2**, 1–8 (2023).

583 28. del Moral, R., Titus, J. h. & Cook, A. m. Early primary succession on Mount St.
584 Helens, Washington, USA. *J. Veg. Sci.* **6**, 107–120 (1995).

585 29. del Moral, R. & Grishin, S. Y. Volcanic disturbance and ecosystem recovery. in
586 *Ecosystems of the World* (ed. Walker) 137–160 (1999).

587 30. Dale, V. H., Delago-Acevedo, J. & MacMahon, J. Effects of modern volcanic
588 eruptions on vegetation. in *Volcanoes and their Environment* (eds Marti, J. & Ernst, G. G.
589 J.) (Cambridge University Press, Cambridge, UK, 2005).

590 31. Efford, J., Clarkson, B. & Bylsma, R. Persistent effects of a tephra eruption (AD
591 1655) on treeline composition and structure, Mt Taranaki, New Zealand. *N. Z. J. Bot.* **52**,
592 245–261 (2014).

593 32. Dale, V. H., Swanson, F. J. & Crisafulli, C. M. Disturbance, survival, and
594 sucession: understanding ecological repsonses to the 1980 eruption of Mt. St. Helens.
595 in (eds Crisafulli, C. M. & Dale, V. H.) 3–12 (Springer, 2018).

596 33. Carracedo, J. C. et al. The 2021 eruption of the Cumbre Vieja volcanic ridge on La
597 Palma, Canary Islands. *Geol. Today* **38**, 94–107 (2022).

598 34. Nogales, M. et al. The fate of terrestrial biodiversity during an oceanic island
599 volcanic eruption. *Sci. Rep.* **12**, 19344 (2022).

600 35. Grishin, S. Yu., del Moral, R., Krestov, P. V. & Verkholat, V. P. Succession following
601 the catastrophic eruption of Ksudach volcano (Kamchatka, 1907). *Vegetatio* **127**, 129–
602 153 (1996).

603 36. Weiser, F. et al. Impact of volcanic sulfur emissions on the pine forest of La
604 Palma, Spain. *Forests* **13**, 299 (2022).

605 37. Shatto, C. et al. Volcanic tephra deposition dataset based on interpolated field
606 measurements following the 2021 Tajogaite eruption on La Palma, Canary Islands,
607 Spain. *Data Brief* **52**, 109949 (2024).

608 38. Carracedo, J. Geological map of La Palma, Canary Islands. *Geol. Map* (2001).

609 39. Barajas Barbosa, M. P. et al. Assembly of functional diversity in an oceanic island
610 flora. *Nature* **619**, 545–550 (2023).

611 40. Schrader, J. et al. Trait filtering in island floras: a conceptual framework. *J.
612 Biogeogr.* **51**, 1596–1606 (2024).

613 41. Doyle, J. A. Molecular and fossil evidence on the origin of Angiosperms. *Annu.
614 Rev. Earth Planet. Sci.* **40**, 301–326 (2012).

615 42. He, X. & Groover, A. T. The Genomics of Wood Formation in Angiosperm Trees. in
616 *Comparative and Evolutionary Genomics of Angiosperm Trees* (eds Groover, A. & Cronk,
617 Q.) 205–225 (Springer International Publishing, Cham, 2017).

618 doi:10.1007/7397_2016_17.

619 43. Karadimou, E. *et al.* Functional diversity changes over 100 yr of primary
620 succession on a volcanic island: insights into assembly processes. *Ecosphere* **9**,
621 e02374 (2018).

622 44. Cabrera Rodríguez, F., Otto, R. & Fernández-Palacios, J. M. Changes in soil
623 chemical properties and plant species composition during primary succession on an
624 oceanic island. *J. Veg. Sci.* **33**, e13137 (2022).

625 45. del Moral, R. & Wood, D. M. Early primary succession on the volcano Mount St.
626 Helens. *J. Veg. Sci.* **4**, 223–234 (1993).

627 46. Eggler, W. A. Plant life of Paricutin Volcano, Mexico, eight years after activity
628 ceased. *Am. Midl. Nat.* **69**, 38–68 (1963).

629 47. Medina, F. M. *et al.* Seed bank and ashfalls: the ecological resetting effect of the
630 recent Tajogaite Volcano eruption in the Canary pine forest (La Palma, Spain). *J. Veg.*
631 *Sci.* **36**, e70045 (2025).

632 48. Fukami, T. Historical contingency in community assembly: integrating niches,
633 species pools, and priority effects. *Annu. Rev. Ecol. Evol. Syst.* **46**, 1–23 (2015).

634 49. Vannette, R. L. & Fukami, T. Historical contingency in species interactions:
635 towards niche-based predictions. *Ecol. Lett.* **17**, 115–124 (2014).

636 50. Callaway, R. M. & Walker, L. R. Competition and facilitation: a synthetic approach
637 to interactions in plant communities. *Ecology* **78**, 1958–1965 (1997).

638 51. Grime, J. P. Trait convergence and trait divergence in herbaceous plant
639 communities: mechanisms and consequences. *J. Veg. Sci.* **17**, 255–260 (2006).

640 52. Weiher, E. & Keddy, P. A. Assembly rules, null models, and trait dispersion: new
641 questions from old patterns. *Oikos* **74**, 159–164 (1995).

642 53. Cornwell, W. K., Schwilk, L. D. W. & Ackerly, D. D. A trait-based test for habitat
643 filtering: convex hull volume. *Ecology* **87**, 1465–1471 (2006).

644 54. Hanz, D. M. *et al.* Climatic and biogeographical drivers of functional diversity in
645 the flora of the Canary Islands. *Glob. Ecol. Biogeogr.* **31**, 1313–1331 (2022).

646 55. Ratier Backes, A. *et al.* Mechanisms behind elevational plant species richness
647 patterns revealed by a trait-based approach. *J. Veg. Sci.* **34**, e13171 (2023).

648 56. MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of
649 coexisting species. *Am. Nat.* **101**, 377–385 (1967).

650 57. Whittaker, R. J., Bush, M. B. & Richards, K. Plant recolonization and vegetation
651 succession on the Krakatau Islands, Indonesia. *Ecol. Monogr.* **59**, 59–123 (1989).

652 58. Schrader, J., Wright, I. J., Kreft, H. & Westoby, M. A roadmap to plant functional
653 island biogeography. *Biol. Rev.* **96**, 2851–2870 (2021).

654 59. Whittaker, R. J., Jones, S. H. & Partomihardjo, T. The rebuilding of an isolated rain
655 forest assemblage: how disharmonic is the flora of Krakatau? *Biodivers. Conserv.* **6**,
656 1671–1696 (1997).

657 60. Ulrich, W., Zaplata, M. K., Winter, S. & Fischer, A. Spatial distribution of
658 functional traits indicates small scale habitat filtering during early plant succession.
659 *Perspect. Plant Ecol. Evol. Syst.* **28**, 58–66 (2017).

660 61. Wilfahrt, P. A., Collins, B. & White, P. S. Shifts in functional traits among tree
661 communities across succession in eastern deciduous forests. *For. Ecol. Manag.* **324**,
662 179–185 (2014).

663 62. Carvajal-Endara, S., Hendry, A. P., Emery, N. C. & Davies, T. J. Habitat filtering not
664 dispersal limitation shapes oceanic island floras: species assembly of the Galápagos
665 archipelago. *Ecol. Lett.* **20**, 495–504 (2017).

666 63. Aikio, S., Ramula, S., Muola, A. & von Numers, M. Island properties dominate
667 species traits in determining plant colonizations in an archipelago system. *Ecography*
668 **43**, 1041–1051 (2020).

669 64. Otto, R. *et al.* Primary succession and plant functional traits on an oceanic
670 island. *J. Ecol.* **113**, 1475–1490 (2025).

671 65. Laughlin, D. C. Unifying functional and population ecology to test the adaptive
672 value of traits. *Biol. Rev.* **99**, 1976–1991 (2024).

673 66. Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. *Plant Soil*
674 **199**, 213–227 (1998).

675 67. White, J. D. L. & Schmincke, H.-U. 1949 eruption on La Palma Canary Islands. *J.*
676 *Volcanol. Geotherm. Res.* **94**, 283–304 (1999).

677 68. Longpré, M.-A. & Felpeto, A. Historical volcanism in the Canary Islands; Part 1: a
678 review of precursory and eruptive activity, eruption parameter estimates, and
679 implications for hazard assessment. *J. Volcanol. Geotherm. Res.* **419**, 107363 (2021).

680 69. Irl, S. D. H. *et al.* Climate vs. topography – spatial patterns of plant species
681 diversity and endemism on a high-elevation island. *J. Ecol.* **103**, 1621–1633 (2015).

682 70. Schweiger, A. H., Irl, S. D. H., Steinbauer, M. J., Dengler, J. & Beierkuhnlein, C.
683 Optimizing sampling approaches along ecological gradients. *Methods Ecol. Evol.* **7**,
684 463–471 (2016).

685 71. Pérez-Harguindeguy, N. *et al.* New handbook for standardised measurement of
686 plant functional traits worldwide. <https://hdl.handle.net/11299/177647> (2013).

687 72. Revell, L. J. *phytools*: an R package for phylogenetic comparative biology (and
688 other things). *Methods Ecol. Evol.* **3**, 217–223 (2012).

689 73. Huelsenbeck, J. P., Nielsen, R. & Bollback, J. P. Stochastic mapping of
690 morphological characters. *Syst. Biol.* **52**, 131–158 (2003).

691 74. Revell, L. J. & Harmon, L. J. *Phylogenetic Comparative Methods in R*. (Princeton
692 University Press, Princeton ; Oxford, 2022).

693 75. Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of
694 Southern Wisconsin. *Ecol. Monogr.* **27**, 325–349 (1957).

695 76. Oksanen, J. *et al.* *vegan*: Community Ecology Package. (2024).

696 77. Brewer, R. F. A. *et al.* Trait-dependent diversification and spatio-ecological limits
697 drive angiosperm diversity unevenness across the Canary Islands archipelago.
698 2025.09.19.677265 Preprint at <https://doi.org/10.1101/2025.09.19.677265> (2025).

699 78. Jin, Y. & Qian, H. V. *PhyloMaker2*: an updated and enlarged R package that can
700 generate very large phylogenies for vascular plants. *Plant Divers.* **44**, 335–339 (2022).

701 79. Paradis, E. *et al.* *ape*: Analyses of Phylogenetics and Evolution. (2024).

702 80. Kembel, S. W. *et al.* *Picante*: R tools for integrating phylogenies and ecology.
703 *Bioinformatics* **26**, 1463–1464 (2010).

704 81. Ogle, D. H., Doll, J. C., Wheeler, A. P., & Dinno, A. *FSA*: Simple Fisheries Stock
705 Assessment Methods. (2023).

706 82. Blonder, B. Hypervolume concepts in niche- and trait-based ecology. *Ecography*
707 **41**, 1441–1455 (2018).

708 83. Blonder, B. *et al.* *hypervolume*: High Dimensional Geometry, Set Operations,
709 Projection, and Inference Using Kernel Density Estimation, Support Vector Machines,
710 and Convex Hulls. (2024).

711 84. Cutts, V. *et al.* Scientific floras can be reliable sources for some trait data in a
712 system with poor coverage in global trait databases. *J. Veg. Sci.* **32**, e12996 (2021).

713 85. Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional
714 hypervolume. *Glob. Ecol. Biogeogr.* **23**, 595–609 (2014).

715 86. Lamanna, C. *et al.* Functional trait space and the latitudinal diversity gradient.
716 *Proc. Natl. Acad. Sci.* **111**, 13745–13750 (2014).

717 87. Chen, D., Laini, A. & Blonder, B. W. Statistical inference methods for n-
718 dimensional hypervolumes: applications to niches and functional diversity. *Methods*
719 *Ecol. Evol.* **15**, 657–665 (2024).

720 88. Laini, A., Datry, T. & Blonder, B. W. N-dimensional hypervolumes in trait-based
721 ecology: does occupancy rate matter? *Funct. Ecol.* **37**, 1802–1814 (2023).

722 89. Cardoso, P., Rigal, F. & Carvalho, J. C. BAT – Biodiversity Assessment Tools, an R
723 package for the measurement and estimation of alpha and beta taxon, phylogenetic
724 and functional diversity. *Methods Ecol. Evol.* **6**, 232–236 (2015).

725 90. Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-
726 dimensional hypervolumes. *Methods Ecol. Evol.* **11**, 986–995 (2020).

727 91. Lai, J., Zou, Y., Zhang, J. & Peres-Neto, P. R. Generalizing hierarchical and
728 variation partitioning in multiple regression and canonical analyses using the rdacca.hp
729 R package. *Methods Ecol. Evol.* **13**, 782–788 (2022).

730 92. Francisco-Ortega, J., Park, S.-J., Santos-guerra, A., Benabid, A. & Jansen, R. K.
731 Origin and evolution of the endemic Macaronesian Inuleae (Asteraceae): evidence from
732 the internal transcribed spacers of nuclear ribosomal DNA. *Biol. J. Linn. Soc.* **72**, 77–97
733 (2001).

734 93. Drew, B. T., Liu, S., Bonifacino, J. M. & Sytsma, K. J. Amphitropical disjunctions in
735 New World Menthinae: three Pliocene dispersals to South America following late
736 Miocene dispersal to North America from the Old World. *Am. J. Bot.* **104**, 1695–1707
737 (2017).

738 **Acknowledgements**

739 Hypervolume permutations were performed using the festus-cluster of the Bayreuth Centre for
740 High Performance Computing (<https://www.bzhpc.uni-bayreuth.de>), funded by the Deutsche
741 Forschungsgemeinschaft (DFG, German Research Foundation) - 523317330.

742 We especially thank Anna Hollweg, Anna-Maria Seiverth, Lena Wege, and Trevor Roberts for
743 their support during the field work, and Lilli Oberdörffer for proof-reading.

744

745 **Author contributions**

746 Conceptualization: SB, CB; Field work, data curation, formal analysis: SB; Methodology:
747 SB, FL, NMN, CB; Writing – Original draft: SB; Writing – Rewiew & Editing: SB, FL,
748 NMN, CB.

749

750 **Competing interests**

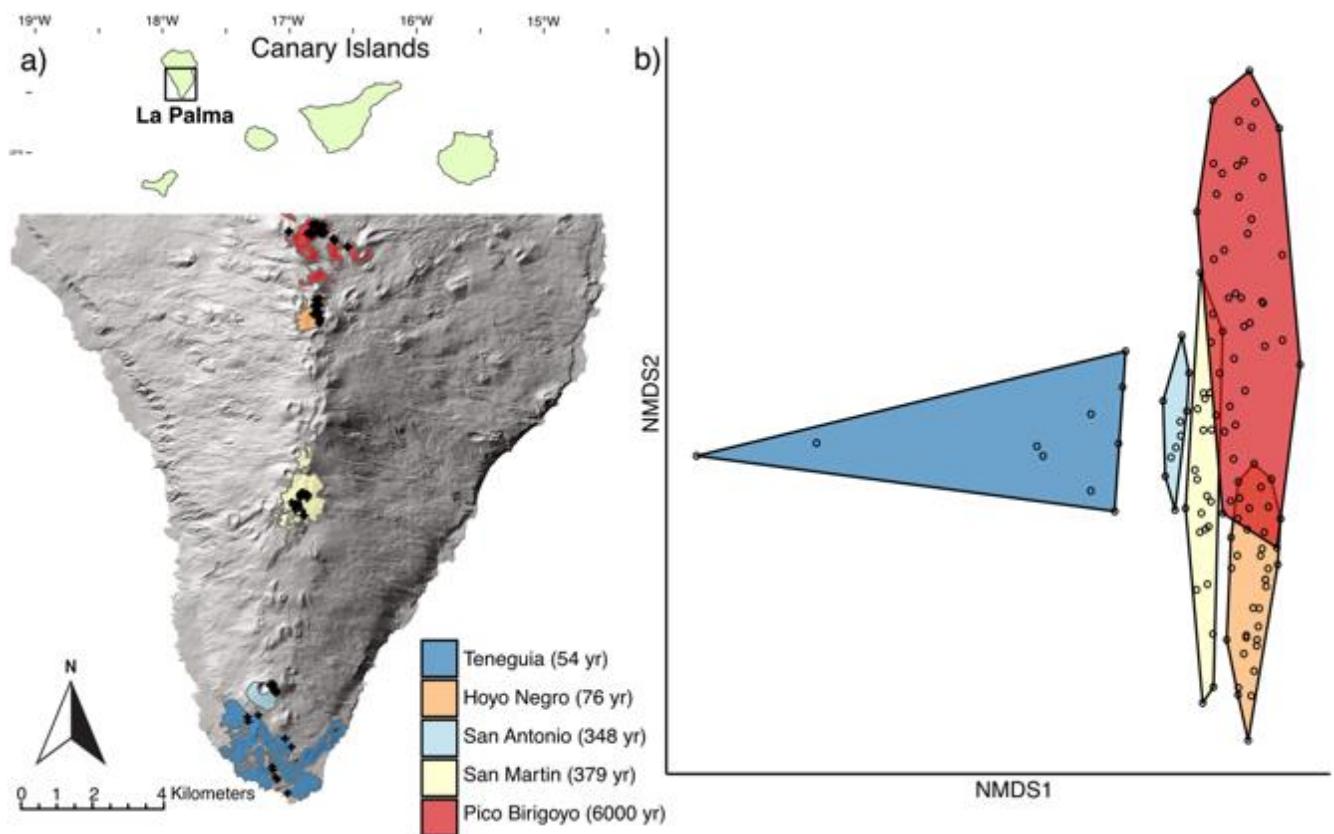
751 -

752

753 **Materials & Correspondence**

754 All correspondence should be addressed to Simon Biedermann: simon.biedermann@uni-
755 bayreuth.de

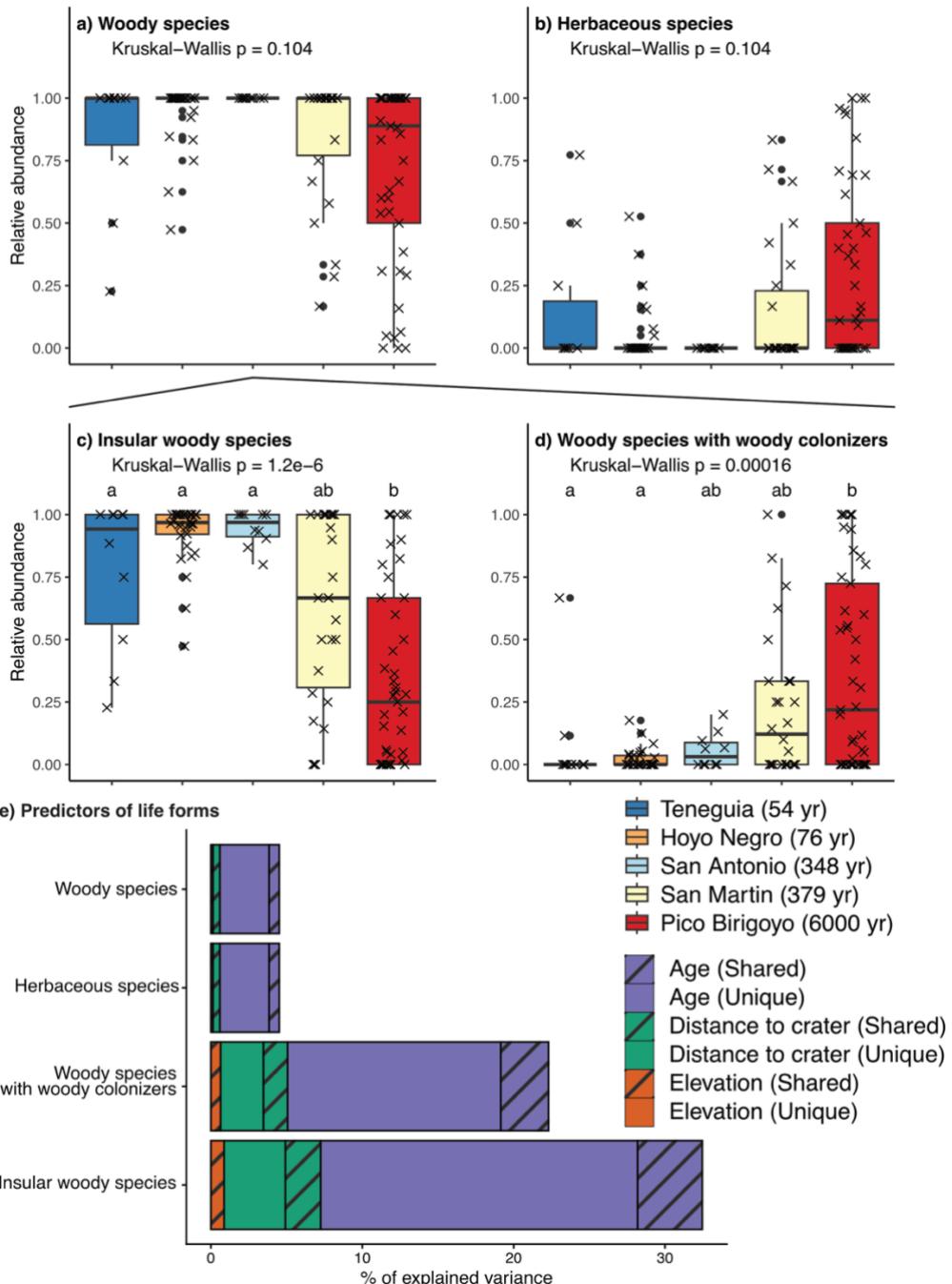
756 All data and code will be made publicly available.


757

758 **Tables**

759 **Table 1.** Functional diversity indices and centroid location of the hypervolumes of the
 760 vegetation of the five tephra fields estimated using one-class support vector machine (SVM)
 761 learning model.

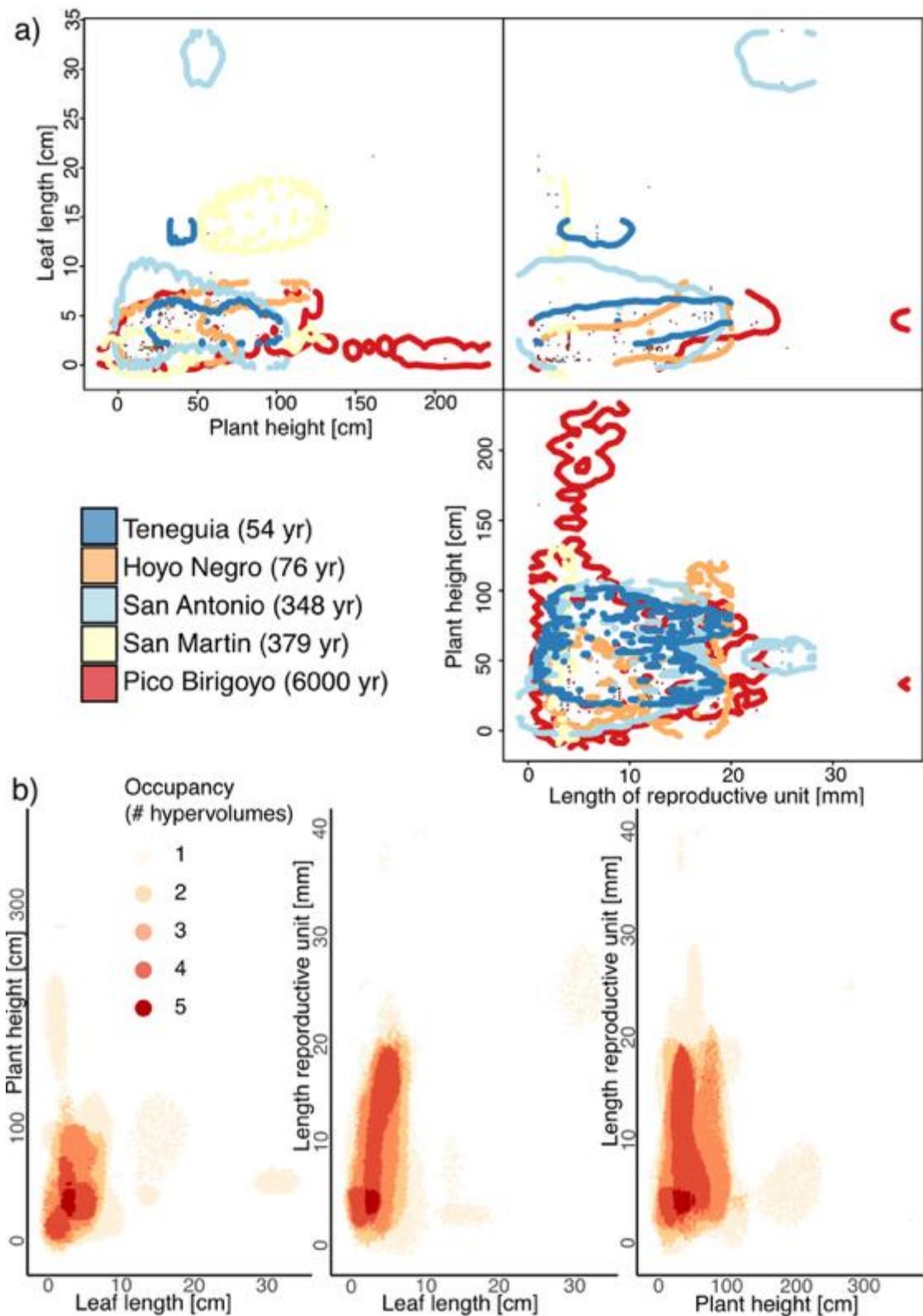
Tephra field	Functional richness	Functional dispersion	Centroid location – Leaf length [cm]	Centroid location – Plant height [cm]	Centroid location – Length reproductive unit [mm]
Pico Birigoyo	9994.8	48.9	3.76	61.81	8.8
Hoyo Negro	2891.4	27.7	3.31	37.95	12.1
San Martin	644.0	47.3	8.66	59.54	3.2
San Antonio	8879.8	35.0	5.96	46.95	9.2
Teneguia	2628.0	26.2	4.49	55.82	8.9


762

763 **Figures**

764

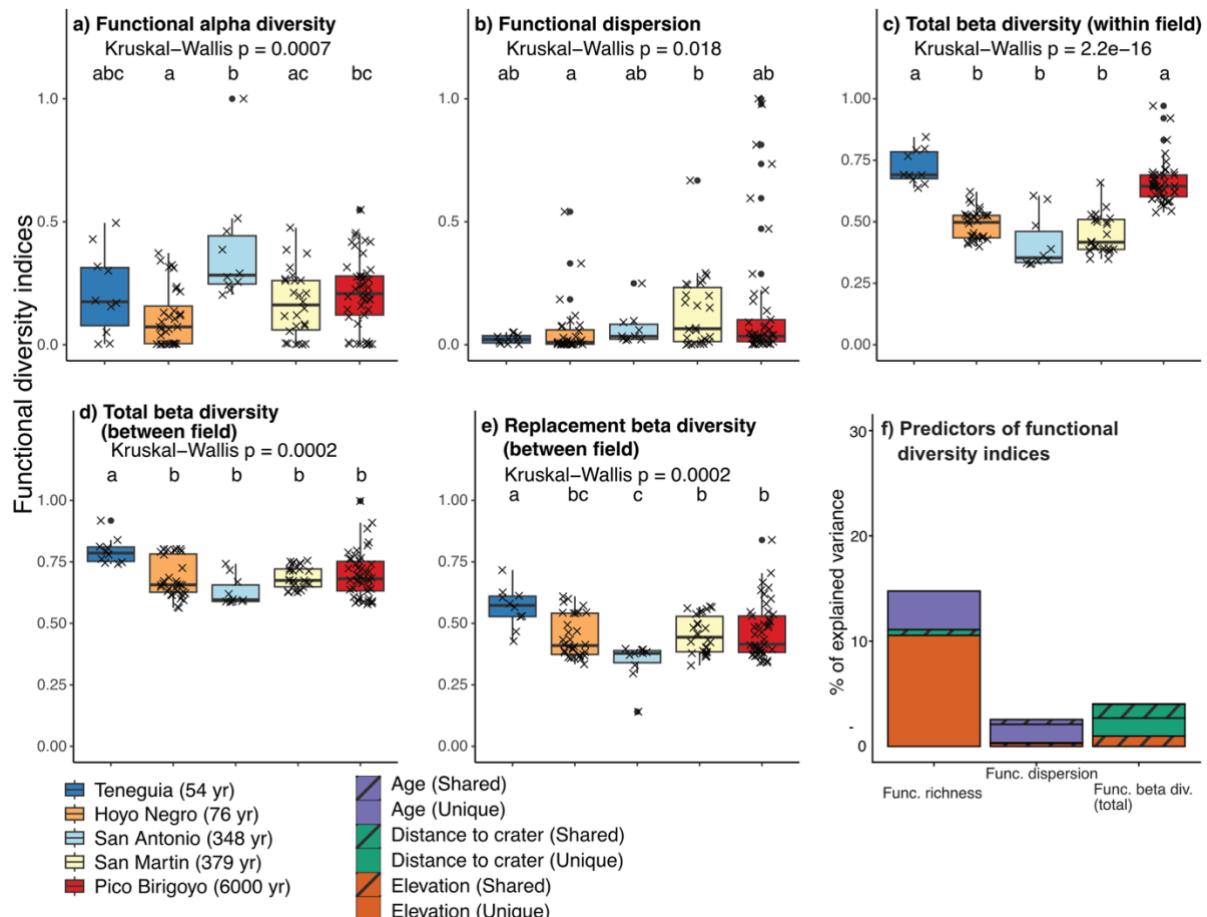
765 **Figure 1.** Study area and plant community composition. (a) Overview of the study area on the
 766 southern part of La Palma, Spain, its location within the Canary archipelago (Spain) and plot
 767 distribution within the five different tephra fields along the Cumbre Vieja ridge in the southern
 768 part of La Palma. The extent of the tephra fields is associated with the eruption of a specific
 769 crater and time since the last eruption. (b) Differences in plant community composition of the
 770 five tephra fields analyzed using Non-metric Multidimensional Scaling (NMDS) (Stress score
 771 = 0.104). Each tephra field forms its own unique community, with only marginal overlap.


772

773

774 **Figure 2.** Abundance patterns of different life forms on the five tephra fields of La Palma. (a)
775 Relative abundance of woody species shows that all tephra fields are dominated by woody
776 species, with no significant differences between them. (b) Relative abundance of herbaceous
777 species, demonstrating that herbs are almost absent on the tephra fields. (c) Relative abundance
778 of insular woody species. Younger tephra fields (meaning less time since eruption) are
779 dominated by insular woody species, whereas this dominance gradually decreases with age. (d)
780 Relative abundance of woody species evolved from woody island colonizers. On younger
781 craters, these woody species are almost absent, but their relative abundance increases with the
782 age of the tephra fields. (e) Relative contribution in abiotic predictors in explaining the

783 observed variance in the relative abundance of life forms. Note that the unique (solid) and
784 average shared (dashed) explained variance represent adjusted R^2 values.



785

786 **Figure 3.** Differences in plant functional traits for the five tephra fields. (a) Estimated three-
787 dimensional plant functional trait hypervolume based on a one-class support vector machine
788 algorithm of the vegetation sampled on five aged tephra fields: Pico Birigoyo (n = 634 data

789 points), Hoyo Negro (n = 744 data points), San Martin (n = 179 data points), San Antonio (n =
790 224 data points), Teneguia (n = 115 data points). The small, coloured points represent the trait
791 data, whereas big, coloured points represent the centroids of the respective hypervolume. The
792 colored outline represents the area filled by Monte Carlo points sampled from the hypervolume.
793 The vegetation of Pico Birigoyo occupies the largest volume, whereas the vegetation on San
794 Martin occupies the smallest. (b) Occupied multidimensional trait space by the functional trait
795 hypervolumes of the five tephra fields. Shown here is the overlap of trait space occupied by
796 the hypervolumes. Most of the trait space is occupied by more than one hypervolume.

797

798

799 **Figure 4.** Differences in functional diversity indices between five tephra fields. (a) Functional
800 richness (functional alpha diversity): significant differences across the fields are observed, with
801 no clear trend. (b) Functional dispersion: dispersion is low, some significant differences are
802 observed without a clear trend. (c) Total function beta diversity within each tephra field. The
803 craters Hoyo Negro, San Antonio, and San Martin have a significant lower beta diversity than
804 the youngest and oldest fields of Teneguia and Pico Birigoyo, respectively. (d) Total functional
805 beta diversity is highest on Teneguia, with no clear trend towards the other craters. (e) (e)
806 Replacement beta diversity between the fields. The trend is similar to within-field functional
807 beta diversity, however, less pronounced. Note that functional alpha diversity and functional
808 dispersion were scaled between 0 and 1. (f) Relative contribution in abiotic predictors in
809 explaining the observed variance in the functional diversity indices. Note that the unique (solid)
810 and average shared (dashed) explained variance represent adjusted R^2 values.

811

812

813 **Supplementary information**

814 **Supplementary methods**

815 To create the phylogeny of the angiosperm species found on the studied tephra fields, we used
816 an angiosperm phylogeny of the Canary Islands provided by ¹ as a backbone. As not all species
817 found on the tephra fields are included in this phylogeny, we opted to add the missing species
818 using the function *phylo.maker()* with the scenario S3 (V.PhyloMaker2 package, ²). The
819 following species were added: *Rumex lunaria*, *Polycarpaea divaricata*, *Aeonium nobile*,
820 *Polycarpaea aristata*, *Pterocephalus porphyranthus*, *Erica canariensis*, *Reseda luteola*,
821 *Schizogyne sericea*, *Aeonium spathulatum*, *Rumex acetosella*, and *Tuberaria guttata*. *Pinus*
822 *canariensis* could not be added to the angiosperm phylogeny and was removed from the
823 analysis.

824 For species with unknown woodiness status, phylogenies and plant life forms (woody /
825 herbaceous) were acquired from the literature and online herbaria. For *Euphorbia balsamifera*
826 ³ and *Schizogyne sericea* ⁴, phylogenies were obtained from the literature. Sequences from
827 *Pterocephalus porphyranthus* and of *Polycarpaea aristata* were not available. Therefore,
828 genomic DNA was extracted from silica-dried leave samples collected during field work.
829 Extraction and PCR amplification followed the methods described in ⁵. The same primers
830 (biomers.net GmbH, Ulm, Germany) were used for both PCR and Sanger sequencing and both
831 strands were sequenced for all PCR products. For all regions, forward and reverse sequences
832 were aligned with CodonCode Aligner v.3.0.3 (CodonCode Corp., Deham, Massachusetts,
833 USA), and the consensus was exported in fasta format. For *Pterocephalus porphyranthus* and
834 *Polycarpaea aristata*, the ITS4/ITS5m and c/f primers were used for sequencing. Sequencing
835 was conducted by Eurofins Genomics (Ebersberg, Germany).

836 The newly created sequences were aligned with published sequences of the relevant related
837 species, as acquired from the literature ^{6,7}. For *Schizogyne sericea*, *Bystropogon origanifolius*,
838 *Polycarpaea divaricata* and *Polycarpaea aristata* all the sequences used to construct the
839 original phylogeny were downloaded from GenBank. The phylogenetic tree of *Bystropogon*
840 *origanifolius* was reconstructed based on ITS and ETS DNA-sequences ⁸. For *Polycarpaea*
841 *aristata* and *P. divaricata* the same approach was followed, with a reconstruction based on
842 DNA sequences from plastid *rps16* and *ndhF*, as well as from nuclear ITS and RPB2 ⁷.
843 Alignments were conducted using MAFFT ⁹ with the –auto algorithm and a maximum-
844 likelihood tree was estimated on the concatenated data matrices using IQTREE2 with
845 ModelFinder to estimate the best DNA substitution model per gene alignment ^{10,11}. This was
846 followed up by ancestral state estimations (see Methods).

847 For the species *Forsskaolea angustifolia* it was not possible to conduct an ancestral state
848 reconstruction. Therefore, we used the phylogeny of ¹² and a maximum parsimony approach
849 (following ¹³) to visually trace character evolution.

850

851

852 **Supplementary Tables**

853 **Supplement Table S1.** Life forms and ancestral or insular woodiness of the sampled species
 854 in this study. Life forms were classified as woody or herbaceous as observed in the field.
 855 Ancestral or insular woodiness of woody species was either obtained through literature or
 856 through ancestral state reconstructions in this study.

Species	Woody / Herbaceous	Ancestral / Insular woody	Reference
<i>Adenocarpus foliolosus</i> (Aiton) DC., 1815	Woody	Ancestral	¹⁴
<i>Aeonium davidbramwellii</i> H.Y.Liu, 1989	Woody	Insular	¹⁵
<i>Aeonium nobile</i> (Praeger) Praeger, 1929	Woody	Insular	¹⁵
<i>Aeonium spathulatum</i> (Hornem.) Praeger, 1929	Woody	Insular	¹⁵
<i>Argyranthemum webbii</i> Sch.Bip., 1844	Woody	Insular	¹⁵
<i>Astydamia latifolia</i> (L.f.) Baill., 1879	Herbaceous	-	-
<i>Bituminaria bituminosa</i> (L.) C.H.Stirt., 1981	Woody	Insular	This study.
<i>Bystropogon origanifolius</i> L'Hér., 1789	Woody	Insular	This study.
<i>Chamaecytisus proliferus</i> (L.f.) Link, 1831	Woody	Ancestral	¹⁶
<i>Cistus symphytifolius</i> Lam., 1786	Woody	Ancestral	-
<i>Descurainia gilva</i> Svent., 1953	Woody	Insular	¹⁵

<i>Echium brevirame</i> Sprague & Hutch., 1914	Woody	Insular	¹⁵
<i>Erica canariensis</i> Rivas Mart., Martín Osorio & Wildpret, 2011	Woody	Ancestral	-
<i>Euphorbia</i> <i>balsamifera</i> Aiton, 1789	Woody	Derived ¹⁾	This study.
<i>Forsskaolea</i> <i>angustifolia</i> Retz., 1783	Woody	Ancestral	This study.
<i>Hemionitis gluckuk</i> Christenh., 2018	Herbaceous	-	-
<i>Hypericum</i> <i>grandifolium</i> Choisy, 1821	Woody	Ancestral	¹⁷
<i>Kleinia neriifolia</i> Haw., 1812	Woody	Derived ²⁾	¹⁸
<i>Limonium</i> <i>pectinatum</i> (Aiton) Kuntze, 1891	Herbaceous ³⁾	-	-
<i>Logfia gallica</i> (L.) Coss. & Germ., 1843	Herbaceous	-	-
<i>Micromeria</i> <i>herpyllomorpha</i> Webb & Berthel., 1844	Woody	Insular	¹⁵
<i>Myrica faya</i> Aiton, 1789	Woody	Ancestral	-
<i>Pinus canariensis</i> C.Sm. ex DC., 1828	Woody	Ancestral	-
<i>Plantago webbii</i> Barnéoud, 1845	Woody	Insular	¹⁵

<i>Polycarpa aristata</i> (Aiton) C.Sm. ex DC., 1828	Woody	Ancestral	This study.
<i>Polycarpa divaricata</i> (Aiton) Poir. ex Steud., 1841	Woody	Ancestral	This study.
<i>Pteridium aquilinum</i> (L.) Kuhn, 1879	Herbaceous	-	-
<i>Pterocephalus porphyranthus</i> Svent. (1969)	Woody	Derived ¹⁾	This study.
<i>Reseda luteola</i> L., 1753	Herbaceous	-	-
<i>Rumex acetosella</i> L., 1753	Herbaceous	-	-
<i>Rumex lunaria</i> L., 1753	Woody	Insular	¹⁵
<i>Schizogyne sericea</i> (L.f.) DC., 1836	Woody	Insular	This study.
<i>Scrophularia glabrata</i> Aiton, 1789	Herbaceous	-	-
<i>Silene gallica</i> L., 1753	Herbaceous	-	-
<i>Silene vulgaris</i> (Moench) Garcke, 1869	Herbaceous	-	-
<i>Sonchus hierrensis</i> (Pit.) Boulos, 1967	Woody	Insular	¹⁵
<i>Tuberaria guttata</i> (L.) Fourr., 1868	Herbaceous	-	-
<i>Wahlenbergia lobelioides</i> (L.f.) Link, 1829	Herbaceous	-	-

857 ¹⁾ For *Euphorbia balsamifera* and *Pterocephalus porphyranthus*, the woodiness of these
 858 species evolved on the continent, meaning they are derived woody island species. In this
 859 study, we treat them in the same woody group as the ancestral woody species as they did not
 860 evolve their woodiness on an island.

861 ²⁾ For *Kleinia neriifolia*, no phylogeny containing this species could be obtained. Most of the
 862 continental relatives are woody and evolved their woodiness from herbaceous relatives,
 863 indicating a derived woodiness of this species.

864 ³⁾ For *Limonium pectinatum*, a woody base of the plant was observed. However, it did not
865 extend to the upper stem parts, which means it did not satisfy our strict woodiness criteria
866 (see Methods for details).

867

868 **Supplement Table S2.** Pairwise multilevel comparison for the Analysis of Similarities
869 (ANOSIM) for the plant communities observed on the five tephra fields. All p-values are $p <$
870 0.0009, meaning significant differences in community composition are observed between all
871 the craters.

Pair	R ANOSIM	p-value adjusted
San Antonio – San Martin	0.380	0.00099
San Antonio – Pico Birigoyo	0.320	0.00099
San Antonio – Hoyo Negro	0.946	0.00099
San Antonio – Teneguia	0.498	0.00099
San Martin – Pico Birigoyo	0.250	0.00099
San Martin – Hoyo Negro	0.901	0.00099
San Martin – Teneguia	0.857	0.00099
Pico Birigoyo – Hoyo Negro	0.420	0.00099
Pico Birigoyo – Teneguia	0.612	0.00099
Hoyo Negro – Teneguia	0.980	0.00099

872

873

874 **Supplement Table S3.** Significance of predictors in explaining observed variance in (a)
875 relative abundance of life forms, and in (b) functional diversity measures. Significance of
876 predictors was assessed using permutation tests. Significant predictors ($p < 0.05$) are written
877 in bold.

Variable	Age	Distance to the crater	Elevation
a)			
Woody species	0.018	0.2627	0.6703
Herbaceous species	0.018	0.2488	0.6234
Insular woody species	0.0001	0.0028	0.23
Woody species with woody colonizers	0.001	0.017	0.29
b)			
Functional richness	0.067	0.31	0.002
Functional dispersion	0.052	0.73	0.49
Functional beta diversity (total)	0.59	0.031	0.14

878

879

880 **Supplement Table S4.** Pairwise multilevel comparison of overlap statistics of the Support-
881 vector machine derived hypervolumes (SVM) of the vegetation on the respective tephra
882 fields.

Comparison	Jaccard-Index	Unique fraction 1	Unique fraction 2	Jaccard p adjusted	Unique 1 p adjusted	Unique 2 p adjusted
PB – HN	0.202	0.784	0.252	< 0.0001	< 0.0001	1
PB – SM	0.028	0.971	0.549	< 0.0001	< 0.0001	0.04
PB – SA	0.388	0.472	0.406	1	1	0.29
PB – TG	0.223	0.770	0.125	0.05	0.05	1
HN – SM	0.056	0.935	0.708	0.01	0.01	0.05
HN – SA	0.140	0.501	0.838	0.75	1	< 0.0001
HN – TG	0.115	0.804	0.784	0.54	1	< 0.0001
SM – SA	0.020	0.716	0.979	< 0.0001	0.27	< 0.0001
SM – TG	0.005	0.976	0.994	< 0.0001	< 0.0001	< 0.0001
SA – TG	0.243	0.747	0.145	0.13	0.14	1

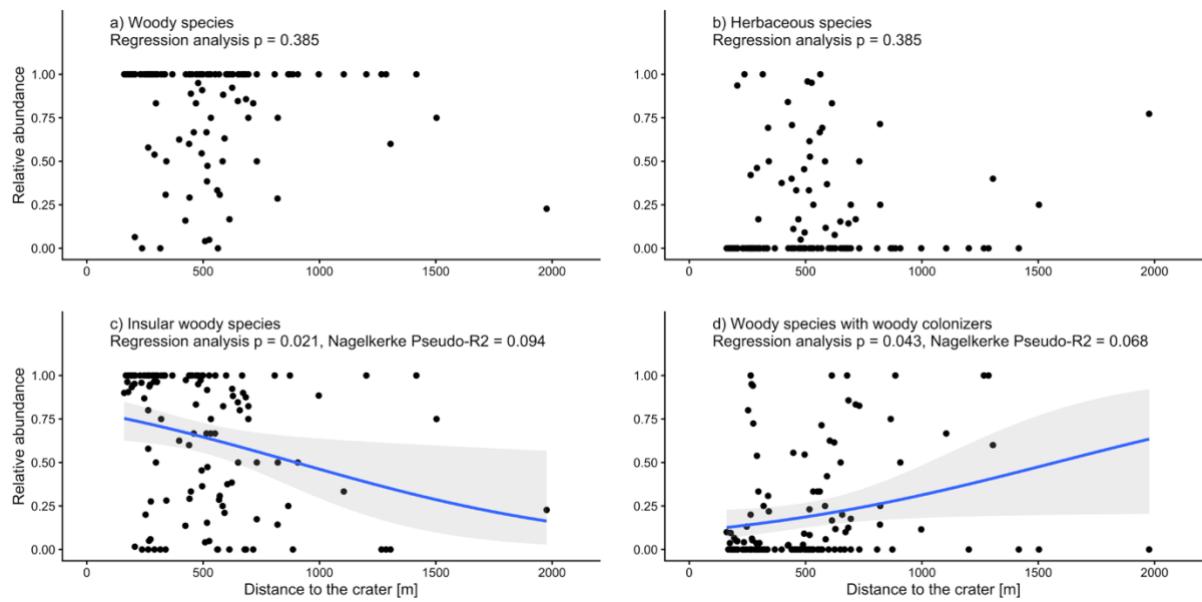
883

884

885 **Supplement Table S5.** Functional diversity indices and centroid location of the hypervolumes
886 of the vegetation of the five aged tephra estimated using Gaussian kernel density estimation
887 (KDE).

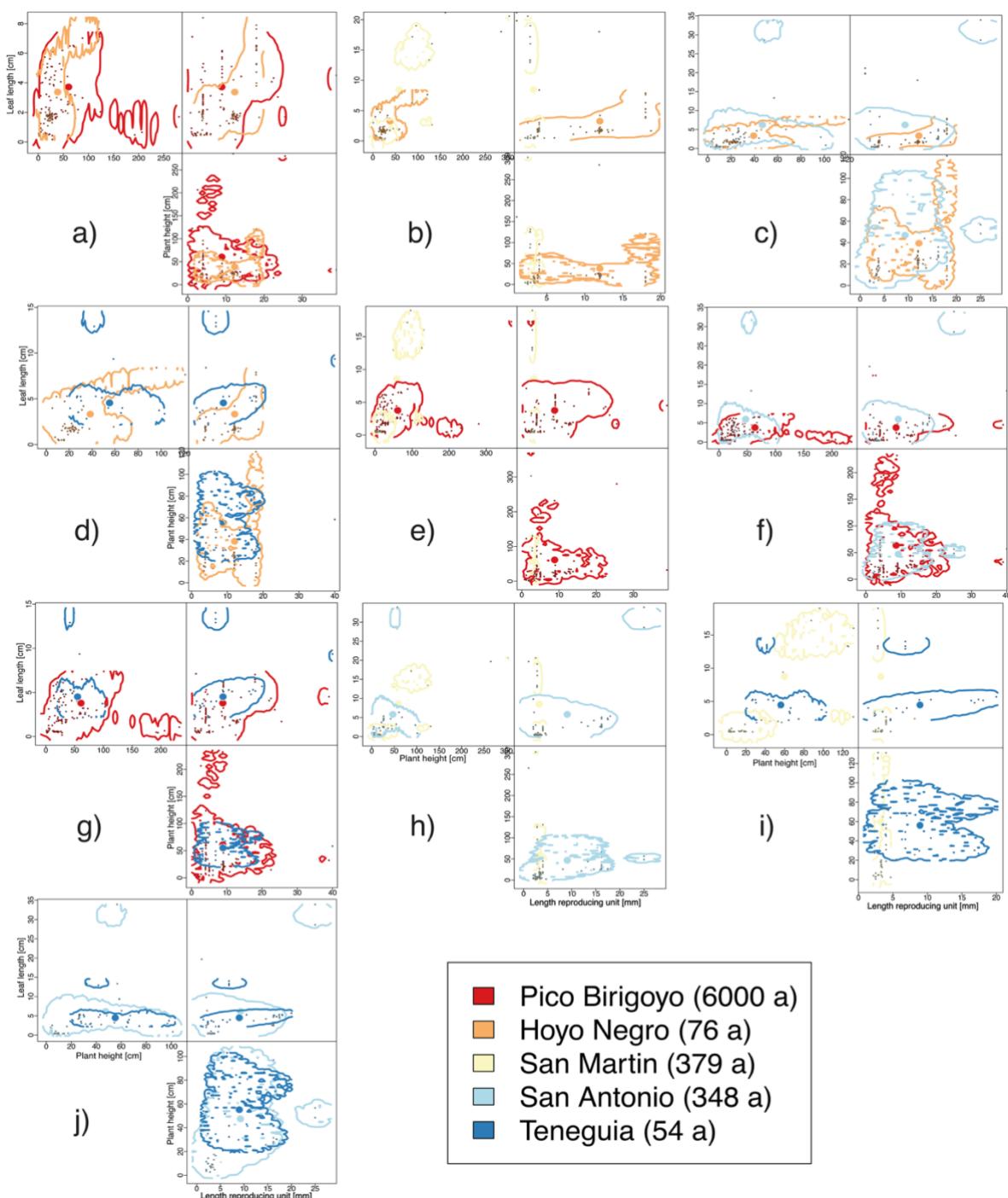
Tephra field	Functional richness	Functional dispersion	Centroid location – Leaf length [cm]	Centroid location – Plant height [cm]	Centroid location – Length reproducing unit [mm]
Pico Birigoyo	44041.8	67.1	3.63	41.83	9.85
Hoyo Negro	21015.1	37.4	1.79	22.28	13.28
San Martin	23960.5	65.97	4.56	40.05	3.38
San Antonio	37571.1	48.9	4.20	33.01	11.38
Teneguia	37118.5	46.5	6.01	44.66	11.18

888

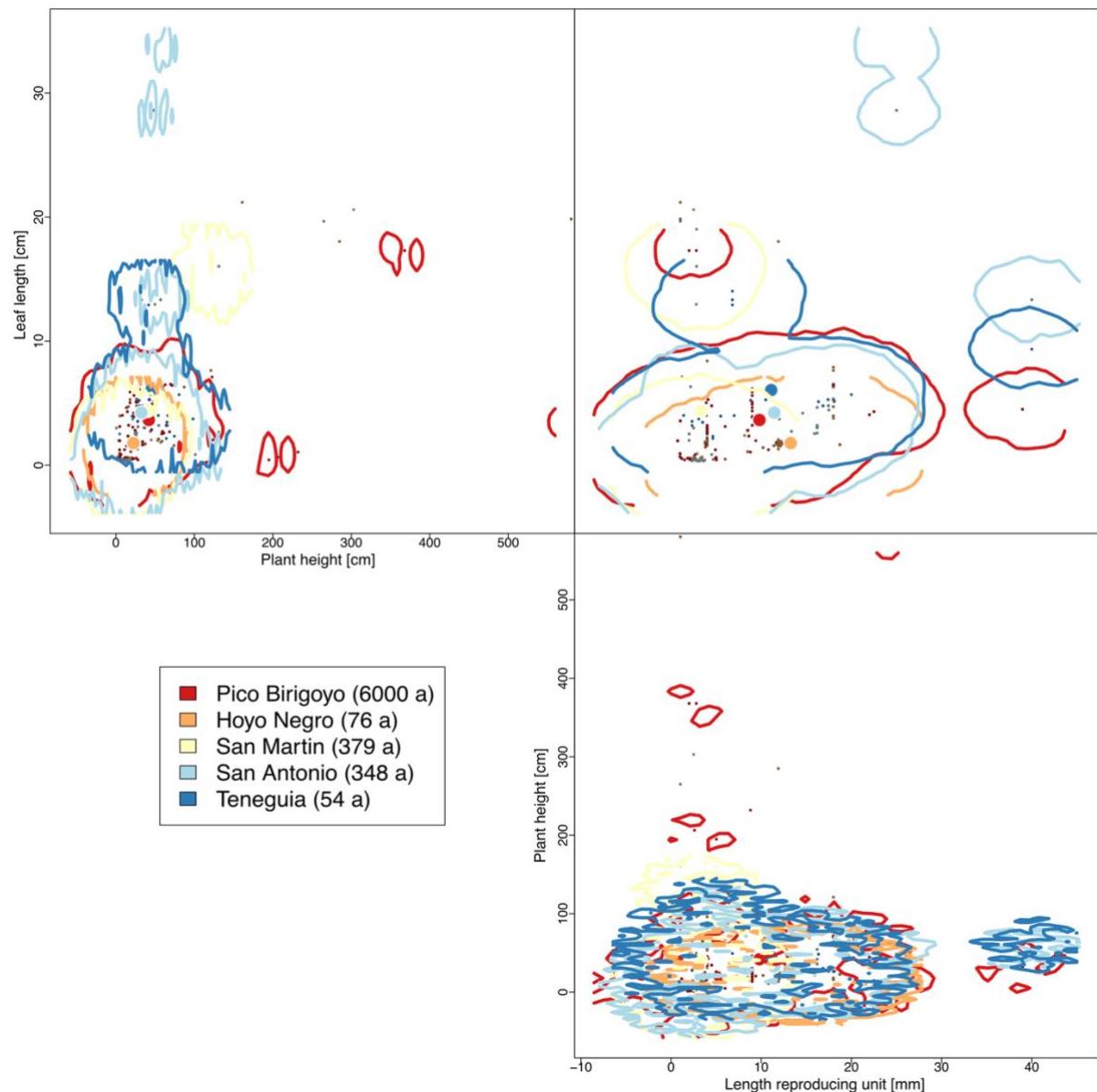

889

890 **Supplement Table S6.** Pairwise multilevel comparison of overlap statistics of the Gaussian
891 kernel density estimation derived hypervolumes of the vegetation on the respective tephra
892 field.

Comparison	Jaccard-Index	Unique fraction 1	Unique fraction 2	Jaccard p adjusted	Unique 1 p adjusted	Unique 2 p adjusted
PB – HN	0.365	0.605	0.172	0	0	0.17
PB – SM	0.344	0.605	0.274	0	0	0.05
PB – SA	0.609	0.298	0.178	0	0.14	0.71
PB – TG	0.486	0.397	0.285	0	0.01	0.02
HN – SM	0.256	0.564	0.617	0	0	0
HN – SA	0.438	0.151	0.525	0	1	0
HN – TG	0.279	0.396	0.658	0	0.01	0
SM – SA	0.392	0.277	0.539	0	0.59	0
SM – TG	0.190	0.592	0.737	0	0	0
SA – TG	0.436	0.397	0.398	0	0.01	0

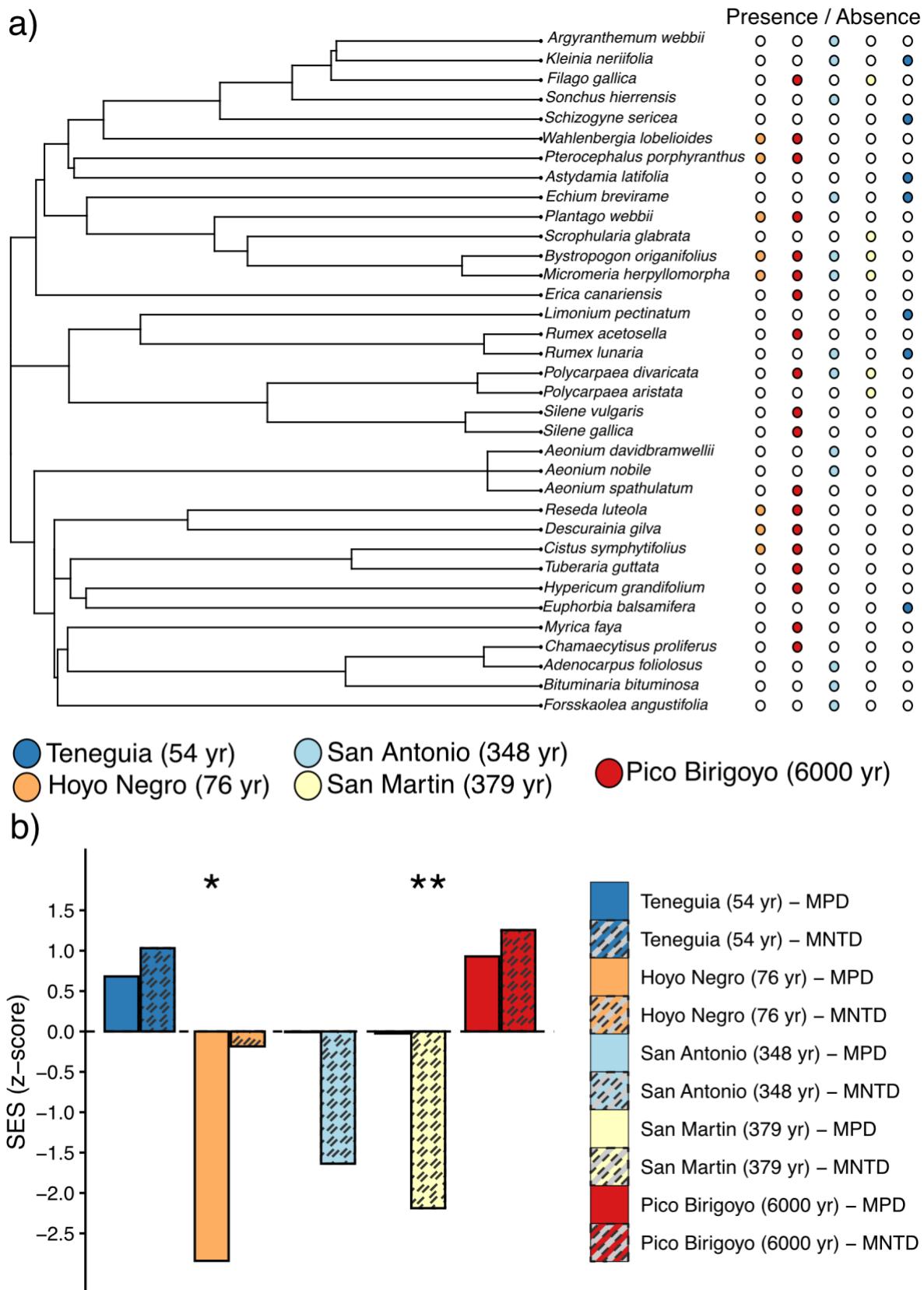

893

894 **Supplementary Figures**



895

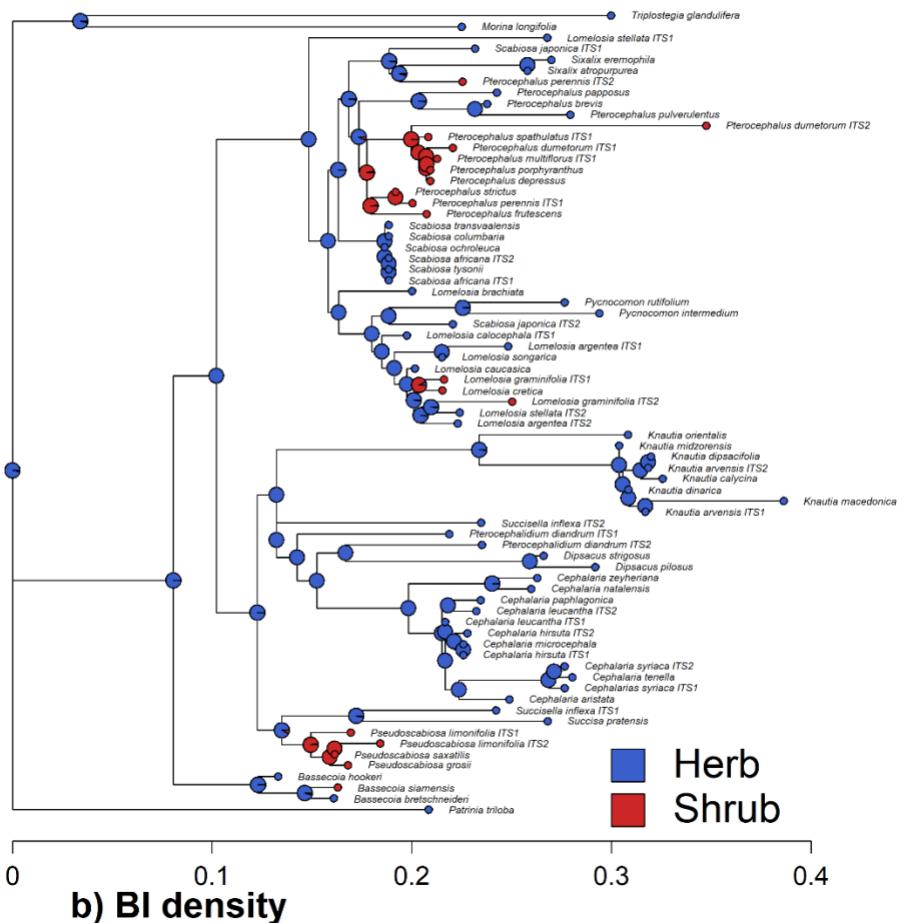
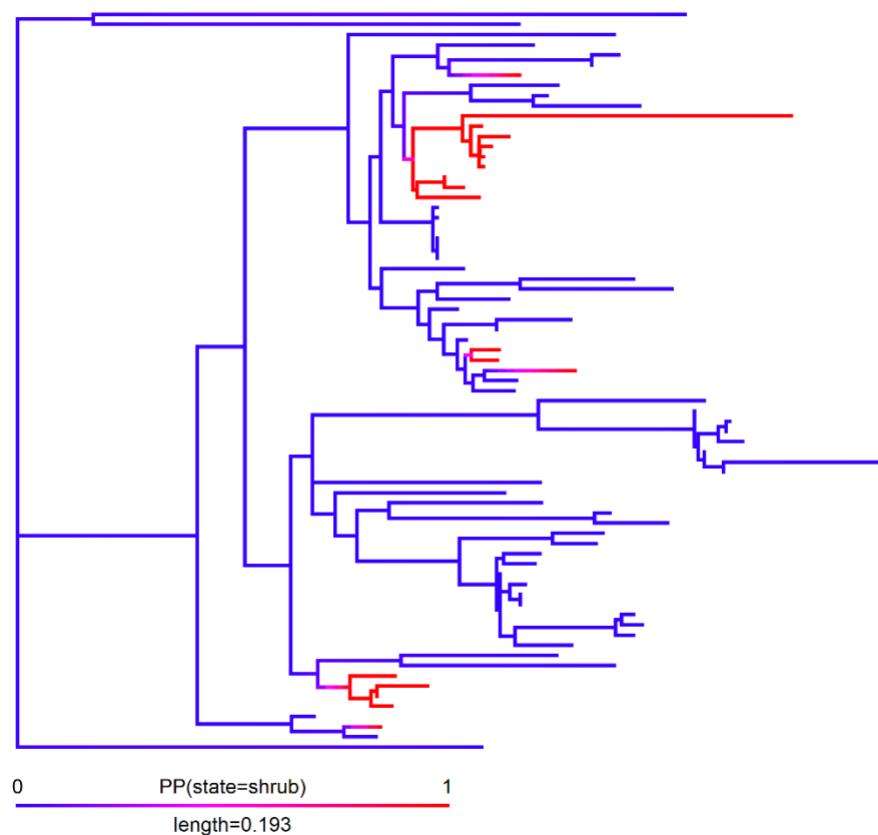
896 **Supplement Figure S1.** Relationship between distance and the abundance of (a) woody
897 species, (b) herbaceous species, (c) insular woody species, and (d) woody species with woody
898 colonizers.


901 **Supplement Figure S2.** Pairwise comparison between the support-vector-machine derived
 902 hypervolumes (SVM).

904

905 **Supplement Figure S3.** Differences in plant functional traits for the five tephra fields.
 906 Estimated three-dimensional plant functional trait hypervolume based on Gaussian kernel
 907 density estimation of the vegetation sampled on five aged tephra fields: Pico Birigoyo ($n = 634$
 908 data points), Hoyo Negro ($n = 744$ data points), San Martin ($n = 179$ data points), San Antonio
 909 ($n = 224$ data points), Teneguia ($n = 115$ data points). The small, colored points represent the
 910 trait data, whereas big, colored points represent the centroids of the respective hypervolume.
 911 The colored outline represents the area filled by Monte Carlo points sampled from the
 912 hypervolume. The vegetation of Pico Birigoyo occupies the largest volume, whereas the
 913 vegetation on San Martin the smallest.

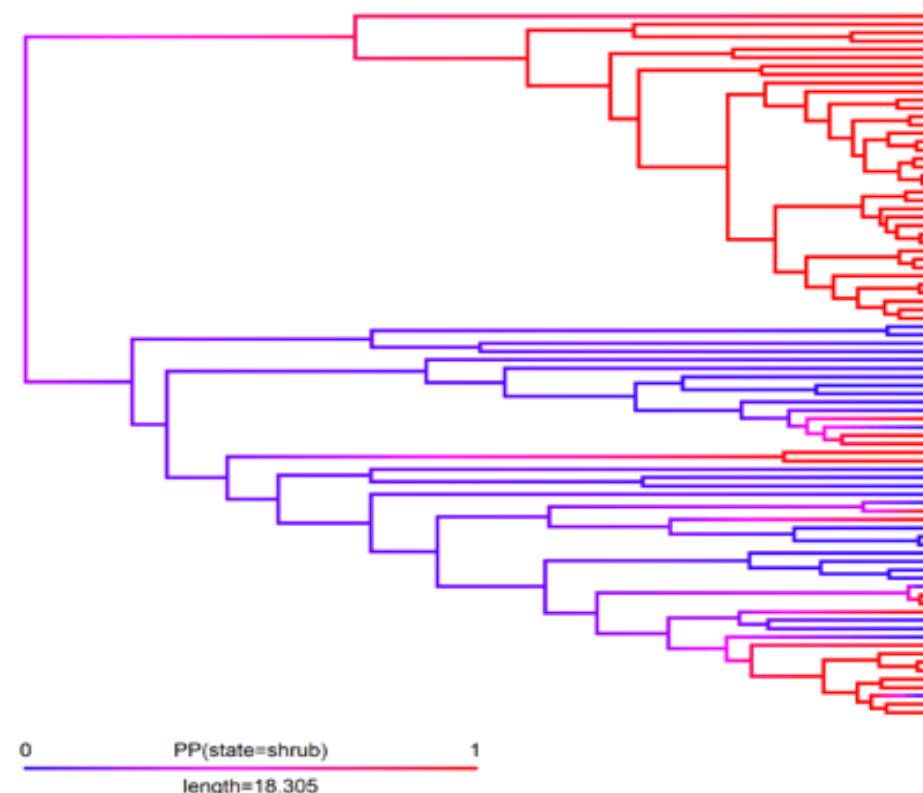
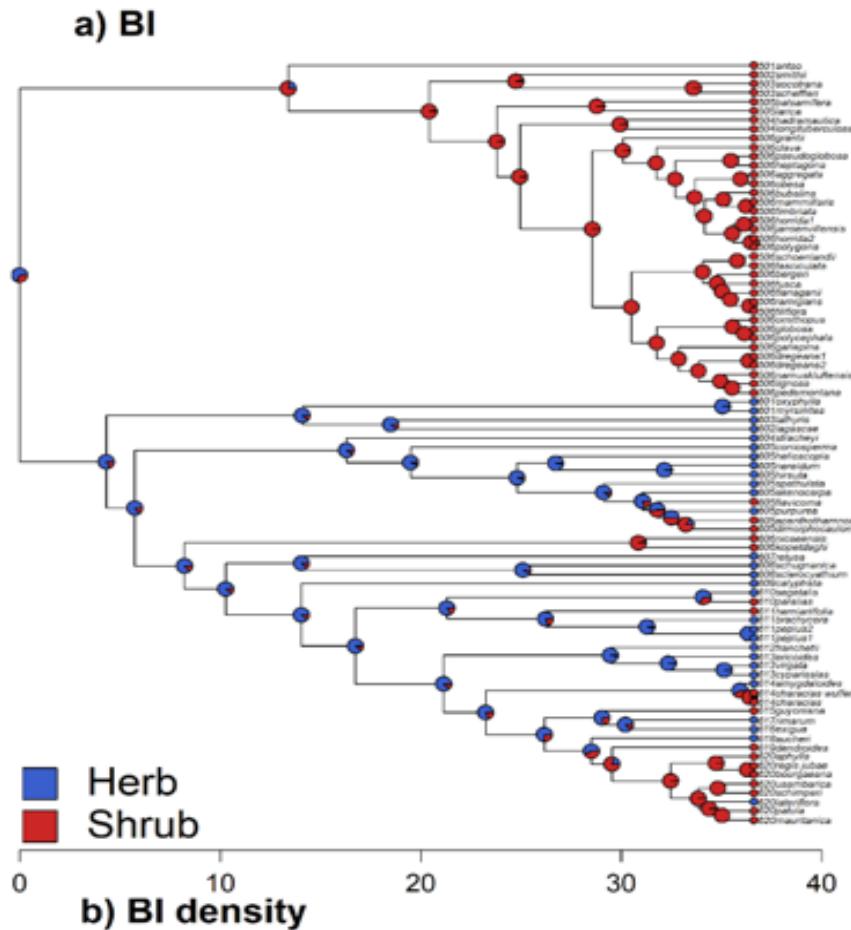
914

915

916 **Supplement Figure S4.** Phylogenetic relatedness and phylogenetic dispersion. (a) Phylogenetic
917 and occurrence of angiosperm species on the studied tephra fields. (b) Standard effect size (SES)
918 of Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD) of the tephra

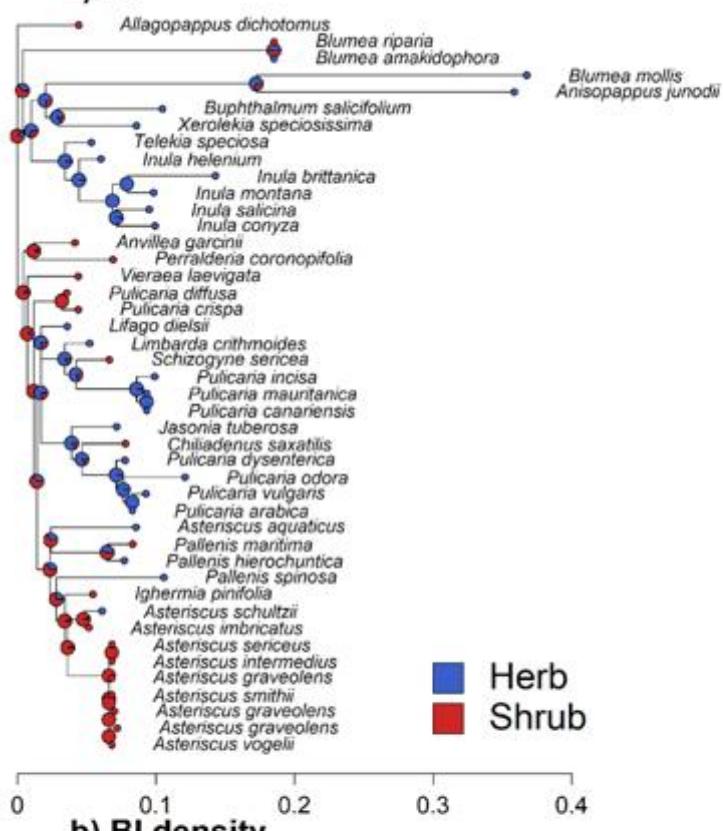
919 field vegetation. Significant positive SES indicates phylogenetic overdispersion, whereas
920 significant negative SES indicates phylogenetic clustering. Significance levels: *: $p \leq 0.05$, **:
921 $p \leq 0.01$, ***: $p \leq 0.001$.

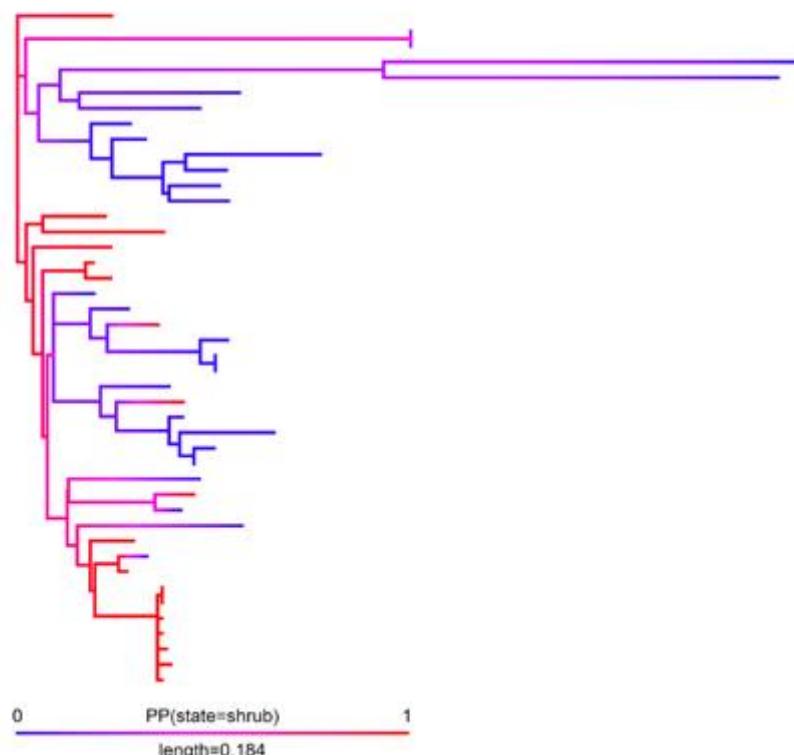


922

a) BI**b) BI density**

924 **Supplement Figure S5.** Ancestral state reconstruction of shrub (red) and herb (blue)
925 lifeforms for the phylogenetic tree of Dipsacaceae (based on ⁶). (a) Bayesian Inference (BI)
926 of the phylogenetic tree of the Dipsacaceae clade. The colored circles on the tree tips
927 indicate the lifeform of the species (life form traits obtained from Plants of the World Online,
928 Kew Gardens). Pie charts at the nodes represent the posterior probability of the ancestral
929 state. (b) Bayesian inference (BI) density of the posterior probability plotted on the
930 phylogenetic tree branches. In the Dipsacaceae tree used for the ancestral state reconstruction
931 of *Pterocephalus porphyranthus* Svent., 1969, 7.952 life form changes between shrubs and
932 herbs are reported on average. The transition herb to shrub occurred on average 6.811 times
933 and the transition from shrub to herb on average 1.141 times. The species of interest,
934 *Pterocephalus porphyranthus* is nested in a woody clade surrounded by herbaceous
935 ancestors. Therefore, it is likely derived woody with ancestors that evolved woodiness on the
936 continent and then spread to the Canaries. In this study this species is merged in the same
937 woody group as the ancestral woody species, as it did not evolve its woodiness on an island.

938

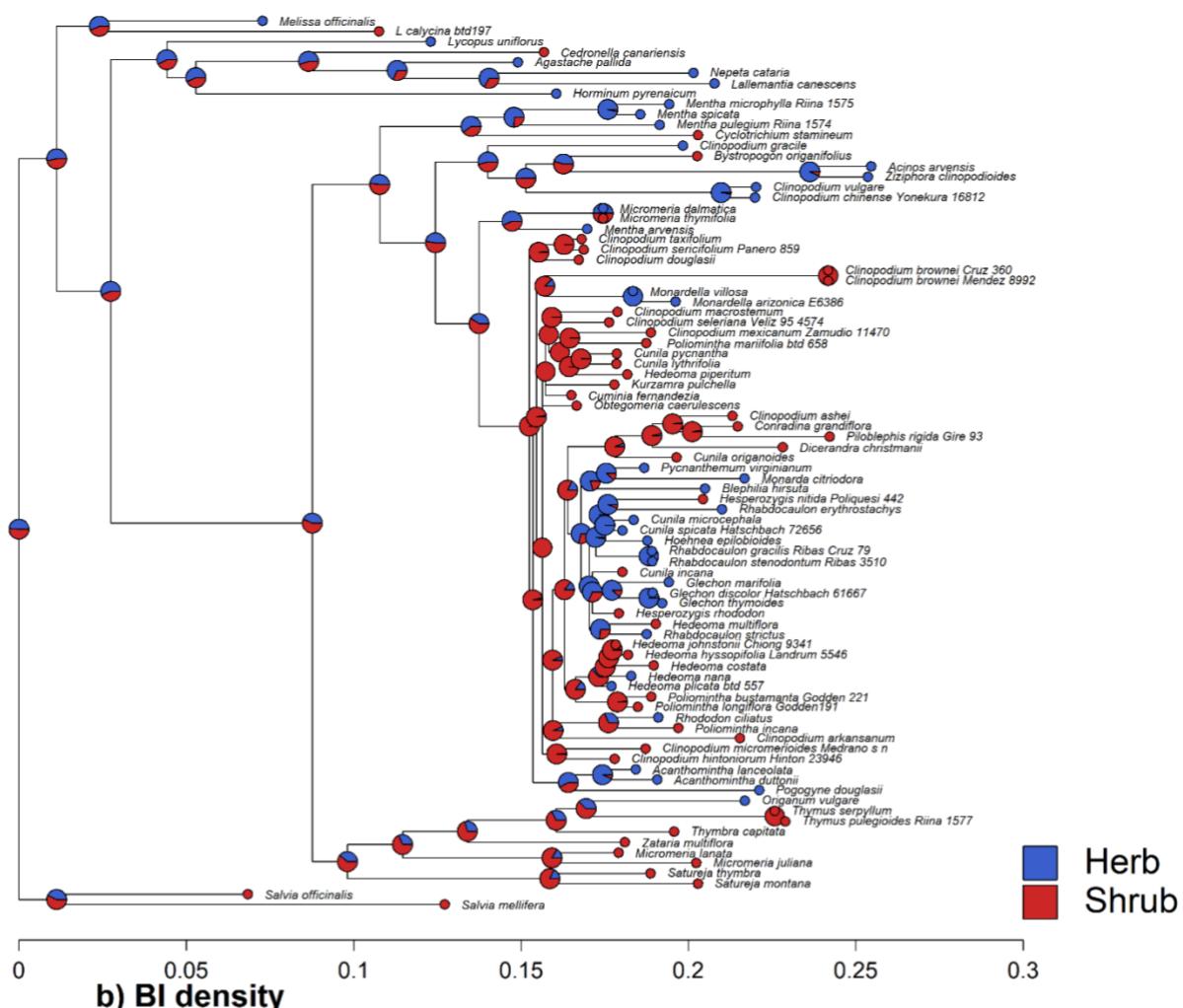

939


941 **Supplement Figure S6.** Ancestral state reconstruction of shrub (red) and herb (blue) lifeforms
942 for the phylogenetic tree of *Euphorbia* (based on ³). (a) Bayesian Inference (BI) of the
943 phylogenetic tree of the *Euphorbia* clade. The colored circles on the tree tips indicate the
944 lifeform of the species (life form traits obtained from Plants of the World Online, Kew Gardens).
945 Pie charts at the nodes represent the posterior probability of the ancestral state. (b) Bayesian
946 inference (BI) density of the posterior probability plotted on the phylogenetic tree branches. In
947 the *Euphorbia* tree used for the ancestral state reconstruction of *Euphorbia balsamifera* Aiton,
948 1789, 20.415 life form changes between shrubs and herbs are reported on average. The
949 transition from herb to shrub occurred on average 11.655 times and the transition shrub to herb
950 on average 8.76 times. The species of interest, *Euphorbia balsamifera* is nested in a woody
951 clade and its woodiness evolved on the continent. In this study this species is merged in the
952 same woody group as the ancestral woody species, as it did not evolve its woodiness on an
953 island.

954

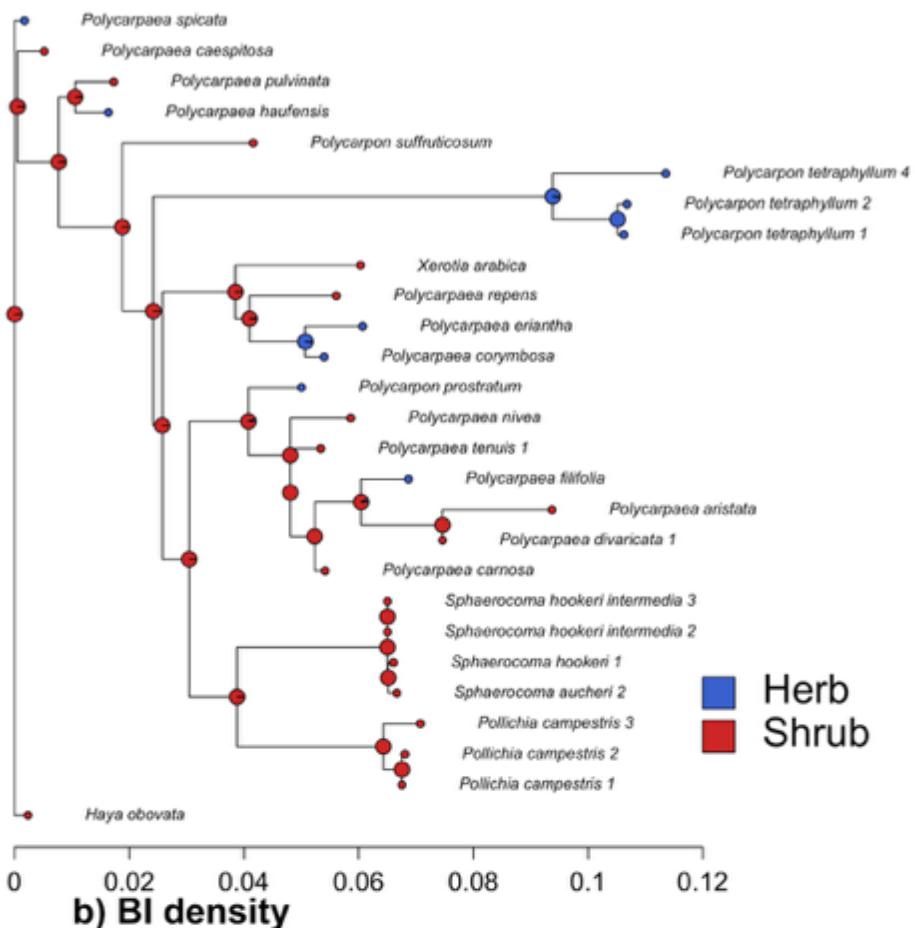
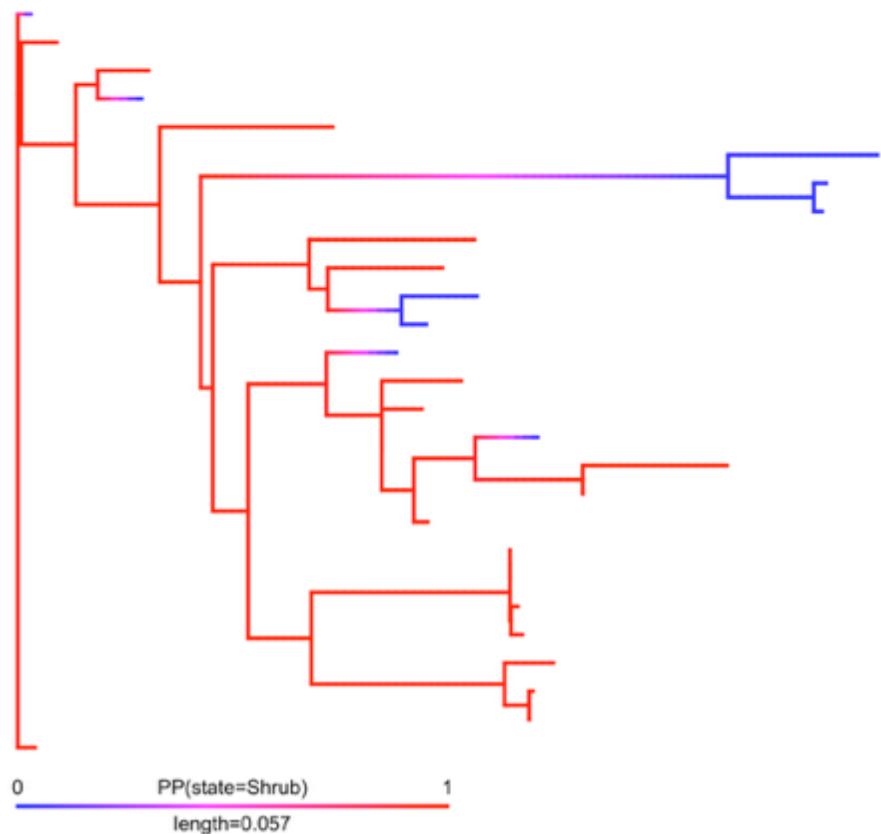
a) BI

b) BI density



955

956 **Supplement Figure S7.** Ancestral state reconstruction of shrub (red) and herb (blue) lifeforms
957 for the phylogenetic tree of a subtree of the Inuleae tribe (*Asteraceae*) (based on ⁴). (a) Bayesian



958 Inference (BI) of the phylogenetic tree of the Innuleae tribe. The coloured circles on the tree
959 tips indicate the lifeform of the species (life form traits obtained from Plants of the World
960 Online, Kew Gardens). Pie charts at the nodes represent the posterior probability of the
961 ancestral state. (b) Bayesian inference (BI) density of the posterior probability plotted on the
962 phylogenetic tree branches. In the Inuleae tribe used for the ancestral state reconstruction of
963 *Schizogyne sericea* (L.f.) DC., 1836, 20.035 life form changes between shrubs and herbs are
964 reported on average. The transition herb to shrub occurred on average 7.207 times and the
965 transition shrub to herb on average 12.828 times. The species of interest, *Schizogyne sericea* is
966 nested in a clade dominated by herbs and its closest relatives on the continent are herbaceous.
967 Therefore, it is likely insular woody.

968

a) BI**b) BI density**

970 **Supplement Figure S8.** Ancestral state reconstruction of shrub (red) or herb (blue) lifeforms
971 of a subtree of the *Menthinae* (*Lamiaceae*) subtribe (based on ⁴) (a) Bayesian inference (BI) of
972 the phylogenetic tree of the *Menthinae* subtribe. The coloured circles on the tree tips indicate
973 the lifeform of the species (lifeform traits obtained from Plants of the World Online, Kew
974 Gardens: <https://powo.science.kew.org/>). Pie charts at the nodes represent the posterior
975 probability of the ancestral state. (b) Bayesian inference (BI) density of the posterior
976 probability plotted on the phylogenetic tree branches. In the *Menthinae* (*Lamiaceae*) subtree
977 used for the ancestral state reconstruction of *Bystropogon origanifolius* L'Hér., 1789, 53.407
978 life form changes between shrubs and herbs are reported on average. The transition herb to
979 shrub occurred on average 25.213 times, whereas the transition from shrub to herb was more
980 frequent, occurring on average 28.194 times. The species of interest, *Bystropogon origanifolius*
981 L'Hér., 1789, evolved woodiness in a clade with high abundance of herbaceous species and can
982 therefore be seen as insular woody.

983

a) BI**b) BI density**

985 **Supplement Figure S9.** Ancestral state reconstruction of shrub (red) or herb (blue) lifeforms
986 of a subclade of the genus *Polycarpaea* (*Caryophyllaceae*) (based on ⁷). (a) Bayesian inference
987 (BI) of the phylogenetic tree of the *Polycarpaea* genus. The coloured circles on the tree tips
988 indicate the lifeform of the species (lifeform traits obtained from Plants of the World Online,
989 Kew Gardens: <https://powo.science.kew.org/>). Pie charts at the nodes represent the posterior
990 probability of the ancestral state. (b) Bayesian inference (BI) density of the posterior probability
991 plotted on the phylogenetic tree branches. In *Polycarpaea* (*Caryophyllaceae*) subtree used for
992 the ancestral state reconstruction of *Polycarpaea divaricata* (Aiton) Poir. ex Steud., 1841, and
993 *Polycarpaea aristata* (Aiton) C.Sm. ex DC., 1828, on average 6.436 life form changes between
994 shrubs and herbs are reported. The transition from herb to shrub occurred on average 0.322
995 times, whereas the transition from shrub to herb occurred 6.114 times on average. The species
996 of interest, *Polycarpaea divaricata* (Aiton) Poir. ex Steud., 1841, and *Polycarpaea aristata*
997 (Aiton) C.Sm. ex DC., 1828, and all other Canary *Polycarpaea* species are located in a clade
998 with a high posterior probability of being woody. Therefore, these species are most likely
999 ancestral woody.

1000 **Supplement References**

1001 1. Brewer, R. F. A. et al. Trait-dependent diversification and spatio-ecological limits
1002 drive angiosperm diversity unevenness across the Canary Islands archipelago.
1003 2025.09.19.677265 Preprint at <https://doi.org/10.1101/2025.09.19.677265>
1004 (2025).

1005 2. Jin, Y. & Qian, H. V. PhyloMaker2: an updated and enlarged R package that can
1006 generate very large phylogenies for vascular plants. *Plant Divers.* **44**, 335–339
1007 (2022).

1008 3. Coello, A. J., Vargas, P., Cano, E., Riina, R. & Fernández-Mazuecos, M.
1009 Phylogenetics and phylogeography of *Euphorbia canariensis* reveal an extreme
1010 Canarian-Asian disjunction but limited inter-island colonization. *Plant Biol.* **26**,
1011 398–414 (2024).

1012 4. Francisco-Ortega, J., Park, S.-J., Santos-guerra, A., Benabid, A. & Jansen, R. K.
1013 Origin and evolution of the endemic Macaronesian Inuleae (Asteraceae):
1014 evidence from the internal transcribed spacers of nuclear ribosomal DNA. *Biol. J.
1015 Linn. Soc.* **72**, 77–97 (2001).

1016 5. Liede-Schumann, S. & Meve, U. The Orthosiinae revisited (Apocynaceae,
1017 Asclepiadoideae, Asclepiadaceae). *Ann. Mo. Bot. Gard.* **99**, 44–81 (2013).

1018 6. Carlson, S. E., Mayer, V. & Donoghue, M. J. Phylogenetic relationships, taxonomy,
1019 and morphological evolution in Dipsacaceae (Dipsinales) inferred by DNA
1020 sequence data. *TAXON* **58**, 1075–1091 (2009).

1021 7. Kool, A., Perrigo, A. & Thulin, M. Bristly versus juicy: phylogenetic position and
1022 taxonomy of *Sphaerocoma* (Caryophyllaceae). *TAXON* **61**, 67–75 (2012).

1023 8. Drew, B. T., Liu, S., Bonifacino, J. M. & Sytsma, K. J. Amphitropical disjunctions in
1024 New World Menthinae: three Pliocene dispersals to South America following late
1025 Miocene dispersal to North America from the Old World. *Am. J. Bot.* **104**, 1695–
1026 1707 (2017).

1027 9. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version
1028 7: improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780
1029 (2013).

1030 10. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S.
1031 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat.
1032 Methods* **14**, 587–589 (2017).

1033 11. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic
1034 inference in the genomic era. *Mol. Biol. Evol.* **37**, 1530–1534 (2020).

1035 12. Wu, Z.-Y. et al. Testing Darwin’s transoceanic dispersal hypothesis for the inland
1036 nettle family (Urticaceae). *Ecol. Lett.* **21**, 1515–1529 (2018).

1037 13. Zizka, A. et al. The evolution of insular woodiness. *Proc. Natl. Acad. Sci.* **119**,
1038 e2208629119 (2022).

1039 14. Cubas, P., Pardo, C., Tahiri, H. & Castroviejo, S. Phylogeny and evolutionary
1040 diversification of *Adenocarpus* DC. (Leguminosae). *Taxon* **59**, 720–732 (2010).

1041 15. Hooft van Huysduynen, A. *et al.* Temporal and palaeoclimatic context of the
1042 evolution of insular woodiness in the Canary Islands. *Ecol. Evol.* **11**, 12220–12231
1043 (2021).

1044 16. Cubas, P., Pardo, C. & Tahiri, H. Molecular approach to the phylogeny and
1045 systematics of *Cytisus* (Leguminosae) and related genera based on nucleotide
1046 sequences of nrDNA (ITS region) and cpDNA (trnL-trnF intergenic spacer). *Plant*
1047 *Syst. Evol.* **233**, 223–242 (2002).

1048 17. Nürk, N. M., Madriñán, S., Carine, M. A., Chase, M. W. & Blattner, F. R. Molecular
1049 phylogenetics and morphological evolution of St. John's wort (*Hypericum*;
1050 *Hypericaceae*). *Mol. Phylogenet. Evol.* **66**, 1–16 (2013).

1051 18. Lens, F., Davin, N., Smets, E. & del Arco, M. Insular woodiness on the Canary
1052 Islands: a remarkable case of convergent evolution. *Int. J. Plant Sci.* **174**, 992–
1053 1013 (2013).

1054

1055

1056

1057