

1 Perspective – *Nature Ecology & Evolution*

2 **Emergent functions in the chemodiversity landscape**

3 Maximilian Hanusch^{1*}, Thomas Dussarrat^{2*}, Xue Xiao², Dominik Ziaja², Kruthika Sen Aragam³, James
4 D. Blande⁴, Andrea Bräutigam^{5,6}, Nicole M. van Dam^{7,8}, Benjamin M. Delory⁹, Selina Gaar², Marvin
5 Hildebrandt⁵, Ruth Jakobs², Robert R. Junker¹, Caroline Müller², Thomas Nägele¹⁰, Moritz Popp¹¹,
6 Riikka Rinnan¹², Hannah Schneider¹³, Jörg-Peter Schnitzler¹¹, Judit Valeria Mendoza Servín⁷, Anke
7 Steppuhn³, Dorothea Tholl¹⁴, Yonca Seymen¹¹, Elikplim Aku Setordjie¹⁵, Sybille B. Unsicker¹⁶, Sarah
8 K. Weirauch¹⁶, Wolfgang W. Weisser¹⁵, & Robin Heinen^{15*}

9

10 *These authors have contributed equally

11 Contact author: robin.heinen@tum.de, maximilian.hanusch@uni-hohenheim.de,
12 thomas.dussarrat@uni-bielefeld.de

13 Author affiliations:

14 ¹ Department of Biology, Evolutionary Ecology of Plants, Marburg University , Karl-von-Frisch-Str. 8,
15 35043 Marburg, Germany

16 ² Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.

17 ³ Department of Molecular Botany (190a), Institute of Biology, University of Hohenheim, Garbenstr.
18 30, 70599 Stuttgart, Germany.

19 ⁴ Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta
20 8, 70211, Kuopio, Finland.

21 ⁵ Computational Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany

22 ⁶ Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 25, 33615 Bielefeld,
23 Germany

24 ⁷ Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyerweg 1, 14797
25 Großbeeren, Germany

26 ⁸ Friedrich Schiller University Jena, Institute of Biodiversity Ecology and Evolution (IBEE),
27 Philosophenweg 16, 07743 Jena, Germany.

28 ⁹ Utrecht University, Copernicus institute of sustainable development, Princetonlaan 8a, 3584 CB,
29 Utrecht, Netherlands

30 ¹⁰ Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München,
31 Großhaderner Str. 2-4, 82152 Planegg, Germany

32 ¹¹ Research Unit Environmental Simulation, Helmholtz Munich, Ingolstädter Landstr. 1, 85764
33 Neuherberg, Germany

34 ¹² Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E,
35 Denmark

36 ¹³ Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland,
37 Gatersleben, Germany
38 ¹⁴ Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
39 ¹⁵ Department for Life Science Systems, School of Life Sciences, Terrestrial Ecology Research Group
40 Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
41 ¹⁶ Plant-Environment-Interactions Group, Botanical Institute, University of Kiel, Am Botanischen
42 Garten 5, 241180 Kiel, Germany

43

44 ORCIDs:

45 Maximilian Hanusch - <https://orcid.org/0000-0001-7228-1276>
46 Thomas Dussarrat - <https://orcid.org/0000-0001-6245-3652>
47 Xue Xiao - <https://orcid.org/0000-0002-9954-7262>
48 Dominik Ziaja - <https://orcid.org/0000-0002-0426-6856>
49 Kruthika Sen Aragam - <https://orcid.org/0000-0003-2748-372X>
50 James D. Blande - <https://orcid.org/0000-0001-6822-0649>
51 Andrea Bräutigam - <https://orcid.org/0000-0002-5309-0527>
52 Nicole M. van Dam - <https://orcid.org/0000-0003-2622-5446>
53 Benjamin M. Delory - <https://orcid.org/0000-0002-1190-8060>
54 Selina Gaar - <https://orcid.org/0009-0000-0475-2603>
55 Marvin Hildebrandt - <https://orcid.org/0000-0002-3075-3439>
56 Ruth Jakobs - <https://orcid.org/0000-0002-2555-9308>
57 Robert R. Junker - <https://orcid.org/0000-0002-7919-9678>
58 Caroline Müller - <https://orcid.org/0000-0002-8447-534X>
59 Thomas Nägele - <https://orcid.org/0000-0002-5896-238X>
60 Moritz Popp - <https://orcid.org/0000-0002-9861-2747>
61 Riikka Rinnan - <https://orcid.org/0000-0001-7222-700X>
62 Hannah Schneider - <https://orcid.org/0000-0003-4655-6250>
63 Jörg-Peter Schnitzler - <https://orcid.org/0000-0002-9825-867X>
64 Judit Valeria Mendoza Servín - <https://orcid.org/0009-0006-0414-2649>
65 Anke Steppuhn - <https://orcid.org/0000-0001-6801-997X>
66 Dorothea Tholl - <https://orcid.org/0000-0003-2636-6345>
67 Yonca Semen - <https://orcid.org/0009-0000-8675-5663>
68 Elikplim Aku Setordjie - <https://orcid.org/0000-0002-8516-7736>
69 Sybille Unsicker - <https://orcid.org/0000-0002-9738-0075>
70 Sarah Weirauch - <https://orcid.org/0009-0001-0020-9133>
71 Wolfgang W. Weisser - <https://orcid.org/0000-0002-2757-8959>
72 Robin Heinen - <https://orcid.org/0000-0001-9852-1020>

73

74

75 **Abstract:**

76 Nature produces countless metabolites that regulate organismal performance and the functioning of
77 ecosystems. Specialised metabolites are particularly diverse and mediate ecological interactions across
78 all geographic scales and levels of biological organisation. While chemodiversity, i.e., the richness,
79 relative abundance and disparity of specialised metabolites within a blend of metabolites, has received
80 substantial interest at the level of pairwise interactions (e.g. between plants and interaction partners),
81 much less is known about how metabolites produced by multiple individuals across the tree of life merge
82 into higher-level blends at population, community and ecosystem scales. We synthesise evidence for
83 emergent functions that arise from such higher-level chemodiversity. We examine how blends change
84 in composition as they move through air, water, and soil, and vary in time and space, thereby creating a
85 dynamic ‘chemodiversity landscape’. We further discuss the applied potential of these chemodiversity
86 landscapes and the threats that could compromise them. We outline key questions that will help guide
87 research on how higher-level chemodiversity contributes to ecological processes and functioning across
88 scales.

89

90 **Introduction**

91 Chemical information is omnipresent on Earth. Volatile and non-volatile metabolites operate at various
92 geographical scales across all levels of biological organisation, from within individual cells to entire
93 ecosystems^{1–4}. For instance, in the air, scavengers detect volatile compounds released from animal
94 carcasses over large distances^{5,6} and herbivore-induced plant volatiles attract natural enemies, thereby
95 mediating predator-prey interactions⁷. In aquatic environments, chemical cues facilitate mate finding
96 and habitat selection in a wide range of organisms, including lobsters⁸, coral larvae⁹, and fishes¹⁰.
97 Belowground, plant volatiles guide soil-dwelling consumers to suitable foraging sites^{11,12} and flavonoid
98 exudates enable legumes to attract nitrogen-fixing bacteria¹³. From microbes to mammals and across
99 air, water and soil, chemical information structures the interactions that sustain life, maintain vital
100 ecological functions, and ecosystem health^{14–16}.

101 Chemical ecology traditionally sought to understand the chemical mediation of interactions by
102 assigning specific ecological functions to individual metabolites^{17,18}. However, recent work increasingly
103 considers entire chemical blends as functional units of ecological information, recognising that mixtures
104 of structurally different metabolites can produce interactive effects not predictable from individual
105 metabolites^{19–21}. Building on this paradigm shift, a growing body of work explores the ecological
106 relevance of **chemodiversity**: the richness, relative abundance, and disparity of the metabolites forming
107 such blends wherever they may co-occur^{22,23}.

108 Our current understanding of chemodiversity largely stems from studies at the level of interactions
109 among individuals^{18,20,23}. Recent research at population level, however, suggests that ecological
110 processes are not only influenced by the chemical blends of individuals, but also by the collective
111 chemodiversity that emerges from multiple neighbouring individuals^{20,24–26}. For example, inter-
112 individual variation in foliar secondary metabolites among neighbouring wild cabbage plants promotes
113 plant growth and herbivore diversity while simultaneously reducing herbivore damage²⁷. Such findings
114 suggest that chemodiversity, arising from the combined chemical profiles of multiple producers across
115 space and time, also generates mixtures that functionally contribute to broader ecological patterns and
116 processes.

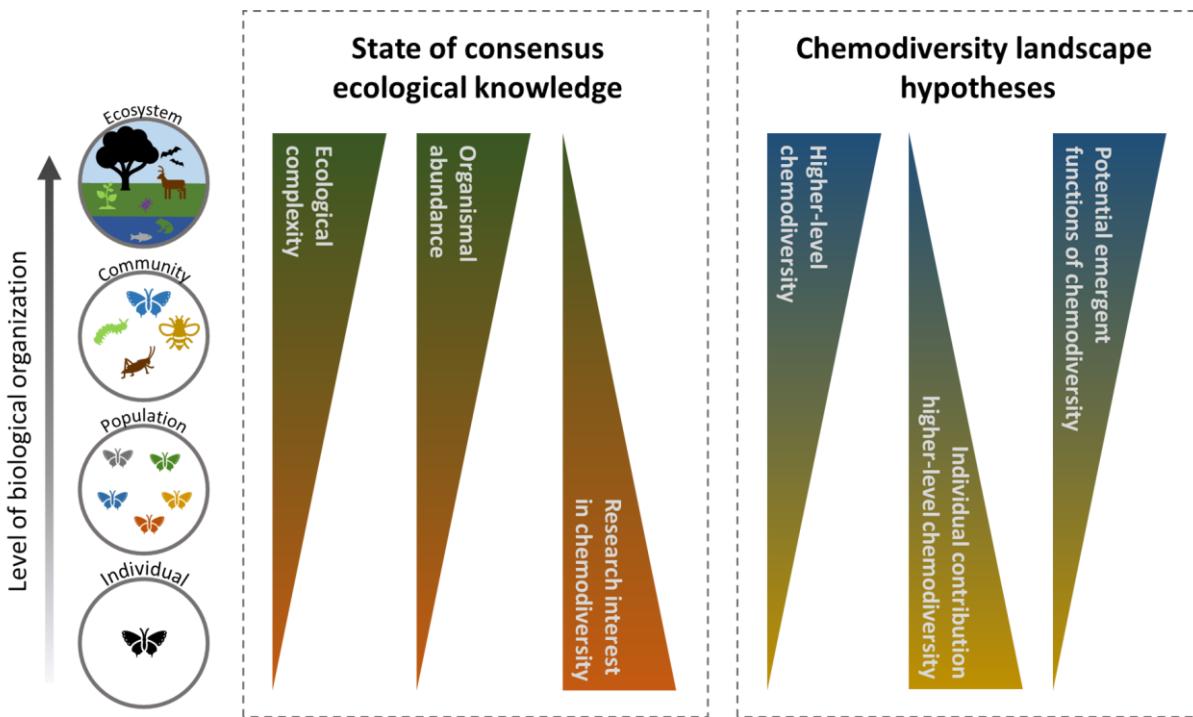
117 In nature, different biological sources produce volatile and non-volatile metabolites that mix to form
118 spatiotemporally dynamic blends, which can be affected by both the abiotic and biotic environment^{28,29}.
119 This chemical mosaic likely influences manifold ecological interactions at community and landscape
120 scales, thus representing a **chemodiversity landscape**, i.e., the spatiotemporally structured distribution
121 of chemical compounds and mixtures within a landscape, shaped by biological production, abiotic
122 transformation, and physical transport. Beyond the mere spatial arrangement of chemotypes, chemical
123 landscapes represent emergent ecological properties whose functional consequences depend on
124 organism-specific perception and processing of chemical information. As such, the same chemical

125 environment may constitute different functional landscapes for different organisms, linking chemical
126 complexity to ecological interactions, evolution, and ecosystem functioning across scales.

127 Even though the tools to accurately describe such blends are available, the patterns and ecological
128 consequences of chemodiversity at larger scales remain poorly understood³⁰. For instance, how do
129 pollinating insects navigate a chemically diverse landscape, and which are the chemical cues that guide
130 their decision-making as they search for nectar sources? A deeper understanding of how metabolites
131 produced by multiple sources blend together and affect ecological processes is urgently needed,
132 particularly at spatial and temporal scales relevant to ecosystem functioning and resilience in the face
133 of accelerating global change. Despite a clear consensus on the increase in ecological complexity with
134 increasing level of biological organisation, the research interest for chemodiversity has largely focused
135 on the individual interaction level (Fig. 1). Consequently, important hypotheses regarding the
136 contribution of individual organisms to higher-level chemodiversity and the resulting potential for
137 emergent functions remain largely untested. Scientists must adopt a broader perspective that links the
138 origins, dynamics, perception, and consequences of chemical diversity across levels of biological
139 organisation and spatiotemporal scales.

140 We provide a conceptual overview of how chemodiversity scales across biological levels and spatial
141 dimensions — from individuals to communities and landscapes — and evaluate its role in shaping the
142 ecological processes that underpin ecosystem functioning. Section 1 describes how different actors and
143 the environments they occur in interact to form chemodiverse landscapes. Section 2 conceptualises
144 trajectories that metabolites may follow once released into the environment, and how these trajectories
145 influence their fate and ecological function. Section 3 considers how spatiotemporal patterns of
146 chemodiversity emerge on broader geographical scales by synthesising current knowledge and
147 extending insights from the individual level to the levels beyond, i.e., population, community and
148 ecosystem. We outline implications of such a chemodiversity landscape for biodiversity and ecosystem
149 functioning, including the risks posed by the natural and anthropogenic degradation of chemical
150 landscapes related to biodiversity loss. To align this conceptual synthesis with research priorities,
151 Section 4 complements it with a survey among selected attendees of a two-day workshop on chemical
152 ecology, who rated questions to identify key areas that require attention in order to advance research on
153 landscape-level chemodiversity.

154


155 **1. The actors in the chemodiversity landscape - from producers to 156 responders**

157 At the core of any chemical communication system are three fundamental components: a **producer** that
158 synthesises the chemical metabolites; a **carrier** that transports and modifies these metabolites; and a
159 **responder** that perceives and directly reacts to specific information, or in some cases may be directly

160 affected by the emitted metabolites³¹ (Fig. 2). In this section, we provide a conceptual outline of this
161 system to improve our understanding of how chemodiverse mixtures arise through the combined
162 metabolites of multiple producers, and how these mixtures are modified by environmental factors as
163 well as through space and time.

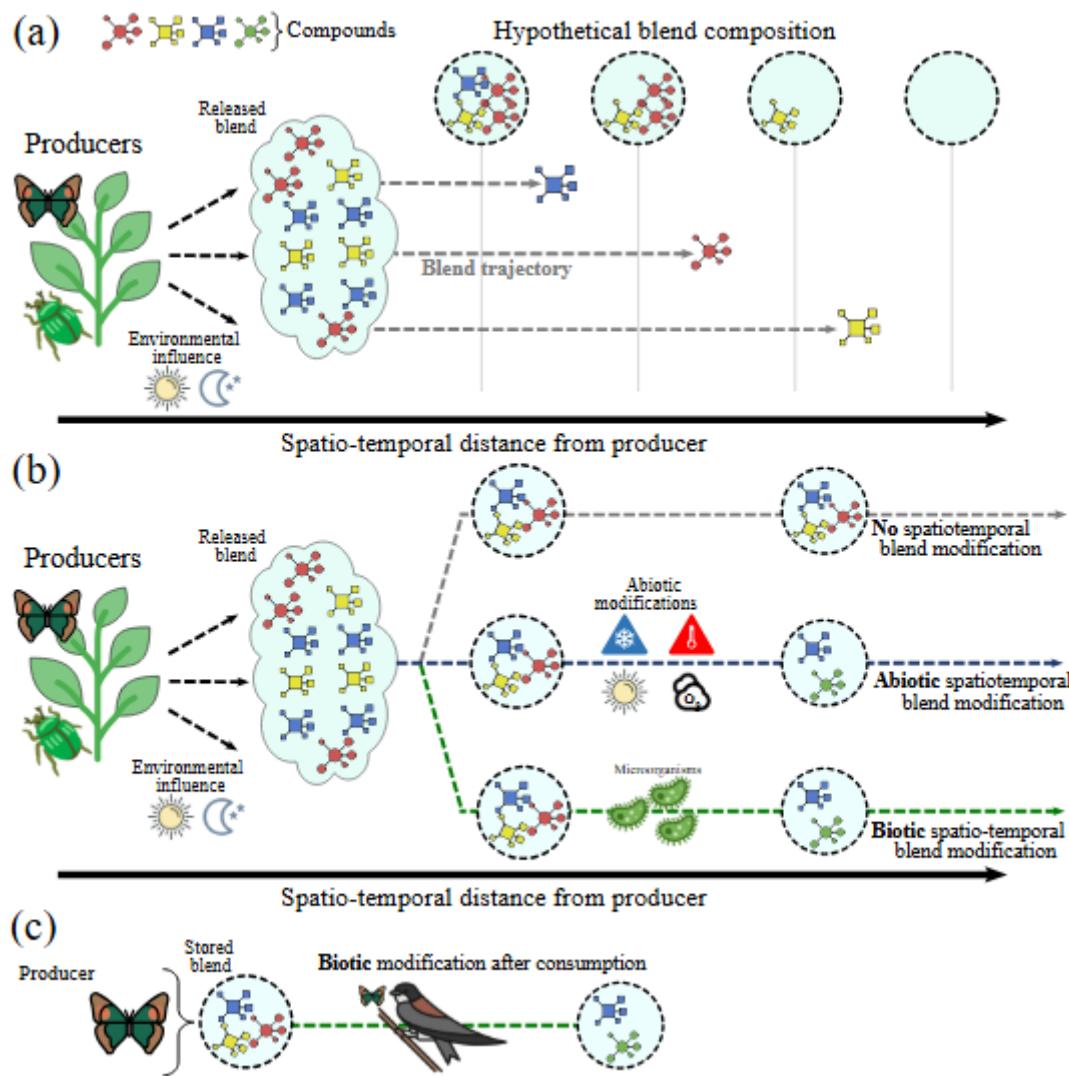
164 A large diversity of metabolites is synthesised by a wide range of producers across the tree of life^{32,33}.
165 Many of these metabolites enable basic life functions, often referred to as primary metabolites.
166 Secondary, or **specialised metabolites**, on the other hand, often mediate interactions with the abiotic
167 and biotic environment. These metabolites are of ecological importance due to their roles in regulating
168 ecological interactions. Once produced, metabolites may either be **stored or released** in volatile or non-
169 volatile form. Storage occurs within specific cellular structures or compartments, such as vacuoles, or
170 in specialised structures, like glandular cells, that enable producers to retain metabolites until they are
171 needed, protect them from degradation or self-toxification, and control their release in response to
172 environmental cues^{34,35}. For instance, bufadienolide toxins are stored as constitutive defence compounds
173 in parotid glands of toads, where they serve to deter predators³⁶. Alternatively, producers may actively
174 or passively release metabolites into the environment. Producers, in addition, may also move through
175 the landscape, as is the case for animals. Released metabolites can act as information, such as trail
176 pheromones used in ant recruitment³⁷, volatile compounds emitted by plants to attract natural enemies
177 of herbivores³⁸⁻⁴⁰, signals involved in plant-plant interactions⁴¹⁻⁴³, or substances that modify the
178 (a)biotic properties of soil⁴⁴. The release of metabolites contributes to a chemodiverse environment,
179 while the stability of the metabolite, and the location and context of release strongly influence its
180 ecological function⁴⁵. Both stored and released metabolites contribute to the chemodiversity landscape.

181 A seminal principle of chemical ecology is that metabolites are *often* produced and released by
182 organisms with a biological function^{46,47}. For example, many plants produce feeding deterrents to deter
183 antagonists^{48,49}, but in contrast, plant-emitted metabolites can also attract (often beneficial)
184 organisms^{50,51}. Many producers interact with multiple antagonists and mutualists at the same time, and
185 hence some specialised metabolites are specific, have multiple functions, but also responses may be
186 taxon-specific⁵²⁻⁵⁴. Many organisms eavesdrop on chemical information, having evolved or learned to
187 associate certain metabolites (or blends) to locate producers (e.g., as resources^{55,56}). In addition, many
188 metabolites are produced for protective functions, including abiotic stress resistance⁵⁷, which could also
189 be recognised by other organisms as they end up in the environment. Evidently, many metabolites
190 mediate interactions well beyond any potential ‘biological purpose,’ raising the question how
191 characteristics of chemical blends shift in time and space, and whether such shifts matter for biological
192 interactions, and at what scale.

194

195 **Figure 1**

196


197 **2. Spatiotemporal dynamics of chemodiversity – from single molecules to**
 198 **mixtures**

199 A major challenge is to understand the influence of the environment on the chemical blend. In this
 200 section, we discuss how (a)biotic factors shape chemodiversity at different time and space levels (before
 201 the emission of the blend, during its transport and after reaching the responder) and why it matters at the
 202 ecosystem scale (Fig. 2). Prior to emission, (a)biotic conditions influence the chemical landscape by
 203 affecting the development, activity, and phenology of producers. Seasonal and diurnal changes in plant,
 204 microbial, and insect communities alter the production and availability of metabolites for storage and
 205 emission^{58–60}. A significant fraction of the chemical blend can only be observed under herbivory and
 206 during photosynthetic periods⁶¹. Abiotic factors also directly affect production and emission rates, as
 207 well as compound properties (e.g., volatility) of volatile and non-volatile metabolites above- and
 208 belowground^{62–65}. Once released into the environment, the fate of metabolites depends on the medium
 209 through which they travel: the **carrier**. Chemical information in the landscape is distributed through
 210 three primary carrier types: gaseous (i.e., air), liquid (i.e., water) and solid phases (i.e., substrates,
 211 including soil, where transport is mediated by air and liquids but also depends on solid particles).
 212 Intrinsic properties of each carrier influence the movement, transformation, and persistence of
 213 compounds, ultimately shaping the timing, location and extent to which a chemodiverse blend is
 214 perceived by responders^{66,67}.

215 To bridge the distance between producer and responder, air often serves as the carrier^{64,68-70}. For
216 instance, flying insects can reliably orient toward odour sources by following gradients of a chemical
217 blend within odour plumes, using characteristic anemotactic upwind and crosswind flight
218 behaviours^{71,72}. These blends are then transformed over time and space according to the composition
219 and physical properties of the carrier and to the rate of biosynthesis, volatility and persistence of each
220 compound^{68,73,74} (Fig. 2). Considerable progress has been made in quantifying intrinsic chemical
221 properties such as volatility, reactivity and compound stability, which define the atmospheric lifetime
222 and transport potential^{73,75,76}. These properties are modulated by ambient environmental conditions,
223 notably temperature and ultraviolet radiation, which can accelerate degradation processes such as
224 photolysis and bond rupture in photosensitive molecules⁷⁷. In the atmosphere, oxidants including ozone,
225 hydroxyl (OH⁻) and nitrate (NO₃⁻) radicals also degrade and transform chemical blends⁷⁸⁻⁸¹. These
226 oxidation processes can lead to the formation of secondary organic aerosols (SOA), which represent an
227 additional chemical phase and may themselves be perceived and exploited as informational cues by
228 responders⁸². Such changes in blends can have a consequent impact on signal quality and perception by
229 the responders. For instance, the ability of herbivory-induced volatiles to reveal herbivory, a system used
230 to attract natural enemies, depends on canopy conditions and is strongly dependent on the reaction rate
231 of the compounds⁴⁵.

232 The liquid environment acts as a major carrier for non-volatile and semi-volatile compounds in nature
233 via diffusion and advection, which in turn depend on temperature, the polarity of the compound and
234 concentration differences between producer and carrier⁸⁹. The transport of metabolites in soil is also
235 partly ensured via air and liquid carriers, but also depends on solid particles. Hence, additional
236 parameters such as substrate texture and moisture, pH, porosity, and percentage of organic matter are
237 important to consider for the transport of non-volatile compounds, as well as the diffusion rate of volatile
238 compounds⁹⁰⁻⁹². In fact, these parameters influence the chemical gradient between emitters and
239 responders. For example, the diffusion of the volatile sesquiterpene (E)-β-caryophyllene from corn roots
240 into the soil, used by entomopathogenic nematodes to locate herbivore-damaged roots, is dependent on
241 soil composition and humidity^{11,91}. Improve measurements and predictions of the fraction of
242 chemodiversity available at variable distances from the producer is key to understand how
243 chemodiversity scales from individual to communities and landscapes (Fig. 2).

244

245

246 **Figure 2**

247

248 **Influence of chemical blend modifications by other organisms**

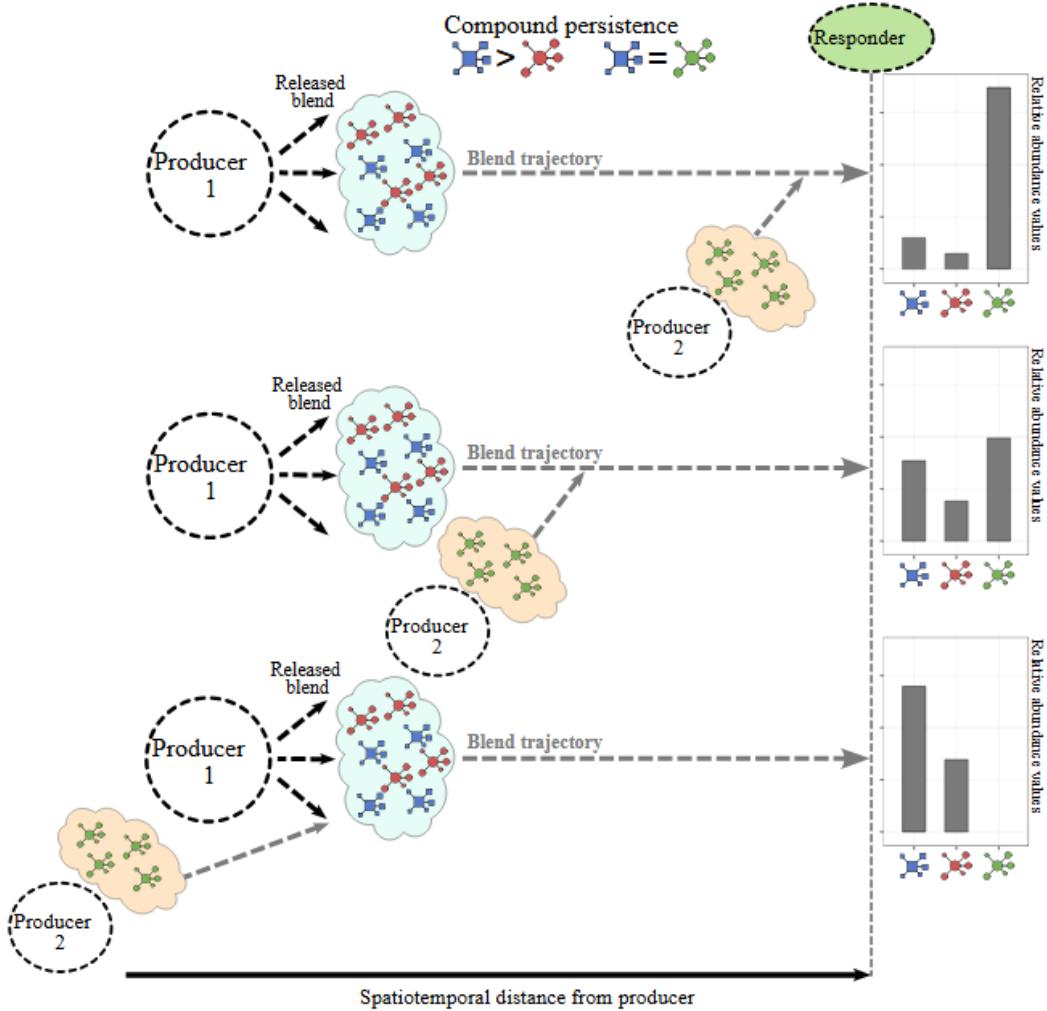
249 Many organisms can alter the chemical blend after release into the environment (Fig. 2b).
 250 Microorganisms have colonised most of the carrier environments and can, for example, metabolise plant
 251 exudates such as benzoxazinoids into antimicrobial compounds^{93–95}, degrade biogenic volatile organic
 252 compounds⁹⁶, or create new alkaloids to deter feeding insects^{97,98}. Natural processes such as decay are
 253 also influenced by microorganisms that will shape volatile emissions, which in turn influence carcass
 254 foraging and choice by scavengers^{99,100}. Mycorrhizal networks can even act as a new carrier by
 255 transporting (up to larger distances than diffusion) and shaping chemical signals between plants^{101–103}.
 256 Chemical information can be modified, transported, and used for additional purposes beyond the
 257 producer's target interaction via **non-consumptive** and **consumptive processes** (Fig. 2b and 2c). For
 258 instance, lemurs fur-rub millipedes for their benzoquinone secretions, a defensive mechanism of the
 259 millipedes, over different parts of the body for social communication or self-medication¹⁰⁴. Similar non-
 260 consumptive processes were observed in coatis and titi monkeys for disabling arthropods' defence or

261 scent-marking, thus transforming *and* transporting the chemical blend^{105,106}. Male orchid bees collect
262 floral scents as part of their mating behaviour¹⁰⁷. Such processes expand the spatiotemporal distribution
263 of metabolites. Further transformation of the blend also occurs within the responder and depends on the
264 rate of mass transfer and catabolic activity within the responders and on its internal microbiota or
265 parasites^{108,109}. Such transformations by or within the responder contribute to shaping the chemical blend
266 at the ecosystem level. For instance, oral and gut microbiota influence taste perception and food
267 processing¹¹⁰. Influenced by their microbiome, aphids can modify the honeydew chemical blend that
268 mediates relationships with ants and natural enemies^{111,112}. Further investigations of the selection and
269 transformation of the chemical blends within (a)biotic carriers are crucial to improve our understanding
270 of their consequences for producer-responder interactions and to fully appreciate the role of
271 chemodiversity in ecosystem processes.

272

273 **3. Scaling up chemodiversity: toward emergent functions at broader 274 scales**

275 When considering chemodiversity at broader spatiotemporal scales (i.e., when moving from the level of
276 individual organisms to populations, communities, and ecosystems), the chemical environment becomes
277 increasingly complex and dynamic. The ecological effects of chemical mixtures are determined by
278 potential transformation through various processes (see Section 2), as well as the spatial and temporal
279 overlap in emissions from multiple, co-occurring chemical sources (Fig. 3). This raises an important
280 question: how does chemodiversity shape ecological functions when it emerges from the collective
281 chemistry of entire systems rather than from individuals?


282 Although recent progress has been made, chemodiversity research predominantly focuses on the
283 context of individual-level pairwise interactions, with limited exploration of the ecological effects of
284 community-level mixtures or chemically complex landscapes^{20,26,113}. Closing this gap requires a re-
285 framing of fundamental ecological questions from the traditional "What function does this chemical
286 compound or class serve?" to "Under which environmental conditions do the compound or mixture
287 change its functional relevance?" This shift moves us toward the recognition of a chemical mixture as a
288 complex adaptive system that gains some of its functionality through **emergent properties**: novel
289 outcomes arising from the integration of multiple system components that cannot be predicted from
290 those components in isolation¹¹⁴. In fact, the functionality of a chemical blend as an emergent property
291 is at the core of chemodiversity theory: many central hypotheses, such as the synergy hypothesis or the
292 multiple-signal hypothesis, explicitly build on the idea that the integration of multiple compounds may
293 produce effects greater than the sum of their parts^{20,21,115–117}. Consequently, the chemodiversity of blends
294 has been shown to constitute a functional trait in its own right, rather than being an additive reflection
295 of compound-specific functions^{118,119}. However, if chemodiversity gives rise to emergent properties at

296 broader spatial scales, a key challenge for chemical ecology is to understand when, where, and under
297 which conditions these properties matter¹¹³.

298 Though limited in number, plot- and community-scale studies represent a promising first step to
299 understanding how chemodiversity functions across ecological scales. Experimental research has shown
300 that manipulating intraspecific chemodiversity among neighbouring plants shapes insect community
301 composition and alters plant reproductive success^{24,25,27,69,120}. Complementary, observational work in
302 natural systems shows that floral scent and colour traits in chemodiverse Mediterranean plant
303 communities converge to match pollinator sensory preferences¹²¹. Experimental evidence further
304 indicates that such convergences are not limited to flowering individuals: non-flowering plants also emit
305 volatiles from their vegetative tissue that attract generalist pollinators¹²², suggesting that plants in
306 phenological stages previously considered functionally irrelevant nonetheless contribute to community-
307 level pollinator attraction. These findings demonstrate that entire communities can form a common
308 ‘chemosensory landscape’¹²², in which overlapping olfactory cues function as collective attractants
309 whose effects cannot be predicted from individuals alone. Such intermediate-scale studies provide
310 critical insights into how chemical mixtures may acquire novel functions, and offer an empirical
311 foundation for investigating how chemodiversity might scale up to shape ecological dynamics across
312 entire landscapes (see section 4).

313

314

332 such mechanistic insights could ultimately enable the rational design of chemical landscapes as a
333 sustainable tool for ecosystem management.

334 **Loss and change of chemical functionality**

335 The Earth is experiencing unprecedented rates of global change¹²⁸. Biodiversity loss, land-use change,
336 environmental pollution, and other anthropogenic pressures threaten the integrity of ecological
337 processes that depend on complex chemical interactions¹²⁹. Alterations in soil chemistry, air
338 composition, or water quality can interfere with signal transmission and perception in ways that so far
339 only remain poorly understood¹³⁰. In aquatic systems, pollution with microplastic particles has been
340 shown to adsorb chemical cues, thereby disrupting the ability of *Daphnia longicephala* to perceive vital
341 chemical information on nearby predators¹³¹. Similarly, the extensive use of pesticides in agriculture
342 interferes with legume-rhizobium chemical signalling and leads to reduced nitrogen fixation, thus
343 impacting plant growth¹³². Elevated ozone levels have been shown to degrade the floral scent profiles
344 of *Nicotiana suaveolens*, resulting in fewer pollinator visits¹³³. Yet, the opposite trend, an increase in
345 metabolites that enriches chemical blends on the landscape scale, is not inherently beneficial. Climate
346 change is projected to make the world more heavily scented¹³⁴, while invasive species produce more
347 unique chemical profiles than their native counterparts^{135,136}. However, increasingly complex chemical
348 backgrounds can also impair the ability of pollinators to identify biologically relevant signals¹³⁷. These
349 disruptions, whether caused by the loss or overabundance of chemical signals, are highly context-
350 dependent and may unfold gradually, remaining undetected until their ecological consequences become
351 difficult to reverse.

352 As natural communities simplify or change, the chemical interactions they once mediated may
353 disappear as well, potentially disrupting long-standing ecological networks. Many organisms likely
354 depend on the composition and predictability of the surrounding chemical environment, such as the
355 community-level sensory landscapes described in pollination systems¹²¹. Surrounding chemicals are
356 also essential for behaviour as illustrated by the relationships between the chemosensory complexity of
357 the environment and brain volume in lizards¹³⁸. A loss or gain of producers could alter these sensory
358 environments, change the ecological meaning of chemical information and disrupt ecological networks.
359 In complex, long-established communities where producers and responders have co-evolved over
360 evolutionary timescales^{139,140}, the breakdown of such finely tuned interactions could compromise not
361 only ecological functioning, but also the services ecosystems provide¹⁴¹. Similar losses occur in agri-
362 and silvicultural systems, where the replacement of chemodiverse traditional cultivars with genetically
363 uniform high-yielding varieties, coupled with a loss of weed and understory species diversity, reduces
364 phytochemical richness¹⁴². This erosion of chemodiversity may weaken natural pest control and other
365 ecological functions that depend on diverse chemical signalling^{142,143}. Furthermore, the chemodiversity
366 of one ecosystem compartment can directly shape ecological processes in another compartment through
367 tight coupling between organismal groups at the landscape scale^{144,145}. For instance, in freshwater

systems, multifunctionality partly emerges from a tight chemical coupling between terrestrial and aquatic environments: Dissolved organic matter originating from the surrounding vegetation is transformed by microbes within the lakes, thereby fuelling the functioning of the aquatic ecosystem^{146–148}. However, global change induced increases in terrestrial plant productivity are associated with shifts toward fast-growing plants that invest less in protective specialised compounds¹⁴⁹. As a result, organic matter chemodiversity reduces aquatic ecosystem functioning and leads to higher CO₂ emission rates from lake ecosystems¹⁵⁰. Yet, the critical role of such cross-system chemodiversity transfer in sustaining landscape-scale functioning remain so far only poorly understood^{151,152}.

These findings raise broader questions about the resilience of chemical landscapes. If chemodiversity underpins key ecosystem functions, can these functions recover once (chemo)diversity is lost or do ecosystems shift into new, chemically and functionally altered states? Conversely, will ecosystem functions be altered by the addition of metabolites, for instance via invasive species¹³⁶, or the introduction of synthetic chemicals, or can the potential effects be mitigated by the overall chemical blend? Although the concept of ecological resilience has been widely studied in other fields of ecology^{153,154}, the stability and recoverability of chemodiversity-mediated interactions remain poorly understood. In systems where ecological processes depend on the richness and structure of chemical mixtures, diminished chemodiversity could result in persistent functional loss, even if biodiversity or environmental conditions improve. However, the ecological consequences of a species loss may depend less on the species itself than on whether other producers maintain overlapping chemical functions, i.e., chemical redundancy. It is critical to understand when such shifts occur, whether they are reversible, and what thresholds govern transitions between functional states to reliably forecast ecological trajectories under global change and the design of strategies to sustain or restore the functional integrity of chemical landscapes.

391

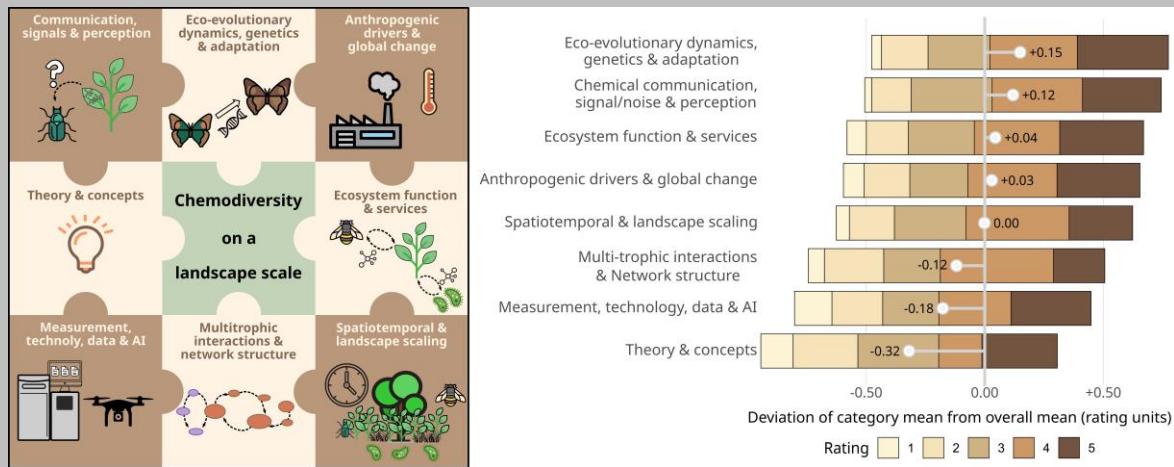
392 4. Conclusion and future directions

393 Our broader ecological understanding of the consequences of chemodiversity remains incomplete but 394 continues to develop^{23,155}. To advance the field, research needs to clarify when and where chemical 395 mixtures become functionally relevant, identify the abiotic and biotic factors that shape these dynamics, 396 and develop approaches to manipulate and monitor chemodiversity across landscapes (see future 397 directions proposed in [Box 1](#)). To reach these goals, future research must combine observational and 398 experimental studies that allow chemodiversity to be manipulated in a systematic way on wider scales. 399 Observational studies are essential for characterizing the natural variability of chemodiversity 400 landscapes. Fine-scale measurements near emitting organisms as well as canopy- or atmosphere-level 401 observations exist, but the mechanisms and spatio-temporal dimensions by which local chemodiversity 402 integrates into larger-scale signals, as well as their ecological consequences remain largely unknown. In 403 addition, researchers could experimentally vary the composition and richness of producer communities

404 in a near-natural way to manipulate their forecasted cumulative chemodiversity, adjust abiotic
405 parameters such as temperature or humidity, or modify the properties of the carrier medium through
406 which volatiles are transported. Such experiments would help identify the ecological thresholds and
407 tipping points at which new chemical functions emerge or vanish. Similarly, these studies could define
408 critical thresholds for the improvement or loss of various ecosystem services and ultimately reveal
409 whether chemical landscapes are flexible and resilient to global change or vulnerable to collapse.

410 While considerable research underpins our understanding of chemodiversity at smaller scales, the next
411 significant challenge lies in scaling this knowledge up. In other words, the field should now move
412 beyond asking what chemodiversity *is* towards asking how it *operates*, when it *matters*, and how its
413 benefits can be *harnessed*. While the conceptual groundwork for understanding the importance of
414 chemodiversity has been established, the next steps lie in translating these ideas into ecological insight
415 across real-world systems (Box 1). Expanding research to encompass landscape-level chemodiversity
416 will enable a deeper understanding of ecological dynamics, providing insights into how chemical
417 communication shapes broader community interactions, ecosystem functions, and the benefits nature
418 provides to people.

Box 1: A workshop survey to advance landscape-level chemodiversity research


This perspective emerged from the workshop “Phenotypic Plasticity and Chemical Diversity” organized in November 2024 by the German research unit on the ecology and evolution of intraspecific chemodiversity in plants (FOR 3000), where experts working across all levels of biological organization and on a broad variety of taxa, discussed current challenges, conceptual gaps, and future directions in plant chemodiversity research. To support the development of a research agenda on landscape scale chemodiversity, we conducted a survey in which leading researchers in chemical ecology present at the workshop contributed and rated questions on the future of chemodiversity research.

Discussions during the workshop converged on the idea that chemodiversity at broader geographical scales represents a critical but underexplored dimension of ecological complexity that is present in nature, yet remains conceptually and methodologically challenging to tackle. To better identify near-term needs for advancing landscape-level chemodiversity research, participants were asked to submit their three most pressing questions after the meeting ([Supplementary Information 1](#)). These questions were then evaluated by the attending researchers. Importantly, the survey reflects the views of a self-selected group of experts in the field and although representing expertise across all levels of biological organization and various taxa, the survey should be read as a guide to emerging priorities rather than a field-wide consensus.

Emerging Priorities from the workshop survey

The survey yielded 54 questions that grouped into eight thematic categories, reflecting a broad spectrum of perspectives on chemodiversity from ecology and evolution to methodological perspectives ([Fig. Box 1a](#); see [Supplementary Information 2](#)). Although all categories represent pressing research areas, respondents prioritized questions of ecological understanding and application to strengthening our understanding of *eco-evolutionary dynamics*, *chemical communication*, and *ecosystem functioning*, while questions rooted in *theory* and *measurement technology* received comparatively lower average ratings ([Fig. Box 1](#)). Our survey highlights a growing consensus that chemodiversity research is approaching a turning point: from conceptual and individual-based exploration towards larger-scale empirical testing and ecological integration to understand how chemodiversity operates under real-world conditions. To move forward, this transition calls for pairing existing knowledge and established methodologies with a renewed effort to expand experimental and observational work. In particular, there is a need to develop research designs that disentangle the drivers, dynamics, and ecological consequences of chemodiversity. This includes identifying spatial, temporal, and environmentally driven concentration thresholds at which chemical mixtures acquire or lose their ecological functions. The need to explore multitrophic interactions and the link between chemodiversity landscape and ecosystem services is also pinpointed.

Box 1 continued

Figure Box 1

421

422

423 **Acknowledgements**

424

425 The authors acknowledge funding from the German Research Foundation (DFG) FOR 3000/2 - Ecology
426 and Evolution of Intraspecific Chemodiversity in Plants (Project number 415496540). MH
427 acknowledges funding from subproject JU2856/5-2, TD acknowledges funding support from
428 MU1829/28-2 and MU1829/29-2, and RH acknowledges funding from subproject HE9171/1-2.

429

430 **References**

- 431 1. Agosta, W. C. *Chemical Communication: The Language of Pheromones*. (Scientific American
432 Library, 1992).
- 433 2. Brönmark, C. & Hansson, L.-A. Chemical Communication in Aquatic Systems: An Introduction.
434 *Oikos* **88**, 103–109 (2000).
- 435 3. Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. *Biol Rev
436 Camb Philos Soc* **82**, 265–289 (2007).
- 437 4. Zimmer, R. Importance of Chemical Communication in Ecology. *The Biological Bulletin* **198**,
438 167–167 (2000).
- 439 5. Grigg, N. P. *et al.* Anatomical evidence for scent guided foraging in the turkey vulture. *Sci Rep* **7**,
440 17408 (2017).
- 441 6. Smith, S. A. & Paselk, R. A. Olfactory Sensitivity of the Turkey Vulture (*Cathartes aura*) to Three
442 Carrion-associated Odorants. *The Auk* **103**, 586–592 (1986).
- 443 7. Turlings, T. C. J. & Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles:
444 mechanisms, ecological relevance, and application potential. *Annu. Rev. Entomol.* **63**, 433–452
445 (2018).
- 446 8. Breithaupt, T. & Atema, J. The timing of chemical signaling with urine in dominance fights of
447 male lobsters (*Homarus americanus*). *Behav Ecol Sociobiol* **49**, 67–78 (2000).
- 448 9. Hadfield, M. G. & Paul, V. J. Natural Chemical Cues for Settlement and Metamorphosis of Marine-
449 Invertebrate Larvae. in *Marine Chemical Ecology* (CRC Press LLC, 2001).
- 450 10. Rafferty, N. E. & Boughman, J. W. Olfactory mate recognition in a sympatric species pair of three-
451 spined sticklebacks. *Behav Ecol* **17**, 965–970 (2006).
- 452 11. Rasmann, S. *et al.* Recruitment of entomopathogenic nematodes by insect-damaged maize roots.
453 *Nature* **434**, 732–737 (2005).
- 454 12. Rasmann, S. & Turlings, T. C. Root signals that mediate mutualistic interactions in the rhizosphere.
455 *Current Opinion in Plant Biology* **32**, 62–68 (2016).
- 456 13. Oldroyd, G. E. D. & Downie, J. A. Coordinating Nodule Morphogenesis with Rhizobial Infection
457 in Legumes. *Annual Review of Plant Biology* **59**, 519–546 (2008).
- 458 14. Gassett, J. W. Physiological and sociobiological investigations of olfactory communication in
459 white-tailed deer (*Odocoileus virginianus*) during the breeding season. 1 (2000).
- 460 15. Lawson, R. E., Putnam, R. J. & Fielding, A. H. Chemical communication in Eurasian deer
(Cervidae): do individual odours also code for attributes? *Journal of Zoology* **253**, 91–99 (2001).
- 462 16. Yahner, R. H. Olfactory Communication. in *Wildlife Behavior and Conservation* (ed. Yahner, R.
463 H.) 113–120 (Springer, New York, NY, 2012). doi:10.1007/978-1-4614-1518-3_13.
- 464 17. Kessler, A. & Kalske, A. Plant Secondary Metabolite Diversity and Species Interactions. *Annu.
465 Rev. Ecol. Evol. Syst.* **49**, 115–138 (2018).
- 466 18. Wetzel, W. C. & Whitehead, S. R. The many dimensions of phytochemical diversity: Linking
467 theory to practice. *Ecology Letters* **23**, 16–32 (2020).
- 468 19. Liu, Y. & Zhao, H. Predicting synergistic effects between compounds through their structural
469 similarity and effects on transcriptomes. *Bioinformatics* **32**, 3782–3789 (2016).
- 470 20. Richards, L. A. *et al.* Phytochemical diversity and synergistic effects on herbivores. *Phytochem
471 Rev* **15**, 1153–1166 (2016).
- 472 21. Philbin, C. S., Dyer, L. A., Jeffrey, C. S., Glassmire, A. E. & Richards, L. A. Structural and
473 compositional dimensions of phytochemical diversity in the genus *Piper* reflect distinct ecological
474 modes of action. *Journal of Ecology* **110**, 57–67 (2022).
- 475 22. Petré, H., Köllner, T. G. & Junker, R. R. Quantifying chemodiversity considering biochemical
476 and structural properties of compounds with the R package CHEMODIV. *New Phytologist* **237**,
477 2478–2492 (2023).

478 23. Petrén, H. *et al.* Understanding the chemodiversity of plants: Quantification, variation and
479 ecological function. *Ecological Monographs* **94**, e1635 (2024).

480 24. Ziaja, D. & Müller, C. Intraspecific Chemodiversity Provides Plant Individual- and
481 Neighbourhood-Mediated Associational Resistance towards Aphids.
482 <http://biorxiv.org/lookup/doi/10.1101/2022.12.21.521353> (2022)
483 doi:10.1101/2022.12.21.521353.

484 25. Ojeda-Prieto, L., Medina-van Berkum, P., Unsicker, S. B., Heinen, R. & Weisser, W. W.
485 Intraspecific chemical variation of *Tanacetum vulgare* affects plant growth and reproductive traits
486 in field plant communities. *Plant Biology* **27**, 785–801 (2025).

487 26. Medina-van Berkum, P. *et al.* Plant diversity influences plant volatile emission with varying effects
488 at the species and community levels. *Proceedings of the National Academy of Sciences* **123**,
489 e2518326123 (2026).

490 27. Bustos-Segura, C., Poelman, E. H., Reichelt, M., Gershenzon, J. & Gols, R. Intraspecific chemical
491 diversity among neighbouring plants correlates positively with plant size and herbivore load but
492 negatively with herbivore damage. *Ecology Letters* **20**, 87–97 (2017).

493 28. McFrederick, Q. S., Kathilankal, J. C. & Fuentes, J. D. Air pollution modifies floral scent trails.
494 *Atmospheric Environment* **42**, 2336–2348 (2008).

495 29. Dam, N. M. van & Bouwmeester, H. J. Metabolomics in the Rhizosphere: Tapping into
496 Belowground Chemical Communication. *Trends in Plant Science* **21**, 256–265 (2016).

497 30. Schuman, M. C., van Dam, N. M., Beran, F. & Harpole, W. S. How does plant chemical diversity
498 contribute to biodiversity at higher trophic levels? *Current Opinion in Insect Science* **14**, 46–55
499 (2016).

500 31. Baldwin, I. T., Halitschke, R., Paschold, A., von Dahl, C. C. & Preston, C. A. Volatile Signaling in
501 Plant-Plant Interactions: ‘Talking Trees’ in the Genomics Era. *Science* **311**, 812–815 (2006).

502 32. Jones, C. G. & Firn, R. D. On the evolution of plant secondary chemical diversity. *Philos Trans R
503 Soc Lond B Biol Sci* **333**, 273–280 (1991).

504 33. Firn, R. D. & Jones, C. G. The evolution of secondary metabolism – a unifying model. *Molecular
505 Microbiology* **37**, 989–994 (2000).

506 34. Yazaki, K. Transporters of secondary metabolites. *Current Opinion in Plant Biology* **8**, 301–307
507 (2005).

508 35. Shitan, N. Secondary metabolites in plants: transport and self-tolerance mechanisms. *Biosci.
509 Biotechnol. Biochem.* **80**, 1283–1293 (2016).

510 36. Hayes, R. A., Crossland, M. R., Hagman, M., Capon, R. J. & Shine, R. Ontogenetic Variation in
511 the Chemical Defenses of Cane Toads (*Bufo marinus*): Toxin Profiles and Effects on Predators. *J
512 Chem Ecol* **35**, 391–399 (2009).

513 37. Jackson, D. E. & Ratnieks, F. L. W. Communication in ants. *Curr Biol* **16**, R570–574 (2006).

514 38. Dicke, M. Behavioural and community ecology of plants that cry for help. *Plant, Cell &
515 Environment* **32**, 654–665 (2009).

516 39. Unsicker, S. B., Kunert, G. & Gershenzon, J. Protective perfumes: The role of vegetative volatiles
517 in plant defense against herbivores. *Current Opinion in Plant Biology* **12**, 479–485 (2009).

518 40. Dicke, M. & Baldwin, I. T. The evolutionary context for herbivore-induced plant volatiles: beyond
519 the ‘cry for help’. *Trends in Plant Science* **15**, 167–175 (2010).

520 41. Delory, B. M., Delaplace, P., Fauconnier, M.-L. & du Jardin, P. Root-emitted volatile organic
521 compounds: can they mediate belowground plant-plant interactions? *Plant Soil* **402**, 1–26 (2016).

522 42. Ninkovic, V., Markovic, D. & Rensing, M. Plant volatiles as cues and signals in plant
523 communication. *Plant Cell Environ* **44**, 1030–1043 (2021).

524 43. Kessler, A., Mueller, M. B., Kalske, A. & Chautá, A. Volatile-mediated plant–plant communication
525 and higher-level ecological dynamics. *Current Biology* **33**, R519–R529 (2023).

526 44. Khamare, Y., Chen, J. & Marble, S. C. Allelopathy and its application as a weed management tool:
527 A review. *Front. Plant Sci.* **13**, (2022).

528 45. Douma, J. C., Ganzeveld, L. N., Unsicker, S. B., Boeckler, G. A. & Dicke, M. What makes a
529 volatile organic compound a reliable indicator of insect herbivory? *Plant Cell Environ.* **42**, 3308–
530 3325 (2019).

531 46. Fraenkel, G. S. The Raison d'Être of Secondary Plant Substances. *Science* **129**, 1466–1470 (1959).

532 47. Hartmann, T. From waste products to ecochemicals: Fifty years research of plant secondary
533 metabolism. *Phytochemistry* **68**, 2831–2846 (2007).

534 48. Hansen, S. C., Stolter, C., Imholt, C. & Jacob, J. Plant Secondary Metabolites as Rodent
535 Repellents: a Systematic Review. *J Chem Ecol* **42**, 970–983 (2016).

536 49. Nishida, R. Chemical ecology of insect–plant interactions: ecological significance of plant
537 secondary metabolites. *Bioscience, Biotechnology, and Biochemistry* **78**, 1–13 (2014).

538 50. Burkle, L. A. & Runyon, J. B. The smell of environmental change: Using floral scent to explain
539 shifts in pollinator attraction. *Appl Plant Sci* **5**, apps.1600123 (2017).

540 51. Duc, N. H. *et al.* Volatile organic compounds shape belowground plant-fungi interactions. *Front
541 Plant Sci* **13**, 1046685 (2022).

542 52. Strauss, S. Y., Rudgers, J. A., Lau, J. A. & Irwin, R. E. Direct and ecological costs of resistance to
543 herbivory. *Trends in Ecology & Evolution* **17**, 278–285 (2002).

544 53. Kessler, D., Diezel, C. & Baldwin, I. T. Changing Pollinators as a Means of Escaping Herbivores.
545 *Current Biology* **20**, 237–242 (2010).

546 54. Aartsma, Y., Bianchi, F. J. J. A., van der Werf, W., Poelman, E. H. & Dicke, M. Herbivore-induced
547 plant volatiles and tritrophic interactions across spatial scales. *New Phytologist* **216**, 1054–1063
548 (2017).

549 55. van Loon, J. J. A. *et al.* Leaf surface compound from *Brassica oleracea* (Cruciferae) induces
550 oviposition by *Pieris brassicae* (Lepidoptera: Pieridae). *Chemoecology* **3**, 39–44 (1992).

551 56. Honda, K. Chemical basis of differential oviposition by lepidopterous insects. *Archives of Insect
552 Biochemistry and Physiology* **30**, 1–23 (1995).

553 57. Nakabayashi, R. & Saito, K. Integrated metabolomics for abiotic stress responses in plants.
554 *Current Opinion in Plant Biology* **24**, 10–16 (2015).

555 58. Hallmann, C. A. *et al.* More than 75 percent decline over 27 years in total flying insect biomass in
556 protected areas. *PLoS ONE* **12**, e0185809 (2017).

557 59. Thoms, C. & Gleixner, G. Seasonal differences in tree species' influence on soil microbial
558 communities. *Soil Biology and Biochemistry* **66**, 239–248 (2013).

559 60. Vidiella, P. E., Armesto, J. J. & Gutiérrez, J. R. Vegetation changes and sequential flowering after
560 rain in the southern Atacama Desert. *Journal of Arid Environments* **43**, 449–458 (1999).

561 61. Clavijo McCormick, A., Gershenson, J. & Unsicker, S. B. Little peaks with big effects: establishing
562 the role of minor plant volatiles in plant-insect interactions: Minor plant volatiles. *Plant Cell
563 Environ.* **37**, 1836–1844 (2014).

564 62. Dussarrat, T. *et al.* Rhizochemistry and soil bacterial community are tailored to natural stress
565 gradients. *Soil Biology and Biochemistry* **202**, 109662 (2025).

566 63. Pérez-Llorca, M. & Müller, M. Unlocking Nature's Rhythms: Insights into Secondary Metabolite
567 Modulation by the Circadian Clock. *IJMS* **25**, 7308 (2024).

568 64. Schmidt, R., Ulanova, D., Wick, L. Y., Bode, H. B. & Garbeva, P. Microbe-driven chemical
569 ecology: past, present and future. *The ISME Journal* **13**, 2656–2663 (2019).

570 65. Vedel-Petersen, I., Schollert, M., Nymand, J. & Rinnan, R. Volatile organic compound emission
571 profiles of four common arctic plants. *Atmospheric Environment* **120**, 117–126 (2015).

572 66. Hu, A., Stegen, J., Tanentzap, A. J. & Wang, J. The Emergence and Promise of Functional
573 Chemogeography of Organic Matter. *Global Change Biology* **31**, e70435 (2025).

574 67. Mostovaya, A., Hawkes, J. A., Koehler, B., Dittmar, T. & Tranvik, L. J. Emergence of the
575 Reactivity Continuum of Organic Matter from Kinetics of a Multitude of Individual Molecular
576 Constituents. *Environ. Sci. Technol.* **51**, 11571–11579 (2017).

577 68. Liu, Z. *et al.* Volatile organic compounds (VOCs) from plants: From release to detection. *TrAC
578 Trends in Analytical Chemistry* **158**, 116872 (2023).

579 69. Sasidharan, R., Grond, S. G., Champion, S., Eilers, E. J. & Müller, C. Intraspecific plant
580 chemodiversity at the individual and plot levels influences flower visitor groups with
581 consequences for germination success. *Functional Ecology* **38**, 2665–2678 (2024).

582 70. Schmidt, R. *et al.* Fungal volatile compounds induce production of the secondary metabolite
583 Sodorifen in *Serratia plymuthica* PRI-2C. *Sci Rep* **7**, 862 (2017).

584 71. Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor Plumes and How Insects Use Them. *Annual Review
585 of Entomology* **37**, 505–532 (1992).

586 72. Vickers, N. J. & Baker, T. C. Latencies of behavioral response to interception of filaments of sex
587 pheromone and clean air influence flight track shape in *Heliothis virescens* (F.) males. *J Comp
588 Physiol A* **178**, 831–847 (1996).

589 73. Scheringer, M. Long-range transport of organic chemicals in the environment. *Environmental
590 Toxicology and Chemistry* **28**, 677–690 (2009).

591 74. Widhalm, J. R., Jaini, R., Morgan, J. A. & Dudareva, N. Rethinking how volatiles are released
592 from plant cells. *Trends in Plant Science* **20**, 545–550 (2015).

593 75. Huang, W. *et al.* Measurement report: Molecular composition and volatility of gaseous organic
594 compounds in a boreal forest – from volatile organic compounds to highly oxygenated organic
595 molecules. *Atmospheric Chemistry and Physics* **21**, 8961–8977 (2021).

596 76. Meredith, L. K. *et al.* Automating methods for estimating metabolite volatility. *Front. Microbiol.*
597 **14**, (2023).

598 77. Blande, J. D., Holopainen, J. K. & Niinemets, Ü. Plant volatiles in polluted atmospheres: stress
599 responses and signal degradation. *Plant, Cell & Environment* **37**, 1892–1904 (2014).

600 78. Atkinson, R. & Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds:
601 a review. *Atmospheric Environment* **37**, S197–S219 (2003).

602 79. Bede, J. C. & Blande, J. D. Effects of Elevated CO₂ and O₃ on Aboveground Brassicaceous Plant–
603 Insect Interactions. *Annual Review of Entomology* **70**, 205–227 (2025).

604 80. Ryalls, J. M. W. *et al.* Diesel exhaust and ozone adversely affect pollinators and parasitoids within
605 flying insect communities. *Science of The Total Environment* **958**, 177802 (2025).

606 81. Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic
607 compounds in the Earth system. *New Phytologist* **183**, 27–51 (2009).

608 82. Yu, H. *et al.* Biogenic secondary organic aerosol participates in plant interactions and herbivory
609 defense. *Science* **385**, 1225–1230 (2024).

610 83. Blande, J. D., Holopainen, J. K. & Li, T. Air pollution impedes plant-to-plant communication by
611 volatiles. *Ecology Letters* **13**, 1172–1181 (2010).

612 84. Byers, J. A. Active Space of Pheromone Plume and its Relationship to Effective Attraction Radius
613 in Applied Models. *J Chem Ecol* **34**, 1134–1145 (2008).

614 85. Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. Fluid dynamics and noise
615 in bacterial cell–cell and cell–surface scattering. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 10940–10945
616 (2011).

617 86. Hagiwara, T., Ishihara, M. I., Takabayashi, J., Hiura, T. & Shiojiri, K. Effective distance of volatile
618 cues for plant–plant communication in beech. *Ecology and Evolution* **11**, 12445–12452 (2021).

619 87. Karban, R., Shiojiri, K., Huntzinger, M. & McCall, A. C. DAMAGE-INDUCED RESISTANCE
620 IN SAGEBRUSH: VOLATILES ARE KEY TO INTRA- AND INTERPLANT
621 COMMUNICATION. *Ecology* **87**, 922–930 (2006).

622 88. Schlyter, F. Sampling range, attraction range, and effective attraction radius: Estimates of trap
623 efficiency and communication distance in coleopteran pheromone and host attractant systems¹. *J
624 Applied Entomology* **114**, 439–454 (1992).

625 89. Gao, B., Todd Walter, M., Steenhuis, T. S., Hogarth, W. L. & Parlange, J.-Y. Rainfall induced
626 chemical transport from soil to runoff: theory and experiments. *Journal of Hydrology* **295**, 291–
627 304 (2004).

628 90. Schmidt, R., Ulanova, D., Wick, L. Y., Bode, H. B. & Garbeva, P. Microbe-driven chemical
629 ecology: past, present and future. *ISME J* **13**, 2656–2663 (2019).

630 91. Chiriboga M., X., Campos-Herrera, R., Jaffuel, G., Röder, G. & Turlings, T. C. J. Diffusion of the
631 maize root signal (*E*)- β -caryophyllene in soils of different textures and the effects on the migration
632 of the entomopathogenic nematode *Heterorhabditis megidis*. *Rhizosphere* **3**, 53–59 (2017).

633 92. Wester-Larsen, L., Kramshøj, M., Albers, C. N. & Rinnan, R. Biogenic Volatile Organic
634 Compounds in Arctic Soil: A Field Study of Concentrations and Variability With Vegetation Cover.
635 *Journal of Geophysical Research: Biogeosciences* **125**, e2019JG005551 (2020).

636 93. Bowers, R. M. *et al.* Seasonal Variability in Bacterial and Fungal Diversity of the Near-Surface
637 Atmosphere. *Environ. Sci. Technol.* **47**, 12097–12106 (2013).

638 94. Cotton, T. E. A. *et al.* Metabolic regulation of the maize rhizobiome by benzoxazinoids. *The ISME
639 Journal* **13**, 1647–1658 (2019).

640 95. Gilbert, J. A. *et al.* Defining seasonal marine microbial community dynamics. *The ISME Journal*
641 **6**, 298–308 (2012).

642 96. Albers, C. N., Kramshøj, M. & Rinnan, R. Rapid mineralization of biogenic volatile organic
643 compounds in temperate and Arctic soils. *Biogeosciences* **15**, 3591–3601 (2018).

644 97. Faeth, S. H. & Saari, S. Fungal grass endophytes and arthropod communities: lessons from plant
645 defence theory and multitrophic interactions. *Fungal Ecology* **5**, 364–371 (2012).

646 98. Walther, C. *et al.* A Fungal Endophyte Alters Poplar Leaf Chemistry, Deters Insect Feeding and
647 Shapes Insect Community Assembly. *Ecology Letters* **28**, e70007 (2025).

648 99. Paczkowski, S. & Schütz, S. Post-mortem volatiles of vertebrate tissue. *Appl Microbiol Biotechnol*
649 **91**, 917–935 (2011).

650 100. Potier, S., Duriez, O., Célérier, A., Liegeois, J.-L. & Bonadonna, F. Sight or smell: which senses
651 do scavenging raptors use to find food? *Anim Cogn* **22**, 49–59 (2019).

652 101. Barto, E. K., Weidenhamer, J. D., Cipollini, D. & Rillig, M. C. Fungal superhighways: do common
653 mycorrhizal networks enhance below ground communication? *Trends in Plant Science* **17**, 633–
654 637 (2012).

655 102. Furuno, S. *et al.* Mycelia Promote Active Transport and Spatial Dispersion of Polycyclic Aromatic
656 Hydrocarbons. *Environ. Sci. Technol.* **46**, 5463–5470 (2012).

657 103. Peckre, L. R., Defolie, C., Kappeler, P. M. & Fichtel, C. Potential self-medication using millipede
658 secretions in red-fronted lemurs: combining anointment and ingestion for a joint action against
659 gastrointestinal parasites? *Primates* **59**, 483–494 (2018).

660 104. Simmen, B. & Tarnaud, L. Utilisation des sécrétions de myriapodes chez les lémurs et les
661 sapajous : fonction curative ou signalisation sociale ?1. *primatologie*
662 <https://doi.org/10.4000/primatologie.644> (2011) doi:10.4000/primatologie.644.

663 105. Campbell, C. J. Fur rubbing behavior in free-ranging black-handed spider monkeys (*Ateles
664 geoffroyi*) in Panama. *Am. J. Primatol.* **51**, 205–208 (2000).

665 106. Weldon, P. J., Cranmore, C. F. & Chatfield, J. A. Prey-rolling behavior of coatis (*Nasua* spp.) is
666 elicited by benzoquinones from millipedes. *Naturwissenschaften* **93**, 14–16 (2006).

667 107. Eltz, T., Sager, A. & Lunau, K. Juggling with volatiles: exposure of perfumes by displaying male
668 orchid bees. *J Comp Physiol A* **191**, 575–581 (2005).

669 108. Barber, A., Friedrichs, J. & Müller, C. Gregarines impact consumption and development but not
670 glucosinolate metabolism in the mustard leaf beetle. *Front. Physiol.* **15**, 1394576 (2024).

671 109. Johnsen, A. R., Wick, L. Y. & Harms, H. Principles of microbial PAH-degradation in soil.
672 *Environmental Pollution* **133**, 71–84 (2005).

673 110. Rud, I., Almlí, V. L., Berget, I., Tzimorotas, D. & Varela, P. Taste perception and oral microbiota:
674 recent advances and future perspectives. *Current Opinion in Food Science* **51**, 101030 (2023).

675 111. Goelen, T. *et al.* Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory
676 responses in an aphid parasitoid and its hyperparasitoid. *Functional Ecology* **34**, 507–520 (2020).

677 112. Leroy, P. D. *et al.* Aphid-host plant interactions: does aphid honeydew exactly reflect the host plant
678 amino acid composition? *Arthropod-Plant Interactions* **5**, 193–199 (2011).

679 113. Raguso, R. A. *et al.* The raison d'être of chemical ecology. *Ecology* **96**, 617–630 (2015).

680 114. Salt, G. W. A Comment on the Use of the Term Emergent Properties. *The American Naturalist* **113**,
681 145–148 (1979).

682 115. Proffit, M. *et al.* Chemical signal is in the blend: bases of plant-pollinator encounter in a highly
683 specialized interaction. *Sci Rep* **10**, 10071 (2020).

684 116. Berenbaum, M. R. & Zangerl, A. R. Furanocoumarin metabolism in *Papilio* polyxenes:
685 biochemistry, genetic variability, and ecological significance. *Oecologia* **95**, 370–375 (1993).

686 117. Steppuhn, A. & Baldwin, I. T. Resistance management in a native plant: nicotine prevents
687 herbivores from compensating for plant protease inhibitors. *Ecology Letters* **10**, 499–511 (2007).

688 118. Richards, L. A. *et al.* Phytochemical diversity drives plant-insect community diversity.
689 *Proceedings of the National Academy of Sciences* **112**, 10973–10978 (2015).

690 119. Hanusch, M., Dötterl, S., Larue-Kontić, A.-A. C., Keller, A. & Junker, R. R. Floral scent
691 chemodiversity is associated with high floral visitor but low bacterial richness on flowers. *New
692 Phytol* **248**, 3270–3279 (2025).

693 120. Ojeda-Prieto, L., Moreno, E. L., Heinen, R. & Weisser, W. W. Intraspecific plant chemodiversity
694 at plot level has contrasting effects on arthropod functional groups. *Functional Ecology* **39**, 3732–
695 3750 (2025).

696 121. Kantsa, A. *et al.* Community-wide integration of floral colour and scent in a Mediterranean
697 scrubland. *Nat Ecol Evol* **1**, 1502–1510 (2017).

698 122. Kantsa, A., De Moraes, C. M., Petanidou, T. & Mescher, M. C. Exploring the importance of
699 aromatic plants' extrafloral volatiles for pollinator attraction. *New Phytologist* **248**, 517–528
700 (2025).

701 123. Cook, S. M., Khan, Z. R. & Pickett, J. A. The use of push-pull strategies in integrated pest
702 management. *Annu Rev Entomol* **52**, 375–400 (2007).

703 124. Lang, J. *et al.* Push–Pull Intercropping Increases the Antiherbivore Benzoxazinoid Glycoside
704 Content in Maize Leaf Tissue. *ACS Agric. Sci. Technol.* **4**, 1074–1082 (2024).

705 125. Lagrange, S., Beauchemin, K. A., MacAdam, J. & Villalba, J. J. Grazing diverse combinations of
706 tanniferous and non-tanniferous legumes: Implications for beef cattle performance and
707 environmental impact. *Science of The Total Environment* **746**, 140788 (2020).

708 126. Pereira, F. C. & Gregorini, P. Applying spatio-chemical analysis to grassland ecosystems for the
709 illustration of chemoscapes and creation of healthscapes. *Front. Sustain. Food Syst.* **6**, (2022).

710 127. Kansman, J. T., Jaramillo, J. L., Ali, J. G. & Hermann, S. L. Chemical ecology in conservation
711 biocontrol: new perspectives for plant protection. *Trends Plant Sci* **28**, 1166–1177 (2023).

712 128. Waters, C. N. *et al.* The Anthropocene is functionally and stratigraphically distinct from the
713 Holocene. *Science* **351**, aad2622 (2016).

714 129. Peñuelas, J. & Staudt, M. BVOCs and global change. *Trends in Plant Science* **15**, 133–144 (2010).

715 130. Duque, L. & Steffen-Dewenter, I. Air pollution: a threat to insect pollination. *Frontiers in Ecology
716 and the Environment* **22**, e2701 (2024).

717 131. Trotter, B., Ramsperger, A. F. R. M., Raab, P., Haberstroh, J. & Laforsch, C. Plastic waste interferes
718 with chemical communication in aquatic ecosystems. *Sci Rep* **9**, 5889 (2019).

719 132. Fox, J. E., Gulledge, J., Engelhaupt, E., Burow, M. E. & McLachlan, J. A. Pesticides reduce
720 symbiotic efficiency of nitrogen-fixing rhizobia and host plants. *Proc Natl Acad Sci U S A* **104**,
721 10282–10287 (2007).

722 133. Farré-Armengol, G. *et al.* Ozone degrades floral scent and reduces pollinator attraction to flowers. *New Phytol* **209**, 152–160 (2016).

723 134. Peñuelas, J. An Increasingly Scented World. *The New Phytologist* **180**, 735–738 (2008).

724 135. Clavijo McCormick, A., Effah, E. & Najar-Rodriguez, A. Ecological aspects of volatile organic
725 compounds emitted by exotic invasive plants. *Front. Ecol. Evol.* **11**, (2023).

726 136. Macel, M., de Vos, R. C. H., Jansen, J. J., van der Putten, W. H. & van Dam, N. M. Novel chemistry
727 of invasive plants: exotic species have more unique metabolomic profiles than native congeners. *Ecology and Evolution* **4**, 2777–2786 (2014).

728 137. Riffell, J. A. *et al.* Flower discrimination by pollinators in a dynamic chemical environment. *Science* **344**, 1515–1518 (2014).

729 138. Londoño, C., Bartolomé, A., Carazo, P. & Font, E. Chemosensory enrichment as a simple and
730 effective way to improve the welfare of captive lizards. *Ethology* **124**, 674–683 (2018).

731 139. Becerra, J. X., Noge, K. & Venable, D. L. Macroevolutionary chemical escalation in an ancient
732 plant–herbivore arms race. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 18062–18066 (2009).

733 140. Ehrlich, P. R. & Raven, P. H. Butterflies and Plants: A Study in Coevolution. *Evolution* **18**, 586–
734 608 (1964).

735 141. Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of
736 pollination networks to the loss of species and interactions: a quantitative approach incorporating
737 pollinator behaviour. *Ecol Lett* **13**, 442–452 (2010).

738 142. Hauri, K. C., Glassmire, A. E. & Wetzel, W. C. Chemical diversity rather than cultivar diversity
739 predicts natural enemy control of herbivore pests. *Ecological Applications* **31**, e02289 (2021).

740 143. Espinosa-García, F. J. The role of phytochemical diversity in the management of agroecosystems. *Bot. Sci.* **100**, 245–262 (2022).

741 144. Hanusch, M. *et al.* Exploring the Frequency and Distribution of Ecological Non-monotonicity in
742 Associations among Ecosystem Constituents. *Ecosystems* **26**, 1819–1840 (2023).

743 145. Ochoa-Hueso, R. *et al.* Ecosystem coupling: A unifying framework to understand the functioning
744 and recovery of ecosystems. *One Earth* **4**, 951–966 (2021).

745 146. Qin, Y., Roslund, K. E., Smart, A. S., Christiansen, J. R. & Rinnan, R. Net emission of atmospheric
746 volatile organic compounds from ponds in a peatland forest. *Limnology and Oceanography* **70**,
747 3076–3088 (2025).

748 147. Freeman, E. C. *et al.* Molecular diversity of dissolved organic matter reflects macroecological
749 patterns in river networks. *Sci Rep* **15**, 27019 (2025).

750 148. Tranvik, L. J. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and
751 the concept of the microbial loop. *Hydrobiologia* **229**, 107–114 (1992).

752 149. He, Z., Webster, S. & He, S. Y. Growth–defense trade-offs in plants. *Current Biology* **32**, R634–
753 R639 (2022).

754 150. Fonvielle, J. A., Sandor, S. R., Dittmar, T. & Tanentzap, A. J. Chemical diversity promotes
755 ecosystem function. 2025.02.16.638531 Preprint at <https://doi.org/10.1101/2025.02.16.638531>
756 (2025).

757 151. Sanaei, A. *et al.* Changes in biodiversity impact atmospheric chemistry and climate through plant
758 volatiles and particles. *Commun Earth Environ* **4**, 445 (2023).

759 152. Solomon, C. T. *et al.* Ecosystem Consequences of Changing Inputs of Terrestrial Dissolved
760 Organic Matter to Lakes: Current Knowledge and Future Challenges. *Ecosystems* **18**, 376–389
761 (2015).

762 153. Oliver, T. H. *et al.* Biodiversity and Resilience of Ecosystem Functions. *Trends in Ecology &*

763 764 Evolution **30**, 673–684 (2015).

765

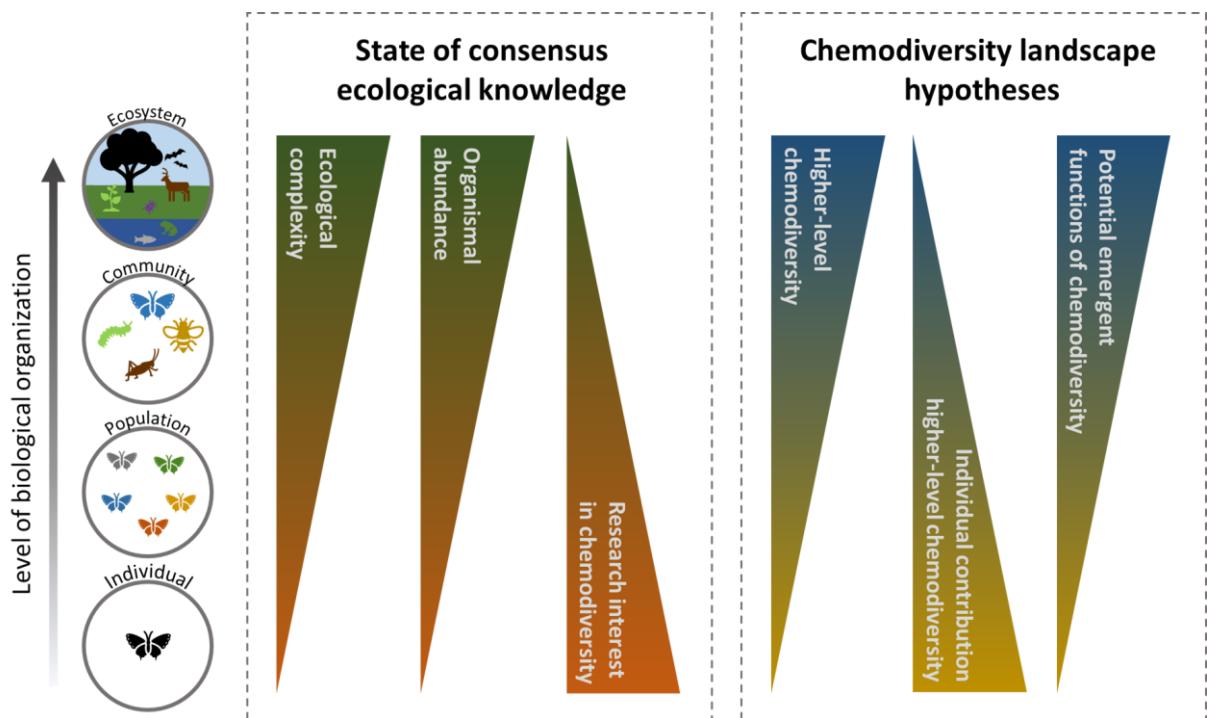
766

767

768 154. Oliver, T. H. *et al.* Declining resilience of ecosystem functions under biodiversity loss. *Nat*
769 *Commun* **6**, 10122 (2015).

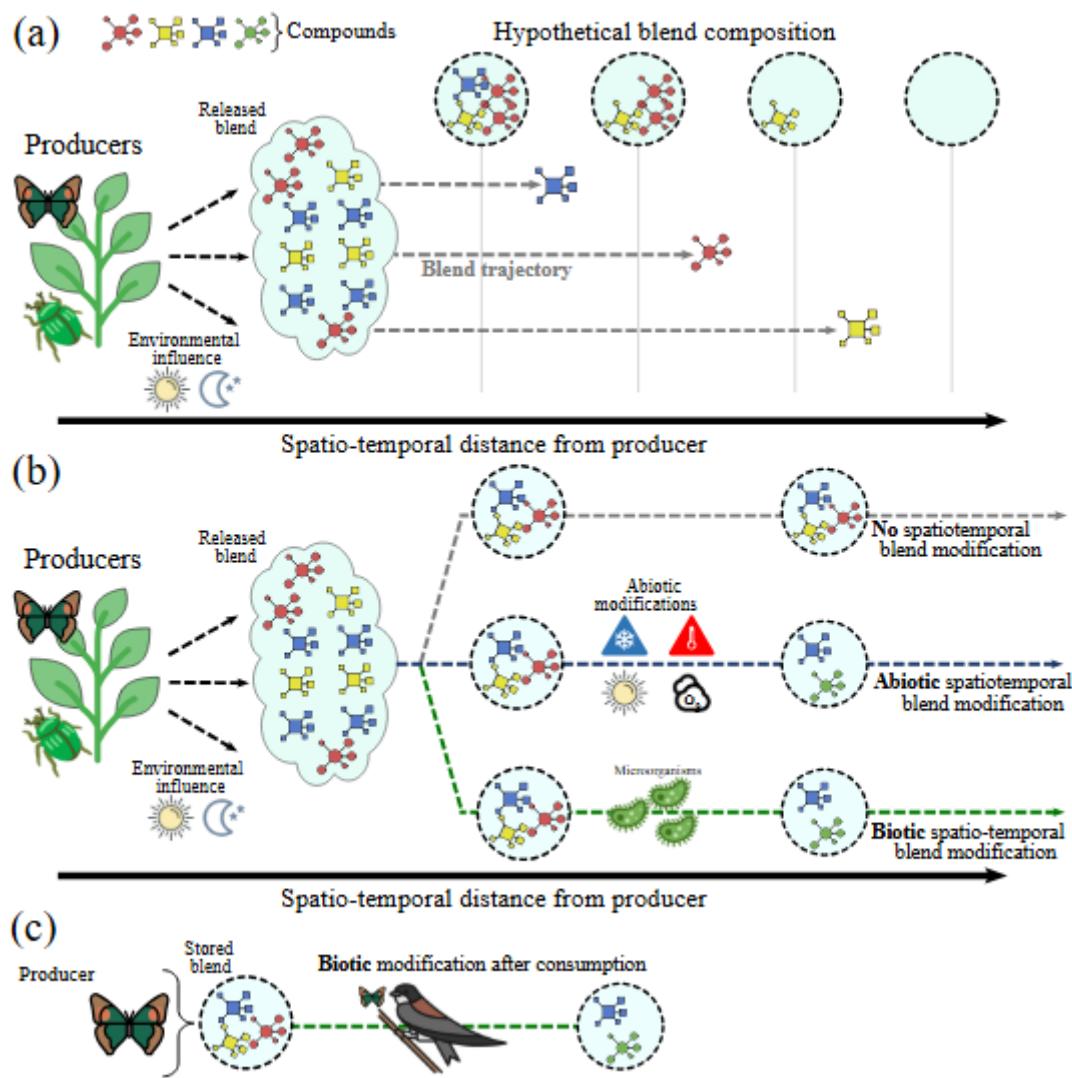
770 155. Gershenzon, J. & Dudareva, N. The function of terpene natural products in the natural world. *Nat*
771 *Chem Biol* **3**, 408–414 (2007).

772


773

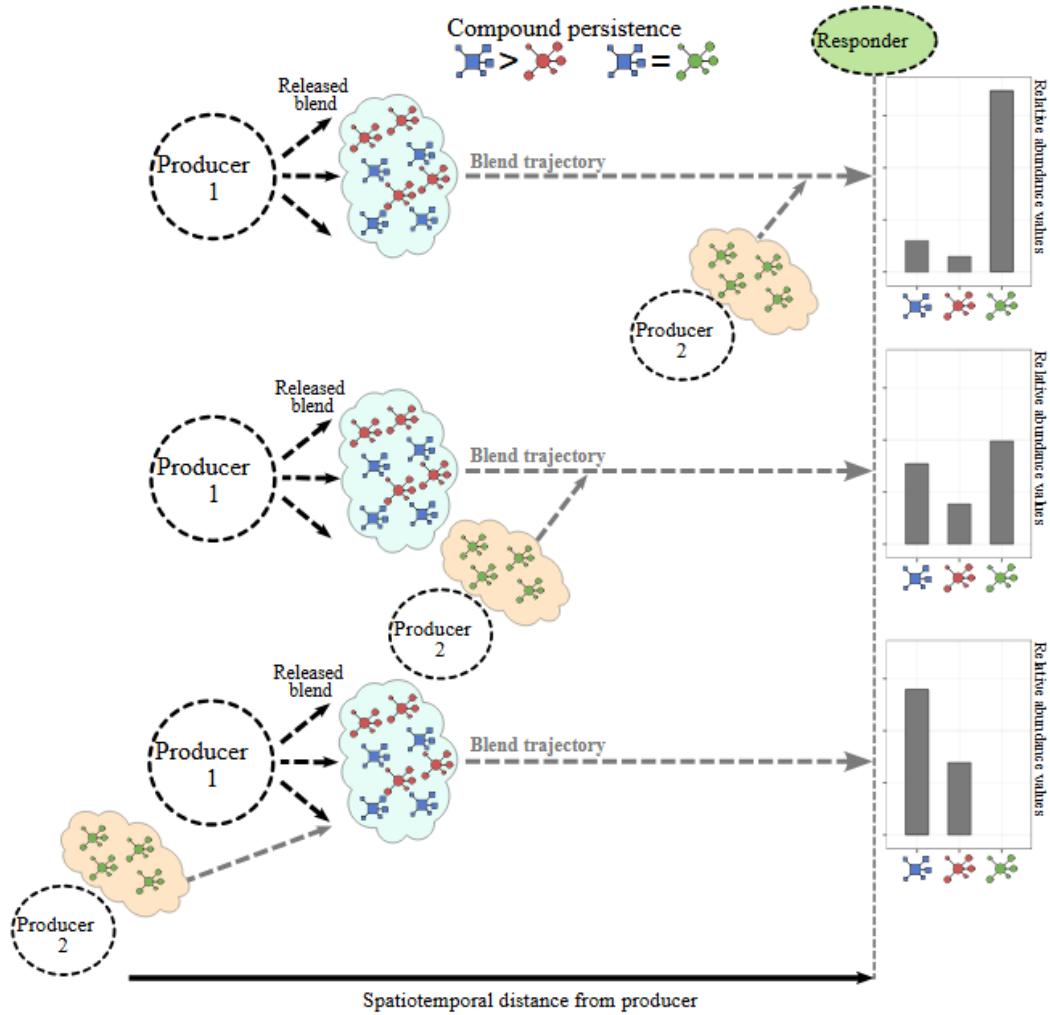
774 **Figures**

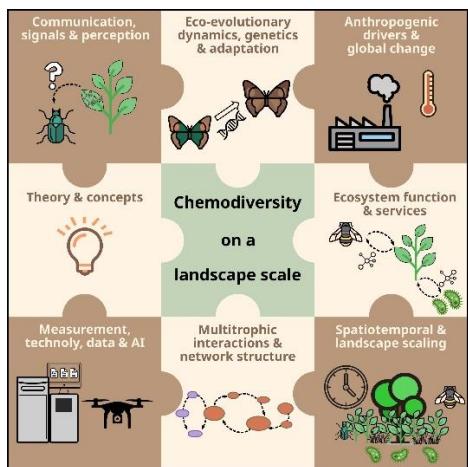
775


776 **Figure 1**

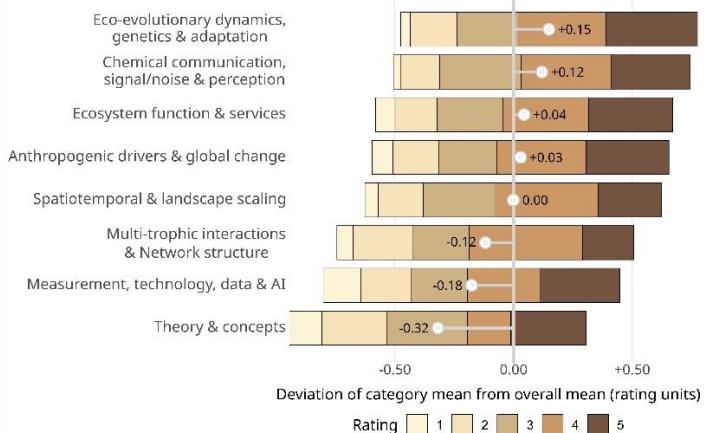
777

778


779 **Figure 2**


780

781


782 **Figure 3**

786 **Figure Box 1**

787

788 **Figure legends:**

789

790 **Figure 1:** Conceptual figure depicting the state of ecological consensus and hypotheses on ecological
791 and chemical complexity across levels of biological organisation. The left panel depicts the general
792 consensus that ecological complexity and organismal abundance increase with increasing levels of
793 biological organisation and how this is incongruent with the research interest that chemodiversity has
794 received in the different subfields of ecology in recent years. The right box posits novel hypotheses
795 regarding individual- and higher-level chemodiversity across levels of biological organisation and the
796 associated potential for emergent functions of chemodiversity.

797 **Figure 2:** Conceptual model illustrating the transformation of the emitted chemical blend during its
798 transport toward responders. The model distinguishes non-consumptive and consumptive processes. **a.**
799 Spatio-temporal, non-consumptive shifts in blend composition due to intrinsic compound properties
800 (e.g. volatility, diffusivity), which determine how far and how long individual metabolites persist. **b.**
801 Modification of the blend by abiotic and biotic factors, encompassing both non-consumptive (e.g.
802 oxidation, photolysis) and consumptive (e.g. microbial transformation) processes that alter individual
803 metabolites. Processes in panels a and b typically occur simultaneously. **c.** Additional biotic alteration
804 through trophic consumption (e.g. predators consuming emitters or tissues thereof).

805 **Figure 3:** Conceptual model illustrating how the chemical blend received by a responder varies with
806 spatial and temporal distance from multiple emitters, due to differences in compound persistence.
807 Producers emit distinct compounds (coloured shapes) that vary in environmental persistence, depending
808 on volatility, degradation, carrier properties, modifications or other factors. As blends move through
809 space and change over time, the concentrations of their constituent compounds shift. The responder
810 therefore receives different blends depending on its position: in the top and bottom scenarios, the signal
811 is dominated by compounds emitted by the nearest producer, whereas the middle scenario shows a more
812 even blend when the responder is situated between producers. These spatial and temporal dynamics
813 shape the composition and evenness of the chemical blend, suggesting that emergent properties may
814 depend not only on what is emitted, but when and where signals are perceived in the landscape.

815 **Figure Box 1:** Research priorities for advancing chemodiversity research at the landscape scale. a)
816 Overview of identified research priorities, grouped into eight thematic categories. Each category
817 represents a critical dimension of landscape-scale chemodiversity, and together they form an
818 interconnected research agenda, illustrated here as interlocking puzzle pieces. b) Results from a
819 workshop survey in which 54 questions (here grouped by category) were rated for importance on a scale
820 from 1 (low) to 5 (high). Lollipops and placement of the bar represent deviation from the category mean
821 from overall mean.