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Abstract: 75 

Nature produces countless metabolites that regulate organismal performance and the functioning of 76 

ecosystems. Specialised metabolites are particularly diverse and mediate ecological interactions across 77 

all geographic scales and levels of biological organisation. While chemodiversity, i.e., the richness, 78 

relative abundance and disparity of specialised metabolites within a blend of metabolites, has received 79 

substantial interest at the level of pairwise interactions (e.g. between plants and interaction partners), 80 

much less is known about how metabolites produced by multiple individuals across the tree of life merge 81 

into higher-level blends at population, community and ecosystem scales. We synthesise evidence for 82 

emergent functions that arise from such higher-level chemodiversity. We examine how blends change 83 

in composition as they move through air, water, and soil, and vary in time and space, thereby creating a 84 

dynamic ‘chemodiversity landscape’. We further discuss the applied potential of these chemodiversity 85 

landscapes and the threats that could compromise them. We outline key questions that will help guide 86 

research on how higher-level chemodiversity contributes to ecological processes and functioning across 87 

scales. 88 

  89 



Introduction 90 

Chemical information is omnipresent on Earth. Volatile and non-volatile metabolites operate at various 91 

geographical scales across all levels of biological organisation, from within individual cells to entire 92 

ecosystems1–4. For instance, in the air, scavengers detect volatile compounds released from animal 93 

carcasses over large distances5,6 and herbivore-induced plant volatiles attract natural enemies, thereby 94 

mediating predator-prey interactions7. In aquatic environments, chemical cues facilitate mate finding 95 

and habitat selection in a wide range of organisms, including lobsters8, coral larvae9, and fishes10. 96 

Belowground, plant volatiles guide soil-dwelling consumers to suitable foraging sites11,12 and flavonoid 97 

exudates enable legumes to attract nitrogen-fixing bacteria13. From microbes to mammals and across 98 

air, water and soil, chemical information structures the interactions that sustain life, maintain vital 99 

ecological functions, and ecosystem health14–16.  100 

Chemical ecology traditionally sought to understand the chemical mediation of interactions by 101 

assigning specific ecological functions to individual metabolites17,18. However, recent work increasingly 102 

considers entire chemical blends as functional units of ecological information, recognising that mixtures 103 

of structurally different metabolites can produce interactive effects not predictable from individual 104 

metabolites19–21. Building on this paradigm shift, a growing body of work explores the ecological 105 

relevance of chemodiversity: the richness, relative abundance, and disparity of the metabolites forming 106 

such blends wherever they may co-occur22,23. 107 

Our current understanding of chemodiversity largely stems from studies at the level of interactions 108 

among individuals18,20,23. Recent research at population level, however, suggests that ecological 109 

processes are not only influenced by the chemical blends of individuals, but also by the collective 110 

chemodiversity that emerges from multiple neighbouring individuals20,24–26. For example, inter-111 

individual variation in foliar secondary metabolites among neighbouring wild cabbage plants promotes 112 

plant growth and herbivore diversity while simultaneously reducing herbivore damage27.  Such findings 113 

suggest that chemodiversity, arising from the combined chemical profiles of multiple producers across 114 

space and time, also generates mixtures that functionally contribute to broader ecological patterns and 115 

processes. 116 

In nature, different biological sources produce volatile and non-volatile metabolites that mix to form 117 

spatiotemporally dynamic blends, which can be affected by both the abiotic and biotic environment28,29. 118 

This chemical mosaic likely influences manifold ecological interactions at community and landscape 119 

scales, thus representing a chemodiversity landscape, i.e., the spatiotemporally structured distribution 120 

of chemical compounds and mixtures within a landscape, shaped by biological production, abiotic 121 

transformation, and physical transport. Beyond the mere spatial arrangement of chemotypes, chemical 122 

landscapes represent emergent ecological properties whose functional consequences depend on 123 

organism-specific perception and processing of chemical information. As such, the same chemical 124 



environment may constitute different functional landscapes for different organisms, linking chemical 125 

complexity to ecological interactions, evolution, and ecosystem functioning across scales.  126 

Even though the tools to accurately describe such blends are available, the patterns and ecological 127 

consequences of chemodiversity at larger scales remain poorly understood30. For instance, how do 128 

pollinating insects navigate a chemically diverse landscape, and which are the chemical cues that guide 129 

their decision-making as they search for nectar sources? A deeper understanding of how metabolites 130 

produced by multiple sources blend together and affect ecological processes is urgently needed, 131 

particularly at spatial and temporal scales relevant to ecosystem functioning and resilience in the face 132 

of accelerating global change. Despite a clear consensus on the increase in ecological complexity with 133 

increasing level of biological organisation, the research interest for chemodiversity has largely focused 134 

on the individual interaction level (Fig. 1). Consequently, important hypotheses regarding the 135 

contribution of individual organisms to higher-level chemodiversity and the resulting potential for 136 

emergent functions remain largely untested. Scientists must adopt a broader perspective that links the 137 

origins, dynamics, perception, and consequences of chemical diversity across levels of biological 138 

organisation and spatiotemporal scales. 139 

We provide a conceptual overview of how chemodiversity scales across biological levels and spatial 140 

dimensions — from individuals to communities and landscapes — and evaluate its role in shaping the 141 

ecological processes that underpin ecosystem functioning. Section 1 describes how different actors and 142 

the environments they occur in interact to form chemodiverse landscapes. Section 2 conceptualises 143 

trajectories that metabolites may follow once released into the environment, and how these trajectories 144 

influence their fate and ecological function. Section 3 considers how spatiotemporal patterns of 145 

chemodiversity emerge on broader geographical scales by synthesising current knowledge and 146 

extending insights from the individual level to the levels beyond, i.e., population, community and 147 

ecosystem. We outline implications of such a chemodiversity landscape for biodiversity and ecosystem 148 

functioning, including the risks posed by the natural and anthropogenic degradation of chemical 149 

landscapes related to biodiversity loss. To align this conceptual synthesis with research priorities, 150 

Section 4 complements it with a survey among selected attendees of a two-day workshop on chemical 151 

ecology, who rated questions to identify key areas that require attention in order to advance research on 152 

landscape-level chemodiversity. 153 

 154 

1. The actors in the chemodiversity landscape - from producers to 155 

responders 156 

At the core of any chemical communication system are three fundamental components: a producer that 157 

synthesises the chemical metabolites; a carrier that transports and modifies these metabolites; and a 158 

responder that perceives and directly reacts to specific information, or in some cases may be directly 159 



affected by the emitted metabolites31 (Fig. 2). In this section, we provide a conceptual outline of this 160 

system to improve our understanding of how chemodiverse mixtures arise through the combined 161 

metabolites of multiple producers, and how these mixtures are modified by environmental factors as 162 

well as through space and time. 163 

A large diversity of metabolites is synthesised by a wide range of producers across the tree of life32,33. 164 

Many of these metabolites enable basic life functions, often referred to as primary metabolites. 165 

Secondary, or specialised metabolites, on the other hand, often mediate interactions with the abiotic 166 

and biotic environment. These metabolites are of ecological importance due to their roles in regulating 167 

ecological interactions. Once produced, metabolites may either be stored or released in volatile or non-168 

volatile form. Storage occurs within specific cellular structures or compartments, such as vacuoles, or 169 

in specialised structures, like glandular cells, that enable producers to retain metabolites until they are 170 

needed, protect them from degradation or self-toxification, and control their release in response to 171 

environmental cues34,35. For instance, bufadienolide toxins are stored as constitutive defence compounds 172 

in parotid glands of toads, where they serve to deter predators36. Alternatively, producers may actively 173 

or passively release metabolites into the environment. Producers, in addition, may also move through 174 

the landscape, as is the case for animals. Released metabolites can act as information, such as trail 175 

pheromones used in ant recruitment37, volatile compounds emitted by plants to attract natural enemies 176 

of herbivores38–40, signals involved in plant–plant interactions41–43, or substances that modify the 177 

(a)biotic properties of soil44. The release of metabolites contributes to a chemodiverse environment, 178 

while the stability of the metabolite, and the location and context of release strongly influence its 179 

ecological function45. Both stored and released metabolites contribute to the chemodiversity landscape.  180 

A seminal principle of chemical ecology is that metabolites are often produced and released by 181 

organisms with a biological function46,47. For example, many plants produce feeding deterrents to deter 182 

antagonists48,49, but in contrast, plant-emitted metabolites can also attract (often beneficial) 183 

organisms50,51. Many producers interact with multiple antagonists and mutualists at the same time, and 184 

hence some specialised metabolites are specific, have multiple functions, but also responses may be 185 

taxon-specific52–54. Many organisms eavesdrop on chemical information, having evolved or learned to 186 

associate certain metabolites (or blends) to locate producers (e.g., as resources55,56). In addition, many 187 

metabolites are produced for protective functions, including abiotic stress resistance57, which could also 188 

be recognised by other organisms as they end up in the environment. Evidently, many metabolites 189 

mediate interactions well beyond any potential ‘biological purpose,’ raising the question how 190 

characteristics of chemical blends shift in time and space, and whether such shifts matter for biological 191 

interactions, and at what scale.  192 

 193 



 194 

Figure 1 195 

 196 

2. Spatiotemporal dynamics of chemodiversity – from single molecules to 197 

mixtures 198 

A major challenge is to understand the influence of the environment on the chemical blend. In this 199 

section, we discuss how (a)biotic factors shape chemodiversity at different time and space levels (before 200 

the emission of the blend, during its transport and after reaching the responder) and why it matters at the 201 

ecosystem scale (Fig. 2). Prior to emission, (a)biotic conditions influence the chemical landscape by 202 

affecting the development, activity, and phenology of producers. Seasonal and diurnal changes in plant, 203 

microbial, and insect communities alter the production and availability of metabolites for storage and 204 

emission 58–60. A significant fraction of the chemical blend can only be observed under herbivory and 205 

during photosynthetic periods61. Abiotic factors also directly affect production and emission rates, as 206 

well as compound properties (e.g., volatility) of volatile and non-volatile metabolites above- and 207 

belowground 62–65. Once released into the environment, the fate of metabolites depends on the medium 208 

through which they travel: the carrier. Chemical information in the landscape is distributed through 209 

three primary carrier types: gaseous (i.e., air), liquid (i.e., water) and solid phases (i.e., substrates, 210 

including soil, where transport is mediated by air and liquids but also depends on solid particles). 211 

Intrinsic properties of each carrier influence the movement, transformation, and persistence of 212 

compounds, ultimately shaping the timing, location and extent to which a chemodiverse blend is 213 

perceived by responders66,67.  214 



To bridge the distance between producer and responder, air often serves as the carrier64,68–70. For 215 

instance, flying insects can reliably orient toward odour sources by following gradients of a chemical 216 

blend within odour plumes, using characteristic anemotactic upwind and crosswind flight 217 

behaviours71,72. These blends are then transformed over time and space according to the composition 218 

and physical properties of the carrier and to the rate of biosynthesis, volatility and persistence of each 219 

compound68,73,74 (Fig. 2). Considerable progress has been made in quantifying intrinsic chemical 220 

properties such as volatility, reactivity and compound stability, which define the atmospheric lifetime 221 

and transport potential73,75,76. These properties are modulated by ambient environmental conditions, 222 

notably temperature and ultraviolet radiation, which can accelerate degradation processes such as 223 

photolysis and bond rupture in photosensitive molecules77. In the atmosphere, oxidants including ozone, 224 

hydroxyl (OH-.) and nitrate (NO3
.) radicals also degrade and transform chemical blends78–81. These 225 

oxidation processes can lead to the formation of secondary organic aerosols (SOA), which represent an 226 

additional chemical phase and may themselves be perceived and exploited as informational cues by 227 

responders82. Such changes in blends can have a consequent impact on signal quality and perception by 228 

the responders. For instance, the ability of herbivory-induced volatiles to reveal herbivory, a system used 229 

to attract natural enemies, depends on canopy conditions and is strongly dependent on the reaction rate 230 

of the compounds45. 231 

 The liquid environment acts as a major carrier for non-volatile and semi-volatile compounds in nature 232 

via diffusion and advection, which in turn depend on temperature, the polarity of the compound and 233 

concentration differences between producer and carrier89. The transport of metabolites in soil is also 234 

partly ensured via air and liquid carriers, but also depends on solid particles. Hence, additional 235 

parameters such as substrate texture and moisture, pH, porosity, and percentage of organic matter are 236 

important to consider for the transport of non-volatile compounds, as well as the diffusion rate of volatile 237 

compounds90–92. In fact, these parameters influence the chemical gradient between emitters and 238 

responders. For example, the diffusion of the volatile sesquiterpene (E)-β-caryophyllene from corn roots 239 

into the soil, used by entomopathogenic nematodes to locate herbivore-damaged roots, is dependent on 240 

soil composition and humidity11,91. Improve measurements and predictions of the fraction of 241 

chemodiversity available at variable distances from the producer is key to understand how 242 

chemodiversity scales from individual to communities and landscapes (Fig. 2). 243 

 244 



 245 

Figure 2 246 

 247 

Influence of chemical blend modifications by other organisms 248 

Many organisms can alter the chemical blend after release into the environment (Fig. 2b). 249 

Microorganisms have colonised most of the carrier environments and can, for example, metabolise plant 250 

exudates such as benzoxazinoids into antimicrobial compounds 93–95, degrade biogenic volatile organic 251 

compounds96, or create new alkaloids to deter feeding insects97,98. Natural processes such as decay are 252 

also influenced by microorganisms that will shape volatile emissions, which in turn influence carcass 253 

foraging and choice by scavengers99,100. Mycorrhizal networks can even act as a new carrier by 254 

transporting (up to larger distances than diffusion) and shaping chemical signals between plants101–103. 255 

Chemical information can be modified, transported, and used for additional purposes beyond the 256 

producer’s target interaction via non-consumptive and consumptive processes (Fig. 2b and 2c). For 257 

instance, lemurs fur-rub millipedes for their benzoquinone secretions, a defensive mechanism of the 258 

millipedes, over different parts of the body for social communication or self-medication104. Similar non-259 

consumptive processes were observed in coatis and titi monkeys for disabling arthropods’ defence or 260 



scent-marking, thus transforming and transporting the chemical blend105,106. Male orchid bees collect 261 

floral scents as part of their mating behaviour107. Such processes expand the spatiotemporal distribution 262 

of metabolites. Further transformation of the blend also occurs within the responder and depends on the 263 

rate of mass transfer and catabolic activity within the responders and on its internal microbiota or 264 

parasites108,109. Such transformations by or within the responder contribute to shaping the chemical blend 265 

at the ecosystem level. For instance, oral and gut microbiota influence taste perception and food 266 

processing110. Influenced by their microbiome, aphids can modify the honeydew chemical blend that 267 

mediates relationships with ants and natural enemies111,112. Further investigations of the selection and 268 

transformation of the chemical blends within (a)biotic carriers are crucial to improve our understanding 269 

of their consequences for producer-responder interactions and to fully appreciate the role of 270 

chemodiversity in ecosystem processes.  271 

 272 

3. Scaling up chemodiversity: toward emergent functions at broader 273 

scales 274 

When considering chemodiversity at broader spatiotemporal scales (i.e., when moving from the level of 275 

individual organisms to populations, communities, and ecosystems), the chemical environment becomes 276 

increasingly complex and dynamic. The ecological effects of chemical mixtures are determined by 277 

potential transformation through various processes (see Section 2), as well as the spatial and temporal 278 

overlap in emissions from multiple, co-occurring chemical sources (Fig. 3). This raises an important 279 

question: how does chemodiversity shape ecological functions when it emerges from the collective 280 

chemistry of entire systems rather than from individuals?  281 

Although recent progress has been made, chemodiversity research predominantly focuses on the 282 

context of individual-level pairwise interactions, with limited exploration of the ecological effects of 283 

community-level mixtures or chemically complex landscapes20,26,113. Closing this gap requires a re-284 

framing of fundamental ecological questions from the traditional "What function does this chemical 285 

compound or class serve?" to "Under which environmental conditions do the compound or mixture 286 

change its functional relevance?" This shift moves us toward the recognition of a chemical mixture as a 287 

complex adaptive system that gains some of its functionality through emergent properties: novel 288 

outcomes arising from the integration of multiple system components that cannot be predicted from 289 

those components in isolation114. In fact, the functionality of a chemical blend as an emergent property 290 

is at the core of chemodiversity theory: many central hypotheses, such as the synergy hypothesis or the 291 

multiple-signal hypothesis, explicitly build on the idea that the integration of multiple compounds may 292 

produce effects greater than the sum of their parts20,21,115–117. Consequently, the chemodiversity of blends 293 

has been shown to constitute a functional trait in its own right, rather than being an additive reflection 294 

of compound-specific functions118,119. However, if chemodiversity gives rise to emergent properties at 295 



broader spatial scales, a key challenge for chemical ecology is to understand when, where, and under 296 

which conditions these properties matter113. 297 

Though limited in number, plot- and community-scale studies represent a promising first step to 298 

understanding how chemodiversity functions across ecological scales. Experimental research has shown 299 

that manipulating intraspecific chemodiversity among neighbouring plants shapes insect community 300 

composition and alters plant reproductive success24,25,27,69,120. Complementary, observational work in 301 

natural systems shows that floral scent and colour traits in chemodiverse Mediterranean plant 302 

communities converge to match pollinator sensory preferences121. Experimental evidence further 303 

indicates that such convergences are not limited to flowering individuals: non-flowering plants also emit 304 

volatiles from their vegetative tissue that attract generalist pollinators122, suggesting that plants in 305 

phenological stages previously considered functionally irrelevant nonetheless contribute to community-306 

level pollinator attraction. These findings demonstrate that entire communities can form a common 307 

‘chemosensory landscape’122, in which overlapping olfactory cues function as collective attractants 308 

whose effects cannot be predicted from individuals alone. Such intermediate-scale studies provide 309 

critical insights into how chemical mixtures may acquire novel functions, and offer an empirical 310 

foundation for investigating how chemodiversity might scale up to shape ecological dynamics across 311 

entire landscapes (see section 4). 312 

 313 

 314 



 315 

Figure 3 316 

 317 

Potential of harnessing chemodiversity landscapes  318 

Beyond their ecological importance, emergent functions of chemodiversity offer promising 319 

opportunities for practical applications, particularly in sustainable agriculture and ecological restoration. 320 

For instance, intentionally enriching chemical landscapes could promote beneficial ecosystem services 321 

such as pollination and pest suppression. In fact, concrete examples where humans actively manage 322 

phytochemical diversity to their advantage are already available. Push-pull agricultural systems provide 323 

a well-known case, where specific plant species are intercropped to emit repellent or attractive volatile 324 

blends, thereby pushing pests away from crops and pulling them toward trap plants123,124. In pasture 325 

systems, the emerging concept of ‘healthscapes’ explores how increasing the chemodiversity of forage 326 

plants can improve animal health by exposing grazers to a broader spectrum of bioactive 327 

compounds125,126. However, to fully harness the potential of chemodiversity, we must deepen our 328 

understanding of how chemodiversity translates into ecological functions across spatial and temporal 329 

scales. This includes identifying which chemical blends drive desired outcomes, how they interact with 330 

environmental context, and how they can be maintained or restored in managed ecosystems127. Gaining 331 



such mechanistic insights could ultimately enable the rational design of chemical landscapes as a 332 

sustainable tool for ecosystem management.  333 

Loss and change of chemical functionality 334 

The Earth is experiencing unprecedented rates of global change128. Biodiversity loss, land-use change, 335 

environmental pollution, and other anthropogenic pressures threaten the integrity of ecological 336 

processes that depend on complex chemical interactions129. Alterations in soil chemistry, air 337 

composition, or water quality can interfere with signal transmission and perception in ways that so far 338 

only remain poorly understood130. In aquatic systems, pollution with microplastic particles has been 339 

shown to adsorb chemical cues, thereby disrupting the ability of Daphnia longicephala to perceive vital 340 

chemical information on nearby predators131. Similarly, the extensive use of pesticides in agriculture 341 

interferes with legume-rhizobium chemical signalling and leads to reduced nitrogen fixation, thus 342 

impacting plant growth132. Elevated ozone levels have been shown to degrade the floral scent profiles 343 

of Nicotiana suaveolens, resulting in fewer pollinator visits133. Yet, the opposite trend, an increase in 344 

metabolites that enriches chemical blends on the landscape scale, is not inherently beneficial. Climate 345 

change is projected to make the world more heavily scented134, while invasive species produce more 346 

unique chemical profiles than their native counterparts135,136. However, increasingly complex chemical 347 

backgrounds can also impair the ability of pollinators to identify biologically relevant signals137. These 348 

disruptions, whether caused by the loss or overabundance of chemical signals, are highly context-349 

dependent and may unfold gradually, remaining undetected until their ecological consequences become 350 

difficult to reverse.  351 

As natural communities simplify or change, the chemical interactions they once mediated may 352 

disappear as well, potentially disrupting long-standing ecological networks. Many organisms likely 353 

depend on the composition and predictability of the surrounding chemical environment, such as the 354 

community-level sensory landscapes described in pollination systems121. Surrounding chemicals are 355 

also essential for behaviour as illustrated by the relationships between the chemosensory complexity of 356 

the environment and brain volume in lizards138. A loss or gain of producers could alter these sensory 357 

environments, change the ecological meaning of chemical information and disrupt ecological networks. 358 

In complex, long-established communities where producers and responders have co-evolved over 359 

evolutionary timescales139,140, the breakdown of such finely tuned interactions could compromise not 360 

only ecological functioning, but also the services ecosystems provide141. Similar losses occur in agri- 361 

and silvicultural systems, where the replacement of chemodiverse traditional cultivars with genetically 362 

uniform high-yielding varieties, coupled with a loss of weed and understory species diversity, reduces 363 

phytochemical richness142. This erosion of chemodiversity may weaken natural pest control and other 364 

ecological functions that depend on diverse chemical signalling142,143. Furthermore, the chemodiversity 365 

of one ecosystem compartment can directly shape ecological processes in another compartment through 366 

tight coupling between organismal groups at the landscape scale144,145. For instance, in freshwater 367 



systems, multifunctionality partly emerges from a tight chemical coupling between terrestrial and 368 

aquatic environments: Dissolved organic matter originating from the surrounding vegetation is 369 

transformed by microbes within the lakes, thereby fuelling the functioning of the aquatic ecosystem146–370 

148. However, global change induced increases in terrestrial plant productivity are associated with shifts 371 

toward fast-growing plants that invest less in protective specialised compounds149. As a result, organic 372 

matter chemodiversity reduces aquatic ecosystem functioning and leads to higher CO₂ emission rates 373 

from lake ecosystems150. Yet, the critical role of such cross-system chemodiversity transfer in sustaining 374 

landscape-scale functioning remain so far only poorly understood151,152. 375 

These findings raise broader questions about the resilience of chemical landscapes. If chemodiversity 376 

underpins key ecosystem functions, can these functions recover once (chemo)diversity is lost or do 377 

ecosystems shift into new, chemically and functionally altered states? Conversely, will ecosystem 378 

functions be altered by the addition of metabolites, for instance via invasive species136, or the 379 

introduction of synthetic chemicals, or can the potential effects be mitigated by the overall chemical 380 

blend? Although the concept of ecological resilience has been widely studied in other fields of 381 

ecology153,154, the stability and recoverability of chemodiversity-mediated interactions remain poorly 382 

understood. In systems where ecological processes depend on the richness and structure of chemical 383 

mixtures, diminished chemodiversity could result in persistent functional loss, even if biodiversity or 384 

environmental conditions improve. However, the ecological consequences of a species loss may depend 385 

less on the species itself than on whether other producers maintain overlapping chemical functions, i.e., 386 

chemical redundancy. It is critical to understand when such shifts occur, whether they are reversible, and 387 

what thresholds govern transitions between functional states to reliably forecast ecological trajectories 388 

under global change and  the design of strategies to sustain or restore the functional integrity of chemical 389 

landscapes. 390 

 391 

4. Conclusion and future directions 392 

Our broader ecological understanding of the consequences of chemodiversity remains incomplete but 393 

continues to develop23,155. To advance the field, research needs to clarify when and where chemical 394 

mixtures become functionally relevant, identify the abiotic and biotic factors that shape these dynamics, 395 

and develop approaches to manipulate and monitor chemodiversity across landscapes (see future 396 

directions proposed in Box 1). To reach these goals, future research must combine observational and 397 

experimental studies that allow chemodiversity to be manipulated in a systematic way on wider scales. 398 

Observational studies are essential for characterizing the natural variability of chemodiversity 399 

landscapes. Fine-scale measurements near emitting organisms as well as canopy- or atmosphere-level 400 

observations exist, but the mechanisms and spatio-temporal dimensions by which local chemodiversity 401 

integrates into larger-scale signals, as well as their ecological consequences remain largely unknown. In 402 

addition, researchers could experimentally vary the composition and richness of producer communities 403 



in a near-natural way to manipulate their forecasted cumulative chemodiversity, adjust abiotic 404 

parameters such as temperature or humidity, or modify the properties of the carrier medium through 405 

which volatiles are transported. Such experiments would help identify the ecological thresholds and 406 

tipping points at which new chemical functions emerge or vanish. Similarly, these studies could define 407 

critical thresholds for the improvement or loss of various ecosystem services and ultimately reveal 408 

whether chemical landscapes are flexible and resilient to global change or vulnerable to collapse.  409 

While considerable research underpins our understanding of chemodiversity at smaller scales, the next 410 

significant challenge lies in scaling this knowledge up. In other words, the field should now move 411 

beyond asking what chemodiversity is towards asking how it operates, when it matters, and how its 412 

benefits can be harnessed. While the conceptual groundwork for understanding the importance of 413 

chemodiversity has been established, the next steps lie in translating these ideas into ecological insight 414 

across real-world systems (Box 1). Expanding research to encompass landscape-level chemodiversity 415 

will enable a deeper understanding of ecological dynamics, providing insights into how chemical 416 

communication shapes broader community interactions, ecosystem functions, and the benefits nature 417 

provides to people.   418 



Box text: 419 

 420 

Box 1: A workshop survey to advance landscape-level chemodiversity research 

This perspective emerged from the workshop “Phenotypic Plasticity and Chemical Diversity” organized in 

November 2024 by the German research unit on the ecology and evolution of intraspecific chemodiversity in 

plants (FOR 3000), where experts working across all levels of biological organization and on a broad variety 

of taxa, discussed current challenges, conceptual gaps, and future directions in plant chemodiversity research. 

To support the development of a research agenda on landscape scale chemodiversity, we conducted a survey 

in which leading researchers in chemical ecology present at the workshop contributed and rated questions on 

the future of chemodiversity research.  

Discussions during the workshop converged on the idea that chemodiversity at broader geographical scales 

represents a critical but underexplored dimension of ecological complexity that is present in nature, yet remains 

conceptually and methodologically challenging to tackle. To better identify near-term needs for advancing 

landscape-level chemodiversity research, participants were asked to submit their three most pressing questions 

after the meeting (Supplementary Information 1). These questions were then evaluated by the attending 

researchers. Importantly, the survey reflects the views of a self-selected group of experts in the field and 

although representing expertise across all levels of biological organization and various taxa, the survey should 

be read as a guide to emerging priorities rather than a field-wide consensus. 

Emerging Priorities from the workshop survey  

The survey yielded 54 questions that grouped into eight thematic categories, reflecting a broad spectrum of 

perspectives on chemodiversity from ecology and evolution to methodological perspectives (Fig. Box 1a; see 

Supplementary Information 2). Although all categories represent pressing research areas, respondents 

prioritized questions of ecological understanding and application to strengthening our understanding of eco-

evolutionary dynamics, chemical communication, and ecosystem functioning, while questions rooted in theory 

and measurement technology received comparatively lower average ratings (Fig. Box 1). Our survey highlights 

a growing consensus that chemodiversity research is approaching a turning point: from conceptual and 

individual-based exploration towards larger-scale empirical testing and ecological integration to understand 

how chemodiversity operates under real-world conditions. To move forward, this transition calls for pairing 

existing knowledge and established methodologies with a renewed effort to expand experimental and 

observational work. In particular, there is a need to develop research designs that disentangle the drivers, 

dynamics, and ecological consequences of chemodiversity. This includes identifying spatial, temporal, and 

environmentally driven concentration thresholds at which chemical mixtures acquire or lose their ecological 

functions. The need to explore multitrophic interactions and the link between chemodiversity landscape and 

ecosystem services is also pinpointed.  
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Figure legends: 788 

 789 

Figure 1: Conceptual figure depicting the state of ecological consensus and hypotheses on ecological 790 

and chemical complexity across levels of biological organisation. The left panel depicts the general 791 

consensus that ecological complexity and organismal abundance increase with increasing levels of 792 

biological organisation and how this is incongruent with the research interest that chemodiversity has 793 

received in the different subfields of ecology in recent years. The right box posits novel hypotheses 794 

regarding individual- and higher-level chemodiversity across levels of biological organisation and the 795 

associated potential for emergent functions of chemodiversity.  796 

Figure 2: Conceptual model illustrating the transformation of the emitted chemical blend during its 797 

transport toward responders. The model distinguishes non-consumptive and consumptive processes. a. 798 

Spatio-temporal, non-consumptive shifts in blend composition due to intrinsic compound properties 799 

(e.g. volatility, diffusivity), which determine how far and how long individual metabolites persist. b. 800 

Modification of the blend by abiotic and biotic factors, encompassing both non-consumptive (e.g. 801 

oxidation, photolysis) and consumptive (e.g. microbial transformation) processes that alter individual 802 

metabolites. Processes in panels a and b typically occur simultaneously. c. Additional biotic alteration 803 

through trophic consumption (e.g. predators consuming emitters or tissues thereof). 804 

Figure 3: Conceptual model illustrating how the chemical blend received by a responder varies with 805 

spatial and temporal distance from multiple emitters, due to differences in compound persistence. 806 

Producers emit distinct compounds (coloured shapes) that vary in environmental persistence, depending 807 

on volatility, degradation, carrier properties, modifications or other factors. As blends move through 808 

space and change over time, the concentrations of their constituent compounds shift. The responder 809 

therefore receives different blends depending on its position: in the top and bottom scenarios, the signal 810 

is dominated by compounds emitted by the nearest producer, whereas the middle scenario shows a more 811 

even blend when the responder is situated between producers. These spatial and temporal dynamics 812 

shape the composition and evenness of the chemical blend, suggesting that emergent properties may 813 

depend not only on what is emitted, but when and where signals are perceived in the landscape. 814 

Figure Box 1: Research priorities for advancing chemodiversity research at the landscape scale. a) 815 

Overview of identified research priorities, grouped into eight thematic categories. Each category 816 

represents a critical dimension of landscape-scale chemodiversity, and together they form an 817 

interconnected research agenda, illustrated here as interlocking puzzle pieces. b) Results from a 818 

workshop survey in which 54 questions (here grouped by category) were rated for importance on a scale 819 

from 1 (low) to 5 (high). Lollipops and placement of the bar represent deviation from the category mean 820 

from overall mean. 821 


