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Abstract 16 

Climate change threatens plant communities worldwide with substantial species losses, yet the 17 

consequences of reduced diversity for ecosystem functioning remain uncertain. Functional 18 

redundancy, where multiple species fulfil similar ecological roles, may provide functional 19 

insurance by buffering ecosystem processes against species loss. Here, we combined plant 20 

composition data from 646 TERN AusPlots with gap-filled trait data (maximum plant height, 21 

leaf mass per area, and seed dry mass) from the AusTraits database to deliver the first 22 

continental-scale assessment of functional redundancy in Australian plant communities.  23 

By explicitly examining diversity metrics and functional redundancy across biomes, we 24 

assessed functional vulnerability and buffering capacity under climate change. We estimated 25 

potential impacts of species loss under future climates using community thermal and aridity 26 

tolerances relative to projected climate exposure. We analysed the continental distribution of 27 

functional redundancy (reflecting competitive ability, resource acquisition strategies, and 28 
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dispersal–establishment trade-offs), projected climate-driven compositional change, and 29 

relationships with bioclimate to identify vulnerable native communities. 30 

Our results revealed strong latitudinal gradients in climate-change impacts, with 31 

tropical northern communities facing greater risk of compositional change as future hotter and 32 

drier conditions become unsuitable for monsoon-dependent species. Functional redundancy of 33 

current vegetation communities increased toward central Australia, aligning with increasingly 34 

stressful (hotter, drier) bioclimates. At the biome scale, Mediterranean and arid communities 35 

exhibited higher functional redundancy and lower climate risk due to shared drought-adapted 36 

traits. Future rainfall changes were the dominant driver of climate-induced shifts in plant 37 

community composition. 38 

The most vulnerable communities, at highest risk of functional destabilisation, were 39 

located along the northern coastline, with additional hotspots in southern Mediterranean 40 

regions of South Australia and Western Australia. Conservation and monitoring efforts should 41 

prioritise these regions. Our findings highlight how local bioclimate influences functional 42 

redundancy and future climate-change-driven vulnerability, providing a spatial framework to 43 

support biodiversity monitoring, policy and land management across Australia. 44 

 45 
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 48 

1. Introduction 49 

In the global context of rapid environmental change under widespread threatening processes 50 

such as climate change, land use change, and biological invasions (Valladares et al. 2019), 51 

there is an urgent need to protect biodiversity and better understand its role in the functioning 52 

of ecosystems (Díaz et al. 2019; Pettorelli et al. 2021). By providing a range of functional traits 53 

(i.e. measurable attributes or characteristics of species which relate to their fitness and 54 

ecological role on ecosystem processes (Gallagher et al. 2020)) biodiversity affects ecosystem 55 

functioning, productivity, resilience, and stability through complementary and overlapping 56 

ecological roles. In this sense, functional redundancy (FR) quantifies the degree of overlap in 57 

functional roles within ecological communities, reflecting the extent to which multiple species 58 

contribute similar ecological functions (Walker, 1992). Higher redundancy indicates a greater 59 

potential for buffering ecosystem functioning against species loss, as remaining functionally 60 

similar species may partially compensate for declines or local extinctions (Walker, 1995). 61 

However, such compensation is not guaranteed and depends on whether functionally analogous 62 
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species are able to persist and respond positively under changing environmental conditions; if 63 

these species are similarly affected by climate stressors, ecosystem functioning may still be 64 

impaired despite high redundancy. Importantly, functional redundancy traditionally focuses on 65 

species loss, yet climate change can simultaneously drive both species loss and species gain, 66 

with incoming species having variable functional consequences ranging from enhanced 67 

community resilience to functional disruption. 68 

Consequently, FR should be interpreted as a measure of potential functional resilience, 69 

with low FR indicating limited capacity to absorb species loss and maintain ecosystem 70 

functioning. While Fischer and de Bello (2003) suggested that redundancy implies resilience, 71 

with the loss of some species having little detectable effect at the community scale, more recent 72 

work has cautioned that this framing may underestimate the unique and context-dependent 73 

contributions of species to ecosystem functioning (Eisenhäuer et al., 2023). Here, we retain the 74 

FR framework due to its ecological and conservation relevance in illustrating that certain 75 

species can be lost within a community without immediate loss of ecosystem functioning 76 

(Fischer and de Bello 2023); however, we acknowledge that it represents one end of a 77 

continuum of functional overlap among species, better conceptualised as functional 78 

similarity—a spectrum of overlapping but non-identical contributions to ecosystem processes 79 

(Eisenhauer et al. 2023). Resilience therefore depends not only on the degree of functional 80 

overlap, but also on response diversity, defined as variation in how species sharing similar 81 

functions respond to environmental change. A limitation of FR is that functionally similar 82 

species may respond in comparable ways to a given stressor, leading to functional loss despite 83 

high overlap, such that resilience depends jointly on functional redundancy and response 84 

diversity (Elmqvist et al. 2003; Mori et al. 2013). 85 

Functional redundancy is intricately linked to other biodiversity metrics within plant 86 

communities, namely species diversity (SD) and functional diversity (FD) (Ricotta et al. 2016). 87 

Species diversity summarises the variety and abundance of taxonomically distinct organisms 88 

occurring in ecological communities, whereas FD summarises the distribution of species and 89 

their abundances in the functional trait space of a given community (Mouillot et al. 2013). 90 

Within a given plant community, the more species that share similar functions (or are redundant 91 

in their function), the less vulnerable that function is to loss (Pillar et al. 2013). In this sense, 92 

species-rich communities (high SD) often have more species that can perform similar ecological 93 

roles, thus increasing the likelihood of functional redundancy (Fonseca and Ganade, 2001). 94 

Higher FD indicates a wide array of ecological functions, being therefore widely considered to 95 

reflect overall ecosystem functioning (Cadotte et al. 2011). Functional redundancy provides a 96 
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more mechanistic link between biodiversity and ecosystem resilience and stability; in the event 97 

of SD loss, higher FR should buffer a community from losing FD, as the likelihood of losing a 98 

functionally unique species is reduced. In practice, limitations in trait availability and scale 99 

often preclude explicit separation of effect traits and response traits, meaning that FR is 100 

commonly interpreted as a proxy for at least some degree of response diversity in large-scale 101 

analyses. Such constraints are particularly relevant at continental scales, reinforcing the 102 

importance of large-scale open-access trait databases for macroecological assessments of 103 

functional resilience (Falster et al. 2021). 104 

Despite the growing interest in understanding how FR affects ecosystem resilience 105 

(Biggs et al. 2020), how FR varies at macroecological scales, and the potential drivers of such 106 

variation remain understudied. As a result, assessing how functional redundancy varies across 107 

climatic gradients and biomes provides a tractable way to link biodiversity structure with 108 

potential ecosystem resilience under climate change. 109 

Climate change has driven local and global species extinctions in deep time and is 110 

predicted to be a driver of plant extinction in the Anthropocene (Valladares et al. 2019). This 111 

loss of biodiversity is likely to impair the biological, chemical, and physical processes 112 

performed by ecosystems with the specific functional implications of such species loss only 113 

beginning to be understood (Hooper et al. 2012; Gallagher et al. 2013). Climate change, 114 

including increasing temperature and changes in precipitation patterns, with subsequent 115 

changes in the frequency and duration of drought conditions, are likely to force many plant 116 

species beyond their climatic tolerance limits and towards extinction (Lancaster & Humphreys, 117 

2020; Bennett et al. 2021). Assessing the vulnerability of different ecosystems (i.e. the extent 118 

to which various ecosystems are likely to be damaged or experience functional disruption) 119 

under climate change (e.g. climate-driven stressors such as increasing temperatures and altered 120 

precipitation patterns) has become a common practice (Li et al. 2018). However, estimates of 121 

climate change vulnerability tend to focus on predicted changes to mean climate conditions 122 

and the direct impact these will have on species, while ignoring potential resilience 123 

mechanisms including individual physiological adaptation/tolerances and community level 124 

resilience mechanisms. Gallagher et al. (2019) addressed this limitation by measuring the 125 

adaptive capacity of Australian vegetation alongside a climate change risk metric (in the sense 126 

of projected climate-driven changes in community composition when the environmental niche 127 

limits are expected to be surpassed under future climate conditions).  128 

Australia spans one of the widest climatic gradients globally, encompassing tropical, 129 

temperate, Mediterranean, and arid ecosystems. This climatic diversity, combined with high 130 
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levels of functional variation in plant communities, provides a unique natural laboratory for 131 

examining how biodiversity and functionality at the community level will be affected by 132 

climate change. We propose that understanding FR across Australia will also provide 133 

complementary information to the impact caused by climate change by indicating the 134 

functional resilience of plant communities to species loss. At present, the FR in Australian plant 135 

communities has only been explicitly measured once as part of a global meta-analysis 136 

(Laliberté et al. 2010). More broadly, continental-scale functional trends and their 137 

environmental drivers have seldom been quantitatively investigated in Australian vegetation 138 

(Andrew et al. 2021, 2025). 139 

Given the potential importance of FR as an indicator of community resilience to climate 140 

change induced species loss, our study seeks to achieve four main aims. These are to (1) 141 

determine the geographic distribution of FR among plant communities across the Australian 142 

continent, (2) investigate how FR varies along bioclimatic gradients, (3) map Australian 143 

communities that are most vulnerable to climate change by integrating species’ exposure to 144 

projected climatic shifts with their sensitivity and adaptive capacity, and (4) examine the 145 

relationship between FR and projected climate driven changes in the composition of sampled 146 

plant communities. Specifically, we hypothesised that (1) many locations across Australia 147 

would have very low FD coupled with very high FR (aligning with a previous study that focused 148 

on species-level records across Australia; Andrew et al. 2021), due to species niche 149 

specialisation driven the continent’s diverse and often extreme environmental gradients. 150 

Although the direction of the relationship between FR and bioclimatic variables is unclear in 151 

terrestrial plant communities, we expect (2) FR to be higher in more consistently extreme 152 

conditions (e.g. increased aridity), where species display drought- and heat-adaptive traits and 153 

therefore might be more similar functionally, and overlap more in their strategies evolved as 154 

long-term adaptations to persistent environmental stress. Based on well-established climatic 155 

gradients across Australia and ecological theory linking global warming exposure and 156 

physiological limits to community turnover (di Marco et al. 2019), we expect (3) the projected 157 

climate driven changes in composition not to be evenly distributed across Australia’s plant 158 

communities, but reflect instead distinct geographic drivers; specifically, we expect 159 

temperature-driven changes to be most acute in the hotter northern regions, and precipitation-160 

driven risks most pronounced in Mediterranean-type ecosystems of southwest Western 161 

Australia and southern South Australia. We expect these patterns assuming that many species 162 

in these areas may already be close to their thermal or hydric limits (Gallagher et al. 2019), and 163 

therefore shifts could occur if communities overpass their limit threshold, regardless of their 164 
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current FR. Finally, we expect (4) FR to be positively associated with projected climate-driven 165 

shifts in community composition, particularly in areas expected to become more arid, due to 166 

the synergistic effects of increasing heat and drought. Together, these hypotheses are tested 167 

using data from the AusPlots ecosystem surveillance network, a standardized, continent-wide 168 

vegetation monitoring program designed to capture plant community composition, structure, 169 

and functional traits across Australia. This comprehensive standardised field-based dataset 170 

allows for a novel biome-specific assessment of how multiple dimensions of biodiversity and 171 

functionality mediate climate-change risk at the community scale. 172 

 173 

2. Methods 174 

To achieve these aims we combined estimates of FR with projected climate-driven changes in 175 

composition across an existing continental-scale plot network monitoring Australian plant 176 

communities. We measured FR using the three traits of the leaf-height-seed (LHS) scheme 177 

which reflects the major axes of plant function: leaf mass per area (LMA), maximum plant 178 

height and seed dry mass (Westoby, 1998; Díaz et al. 2016). Leaf mass per area (LMA), the 179 

inverse of specific leaf area (SLA), captures species’ trade-off between carbon investment in 180 

leaf-level photosynthetic tissues and leaf longevity (Westoby, 1998; Wright et al. 2004). 181 

Maximum plant height reflects species’ strategies in relation to competition for light and is 182 

therefore related to canopy structure and shading in ecosystems (Westoby, 1998; Falster and 183 

Westoby, 2003). Seed dry mass indicates species’ maternal investment in reproduction and can 184 

be related to the capacity to establish across different environmental niches (Westoby, 1998). 185 

Afterwards, we measured the climate change risk of individual species based on their observed 186 

climatic niches and then scaled this up to the community level by calculating the community 187 

weighted mean climate change risk (Gallagher et al. 2019), and we mapped FR and climate 188 

change risk to determine their spatial distributions. Finally, we constructed linear regression 189 

models to explore the relationship between FR, climate change risk and environmental 190 

variables. 191 

We combined plant community composition data, species functional trait data, long-192 

term climate data, predicted climate change exposure data and species climate niche data to 193 

generate our response and predictor variables. The continental approach enables broadscale 194 

trends to be detected along key bioclimatic gradients such as temperature and precipitation, 195 

elucidating environmental drivers of community-level properties such as FR and climate 196 

change risk (Violle et al. 2014). Furthermore, the Australian continental flora is a particularly 197 

useful study system due to the contrasting climates existing across the land, that strongly 198 
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influence species distribution, and the characteristics of the different ecosystems (Hughes et 199 

al., 2003; Keith 2017). Australia is latitudinally characterised by a tropical north with wet 200 

summers and dry winters, an arid to semi-arid interior covering most of the continent, and a 201 

temperate south with hot dry summers and cool wet winters (Keith 2017). Apart from 202 

analysing these trends at the continental scale, to detect scale-dependency in our results we 203 

also conducted the analyses at two finer spatial scales. First, we replicated the analyses at the 204 

biome scale, using the Ecoregion 2017 dataset based on the classification provided by Olson 205 

et al. (2001) which designates 7 major biomes in Australia.  206 

 207 

2.1. Plant community composition data 208 

The Terrestrial Ecosystem Research Network (TERN) AusPlots ecosystem surveillance 209 

program monitors over 1,000 1-ha plots across the Australian continent (Fig. 1) (Sparrow et al. 210 

2020). The network is stratified by bioregion to maximise ecological coverage (Guerin et al. 211 

2020a) and targets representative vegetation communities that have experienced minimal 212 

recent disturbance, based on site selection protocols that avoid areas with recent land-use 213 

change, clearing, or intensive management. Within each 1-ha plot, vegetation is surveyed using 214 

a standardised point-intercept protocol comprising 1,010 sampling points arranged along ten 215 

100-m transects. At each point, all vascular plant species intercepting a vertical pin are 216 

recorded, providing quantitative estimates of species presence and proportional cover that 217 

characterise the local plant community (White et al. 2012). These data form the basis for all 218 

community-level diversity and functional metrics used in this study. For each plot, a voucher 219 

specimen is collected for every recorded species and identified by professional botanists, with 220 

determinations lodged in state herbaria, ensuring taxonomic consistency and accuracy. In 221 

addition to vegetation composition and structure, AusPlots surveys also record soil properties 222 

and landform attributes, including slope (ranging from 0-9° with a median of 1°, and an average 223 

of 2.5°) and aspect. These landform variables were not included as predictors in the present 224 

analyses because our focus was on broad-scale climatic drivers of diversity and climate-change 225 

risk, and because slope and aspect primarily influence local microclimatic variation that is not 226 

readily comparable across biomes at the continental scale. Throughout this study, each 227 

AusPlots site is treated as a discrete plant community, representing the assemblage of co-228 

occurring species sampled across the full 1-ha area at the time of survey. 229 

We extracted plot-level vascular plant species percent cover data for 787 TERN 230 

AusPlots using the ‘ausplotsR’ package (Guerin et al. 2020b; Munroe et al. 2021). In cases 231 

where repeated surveys were available for plots, the most recent survey was selected to ensure 232 
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that the data best reflected current species composition. We used species percent cover data as 233 

a proxy for species relative abundances (See supplementary material for the R script for exact 234 

extraction workflow). 235 

For analyses at continental-scale we modelled all plots across the TERN AusPlots 236 

network together. For biome-scale analyses we grouped plots according to the major biome 237 

they occupy in the Olson et al. (2001) biome classification (Fig. 1). From analyses at the biome 238 

scale, we selected four biomes, including temperate broadleaf and mixed forests (biome 4), 239 

tropical/subtropical grasslands, savannas and shrublands (biome 7), Mediterranean forests, 240 

woodlands and shrublands (biome 12), and deserts and xeric shrublands (biome 13). Other 241 

biomes present in Australia (i.e. biome 1 - Tropical/Subtropical Moist Broadleaf Forests, biome 242 

8 - Temperate Grasslands, Savannas & Shrublands and biome 10 - Montane Grasslands & 243 

Shrublands) were excluded from this study due to the low number of TERN AusPlots within 244 

their boundaries. These four biomes object of study capture the major climatic and ecological 245 

gradients in Australian vegetation. Tropical and subtropical grasslands, savannas, and 246 

shrublands (biome 7) are characterized by high mean annual temperatures, strong seasonality 247 

in rainfall, and dominance of fire- and drought-adapted species, often occupying narrow 248 

ecological niches (Shaw et al. 2000). Temperate broadleaf and mixed forests (biome 4), in 249 

contrast, experience moderate temperatures and relatively stable precipitation, supporting 250 

higher species richness and less extreme functional constraints (Bailey, 1964). Mediterranean 251 

forests, woodlands, and shrublands (biome 12) in southwestern and southeastern Australia are 252 

shaped by hot, dry summers and mild, wet winters, favouring species with stress-tolerant or 253 

drought-avoidance strategies (Lionello et al. 2006). Deserts and xeric shrublands (biome 13) 254 

are characterized by extremely low precipitation, high temperatures, and high climatic 255 

variability, resulting in plant communities strongly constrained by environmental filtering 256 

(Noy-Meir, 1973). Grouping plots by these biomes allows us to assess context-specific 257 

functional responses, capturing how climate, species physiology, and evolutionary history 258 

interact to shape diversity and functional redundancy across contrasting environmental settings 259 

(Laliberté et al. 2010). 260 
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 261 

Figure 1. Biomes of Australia used in this study and geographic locations of AusPlots flora 262 

inventories (black circles). Biome 4 – Temperate broadleaf and mixed forests (n = 43 plots), 263 

biome 7 – Tropical/Subtropical Grasslands, Savannas & Shrublands (n = 218 plots), biome 264 

12 - Mediterranean Forests, Woodlands & Shrublands (n = 203 plots), biome 13 - Deserts & 265 

Xeric Shrublands (n = 280 plots). Note that several biomes were excluded from this study 266 

due to the low number of TERN AusPlots within their boundaries: biome 1 - 267 

Tropical/Subtropical Moist Broadleaf Forests (n = 0), biome 8 - Temperate Grasslands, 268 

Savannas & Shrublands (n = 28) and biome 10 - Montane Grasslands & Shrublands (n = 15).  269 

 270 

2.2. Trait data 271 

We extracted trait data from the AusTraits database 6.0.0 for all species occurring in our plots. 272 

AusTraits contains data for 448 functional traits across 28,640 Australian taxa compiled from 273 

multiple sources (Falster et al. 2021).  274 

From the 4,428 species recorded in AusPlots with the point intercept methodology, we 275 

obtained mean values for maximum plant height (3,641 species), leaf mass per area (LMA) 276 

(1,304 species), and seed dry mass (2,574 species), respectively. We log transformed all trait 277 

values to account for differences in their units and skewness in their distributions, which is 278 

standard for community trait analysis (Bruelheide et al. 2018). To improve species 279 

representation, we followed the methods outlined in Andrew et al. (2021), consisting of two 280 
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subsequent steps by which missing trait values were first estimated missing values via linear 281 

models, and subsequently gap-filled utilising all accessible and relevant trait data from the 282 

native Australian flora. In summary, to leverage the available measurements of leaf/phyllode 283 

and seed dimensions for a significant proportion of species in AusTraits, we first estimated leaf 284 

area for species lacking direct area measurements based on measurements of leaf length and 285 

width. To do so, we conducted Linear Mixed Models (LMM) using the lme4 R package (Bates 286 

2010). Likewise, seed dry mass was estimated using seed length as a fixed effect, combined 287 

with a random factor of family. Predicted trait values were well correlated to known values 288 

(seed mass r2 = 0.85, leaf area r2 = 0.81). The models demonstrated strong explanatory power, 289 

evidenced by high conditional R² values (R²c) for both trait models, with a substantial portion 290 

of the explanatory power derived from fixed effects, reflected in high marginal R² values (seed 291 

dry mass: R²c = 0.85; R²m = 0.68; leaf area: R²c = 0.79; R²m = 0.66). 292 

We adopted a minimum threshold of 80% trait coverage by abundance for plots to be 293 

included in our study as this threshold has been shown to limit the estimation bias of community 294 

weighted functional properties (Borgy et al. 2017). In a second step, to increase the taxonomic 295 

coverage of trait data we gap-filled values for species without direct observations in AusTraits 296 

using the GapFilling() function from the BHPMF R package (Schrodt et al., 2015), which 297 

employs Bayesian hierarchical probabilistic matrix factorisation and correlation structure to 298 

impute missing trait values. This method exploits trait–trait correlations and phylogenetic trait 299 

signals within the existing trait data to predict unknown trait values. Gap-filling was run on a 300 

matrix of trait values for plant height, leaf area, length, and width, leaf mass per area (inverse 301 

of SLA), and seed mass and length; species with no available trait data were dropped from all 302 

subsequent analyses (n = 24,915 native Australian plant species retained). Finally, we applied 303 

the 80% trait coverage by abundance threshold to the total of 787 AusPlots, leaving 649 plots 304 

which met the threshold. 305 

 306 

2.3. Diversity indices 307 

We calculated four diversity indices, including species richness (SR), species diversity (SD), 308 

functional diversity (FD) and functional redundancy (FR). We followed the methodology of 309 

Ricotta et al. (2016) in which SD is calculated as Simpson’s diversity index and FD is calculated 310 

as Rao’s quadratic entropy. Simpson’s diversity is bound between 0 and 1 and it incorporates 311 

plot-level species relative abundances. Rao’s quadratic entropy is also bound between 0 and 1 312 

and it accounts for plot-level species relative abundances as well as species pairwise functional 313 

dissimilarities. Rao’s quadratic entropy is ultimately the mean functional dissimilarity of two 314 
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randomly selected individuals from a given community (Botta‐Dukát, 2005). Importantly, the 315 

maximum value of Rao’s, when all species are maximally functionally dissimilar, is equal to 316 

Simpson’s index. Therefore, dividing SD by FD yields a measure of the functional uniqueness 317 

of a community (U). 318 

𝑈𝑈 = 𝐹𝐹𝐷𝐷
𝑆𝑆𝐷𝐷

   (eq. 1) 319 

The complement of U is a measure of the functional redundancy of a community (FR), 320 

which summarises the proportion of species diversity not encompassed by functional diversity. 321 

𝐹𝐹𝑅𝑅 = 1 − 𝑈𝑈  (eq. 2) 322 

All alpha diversity indices were computed with the ‘uniqueness’ R function provided 323 

by Ricotta et al. (2016). 324 

To assess whether FR exhibited any statistically detectable geographic structure, we 325 

quantified spatial autocorrelation using Moran’s I with a 5-nearest-neighbour spatial weights 326 

matrix. In addition, we evaluated broad spatial trends by modelling FR as a function of latitude 327 

and longitude (second-order polynomial terms). To assess whether FR differs among major 328 

Australian biomes, we also conducted a one-way ANOVA with subsequent Tukey HSD post-329 

hoc tests to evaluate pairwise differences among biomes. 330 

Finally, we also calculated the FD–FR ratio, as an indicator between different 331 

community properties, namely functional breadth (represented by FD) relative to functional 332 

overlap (FR). The FD–FR ratio provides an integrated perspective on whether communities are 333 

dominated by many distinct strategies or by multiple species sharing similar traits. 334 

 335 

2.4. Bioclimatic data 336 

We obtained long term (1970-2000) mean climate data in a raster format from ‘WorldClim 2.1’ 337 

and extracted values at the coordinates of each plot (Fick and Hijmans, 2017) at a resolution of 338 

10 minutes of a degree. We extracted mean annual temperature (MAT; °C), temperature annual 339 

range (T-Range; °C), maximum temperature of the warmest month (T-Max; °C), mean annual 340 

precipitation (MAP; mm), precipitation seasonality (P-Seasonality) and precipitation of the 341 

driest month (P-Dry; mm). These variables reflect the mean, variability, and extremes of 342 

temperature and precipitation, all of which are projected to change under future climate 343 

scenarios for Australian ecosystems (Hughes, 2003). 344 

 345 

2.5. Future climate projections and climate change risk 346 



12 
 

 

To assess the climate change risk faced by plant communities across Australia, we 347 

followed an approach informed by Gallagher et al. (2019), by adapting their grid-based 348 

methodology in order to calculate plot-based climate change risk metrics. We calculated 349 

metrics of risk for changes to both MAT and MAP. For these calculations we used the same 350 

set of species as in the diversity index calculations to enhance comparability between diversity 351 

indices and climate change risk metrics. First, we obtained species-level climate niche data 352 

compiled by Gallagher et al. (2019), which represents the realised climatic limits of Australian 353 

plant species based on cleaned occurrence records for herbarium specimens from the Australian 354 

Virtual Herbarium (AVH). To account for potential outliers in these occurrence records, we 355 

defined species' temperature tolerance (MAT tolerance) as the 98th percentile of mean annual 356 

temperature (MAT) values across their distribution, and precipitation tolerance (MAP 357 

tolerance) as the 2nd percentile of mean annual precipitation (MAP) values. We then matched 358 

these species-level climate tolerances to the species occurring in each plot and calculated 359 

community-weighted mean (CWM) climate tolerances by multiplying each species’ tolerance 360 

value by its relative abundance in the plot. These CWMs represent the average climatic 361 

tolerance of the plant community in terms of upper temperature and lower precipitation limits. 362 

To assess current climatic safety margins, we subtracted the present-day (baseline) 363 

climate conditions from the community-weighted mean tolerance values at each plot. 364 

Specifically, for MAT and MAP, the safety margins were, respectively, calculated as: 365 

MAT Safety Margin = CWM MAT Tolerance − Current MAT 366 

MAP Safety Margin = Current MAP − CWM MAP Tolerance 367 

 368 

These safety margins represent the climatic buffer a plant community has before it 369 

reaches its collective thermal or drought limit. 370 

Australia is projected to experience substantial warming by 2070, with mean annual 371 

temperatures expected to increase across the continent, particularly in the interior and northern 372 

regions. Precipitation patterns are likely to become more variable, with decreases in 373 

cool‑season rainfall and longer drought duration projected for many parts of the south and east 374 

(especially mediterranean-type regions), while some northern areas may experience more 375 

intense wet-season rainfall events (State of the Climate 2024). Hence, we then estimated future 376 

climate exposure by calculating projected changes in MAT and MAP between current climate 377 

conditions and predicted projections for 2070 under the high-emissions scenario RCP8.5 378 

(rcp85, 800 ppm of CO2 by 2070). For that, we used downscaled climate data from CHELSA 379 
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based on five global circulation models for 2061-2080, including ACCESS1.0, CNRM-CM5, 380 

HADGEM2-CC, MIROC5, and NorESM1-M.  381 

Finally, we calculated plot-level climate change risk as the difference between exposure 382 

and safety margin: 383 

MAT Risk = Exposure − Safety Margin 384 

MAP Risk = − (Exposure − Safety Margin) 385 

 386 

For MAT, a positive risk value indicates that future climate change by 2070 in terms of 387 

temperature is expected to exceed the current adaptive capacity of the community (i.e. the 388 

community’s mean tolerance limit), placing it at greater risk. Conversely, negative or low risk 389 

values suggest that the community's climatic buffer is sufficient to accommodate projected 390 

temperature changes. For MAP, the opposite, when Exposure − Safety Margin has a negative 391 

value indicates that future drought conditions by 2070 are expected to exceed the current 392 

adaptive capacity of the community, placing it at greater risk, whereas positive values suggest 393 

that the community's climatic buffer is sufficient to accommodate projected temperature 394 

changes, hence why the values have been multiplied by (-1). 395 

We acknowledge that species respond individually to climate change and that 396 

communities are not strictly discrete units. Community-weighted mean (CWM) tolerances 397 

provide an operational estimate of the average climatic tolerance of the dominant species in 398 

each plot, capturing the functional response of the community as a unit. While individual 399 

species may exceed their limits without immediately altering functional diversity, CWM-based 400 

safety margins allow community-level comparison of climate change risk across a given spatial 401 

scale. 402 

 403 

2.6. Mapping alpha functional redundancy and climate change risk 404 

To visualise the spatial distribution of FR and climate change risk we created maps depicting 405 

their values across the TERN AusPlots continental network using the ggplot2 (Wickham 2016) 406 

and ggpmisc (Aphalo 2025) packages in R. We generated separate maps for MAT Risk, MAP 407 

Risk and alpha FR. Additionally, we constructed bivariate maps –derived directly from 408 

quantitative, plot-level metrics, ensuring that observed patterns reflect measured differences 409 

rather than subjective interpretation– which illustrates FR and climate change risk 410 

simultaneously for each plot. For mapping functional redundancy (FR) and climate change risk 411 

(MAT and MAP), we classified plots into three categories each. FR categories were defined as 412 

follows: low redundancy corresponded to the lowest 33% of FR values, medium redundancy 413 



14 
 

 

included values between the 33rd percentile and the 67th percentile of plots considered at risk, 414 

and high redundancy included values above the 67th percentile. This approach aims to 415 

emphasize relative differences in buffering capacity among communities, rather than assuming 416 

an absolute redundancy threshold, and to highlight areas that have considerably lower 417 

functional redundancy than others and therefore are subjected to higher risk under climate 418 

change. Climate-change risk categories were defined using biologically meaningful thresholds; 419 

MAT Risk was classified as low risk for plots that were not at risk (MAT Risk < 0); similarly, 420 

MAP Risk was classified as low risk for plots that were not at risk (MAP Risk > 0). Among 421 

plots at risk (MAT Risk ≥ 0 and MAP Risk ≤ 0), we then used the median of the at-risk subset 422 

to distinguish medium and high risk categories. approach ensures that the classification reflects 423 

both the distribution of FR and the degree of climate change exposure among at-risk plots, 424 

avoiding the bias introduced by equal-interval or quartile-based splits of the entire dataset. 425 

These classifications were used exclusively for visual synthesis in bivariate maps and do not 426 

affect statistical analyses. Together, they facilitate the identification of relative vulnerability 427 

hotspots (high climate-change risk combined with low FR) and support spatial comparison 428 

across regions while preserving the underlying quantitative nature of the data. Beyond serving 429 

as a visual illustration, these bivariate maps provide an analytical framework to identify spatial 430 

patterns and hotspots of vulnerability, (high climate change risk and low FR), highlighting plots 431 

that will likely undergo climate-driven changes in community composition and enabling 432 

comparison across regions and prioritisation for conservation or further study. 433 

 434 

2.7. Modelling the relationship between diversity indices, bioclimate and climate change risk  435 

We investigated the drivers of plant diversity metrics (species richness, SR; species diversity, 436 

SD; functional diversity, FD; functional redundancy, FR) and climate-driven vulnerability (MAT 437 

Risk, MAP Risk) using linear regression models at two spatial scales: continental (all AusPlots 438 

across Australia) and biome-specific. For diversity metrics, we included six bioclimatic 439 

predictors (MAT, T-Max, T-Range, MAP, P-Dry and P-Season). For climate risk metrics, we 440 

tested two complementary predictor sets: bioclimatic variables and diversity indices (SR, SD, 441 

FD, FR). All models were additive and excluded interactions. We evaluated all possible models 442 

containing any subset of predictors, including the null model, and selected the best-supported 443 

model based on the lowest Akaike Information Criterion (AIC). For each model, we calculated 444 

ΔAIC and Akaike weights, with ΔAIC < 2 indicating substantial support. From each best-445 

supported model, we extracted slopes, standard errors, t-values, p-values, and goodness-of-fit 446 
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metrics (R², adjusted R², residual standard error, AIC, BIC) to quantify the strength, direction, 447 

and significance of predictors. Only results from the best-supported models are reported.  448 

 449 

3. Results 450 

Species richness (SR) averaged 21.01 species per plot (± 11.17 Standard Deviation (SD); Inter 451 

Quartile Range (IQR) = 13–27) , indicating high variability across the sampled sites. Species 452 

diversity (SD) had a mean of 0.72 (± 0.18 SD; IQR = 0.64–0.85), while quadratic functional 453 

diversity (FD) averaged 0.18 (± 0.07 SD; IQR = 0.14–0.22). Functional redundancy (FR) in 454 

sampled plant communities ranged from 0.44 to 0.93, with a mean value of 0.75 (± 0.07 SD; 455 

IQR = 0.71–0.80).  456 

While no dominant spatial gradient in FR was evident across the continent (Fig. 2), FR 457 

exhibited weak but significant positive spatial autocorrelation (Moran’s I = 0.205, p ≤ 0.001), 458 

indicating that nearby plots tend to be more similar in FR than expected by chance. A spatial 459 

model including second‐order polynomial terms for latitude and longitude detected statistically 460 

significant non-linear spatial structure; however, spatial position explained only a small 461 

proportion of the overall variation in FR (polynomial model: adjusted R² = 0.048, p < 0.001). 462 

This indicates that, although broad and non-linear geographic patterns exist (including a 463 

tendency for higher FR in interior regions), spatial location is a relatively minor contributor to 464 

continental-scale variation in FR, consistent with our interpretation of weak geographic 465 

gradients rather than strong spatial control. As such, central Queensland, the arid zones of 466 

South Australia and the Northern Territory, and parts of western New South Wales appeared 467 

as hotspots of high FR. In contrast, regions such as Tasmania, eastern New South Wales, the 468 

west coast of Western Australia, the northern tip of the Northern Territory, and the Mount Lofty 469 

Ranges in South Australia exhibited mostly lower FR values. When comparing FR across 470 

biomes, we found significant differences (ANOVA: F = 10.42, p ≤ 0.001). Pairwise 471 

comparisons (Tukey HSD) indicate that some biomes, including the arid deserts and xeric 472 

shrublands (biome 13) and the tropical and subtropical grasslands, savannas and shrublands 473 

(biome 7), had significantly higher FR than Mediterranean-type (biome 12) and temperate forest 474 

(biome 4) biomes (see supplementary material for further details). Overall, plots with high FR 475 

were not strongly spatially segregated from those with low FR; thus, despite these broad-scale 476 

differences, high and low FR plots remain intermixed locally, supporting our original 477 

conclusion that fine-scale hotspots (e.g., Central Queensland, Mount Lofty Ranges) reflect site-478 

level variation that cannot be fully captured by biome aggregation. We note, however, that 479 

some of this local variability may also reflect the necessarily sparse sampling of large-scale 480 
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ecosystems by 1-ha plots, such that fine-scale heterogeneity within landscapes can contribute 481 

to apparent spatial variability in FR at continental scales. 482 

 483 

  484 

Figure 2. Map of plot-level functional redundancy values across the TERN continental 485 

vegetation monitoring plot network (n = 646; notice that for three plots, calculations of certain 486 

diversity metrics were not possible). Colour denotes functional redundancy values at each plot 487 

(legend). Black lines indicate the approximate boundaries of major Australian biomes, shown 488 

for geographic context.  489 

 490 

3.1. Variation of diversity indices along bioclimatic gradients  491 
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While some temperature variables were correlated (e.g., MAT and T-Max, r = 0.87, p ≤ 0.001; 492 

see supplementary material for further details), we show their independent bivariate 493 

relationships to illustrate the different ecological dimensions of each bioclimatic variable.  494 

Across Australia, multivariate AIC-selected models revealed consistent climatic 495 

influences on plant diversity patterns. Species richness and diversity (SR and SD), and 496 

functional diversity (FD) were primarily shaped by temperature–precipitation trade-offs, with 497 

temperature predictors exerting predominantly negative effects and mean annual temperature 498 

showing mainly positive associations (see Table 1 for specific significant effects). Together, 499 

these models explained between 7% and 24% of the variation in SR, SD, and FD. In contrast, 500 

functional redundancy (FR) responded only weakly to climate, increasing with mean 501 

temperature and thermal range and decreasing with maximum temperature and precipitation 502 

seasonality. Although several predictors were retained in the best model for FR, this only 503 

explained 4% of its variation, indicating that functional redundancy seems to be decoupled 504 

from broad-scale climatic gradients. 505 

Biome-level analyses revealed marked regional differentiation in the climatic drivers 506 

of plant diversity (see Table 2 for specific significant effects; Supplementary material). In 507 

temperate broadleaf and mixed forests (biome 4), diversity patterns were mainly structured by 508 

temperature variability, with species richness and functional diversity declining under greater 509 

thermal range, while precipitation variables played a stronger role in shaping species diversity. 510 

In tropical savannas (biome 7) pulsed water availability displayed a central role, species 511 

richness increased with mean temperature but declined under higher thermal extremes and 512 

stronger precipitation seasonality, species and functional diversity were positively associated 513 

with annual precipitation and negatively by increasing rainfall seasonality, whereas functional 514 

redundancy was positively influenced by thermal range. In Mediterranean forests, woodlands 515 

and shrublands (biome 12), precipitation was the dominant driver, with richness, species 516 

diversity and functional diversity increasing with stronger seasonal and dry-period rainfall, 517 

alongside negative effects of mean temperature; functional redundancy in this biome declined 518 

with increasing thermal and hydric stress. In deserts and xeric shrublands (biome 13), species 519 

richness and functional diversity responded to contrasting temperature and precipitation 520 

gradients, and functional redundancy declined under greater climatic variability. Together, 521 

these biome-specific patterns indicate that plant diversity metrics respond to distinct climatic 522 

constraints depending on regional environmental context. 523 
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Table 1. Best‐fit linear models explaining spatial variation in species richness (SR), species diversity (SD), functional diversity (FD), and 524 

functional redundancy (FR) across Australia and within selected biomes. Models were selected using AIC-based stepwise selection. The 525 

table reports the retained predictors, model fit statistics (adjusted R², sigma), and Akaike Information Criterion (AIC). The direction and 526 

statistical significance of each predictor in the best model are shown in brackets after each term (+: positive effect; –: negative effect; * p 527 

≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Predictors without brackets were retained in the best model but were not statistically significant. 528 

Response 
Variable Best model formula Adj R2 sigma AIC dfresidual 

SR SR ~ MAT(-***) + T_Max (+***) + T_Range(-***) + MAP(+***) + P_Season(+*) 0.23 9.75 4783.56 640 
SD SD ~ MAT(-***) + MAP(+***) + P_Dry(-***)  0.07 0.08 -434.38 642 

FD FD ~ MAT(-***) + T_Max (+*) + T_Range + MAP(+***) + P_Dry(-**)  0.11 0.11 -1764.83 640 

FR FR ~ MAT(+***) + T_Max(-**) + T_Range(+**) + MAP + P_Season(-*)  0.04 0.04 -1566.12 640 

Biome 4 – Temperate broadleaf and mixed forests 
SR SR ~ T_Max(+***) + T_Range(-***) 0.54 8.30 231.10 29 
SD SD ~ MAT + MAP(+**) + P_Dry(-*) + P_Season(-*) 0.21 0.16 -18.81 27 
FD FD ~ T_Range(-*) 0.14 0.06 -84.79 30 
FR FR ~ MAT 0.03 0.07 -72.10 30 
Biome 7 – Tropical / subtropical grasslands, savannas and shrublands 
SR SR ~ MAT(+***) + T_Max(-***) + P_Dry(-**) + P_Season(-***) 0.29 9.91 1291.47 168 
SD SD ~ MAT + MAP(+***) + P_Season(-*) 0.12 0.17 -114.92 169 
FD FD ~ MAP(+***) + P_Season(-*) 0.13 0.06 -473.37 170 
FR FR ~ T_Range(+*) 0.03 0.07 -431.87 171 
Biome 12 – Mediterranean forests, woodlands and shrublands 
SR SR ~ MAT(-***) + T_Max(+**) + P_Dry(+***) + P_Season(+*) 0.48 8.30 1201.84 164 
SD SD ~ MAT(-**) + P_Season(+***) 0.16 0.15 -165.96 166 
FD FD ~ P_Dry(+***) + P_Season(+***) 0.21 0.06 -489.30 166 
FR FR ~ MAT(-***) + MAP(-***) + P_Dry(-***) 0.18 0.07 -433.99 165 
Biome 13 – Deserts and xeric shrublands 
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SR SR ~ MAT(-***) + T_Max(+**) + T_Range(-*) + MAP(+***) 0.09 8.25 1658.41 229 
SD SD ~ P_Season(+*) 0.01 0.17 -161.00 232 
FD FD ~ MAT(-***) + T_Max(+***) + MAP + P_Season(+*) 0.06 0.06 -653.69 229 
FR FR ~ MAT(+***) + T_Range(-***) + MAP(-*) + P_Season(-**) 0.13 0.07 -605.50 229 

 529 
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 530 

3.2. Geographic distribution of climate change risk and its relationship to environmental 531 

variables 532 

Out of 649 plots, 201 (31%) are considered at risk to species turnover and changes in 533 

community composition due to projected changes in mean annual temperature (Risk MAT ≥ 534 

0; Fig. 3). Plots with the highest Risk MAT values are primarily located in the northern half of 535 

the continent, whereas lower-risk plots occur at more southerly latitudes. Meanwhile, 608 plots 536 

(93.7%) are considered at risk from predicted changes in mean annual precipitation (Risk MAP 537 

≤ 0), with the highest-risk plots generally located at the northern and southern extremes of the 538 

continent and lower-risk plots in central regions (Fig. 3). Across the TERN AusPlots network, 539 

regression analyses revealed that Risk MAT increases strongly with latitude (R² = 0.58, p < 540 

0.001), indicating higher temperature-driven risk in northern regions (slope = 0.254 °C per 541 

decimal degree latitude; Fig. 4). Incorporating longitude slightly improved model fit (R² = 0.66, 542 

p < 0.001), showing that risk rises northwards but decreases slightly westwards (longitude slope 543 

= -0.071 °C per decimal degree). In contrast, Risk MAP declines with latitude (R² = 0.20, p < 544 

0.001), suggesting greater precipitation-driven risk in southern regions. These regression 545 

models complement the histograms and maps, quantitatively highlighting broad latitudinal 546 

trends in climate change exposure. 547 
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   548 

  549 

Figure 3. a) mean annual temperature (MAT) (left) and mean annual precipitation (MAP) 550 

(right) safety margins; b) climate change risk in terms of predicted changes to MAT (left) and 551 

MAP (right) across the TERN AuPlots network; c) distribution histograms of Risk MAT and 552 

Risk MAP. For MAT climate change risk, notice that the values in the legend represent °C, 553 

over (positive) or below (negative) the safety margin, to which the vegetation community will 554 

be exposed in the future. For MAP climate change risk, notice that the values in the legend 555 

represent water deficit, over (positive; i.e. more water deficit and harsher conditions) or below 556 

(negative) the safety margin, to which the vegetation community will be exposed in the future. 557 

Red points on the map represent at risk plots, while blue colours represent plots with risk values 558 

of zero or less (the darker the blue the less at risk).  559 

  560 

a) 

b) 
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 561 

 562 

Figure 4. a) distribution histograms of Risk MAT and Risk MAP; and b) scatterplots of Risk 563 

MAT and Risk MAP versus latitude with fitted linear regression lines (solid), illustrating broad 564 

latitudinal trends in climate change exposure across the network. On both the histograms and 565 

the scatterplots, red represents plots at risk (positive for MAT, negative for MAP), while plots 566 

not at risk are shown in blue, highlighting the big proportion of plots at risk across the network.  567 

 568 

Across all AusPlots, MAT Risk increased with higher T-max and P-season, and 569 

decreased with increasing MAT and temperature range (T-Range), indicating that sites in hotter 570 

regions with marked precipitation seasonality are projected to experience greater temperature-571 

driven turnover (Table 2; see supplementary material for full model outputs). In contrast, MAP 572 

Risk increased with MAT, MAP, P-dry, and P-season, and decreased with T-range and T-max, 573 

suggesting that precipitation-driven turnover is highest in warm sites with moderate 574 

temperature variability (Table 2; Supplementary material). MAP Risk displayed an inverse 575 

pattern, increasing with MAT and T-Range and decreasing with MAP and T-Max, with an 576 

additional negative effect of P-Dry. These patterns indicate that temperature-driven and 577 

precipitation-driven turnover risks respond to distinct climatic axes, with the former most 578 

a) 

b) 
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elevated in warmer and seasonal environments, and the latter being greater in hotter and arid 579 

regions. 580 

Biome-level analyses revealed marked regional differentiation in the climatic drivers 581 

of plant diversity (Table 2; Supplementary material). In temperate broadleaf and mixed forests 582 

(biome 4), diversity patterns were primarily structured by temperature extremes, with species 583 

richness increasing with maximum temperature and declining with temperature range, and 584 

functional diversity also decreasing with greater thermal variability. By contrast, species 585 

diversity in this biome was more strongly associated with precipitation, increasing with mean 586 

annual precipitation and declining with both dry‐season rainfall and precipitation seasonality. 587 

In tropical and subtropical grasslands, savannas and shrublands (biome 7), temperature and 588 

precipitation exerted opposing influences: species richness increased with mean annual 589 

temperature but declined with maximum temperature and indicators of dry or seasonal rainfall, 590 

while species diversity and functional diversity were most strongly and positively associated 591 

with mean annual precipitation and negatively affected by precipitation seasonality. Functional 592 

redundancy in this biome showed a weak but positive association with temperature range. 593 

Mediterranean forests, woodlands and shrublands (biome 12) were dominated by precipitation 594 

effects, with species richness, species diversity and functional diversity all positively related to 595 

dry‐season rainfall and precipitation seasonality, alongside negative effects of mean annual 596 

temperature on richness and diversity. Functional redundancy in this biome declined with 597 

increasing temperature and precipitation, indicating sensitivity to both thermal and hydric 598 

stress. In deserts and xeric shrublands (biome 13), species richness declined with mean annual 599 

temperature and temperature range but increased with maximum temperature and mean annual 600 

precipitation. Species diversity increased with precipitation seasonality, while functional 601 

diversity declined with mean annual temperature and increased with maximum temperature 602 

and precipitation seasonality. Functional redundancy in this biome increased with temperature 603 

but declined with thermal variability and precipitation. 604 

 605 

3.3. Relationship between climate change risk and diversity metrics 606 

At the continental scale, MAT Risk was not significantly related to any of the diversity metrics 607 

examined (species richness, species diversity, functional diversity, or functional redundancy). 608 

In contrast, MAP Risk was significantly related to all metrics; specifically, species richness, 609 

species diversity, and functional diversity all showed significant positive relationships with 610 

MAP Risk, indicating that sites with higher diversity tends to occur in areas projected to 611 

experience greater precipitation-related risk. In contrast, functional redundancy was negatively 612 
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related to MAP Risk, suggesting that lower redundancy is associated with higher precipitation-613 

related risk (Table 3).  614 

At the biome scale, correlations varied among biomes. The only significant 615 

relationships found for MAT Risk were in Mediterranean systems (biome 12), where it was 616 

positively correlated with species richness and diversity, and in deserts (biome 13) where it 617 

was negatively correlated with functional redundancy. MAP Risk was positively correlated 618 

with species richness across all biomes, and only in biome 12 and 13, negatively correlated 619 

with functional redundancy (Table 3). 620 

Communities with low FR and high MAT/MAP Risk are likely the most vulnerable to 621 

climate-driven changes in composition, as they face both, climate change–induced species 622 

turnover and a reduced capacity to maintain ecosystem function. These highly vulnerable sites 623 

are primarily located in the northern areas of the continent (Fig. 5). In contrast, communities 624 

with high FR but high MAT/MAP Risk may still experience species loss but are expected to be 625 

more resilient in maintaining function; these are also concentrated in the continent’s eastern 626 

interior. The least vulnerable communities—those with high FR and low MAT/MAP Risk are 627 

scattered across central Australia (Fig. 5). The FD–FR ratio showed no association with 628 

temperature-driven risk (Spearman ρ = −0.02, p = 0.56), but was negatively associated with 629 

precipitation-driven risk (ρ = −0.23, p ≤ 0.001), consistent with patterns observed for FD and 630 

FR separately 631 

 632 

    633 

Figure 5. Bivariate maps of functional redundancy (FR) and climate change risk across the 634 

Australian continent (646 TERN AusPlots). Left: FR combined with mean annual temperature 635 
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risk (MAT Risk). Right: FR combined with mean annual precipitation risk (MAP Risk). For 636 

FR, plots were categorized using terciles (33rd and 67th percentiles), with mutually exclusive 637 

thresholds: low (bottom tercile), medium (second tercile), or high (top tercile). For MAT Risk, 638 

plots with risk < 0 were classified as low risk, whereas for MAP Risk, plots with risk > 0 were 639 

classified as low risk. Plots at risk (MAT risk ≥ 0 or MAP risk ≤ 0), were split into medium 640 

and high risk categories using the median of the at-risk subset. Plots with high climate risk and 641 

low FR (dark red) are potentially most vulnerable to climate-driven changes in community 642 

composition and associated loss of ecosystem functionality. 643 



26 
 

 

Table 2. Best‐fit linear models explaining variation in MAT Risk and MAP Risk against bioclimatic predictors across Australia and within 644 

selected biomes. Models were selected using AIC-based stepwise selection. The table reports the retained predictors, model fit statistics 645 

(adjusted R², sigma), and Akaike Information Criterion (AIC). The direction and statistical significance of each predictor in the best 646 

model are shown in brackets after each term (+: positive effect; –: negative effect; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Predictors without 647 

brackets were retained in the best model but were not statistically significant. 648 

Response 
Variable Best model formula Adj R2 sigma AIC dfresidual 

MAT Risk MAT Risk ~ 1 + MAT(-*) + T_Max(+***) + T_Range(-***) + P_Season(+***) 0.710 1.292 2372.09 701 
MAP Risk MAP Risk ~ 1 + MAT(+***) + T_Max(-***) + T_Range(+***) + MAP(-***) + P_Dry(-*) 0.879 94.066 8427.64 700 

Biome 4 – Temperate broadleaf and mixed forests 
MAT Risk MAT Risk ~ 1 + MAT(+***) + P_Dry  0.369 1.448 140.84 35 
MAP Risk MAP Risk ~ 1 + MAT(-*) + T_Max(+*) + T_Range(-*) + MAP(+***) + P_Dry(-*) 0.711 144.866 493.47 32 

Biome 7 – Tropical / subtropical grasslands, savannas and shrublands 
MAT Risk MAT Risk ~ 1 + MAT(+***) + T_Range(+***) + P_Dry(+***) 0.758 0.692 413.93 190 
MAP Risk MAP Risk ~ 1 + MAT + T_Max(+***) + T_Range(-***) + MAP(+***) + P_Season(-***) 0.864 107.674 2373.95 188 
Biome 12 – Mediterranean forests, woodlands and shrublands 
MAT Risk MAT Risk ~ 1 + T_Max(+***) + P_Season(+***) 0.264 1.570 704.44 184 
MAP Risk MAP Risk ~ 1 + MAT(+***) + MAP(+***) + P_Season(-***) 0.800 65.296 2099.56 183 

Biome 13 – Deserts and xeric shrublands 
MAT Risk MAT Risk ~ 1 + MAT(+***) + T_Max(+***) + P-Dry(-***) 0.767 0.940 673.78 242 
MAP Risk MAP Risk ~ 1 + MAT(-***) + T_Max(+***) + MAP(+***) + P-Dry(+***) 0.856 36.140 2470.07 241 

649 
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Table 3. Direction and strength of pairwise relationships between climate change risk 650 

(MAT Risk and MAP Risk) and bioclimatic variables and diversity metrics (SR = species 651 

richness, SD = species diversity, FD = functional diversity and FR = functional redundancy) 652 

at the three spatial scales of study (i.e. continental Australia, and per biome). Values are 653 

Pearson correlation coefficients (r), which correspond to the direction of effects estimated 654 

in the simple linear regressions used for statistical testing. Positive r indicates variables 655 

increasing with climate risk; negative r indicates decreasing relationships. Significance 656 

codes: p ≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***); n.s. = not significant.  657 

 658 

 Diversity metrics 
 SR SD FD FR 
Continental Australia – all AusPlots 
MAT Risk n.s. n.s. n.s. n.s. 
MAP Risk 0.41*** 0.21*** 0.21*** -0.08*** 
Biome 4 – Temperate broadleaf and mixed forests 
MAT Risk n.s. n.s. n.s. n.s. 
MAP Risk 0.64*** n.s. n.s n.s. 
Biome 7 – Tropical / subtropical grasslands, savannas and shrublands 
MAT Risk n.s. n.s. n.s. n.s. 
MAP Risk 0.47*** 0.34*** 0.33*** n.s. 
Biome 12 – Mediterranean forests, woodlands and shrublands 
MAT Risk 0.22** 0.20* n.s. n.s. 
MAP Risk 0.44*** 0.38* 0.23** -0.25** 
Biome 13 – Deserts and xeric shrublands 
MAT Risk n.s. n.s. n.s. -0.13* 
MAP Risk 0.27*** 0.18** n.s. -0.26*** 

659 



28 
 

 

4. Discussion 660 

Here, we analysed multiple diversity metrics —including species richness, species diversity, 661 

functional diversity, and functional redundancy, but with particular emphasis on functional 662 

redundancy (FR)— in Australian plant communities using continental-scale ecological and 663 

functional trait datasets. Functional redundancy is interpreted here as functional similarity, 664 

acknowledging that overlapping traits may buffer ecosystem functioning without implying full 665 

interchangeability among species or guaranteed resilience.  666 

Our results showed that the northern Australian coastlines, are particularly vulnerable 667 

to species loss, shifts in community composition, and potential subsequent loss of ecosystem 668 

function due to future changes in temperature and precipitation. In addition, Mediterranean-669 

climate regions in southwestern Western Australia and southeastern South Australia, are also 670 

vulnerable to precipitation-driven shifts in community composition.  671 

We found that FR was generally high across sampled communities and was positively 672 

associated with hot and increasingly arid environments, suggesting a greater potential for 673 

functional buffering in arid areas in the event of species loss (Walker 1995; Pimiento et al. 674 

2020). (Walker 1995; Pimiento et al. 2020). Central arid plant communities may be 675 

functionally more resilient in the event of species loss given the structured pattern emerging of 676 

increasing FR with distance from the coast.  677 

At the continental scale, FR variation was related to macroclimate in terms of both, 678 

temperature (MAT) and precipitation seasonality patterns (positive and negative relationships, 679 

respectively), while SR, SD and FD showed opposite patterns (negative relationships with MAT 680 

and positive with MAP). However, these relationships explained limited variance, likely 681 

because macroclimate metrics do not capture fine-scale environmental variation, which can be 682 

a stronger driver of community composition. Declines in SR with increasing temperature range 683 

suggest thermal variability acts as a filter, favouring stress-tolerant or generalist species, which 684 

could subsequently reduce FD even if overall abundance is maintained.  685 

Overall, the observed associations indicate that while FR may contribute to buffering 686 

functional loss, this potential is context-dependent and often coincides with lower FD, reflecting 687 

interactions between habitat filtering and niche partitioning (Spasojevic and Suding 2012). 688 

Together, these patterns underscore how functional traits and climatic variability combined 689 

shaping ecosystem resilience, and emphasise the need to understand how FR and FD respond to 690 

environmental gradients for conservation planning. 691 

Andrew et al. (2021) found that FD across Australian vegetation was strongly linked to 692 

climate using grid-cell-based models. In contrast, our plot-based analyses suggest communities 693 
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may possess greater FR than broad-scale patterns would indicate, as local assembly processes—694 

environmental filtering and biotic interactions—can enhance FR, whereas grid-cell models 695 

reflect broader niche–environment relationships. Similarly, Guerin et al. (2022) found strong 696 

climate–trait links at the single-trait level across the same plot network, suggesting that 697 

aggregating traits into composite FD and FR metrics may dilute finer-scale trait–environment 698 

relationships. Although single trait studies can better reveal functional responses to 699 

environmental gradients (e.g., Funk et al. 2017), reductionist approaches offer more limited 700 

insights into community dynamics. Community assembly operates hierarchically, with 701 

macroclimate xerting broad constraints and local factors shaping communities at finer scales 702 

(Diaz et al. 1998; Laliberté et al. 2010). Consistent with this framework, we found that 703 

relationships between diversity metrics and climate were stronger when analysed within 704 

biomes than at the continental scale, particularly in Mediterranean systems (biome 12) and 705 

tropical/subtropical grasslands (biome 7). This may be related to greater floristic homogeneity 706 

and functional coherence within biomes compared to continental-scale analyses that integrate 707 

multiple species pools (Bruelheide et al. 2018). 708 

At the biome scale, diversity metrics responded to bioclimate in highly context-specific 709 

ways, reflecting how climate interacts with physiology, resource availability, and evolutionary 710 

history to shape plant communities (Boonman et al. 2022). Contrasting responses of 711 

communities’ FR to bioclimatic factors within biomes indicate that different climatic stressors 712 

act as dominant constraints depending on biome-specific limiting factors. In tropical savannas 713 

(biome 7), strong rainfall seasonality limits species with narrow niches, while FR increases with 714 

temperature range, likely reflecting convergence on heat-adapted strategies reported in 715 

seasonal tropical systems. Temperate forests (biome 4), characterised by relatively benign 716 

climatic conditions, show increasing species richness with warmth and species diversity with 717 

rainfall, whereas FR remains largely independent of climate, consistent with weak 718 

environmental filtering. Mediterranean systems (biome 12) experience combined pressures of 719 

high temperatures and summer drought, leading to reduced SR and SD under hotter conditions, 720 

while FR increases with reduced precipitation, likely driven by the dominance of stress-721 

avoidance traits. Deserts (biome 13) show strong drought-driven FR, although extreme heat 722 

constrains this response. In line with these patterns, we observed lower FD at hotter and drier 723 

locations, and higher FD at cooler and wetter locations. Climate-driven spatial patterns of 724 

functional diversity along contemporary climatic gradients have been reported previously (e.g. 725 

Guerin et al., 2022), supporting our findings with regards to FD. Nevertheless, our integrated 726 

analysis demonstrates that FD alone is insufficient to understand ecosystem resilience, and that 727 
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the inclusion of FR fundamentally alters the interpretation of climate–function relationships 728 

across biomes, and under future climate projections. Together, our results suggest that FD-to-729 

FR ratio may reflect the interplay of habitat filtering, niche partitioning, and local environmental 730 

constraints (Kraft et al., 2015), producing contrasting functional responses across biomes rather 731 

than reflecting climate alone. Consequently, communities with high FD but low FR may be 732 

more vulnerable to species loss, whereas communities with lower FD but higher FR may exhibit 733 

greater functional resilience (Ricotta et al. 2016).  734 

Short-term drivers such as land-use change, disease, and direct anthropogenic pressures 735 

may further reduce FR (Fonseca and Ganade 2001); however, our study focused on plant 736 

communities with minimal recent disturbance, suggesting that higher FR under extreme 737 

environments reflects long-term environmental effects rather than human impact. We note, 738 

however, that because our analyses rely on contemporary surveys, current species composition 739 

may already incorporate recent climate- and land-use-driven shifts, which could influence trait 740 

filtering patterns and reduce predictive power. Inconsistent FR metrics also complicate 741 

comparisons, emphasizing the need for clear methodology and fine-resolution environmental 742 

data when studying FD and FR (Biggs et al. 2020). Thus, we recommend clearly specifying FR 743 

calculations and noting that functional similarity does not always imply redundancy, and we 744 

advocate for the use of finer-resolution environmental data (e.g., biome- or regional-scale) 745 

where available, to better elucidate FD-to-FR ratio and trends. 746 

 747 

4.1. Climate change risk 748 

Climate change risk exhibited clear geographic patterns across Australian plant communities 749 

and was strongly related to current climatic conditions, indicating that species safety margins 750 

may be more important than predicted exposure in determining the risk of species turnover or 751 

changes in community composition—a pattern that, while not previously demonstrated at the 752 

community level to the best of our knowledge, is consistent with species-level niche and 753 

tolerance theory (Araújo et al. 2013). Temperature-related risk (MAT Risk) varied with 754 

latitude, increasing from south to north, while precipitation-related risk (MAP Risk) was 755 

greatest in the coastline of the continent, especially in the North and in mediterranean-climate 756 

regions, and lowest at the arid centre. This, therefore, points to the northern coastline as a 757 

priority region for conservation practices to mitigate climate-driven change in vegetation 758 

communities.  759 

In general, we found strong links between climate change risk and current climate 760 

conditions. The trends we found reflect the fact that as climates become more extreme in 761 
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temperature, species approach their tolerance limits, leading to the greatest temperature-driven 762 

turnover in the hottest and most seasonally variable environments (Deutsch et al. 2008), a 763 

pattern consistent with climate-driven vulnerability contrasts reported for European plant 764 

communities (Thuiller et al. 2005). For example, MAT Risk increased with long-term T-max 765 

and P-Season and decreased with MAT and T-Range, suggesting that communities exposed to 766 

persistently high temperature extremes and strong intra-annual rainfall variability will be most 767 

sensitive to future warming, whereas broader thermal ranges may buffer against turnover. In 768 

contrast, MAP Risk was highest in sites experiencing pronounced temperature fluctuations, but 769 

lowest in sites with high rainfall and dry-season precipitation, implying that plant communities 770 

subjected to the combined pressures of heat and drought will face higher precipitation-driven 771 

risk. Together, these patterns suggest that climatic safety margins may be more important than 772 

predicted exposure per se in determining sensitivity to climate change in Australian plant 773 

communities (Foden et al. 2019), as safety margins span a wider range of values than projected 774 

exposure across the continent. We acknowledge that species’ climate tolerances are derived 775 

from their realised rather than fundamental niches, potentially underestimating true 776 

physiological limits and adaptive capacity (Sax et al. 2013). Yet, species already persisting in 777 

extreme environments may possess greater adaptive potential precisely because of being 778 

shaped by harsher conditions (Chevin and Hoffmann 2017). 779 

At the biome scale, the links between climatic variables and MAT and MAP Risk 780 

highlight how different vegetation types may be exposed to shifts in community composition 781 

under warming and drying trends. The benign climatic conditions of temperate forests (biome 782 

4) make them vulnerable to temperature stress (i.e. increases in MAT and T-Max positively 783 

affect MAT and MAP Risk respectively) and rainfall (i.e. lower P-Dry results in higher MAP 784 

Risk), reflecting their dependence on stable mild temperatures and moisture regimes.  785 

Tropical savannas in northern Australia, where MAT Risk was found to be highest, are 786 

key global carbon sinks (Grace et al. 2006) that rely on complex interactions between fire 787 

regimes, water availability and vegetation dynamics (Moore et al. 2018), making them highly 788 

vulnerable to climatic shifts (Lehman et al. 2011). MAT Risk increased in hotter sites and in 789 

areas with greater dry-season rainfall, indicating that both chronic warmth and large annual 790 

temperature fluctuations amplify sensitivity to warming. MAP Risk, by contrast, was highest 791 

in wetter and more heat-exposed savannas but declined with greater temperature range and 792 

rainfall seasonality, suggesting that climatic variability and pronounced wet–dry cycles may 793 

help buffer these communities against precipitation-driven change. Their high sensitivity to 794 

future precipitation shifts (MAP Risk) likely stem from the fact that these ecosystems are 795 
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structured around strong wet–dry seasonality, where even small changes in rainfall amount or 796 

timing can disrupt plant recruitment, survival, and competitive ability (Murphy and Bowman 797 

2012). Unlike species in more southern arid zones, many northern taxa are less drought-798 

adapted, thus, reduced rainfall could push them beyond their physiological limits (Foden et al. 799 

2019). Moreover, biogeographic barriers constrain range shifts, as deserts to the south and 800 

oceans to the north limit gradual migration. Together, these factors indicate that northern 801 

Australia warrants particular attention from land managers and conservation purposes to 802 

prevent climate-driven species loss.  803 

Mediterranean regions in the South West Australian Floristic Region (SWAFR) and 804 

South Australia showed high MAP Risk probably due to many species in these communities 805 

already nearing their upper climate thresholds, particularly with regards to the intense summer 806 

drought periods they face (Lewandrowski et al. 2021). In fact, drought-related dieback of 807 

Australian mediterranean vegetation has been well-documented, with rainfall already in 808 

decline and predicted to continue (Brouwers et al. 2013). Both MAT and MAP Risk were 809 

highest in the warmest areas and in sites with weaker rainfall seasonality, indicating that 810 

communities occupying the margins of the Mediterranean climate regime —where summer 811 

drought is less pronounced— are more vulnerable to climate-driven change than those in 812 

strongly seasonal, drought-adapted environments, pointing to the importance of stress-tolerant 813 

adaptations in buffering these communities against increasing drought.  814 

Deserts and arid interiors exhibited low MAP Risk, due to projected increases in 815 

precipitation by 2070 (Gallagher et al. 2019), reflecting reduced drought stress within the 816 

bounds of the MAP Risk metric. Importantly, the MAP Risk metric used here is designed to 817 

capture risk associated with increasing drought stress and does not explicitly account for 818 

potential negative effects of increased precipitation (e.g. moisture intolerance or competitive 819 

displacement of arid-adapted species) in arid communities. MAT Risk was greatest in the 820 

hottest sites and declined with P-Dry, indicating that hyper-arid communities already adapted 821 

to extreme water limitation may be less sensitive to further warming than those in 822 

comparatively milder desert environments. MAP Risk, however, increased in warmer and 823 

wetter desert areas and in sites where the driest month is less dry, suggesting that communities 824 

located in more semi-arid areas are more vulnerable to precipitation-driven change than those 825 

in the most extremely water-limited regions that are already adapted to drought.  826 

Together, these contrasting biome-level responses indicate that climate-change risk is 827 

shaped not only by absolute climatic stress but by how far future conditions will diverge from 828 

the specific adaptive strategies of the vegetation characteristic of each biome, thus underscoring 829 
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the need for case-by-case assessments and the challenge of making generalizations when 830 

predicting changes in vegetation dynamics (Mori 2011). Although we focused on mean climate 831 

changes, we acknowledge that extreme events (e.g. heatwaves, droughts and wildfires) can also 832 

shape species survival and drive ecosystem shifts (Lloret et al. 2012). 833 

 834 

4.2. Relationship between functional redundancy and climate change risk 835 

By integrating climate change risk with FR, we provide a robust assessment of Australian plant 836 

communities, capturing both their vulnerability to species loss and their potential resilience to 837 

functional disruption (traditionally ignored in climate change studies; Li et al. 2018). Within 838 

this framework, communities experiencing high climate risk and low FR are expected to be 839 

most vulnerable to functional destabilisation, whereas communities facing high risk but with 840 

high FR may buffer some functional loss (Walker 1992, 1995; Ricotta et al. 2016). 841 

Communities exposed to low climate risk are, by contrast, inherently less threatened. 842 

At the national scale, unlike MAT Risk, MAP Risk showed significant correlations with 843 

all biodiversity metrics, reflecting the strong influence of rainfall and its seasonality on 844 

Australian flora, pointing the northern coastline as well as the mediterranean-climate regions 845 

as the most vulnerable areas to suffer changes in community composition and subsequent loss 846 

of ecosystem function. The significant association between precipitation-driven risk and the 847 

FD–FR ratio indicates that changes in rainfall disproportionately affect communities where 848 

functional similarity is high relative to functional diversity, increasing the likelihood of 849 

coordinated species responses rather than compensatory dynamics. Biome-level patterns 850 

suggested that functional traits, rather than species richness per se, determine resilience, with 851 

vulnerability arising from the loss of overlapping functions that stabilize vegetation 852 

communities against climate-driven changes.  853 

At the biome scale, the influence of community diversity on climate-change risk varied 854 

markedly. Across all biomes, communities with larger species pools tended to experience 855 

stronger compositional shifts under warming and altered rainfall, perhaps reflecting the 856 

exposure of less stress-tolerant species. Whereas no significant trends were found between 857 

functional redundancy and climate-driven changes in temperate forest (biome 4) and tropical 858 

savannas (biome 7), FR covaried with precipitation-driven risk in arid ecosystems, with desert 859 

and Mediterranean biomes exhibiting high FR associated with MAP Risk, consistent with 860 

redundancy in stress-tolerant traits that may buffer against future drought conditions. In 861 

Mediterranean vegetation communities (biome 12), higher functional redundancy was 862 

associated with lower precipitation-driven risk, highlighting the role of overlapping functional 863 
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traits in stabilising communities despite turnover in species composition. In deserts (biome 13), 864 

contrasting relationships between species diversity, functional diversity, and climate-driven 865 

risk indicate that vulnerability in arid communities reflects a balance between the breadth of 866 

functional strategies and species identities, with some aspects of diversity associated with 867 

greater turnover and others with enhanced resilience. Altogether, these patterns indicate that 868 

precipitation-driven climate risk shows stronger associations with community structure than 869 

temperature-driven risk, and that the ecological consequences of diversity for climate 870 

vulnerability are highly context-dependent, reflecting the specific adaptive strategies and 871 

functional composition of each biome. 872 

  873 

4.3. Applications and future directions  874 

Functional redundancy is most often conceptualised in relation to species loss; however, 875 

climate change is also expected to drive species gains, with newly arriving species exerting a 876 

wide range of functional effects. These effects may enhance community resilience, for example 877 

by supporting mutualistic interactions, or conversely disrupt ecosystem functioning, 878 

particularly when incoming species are non-native or competitively dominant (Traveset et al. 879 

2013; Wardle et al. 2011). Accurately predicting climate-driven community responses 880 

therefore requires accounting for both species loss and species gain, rather than focusing on 881 

extinction processes alone (Gallagher et al. 2013). 882 

Ideally, functional redundancy would be quantified using effect traits explicitly linked 883 

to ecosystem functions and response traits linked to specific environmental stressors; however, 884 

this distinction is often difficult to implement because traits can act as either depending on 885 

context (Suding et al. 2008). At continental scales, these challenges are compounded by 886 

limitations in trait availability, underscoring the importance of large open-access trait databases 887 

such as AusTraits and continued efforts to improve taxonomic coverage (Falster et al. 2021). 888 

Consequently, large-scale studies commonly assume that higher functional redundancy 889 

captures at least some degree of response diversity (Laliberté et al. 2010; Pillar et al. 2013). 890 

Within these constraints, our results provide a continent-wide framework linking 891 

functional redundancy with climate-driven risk in Australian plant communities, with clear 892 

relevance for conservation planning and land management (Walker 1995; Rosenfeld 2002). In 893 

particular, prioritising communities identified as both highly exposed to climate change and 894 

functionally vulnerable—such as those in the tropical North and Mediterranean regions—may 895 

help safeguard key ecosystem functions. Maintaining communities with high functional 896 

redundancy may contribute to buffering ecosystem functioning under ongoing environmental 897 
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change (Mori et al. 2013), while recognising that redundancy does not guarantee resilience. 898 

Future research should explicitly test whether the spatial patterns of functional 899 

redundancy identified here translate into realised ecosystem resilience through time, 900 

particularly following repeated or extreme climatic disturbances (Biggs et al. 2020). Long-901 

term, standardised monitoring networks such as TERN AusPlots, combined with trait-based 902 

data from AusTraits, provide a robust foundation for evaluating when and where functional 903 

buffering persists or fails, thereby refining predictions of climate-driven ecosystem 904 

vulnerability and supporting more targeted conservation strategies. 905 

 906 

5. Conclusions 907 

Australian plant communities show strong regional variation in vulnerability to climate change, 908 

with the tropical north being at greatest risk due to shifts in rainfall and temperature combined 909 

with low functional redundancy, followed by the mediterranean regions of Western and South 910 

Australia. Across the continent, areas characterised by high projected climate-driven 911 

compositional change and low functional redundancy represent communities with the lowest 912 

potential buffering capacity against functional loss or disruption. These findings highlight 913 

priority areas for monitoring and management, providing a framework to safeguard ecosystem 914 

function under a changing climate. Targeted monitoring and prioritizing proactive management 915 

in these hotspots of high at-risk vegetation communities is therefore critical to prevent 916 

irreversible functional loss under future climate scenarios. 917 
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