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Abstract

Climate change threatens plant communities worldwide with substantial species losses, yet the
consequences of reduced diversity for ecosystem functioning remain uncertain. Functional
redundancy, where multiple species fulfil similar ecological roles, may provide functional
insurance by buffering ecosystem processes against species loss. Here, we combined plant
composition data from 646 TERN AusPlots with gap-filled trait data (maximum plant height,
leaf mass per area, and seed dry mass) from the AusTraits database to deliver the first
continental-scale assessment of functional redundancy in Australian plant communities.

By explicitly examining diversity metrics and functional redundancy across biomes, we
assessed functional vulnerability and buffering capacity under climate change. We estimated
potential impacts of species loss under future climates using community thermal and aridity
tolerances relative to projected climate exposure. We analysed the continental distribution of

functional redundancy (reflecting competitive ability, resource acquisition strategies, and


mailto:irene.martin@adelaide.edu.au

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

dispersal—establishment trade-offs), projected climate-driven compositional change, and
relationships with bioclimate to identify vulnerable native communities.

Our results revealed strong latitudinal gradients in climate-change impacts, with
tropical northern communities facing greater risk of compositional change as future hotter and
drier conditions become unsuitable for monsoon-dependent species. Functional redundancy of
current vegetation communities increased toward central Australia, aligning with increasingly
stressful (hotter, drier) bioclimates. At the biome scale, Mediterranean and arid communities
exhibited higher functional redundancy and lower climate risk due to shared drought-adapted
traits. Future rainfall changes were the dominant driver of climate-induced shifts in plant
community composition.

The most vulnerable communities, at highest risk of functional destabilisation, were
located along the northern coastline, with additional hotspots in southern Mediterranean
regions of South Australia and Western Australia. Conservation and monitoring efforts should
prioritise these regions. Our findings highlight how local bioclimate influences functional
redundancy and future climate-change-driven vulnerability, providing a spatial framework to

support biodiversity monitoring, policy and land management across Australia.

Keywords: community ecology; climate change; climate risk; ecosystem function; functional

traits; functional redundancy; resilience; species loss; vulnerability.

1. Introduction

In the global context of rapid environmental change under widespread threatening processes
such as climate change, land use change, and biological invasions (Valladares et al. 2019),
there is an urgent need to protect biodiversity and better understand its role in the functioning
of ecosystems (Diaz et al. 2019; Pettorelli et al. 2021). By providing a range of functional traits
(i.e. measurable attributes or characteristics of species which relate to their fitness and
ecological role on ecosystem processes (Gallagher et al. 2020)) biodiversity affects ecosystem
functioning, productivity, resilience, and stability through complementary and overlapping
ecological roles. In this sense, functional redundancy (Fr) quantifies the degree of overlap in
functional roles within ecological communities, reflecting the extent to which multiple species
contribute similar ecological functions (Walker, 1992). Higher redundancy indicates a greater
potential for buffering ecosystem functioning against species loss, as remaining functionally
similar species may partially compensate for declines or local extinctions (Walker, 1995).

However, such compensation is not guaranteed and depends on whether functionally analogous
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species are able to persist and respond positively under changing environmental conditions; if
these species are similarly affected by climate stressors, ecosystem functioning may still be
impaired despite high redundancy. Importantly, functional redundancy traditionally focuses on
species loss, yet climate change can simultaneously drive both species loss and species gain,
with incoming species having variable functional consequences ranging from enhanced
community resilience to functional disruption.

Consequently, Fr should be interpreted as a measure of potential functional resilience,
with low Fr indicating limited capacity to absorb species loss and maintain ecosystem
functioning. While Fischer and de Bello (2003) suggested that redundancy implies resilience,
with the loss of some species having little detectable effect at the community scale, more recent
work has cautioned that this framing may underestimate the unique and context-dependent
contributions of species to ecosystem functioning (Eisenhduer ef al., 2023). Here, we retain the
Fr framework due to its ecological and conservation relevance in illustrating that certain
species can be lost within a community without immediate loss of ecosystem functioning
(Fischer and de Bello 2023); however, we acknowledge that it represents one end of a
continuum of functional overlap among species, better conceptualised as functional
similarity—a spectrum of overlapping but non-identical contributions to ecosystem processes
(Eisenhauer et al. 2023). Resilience therefore depends not only on the degree of functional
overlap, but also on response diversity, defined as variation in how species sharing similar
functions respond to environmental change. A limitation of Fr is that functionally similar
species may respond in comparable ways to a given stressor, leading to functional loss despite
high overlap, such that resilience depends jointly on functional redundancy and response
diversity (Elmqvist et al. 2003; Mori et al. 2013).

Functional redundancy is intricately linked to other biodiversity metrics within plant
communities, namely species diversity (Sp) and functional diversity (Fp) (Ricotta ef al. 2016).
Species diversity summarises the variety and abundance of taxonomically distinct organisms
occurring in ecological communities, whereas Fp summarises the distribution of species and
their abundances in the functional trait space of a given community (Mouillot ef al. 2013).
Within a given plant community, the more species that share similar functions (or are redundant
in their function), the less vulnerable that function is to loss (Pillar et al. 2013). In this sense,
species-rich communities (high Sp) often have more species that can perform similar ecological
roles, thus increasing the likelihood of functional redundancy (Fonseca and Ganade, 2001).
Higher Fp indicates a wide array of ecological functions, being therefore widely considered to

reflect overall ecosystem functioning (Cadotte et al. 2011). Functional redundancy provides a
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more mechanistic link between biodiversity and ecosystem resilience and stability; in the event
of Sp loss, higher Fr should buffer a community from losing Fp, as the likelihood of losing a
functionally unique species is reduced. In practice, limitations in trait availability and scale
often preclude explicit separation of effect traits and response traits, meaning that Fr is
commonly interpreted as a proxy for at least some degree of response diversity in large-scale
analyses. Such constraints are particularly relevant at continental scales, reinforcing the
importance of large-scale open-access trait databases for macroecological assessments of
functional resilience (Falster et al. 2021).

Despite the growing interest in understanding how Fr affects ecosystem resilience
(Biggs et al. 2020), how Fr varies at macroecological scales, and the potential drivers of such
variation remain understudied. As a result, assessing how functional redundancy varies across
climatic gradients and biomes provides a tractable way to link biodiversity structure with
potential ecosystem resilience under climate change.

Climate change has driven local and global species extinctions in deep time and is
predicted to be a driver of plant extinction in the Anthropocene (Valladares et al. 2019). This
loss of biodiversity is likely to impair the biological, chemical, and physical processes
performed by ecosystems with the specific functional implications of such species loss only
beginning to be understood (Hooper et al. 2012; Gallagher et al. 2013). Climate change,
including increasing temperature and changes in precipitation patterns, with subsequent
changes in the frequency and duration of drought conditions, are likely to force many plant
species beyond their climatic tolerance limits and towards extinction (Lancaster & Humphreys,
2020; Bennett et al. 2021). Assessing the vulnerability of different ecosystems (i.e. the extent
to which various ecosystems are likely to be damaged or experience functional disruption)
under climate change (e.g. climate-driven stressors such as increasing temperatures and altered
precipitation patterns) has become a common practice (Li ez al. 2018). However, estimates of
climate change vulnerability tend to focus on predicted changes to mean climate conditions
and the direct impact these will have on species, while ignoring potential resilience
mechanisms including individual physiological adaptation/tolerances and community level
resilience mechanisms. Gallagher ef al. (2019) addressed this limitation by measuring the
adaptive capacity of Australian vegetation alongside a climate change risk metric (in the sense
of projected climate-driven changes in community composition when the environmental niche
limits are expected to be surpassed under future climate conditions).

Australia spans one of the widest climatic gradients globally, encompassing tropical,

temperate, Mediterranean, and arid ecosystems. This climatic diversity, combined with high
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levels of functional variation in plant communities, provides a unique natural laboratory for
examining how biodiversity and functionality at the community level will be affected by
climate change. We propose that understanding Fr across Australia will also provide
complementary information to the impact caused by climate change by indicating the
functional resilience of plant communities to species loss. At present, the Fr in Australian plant
communities has only been explicitly measured once as part of a global meta-analysis
(Laliberté et al. 2010). More broadly, continental-scale functional trends and their
environmental drivers have seldom been quantitatively investigated in Australian vegetation
(Andrew et al. 2021, 2025).

Given the potential importance of Fr as an indicator of community resilience to climate
change induced species loss, our study seeks to achieve four main aims. These are to (1)
determine the geographic distribution of Fr among plant communities across the Australian
continent, (2) investigate how Fr varies along bioclimatic gradients, (3) map Australian
communities that are most vulnerable to climate change by integrating species’ exposure to
projected climatic shifts with their sensitivity and adaptive capacity, and (4) examine the
relationship between Fr and projected climate driven changes in the composition of sampled
plant communities. Specifically, we hypothesised that (1) many locations across Australia
would have very low Fp coupled with very high Fr (aligning with a previous study that focused
on species-level records across Australia; Andrew et al. 2021), due to species niche
specialisation driven the continent’s diverse and often extreme environmental gradients.
Although the direction of the relationship between Fr and bioclimatic variables is unclear in
terrestrial plant communities, we expect (2) Fr to be higher in more consistently extreme
conditions (e.g. increased aridity), where species display drought- and heat-adaptive traits and
therefore might be more similar functionally, and overlap more in their strategies evolved as
long-term adaptations to persistent environmental stress. Based on well-established climatic
gradients across Australia and ecological theory linking global warming exposure and
physiological limits to community turnover (di Marco et al. 2019), we expect (3) the projected
climate driven changes in composition not to be evenly distributed across Australia’s plant
communities, but reflect instead distinct geographic drivers; specifically, we expect
temperature-driven changes to be most acute in the hotter northern regions, and precipitation-
driven risks most pronounced in Mediterranean-type ecosystems of southwest Western
Australia and southern South Australia. We expect these patterns assuming that many species
in these areas may already be close to their thermal or hydric limits (Gallagher et al. 2019), and

therefore shifts could occur if communities overpass their limit threshold, regardless of their
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current Fr. Finally, we expect (4) Fr to be positively associated with projected climate-driven
shifts in community composition, particularly in areas expected to become more arid, due to
the synergistic effects of increasing heat and drought. Together, these hypotheses are tested
using data from the AusPlots ecosystem surveillance network, a standardized, continent-wide
vegetation monitoring program designed to capture plant community composition, structure,
and functional traits across Australia. This comprehensive standardised field-based dataset
allows for a novel biome-specific assessment of how multiple dimensions of biodiversity and

functionality mediate climate-change risk at the community scale.

2. Methods

To achieve these aims we combined estimates of Fr with projected climate-driven changes in
composition across an existing continental-scale plot network monitoring Australian plant
communities. We measured Fr using the three traits of the leaf-height-seed (LHS) scheme
which reflects the major axes of plant function: leaf mass per area (LMA), maximum plant
height and seed dry mass (Westoby, 1998; Diaz ef al. 2016). Leaf mass per area (LMA), the
inverse of specific leaf area (SLA), captures species’ trade-off between carbon investment in
leaf-level photosynthetic tissues and leaf longevity (Westoby, 1998; Wright et al. 2004).
Maximum plant height reflects species’ strategies in relation to competition for light and is
therefore related to canopy structure and shading in ecosystems (Westoby, 1998; Falster and
Westoby, 2003). Seed dry mass indicates species’ maternal investment in reproduction and can
be related to the capacity to establish across different environmental niches (Westoby, 1998).
Afterwards, we measured the climate change risk of individual species based on their observed
climatic niches and then scaled this up to the community level by calculating the community
weighted mean climate change risk (Gallagher ef al. 2019), and we mapped Fr and climate
change risk to determine their spatial distributions. Finally, we constructed linear regression
models to explore the relationship between Fgr, climate change risk and environmental
variables.

We combined plant community composition data, species functional trait data, long-
term climate data, predicted climate change exposure data and species climate niche data to
generate our response and predictor variables. The continental approach enables broadscale
trends to be detected along key bioclimatic gradients such as temperature and precipitation,
elucidating environmental drivers of community-level properties such as Fr and climate
change risk (Violle et al. 2014). Furthermore, the Australian continental flora is a particularly

useful study system due to the contrasting climates existing across the land, that strongly
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influence species distribution, and the characteristics of the different ecosystems (Hughes et
al., 2003; Keith 2017). Australia is latitudinally characterised by a tropical north with wet
summers and dry winters, an arid to semi-arid interior covering most of the continent, and a
temperate south with hot dry summers and cool wet winters (Keith 2017). Apart from
analysing these trends at the continental scale, to detect scale-dependency in our results we
also conducted the analyses at two finer spatial scales. First, we replicated the analyses at the
biome scale, using the Ecoregion 2017 dataset based on the classification provided by Olson

et al. (2001) which designates 7 major biomes in Australia.

2.1. Plant community composition data

The Terrestrial Ecosystem Research Network (TERN) AusPlots ecosystem surveillance
program monitors over 1,000 1-ha plots across the Australian continent (Fig. 1) (Sparrow ef al.
2020). The network is stratified by bioregion to maximise ecological coverage (Guerin et al.
2020a) and targets representative vegetation communities that have experienced minimal
recent disturbance, based on site selection protocols that avoid areas with recent land-use
change, clearing, or intensive management. Within each 1-ha plot, vegetation is surveyed using
a standardised point-intercept protocol comprising 1,010 sampling points arranged along ten
100-m transects. At each point, all vascular plant species intercepting a vertical pin are
recorded, providing quantitative estimates of species presence and proportional cover that
characterise the local plant community (White et al. 2012). These data form the basis for all
community-level diversity and functional metrics used in this study. For each plot, a voucher
specimen is collected for every recorded species and identified by professional botanists, with
determinations lodged in state herbaria, ensuring taxonomic consistency and accuracy. In
addition to vegetation composition and structure, AusPlots surveys also record soil properties
and landform attributes, including slope (ranging from 0-9° with a median of 1°, and an average
of 2.5°) and aspect. These landform variables were not included as predictors in the present
analyses because our focus was on broad-scale climatic drivers of diversity and climate-change
risk, and because slope and aspect primarily influence local microclimatic variation that is not
readily comparable across biomes at the continental scale. Throughout this study, each
AusPlots site is treated as a discrete plant community, representing the assemblage of co-
occurring species sampled across the full 1-ha area at the time of survey.

We extracted plot-level vascular plant species percent cover data for 787 TERN
AusPlots using the ‘ausplotsR’ package (Guerin et al. 2020b; Munroe et al. 2021). In cases

where repeated surveys were available for plots, the most recent survey was selected to ensure
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that the data best reflected current species composition. We used species percent cover data as
a proxy for species relative abundances (See supplementary material for the R script for exact
extraction workflow).

For analyses at continental-scale we modelled all plots across the TERN AusPlots
network together. For biome-scale analyses we grouped plots according to the major biome
they occupy in the Olson et al. (2001) biome classification (Fig. 1). From analyses at the biome
scale, we selected four biomes, including temperate broadleaf and mixed forests (biome 4),
tropical/subtropical grasslands, savannas and shrublands (biome 7), Mediterranean forests,
woodlands and shrublands (biome 12), and deserts and xeric shrublands (biome 13). Other
biomes present in Australia (i.e. biome 1 - Tropical/Subtropical Moist Broadleaf Forests, biome
8 - Temperate Grasslands, Savannas & Shrublands and biome 10 - Montane Grasslands &
Shrublands) were excluded from this study due to the low number of TERN AusPlots within
their boundaries. These four biomes object of study capture the major climatic and ecological
gradients in Australian vegetation. Tropical and subtropical grasslands, savannas, and
shrublands (biome 7) are characterized by high mean annual temperatures, strong seasonality
in rainfall, and dominance of fire- and drought-adapted species, often occupying narrow
ecological niches (Shaw et al. 2000). Temperate broadleaf and mixed forests (biome 4), in
contrast, experience moderate temperatures and relatively stable precipitation, supporting
higher species richness and less extreme functional constraints (Bailey, 1964). Mediterranean
forests, woodlands, and shrublands (biome 12) in southwestern and southeastern Australia are
shaped by hot, dry summers and mild, wet winters, favouring species with stress-tolerant or
drought-avoidance strategies (Lionello et al. 2006). Deserts and xeric shrublands (biome 13)
are characterized by extremely low precipitation, high temperatures, and high climatic
variability, resulting in plant communities strongly constrained by environmental filtering
(Noy-Meir, 1973). Grouping plots by these biomes allows us to assess context-specific
functional responses, capturing how climate, species physiology, and evolutionary history
interact to shape diversity and functional redundancy across contrasting environmental settings

(Laliberté et al. 2010).
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Figure 1. Biomes of Australia used in this study and geographic locations of AusPlots flora
inventories (black circles). Biome 4 — Temperate broadleaf and mixed forests (n = 43 plots),
biome 7 — Tropical/Subtropical Grasslands, Savannas & Shrublands (n = 218 plots), biome
12 - Mediterranean Forests, Woodlands & Shrublands (n =203 plots), biome 13 - Deserts &
Xeric Shrublands (n = 280 plots). Note that several biomes were excluded from this study
due to the low number of TERN AusPlots within their boundaries: biome 1 -
Tropical/Subtropical Moist Broadleaf Forests (n = 0), biome 8 - Temperate Grasslands,
Savannas & Shrublands (n = 28) and biome 10 - Montane Grasslands & Shrublands (n = 15).

2.2. Trait data

We extracted trait data from the AusTraits database 6.0.0 for all species occurring in our plots.
AusTraits contains data for 448 functional traits across 28,640 Australian taxa compiled from
multiple sources (Falster ef al. 2021).

From the 4,428 species recorded in AusPlots with the point intercept methodology, we
obtained mean values for maximum plant height (3,641 species), leaf mass per area (LMA)
(1,304 species), and seed dry mass (2,574 species), respectively. We log transformed all trait
values to account for differences in their units and skewness in their distributions, which is
standard for community trait analysis (Bruelheide er al. 2018). To improve species

representation, we followed the methods outlined in Andrew et al. (2021), consisting of two
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subsequent steps by which missing trait values were first estimated missing values via linear
models, and subsequently gap-filled utilising all accessible and relevant trait data from the
native Australian flora. In summary, to leverage the available measurements of leaf/phyllode
and seed dimensions for a significant proportion of species in AusTraits, we first estimated leaf
area for species lacking direct area measurements based on measurements of leaf length and
width. To do so, we conducted Linear Mixed Models (LMM) using the Ime4 R package (Bates
2010). Likewise, seed dry mass was estimated using seed length as a fixed effect, combined
with a random factor of family. Predicted trait values were well correlated to known values
(seed mass 1* = 0.85, leaf area r> = 0.81). The models demonstrated strong explanatory power,
evidenced by high conditional R? values (R?;) for both trait models, with a substantial portion
of the explanatory power derived from fixed effects, reflected in high marginal R? values (seed
dry mass: R%; = 0.85; R?,, = 0.68; leaf area: R* = 0.79; R*, = 0.66).

We adopted a minimum threshold of 80% trait coverage by abundance for plots to be
included in our study as this threshold has been shown to limit the estimation bias of community
weighted functional properties (Borgy et al. 2017). In a second step, to increase the taxonomic
coverage of trait data we gap-filled values for species without direct observations in AusTraits
using the GapFilling() function from the BHPMF R package (Schrodt et al., 2015), which
employs Bayesian hierarchical probabilistic matrix factorisation and correlation structure to
impute missing trait values. This method exploits trait—trait correlations and phylogenetic trait
signals within the existing trait data to predict unknown trait values. Gap-filling was run on a
matrix of trait values for plant height, leaf area, length, and width, leaf mass per area (inverse
of SLA), and seed mass and length; species with no available trait data were dropped from all
subsequent analyses (n = 24,915 native Australian plant species retained). Finally, we applied
the 80% trait coverage by abundance threshold to the total of 787 AusPlots, leaving 649 plots
which met the threshold.

2.3. Diversity indices

We calculated four diversity indices, including species richness (Sr), species diversity (Sp),
functional diversity (Fp) and functional redundancy (Fr). We followed the methodology of
Ricotta et al. (2016) in which Sp is calculated as Simpson’s diversity index and Fp is calculated
as Rao’s quadratic entropy. Simpson’s diversity is bound between 0 and 1 and it incorporates
plot-level species relative abundances. Rao’s quadratic entropy is also bound between 0 and 1
and it accounts for plot-level species relative abundances as well as species pairwise functional

dissimilarities. Rao’s quadratic entropy is ultimately the mean functional dissimilarity of two
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randomly selected individuals from a given community (Botta-Dukat, 2005). Importantly, the
maximum value of Rao’s, when all species are maximally functionally dissimilar, is equal to
Simpson’s index. Therefore, dividing Sp by Fp yields a measure of the functional uniqueness

of a community (U).
Fp
Sp

U= (eq. 1)

The complement of U is a measure of the functional redundancy of a community (Fr),

which summarises the proportion of species diversity not encompassed by functional diversity.
Fr=1-U (eq. 2)

All alpha diversity indices were computed with the ‘uniqueness’ R function provided
by Ricotta et al. (2016).

To assess whether Fr exhibited any statistically detectable geographic structure, we
quantified spatial autocorrelation using Moran’s I with a 5-nearest-neighbour spatial weights
matrix. In addition, we evaluated broad spatial trends by modelling Fr as a function of latitude
and longitude (second-order polynomial terms). To assess whether Fr differs among major
Australian biomes, we also conducted a one-way ANOV A with subsequent Tukey HSD post-
hoc tests to evaluate pairwise differences among biomes.

Finally, we also calculated the Fp—Fr ratio, as an indicator between different
community properties, namely functional breadth (represented by Fp) relative to functional
overlap (Fr). The Fp—Fr ratio provides an integrated perspective on whether communities are

dominated by many distinct strategies or by multiple species sharing similar traits.

2.4. Bioclimatic data

We obtained long term (1970-2000) mean climate data in a raster format from ‘WorldClim 2.1’
and extracted values at the coordinates of each plot (Fick and Hijmans, 2017) at a resolution of
10 minutes of a degree. We extracted mean annual temperature (MAT; °C), temperature annual
range (T-Range; °C), maximum temperature of the warmest month (T-Max; °C), mean annual
precipitation (MAP; mm), precipitation seasonality (P-Seasonality) and precipitation of the
driest month (P-Dry; mm). These variables reflect the mean, variability, and extremes of
temperature and precipitation, all of which are projected to change under future climate

scenarios for Australian ecosystems (Hughes, 2003).

2.5. Future climate projections and climate change risk
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To assess the climate change risk faced by plant communities across Australia, we
followed an approach informed by Gallagher et al. (2019), by adapting their grid-based
methodology in order to calculate plot-based climate change risk metrics. We calculated
metrics of risk for changes to both MAT and MAP. For these calculations we used the same
set of species as in the diversity index calculations to enhance comparability between diversity
indices and climate change risk metrics. First, we obtained species-level climate niche data
compiled by Gallagher et al. (2019), which represents the realised climatic limits of Australian
plant species based on cleaned occurrence records for herbarium specimens from the Australian
Virtual Herbarium (AVH). To account for potential outliers in these occurrence records, we
defined species' temperature tolerance (MAT tolerance) as the 98™ percentile of mean annual
temperature (MAT) values across their distribution, and precipitation tolerance (MAP
tolerance) as the 2" percentile of mean annual precipitation (MAP) values. We then matched
these species-level climate tolerances to the species occurring in each plot and calculated
community-weighted mean (CWM) climate tolerances by multiplying each species’ tolerance
value by its relative abundance in the plot. These CWMs represent the average climatic
tolerance of the plant community in terms of upper temperature and lower precipitation limits.

To assess current climatic safety margins, we subtracted the present-day (baseline)
climate conditions from the community-weighted mean tolerance values at each plot.
Specifically, for MAT and MAP, the safety margins were, respectively, calculated as:

MAT Safety Margin = CWM MAT Tolerance — Current MAT
MAP Safety Margin = Current MAP — CWM MAP Tolerance

These safety margins represent the climatic buffer a plant community has before it
reaches its collective thermal or drought limit.

Australia is projected to experience substantial warming by 2070, with mean annual
temperatures expected to increase across the continent, particularly in the interior and northern
regions. Precipitation patterns are likely to become more variable, with decreases in
cool-season rainfall and longer drought duration projected for many parts of the south and east
(especially mediterranean-type regions), while some northern areas may experience more
intense wet-season rainfall events (State of the Climate 2024). Hence, we then estimated future
climate exposure by calculating projected changes in MAT and MAP between current climate
conditions and predicted projections for 2070 under the high-emissions scenario RCP8.5

(rcp85, 800 ppm of CO;, by 2070). For that, we used downscaled climate data from CHELSA
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based on five global circulation models for 2061-2080, including ACCESS1.0, CNRM-CMS,
HADGEM2-CC, MIROCS, and NorESM1-M.
Finally, we calculated plot-level climate change risk as the difference between exposure
and safety margin:
MAT Risk = Exposure — Safety Margin
MAP Risk = — (Exposure — Safety Margin)

For MAT, a positive risk value indicates that future climate change by 2070 in terms of
temperature is expected to exceed the current adaptive capacity of the community (i.e. the
community’s mean tolerance limit), placing it at greater risk. Conversely, negative or low risk
values suggest that the community's climatic buffer is sufficient to accommodate projected
temperature changes. For MAP, the opposite, when Exposure — Safety Margin has a negative
value indicates that future drought conditions by 2070 are expected to exceed the current
adaptive capacity of the community, placing it at greater risk, whereas positive values suggest
that the community's climatic buffer is sufficient to accommodate projected temperature
changes, hence why the values have been multiplied by (-1).

We acknowledge that species respond individually to climate change and that
communities are not strictly discrete units. Community-weighted mean (CWM) tolerances
provide an operational estimate of the average climatic tolerance of the dominant species in
each plot, capturing the functional response of the community as a unit. While individual
species may exceed their limits without immediately altering functional diversity, CWM-based
safety margins allow community-level comparison of climate change risk across a given spatial

scale.

2.6. Mapping alpha functional redundancy and climate change risk

To visualise the spatial distribution of Fr and climate change risk we created maps depicting
their values across the TERN AusPlots continental network using the ggplot2 (Wickham 2016)
and ggpmisc (Aphalo 2025) packages in R. We generated separate maps for MAT Risk, MAP
Risk and alpha Fr. Additionally, we constructed bivariate maps —derived directly from
quantitative, plot-level metrics, ensuring that observed patterns reflect measured differences
rather than subjective interpretation— which illustrates Fr and climate change risk
simultaneously for each plot. For mapping functional redundancy (Fr) and climate change risk
(MAT and MAP), we classified plots into three categories each. Fr categories were defined as

follows: low redundancy corresponded to the lowest 33% of Fr values, medium redundancy
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included values between the 33™ percentile and the 67" percentile of plots considered at risk,
and high redundancy included values above the 67" percentile. This approach aims to
emphasize relative differences in buffering capacity among communities, rather than assuming
an absolute redundancy threshold, and to highlight areas that have considerably lower
functional redundancy than others and therefore are subjected to higher risk under climate
change. Climate-change risk categories were defined using biologically meaningful thresholds;
MAT Risk was classified as low risk for plots that were not at risk (MAT Risk < 0); similarly,
MAP Risk was classified as low risk for plots that were not at risk (MAP Risk > 0). Among
plots at risk (MAT Risk > 0 and MAP Risk < 0), we then used the median of the at-risk subset
to distinguish medium and high risk categories. approach ensures that the classification reflects
both the distribution of Fr and the degree of climate change exposure among at-risk plots,
avoiding the bias introduced by equal-interval or quartile-based splits of the entire dataset.
These classifications were used exclusively for visual synthesis in bivariate maps and do not
affect statistical analyses. Together, they facilitate the identification of relative vulnerability
hotspots (high climate-change risk combined with low Fr) and support spatial comparison
across regions while preserving the underlying quantitative nature of the data. Beyond serving
as a visual illustration, these bivariate maps provide an analytical framework to identify spatial
patterns and hotspots of vulnerability, (high climate change risk and low Fr), highlighting plots
that will likely undergo climate-driven changes in community composition and enabling

comparison across regions and prioritisation for conservation or further study.

2.7. Modelling the relationship between diversity indices, bioclimate and climate change risk
We investigated the drivers of plant diversity metrics (species richness, Sgr; species diversity,
Sp; functional diversity, Fp; functional redundancy, Fr) and climate-driven vulnerability (MAT
Risk, MAP Risk) using linear regression models at two spatial scales: continental (all AusPlots
across Australia) and biome-specific. For diversity metrics, we included six bioclimatic
predictors (MAT, T-Max, T-Range, MAP, P-Dry and P-Season). For climate risk metrics, we
tested two complementary predictor sets: bioclimatic variables and diversity indices (Sr, Sp,
Fp, Fr). All models were additive and excluded interactions. We evaluated all possible models
containing any subset of predictors, including the null model, and selected the best-supported
model based on the lowest Akaike Information Criterion (AIC). For each model, we calculated
AAIC and Akaike weights, with AAIC < 2 indicating substantial support. From each best-

supported model, we extracted slopes, standard errors, t-values, p-values, and goodness-of-fit
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metrics (R?, adjusted R?, residual standard error, AIC, BIC) to quantify the strength, direction,

and significance of predictors. Only results from the best-supported models are reported.

3. Results

Species richness (Sgr) averaged 21.01 species per plot (£ 11.17 Standard Deviation (SD); Inter
Quartile Range (IQR) = 13-27) , indicating high variability across the sampled sites. Species
diversity (Sp) had a mean of 0.72 (£ 0.18 SD; IQR = 0.64-0.85), while quadratic functional
diversity (Fp) averaged 0.18 (£ 0.07 SD; IQR = 0.14-0.22). Functional redundancy (Fr) in
sampled plant communities ranged from 0.44 to 0.93, with a mean value of 0.75 (£ 0.07 SD;
IQR =0.71-0.80).

While no dominant spatial gradient in Fr was evident across the continent (Fig. 2), Fr
exhibited weak but significant positive spatial autocorrelation (Moran’s I = 0.205, p <0.001),
indicating that nearby plots tend to be more similar in Fr than expected by chance. A spatial
model including second-order polynomial terms for latitude and longitude detected statistically
significant non-linear spatial structure; however, spatial position explained only a small
proportion of the overall variation in Fr (polynomial model: adjusted R? = 0.048, p < 0.001).
This indicates that, although broad and non-linear geographic patterns exist (including a
tendency for higher Fr in interior regions), spatial location is a relatively minor contributor to
continental-scale variation in Fr, consistent with our interpretation of weak geographic
gradients rather than strong spatial control. As such, central Queensland, the arid zones of
South Australia and the Northern Territory, and parts of western New South Wales appeared
as hotspots of high Fr. In contrast, regions such as Tasmania, eastern New South Wales, the
west coast of Western Australia, the northern tip of the Northern Territory, and the Mount Lofty
Ranges in South Australia exhibited mostly lower Fr values. When comparing Fr across
biomes, we found significant differences (ANOVA: F = 1042, p < 0.001). Pairwise
comparisons (Tukey HSD) indicate that some biomes, including the arid deserts and xeric
shrublands (biome 13) and the tropical and subtropical grasslands, savannas and shrublands
(biome 7), had significantly higher Fr than Mediterranean-type (biome 12) and temperate forest
(biome 4) biomes (see supplementary material for further details). Overall, plots with high Fr
were not strongly spatially segregated from those with low Fg; thus, despite these broad-scale
differences, high and low Fr plots remain intermixed locally, supporting our original
conclusion that fine-scale hotspots (e.g., Central Queensland, Mount Lofty Ranges) reflect site-
level variation that cannot be fully captured by biome aggregation. We note, however, that

some of this local variability may also reflect the necessarily sparse sampling of large-scale
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ecosystems by 1-ha plots, such that fine-scale heterogeneity within landscapes can contribute

to apparent spatial variability in Fr at continental scales.

Functional Redundancy

/= 09
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Bl 05 .

Figure 2. Map of plot-level functional redundancy values across the TERN continental
vegetation monitoring plot network (n = 646; notice that for three plots, calculations of certain
diversity metrics were not possible). Colour denotes functional redundancy values at each plot
(legend). Black lines indicate the approximate boundaries of major Australian biomes, shown

for geographic context.

3.1. Variation of diversity indices along bioclimatic gradients
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While some temperature variables were correlated (e.g., MAT and T-Max, r =0.87, p <0.001;
see supplementary material for further details), we show their independent bivariate
relationships to illustrate the different ecological dimensions of each bioclimatic variable.

Across Australia, multivariate AIC-selected models revealed consistent climatic
influences on plant diversity patterns. Species richness and diversity (Sg and Sp), and
functional diversity (Fp) were primarily shaped by temperature—precipitation trade-offs, with
temperature predictors exerting predominantly negative effects and mean annual temperature
showing mainly positive associations (see Table 1 for specific significant effects). Together,
these models explained between 7% and 24% of the variation in Sg, Sp, and Fp. In contrast,
functional redundancy (Fr) responded only weakly to climate, increasing with mean
temperature and thermal range and decreasing with maximum temperature and precipitation
seasonality. Although several predictors were retained in the best model for Fgr, this only
explained 4% of its variation, indicating that functional redundancy seems to be decoupled
from broad-scale climatic gradients.

Biome-level analyses revealed marked regional differentiation in the climatic drivers
of plant diversity (see Table 2 for specific significant effects; Supplementary material). In
temperate broadleaf and mixed forests (biome 4), diversity patterns were mainly structured by
temperature variability, with species richness and functional diversity declining under greater
thermal range, while precipitation variables played a stronger role in shaping species diversity.
In tropical savannas (biome 7) pulsed water availability displayed a central role, species
richness increased with mean temperature but declined under higher thermal extremes and
stronger precipitation seasonality, species and functional diversity were positively associated
with annual precipitation and negatively by increasing rainfall seasonality, whereas functional
redundancy was positively influenced by thermal range. In Mediterranean forests, woodlands
and shrublands (biome 12), precipitation was the dominant driver, with richness, species
diversity and functional diversity increasing with stronger seasonal and dry-period rainfall,
alongside negative effects of mean temperature; functional redundancy in this biome declined
with increasing thermal and hydric stress. In deserts and xeric shrublands (biome 13), species
richness and functional diversity responded to contrasting temperature and precipitation
gradients, and functional redundancy declined under greater climatic variability. Together,
these biome-specific patterns indicate that plant diversity metrics respond to distinct climatic

constraints depending on regional environmental context.
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Table 1. Best-fit linear models explaining spatial variation in species richness (SR), species diversity (SD), functional diversity (FD), and
functional redundancy (FR) across Australia and within selected biomes. Models were selected using AIC-based stepwise selection. The
table reports the retained predictors, model fit statistics (adjusted R?, sigma), and Akaike Information Criterion (AIC). The direction and
statistical significance of each predictor in the best model are shown in brackets after each term (+: positive effect; —: negative effect; * p

<0.05, ** p <0.01, *** p < 0.001). Predictors without brackets were retained in the best model but were not statistically significant.

ls,frpiggf: Best model formula AdjR? sigma  AIC  dfresidual
Sr SR ~ MAT®™ + T Max ™ + T Range™™ + MAP®"™ + P_Season™" 0.23 9.75  4783.56 640
Sp SD ~ MAT®™ + MAP®*") + P Dry™*** 0.07 0.08 -434.38 642
Fo FD ~ MAT®™ + T Max # + T Range + MAP*™ + P Dry™™ 0.11 0.11 -1764.83 640
Fr FR ~ MAT®™) + T Max“™ + T Ranie“**) +MAP + P Season" 0.04 0.04  -1566.12 640
Sr SR~T Max™ +T Range™" 0.54 8.30 231.10 29
Sp SD ~ MAT + MAP®™ + P Dry® + P_Season") 0.21 0.16 -18.81 27
Fp FD ~T Range®™ 0.14 0.06 -84.79 30
Fr FR ~MAT 0.03 0.07 -72.10 30
Biome 7 — Tropical / subtropical grasslands, savannas and shrublands

Sr SR ~MATH™ + T Max“™ +P Dry™™ +P Season“™ 0.29 9.91 1291.47 168
So SD ~ MAT + MAP“™ + P Season” 0.12 0.17 -114.92 169
Fp FD ~ MAP“™ + P Season” 0.13 0.06 -473.37 170
Fr FR~T Range™" 0.03 0.07 -431.87 171
Biome 12 — Mediterranean forests, woodlands and shrublands

Sr SR ~MAT™ + T Max®™ + P Dry™™ + P _Season™ 0.48 8.30 1201.84 164
Sp SD ~ MAT®™ +P_Season®™*" 0.16 0.15 -165.96 166
Fp FD ~P Dry®™™ +P Season®" 0.21 0.06 -489.30 166
Fr FR ~ MAT®™ + MAP“™ + P Dry™™" 0.18 0.07 -433.99 165

Biome 13 — Deserts and xeric shrublands
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Sr SR ~ MAT®™ + T Max®™ + T Range” + MAP®™ 0.09 825  1658.41 229
Sp SD ~P_Season™” 0.01 0.17  -161.00 232
Fp FD ~ MAT™ + T Max®™ + MAP + P Season™" 0.06 0.06 -653.69 229
Fr FR ~ MAT®™ + T Range®™™ + MAP*") + P Season™ 0.13 0.07 -605.50 229
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3.2. Geographic distribution of climate change risk and its relationship to environmental
variables

Out of 649 plots, 201 (31%) are considered at risk to species turnover and changes in
community composition due to projected changes in mean annual temperature (Risk MAT >
0; Fig. 3). Plots with the highest Risk MAT values are primarily located in the northern half of
the continent, whereas lower-risk plots occur at more southerly latitudes. Meanwhile, 608 plots
(93.7%) are considered at risk from predicted changes in mean annual precipitation (Risk MAP
< 0), with the highest-risk plots generally located at the northern and southern extremes of the
continent and lower-risk plots in central regions (Fig. 3). Across the TERN AusPlots network,
regression analyses revealed that Risk MAT increases strongly with latitude (R? = 0.58, p <
0.001), indicating higher temperature-driven risk in northern regions (slope = 0.254 °C per
decimal degree latitude; Fig. 4). Incorporating longitude slightly improved model fit (R? = 0.66,
p <0.001), showing that risk rises northwards but decreases slightly westwards (longitude slope
=-0.071 °C per decimal degree). In contrast, Risk MAP declines with latitude (R* = 0.20, p <
0.001), suggesting greater precipitation-driven risk in southern regions. These regression
models complement the histograms and maps, quantitatively highlighting broad latitudinal

trends in climate change exposure.
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550  Figure 3. a) mean annual temperature (MAT) (left) and mean annual precipitation (MAP)
551  (right) safety margins; b) climate change risk in terms of predicted changes to MAT (left) and
552 MAP (right) across the TERN AuPlots network; ¢) distribution histograms of Risk MAT and
553  Risk MAP. For MAT climate change risk, notice that the values in the legend represent °C,
554  over (positive) or below (negative) the safety margin, to which the vegetation community will
555  be exposed in the future. For MAP climate change risk, notice that the values in the legend
556  represent water deficit, over (positive; i.e. more water deficit and harsher conditions) or below
557  (negative) the safety margin, to which the vegetation community will be exposed in the future.
558  Red points on the map represent at risk plots, while blue colours represent plots with risk values
559  of zero or less (the darker the blue the less at risk).
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Figure 4. a) distribution histograms of Risk MAT and Risk MAP; and b) scatterplots of Risk
MAT and Risk MAP versus latitude with fitted linear regression lines (solid), illustrating broad
latitudinal trends in climate change exposure across the network. On both the histograms and
the scatterplots, red represents plots at risk (positive for MAT, negative for MAP), while plots

not at risk are shown in blue, highlighting the big proportion of plots at risk across the network.

Across all AusPlots, MAT Risk increased with higher T-max and P-season, and
decreased with increasing MAT and temperature range (T-Range), indicating that sites in hotter
regions with marked precipitation seasonality are projected to experience greater temperature-
driven turnover (Table 2; see supplementary material for full model outputs). In contrast, MAP
Risk increased with MAT, MAP, P-dry, and P-season, and decreased with T-range and T-max,
suggesting that precipitation-driven turnover is highest in warm sites with moderate
temperature variability (Table 2; Supplementary material). MAP Risk displayed an inverse
pattern, increasing with MAT and T-Range and decreasing with MAP and T-Max, with an
additional negative effect of P-Dry. These patterns indicate that temperature-driven and

precipitation-driven turnover risks respond to distinct climatic axes, with the former most
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elevated in warmer and seasonal environments, and the latter being greater in hotter and arid
regions.

Biome-level analyses revealed marked regional differentiation in the climatic drivers
of plant diversity (Table 2; Supplementary material). In temperate broadleaf and mixed forests
(biome 4), diversity patterns were primarily structured by temperature extremes, with species
richness increasing with maximum temperature and declining with temperature range, and
functional diversity also decreasing with greater thermal variability. By contrast, species
diversity in this biome was more strongly associated with precipitation, increasing with mean
annual precipitation and declining with both dry-season rainfall and precipitation seasonality.
In tropical and subtropical grasslands, savannas and shrublands (biome 7), temperature and
precipitation exerted opposing influences: species richness increased with mean annual
temperature but declined with maximum temperature and indicators of dry or seasonal rainfall,
while species diversity and functional diversity were most strongly and positively associated
with mean annual precipitation and negatively affected by precipitation seasonality. Functional
redundancy in this biome showed a weak but positive association with temperature range.
Mediterranean forests, woodlands and shrublands (biome 12) were dominated by precipitation
effects, with species richness, species diversity and functional diversity all positively related to
dry-season rainfall and precipitation seasonality, alongside negative effects of mean annual
temperature on richness and diversity. Functional redundancy in this biome declined with
increasing temperature and precipitation, indicating sensitivity to both thermal and hydric
stress. In deserts and xeric shrublands (biome 13), species richness declined with mean annual
temperature and temperature range but increased with maximum temperature and mean annual
precipitation. Species diversity increased with precipitation seasonality, while functional
diversity declined with mean annual temperature and increased with maximum temperature
and precipitation seasonality. Functional redundancy in this biome increased with temperature

but declined with thermal variability and precipitation.

3.3. Relationship between climate change risk and diversity metrics

At the continental scale, MAT Risk was not significantly related to any of the diversity metrics
examined (species richness, species diversity, functional diversity, or functional redundancy).
In contrast, MAP Risk was significantly related to all metrics; specifically, species richness,
species diversity, and functional diversity all showed significant positive relationships with
MAP Risk, indicating that sites with higher diversity tends to occur in areas projected to

experience greater precipitation-related risk. In contrast, functional redundancy was negatively
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related to MAP Risk, suggesting that lower redundancy is associated with higher precipitation-
related risk (Table 3).

At the biome scale, correlations varied among biomes. The only significant
relationships found for MAT Risk were in Mediterranean systems (biome 12), where it was
positively correlated with species richness and diversity, and in deserts (biome 13) where it
was negatively correlated with functional redundancy. MAP Risk was positively correlated
with species richness across all biomes, and only in biome 12 and 13, negatively correlated
with functional redundancy (Table 3).

Communities with low Fr and high MAT/MAP Risk are likely the most vulnerable to
climate-driven changes in composition, as they face both, climate change—induced species
turnover and a reduced capacity to maintain ecosystem function. These highly vulnerable sites
are primarily located in the northern areas of the continent (Fig. 5). In contrast, communities
with high Fr but high MAT/MAP Risk may still experience species loss but are expected to be
more resilient in maintaining function; these are also concentrated in the continent’s eastern
interior. The least vulnerable communities—those with high Fr and low MAT/MAP Risk are
scattered across central Australia (Fig. 5). The Fp—Fr ratio showed no association with
temperature-driven risk (Spearman p = —0.02, p = 0.56), but was negatively associated with
precipitation-driven risk (p = —0.23, p < 0.001), consistent with patterns observed for Fp and

Fr separately
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Figure 5. Bivariate maps of functional redundancy (Fr) and climate change risk across the

Australian continent (646 TERN AusPlots). Left: Fr combined with mean annual temperature
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risk (MAT Risk). Right: Fr combined with mean annual precipitation risk (MAP Risk). For
Fr, plots were categorized using terciles (33" and 67" percentiles), with mutually exclusive
thresholds: low (bottom tercile), medium (second tercile), or high (top tercile). For MAT Risk,
plots with risk < 0 were classified as low risk, whereas for MAP Risk, plots with risk > 0 were
classified as low risk. Plots at risk (MAT risk > 0 or MAP risk < 0), were split into medium
and high risk categories using the median of the at-risk subset. Plots with high climate risk and
low Fr (dark red) are potentially most vulnerable to climate-driven changes in community

composition and associated loss of ecosystem functionality.
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Table 2. Best-fit linear models explaining variation in MAT Risk and MAP Risk against bioclimatic predictors across Australia and within
selected biomes. Models were selected using AIC-based stepwise selection. The table reports the retained predictors, model fit statistics
(adjusted R?, sigma), and Akaike Information Criterion (AIC). The direction and statistical significance of each predictor in the best
model are shown in brackets after each term (+: positive effect; —: negative effect; * p < 0.05, ** p <0.01, *** p <0.001). Predictors without

brackets were retained in the best model but were not statistically significant.

l\‘,?l!’iggf: Best model formula AdjR?  sigma  AIC  dfesiqua
MAT Risk MAT Risk ~ 1 + MAT®? +T_Max"™ +T_Range™™™ +P_Season" 0.710 1.292 2372.09 701
MAP Risk MAP Risk ~ I + MAT®™™ +T_Max""" +T_Range"™ + MAP""™ +P_Dry"™" 0.879  94.066 8427.64 700
Biome d - Temperate broadieaf and mixed forests
MAT Risk MAT Risk ~ 1 + MAT¢™ + P Dry 0.369 1.448  140.84 35
MAP Risk MAP Risk ~ 1 + MAT®) +T_Max“"+ T_Range” + MAP"™ +P_Dry" 0.711  144.866  493.47 32
Biome 7 — Tropical / subtropical grasslands, savannas and shrublands
MAT Risk MAT Risk ~ | + MAT®* +T_Range™™ +P_Dry*™ 0.758 0.692  413.93 190
MAP Risk MAP Risk ~ 1 + MAT + T Max®"+T Range"™ + MAP®™ + P_Season™" 0.864 107.674  2373.95 188
Biome 12 — Mediterranean forests, woodlands and shrublands
MAT Risk MAT Risk~1+ T _Max®™ +P_Season™™ 0.264 1.570  704.44 184
MAP Risk MAP Risk ~ 1 + MAT®™™ + MAP®™ +P_Season™" 0.800  65.296 2099.56 183
Biome 13 — Deserts and xeric shrublands
MAT Risk MAT Risk ~ 1 + MAT®™ + T Max"™ + P-Dry™" 0.767 0.940  673.78 242
MAP Risk MAP Risk ~ 1 + MAT®™ + T _Max®™ + MAP*™™ + P-Dry™™ 0.856  36.140 2470.07 241
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Table 3. Direction and strength of pairwise relationships between climate change risk
(MAT Risk and MAP Risk) and bioclimatic variables and diversity metrics (Sr = species
richness, Sp = species diversity, Fp = functional diversity and Fr = functional redundancy)
at the three spatial scales of study (i.e. continental Australia, and per biome). Values are
Pearson correlation coefficients (r), which correspond to the direction of effects estimated
in the simple linear regressions used for statistical testing. Positive r indicates variables
increasing with climate risk; negative r indicates decreasing relationships. Significance

codes: p < 0.05 (*), < 0.01 (**), < 0.001 (***); n.s. = not significant.

Diversity metrics
Sr Sp Fp Fr

MAT Risk | n.s. n.s. n.s. n.s.
MAP Risk | 0.41*** 0.2 %** 0.2 %** -0.08***

MAT Risk | n.s. n.s. n.s. n.s.
MAP Risk | 0.64*** n.s. n.s n.s.
Biome 7 — Tropical / subtropical grasslands, savannas and shrublands
MAT Risk | n.s. n.s. n.s. n.s.

MAP Risk | 0.47%** (0.34%** (.33%** n.s.
Biome 12 — Mediterranean forests, woodlands and shrublands

MAT Risk | 0.22%* 0.20* n.s. n.s.
MAP Risk | 0.44*** 0.38* 0.23** -0.25%*
Biome 13 — Deserts and xeric shrublands

MAT Risk | n.s. n.s. n.s. -0.13%*
MAP Risk | 0.27*** 0.18%* n.s. -0.26%**
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4. Discussion

Here, we analysed multiple diversity metrics —including species richness, species diversity,
functional diversity, and functional redundancy, but with particular emphasis on functional
redundancy (Fr)— in Australian plant communities using continental-scale ecological and
functional trait datasets. Functional redundancy is interpreted here as functional similarity,
acknowledging that overlapping traits may buffer ecosystem functioning without implying full
interchangeability among species or guaranteed resilience.

Our results showed that the northern Australian coastlines, are particularly vulnerable
to species loss, shifts in community composition, and potential subsequent loss of ecosystem
function due to future changes in temperature and precipitation. In addition, Mediterranean-
climate regions in southwestern Western Australia and southeastern South Australia, are also
vulnerable to precipitation-driven shifts in community composition.

We found that Fr was generally high across sampled communities and was positively
associated with hot and increasingly arid environments, suggesting a greater potential for
functional buffering in arid areas in the event of species loss (Walker 1995; Pimiento et al.
2020). (Walker 1995; Pimiento et al. 2020). Central arid plant communities may be
functionally more resilient in the event of species loss given the structured pattern emerging of
increasing Fr with distance from the coast.

At the continental scale, Fr variation was related to macroclimate in terms of both,
temperature (MAT) and precipitation seasonality patterns (positive and negative relationships,
respectively), while Sg, Sp and Fp showed opposite patterns (negative relationships with MAT
and positive with MAP). However, these relationships explained limited variance, likely
because macroclimate metrics do not capture fine-scale environmental variation, which can be
a stronger driver of community composition. Declines in Sg with increasing temperature range
suggest thermal variability acts as a filter, favouring stress-tolerant or generalist species, which
could subsequently reduce Fp even if overall abundance is maintained.

Overall, the observed associations indicate that while Fr may contribute to buffering
functional loss, this potential is context-dependent and often coincides with lower Fp, reflecting
interactions between habitat filtering and niche partitioning (Spasojevic and Suding 2012).
Together, these patterns underscore how functional traits and climatic variability combined
shaping ecosystem resilience, and emphasise the need to understand how Fr and Fp respond to
environmental gradients for conservation planning.

Andrew et al. (2021) found that Fp across Australian vegetation was strongly linked to

climate using grid-cell-based models. In contrast, our plot-based analyses suggest communities
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may possess greater Fr than broad-scale patterns would indicate, as local assembly processes—
environmental filtering and biotic interactions—can enhance Fgr, whereas grid-cell models
reflect broader niche—environment relationships. Similarly, Guerin et al. (2022) found strong
climate—trait links at the single-trait level across the same plot network, suggesting that
aggregating traits into composite Fp and Fr metrics may dilute finer-scale trait-environment
relationships. Although single trait studies can better reveal functional responses to
environmental gradients (e.g., Funk et al. 2017), reductionist approaches offer more limited
insights into community dynamics. Community assembly operates hierarchically, with
macroclimate xerting broad constraints and local factors shaping communities at finer scales
(Diaz et al. 1998; Laliberté et al. 2010). Consistent with this framework, we found that
relationships between diversity metrics and climate were stronger when analysed within
biomes than at the continental scale, particularly in Mediterranean systems (biome 12) and
tropical/subtropical grasslands (biome 7). This may be related to greater floristic homogeneity
and functional coherence within biomes compared to continental-scale analyses that integrate
multiple species pools (Bruelheide et al. 2018).

At the biome scale, diversity metrics responded to bioclimate in highly context-specific
ways, reflecting how climate interacts with physiology, resource availability, and evolutionary
history to shape plant communities (Boonman et al. 2022). Contrasting responses of
communities’ Fr to bioclimatic factors within biomes indicate that different climatic stressors
act as dominant constraints depending on biome-specific limiting factors. In tropical savannas
(biome 7), strong rainfall seasonality limits species with narrow niches, while Fr increases with
temperature range, likely reflecting convergence on heat-adapted strategies reported in
seasonal tropical systems. Temperate forests (biome 4), characterised by relatively benign
climatic conditions, show increasing species richness with warmth and species diversity with
rainfall, whereas Fr remains largely independent of climate, consistent with weak
environmental filtering. Mediterranean systems (biome 12) experience combined pressures of
high temperatures and summer drought, leading to reduced Sg and Sp under hotter conditions,
while Fr increases with reduced precipitation, likely driven by the dominance of stress-
avoidance traits. Deserts (biome 13) show strong drought-driven Fg, although extreme heat
constrains this response. In line with these patterns, we observed lower Fp at hotter and drier
locations, and higher Fp at cooler and wetter locations. Climate-driven spatial patterns of
functional diversity along contemporary climatic gradients have been reported previously (e.g.
Guerin et al., 2022), supporting our findings with regards to Fp. Nevertheless, our integrated

analysis demonstrates that Fp alone is insufficient to understand ecosystem resilience, and that
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the inclusion of Fr fundamentally alters the interpretation of climate—function relationships
across biomes, and under future climate projections. Together, our results suggest that Fp-to-
Fr ratio may reflect the interplay of habitat filtering, niche partitioning, and local environmental
constraints (Kraft et al., 2015), producing contrasting functional responses across biomes rather
than reflecting climate alone. Consequently, communities with high Fp but low Fr may be
more vulnerable to species loss, whereas communities with lower Fp but higher Fr may exhibit
greater functional resilience (Ricotta et al. 2016).

Short-term drivers such as land-use change, disease, and direct anthropogenic pressures
may further reduce Fr (Fonseca and Ganade 2001); however, our study focused on plant
communities with minimal recent disturbance, suggesting that higher Fr under extreme
environments reflects long-term environmental effects rather than human impact. We note,
however, that because our analyses rely on contemporary surveys, current species composition
may already incorporate recent climate- and land-use-driven shifts, which could influence trait
filtering patterns and reduce predictive power. Inconsistent Fr metrics also complicate
comparisons, emphasizing the need for clear methodology and fine-resolution environmental
data when studying Fp and Fr (Biggs ef al. 2020). Thus, we recommend clearly specifying Fr
calculations and noting that functional similarity does not always imply redundancy, and we
advocate for the use of finer-resolution environmental data (e.g., biome- or regional-scale)

where available, to better elucidate Fp-to-Fg ratio and trends.

4.1. Climate change risk
Climate change risk exhibited clear geographic patterns across Australian plant communities
and was strongly related to current climatic conditions, indicating that species safety margins
may be more important than predicted exposure in determining the risk of species turnover or
changes in community composition—a pattern that, while not previously demonstrated at the
community level to the best of our knowledge, is consistent with species-level niche and
tolerance theory (Araujo et al. 2013). Temperature-related risk (MAT Risk) varied with
latitude, increasing from south to north, while precipitation-related risk (MAP Risk) was
greatest in the coastline of the continent, especially in the North and in mediterranean-climate
regions, and lowest at the arid centre. This, therefore, points to the northern coastline as a
priority region for conservation practices to mitigate climate-driven change in vegetation
communities.

In general, we found strong links between climate change risk and current climate

conditions. The trends we found reflect the fact that as climates become more extreme in
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temperature, species approach their tolerance limits, leading to the greatest temperature-driven
turnover in the hottest and most seasonally variable environments (Deutsch et al. 2008), a
pattern consistent with climate-driven vulnerability contrasts reported for European plant
communities (Thuiller et al. 2005). For example, MAT Risk increased with long-term T-max
and P-Season and decreased with MAT and T-Range, suggesting that communities exposed to
persistently high temperature extremes and strong intra-annual rainfall variability will be most
sensitive to future warming, whereas broader thermal ranges may buffer against turnover. In
contrast, MAP Risk was highest in sites experiencing pronounced temperature fluctuations, but
lowest in sites with high rainfall and dry-season precipitation, implying that plant communities
subjected to the combined pressures of heat and drought will face higher precipitation-driven
risk. Together, these patterns suggest that climatic safety margins may be more important than
predicted exposure per se in determining sensitivity to climate change in Australian plant
communities (Foden et al. 2019), as safety margins span a wider range of values than projected
exposure across the continent. We acknowledge that species’ climate tolerances are derived
from their realised rather than fundamental niches, potentially underestimating true
physiological limits and adaptive capacity (Sax et al. 2013). Yet, species already persisting in
extreme environments may possess greater adaptive potential precisely because of being
shaped by harsher conditions (Chevin and Hoffmann 2017).

At the biome scale, the links between climatic variables and MAT and MAP Risk
highlight how different vegetation types may be exposed to shifts in community composition
under warming and drying trends. The benign climatic conditions of temperate forests (biome
4) make them vulnerable to temperature stress (i.e. increases in MAT and T-Max positively
affect MAT and MAP Risk respectively) and rainfall (i.e. lower P-Dry results in higher MAP
Risk), reflecting their dependence on stable mild temperatures and moisture regimes.

Tropical savannas in northern Australia, where MAT Risk was found to be highest, are
key global carbon sinks (Grace et al. 2006) that rely on complex interactions between fire
regimes, water availability and vegetation dynamics (Moore et al. 2018), making them highly
vulnerable to climatic shifts (Lehman et al. 2011). MAT Risk increased in hotter sites and in
areas with greater dry-season rainfall, indicating that both chronic warmth and large annual
temperature fluctuations amplify sensitivity to warming. MAP Risk, by contrast, was highest
in wetter and more heat-exposed savannas but declined with greater temperature range and
rainfall seasonality, suggesting that climatic variability and pronounced wet—dry cycles may
help buffer these communities against precipitation-driven change. Their high sensitivity to

future precipitation shifts (MAP Risk) likely stem from the fact that these ecosystems are
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structured around strong wet—dry seasonality, where even small changes in rainfall amount or
timing can disrupt plant recruitment, survival, and competitive ability (Murphy and Bowman
2012). Unlike species in more southern arid zones, many northern taxa are less drought-
adapted, thus, reduced rainfall could push them beyond their physiological limits (Foden et al.
2019). Moreover, biogeographic barriers constrain range shifts, as deserts to the south and
oceans to the north limit gradual migration. Together, these factors indicate that northern
Australia warrants particular attention from land managers and conservation purposes to
prevent climate-driven species loss.

Mediterranean regions in the South West Australian Floristic Region (SWAFR) and
South Australia showed high MAP Risk probably due to many species in these communities
already nearing their upper climate thresholds, particularly with regards to the intense summer
drought periods they face (Lewandrowski ef al. 2021). In fact, drought-related dieback of
Australian mediterranean vegetation has been well-documented, with rainfall already in
decline and predicted to continue (Brouwers ef al. 2013). Both MAT and MAP Risk were
highest in the warmest areas and in sites with weaker rainfall seasonality, indicating that
communities occupying the margins of the Mediterranean climate regime —where summer
drought is less pronounced— are more vulnerable to climate-driven change than those in
strongly seasonal, drought-adapted environments, pointing to the importance of stress-tolerant
adaptations in buffering these communities against increasing drought.

Deserts and arid interiors exhibited low MAP Risk, due to projected increases in
precipitation by 2070 (Gallagher et al. 2019), reflecting reduced drought stress within the
bounds of the MAP Risk metric. Importantly, the MAP Risk metric used here is designed to
capture risk associated with increasing drought stress and does not explicitly account for
potential negative effects of increased precipitation (e.g. moisture intolerance or competitive
displacement of arid-adapted species) in arid communities. MAT Risk was greatest in the
hottest sites and declined with P-Dry, indicating that hyper-arid communities already adapted
to extreme water limitation may be less sensitive to further warming than those in
comparatively milder desert environments. MAP Risk, however, increased in warmer and
wetter desert areas and in sites where the driest month is less dry, suggesting that communities
located in more semi-arid areas are more vulnerable to precipitation-driven change than those
in the most extremely water-limited regions that are already adapted to drought.

Together, these contrasting biome-level responses indicate that climate-change risk is
shaped not only by absolute climatic stress but by how far future conditions will diverge from

the specific adaptive strategies of the vegetation characteristic of each biome, thus underscoring
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the need for case-by-case assessments and the challenge of making generalizations when
predicting changes in vegetation dynamics (Mori 2011). Although we focused on mean climate
changes, we acknowledge that extreme events (e.g. heatwaves, droughts and wildfires) can also

shape species survival and drive ecosystem shifts (Lloret et al. 2012).

4.2. Relationship between functional redundancy and climate change risk

By integrating climate change risk with Fgr, we provide a robust assessment of Australian plant
communities, capturing both their vulnerability to species loss and their potential resilience to
functional disruption (traditionally ignored in climate change studies; Li ef al. 2018). Within
this framework, communities experiencing high climate risk and low Fr are expected to be
most vulnerable to functional destabilisation, whereas communities facing high risk but with
high Fr may buffer some functional loss (Walker 1992, 1995; Ricotta et al. 2016).
Communities exposed to low climate risk are, by contrast, inherently less threatened.

At the national scale, unlike MAT Risk, MAP Risk showed significant correlations with
all biodiversity metrics, reflecting the strong influence of rainfall and its seasonality on
Australian flora, pointing the northern coastline as well as the mediterranean-climate regions
as the most vulnerable areas to suffer changes in community composition and subsequent loss
of ecosystem function. The significant association between precipitation-driven risk and the
Fp—Fr ratio indicates that changes in rainfall disproportionately affect communities where
functional similarity is high relative to functional diversity, increasing the likelihood of
coordinated species responses rather than compensatory dynamics. Biome-level patterns
suggested that functional traits, rather than species richness per se, determine resilience, with
vulnerability arising from the loss of overlapping functions that stabilize vegetation
communities against climate-driven changes.

At the biome scale, the influence of community diversity on climate-change risk varied
markedly. Across all biomes, communities with larger species pools tended to experience
stronger compositional shifts under warming and altered rainfall, perhaps reflecting the
exposure of less stress-tolerant species. Whereas no significant trends were found between
functional redundancy and climate-driven changes in temperate forest (biome 4) and tropical
savannas (biome 7), Fr covaried with precipitation-driven risk in arid ecosystems, with desert
and Mediterranean biomes exhibiting high Fr associated with MAP Risk, consistent with
redundancy in stress-tolerant traits that may buffer against future drought conditions. In
Mediterranean vegetation communities (biome 12), higher functional redundancy was

associated with lower precipitation-driven risk, highlighting the role of overlapping functional
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traits in stabilising communities despite turnover in species composition. In deserts (biome 13),
contrasting relationships between species diversity, functional diversity, and climate-driven
risk indicate that vulnerability in arid communities reflects a balance between the breadth of
functional strategies and species identities, with some aspects of diversity associated with
greater turnover and others with enhanced resilience. Altogether, these patterns indicate that
precipitation-driven climate risk shows stronger associations with community structure than
temperature-driven risk, and that the ecological consequences of diversity for climate
vulnerability are highly context-dependent, reflecting the specific adaptive strategies and

functional composition of each biome.

4.3. Applications and future directions

Functional redundancy is most often conceptualised in relation to species loss; however,
climate change is also expected to drive species gains, with newly arriving species exerting a
wide range of functional effects. These effects may enhance community resilience, for example
by supporting mutualistic interactions, or conversely disrupt ecosystem functioning,
particularly when incoming species are non-native or competitively dominant (Traveset et al.
2013; Wardle et al. 2011). Accurately predicting climate-driven community responses
therefore requires accounting for both species loss and species gain, rather than focusing on
extinction processes alone (Gallagher et al. 2013).

Ideally, functional redundancy would be quantified using effect traits explicitly linked
to ecosystem functions and response traits linked to specific environmental stressors; however,
this distinction is often difficult to implement because traits can act as either depending on
context (Suding ef al. 2008). At continental scales, these challenges are compounded by
limitations in trait availability, underscoring the importance of large open-access trait databases
such as AusTraits and continued efforts to improve taxonomic coverage (Falster et al. 2021).
Consequently, large-scale studies commonly assume that higher functional redundancy
captures at least some degree of response diversity (Laliberté et al. 2010; Pillar ef al. 2013).

Within these constraints, our results provide a continent-wide framework linking
functional redundancy with climate-driven risk in Australian plant communities, with clear
relevance for conservation planning and land management (Walker 1995; Rosenfeld 2002). In
particular, prioritising communities identified as both highly exposed to climate change and
functionally vulnerable—such as those in the tropical North and Mediterranean regions—may
help safeguard key ecosystem functions. Maintaining communities with high functional

redundancy may contribute to buffering ecosystem functioning under ongoing environmental
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change (Mori et al. 2013), while recognising that redundancy does not guarantee resilience.
Future research should explicitly test whether the spatial patterns of functional
redundancy identified here translate into realised ecosystem resilience through time,
particularly following repeated or extreme climatic disturbances (Biggs et al. 2020). Long-
term, standardised monitoring networks such as TERN AusPlots, combined with trait-based
data from AusTraits, provide a robust foundation for evaluating when and where functional
buffering persists or fails, thereby refining predictions of climate-driven ecosystem

vulnerability and supporting more targeted conservation strategies.

5. Conclusions

Australian plant communities show strong regional variation in vulnerability to climate change,
with the tropical north being at greatest risk due to shifts in rainfall and temperature combined
with low functional redundancy, followed by the mediterranean regions of Western and South
Australia. Across the continent, areas characterised by high projected climate-driven
compositional change and low functional redundancy represent communities with the lowest
potential buffering capacity against functional loss or disruption. These findings highlight
priority areas for monitoring and management, providing a framework to safeguard ecosystem
function under a changing climate. Targeted monitoring and prioritizing proactive management
in these hotspots of high at-risk vegetation communities is therefore critical to prevent

irreversible functional loss under future climate scenarios.
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