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Abstract

Climate change threatens plant communities worldwide with significant species losses, yet the
consequences of reduced diversity for ecosystem function remain uncertain. Functional
redundancy—where multiple species fulfill similar ecological roles—may act as ‘functional
insurance’ by buffering ecosystem processes against species loss. Here, we combined plant
composition data from 646 TERN AusPlots with gap-filled trait data (i.e. maximum plant
height, leaf mass per area, and seed dry mass) from the AusTraits database to provide the first
continental-scale assessment of functional redundancy in Australian plant communities. We
estimated the potential impact of species losses under future climates based on community
thermal and aridity tolerances relative to projected climate exposure. We examined the
continental distribution of functional redundancy (in terms of competitive ability, resource
acquisition strategies, and dispersal-establishment trade-offs in reproductive strategy),
projected climate-driven compositional changes, and their relationship to bioclimate to identify

vulnerable native communities.
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Our results revealed strong latitudinal gradients of climate-change impacts on
Australian plant communities, with those in the tropical north exposed to greater threat of
changes in community composition because of future hotter and drier conditions not being
unsuitable for monsoon-dependent species. Functional redundancy increased toward central
Australia, aligning with more stressful (hotter, drier) bioclimates. At the biome scale,
Mediterranean and arid communities showed higher functional redundancy and lower climate
risk due to functional similarity in drought-adapted traits. Future rainfall changes were the
dominant driver of climate-induced shifts in plant community composition.

The most vulnerable communities—at highest risk of functional destabilisation—were
located along the northern coastline, with additional hotspots in the southernmost parts of the
Mediterranean regions of South Australia and Western Australia. Conservation and monitoring
efforts should prioritise these areas. Our findings highlight the influence of local bioclimatic
factors on functional redundancy and the need to understand these dynamics to better forecast
ecosystem resilience under ongoing climate change, while providing a spatial framework to
guide biodiversity monitoring, policy, land management and conservation action across the

Australian continent.

Keywords: community ecology; climate change; climate risk; ecosystem function; functional

traits; functional redundancy; resilience; species loss; vulnerability.

1. Introduction

In the global context of rapid environmental change under widespread threatening processes
such as climate change, land use change, and biological invasions (Valladares et al. 2019),
there is an urgent need to protect biodiversity and better understand its role in the functioning
of ecosystems (Diaz et al. 2019; Pettorelli ef al. 2021). By providing a range of functional traits
—measurable attributes or characteristics of species which relate to their fitness and ecological
role on ecosystem processes (Gallagher er al. 2020)— biodiversity affects ecosystem
functioning, productivity, resilience, and stability through complementary and overlapping
ecological roles. In this sense, functional redundancy (Fr) measures the overlap in functional
roles; it asserts that within an ecological community there may be functionally analogous
species which contribute similar ecological roles to the functioning of an ecosystem (Walker,
1992). Thus, if one or more of these species becomes locally extinct or declines considerably,

the remaining functionally analogous species will compensate for this loss and the net impact
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on ecosystem function will be minimal (Walker, 1995). Consequently, higher Fr is predicted
to enhance the resilience of ecosystems in terms of functional stability in the face of
perturbation or species loss, while low Fr may indicate a lack of ecological resilience. Recent
discussion has highlighted that the term redundancy may overstate substitutability, with some
authors advocating for the broader concept of functional similarity instead (Eisenhé&uer et al.,
2023). Here, we retain the Fr framework due to its ecological and conservation relevance in
illustrating that certain species can be lost within a community without immediate loss of
ecosystem functioning (Fischer and de Bello 2023); however, we acknowledge that it
represents one end of a continuum of functional overlap among species, better conceptualised
as functional similarity—a spectrum of overlapping but non-identical contributions to
ecosystem processes (Eisenhauer ef al. 2023).

Functional redundancy is intricately linked to other biodiversity metrics within plant
communities, namely species diversity (Sp) and functional diversity (Fp) (Ricotta et al. 2016).
Species diversity summarises the variety and abundance of taxonomically distinct organisms
occurring in ecological communities, whereas Fp summarises the spread of functional traits
within a community. Species-rich communities (high Sp) often have more species that can
perform similar ecological roles, thus increasing the likelihood of functional redundancy
(Fonseca and Ganade, 2001). Higher Fp indicates a wide array of ecological functions, being
therefore widely considered to reflect overall ecosystem functioning (Cadotte et al. 2011).
Functional redundancy provides a more mechanistic link between biodiversity and ecosystem
resilience and stability; in the event of Sp loss, higher Fr should buffer a community from
losing Fp, as the likelihood of losing a functionally unique species is reduced. Despite the
growing interest in understanding how Fr affects ecosystem resilience (Biggs et al. 2020), how
Fr varies at macroecological scales, and the potential drivers of such variation remain
understudied.

Climate change has driven local and global species extinctions in deep time and is
predicted to be a driver of plant extinction in the Anthropocene (Valladares et al. 2019). This
loss of biodiversity is likely to impair the biological, chemical, and physical processes
performed by ecosystems with the specific functional implications of such species loss only
beginning to be understood (Hooper et al. 2012; Gallagher et al. 2013). Increasing temperature
and changes in precipitation patterns, with subsequent changes in the frequency and duration
of drought conditions, are likely to force many plant species beyond their climatic tolerance
limits and towards extinction (Lancaster & Humphreys, 2020; Bennett et al. 2021). Assessing

the vulnerability of different ecosystems to the effects of climate change has become a common
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practice (Li et al. 2018). However, estimates of climate change vulnerability tend to focus on
predicted changes to mean climate conditions and the direct impact these will have on species,
while ignoring potential resilience mechanisms including individual physiological
adaptation/tolerances and community level resilience mechanisms. Gallagher et al. (2019)
addressed this limitation by measuring the adaptive capacity of Australian vegetation alongside
a climate change risk metric (in the sense of projected climate-driven changes in community
composition when the environmental niche limits are expected to be surpassed under future
climate conditions). We propose that understanding Fr across Australia will also provide
complementary information to the impact caused by climate change by indicating the
functional resilience of plant communities to species loss. At present, the Fr in Australian plant
communities has only been explicitly measured once as part of a global meta-analysis
(Laliberté¢ et al. 2010). More broadly, continental-scale functional trends and their
environmental drivers have seldom been quantitatively investigated in Australian vegetation
(Andrew et al. 2021, 2025).

Given the potential importance of Fr as an indication of community resilience to
climate change induced species loss, our study seeks to achieve four main aims. These are to
(1) determine the geographic distribution of Fr among plant communities across the Australian
continent, (2) investigate how Fr varies along bioclimatic gradients, (3) map Australian
communities that are most vulnerable to climate change by integrating species’ exposure to
projected climatic shifts with their sensitivity and adaptive capacity, and (4) examine the
relationship between Fr and projected climate driven changes in the composition of sampled
plant communities. Specifically, we hypothesised that (1) many locations across Australia
would have very low Fp coupled with very high Fr (Andrew et al. 2021), due to species niche
specialisation driven the continent’s diverse and often extreme environmental gradients.
Although the direction of the relationship between Fr and bioclimatic variables is unclear in
terrestrial plant communities, we expect (2) Fr to be higher in more consistently extreme
conditions (e.g. increased aridity), where species display drought- and heat-adaptive traits and
therefore might be more similar functionally, and overlap more in their strategies evolved as
long-term adaptations to persistent environmental stress. Based on the findings of Gallagher et
al. (2019), we expect (3) the projected climate driven changes in composition not to be evenly
distributed across Australia’s plant communities, but reflect instead distinct geographic drivers;
specifically, we expect temperature-driven changes to be most acute in the hotter northern
regions, and precipitation-driven risks most pronounced in Mediterranean-type ecosystems of

southwest Western Australia and southern South Australia. We expect these patterns assuming
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that many species in these areas may already be close to their thermal or hydric limits, and
therefore shifts could occur if communities overpass their limit threshold, regardless of their
current Fr. Finally, we expect (4) Fr to be positively associated with projected climate-driven
shifts in community composition, particularly in areas expected to become more arid, due to

the synergistic effects of increasing heat and drought.

2. Methods

To achieve these aims we combined estimates of Fr with projected climate-driven changes in
composition across an existing continental-scale plot network monitoring Australian plant
communities. We measured Fr using the three traits of the leaf-height-seed (LHS) scheme
which reflects the major axes of plant function: leaf mass per area (LMA), maximum plant
height and seed dry mass (Westoby, 1998; Diaz ef al. 2016). Leaf mass per area (LMA), the
inverse of specific leaf area (SLA), captures species’ trade-off between carbon investment in
leaf-level photosynthetic tissues and leaf longevity (Westoby, 1998; Wright et al. 2004).
Maximum plant height reflects species’ strategies in relation to competition for light and is
therefore related to canopy structure and shading in ecosystems (Westoby, 1998; Falster and
Westoby, 2003). Seed dry mass indicates species’ maternal investment in reproduction and can
be related to the capacity to establish across different environmental niches (Westoby, 1998).
Afterwards, we measured the climate change risk of individual species based on their observed
climatic niches and then scaled this up to the community level by calculating the community
weighted mean climate change risk (Gallagher ef al. 2019), and we mapped Fr and climate
change risk to determine their spatial distributions. Finally, we constructed linear regression
models to explore the relationship between Fgr, climate change risk and environmental
variables.

We combined plant community composition data, species functional trait data, long-
term climate data, predicted climate change exposure data and species climate niche data to
generate our response and predictor variables. The continental approach enables broadscale
trends to be detected along key bioclimatic gradients such as temperature and precipitation,
elucidating environmental drivers of community-level properties such as Fr and climate
change risk (Violle ef al. 2014). Furthermore, the Australian continental flora is a particularly
useful study system due to the contrasting climates existing across the land, that strongly
influence species distribution, and the characteristics of the different ecosystems (Hughes et
al., 2003; Keith 2017). Australia is latitudinally characterised by a tropical north with wet

summers and dry winters, an arid to semi-arid interior covering most of the continent, and a
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temperate south with hot dry summers and cool wet winters (Keith 2017). Apart from
analysing these trends at the continental scale, to detect scale-dependency in our results we
also conducted the analyses at two finer spatial scales. First, we replicated the analyses at the
biome scale, using the Ecoregion 2017 dataset based on the classification provided by Olson

et al. (2001) which designates 7 major biomes in Australia.

2.1. Plant community composition data

The Terrestrial Ecosystem Research Network (TERN) AusPlots ecosystem surveillance
program monitors over 1,000 1-ha plots across the Australian continent (Fig. 1) (Sparrow et al.
2020). The network is stratified by bioregion to maximise ecological coverage (Guerin et al.
2020a). All plots are systematically surveyed using a point-intercept method comprising a grid
of 1,010 points which yields robust estimates of species percent cover (White ef al. 2012). A
specimen is collected from each recorded species and herbarium determinations are obtained
for all specimens, thus ensuring taxonomically sound data. We extracted plot-level vascular
plant species percent cover data for 787 TERN AusPlots using the ‘ausplotsR’ package (Guerin
et al. 2020b; Munroe ef al. 2021). In cases where repeated surveys were available for plots, the
most recent survey was selected to ensure that the data best reflected current species
composition. We used species percent cover data as a proxy for species relative abundances.

For analyses at continental-scale we modelled all plots across the TERN AusPlots
network together. For biome-scale analyses we grouped plots according to the major biome
they occupy in the Olson ef al. (2001) biome classification (Fig. 1). From analyses at the biome
scale, we selected four biomes, including temperate broadleaf and mixed forests (biome 4),
tropical/subtropical grasslands, savannas and shrublands (biome 7), Mediterranean forests,
woodlands and shrublands (biome 12), and deserts and xeric shrublands (biome 13). Other
biomes present in Australia (i.e. biome 1 - Tropical/Subtropical Moist Broadleaf Forests, biome
8 - Temperate Grasslands, Savannas & Shrublands and biome 10 - Montane Grasslands &
Shrublands) were excluded from this study due to the low number of TERN AusPlots within
their boundaries. These four biomes object of study capture the major climatic and ecological
gradients in Australian vegetation. Tropical and subtropical grasslands, savannas, and
shrublands (biome 7) are characterized by high mean annual temperatures, strong seasonality
in rainfall, and dominance of fire- and drought-adapted species, often occupying narrow
ecological niches (Shaw et al. 2000). Temperate broadleaf and mixed forests (biome 4), in
contrast, experience moderate temperatures and relatively stable precipitation, supporting

higher species richness and less extreme functional constraints (Bailey, 1964). Mediterranean
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forests, woodlands, and shrublands (biome 12) in southwestern and southeastern Australia are
shaped by hot, dry summers and mild, wet winters, favouring species with stress-tolerant or
drought-avoidance strategies (Lionello e al. 2006). Deserts and xeric shrublands (biome 13)
are characterized by extremely low precipitation, high temperatures, and high climatic
variability, resulting in plant communities strongly constrained by environmental filtering
(Noy-Meir, 1973). Grouping plots by these biomes allows us to assess context-specific
functional responses, capturing how climate, species physiology, and evolutionary history
interact to shape diversity and functional redundancy across contrasting environmental settings

(Laliberté et al. 2010).
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Figure 1. Biomes of Australia used in this study and geographic locations of AusPlots flora
inventories (black circles). Biome 4 — Temperate broadleaf and mixed forests (n = 43 plots),
biome 7 — Tropical/Subtropical Grasslands, Savannas & Shrublands (n = 218 plots), biome
12 - Mediterranean Forests, Woodlands & Shrublands (n =203 plots), biome 13 - Deserts &
Xeric Shrublands (n = 280 plots). Note that several biomes were excluded from this study
due to the low number of TERN AusPlots within their boundaries: biome 1 -
Tropical/Subtropical Moist Broadleaf Forests (n = 0), biome 8 - Temperate Grasslands,
Savannas & Shrublands (n = 28) and biome 10 - Montane Grasslands & Shrublands (n = 15).

2.2. Trait data
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We extracted trait data from the AusTraits database 6.0.0 for all species occurring in our plots.
AusTraits contains data for 448 functional traits across 28,640 Australian taxa compiled from
multiple sources (Falster et al. 2021).

From the 4,428 species recorded in AusPlots with the point intercept methodology, we
obtained mean values for maximum plant height (3,641 species), leaf mass per area (LMA)
(1,304 species), and seed dry mass (2,574 species), respectively. We log transformed all trait
values to account for differences in their units and skewness in their distributions, which is
standard for community trait analysis (Bruelheide et al. 2018). To improve species
representation, we followed the methods outlined in Andrew et al. (2021), consisting of two
subsequent steps by which missing trait values were first estimated missing values via linear
models, and subsequently gap-filled utilising all accessible and relevant trait data from the
native Australian flora. In summary, to leverage the available measurements of leaf/phyllode
and seed dimensions for a significant proportion of species in AusTraits, we first estimated leaf
area for species lacking direct area measurements based on measurements of leaf length and
width. To do so, we conducted Linear Mixed Models (LMM) using the Ime4 R package (Bates
2010). Likewise, seed dry mass was estimated using seed length as a fixed effect, combined
with a random factor of family. Predicted trait values were well correlated to known values
(seed mass 12 = 0.85, leaf area r* = 0.81). The models demonstrated strong explanatory power,
evidenced by high conditional R? values (R?.) for both trait models, with a substantial portion
of the explanatory power derived from fixed effects, reflected in high marginal R* values (seed
dry mass: R%. = 0.85; R?y, = 0.68; leaf area: R*. = 0.79; R?,, = 0.66).

We adopted a minimum threshold of 80% trait coverage by abundance for plots to be
included in our study as this threshold has been shown to limit the estimation bias of community
weighted functional properties (Borgy et al. 2017). In a second step, to increase the taxonomic
coverage of trait data we gap-filled values for species without direct observations in AusTraits
using the GapFilling() function from the BHPMF R package (Schrodt er al., 2015), which
employs Bayesian hierarchical probabilistic matrix factorisation and correlation structure to
impute missing trait values. This method exploits trait—trait correlations and phylogenetic trait
signals within the existing trait data to predict unknown trait values. Gap-filling was run on a
matrix of trait values for plant height, leaf area, length, and width, leaf mass per area (inverse
of SLA), and seed mass and length; species with no available trait data were dropped from all
subsequent analyses (n = 24,915 native Australian plant species retained). Finally, we applied
the 80% trait coverage by abundance threshold to the total of 787 AusPlots, leaving 649 plots
which met the threshold.
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2.3. Diversity indices

We calculated four diversity indices, including species richness (Sr), species diversity (Sp),
functional diversity (Fp) and functional redundancy (Fr). We followed the methodology of
Ricotta et al. (2016) in which Sp is calculated as Simpson’s diversity index and Fp is calculated
as Rao’s quadratic entropy. Simpson’s diversity is bound between 0 and 1 and it incorporates
plot-level species relative abundances. Rao’s quadratic entropy is also bound between 0 and 1
and it accounts for plot-level species relative abundances as well as species pairwise functional
dissimilarities. Rao’s quadratic entropy is ultimately the mean functional dissimilarity of two
randomly selected individuals from a given community (Botta-Dukat, 2005). Importantly, the
maximum value of Rao’s, when all species are maximally functionally dissimilar, is equal to
Simpson’s index. Therefore, dividing Sp by Fp yields a measure of the functional uniqueness
of a community (U).

(eq. 1)

The complement of U is a measure of the functional redundancy of a community (Fg),
which summarises the proportion of species diversity not encompassed by functional diversity.

Fr=1-U (eq. 2)

All alpha diversity indices were computed with the ‘uniqueness’ R function provided
by Ricotta et al. (2016).

To assess whether Fr exhibited any statistically detectable geographic structure, we
quantified spatial autocorrelation using Moran’s I with a 5-nearest-neighbour spatial weights
matrix. In addition, we evaluated broad spatial trends by modelling Fr as a function of latitude
and longitude (second-order polynomial terms). To assess whether Fr differs among major
Australian biomes, we also conducted a one-way ANOV A with subsequent Tukey HSD post-

hoc tests to evaluate pairwise differences among biomes.

2.4. Bioclimatic data

We obtained long term (1970-2000) mean climate data in a raster format from ‘WorldClim 2.1’
and extracted values at the coordinates of each plot (Fick and Hijmans, 2017) at a resolution of
10 minutes of a degree. We extracted mean annual temperature (MAT; °C), temperature annual
range (T-Range; °C), maximum temperature of the warmest month (T-Max; °C), mean annual
precipitation (MAP; mm), precipitation seasonality (P-Seasonality) and precipitation of the

driest month (P-Dry; mm). These variables reflect the mean, variability, and extremes of
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temperature and precipitation, all of which are projected to change under future climate

scenarios for Australian ecosystems (Hughes, 2003).

2.5. Future climate projections and climate change risk

To assess the climate change risk faced by plant communities across Australia, we
followed an approach informed by Gallagher et al. (2019), by adapting their grid-based
methodology in order to calculate plot-based climate change risk metrics. We calculated
metrics of risk for changes to both MAT and MAP. For these calculations we used the same
set of species as in the diversity index calculations to enhance comparability between diversity
indices and climate change risk metrics. First, we obtained species-level climate niche data
compiled by Gallagher et al. (2019), which represents the realised climatic limits of Australian
plant species based on cleaned occurrence records for herbarium specimens from the Australian
Virtual Herbarium (AVH). To account for potential outliers in these occurrence records, we
defined species' temperature tolerance (MAT tolerance) as the 98 percentile of mean annual
temperature (MAT) values across their distribution, and precipitation tolerance (MAP
tolerance) as the 2" percentile of mean annual precipitation (MAP) values. We then matched
these species-level climate tolerances to the species occurring in each plot and calculated
community-weighted mean (CWM) climate tolerances by multiplying each species’ tolerance
value by its relative abundance in the plot. These CWMs represent the average climatic
tolerance of the plant community in terms of upper temperature and lower precipitation limits.

To assess current climatic safety margins, we subtracted the present-day (baseline)
climate conditions from the community-weighted mean tolerance values at each plot.
Specifically, for MAT and MAP, the safety margins were, respectively, calculated as:

MAT Safety Margin = CWM MAT Tolerance — Current MAT
MAP Safety Margin = Current MAP — CWM MAP Tolerance

These safety margins represent the climatic buffer a plant community has before it
reaches its collective thermal or drought limit.

Australia is projected to experience substantial warming by 2070, with mean annual
temperatures expected to increase across the continent, particularly in the interior and northern
regions. Precipitation patterns are likely to become more variable, with decreases in
cool-season rainfall and longer drought duration projected for many parts of the south and east
(especially mediterranean-type regions), while some northern areas may experience more

intense wet-season rainfall events (State of the Climate 2024). Hence, we then estimated future
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climate exposure by calculating projected changes in MAT and MAP between current climate
conditions and predicted projections for 2070 under the high-emissions scenario RCP8.5
(rcp85, 800 ppm of CO, by 2070). For that, we used downscaled climate data from CHELSA
based on five global circulation models for 2061-2080, including ACCESS1.0, CNRM-CMS,
HADGEM2-CC, MIROCS, and NorESM1-M.

Finally, we calculated plot-level climate change risk as the difference between exposure
and safety margin:

MAT Risk = Exposure — Safety Margin
MAP Risk = — (Exposure — Safety Margin)

For MAT, a positive risk value indicates that future climate change by 2070 in terms of
temperature is expected to exceed the current adaptive capacity of the community (i.e. the
community’s mean tolerance limit), placing it at greater risk. Conversely, negative or low risk
values suggest that the community's climatic buffer is sufficient to accommodate projected
temperature changes. For MAP, the opposite, when Exposure — Safety Margin has a negative
value indicates that future drought conditions by 2070 are expected to exceed the current
adaptive capacity of the community, placing it at greater risk, whereas positive values suggest
that the community's climatic buffer is sufficient to accommodate projected temperature
changes, hence why the values have been multiplied by (-1).

We acknowledge that species respond individually to climate change and that
communities are not strictly discrete units. Community-weighted mean (CWM) tolerances
provide an operational estimate of the average climatic tolerance of the dominant species in
each plot, capturing the functional response of the community as a unit. While individual
species may exceed their limits without immediately altering functional diversity, CWM-based

safety margins allow meaningful comparison of climate change risk across plant communities.

2.6. Mapping alpha functional redundancy and climate change risk

To visualise the spatial distribution of Fr and climate change risk we created maps depicting
their values across the TERN AusPlots continental network using the ggplot2 (Wickham 2016)
and ggpmisc (Aphalo 2025) packages in R. We generated separate maps for MAT Risk, MAP
Risk and alpha Fr. Additionally, we constructed bivariate maps —derived directly from
quantitative, plot-level metrics, ensuring that observed patterns reflect measured differences
rather than subjective interpretation— which illustrates Fr and climate change risk

simultaneously for each plot. For mapping functional redundancy (Fr) and climate change risk
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(MAT and MAP), we classified plots into three categories each. Fr categories were defined as
follows: low redundancy corresponded to the lowest 33% of Fr values, medium redundancy
included values between the 33 percentile and the median of plots considered at risk, and high
redundancy included values above that median. MAT Risk was classified as low risk for plots
that were not at risk (MAT Risk < 0); similarly, MAP Risk was classified as low risk for plots
that were not at risk (MAP Risk > 0). Among plots at risk (MAT Risk > 0 and MAP Risk <0),
we then used the median of the at-risk subset to distinguish medium and high risk categories.
approach ensures that the classification reflects both the distribution of Fr and the degree of
climate change exposure among at-risk plots, avoiding the bias introduced by equal-interval or
quartile-based splits of the entire dataset. Beyond serving as a visual illustration, these bivariate
maps provide an analytical framework to identify spatial patterns and hotspots of vulnerability,
(high climate change risk and low Fg), highlighting plots that will likely undergo climate-
driven changes in community composition and enabling comparison across regions and

prioritisation for conservation or further study.

2.7. Modelling the relationship between diversity indices, bioclimate and climate change risk
We investigated the drivers of plant diversity metrics (species richness, Sgr; species diversity,
Sp; functional diversity, Fp; functional redundancy, Fr) and climate-driven vulnerability (MAT
Risk, MAP Risk) using linear regression models at two spatial scales: continental (all AusPlots
across Australia) and biome-specific. For diversity metrics, we included six bioclimatic
predictors (MAT, T-Max, T-Range, MAP, P-Dry and P-Season). For climate risk metrics, we
tested two complementary predictor sets: bioclimatic variables and diversity indices (Sr, Sp,
Fp, Fr). All models were additive and excluded interactions. We evaluated all possible models
containing any subset of predictors, including the null model, and selected the best-supported
model based on the lowest Akaike Information Criterion (AIC). For each model, we calculated
AAIC and Akaike weights, with AAIC < 2 indicating substantial support. From each best-
supported model, we extracted slopes, standard errors, t-values, p-values, and goodness-of-fit
metrics (R?, adjusted R?, residual standard error, AIC, BIC) to quantify the strength, direction,

and significance of predictors. Only results from the best-supported models are reported.

3. Results

Species richness (Sr) averaged 21.01 species per plot (= 11.17 Standard Deviation (SD); Inter
Quartile Range (IQR) = 13-27) , indicating high variability across the sampled sites. Species
diversity (Sp) had a mean of 0.72 (£ 0.18 SD; IQR = 0.64-0.85), while quadratic functional

12
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diversity (Fp) averaged 0.18 (= 0.07 SD; IQR = 0.14-0.22). Functional redundancy (Fr) in
sampled plant communities ranged from 0.44 to 0.93, with a mean value of 0.75 (£ 0.07 SD;
IQR = 0.71-0.80).

While no dominant spatial pattern for Fr was evident across the continent (Fig. 2), there
was a tendency for higher Fr in the interior regions. In this sense, Fr showed significant positive
spatial autocorrelation (Moran’s I = 0.205, p < 0.001), indicating that nearby plots tend to be
more similar in Fr than expected by chance. However, spatial position explained only a small
proportion of variation (adjusted R? = 0.048) in the latitudinal-longitudinal model, suggesting
that while spatial structure is present, geographic trends are weak and consistent with our
description of broad tendencies rather than strong regional gradients. A linear regression of Fr
against latitude revealed a slight positive relationship (slope = 0.00095, p = 0.020, R?=0.008),
indicating that Fr tends to increase slightly toward more northerly sites, although latitude alone
explains very little of the overall variation. As such, central Queensland, the arid zones of South
Australia and the Northern Territory, and parts of western New South Wales appeared as
hotspots of high Fr. In contrast, regions such as Tasmania, eastern New South Wales, the west
coast of Western Australia, the northern tip of the Northern Territory, and the Mount Lofty
Ranges in South Australia exhibited mostly lower Fr values. When comparing Fr across
biomes, we found significant differences (ANOVA: F = 10.42, p < 0.001). Pairwise
comparisons (Tukey HSD) indicate that some biomes, including the arid deserts and xeric
shrublands (biome 13) and the tropical and subtropical grasslands, savannas and shrublands
(biome 7), had significantly higher Fr than Mediterranean-type (biome 12) and temperate forest
(biome 4) biomes (see supplementary material for further details). Overall, plots with high Fr
were not strongly spatially segregated from those with low Fg; thus, despite these broad-scale
differences, high and low Fr plots remain intermixed locally, supporting our original
conclusion that fine-scale hotspots (e.g., Central Queensland, Mount Lofty Ranges) reflect site-

level variation that cannot be fully captured by biome aggregation.
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Figure 2. Map of plot-level functional redundancy values across the TERN continental
vegetation monitoring plot network (n = 646; notice that for three plots, calculations of certain
diversity metrics were not possible). Colour denotes functional redundancy (legend). The plant
communities in highly redundant plots (dark green) are expected to maintain stable ecosystem
functioning in the event of species loss. The plant communities in plots with low functional
redundancy values (dark pink) are expected to experience unstable ecosystem functioning in
the event of species loss. Black lines indicate the approximate boundaries of major Australian

biomes, providing geographic context for the distribution of functional redundancy values.

3.1. Variation of diversity indices along bioclimatic gradients
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While some temperature variables were correlated (e.g., MAT and T-Max, r =0.87, p <0.001;
see supplementary material for further details), we show their independent bivariate
relationships to illustrate the different ecological dimensions of each bioclimatic variable.

Across Australia, multivariate AIC-selected models revealed consistent and strong
climatic controls on plant diversity patterns. Species richness (Sr), species diversity (Sp), and
functional diversity (Fp) were primarily shaped by temperature—precipitation trade-offs, with
MAT exerting predominantly negative effects and MAP showing positive or stabilizing
influences (Table 1). In particular, at the continental scale, Sz decreased with MAT and T-
Range and increased with MAP and P-Season. Sp and Fp were negatively influenced by MAT
and P-Dry and positively influenced by MAP (and T-Max in the case of Fp). Together, these
models explained between 7% and 24% of the variation in Sg, Sp, and Fp. In contrast,
functional redundancy (Fr) responded only weakly to climate. Fr increased with MAT and T-
Range and decreased with T-Max and P-Season. Although several predictors were retained in
the best model for Fg, this only explained 4% of its variation, indicating that functional
redundancy seems to be decoupled from broad-scale climatic gradients.

Biome-level patterns revealed substantial regional differentiation in climatic drivers. In
temperate broadleaf and mixed forests (biome 4), Sgr increased with T-Max and decreased with
T-Range, which also affected Fp negatively. However, Sp was determined by precipitation
variables, with MAP having a positive effect and P-Dry and P-Season a negative one. In
tropical and subtropical grasslands, savannas and shrublands (biome 7), Sr increased with
MAT but declined with T-Max, P-Dry and P-Season, while Sp and Fp were most strongly and
positively associated with MAP and negatively with P-Season; finally, Fr was positively
influenced by T-Range. Mediterranean forests, woodlands and shrublands (biome 12) showed
pronounced precipitation influences, with Sr, Sp and Fp all positively shaped by combinations
of P-Dry and P-Season, alongside negative MAT effects for Sg and Sp. Fr in biome 12 was
negatively affected by MAT, MAP and P-Dry. Finally, in deserts and xeric shrublands (biome
13), Sr was negatively affected by MAT, and T-Range and positively by T-Max and MAP; Sp
was positively influenced by P-Season, whereas and Fp was negatively influenced by MAT,
and positively by T-Max and P-Season. Fr in biome 13 was positively influenced by MAT,
and negatively by T-Range, MAP, and P-Season. These contrasting results across biomes
indicate that diversity metrics respond to different climatic dimensions depending on regional

environmental context.
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While we do not present ordinations of species or trait composition here, the
distinctness of biomes and habitats can be explored using the species and trait data available

through the ‘ausplotsR’ package (Guerin ef al. 2020b; Munroe et al. 2021).
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Table 1. Best-fit linear models explaining spatial variation in species richness (SR), species diversity (SD), functional diversity (FD), and
functional redundancy (FR) across Australia and within selected biomes. Models were selected using AIC-based stepwise selection. The
table reports the retained predictors, model fit statistics (R?, adjusted R?, sigma), and information criteria (AIC, BIC). The direction and
statistical significance of each predictor in the best model are shown in brackets after each term (+: positive effect; —: negative effect; * p

<0.05, ** p <0.01, *** p<0.001). Predictors without brackets were retained in the best model but were not statistically significant.

lé?gggf: Best model formula R? Adj R? sigma AIC BIC dfresidual
Sk E%jsg§£;+*)) +T_Max @7+ T_Range™ + MAP®™ 0.24 0.23 975  4783.56  4814.85 640
Sp SD ~ MAT®™ + MAP®™) + P Dry*™*" 0.08 0.07 0.08 -434.38 -434.02 642
Fo FD ~ MAT®™ + T Max @ +T Range + MAP®™ + P Dry™™ 0.11 0.11 0.11 -1764.83 -1733.54 640
Fr FR ~ MATH™ + T Max®™® + T Range“**) +MAP + P Season®™ 0.04 0.04 0.04 -1566.12 -1534.83 640
Sr SR~T Max®*™ +T Range“™" 0.57 0.54 8.30 231.10 236.96 29
Sp SD ~MAT + MAP®™ + P Dry™ + P Season” 0.31 0.21 0.16 -18.81 -10.01 27
Fp FD ~T Range®™ 0.17 0.14 0.06 -84.79 -80.39 30
Fr FR ~ MAT 0.06 0.03 0.07 -72.10 -67.70 30
Biome 7 — Tropical / subtropical grasslands, savannas and shrublands

Sr SR ~MATC™ + T Max“™ +P Dry™™ +P Season™ 0.31 0.29 9.91 1291.47 1310.39 168
Sp SD ~ MAT + MAP®™ + P Season” 0.13 0.12 0.17 -114.92 -99.15 169
Fp FD ~ MAP“™ + P Season" 0.14 0.13 0.06 -473.37 -460.76 170
Fr FR~T Range™" 0.04 0.03 0.07 -431.87 -422.41 171
Biome 12 — Mediterranean forests, woodlands and shrublands

Sr SR ~MAT™ + T Max®™ + P Dry™™ + P Season™" 0.50 0.48 8.30 1201.84 1220.62 164
Sp SD ~ MAT®™ + P Season®™™") 0.17 0.16 0.15 -165.96 -153.44 166
Fp FD ~P Dry®™™ +P Season®™" 0.21 0.21 0.06 -489.30 -476.78 166
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Fr FR ~ MAT®™ + MAP“™ + P_Dry™™" 0.20 0.18 0.07 -433.99 -418.34 165
Biome 13 — Deserts and xeric shrublands

Sr SR ~MAT™ + T Max®™ + T Range™ + MAP®™ 0.11 0.09 8.25 1658.41 1679.14 229
Sp SD ~P Season™” 0.02 0.01 0.17 -161.00 -150.63 232
Fo FD ~ MAT™ + T Max®™ + MAP +P_Season™ 0.08 0.06 0.06 -653.69 -632.96 229
Fr FR ~ MAT®™ + T Range™" + MAP" + P _Season“™ 0.15 0.13 0.07 -605.50 -584.77 229
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3.2. Geographic distribution of climate change risk and its relationship to environmental
variables

Out of 649 plots, 201 (31%) are considered at risk to species turnover and changes in
community composition due to projected changes in mean annual temperature (Risk MAT >
0; Fig. 3). Plots with the highest Risk MAT values are primarily located in the northern half of
the continent, whereas lower-risk plots occur at more southerly latitudes. Meanwhile, 608 plots
(93.7%) are considered at risk from predicted changes in mean annual precipitation (Risk MAP
< 0), with the highest-risk plots generally located at the northern and southern extremes of the
continent and lower-risk plots in central regions (Fig. 3). Across the TERN AusPlots network,
regression analyses revealed that Risk MAT increases strongly with latitude (R? = 0.58, p <
0.001), indicating higher temperature-driven risk in northern regions (slope = 0.254 °C per
decimal degree latitude; Fig. 3c). Incorporating longitude slightly improved model fit (R? =
0.66,p <0.001), showing that risk rises northwards but decreases slightly westwards (longitude
slope =-0.071 °C per decimal degree). In contrast, Risk MAP declines with latitude (R = 0.20,
p < 0.001), suggesting greater precipitation-driven risk in southern regions. These regression
models complement the histograms and maps, quantitatively highlighting broad latitudinal

trends in climate change exposure.



a)

Mean Annual Temperature (MAT) Safety Margin Mean Annual Precipitation (MAP) Safety Margin
10°8 10°8
15°S 15°§
2008 Temperature (°C) 0% Prec:pzi;(a’tion (mm)
%; 25°S 9 § 2508 1000
2 2 750
] 6 ©
8 a0s 4308 500
3
35°s 35°s 250
40°S 40°8
45°S 45°8
110°E 120°E 130°F 140°F 150°E 110°E 120°E 130°E 140°E 150°E
Longitude Longitude
487 b)
Mean Annual Temperature (MAT) Risk Mean Annual Precipitation (MAP) Risk
10°8 108
15°8 1555
20°5 20°5
D 25°§ D 2575
2 E
8 s Temperature (°C)  § ..o Precipitation deficit (mm)
B :o: B 150010000
35°8 B tt2 363 [ 900 t0 400
[ ot ] #00t00
08 [ s2t0 s [ owo2s
63t0-32 2510 50
45°8 = 0 46°8 = © l° o
951063 50 to -
10°E 120 130°E 140°€ 150°€ ¢ 110°E 120°€ 130°E 140°E 150°E
Longitude Longitude
488 9 9
c) Risk Status 15
9 I At risk
,g . Not at risk @
= Q
a 510
56 S5
e -
o
2 2
£ =
S
z 3 z 5
0 0
-10 -5 0 -1500 -1000 -500 0
Risk MAT (°C) Risk MAP (mm)

489

d)



490
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

o o E
:\_/ £ 500
o
g <
X 5 =
©w . -1000
14 o
-1500
-10
-40 -30 20 -10 -40 -30 -20 -10
Latitude (°) Latitude (°)

Figure 3. a) mean annual temperature (MAT) (left) and mean annual precipitation (MAP)
(right) safety margins; b) climate change risk in terms of predicted changes to MAT (left) and
MAP (right) across the TERN AuPlots network; ¢) distribution histograms of Risk MAT and
Risk MAP; and d) scatterplots of Risk MAT and Risk MAP versus latitude with fitted linear
regression lines (solid) and 95% confidence intervals (shaded), illustrating broad latitudinal
trends in climate change exposure across the network. For MAT climate change risk, notice
that the values in the legend represent °C, over (positive) or below (negative) the safety margin,
to which the vegetation community will be exposed in the future. For MAP climate change
risk, notice that the values in the legend represent water deficit, over (positive; i.e. more water
deficit and harsher conditions) or below (negative) the safety margin, to which the vegetation
community will be exposed in the future. Red points on the map represent at risk plots, while
blue colours represent plots with risk values of zero or less (the darker the blue the less at risk).
On the histograms, bars for plots at risk (positive for MAT, negative for MAP) are shown in
red, while plots not at risk are shown in blue, highlighting the big proportion of plots at risk

across the network.

Across all AusPlots, MAT Risk increased with higher T-max and P-season, and
decreased with increasing MAT and temperature range (T-Range), indicating that sites in hotter
regions with marked precipitation seasonality are projected to experience greater temperature-
driven turnover (Table 2; see supplementary material for full model outputs). In contrast, MAP
Risk increased with MAT, MAP, P-dry, and P-season, and decreased with T-range and T-max,
suggesting that precipitation-driven turnover is highest in warm sites with moderate
temperature variability (Table 2; Supplementary material). MAP Risk displayed an inverse
patter, increasing with MAT and T-Range and decreasing with MAP and T-Max, with an

additional negative effect of P-Dry. These patterns indicate that temperature-driven and
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precipitation-driven turnover risks respond to distinct climatic axes, with the former most
elevated in warmer and seasonal environments, and the latter being greater in hotter and arid
regions.

At the biome scale, the relationships between MAT/MAP Risk and bioclimatic
variables were quite contrasting for different biomes (Table 2; Supplementary material).In
temperate forests (biome 4), MAT Risk increased with MAT, while MAP Risk was influenced
by nearly all predictors, including positive effects of MAP and T-Max and negative effects of
MAT, P-Dry, and T-Range (Table 2; Supplementary material). In tropical and subtropical
savannas (biome 7), MAT Risk increased with MAT, P-Dry, and T-Range, whereas MAP Risk
was primarily driven by precipitation (positive effect of MAP, although negative effect of and
P-Season) and moderated by temperature variability (negative effects of T-Range, and a
positive effect of T-Max). In Mediterranean systems (Biome 12), MAT Risk reflected the joint
influence of temperature and seasonality, increasing with T-Max and P-Season, while MAP
Risk was dominated by a strong positive effect of MAP and MAT and a negative effect of P-
Season. In deserts and xeric shrublands (Biome 13), MAT Risk was elevated in warmer sites
(positive effects of MAT and T-Max) and declined with P-Dry, while MAP Risk increased
with MAP, T-Max, and P-Dry and declined with MAT.

3.3. Relationship between climate change risk and diversity metrics

At the continental scale, MAT Risk was not significantly associated with any of the diversity
metrics (Sr, Sp, Fp, or Fr), indicating that variation in these community attributes does not
strongly predict temperature-driven turnover. By contrast, MAP Risk exhibited a strong
negative relationship with Sg, with communities containing more species showing lower
precipitation-driven risk (Table 3; supplementary material).

At the biome scale, the influence of diversity metrics on climate change driven risk was
more variable. For temperate forests (biome 4), no diversity metrics were significantly
associated with MAT Risk, while MAP Risk decreased significantly with Sg. In tropical
savannas (biome 7), MAT and MAP Risk increased with Sg. In Mediterranean systems (biome
12), MAT Risk was positively related to Sg, while MAP Risk increased with Sg but decreased
with Fgr, suggesting that communities with high redundancy buffer better precipitation-driven
risk. In deserts (biome 13), MAT Risk increased with Fp but decreased with Sp, whereas MAP

Risk showed a more complex pattern, increasing with Sg and Fp but decreased with Sp,
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indicating that the structure of community diversity influences precipitation-driven risk in
multiple, and somewhat contrasting, ways.

Communities with low Fr and high MAT/MAP Risk are likely the most vulnerable to
climate-driven changes in composition, as they face both, climate change—induced species
turnover and a reduced capacity to maintain ecosystem function. These highly vulnerable sites
are primarily located in the northern areas of the continent (Fig. 4). In contrast, communities
with high Fr but high MAT/MAP Risk may still experience species loss but are expected to be
more resilient in maintaining function; these are also concentrated in the continent’s eastern
interior. The least vulnerable communities—those with high Fr and low MAT/MAP Risk are

scattered across central Australia (Fig. 4).
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Figure 4. Bivariate maps of functional redundancy (Fr) and climate change risk across the
Australian continent (646 TERN AusPlots). Left: Fr combined with mean annual temperature
risk (MAT Risk). Right: Fr combined with mean annual precipitation risk (MAP Risk). For
Fr, plots were categorized as low (bottom 33%), medium (33% up to the median of plots
considered at risk), or high (above that median). For MAT Risk, plots with risk < 0 were
classified as low risk, whereas for MAP Risk, plots with risk > 0 were classified as low risk.
Plots at risk (MAT risk > 0 or MAP risk < 0), were split into medium and high risk categories
using the median of the at-risk subset. Plots with high climate risk and low Fr (dark red) are
potentially most vulnerable to climate-driven changes in community composition and

associated loss of ecosystem functionality.
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Table 2. Best-fit linear models explaining variation in MAT Risk and MAP Risk against bioclimatic predictors across Australia and within

selected biomes. Models were selected using AIC-based stepwise selection. The table reports the retained predictors, model fit statistics

(R?, adjusted R?, sigma), and information criteria (AIC, BIC). The direction and statistical significance of each predictor in the best model

are shown in brackets after each term (+: positive effect; —: negative effect; * p < 0.05, ** p < 0.01, *** p < 0.001). Predictors without

brackets were retained in the best model but were not statistically significant.

Resp.onse Best model formula R?  AdjR? sigma AIC BIC dfresidual
Svariable _________________________________________________________________
oy, MATRisk~1+MAT)+T Max®™+ 0712 0710 1292 237209 239945 701

MAT Risk T Range®™ + P Season*")

MAP Risk MAPRisk~1+ M{}T“***) +T Max®™+T Range"™ + 0.880  0.879  94.066 8427.64  8459.55 700

MAP™) + P Dry"

Biome 4 — Temperate broadleaf and mixed forests

MAT Risk MAT Risk ~ 1 + MAT®™ + P Dry 0.403 0.369 1.448 140.84 147.39 35

MAP Risk MAP R*Ek ~1+ MéT(‘*) +T Max®+ T Range®™ + 0.750 0.711 144.866 493.47 504.93 32

MAP™™ + P Dry®"

Biome 7 — Tropical / subtropical grasslands, savannas and shrublands

MAT Risk MAT Risk ~ 1 + MAT®™ +T Range®™ + P Dry™™ 0.762 0.758 0.692 413.93 430.27 190

MAP Risk MAP Iilfk ~1+MAT ;*T_Max(****hr T Range®™ + 0.868 0.864 107.674 237395  2396.82 188

MAPC™ + P Season“™™

Biome 12 — Mediterranean forests, woodlands and shrublands

MAT Risk MAT Risk ~ 1 +T Max®™ +P_Season™"" 0272 0264  1.570 704.44 717.36 184

MAP Risk MAP Risk ~ 1 + MAT®*™ + MAP®™ +P_Season™" 0.803  0.800 65.296 2099.56  2115.72 183

Biome 13 — Deserts and xeric shrublands

MAT Risk MAT Risk ~ 1 + MAT®™) + T Max®™ + P-Dry™™" 0.770 0.767 0.940 673.78 691.31 242

MAP Risk MAP Risk ~ 1 + MATC™) + T Max®™ + MAP"™™ + P-Dry™™") 0.858 0.856  36.140 2470.07  2491.10 241
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Table 3. Best-fit linear models explaining variation in MAT Risk and MAP Risk against biodiversity metrics across Australia and within
selected biomes. Models were selected using AIC-based stepwise selection. The table reports the retained predictors, model fit statistics
(R?, adjusted R?, sigma), and information criteria (AIC, BIC). The direction and statistical significance of each predictor in the best model
are shown in brackets after each term (+: positive effect; —: negative effect; * p < 0.05, ** p < 0.01, *** p < 0.001). Predictors without

brackets were retained in the best model but were not statistically significant.

I‘{]Zsl!)igg:: Best model formula R? Adj R? sigma AIC BIC dfresiaual
'MAT Risk MATRisk~1 0000 0000 238 295480 2963.74 645
MAP Risk MAP Risk ~ 1 + Sr“™ 0.169 0.168 236.82 8901.01 8914.42 644
MAT Risk MAT Risk ~ 1 + Sg 0.083 0.052 1.854 134.24 138.64 30
MAP Risk MAP Risk ~ 1 + SR 0414 0.394 223.714 441.01 44541 30

Biome 7 — Tropical / subtropical grasslands, savannas and shrublands

MAT Risk MAT Risk ~ 1 0.000 0.000 1.394 608.88 615.19 172
MAP Risk MAP Risk ~ 1 + SR + Fp 0.234 0.225 245.523 2400.10 2412.71 170
Biome 12 — Mediterranean forests, woodlands and shrublands

MAT Risk MAT Risk ~ 1 + Sg* 0.046 0.041 1.742 671.14 680.53 167
MAP Risk MAP Risk ~ 1 + SR**) + Fr*™ 0.232 0.223 129.872 2129.47 2141.99 166
Biome 13 — Deserts and xeric shrublands

MAT Risk MAT Risk ~ 1 + Sp© + Fp*® 0.030 0.022 1.912 972.41 986.23 231
MAP Risk MAP Risk ~ 1 + SRE*™ +8pC** + Fp+** 0.171 0.160 88.621 2768.72 2785.99 230
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4. Discussion
Here, we analysed multiple diversity metrics —including species richness, species diversity,
functional diversity, and functional redundancy, but with particular emphasis on functional
redundancy (Fr)— in Australian plant communities using continental-scale ecological and
functional trait datasets. Our results showed that the northern and eastern Australian coastlines,
as well as Mediterranean-climate regions in southwestern Western Australia and southeastern
South Australia, are particularly vulnerable to species loss, shifts in community composition,
and subsequent loss of ecosystem function under climate change. We find Fr was generally
high across sampled communities, suggesting some resilience to loss of ecosystem function in
the event of species loss (Walker 1995; Pimiento et al. 2020). Central, arid plant communities
may be more resilient to functional loss in the event of species loss given the structured pattern
emerging of increasing Fr with distance from the coast. At the continental scale, Fr variation
was related to macroclimate in terms of both, temperature (MAT) and precipitation seasonality
patterns (positive and negative relationships, respectively), while Sg, Sp and Fp showed
opposite patterns (negative relationships with MAT and positive with MAP). However, these
relationships explained limited variance, likely because macroclimate metrics do not capture
fine-scale environmental variation, which can be a stronger driver of community composition.
Declines in Sg with increasing temperature range suggest thermal variability acts as a filter,
favouring stress-tolerant or generalist species, which could subsequently reduce Fp even if
overall abundance is maintained. Fr may buffer functional loss, but this is context-dependent
and often coincides with lower Fp, reflecting interactions between habitat filtering and niche
partitioning (Spasojevic and Suding 2012). These patterns underscore how functional traits and
climatic variability combined shaping ecosystem resilience, and emphasise the need to
understand how Fr and Fp respond to environmental gradients for conservation planning.
Andrew et al. (2021) found that Fp across Australian vegetation was strongly linked to
climate using grid-cell-based models. In contrast, our plot-based analyses suggest communities
may possess greater Fr than broad-scale patterns would indicate, as local assembly processes—
environmental filtering and biotic interactions—can enhance Fgr, whereas grid-cell models
reflect broader niche—environment relationships. Similarly, Guerin et al. (2022) found strong
climate—trait links at the single-trait level across the same plot network, suggesting that
aggregating traits into composite Fp and Fr metrics may dilute finer-scale trait—environment
relationships. Although single trait studies can better reveal functional responses to
environmental gradients (e.g., Funk et al. 2017), reductionist approaches offer more limited

insights into community dynamics. Community assembly operates hierarchically, with
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macroclimate dominating at large scales and local factors shaping communities locally (Diaz
et al. 1998; Laliberté et al. 2010). Consistent with this, we found that biome-scale relationships
between diversity metrics and climate were notably stronger than continental-scale patterns,
particularly in Mediterranean forests (biome 12) and tropical/subtropical grasslands (biome 7),
suggesting that smaller-scale analyses capture more coherent functional responses (Bruelheide
et al. 2018).

At the biome scale, diversity metrics responded to bioclimate in highly context-specific
ways, reflecting how climate interacts with physiology, resource availability, and evolutionary
history to shape plant communities. The contrasting responses of communities’ Fr to
bioclimatic factors within biomes point to different drivers depending on the limiting factor or
stressor within each climate. In tropical savannas (biome 7), extreme rainfall seasonality limits
species with narrow niches, yet Fr increases with temperature range, likely reflecting
convergence on heat-adapted strategies. Temperate forests (biome 4), with more benign
climatic conditions, exhibit richness increase with warmth and species diversity increase with
rainfall, while Fr remains largely independent of climate, suggesting the absence of a strong
limiting stressor. Mediterranean systems (biome 12) experience dual pressures of intense heat
and summer drought, which reduce Sg and Sp under hotter conditions, yet Fr increases with
reduced precipitation, most likely through the prevalence of stress-avoidance traits. Deserts
(biome 13) show strong drought-driven Fg, although extreme heat constrains it. In line with
this, our results showed lower Fp at hotter and drier locations, and higher Fp at cooler and
wetter locations — supported by Guerin et al. (2022) who showed Fp declined with aridity,
pointing towards trait convergence with extreme conditions. These patterns indicate that Fp-
to-Fr ratio emerges from the interplay of habitat filtering, niche partitioning, and local
environmental constraints, producing contrasting functional responses across biomes rather
than reflecting climate alone. Consequently, communities with high Fp may have low Fr and
therefore be more vulnerable to species loss, whereas those with lower functionality may be
more resilient (Ricotta et al. 2016).

Short-term drivers such as land-use change, disease, and direct anthropogenic pressures
may further reduce Fr (Fonseca and Ganade 2001); however, our study focused on plant
communities with minimal recent disturbance, suggesting that higher Fr under extreme
environments reflects long-term environmental effects rather than human impact. We note,
however, that because our analyses rely on contemporary surveys, current species composition
may already incorporate recent climate- and land-use-driven shifts, which could influence trait

filtering patterns and reduce predictive power. Inconsistent Fr metrics also complicate
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comparisons, emphasizing the need for clear methodology and fine-resolution environmental
data when studying Fp and Fr (Biggs et al. 2020). Thus, we recommend clearly specifying Fr
calculations and noting that functional similarity does not always imply redundancy, and we
advocate for the use of finer-resolution environmental data (e.g., biome- or regional-scale)

where available, to better elucidate Fp-to-Fr ratio and trends.

4.1. Climate change risk

Climate change risk exhibited clear geographic patterns across Australian plant communities
and was strongly related to current climatic conditions, indicating that species safety margins
may be more important than predicted exposure in determining the risk of species turnover or
changes in community composition. Temperature-related risk (MAT Risk) varied with latitude,
increasing from south to north (also supported by Gallagher ef al. 2019), while precipitation-
related risk (MAP Risk) was greatest in the coastline of the continent, especially in the North
and in mediterranean-climate regions, and lowest at the arid centre. This, therefore, points to
the northern coastline as a priority region for conservation practices to mitigate climate-driven
change in vegetation communities.

In general, we found strong links between climate change risk and current climate
conditions. The trends we found reflect the fact that as climates become more extreme in
temperature, species approach their tolerance limits, leading to the greatest temperature-driven
turnover in the hottest and most seasonally variable environments (Deutsch et al. 2008). For
example, our findings that MAT Risk increased with long-term T-max and P-Season and
decrease with MAT and T-Range, suggest that communities exposed to persistently high
temperature extremes and strong intra-annual rainfall variability will be most sensitive to future
warming, whereas broader thermal ranges may buffer against turnover. In contrast, MAP Risk
was highest in sites that are warm and experience pronounced temperature fluctuations, but
lowest in sites with high rainfall and dry-season precipitation, implying that plant communities
subjected to the combination of heat and drought will experience higher precipitation-driven
risk. Furthermore, this suggests that safety margins may be more important than exposure per
se in determining sensitivity to climate change vulnerability in Australian plant communities
(Foden et al. 2019), as the former takes a much wider range of values in Australian plant
communities. We acknowledge that species’ climate tolerances are derived from their realised
rather than fundamental niches, potentially underestimating true physiological limits and

adaptive capacity (Sax et al. 2013). Yet, species already persisting in extreme environments
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seem to possess greater adaptive potential precisely because of being shaped by harsher
conditions (Chevin and Hoffmann 2017).

Tropical savannas in northern Australia, where MAT Risk was found to be highest, are
key global carbon sinks (Grace et al. 2006) that rely on complex interactions between fire
regimes, water availability and vegetation dynamics (Moore et al. 2018), making them highly
vulnerable to climatic shifts. Their high sensitivity to future precipitation shifts (MAP Risk)
likely stem from the fact that these ecosystems are structured around strong wet—dry
seasonality, where even small changes in rainfall amount or timing can disrupt plant
recruitment, survival, and competitive ability. Unlike species in more southern arid zones,
many northern taxa are less drought-adapted, thus, reduced rainfall could push them beyond
their physiological limits. Moreover, biogeographic barriers constrain range shifts, as deserts
to the south and oceans to the north limit gradual migration. Together, these factors indicate
that northern Australia warrants particular attention from land managers and conservation
purposes to prevent climate-driven species loss.

Mediterranean regions in the South West Australian Floristic Region (SWAFR) and
South Australia showed high MAP Risk probably due to many species in these communities
already nearing their upper climate thresholds, particularly with regards to the intense summer
drought periods they face (Lewandrowski ef al. 2021). In fact, drought-related dieback of
Australian mediterranean vegetation has been well-documented, with rainfall already in
decline and predicted to continue (Brouwers et al. 2013). Arid interiors exhibit low MAP Risk,
due to projected increases in precipitation by 2070 (Gallagher ef al. 2019). These biome-
specific contrasts underscore the challenge of making generalizations when predicting changes
in vegetation dynamics (Mori 2011).

At the biome scale, the links between climatic variables and MAT and MAP Risk
highlight how different vegetation types may be exposed to shifts in community composition
under warming and drying trends. The benign climatic conditions of temperate forests (biome
4) make them vulnerable to temperature stress (i.e. increases in MAT and T-Max positively
affect MAT and MAP Risk respectively) and rainfall (i.e. lower P-Dry results in higher MAP
Risk), reflecting their dependence on stable mild temperatures and moisture regimes. In
tropical savannas (biome 7), MAT Risk increased in hotter sites and in areas with greater dry-
season rainfall, indicating that both chronic warmth and large annual temperature fluctuations
amplify sensitivity to warming. MAP Risk, by contrast, was highest in wetter and more heat-
exposed savannas but declined with greater temperature range and rainfall seasonality,

suggesting that climatic variability and pronounced wet—dry cycles may help buffer these
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communities against precipitation-driven change. In Mediterranean systems (biome 12), both
MAT and MAP Risk were highest in the warmest areas and in sites with weaker rainfall
seasonality, indicating that communities occupying the margins of the Mediterranean climate
regime—where summer drought is less pronounced—are more vulnerable to climate-driven
change than those in strongly seasonal, drought-adapted environments, pointing to the
importance of stress-tolerant adaptations in buffering these communities against increasing
drought. In deserts (biome 13), MAT Risk was greatest in the hottest sites and declined with
P-Dry, indicating that hyper-arid communities already adapted to extreme water limitation may
be less sensitive to further warming than those in comparatively milder desert environments.
MAP Risk, however, increased in warmer and wetter desert areas and in sites where the driest
month is less dry, suggesting that communities located in more semi-arid areas are more
vulnerable to precipitation-driven change than those in the most extremely water-limited
regions that are already adapted to drought. Together, these contrasting biome-level responses
indicate that climate-change risk is shaped not only by absolute climatic stress but by how far
future conditions will diverge from the specific adaptive strategies of the vegetation
characteristic of each biome, thus underscoring the need for case-by-case assessments.
Although we focused on mean climate changes, we acknowledge that extreme events (e.g.
heatwaves, droughts and wildfires) can also shape species survival and drive ecosystem shifts

(Lloret et al. 2012).

4.2. Relationship between functional redundancy and climate change risk
By integrating climate change risk with Fr, we provide a robust assessment of Australian plant
communities, capturing both their vulnerability to species loss and their potential resilience to
functional disruption (traditionally ignored in climate change studies; Li ef al. 2018). In this
framework, communities with high climate risk and low Fr are most vulnerable, whereas those
with high risk but high Fr may withstand some functional loss, and communities with low
climate risk are inherently less threatened. At the continental-scale the negative relationship
found between Fr and precipitation-driven climate change risk, points out to the north and east
coastlines as well as the mediterranean-climate regions as the most vulnerable areas to suffer
changes in community composition and subsequent loss of ecosystem function.

Unlike MAT Risk, MAP Risk exhibited clear relationships with community diversity
metrics, reflecting the strong influence of rainfall and its seasonality on Australian plant

communities. At the continental scale, communities with higher species richness experienced
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lower MAP Risk, suggesting that richer communities are more buffered against precipitation-
driven turnover.

At the biome scale, the influence of community diversity on climate-change risk varied
markedly. In temperate forests (biome 4), higher species richness appeared to buffer
communities against precipitation-driven turnover, suggesting that diverse forests maintain
stability under altered rainfall regimes. In tropical savannas (biome 7), communities with larger
species pools seem to be subjected to amplified compositional shifts under warming and altered
rainfall, perhaps reflecting the exposure of less stress-tolerant species in these dynamic
environments. In Mediterranean systems (biome 12) functional redundancy plays a key role,
mitigating precipitation-driven risk, and highlighting the role of overlapping functional traits
in stabilizing communities despite turnover in species composition. In deserts (biome 13), the
contrasting effects of species and functional diversity climate-driven risk suggest that the
vulnerability of arid communities is shaped by the balance between the breadth of functional
strategies and species identities, with some aspects of diversity enhancing turnover while others
confer resilience. Altogether, these patterns indicate that precipitation-driven climate risk is in
general more sensitive to community structure than temperature-driven risk, and that the
ecological consequences of diversity for climate vulnerability are highly context-dependent,
reflecting the specific adaptive strategies and functional composition of each biome.

The concept of functional redundancy deals with the local extinction of species, yet
climate change may also add novel species, which can have diverse functional effects—from
enhancing community resilience supporting mutualistic interactions, as seen on islands
(Traveset et al. 2013), to detrimental impacts from non-native species (Wardle et al. 2011).
Accounting for both, species gain and loss, is therefore essential to accurately predict climate-
driven community responses (Gallagher et al. 2013). A limitation of using Fr to estimate
community resilience is that a set of functionally redundant species can theoretically all
respond similarly to a given threat, resulting in loss of ecosystem function (Mori et al. 2013).
Thus, community resilience depends on both response diversity—the variety of species’
functional response traits—and functional redundancy (Elmgqvist et al. 2003; Mori et al. 2013).
Ideally, Fr would be measured using effect traits with explicit links to a given ecosystem
function and response traits with explicit links to a given threat; however, this is difficult as
traits can often act as either depending on context (Suding et al. 2008). Additionally, at the
continental-scale trait data availability is in general limited, reinforcing the importance of large
open access trait databases such as AusTraits (Falster ef al. 2021) and the ongoing work by

numerous researchers to improve the taxonomic coverage of trait data. Because of the present
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barriers to implementing the effect- response framework, the assumption that a higher degree
of functional redundancy infers at least some degree of response diversity is often made
(Laliberté et al. 2010; Pillar et al. 2013).

While we retain the term “functional redundancy” for comparability with previous
studies, we frame Fr as functional similarity—a spectrum of overlapping but non-identical
contributions to ecosystem processes—acknowledging concerns that the term redundancy may
be ecologically misleading or counterproductive (Eisenhduser ef al. 2023). While Fischer and
de Bello (2003) suggested redundancy implied resilience, with the loss of some species having
little detectable effect at the community scale, Eisenhduser ef al. (2023) argue this framing
risks underestimating the unique and context-dependent contributions of species to ecosystem
functioning. We agree that the term “redundancy” can obscure the fact that species’ roles are
not interchangeable across space, time, or environmental conditions; thus, Fr should be
interpreted here as functional similarity—recognizing that resilience is not guaranteed and
functional loss might still remain a risk.

Our findings can be useful to land managers and policy makers and guide conservation
prioritization (Walker 1995; Rosenfeld 2002) in Australia, especially in highly vulnerable areas
like the tropical North and the Mediterranean regions. Deliberately preserving high-Fr
communities could also help maintaining key ecosystem functionality (Mori et al. 2013).
Having established Fr and climate-driven risk across plant communities in the Australian
continent, future work should explicitly test whether Fr effectively enhances resilience over

time—a crucial step given limited knowledge under certain conditions (Biggs et al. 2020).

4.3. Future directions

Future research should test whether functional redundancy enhances ecosystem resilience over
time, leveraging networks such as TERN AusPlots to track changes in functional diversity and
ecosystem function before and after disturbances. Remote sensing (e.g., NDVI) could
complement plot data for retrospective analyses, enabling assessment of productivity responses
to environmental stressors such as drought. For example, Aguirre-Gutiérrez et al. (2022) linked
aboveground biomass stability to Fr in tropical forest plots following an El Nifio drying event.
While assisted translocation of functionally rare species may be required in extreme cases, a
pragmatic approach emphasizes monitoring, maintaining habitat quality, supporting natural
regeneration, and mitigating pressures such as altered fire regimes or invasive species. This
strategy allows management without assuming that redundancy guarantees resilience, while

keeping interventions open when critical functions are at risk. Long-term, standardized
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monitoring combined with trait-based analyses is therefore essential, and the integration of
AusPlots and AusTraits provides a robust foundation to couple Fr with climate risk, identify

conservation priorities, and anticipate when ecosystem resilience may be compromised.

5. Conclusions

Australian plant communities show strong regional variation in vulnerability to climate change,
with the tropical north being at greatest risk due to shifts in rainfall and temperature combined
with low functional redundancy, followed by the mediterranean regions of Western and South
Australia. Communities with high climate risk and low redundancy are particularly prone to
losing functionally unique species, thereby threatening ecosystem stability. These findings
highlight priority areas for monitoring and management, providing a framework to safeguard
ecosystem function under a changing climate. Targeted monitoring and prioritizing proactive
management in these hotspots of high at-risk vegetation communities is therefore critical to

prevent irreversible functional loss under future climate scenarios.
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Supplementary material

Supplemental table S1. Pairwise comparisons of functional redundancy (Fr) among four
Australian biomes (IDs Tropical/subtropical grasslands, savannas and shrublands = 4,
Temperate broadleaf and mixed forests = 7, Mediterranean forests, woodlands and shrublands
= 12, Deserts and xeric shrublands = 13) using Tukey’s Honestly Significant Difference
(HSD) test. The table shows the mean difference in Fr between each pair of biomes, the
lower and upper bounds of the 95% confidence interval, and the adjusted p-value (Adjusted
P-value) for multiple comparisons. Positive difference values indicate that the first biome

listed in the comparison has higher Fr than the second.

Biome comparison  Difference Lower 95CI Upper 95CI  Adjusted P-value

7 vs. 4 0.043 0.008 0.079 <0.01
12 vs. 4 0.017 -0.019 0.052 n.s.

13 vs. 4 0.050 0.015 0.084 <0.01
12 vs. 7 -0.027 -0.046 -0.007 <0.01
13 vs. 7 0.006 -0.012 0.025 n.s.

12 vs. 13 0.033 0.015 0.052 <0.001
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Supplemental table S2. Pearson correlation coefficients between pairs of climate variables.

Values are shown for the upper triangle of the correlation matrix. Asterisks indicate

significance levels: p < 0.05 (*), p < 0.01 (¥*), p< 0.001 (*¥**).

MAT T-Range T-Max MAP P-Dry P-Seasonality
MAT 1 0.18%** 0.87%** 0.05 -(.83 % 0.76%#*
T-Range 1 0.63%** -0.78%** -0.25%%* -0.327%%*
T-Max 1 -0.37%** -(.8#** 0.4 1 %%
MAP 1 0.3%%* 0.48%**
P-Dry 1 -0.55%**
P-Seasonality 1
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Supplemental table S3. Pearson correlation coefficients between pairs of diversity metrics.
Values are shown for the upper triangle of the correlation matrix. Asterisks indicate

significance levels: p < 0.05 (*), p < 0.01 (**), p<0.001 (***).

Species Species Functional Functional
richness (SR)  diversity (SD) diversity (FD)  redundancy (FR)
Species richness (SR) 1 0.6%** 0.52%** -0.13**
Species diversity (SD) 1 0.67%** 0.06
Functional diversity (FD) 1 -0.69%**
Functional redundancy (FR) 1
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1095  Supplemental table S4. Coefficients from the best-supported linear regression models for
1096  plant diversity metrics (Sg, Sp, Fp, Fr) against bioclimatic variables at continental and biome
1097  scales. Shown are the estimated slope (estimate), standard error (std.error), t-value (statistic),
1098  and p-value for each predictor in the model. Models were selected based on the lowest AIC,

1099  and only the best-supported models are presented.

Scale Response  term estimate  std.error  statistic  p.value
(Intercept)  24.2378 5.3295 4.5479 0.0000
MAT -2.4493 0.5898  -4.1529 0.0000
S T_ Max 2.2499 0.6237 3.6076 0.0003
T Range -1.3610 0.3007  -4.5261 0.0000
MAP 0.0090 0.0018 4.9067 0.0000

P_Season 0.0515 0.0261 1.9722 0.0490
(Intercept) 0.9812 0.0698 14.0517 0.0000

Sp MAT -0.0138 0.0031 -4.5262 0.0000

MAP 0.0002 0.0000 6.7622 0.0000

P Dry -0.0041 0.0011 -3.5507 0.0004

. (Intercept) 0.2397 0.0385 6.2291 0.0000
Continental

MAT -0.0132 0.0031 -4.2162 0.0000

Fo T Max 0.0090 0.0040 2.2219 0.0266

T Range -0.0041 0.0024  -1.7305 0.0840

MAP 0.0001 0.0000 3.7973 0.0002

P Dry -0.0015 0.0006 -2.6001 0.0095

(Intercept) 0.7850 0.0391  20.0707 0.0000

MAT 0.0165 0.0043 3.8009 0.0002

Fr T_ Max -0.0145 0.0046  -3.1631 0.0016

T Range 0.0058 0.0022 2.6490 0.0083

MAP 0.0000 0.0000 -1.5771 0.1153

P _Season -0.0004 0.0002  -2.2628 0.0240

(Intercept) 71.1624 13.6375 5.2181 0.0000

Sr T Max 3.5419 0.5766 6.1431 0.0000

T Range -5.8727 1.0443 -5.6235 0.0000

(Intercept) 0.6769 0.2134 3.1717 0.0038

MAT 0.0160 0.0104 1.5366 0.1360

. Sp MAP 0.0012 0.0004 3.4262 0.0020

Biome 4

P Dry -0.0155 0.0064  -2.4373 0.0217

P Season -0.0213 0.0077  -2.7533 0.0104

Fo (Intercept) 0.4416 0.0925 47714 0.0000

T Range -0.0106 0.0043 -2.4727 0.0193

Fr (Intercept) 0.6680 0.0393  16.9800 0.0000

MAT 0.0041 0.0030 1.3494 0.1873

(Intercept) 116.8951 23.9447 4.8819 0.0000

MAT 4.5659 0.7575 6.0276 0.0000

Biome 7 Sr T Max -4.5345 0.5650  -8.0260 0.0000

P Dry -0.7088 0.2469  -2.8706 0.0046

P_Season -0.4184 0.0858  -4.8774 0.0000
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1100
1101

(Intercept) 0.4751 0.1772 2.6813 0.0081

Sp MAT 0.0151 0.0105 1.4436 0.1507
MAP 0.0002 0.0000 4.6174 0.0000
P_Season -0.0026 0.0011  -2.3385 0.0205
(Intercept) 0.1647 0.0207 7.9457 0.0000

Fp MAP 0.0001 0.0000 5.3350 0.0000
P_Season -0.0004 0.0002  -2.0817 0.0389

Fr (Intercept) 0.6914 0.0285 24.2331 0.0000
T Range 0.0029 0.0011 24919 0.0137
(Intercept)  38.3001 11.2007 3.4195 0.0008

MAT -4.6103 0.8921  -5.1679 0.0000

Sr T_Max 1.4021 0.4222 3.3212 0.0011
P _Dry 0.4095 0.1826 2.2428 0.0263
P_Season 04118 0.0468 8.8063 0.0000
(Intercept) 1.0220 0.1279 7.9920 0.0000

Sp MAT -0.0214 0.0071  -3.0246 0.0029
Biome 12 P_Season 0.0026 0.0006 4.4678 0.0000
(Intercept) 0.0664 0.0212 3.1279 0.0021

Fp P_Dry 0.0048 0.0010 4.7827 0.0000
P_Season 0.0016 0.0003 6.4811 0.0000
(Intercept) 1.2241 0.0946  12.9357 0.0000

Fr MAT -0.0201 0.0045  -4.4583 0.0000
MAP -0.0002 0.0000  -5.0010 0.0000

P Dry -0.0044 0.0011  -3.9035 0.0001
(Intercept) -3.5374  11.1735  -0.3166 0.7518

MAT -3.3824 09721  -3.47% 0.0006

Sr T Max 3.2492 1.1072 2.9346 0.0037
T Range -1.1241 0.5525  -2.0346 0.0430

MAP 0.0409 0.0085 4.8065 0.0000

Sp (Intercept) 0.7469 0.0237  31.5031 0.0000
P_Season -0.0009 0.0004  -2.1098 0.0359
(Intercept) 0.0770 0.0921 0.8360 0.4040

Biome 13 MAT -0.0271 0.0072  -3.7806 0.0002
Fp T Max 0.0161 0.0045 3.6048 0.0004
MAP 0.0001 0.0001 1.5899 0.1132
P_Season 0.0011 0.0005 2.4453 0.0152
(Intercept) 0.8491 0.0940 9.0303 0.0000

MAT 0.0177 0.0051 3.4729 0.0006

Fr T _Range -0.0113 0.0024  -4.6601 0.0000
MAP -0.0002 0.0001  -2.3200 0.0212
P_Season -0.0015 0.0005  -3.0192 0.0028
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1102  Supplemental table S5. Coefficients from the best-supported linear regression models for
1103  climate-driven risk (MAT Risk and MAP Risk) against bioclimatic variables at continental
1104  and biome scales. Shown are the estimated slope (estimate), standard error (std.error), t-value
1105  (statistic), and p-value for each predictor in the model. Models were selected based on the

1106  lowest AIC, and only the best-supported models are presented.

Scale Response  Term Estimate Std error Statistic  P-value
(Intercept) -11.37 0.46 -24.81 0.0000
MAT -0.16 0.07 -2.16 0.0315
risk. MAT P_Season 0.03 0.00 10.31 0.0000
T Max 0.45 0.08 5.83 0.0000
T Range -0.16 0.04 -4.25 0.0000
Continental (Intercept) 480.92 56.07 8.58 0.0000
MAP -0.63 0.02 -25.31 0.0000
risk MAP MAT 20.29 4.57 4.44 0.0000
- P_Dry -2.08 0.84 -2.47 0.0139
T Max -39.47 5.89 -6.71 0.0000
T Range 19.19 345 5.57 0.0000
(Intercept) -11.15 1.73 -6.45 0.0000
risk. MAT MAT 0.29 0.06 4.86 0.0000
P Dry 0.06 0.03 1.87 0.0705
(Intercept) -1031.03 516.70 -2.00 0.0546
Biome 4 MAP 1.38 0.31 4.42 0.0001
risk MAP MAT -224.57 93.36 241 0.0221
- P Dry -13.81 6.58 -2.10 0.0439
T Max 302.50 118.41 2.55 0.0156
T Range -170.29 75.28 -2.26 0.0306
(Intercept) -19.01 1.42 -13.35 0.0000
risk MAT MAT 0.71 0.05 15.24 0.0000
- P Dry 0.06 0.01 4.90 0.0000
T Range 0.05 0.01 3.66 0.0003
. (Intercept)  -283.09 200.03 -1.42 0.1587
Biome 7
MAP 0.53 0.06 9.36 0.0000
risk MAP MAT -40.95 23.02 -1.78 0.0768
- P_Season -2.26 0.81 -2.80 0.0057
T Max 72.00 22.29 3.23 0.0015
T Range -40.60 10.16 -3.99 0.0001
(Intercept) -9.74 1.27 -7.68 0.0000
risk. MAT P_Season 0.05 0.01 8.17 0.0000
T Max 0.17 0.04 4.66 0.0000
Biome 12 (Intercept)  -539.78 81.75 -6.60 0.0000
risk MAP MAP 0.96 0.05 19.72 0.0000
- MAT 22.93 4.18 5.48 0.0000
P _Season -0.92 0.31 -3.01 0.0030
(Intercept) -16.44 1.78 -9.26 0.0000

Biome 13 risk MAT
- MAT 0.46 0.07 6.90 0.0000
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1109

P Dry -0.09 0.03 336 0.0009
T Max 0.15 0.06 2.57  0.0109
(Intercept)  -430.04  69.14 622 0.0000
MAP 1.15 004 2745  0.0000
risk MAP  MAT 17.14 3.93 436 0.0000
P Dry 4.17 1.20 347 0.0006
T Max 16.35 2.55 6.40  0.0000
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1110  Supplemental table S6. Coefficients from the best-supported linear regression models for
1111 climate-driven risk (MAT Risk and MAP Risk) against plant diversity metrics (Sr, Sp, Fp,
1112 Fg) at continental and biome scales. Shown are the estimated slope (estimate), standard error
1113 (std.error), t-value (statistic), and p-value for each predictor in the model. Models were

1114  selected based on the lowest AIC, and only the best-supported models are presented.

Scale Response Term Estimate  Std error  Statistic  p-value
risk MAT (Intercept) -1.64 0.09 -17.50 0.0000
Continental risk MAP (Intercept) -65.79 20.01 -3.29 0.0011
- SR -9.60 0.84 -11.44 0.0000
risk MAT (Intercept) -6.53 0.84 -7.80 0.0000
. - SR 0.04 0.03 1.64 0.1105
Biome 4 I 65.79 20.01 3.29 0.0011

risk MAP (Intercept) -65. . -3. .
- SR -9.60 0.84 -11.44 0.0000
risk MAT (Intercept) 0.33 0.11 3.09 0.0023
Bi (Intercept) 204.46 5441 3.76 0.0002
1ome 7 .
risk MAP FD 504.12 344.16 1.46 0.1448
SR 9.69 1.91 5.08 0.0000
risk MAT (Intercept) -3.27 0.31 -10.62 0.0000
- SR 0.03 0.01 2.85 0.0049
Biome 12 (Intercept) 354.88 107.14 3.31 0.0011
risk MAP FR -392.63 138.64 -2.83 0.0052
SR 5.30 0.88 6.05 0.0000
(Intercept) -1.05 0.53 -1.99 0.0477
risk MAT FD 6.64 2.65 2.50 0.0129
SD -2.16 0.94 -2.30 0.0226
Biome 13 (Intercept) 132.51 24.58 5.39 0.0000
risk MAP FD 433.62 124.27 3.49 0.0006
- SD -242.05 47.84 -5.06 0.0000
SR 4.39 0.82 5.33 0.0000
1115
1116
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