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Abstract 16 

Climate change threatens plant communities worldwide with significant species losses, yet the 17 

consequences of reduced diversity for ecosystem function remain uncertain. Functional 18 

redundancy—where multiple species fulfill similar ecological roles—may act as ‘functional 19 

insurance’ by buffering ecosystem processes against species loss. Here, we combined plant 20 

composition data from 646 TERN AusPlots with gap-filled trait data (i.e. maximum plant 21 

height, leaf mass per area, and seed dry mass) from the AusTraits database to provide the first 22 

continental-scale assessment of functional redundancy in Australian plant communities. We 23 

estimated the potential impact of species losses under future climates based on community 24 

thermal and aridity tolerances relative to projected climate exposure. We examined the 25 

continental distribution of functional redundancy (in terms of competitive ability, resource 26 

acquisition strategies, and dispersal-establishment trade-offs in reproductive strategy), 27 

projected climate-driven compositional changes, and their relationship to bioclimate to identify 28 

vulnerable native communities. 29 
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Our results revealed strong latitudinal gradients of climate-change impacts on 30 

Australian plant communities, with those in the tropical north exposed to greater threat of 31 

changes in community composition because of future hotter and drier conditions not being 32 

unsuitable for monsoon-dependent species. Functional redundancy increased toward central 33 

Australia, aligning with more stressful (hotter, drier) bioclimates. At the biome scale, 34 

Mediterranean and arid communities showed higher functional redundancy and lower climate 35 

risk due to functional similarity in drought-adapted traits. Future rainfall changes were the 36 

dominant driver of climate-induced shifts in plant community composition. 37 

The most vulnerable communities—at highest risk of functional destabilisation—were 38 

located along the northern coastline, with additional hotspots in the southernmost parts of the 39 

Mediterranean regions of South Australia and Western Australia. Conservation and monitoring 40 

efforts should prioritise these areas. Our findings highlight the influence of local bioclimatic 41 

factors on functional redundancy and the need to understand these dynamics to better forecast 42 

ecosystem resilience under ongoing climate change, while providing a spatial framework to 43 

guide biodiversity monitoring, policy, land management and conservation action across the 44 

Australian continent. 45 
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 50 

1. Introduction 51 

In the global context of rapid environmental change under widespread threatening processes 52 

such as climate change, land use change, and biological invasions (Valladares et al. 2019), 53 

there is an urgent need to protect biodiversity and better understand its role in the functioning 54 

of ecosystems (Díaz et al. 2019; Pettorelli et al. 2021). By providing a range of functional traits 55 

—measurable attributes or characteristics of species which relate to their fitness and ecological 56 

role on ecosystem processes (Gallagher et al. 2020)— biodiversity affects ecosystem 57 

functioning, productivity, resilience, and stability through complementary and overlapping 58 

ecological roles. In this sense, functional redundancy (FR) measures the overlap in functional 59 

roles; it asserts that within an ecological community there may be functionally analogous 60 

species which contribute similar ecological roles to the functioning of an ecosystem (Walker, 61 

1992). Thus, if one or more of these species becomes locally extinct or declines considerably, 62 

the remaining functionally analogous species will compensate for this loss and the net impact 63 
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on ecosystem function will be minimal (Walker, 1995). Consequently, higher FR is predicted 64 

to enhance the resilience of ecosystems in terms of functional stability in the face of 65 

perturbation or species loss, while low FR may indicate a lack of ecological resilience. Recent 66 

discussion has highlighted that the term redundancy may overstate substitutability, with some 67 

authors advocating for the broader concept of functional similarity instead (Eisenhäuer et al., 68 

2023). Here, we retain the FR framework due to its ecological and conservation relevance in 69 

illustrating that certain species can be lost within a community without immediate loss of 70 

ecosystem functioning (Fischer and de Bello 2023); however, we acknowledge that it 71 

represents one end of a continuum of functional overlap among species, better conceptualised 72 

as functional similarity—a spectrum of overlapping but non-identical contributions to 73 

ecosystem processes (Eisenhauer et al. 2023). 74 

Functional redundancy is intricately linked to other biodiversity metrics within plant 75 

communities, namely species diversity (SD) and functional diversity (FD) (Ricotta et al. 2016). 76 

Species diversity summarises the variety and abundance of taxonomically distinct organisms 77 

occurring in ecological communities, whereas FD summarises the spread of functional traits 78 

within a community. Species-rich communities (high SD) often have more species that can 79 

perform similar ecological roles, thus increasing the likelihood of functional redundancy 80 

(Fonseca and Ganade, 2001). Higher FD indicates a wide array of ecological functions, being 81 

therefore widely considered to reflect overall ecosystem functioning (Cadotte et al. 2011). 82 

Functional redundancy provides a more mechanistic link between biodiversity and ecosystem 83 

resilience and stability; in the event of SD loss, higher FR should buffer a community from 84 

losing FD, as the likelihood of losing a functionally unique species is reduced. Despite the 85 

growing interest in understanding how FR affects ecosystem resilience (Biggs et al. 2020), how 86 

FR varies at macroecological scales, and the potential drivers of such variation remain 87 

understudied.  88 

Climate change has driven local and global species extinctions in deep time and is 89 

predicted to be a driver of plant extinction in the Anthropocene (Valladares et al. 2019). This 90 

loss of biodiversity is likely to impair the biological, chemical, and physical processes 91 

performed by ecosystems with the specific functional implications of such species loss only 92 

beginning to be understood (Hooper et al. 2012; Gallagher et al. 2013). Increasing temperature 93 

and changes in precipitation patterns, with subsequent changes in the frequency and duration 94 

of drought conditions, are likely to force many plant species beyond their climatic tolerance 95 

limits and towards extinction (Lancaster & Humphreys, 2020; Bennett et al. 2021). Assessing 96 

the vulnerability of different ecosystems to the effects of climate change has become a common 97 
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practice (Li et al. 2018). However, estimates of climate change vulnerability tend to focus on 98 

predicted changes to mean climate conditions and the direct impact these will have on species, 99 

while ignoring potential resilience mechanisms including individual physiological 100 

adaptation/tolerances and community level resilience mechanisms. Gallagher et al. (2019) 101 

addressed this limitation by measuring the adaptive capacity of Australian vegetation alongside 102 

a climate change risk metric (in the sense of projected climate-driven changes in community 103 

composition when the environmental niche limits are expected to be surpassed under future 104 

climate conditions). We propose that understanding FR across Australia will also provide 105 

complementary information to the impact caused by climate change by indicating the 106 

functional resilience of plant communities to species loss. At present, the FR in Australian plant 107 

communities has only been explicitly measured once as part of a global meta-analysis 108 

(Laliberté et al. 2010). More broadly, continental-scale functional trends and their 109 

environmental drivers have seldom been quantitatively investigated in Australian vegetation 110 

(Andrew et al. 2021, 2025). 111 

Given the potential importance of FR as an indication of community resilience to 112 

climate change induced species loss, our study seeks to achieve four main aims. These are to 113 

(1) determine the geographic distribution of FR among plant communities across the Australian 114 

continent, (2) investigate how FR varies along bioclimatic gradients, (3) map Australian 115 

communities that are most vulnerable to climate change by integrating species’ exposure to 116 

projected climatic shifts with their sensitivity and adaptive capacity, and (4) examine the 117 

relationship between FR and projected climate driven changes in the composition of sampled 118 

plant communities. Specifically, we hypothesised that (1) many locations across Australia 119 

would have very low FD coupled with very high FR (Andrew et al. 2021), due to species niche 120 

specialisation driven the continent’s diverse and often extreme environmental gradients. 121 

Although the direction of the relationship between FR and bioclimatic variables is unclear in 122 

terrestrial plant communities, we expect (2) FR to be higher in more consistently extreme 123 

conditions (e.g. increased aridity), where species display drought- and heat-adaptive traits and 124 

therefore might be more similar functionally, and overlap more in their strategies evolved as 125 

long-term adaptations to persistent environmental stress. Based on the findings of Gallagher et 126 

al. (2019), we expect (3) the projected climate driven changes in composition not to be evenly 127 

distributed across Australia’s plant communities, but reflect instead distinct geographic drivers; 128 

specifically, we expect temperature-driven changes to be most acute in the hotter northern 129 

regions, and precipitation-driven risks most pronounced in Mediterranean-type ecosystems of 130 

southwest Western Australia and southern South Australia. We expect these patterns assuming 131 
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that many species in these areas may already be close to their thermal or hydric limits, and 132 

therefore shifts could occur if communities overpass their limit threshold, regardless of their 133 

current FR. Finally, we expect (4) FR to be positively associated with projected climate-driven 134 

shifts in community composition, particularly in areas expected to become more arid, due to 135 

the synergistic effects of increasing heat and drought. 136 

 137 

2. Methods 138 

To achieve these aims we combined estimates of FR with projected climate-driven changes in 139 

composition across an existing continental-scale plot network monitoring Australian plant 140 

communities. We measured FR using the three traits of the leaf-height-seed (LHS) scheme 141 

which reflects the major axes of plant function: leaf mass per area (LMA), maximum plant 142 

height and seed dry mass (Westoby, 1998; Díaz et al. 2016). Leaf mass per area (LMA), the 143 

inverse of specific leaf area (SLA), captures species’ trade-off between carbon investment in 144 

leaf-level photosynthetic tissues and leaf longevity (Westoby, 1998; Wright et al. 2004). 145 

Maximum plant height reflects species’ strategies in relation to competition for light and is 146 

therefore related to canopy structure and shading in ecosystems (Westoby, 1998; Falster and 147 

Westoby, 2003). Seed dry mass indicates species’ maternal investment in reproduction and can 148 

be related to the capacity to establish across different environmental niches (Westoby, 1998). 149 

Afterwards, we measured the climate change risk of individual species based on their observed 150 

climatic niches and then scaled this up to the community level by calculating the community 151 

weighted mean climate change risk (Gallagher et al. 2019), and we mapped FR and climate 152 

change risk to determine their spatial distributions. Finally, we constructed linear regression 153 

models to explore the relationship between FR, climate change risk and environmental 154 

variables. 155 

We combined plant community composition data, species functional trait data, long-156 

term climate data, predicted climate change exposure data and species climate niche data to 157 

generate our response and predictor variables. The continental approach enables broadscale 158 

trends to be detected along key bioclimatic gradients such as temperature and precipitation, 159 

elucidating environmental drivers of community-level properties such as FR and climate 160 

change risk (Violle et al. 2014). Furthermore, the Australian continental flora is a particularly 161 

useful study system due to the contrasting climates existing across the land, that strongly 162 

influence species distribution, and the characteristics of the different ecosystems (Hughes et 163 

al., 2003; Keith 2017). Australia is latitudinally characterised by a tropical north with wet 164 

summers and dry winters, an arid to semi-arid interior covering most of the continent, and a 165 
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temperate south with hot dry summers and cool wet winters (Keith 2017). Apart from 166 

analysing these trends at the continental scale, to detect scale-dependency in our results we 167 

also conducted the analyses at two finer spatial scales. First, we replicated the analyses at the 168 

biome scale, using the Ecoregion 2017 dataset based on the classification provided by Olson 169 

et al. (2001) which designates 7 major biomes in Australia.  170 

 171 

2.1. Plant community composition data 172 

The Terrestrial Ecosystem Research Network (TERN) AusPlots ecosystem surveillance 173 

program monitors over 1,000 1-ha plots across the Australian continent (Fig. 1) (Sparrow et al. 174 

2020). The network is stratified by bioregion to maximise ecological coverage (Guerin et al. 175 

2020a). All plots are systematically surveyed using a point-intercept method comprising a grid 176 

of 1,010 points which yields robust estimates of species percent cover (White et al. 2012). A 177 

specimen is collected from each recorded species and herbarium determinations are obtained 178 

for all specimens, thus ensuring taxonomically sound data. We extracted plot-level vascular 179 

plant species percent cover data for 787 TERN AusPlots using the ‘ausplotsR’ package (Guerin 180 

et al. 2020b; Munroe et al. 2021). In cases where repeated surveys were available for plots, the 181 

most recent survey was selected to ensure that the data best reflected current species 182 

composition. We used species percent cover data as a proxy for species relative abundances. 183 

For analyses at continental-scale we modelled all plots across the TERN AusPlots 184 

network together. For biome-scale analyses we grouped plots according to the major biome 185 

they occupy in the Olson et al. (2001) biome classification (Fig. 1). From analyses at the biome 186 

scale, we selected four biomes, including temperate broadleaf and mixed forests (biome 4), 187 

tropical/subtropical grasslands, savannas and shrublands (biome 7), Mediterranean forests, 188 

woodlands and shrublands (biome 12), and deserts and xeric shrublands (biome 13). Other 189 

biomes present in Australia (i.e. biome 1 - Tropical/Subtropical Moist Broadleaf Forests, biome 190 

8 - Temperate Grasslands, Savannas & Shrublands and biome 10 - Montane Grasslands & 191 

Shrublands) were excluded from this study due to the low number of TERN AusPlots within 192 

their boundaries. These four biomes object of study capture the major climatic and ecological 193 

gradients in Australian vegetation. Tropical and subtropical grasslands, savannas, and 194 

shrublands (biome 7) are characterized by high mean annual temperatures, strong seasonality 195 

in rainfall, and dominance of fire- and drought-adapted species, often occupying narrow 196 

ecological niches (Shaw et al. 2000). Temperate broadleaf and mixed forests (biome 4), in 197 

contrast, experience moderate temperatures and relatively stable precipitation, supporting 198 

higher species richness and less extreme functional constraints (Bailey, 1964). Mediterranean 199 
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forests, woodlands, and shrublands (biome 12) in southwestern and southeastern Australia are 200 

shaped by hot, dry summers and mild, wet winters, favouring species with stress-tolerant or 201 

drought-avoidance strategies (Lionello et al. 2006). Deserts and xeric shrublands (biome 13) 202 

are characterized by extremely low precipitation, high temperatures, and high climatic 203 

variability, resulting in plant communities strongly constrained by environmental filtering 204 

(Noy-Meir, 1973). Grouping plots by these biomes allows us to assess context-specific 205 

functional responses, capturing how climate, species physiology, and evolutionary history 206 

interact to shape diversity and functional redundancy across contrasting environmental settings 207 

(Laliberté et al. 2010). 208 

 209 

Figure 1. Biomes of Australia used in this study and geographic locations of AusPlots flora 210 

inventories (black circles). Biome 4 – Temperate broadleaf and mixed forests (n = 43 plots), 211 

biome 7 – Tropical/Subtropical Grasslands, Savannas & Shrublands (n = 218 plots), biome 212 

12 - Mediterranean Forests, Woodlands & Shrublands (n = 203 plots), biome 13 - Deserts & 213 

Xeric Shrublands (n = 280 plots). Note that several biomes were excluded from this study 214 

due to the low number of TERN AusPlots within their boundaries: biome 1 - 215 

Tropical/Subtropical Moist Broadleaf Forests (n = 0), biome 8 - Temperate Grasslands, 216 

Savannas & Shrublands (n = 28) and biome 10 - Montane Grasslands & Shrublands (n = 15).  217 

 218 

2.2. Trait data 219 
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We extracted trait data from the AusTraits database 6.0.0 for all species occurring in our plots. 220 

AusTraits contains data for 448 functional traits across 28,640 Australian taxa compiled from 221 

multiple sources (Falster et al. 2021).  222 

From the 4,428 species recorded in AusPlots with the point intercept methodology, we 223 

obtained mean values for maximum plant height (3,641 species), leaf mass per area (LMA) 224 

(1,304 species), and seed dry mass (2,574 species), respectively. We log transformed all trait 225 

values to account for differences in their units and skewness in their distributions, which is 226 

standard for community trait analysis (Bruelheide et al. 2018). To improve species 227 

representation, we followed the methods outlined in Andrew et al. (2021), consisting of two 228 

subsequent steps by which missing trait values were first estimated missing values via linear 229 

models, and subsequently gap-filled utilising all accessible and relevant trait data from the 230 

native Australian flora. In summary, to leverage the available measurements of leaf/phyllode 231 

and seed dimensions for a significant proportion of species in AusTraits, we first estimated leaf 232 

area for species lacking direct area measurements based on measurements of leaf length and 233 

width. To do so, we conducted Linear Mixed Models (LMM) using the lme4 R package (Bates 234 

2010). Likewise, seed dry mass was estimated using seed length as a fixed effect, combined 235 

with a random factor of family. Predicted trait values were well correlated to known values 236 

(seed mass r2 = 0.85, leaf area r2 = 0.81). The models demonstrated strong explanatory power, 237 

evidenced by high conditional R² values (R²c) for both trait models, with a substantial portion 238 

of the explanatory power derived from fixed effects, reflected in high marginal R² values (seed 239 

dry mass: R²c = 0.85; R²m = 0.68; leaf area: R²c = 0.79; R²m = 0.66). 240 

We adopted a minimum threshold of 80% trait coverage by abundance for plots to be 241 

included in our study as this threshold has been shown to limit the estimation bias of community 242 

weighted functional properties (Borgy et al. 2017). In a second step, to increase the taxonomic 243 

coverage of trait data we gap-filled values for species without direct observations in AusTraits 244 

using the GapFilling() function from the BHPMF R package (Schrodt et al., 2015), which 245 

employs Bayesian hierarchical probabilistic matrix factorisation and correlation structure to 246 

impute missing trait values. This method exploits trait–trait correlations and phylogenetic trait 247 

signals within the existing trait data to predict unknown trait values. Gap-filling was run on a 248 

matrix of trait values for plant height, leaf area, length, and width, leaf mass per area (inverse 249 

of SLA), and seed mass and length; species with no available trait data were dropped from all 250 

subsequent analyses (n = 24,915 native Australian plant species retained). Finally, we applied 251 

the 80% trait coverage by abundance threshold to the total of 787 AusPlots, leaving 649 plots 252 

which met the threshold. 253 
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 254 

2.3. Diversity indices 255 

We calculated four diversity indices, including species richness (SR), species diversity (SD), 256 

functional diversity (FD) and functional redundancy (FR). We followed the methodology of 257 

Ricotta et al. (2016) in which SD is calculated as Simpson’s diversity index and FD is calculated 258 

as Rao’s quadratic entropy. Simpson’s diversity is bound between 0 and 1 and it incorporates 259 

plot-level species relative abundances. Rao’s quadratic entropy is also bound between 0 and 1 260 

and it accounts for plot-level species relative abundances as well as species pairwise functional 261 

dissimilarities. Rao’s quadratic entropy is ultimately the mean functional dissimilarity of two 262 

randomly selected individuals from a given community (Botta‐Dukát, 2005). Importantly, the 263 

maximum value of Rao’s, when all species are maximally functionally dissimilar, is equal to 264 

Simpson’s index. Therefore, dividing SD by FD yields a measure of the functional uniqueness 265 

of a community (U). 266 

𝑈 =
𝐹𝐷

𝑆𝐷
   (eq. 1) 267 

The complement of U is a measure of the functional redundancy of a community (FR), 268 

which summarises the proportion of species diversity not encompassed by functional diversity. 269 

𝐹𝑅 = 1 − 𝑈  (eq. 2) 270 

All alpha diversity indices were computed with the ‘uniqueness’ R function provided 271 

by Ricotta et al. (2016). 272 

To assess whether FR exhibited any statistically detectable geographic structure, we 273 

quantified spatial autocorrelation using Moran’s I with a 5-nearest-neighbour spatial weights 274 

matrix. In addition, we evaluated broad spatial trends by modelling FR as a function of latitude 275 

and longitude (second-order polynomial terms). To assess whether FR differs among major 276 

Australian biomes, we also conducted a one-way ANOVA with subsequent Tukey HSD post-277 

hoc tests to evaluate pairwise differences among biomes. 278 

 279 

2.4. Bioclimatic data 280 

We obtained long term (1970-2000) mean climate data in a raster format from ‘WorldClim 2.1’ 281 

and extracted values at the coordinates of each plot (Fick and Hijmans, 2017) at a resolution of 282 

10 minutes of a degree. We extracted mean annual temperature (MAT; °C), temperature annual 283 

range (T-Range; °C), maximum temperature of the warmest month (T-Max; °C), mean annual 284 

precipitation (MAP; mm), precipitation seasonality (P-Seasonality) and precipitation of the 285 

driest month (P-Dry; mm). These variables reflect the mean, variability, and extremes of 286 
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temperature and precipitation, all of which are projected to change under future climate 287 

scenarios for Australian ecosystems (Hughes, 2003). 288 

 289 

2.5. Future climate projections and climate change risk 290 

To assess the climate change risk faced by plant communities across Australia, we 291 

followed an approach informed by Gallagher et al. (2019), by adapting their grid-based 292 

methodology in order to calculate plot-based climate change risk metrics. We calculated 293 

metrics of risk for changes to both MAT and MAP. For these calculations we used the same 294 

set of species as in the diversity index calculations to enhance comparability between diversity 295 

indices and climate change risk metrics. First, we obtained species-level climate niche data 296 

compiled by Gallagher et al. (2019), which represents the realised climatic limits of Australian 297 

plant species based on cleaned occurrence records for herbarium specimens from the Australian 298 

Virtual Herbarium (AVH). To account for potential outliers in these occurrence records, we 299 

defined species' temperature tolerance (MAT tolerance) as the 98 th percentile of mean annual 300 

temperature (MAT) values across their distribution, and precipitation tolerance (MAP 301 

tolerance) as the 2nd percentile of mean annual precipitation (MAP) values. We then matched 302 

these species-level climate tolerances to the species occurring in each plot and calculated 303 

community-weighted mean (CWM) climate tolerances by multiplying each species’ tolerance 304 

value by its relative abundance in the plot. These CWMs represent the average climatic 305 

tolerance of the plant community in terms of upper temperature and lower precipitation limits. 306 

To assess current climatic safety margins, we subtracted the present-day (baseline) 307 

climate conditions from the community-weighted mean tolerance values at each plot. 308 

Specifically, for MAT and MAP, the safety margins were, respectively, calculated as:  309 

MAT Safety Margin = CWM MAT Tolerance − Current MAT 310 

MAP Safety Margin = Current MAP − CWM MAP Tolerance 311 

 312 

These safety margins represent the climatic buffer a plant community has before it 313 

reaches its collective thermal or drought limit. 314 

Australia is projected to experience substantial warming by 2070, with mean annual 315 

temperatures expected to increase across the continent, particularly in the interior and northern 316 

regions. Precipitation patterns are likely to become more variable, with decreases in 317 

cool‑season rainfall and longer drought duration projected for many parts of the south and east 318 

(especially mediterranean-type regions), while some northern areas may experience more 319 

intense wet-season rainfall events (State of the Climate 2024). Hence, we then estimated future 320 
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climate exposure by calculating projected changes in MAT and MAP between current climate 321 

conditions and predicted projections for 2070 under the high-emissions scenario RCP8.5 322 

(rcp85, 800 ppm of CO2 by 2070). For that, we used downscaled climate data from CHELSA 323 

based on five global circulation models for 2061-2080, including ACCESS1.0, CNRM-CM5, 324 

HADGEM2-CC, MIROC5, and NorESM1-M.  325 

Finally, we calculated plot-level climate change risk as the difference between exposure 326 

and safety margin: 327 

MAT Risk = Exposure − Safety Margin 328 

MAP Risk = − (Exposure − Safety Margin) 329 

 330 

For MAT, a positive risk value indicates that future climate change by 2070 in terms of 331 

temperature is expected to exceed the current adaptive capacity of the community (i.e. the 332 

community’s mean tolerance limit), placing it at greater risk. Conversely, negative or low risk 333 

values suggest that the community's climatic buffer is sufficient to accommodate projected 334 

temperature changes. For MAP, the opposite, when Exposure − Safety Margin has a negative 335 

value indicates that future drought conditions by 2070 are expected to exceed the current 336 

adaptive capacity of the community, placing it at greater risk, whereas positive values suggest 337 

that the community's climatic buffer is sufficient to accommodate projected temperature 338 

changes, hence why the values have been multiplied by (-1). 339 

We acknowledge that species respond individually to climate change and that 340 

communities are not strictly discrete units. Community-weighted mean (CWM) tolerances 341 

provide an operational estimate of the average climatic tolerance of the dominant species in 342 

each plot, capturing the functional response of the community as a unit. While individual 343 

species may exceed their limits without immediately altering functional diversity, CWM-based 344 

safety margins allow meaningful comparison of climate change risk across plant communities. 345 

 346 

2.6. Mapping alpha functional redundancy and climate change risk 347 

To visualise the spatial distribution of FR and climate change risk we created maps depicting 348 

their values across the TERN AusPlots continental network using the ggplot2 (Wickham 2016) 349 

and ggpmisc (Aphalo 2025) packages in R. We generated separate maps for MAT Risk, MAP 350 

Risk and alpha FR. Additionally, we constructed bivariate maps –derived directly from 351 

quantitative, plot-level metrics, ensuring that observed patterns reflect measured differences 352 

rather than subjective interpretation– which illustrates FR and climate change risk 353 

simultaneously for each plot. For mapping functional redundancy (FR) and climate change risk 354 
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(MAT and MAP), we classified plots into three categories each. FR categories were defined as 355 

follows: low redundancy corresponded to the lowest 33% of FR values, medium redundancy 356 

included values between the 33rd percentile and the median of plots considered at risk, and high 357 

redundancy included values above that median. MAT Risk was classified as low risk for plots 358 

that were not at risk (MAT Risk < 0); similarly, MAP Risk was classified as low risk for plots 359 

that were not at risk (MAP Risk > 0). Among plots at risk (MAT Risk ≥ 0 and MAP Risk ≤ 0), 360 

we then used the median of the at-risk subset to distinguish medium and high risk categories. 361 

approach ensures that the classification reflects both the distribution of FR and the degree of 362 

climate change exposure among at-risk plots, avoiding the bias introduced by equal-interval or 363 

quartile-based splits of the entire dataset. Beyond serving as a visual illustration, these bivariate 364 

maps provide an analytical framework to identify spatial patterns and hotspots of vulnerability, 365 

(high climate change risk and low FR), highlighting plots that will likely undergo climate-366 

driven changes in community composition and enabling comparison across regions and 367 

prioritisation for conservation or further study. 368 

 369 

2.7. Modelling the relationship between diversity indices, bioclimate and climate change risk  370 

We investigated the drivers of plant diversity metrics (species richness, SR; species diversity, 371 

SD; functional diversity, FD; functional redundancy, FR) and climate-driven vulnerability (MAT 372 

Risk, MAP Risk) using linear regression models at two spatial scales: continental (all AusPlots 373 

across Australia) and biome-specific. For diversity metrics, we included six bioclimatic 374 

predictors (MAT, T-Max, T-Range, MAP, P-Dry and P-Season). For climate risk metrics, we 375 

tested two complementary predictor sets: bioclimatic variables and diversity indices (SR, SD, 376 

FD, FR). All models were additive and excluded interactions. We evaluated all possible models 377 

containing any subset of predictors, including the null model, and selected the best-supported 378 

model based on the lowest Akaike Information Criterion (AIC). For each model, we calculated 379 

ΔAIC and Akaike weights, with ΔAIC < 2 indicating substantial support. From each best-380 

supported model, we extracted slopes, standard errors, t-values, p-values, and goodness-of-fit 381 

metrics (R², adjusted R², residual standard error, AIC, BIC) to quantify the strength, direction, 382 

and significance of predictors. Only results from the best-supported models are reported.  383 

 384 

3. Results 385 

Species richness (SR) averaged 21.01 species per plot (± 11.17 Standard Deviation (SD); Inter 386 

Quartile Range (IQR) = 13–27) , indicating high variability across the sampled sites. Species 387 

diversity (SD) had a mean of 0.72 (± 0.18 SD; IQR = 0.64–0.85), while quadratic functional 388 
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diversity (FD) averaged 0.18 (± 0.07 SD; IQR = 0.14–0.22). Functional redundancy (FR) in 389 

sampled plant communities ranged from 0.44 to 0.93, with a mean value of 0.75 (± 0.07 SD; 390 

IQR = 0.71–0.80).  391 

While no dominant spatial pattern for FR was evident across the continent (Fig. 2), there 392 

was a tendency for higher FR in the interior regions. In this sense, FR showed significant positive 393 

spatial autocorrelation (Moran’s I = 0.205, p ≤ 0.001), indicating that nearby plots tend to be 394 

more similar in FR than expected by chance. However, spatial position explained only a small 395 

proportion of variation (adjusted R² = 0.048) in the latitudinal–longitudinal model, suggesting 396 

that while spatial structure is present, geographic trends are weak and consistent with our 397 

description of broad tendencies rather than strong regional gradients. A linear regression of FR 398 

against latitude revealed a slight positive relationship (slope = 0.00095, p = 0.020, R² = 0.008), 399 

indicating that FR tends to increase slightly toward more northerly sites, although latitude alone 400 

explains very little of the overall variation. As such, central Queensland, the arid zones of South 401 

Australia and the Northern Territory, and parts of western New South Wales appeared as 402 

hotspots of high FR. In contrast, regions such as Tasmania, eastern New South Wales, the west 403 

coast of Western Australia, the northern tip of the Northern Territory, and the Mount Lofty 404 

Ranges in South Australia exhibited mostly lower FR values. When comparing FR across 405 

biomes, we found significant differences (ANOVA: F = 10.42, p ≤ 0.001). Pairwise 406 

comparisons (Tukey HSD) indicate that some biomes, including the arid deserts and xeric 407 

shrublands (biome 13) and the tropical and subtropical grasslands, savannas and shrublands 408 

(biome 7), had significantly higher FR than Mediterranean-type (biome 12) and temperate forest 409 

(biome 4) biomes (see supplementary material for further details). Overall, plots with high FR 410 

were not strongly spatially segregated from those with low FR; thus, despite these broad-scale 411 

differences, high and low FR plots remain intermixed locally, supporting our original 412 

conclusion that fine-scale hotspots (e.g., Central Queensland, Mount Lofty Ranges) reflect site-413 

level variation that cannot be fully captured by biome aggregation.  414 
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 415 

  416 

Figure 2. Map of plot-level functional redundancy values across the TERN continental 417 

vegetation monitoring plot network (n = 646; notice that for three plots, calculations of certain 418 

diversity metrics were not possible). Colour denotes functional redundancy (legend). The plant 419 

communities in highly redundant plots (dark green) are expected to maintain stable ecosystem 420 

functioning in the event of species loss. The plant communities in plots with low functional 421 

redundancy values (dark pink) are expected to experience unstable ecosystem functioning in 422 

the event of species loss. Black lines indicate the approximate boundaries of major Australian 423 

biomes, providing geographic context for the distribution of functional redundancy values.  424 

 425 

3.1. Variation of diversity indices along bioclimatic gradients  426 
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While some temperature variables were correlated (e.g., MAT and T-Max, r = 0.87, p ≤ 0.001; 427 

see supplementary material for further details), we show their independent bivariate 428 

relationships to illustrate the different ecological dimensions of each bioclimatic variable.  429 

Across Australia, multivariate AIC-selected models revealed consistent and strong 430 

climatic controls on plant diversity patterns. Species richness (SR), species diversity (SD), and 431 

functional diversity (FD) were primarily shaped by temperature–precipitation trade-offs, with 432 

MAT exerting predominantly negative effects and MAP showing positive or stabilizing 433 

influences (Table 1). In particular, at the continental scale, SR decreased with MAT and T-434 

Range and increased with MAP and P-Season. SD and FD were negatively influenced by MAT 435 

and P-Dry and positively influenced by MAP (and T-Max in the case of FD). Together, these 436 

models explained between 7% and 24% of the variation in SR, SD, and FD. In contrast, 437 

functional redundancy (FR) responded only weakly to climate. FR increased with MAT and T-438 

Range and decreased with T-Max and P-Season. Although several predictors were retained in 439 

the best model for FR, this only explained 4% of its variation, indicating that functional 440 

redundancy seems to be decoupled from broad-scale climatic gradients. 441 

Biome-level patterns revealed substantial regional differentiation in climatic drivers. In 442 

temperate broadleaf and mixed forests (biome 4), SR increased with T-Max and decreased with 443 

T-Range, which also affected FD negatively. However, SD was determined by precipitation 444 

variables, with MAP having a positive effect and P-Dry and P-Season a negative one. In 445 

tropical and subtropical grasslands, savannas and shrublands (biome 7), SR increased with 446 

MAT but declined with T-Max, P-Dry and P-Season, while SD and FD were most strongly and 447 

positively associated with MAP and negatively with P-Season; finally, FR was positively 448 

influenced by T-Range. Mediterranean forests, woodlands and shrublands (biome 12) showed 449 

pronounced precipitation influences, with SR, SD and FD all positively shaped by combinations 450 

of P-Dry and P-Season, alongside negative MAT effects for SR and SD. FR in biome 12 was 451 

negatively affected by MAT, MAP and P-Dry. Finally, in deserts and xeric shrublands (biome 452 

13), SR was negatively affected by MAT, and T-Range and positively by T-Max and MAP; SD 453 

was positively influenced by P-Season, whereas and FD was negatively influenced by MAT, 454 

and positively by T-Max and P-Season. FR in biome 13 was positively influenced by MAT, 455 

and negatively by T-Range, MAP, and P-Season. These contrasting results across biomes 456 

indicate that diversity metrics respond to different climatic dimensions depending on regional 457 

environmental context. 458 
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While we do not present ordinations of species or trait composition here, the 459 

distinctness of biomes and habitats can be explored using the species and trait data available 460 

through the ‘ausplotsR’ package (Guerin et al. 2020b; Munroe et al. 2021). 461 

 462 
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Table 1. Best‐fit linear models explaining spatial variation in species richness (SR), species diversity (SD), functional diversity (FD), and 463 

functional redundancy (FR) across Australia and within selected biomes. Models were selected using AIC-based stepwise selection. The 464 

table reports the retained predictors, model fit statistics (R², adjusted R², sigma), and information criteria (AIC, BIC). The direction and 465 

statistical significance of each predictor in the best model are shown in brackets after each term (+: positive effect; –: negative effect; * p 466 

≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Predictors without brackets were retained in the best model but were not statistically significant. 467 

Response 

Variable 
Best model formula R2 Adj R2 sigma AIC BIC dfresidual 

The whole Australia – All AusPlots 

SR 
SR ~ MAT(-***) + T_Max (+***) + T_Range(-***) + MAP(+***)  

+ P_Season(+*) 
0.24 0.23 9.75 4783.56 4814.85 640 

SD SD ~ MAT(-***) + MAP(+***) + P_Dry(-***)  0.08 0.07 0.08 -434.38 -434.02 642 

FD FD ~ MAT(-***) + T_Max (+*) + T_Range + MAP(+***) + P_Dry(-**)  0.11 0.11 0.11 -1764.83 -1733.54 640 

FR FR ~ MAT(+***) + T_Max(-**) + T_Range(+**) + MAP + P_Season(-*)  0.04 0.04 0.04 -1566.12 -1534.83 640 

Biome 4 – Temperate broadleaf and mixed forests 

SR SR ~ T_Max(+***) + T_Range(-***) 0.57 0.54 8.30 231.10 236.96 29 

SD SD ~ MAT + MAP(+**) + P_Dry(-*) + P_Season(-*) 0.31 0.21 0.16 -18.81 -10.01 27 

FD FD ~ T_Range(-*) 0.17 0.14 0.06 -84.79 -80.39 30 

FR FR ~ MAT 0.06 0.03 0.07 -72.10 -67.70 30 

Biome 7 – Tropical / subtropical grasslands, savannas and shrublands 

SR SR ~ MAT(+***) + T_Max(-***) + P_Dry(-**) + P_Season(-***) 0.31 0.29 9.91 1291.47 1310.39 168 

SD SD ~ MAT + MAP(+***) + P_Season(-*) 0.13 0.12 0.17 -114.92 -99.15 169 

FD FD ~ MAP(+***) + P_Season(-*) 0.14 0.13 0.06 -473.37 -460.76 170 

FR FR ~ T_Range(+*) 0.04 0.03 0.07 -431.87 -422.41 171 

Biome 12 – Mediterranean forests, woodlands and shrublands 

SR SR ~ MAT(-***) + T_Max(+**) + P_Dry(+***) + P_Season(+*) 0.50 0.48 8.30 1201.84 1220.62 164 

SD SD ~ MAT(-**) + P_Season(+***) 0.17 0.16 0.15 -165.96 -153.44 166 

FD FD ~ P_Dry(+***) + P_Season(+***) 0.21 0.21 0.06 -489.30 -476.78 166 
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FR FR ~ MAT(-***) + MAP(-***) + P_Dry(-***) 0.20 0.18 0.07 -433.99 -418.34 165 

Biome 13 – Deserts and xeric shrublands 

SR SR ~ MAT(-***) + T_Max(+**) + T_Range(-*) + MAP(+***) 0.11 0.09 8.25 1658.41 1679.14 229 

SD SD ~ P_Season(+*) 0.02 0.01 0.17 -161.00 -150.63 232 

FD FD ~ MAT(-***) + T_Max(+***) + MAP + P_Season(+*) 0.08 0.06 0.06 -653.69 -632.96 229 

FR FR ~ MAT(+***) + T_Range(-***) + MAP(-*) + P_Season(-**) 0.15 0.13 0.07 -605.50 -584.77 229 

 468 



1 
 

 

 469 

3.2. Geographic distribution of climate change risk and its relationship to environmental 470 

variables 471 

Out of 649 plots, 201 (31%) are considered at risk to species turnover and changes in 472 

community composition due to projected changes in mean annual temperature (Risk MAT ≥ 473 

0; Fig. 3). Plots with the highest Risk MAT values are primarily located in the northern half of 474 

the continent, whereas lower-risk plots occur at more southerly latitudes. Meanwhile, 608 plots 475 

(93.7%) are considered at risk from predicted changes in mean annual precipitation (Risk MAP 476 

≤ 0), with the highest-risk plots generally located at the northern and southern extremes of the 477 

continent and lower-risk plots in central regions (Fig. 3). Across the TERN AusPlots network, 478 

regression analyses revealed that Risk MAT increases strongly with latitude (R² = 0.58, p < 479 

0.001), indicating higher temperature-driven risk in northern regions (slope = 0.254 °C per 480 

decimal degree latitude; Fig. 3c). Incorporating longitude slightly improved model fit (R² = 481 

0.66, p < 0.001), showing that risk rises northwards but decreases slightly westwards (longitude 482 

slope = -0.071 °C per decimal degree). In contrast, Risk MAP declines with latitude (R² = 0.20, 483 

p < 0.001), suggesting greater precipitation-driven risk in southern regions. These regression 484 

models complement the histograms and maps, quantitatively highlighting broad latitudinal 485 

trends in climate change exposure. 486 
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 490 

Figure 3. a) mean annual temperature (MAT) (left) and mean annual precipitation (MAP) 491 

(right) safety margins; b) climate change risk in terms of predicted changes to MAT (left) and 492 

MAP (right) across the TERN AuPlots network; c) distribution histograms of Risk MAT and 493 

Risk MAP; and d) scatterplots of Risk MAT and Risk MAP versus latitude with fitted linear 494 

regression lines (solid) and 95% confidence intervals (shaded), illustrating broad latitudinal 495 

trends in climate change exposure across the network. For MAT climate change risk, notice 496 

that the values in the legend represent °C, over (positive) or below (negative) the safety margin, 497 

to which the vegetation community will be exposed in the future. For MAP climate change 498 

risk, notice that the values in the legend represent water deficit, over (positive; i.e. more water 499 

deficit and harsher conditions) or below (negative) the safety margin, to which the vegetation 500 

community will be exposed in the future. Red points on the map represent at risk plots, while 501 

blue colours represent plots with risk values of zero or less (the darker the blue the less at risk). 502 

On the histograms, bars for plots at risk (positive for MAT, negative for MAP) are shown in 503 

red, while plots not at risk are shown in blue, highlighting the big proportion of plots at risk 504 

across the network. 505 

 506 

Across all AusPlots, MAT Risk increased with higher T-max and P-season, and 507 

decreased with increasing MAT and temperature range (T-Range), indicating that sites in hotter 508 

regions with marked precipitation seasonality are projected to experience greater temperature-509 

driven turnover (Table 2; see supplementary material for full model outputs). In contrast, MAP 510 

Risk increased with MAT, MAP, P-dry, and P-season, and decreased with T-range and T-max, 511 

suggesting that precipitation-driven turnover is highest in warm sites with moderate 512 

temperature variability (Table 2; Supplementary material). MAP Risk displayed an inverse 513 

patter, increasing with MAT and T-Range and decreasing with MAP and T-Max, with an 514 

additional negative effect of P-Dry. These patterns indicate that temperature-driven and 515 
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precipitation-driven turnover risks respond to distinct climatic axes, with the former most 516 

elevated in warmer and seasonal environments, and the latter being greater in hotter and arid 517 

regions. 518 

At the biome scale, the relationships between MAT/MAP Risk and bioclimatic 519 

variables were quite contrasting for different biomes (Table 2; Supplementary material).In 520 

temperate forests (biome 4), MAT Risk increased with MAT, while MAP Risk was influenced 521 

by nearly all predictors, including positive effects of MAP and T-Max and negative effects of 522 

MAT, P-Dry, and T-Range (Table 2; Supplementary material). In tropical and subtropical 523 

savannas (biome 7), MAT Risk increased with MAT, P-Dry, and T-Range, whereas MAP Risk 524 

was primarily driven by precipitation (positive effect of MAP, although negative effect of and 525 

P-Season) and moderated by temperature variability (negative effects of T-Range, and a 526 

positive effect of T-Max). In Mediterranean systems (Biome 12), MAT Risk reflected the joint 527 

influence of temperature and seasonality, increasing with T-Max and P-Season, while MAP 528 

Risk was dominated by a strong positive effect of MAP and MAT and a negative effect of P-529 

Season. In deserts and xeric shrublands (Biome 13), MAT Risk was elevated in warmer sites 530 

(positive effects of MAT and T-Max) and declined with P-Dry, while MAP Risk increased 531 

with MAP, T-Max, and P-Dry and declined with MAT.  532 

 533 

 534 

3.3. Relationship between climate change risk and diversity metrics 535 

At the continental scale, MAT Risk was not significantly associated with any of the diversity 536 

metrics (SR, SD, FD, or FR), indicating that variation in these community attributes does not 537 

strongly predict temperature-driven turnover. By contrast, MAP Risk exhibited a strong 538 

negative relationship with SR, with communities containing more species showing lower 539 

precipitation-driven risk (Table 3; supplementary material).  540 

At the biome scale, the influence of diversity metrics on climate change driven risk was 541 

more variable. For temperate forests (biome 4), no diversity metrics were significantly 542 

associated with MAT Risk, while MAP Risk decreased significantly with SR. In tropical 543 

savannas (biome 7), MAT and MAP Risk increased with SR. In Mediterranean systems (biome 544 

12), MAT Risk was positively related to SR, while MAP Risk increased with SR but decreased 545 

with FR, suggesting that communities with high redundancy buffer better precipitation-driven 546 

risk. In deserts (biome 13), MAT Risk increased with FD but decreased with SD, whereas MAP 547 

Risk showed a more complex pattern, increasing with SR and FD but decreased with SD, 548 
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indicating that the structure of community diversity influences precipitation-driven risk in 549 

multiple, and somewhat contrasting, ways. 550 

Communities with low FR and high MAT/MAP Risk are likely the most vulnerable to 551 

climate-driven changes in composition, as they face both, climate change–induced species 552 

turnover and a reduced capacity to maintain ecosystem function. These highly vulnerable sites 553 

are primarily located in the northern areas of the continent (Fig. 4). In contrast, communities 554 

with high FR but high MAT/MAP Risk may still experience species loss but are expected to be 555 

more resilient in maintaining function; these are also concentrated in the continent’s eastern 556 

interior. The least vulnerable communities—those with high FR and low MAT/MAP Risk are 557 

scattered across central Australia (Fig. 4). 558 

 559 

   560 

Figure 4. Bivariate maps of functional redundancy (FR) and climate change risk across the 561 

Australian continent (646 TERN AusPlots). Left: FR combined with mean annual temperature 562 

risk (MAT Risk). Right: FR combined with mean annual precipitation risk (MAP Risk). For 563 

FR, plots were categorized as low (bottom 33%), medium (33% up to the median of plots 564 

considered at risk), or high (above that median). For MAT Risk, plots with risk < 0 were 565 

classified as low risk, whereas for MAP Risk, plots with risk > 0 were classified as low risk. 566 

Plots at risk (MAT risk ≥ 0 or MAP risk ≤ 0), were split into medium and high risk categories 567 

using the median of the at-risk subset. Plots with high climate risk and low FR (dark red) are 568 

potentially most vulnerable to climate-driven changes in community composition and 569 

associated loss of ecosystem functionality. 570 
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Table 2. Best‐fit linear models explaining variation in MAT Risk and MAP Risk against bioclimatic predictors across Australia and within 571 

selected biomes. Models were selected using AIC-based stepwise selection. The table reports the retained predictors, model fit statistics 572 

(R², adjusted R², sigma), and information criteria (AIC, BIC). The direction and statistical significance of each predictor in the best model 573 

are shown in brackets after each term (+: positive effect; –: negative effect; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Predictors without 574 

brackets were retained in the best model but were not statistically significant. 575 

Response 

Variable 
Best model formula R2 Adj R2 sigma AIC BIC dfresidual 

The whole Australia – All AusPlots 

MAT Risk 
MAT Risk ~ 1 + MAT(-*) + T_Max(+***) +  

T_Range(-***) + P_Season(+***) 

0.712 0.710 1.292 2372.09 2399.45 701 

MAP Risk 
MAP Risk ~ 1 + MAT(+***) + T_Max(-***) + T_Range(+***) +  

MAP(-***) + P_Dry(-*) 

0.880 0.879 94.066 8427.64 8459.55 700 

Biome 4 – Temperate broadleaf and mixed forests 

MAT Risk MAT Risk ~ 1 + MAT(+***) + P_Dry  0.403 0.369 1.448 140.84 147.39 35 

MAP Risk 
MAP Risk ~ 1 + MAT(-*) + T_Max(+*) + T_Range(-*) + 

MAP(+***) + P_Dry(-*) 

0.750 0.711 144.866 493.47 504.93 32 

Biome 7 – Tropical / subtropical grasslands, savannas and shrublands 

MAT Risk MAT Risk ~ 1 + MAT(+***) + T_Range(+***) + P_Dry(+***) 0.762 0.758 0.692 413.93 430.27 190 

MAP Risk 
MAP Risk ~ 1 + MAT + T_Max(+***) + T_Range(-***) + 

MAP(+***) + P_Season(-***) 

0.868 0.864 107.674 2373.95 2396.82 188 

Biome 12 – Mediterranean forests, woodlands and shrublands 

MAT Risk MAT Risk ~ 1 + T_Max(+***) + P_Season(+***) 0.272 0.264 1.570 704.44 717.36 184 

MAP Risk MAP Risk ~ 1 + MAT(+***) + MAP(+***) + P_Season(-***) 0.803 0.800 65.296 2099.56 2115.72 183 

Biome 13 – Deserts and xeric shrublands 

MAT Risk MAT Risk ~ 1 + MAT(+***) + T_Max(+***) + P-Dry(-***) 0.770 0.767 0.940 673.78 691.31 242 

MAP Risk MAP Risk ~ 1 + MAT(-***) + T_Max(+***) + MAP(+***) + P-Dry(+***) 0.858 0.856 36.140 2470.07 2491.10 241 

 576 
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Table 3. Best‐fit linear models explaining variation in MAT Risk and MAP Risk against biodiversity metrics across Australia and within 577 

selected biomes. Models were selected using AIC-based stepwise selection. The table reports the retained predictors, model fit statistics 578 

(R², adjusted R², sigma), and information criteria (AIC, BIC). The direction and statistical significance of each predictor in the best model 579 

are shown in brackets after each term (+: positive effect; –: negative effect; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Predictors without 580 

brackets were retained in the best model but were not statistically significant. 581 

Response 

Variable 
Best model formula R2 Adj R2 sigma AIC BIC dfresidual 

The whole Australia – All AusPlots 

MAT Risk MAT Risk ~ 1 0.000 0.000 2.38 2954.80 2963.74 645 

MAP Risk MAP Risk ~ 1 + SR
(-***) 0.169 0.168 236.82 8901.01 8914.42 644 

Biome 4 – Temperate broadleaf and mixed forests 

MAT Risk MAT Risk ~ 1 + SR 0.083 0.052 1.854 134.24 138.64 30 

MAP Risk MAP Risk ~ 1 + SR
(-***) 0.414 0.394 223.714 441.01 445.41 30 

Biome 7 – Tropical / subtropical grasslands, savannas and shrublands 

MAT Risk MAT Risk ~ 1 0.000 0.000 1.394 608.88 615.19 172 

MAP Risk MAP Risk ~ 1 + SR
(+***) + FD 0.234 0.225 245.523 2400.10 2412.71 170 

Biome 12 – Mediterranean forests, woodlands and shrublands 

MAT Risk MAT Risk ~ 1 + SR
(+**) 0.046 0.041 1.742 671.14 680.53 167 

MAP Risk MAP Risk ~ 1 + SR
(+***) + FR

(-**) 0.232 0.223 129.872 2129.47 2141.99 166 

Biome 13 – Deserts and xeric shrublands 

MAT Risk MAT Risk ~ 1 + SD
(-*) + FD

(+*) 0.030 0.022 1.912 972.41 986.23 231 

MAP Risk MAP Risk ~ 1 + SR
(+***) +SD

(-***) + FD
(+***) 0.171 0.160 88.621 2768.72 2785.99 230 

 582 
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4. Discussion 583 

Here, we analysed multiple diversity metrics —including species richness, species diversity, 584 

functional diversity, and functional redundancy, but with particular emphasis on functional 585 

redundancy (FR)— in Australian plant communities using continental-scale ecological and 586 

functional trait datasets. Our results showed that the northern and eastern Australian coastlines, 587 

as well as Mediterranean-climate regions in southwestern Western Australia and southeastern 588 

South Australia, are particularly vulnerable to species loss, shifts in community composition, 589 

and subsequent loss of ecosystem function under climate change. We find FR was generally 590 

high across sampled communities, suggesting some resilience to loss of ecosystem function in 591 

the event of species loss (Walker 1995; Pimiento et al. 2020). Central, arid plant communities 592 

may be more resilient to functional loss in the event of species loss given the structured pattern 593 

emerging of increasing FR with distance from the coast. At the continental scale, FR variation 594 

was related to macroclimate in terms of both, temperature (MAT) and precipitation seasonality 595 

patterns (positive and negative relationships, respectively), while SR, SD and FD showed 596 

opposite patterns (negative relationships with MAT and positive with MAP). However, these 597 

relationships explained limited variance, likely because macroclimate metrics do not capture 598 

fine-scale environmental variation, which can be a stronger driver of community composition. 599 

Declines in SR with increasing temperature range suggest thermal variability acts as a filter, 600 

favouring stress-tolerant or generalist species, which could subsequently reduce FD even if 601 

overall abundance is maintained. FR may buffer functional loss, but this is context-dependent 602 

and often coincides with lower FD, reflecting interactions between habitat filtering and niche 603 

partitioning (Spasojevic and Suding 2012). These patterns underscore how functional traits and 604 

climatic variability combined shaping ecosystem resilience, and emphasise the need to 605 

understand how FR and FD respond to environmental gradients for conservation planning. 606 

Andrew et al. (2021) found that FD across Australian vegetation was strongly linked to 607 

climate using grid-cell-based models. In contrast, our plot-based analyses suggest communities 608 

may possess greater FR than broad-scale patterns would indicate, as local assembly processes—609 

environmental filtering and biotic interactions—can enhance FR, whereas grid-cell models 610 

reflect broader niche–environment relationships. Similarly, Guerin et al. (2022) found strong 611 

climate–trait links at the single-trait level across the same plot network, suggesting that 612 

aggregating traits into composite FD and FR metrics may dilute finer-scale trait–environment 613 

relationships. Although single trait studies can better reveal functional responses to 614 

environmental gradients (e.g., Funk et al. 2017), reductionist approaches offer more limited 615 

insights into community dynamics. Community assembly operates hierarchically, with 616 
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macroclimate dominating at large scales and local factors shaping communities locally (Diaz 617 

et al. 1998; Laliberté et al. 2010). Consistent with this, we found that biome-scale relationships 618 

between diversity metrics and climate were notably stronger than continental-scale patterns, 619 

particularly in Mediterranean forests (biome 12) and tropical/subtropical grasslands (biome 7), 620 

suggesting that smaller-scale analyses capture more coherent functional responses (Bruelheide 621 

et al. 2018). 622 

At the biome scale, diversity metrics responded to bioclimate in highly context-specific 623 

ways, reflecting how climate interacts with physiology, resource availability, and evolutionary 624 

history to shape plant communities. The contrasting responses of communities’ FR to 625 

bioclimatic factors within biomes point to different drivers depending on the limiting factor or 626 

stressor within each climate. In tropical savannas (biome 7), extreme rainfall seasonality limits 627 

species with narrow niches, yet FR increases with temperature range, likely reflecting 628 

convergence on heat-adapted strategies. Temperate forests (biome 4), with more benign 629 

climatic conditions, exhibit richness increase with warmth and species diversity increase with 630 

rainfall, while FR remains largely independent of climate, suggesting the absence of a strong 631 

limiting stressor. Mediterranean systems (biome 12) experience dual pressures of intense heat 632 

and summer drought, which reduce SR and SD under hotter conditions, yet FR increases with 633 

reduced precipitation, most likely through the prevalence of stress-avoidance traits. Deserts 634 

(biome 13) show strong drought-driven FR, although extreme heat constrains it. In line with 635 

this, our results showed lower FD at hotter and drier locations, and higher FD at cooler and 636 

wetter locations – supported by Guerin et al. (2022) who showed FD declined with aridity, 637 

pointing towards trait convergence with extreme conditions. These patterns indicate that FD-638 

to-FR ratio emerges from the interplay of habitat filtering, niche partitioning, and local 639 

environmental constraints, producing contrasting functional responses across biomes rather 640 

than reflecting climate alone. Consequently, communities with high FD may have low FR and 641 

therefore be more vulnerable to species loss, whereas those with lower functionality may be 642 

more resilient (Ricotta et al. 2016).  643 

Short-term drivers such as land-use change, disease, and direct anthropogenic pressures 644 

may further reduce FR (Fonseca and Ganade 2001); however, our study focused on plant 645 

communities with minimal recent disturbance, suggesting that higher FR under extreme 646 

environments reflects long-term environmental effects rather than human impact. We note, 647 

however, that because our analyses rely on contemporary surveys, current species composition 648 

may already incorporate recent climate- and land-use-driven shifts, which could influence trait 649 

filtering patterns and reduce predictive power. Inconsistent FR metrics also complicate 650 
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comparisons, emphasizing the need for clear methodology and fine-resolution environmental 651 

data when studying FD and FR (Biggs et al. 2020). Thus, we recommend clearly specifying FR 652 

calculations and noting that functional similarity does not always imply redundancy, and we 653 

advocate for the use of finer-resolution environmental data (e.g., biome- or regional-scale) 654 

where available, to better elucidate FD-to-FR ratio and trends. 655 

 656 

4.1. Climate change risk 657 

Climate change risk exhibited clear geographic patterns across Australian plant communities 658 

and was strongly related to current climatic conditions, indicating that species safety margins 659 

may be more important than predicted exposure in determining the risk of species turnover or 660 

changes in community composition. Temperature-related risk (MAT Risk) varied with latitude, 661 

increasing from south to north (also supported by Gallagher et al. 2019), while precipitation-662 

related risk (MAP Risk) was greatest in the coastline of the continent, especially in the North 663 

and in mediterranean-climate regions, and lowest at the arid centre. This, therefore, points to 664 

the northern coastline as a priority region for conservation practices to mitigate climate-driven 665 

change in vegetation communities.  666 

In general, we found strong links between climate change risk and current climate 667 

conditions. The trends we found reflect the fact that as climates become more extreme in 668 

temperature, species approach their tolerance limits, leading to the greatest temperature-driven 669 

turnover in the hottest and most seasonally variable environments (Deutsch et al. 2008). For 670 

example, our findings that MAT Risk increased with long-term T-max and P-Season and 671 

decrease with MAT and T-Range, suggest that communities exposed to persistently high 672 

temperature extremes and strong intra-annual rainfall variability will be most sensitive to future 673 

warming, whereas broader thermal ranges may buffer against turnover. In contrast, MAP Risk 674 

was highest in sites that are warm and experience pronounced temperature fluctuations, but 675 

lowest in sites with high rainfall and dry-season precipitation, implying that plant communities 676 

subjected to the combination of heat and drought will experience higher precipitation-driven 677 

risk. Furthermore, this suggests that safety margins may be more important than exposure per 678 

se in determining sensitivity to climate change vulnerability in Australian plant communities 679 

(Foden et al. 2019), as the former takes a much wider range of values in Australian plant 680 

communities. We acknowledge that species’ climate tolerances are derived from their realised 681 

rather than fundamental niches, potentially underestimating true physiological limits and 682 

adaptive capacity (Sax et al. 2013). Yet, species already persisting in extreme environments 683 
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seem to possess greater adaptive potential precisely because of being shaped by harsher 684 

conditions (Chevin and Hoffmann 2017). 685 

Tropical savannas in northern Australia, where MAT Risk was found to be highest, are 686 

key global carbon sinks (Grace et al. 2006) that rely on complex interactions between fire 687 

regimes, water availability and vegetation dynamics (Moore et al. 2018), making them highly 688 

vulnerable to climatic shifts. Their high sensitivity to future precipitation shifts (MAP Risk) 689 

likely stem from the fact that these ecosystems are structured around strong wet–dry 690 

seasonality, where even small changes in rainfall amount or timing can disrupt plant 691 

recruitment, survival, and competitive ability. Unlike species in more southern arid zones, 692 

many northern taxa are less drought-adapted, thus, reduced rainfall could push them beyond 693 

their physiological limits. Moreover, biogeographic barriers constrain range shifts, as deserts 694 

to the south and oceans to the north limit gradual migration. Together, these factors indicate 695 

that northern Australia warrants particular attention from land managers and conservation 696 

purposes to prevent climate-driven species loss.  697 

Mediterranean regions in the South West Australian Floristic Region (SWAFR) and 698 

South Australia showed high MAP Risk probably due to many species in these communities 699 

already nearing their upper climate thresholds, particularly with regards to the intense summer 700 

drought periods they face (Lewandrowski et al. 2021). In fact, drought-related dieback of 701 

Australian mediterranean vegetation has been well-documented, with rainfall already in 702 

decline and predicted to continue (Brouwers et al. 2013). Arid interiors exhibit low MAP Risk, 703 

due to projected increases in precipitation by 2070 (Gallagher et al. 2019). These biome-704 

specific contrasts underscore the challenge of making generalizations when predicting changes 705 

in vegetation dynamics (Mori 2011).  706 

At the biome scale, the links between climatic variables and MAT and MAP Risk 707 

highlight how different vegetation types may be exposed to shifts in community composition 708 

under warming and drying trends. The benign climatic conditions of temperate forests (biome 709 

4) make them vulnerable to temperature stress (i.e. increases in MAT and T-Max positively 710 

affect MAT and MAP Risk respectively) and rainfall (i.e. lower P-Dry results in higher MAP 711 

Risk), reflecting their dependence on stable mild temperatures and moisture regimes. In 712 

tropical savannas (biome 7), MAT Risk increased in hotter sites and in areas with greater dry-713 

season rainfall, indicating that both chronic warmth and large annual temperature fluctuations 714 

amplify sensitivity to warming. MAP Risk, by contrast, was highest in wetter and more heat-715 

exposed savannas but declined with greater temperature range and rainfall seasonality, 716 

suggesting that climatic variability and pronounced wet–dry cycles may help buffer these 717 
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communities against precipitation-driven change. In Mediterranean systems (biome 12), both 718 

MAT and MAP Risk were highest in the warmest areas and in sites with weaker rainfall 719 

seasonality, indicating that communities occupying the margins of the Mediterranean climate 720 

regime—where summer drought is less pronounced—are more vulnerable to climate-driven 721 

change than those in strongly seasonal, drought-adapted environments, pointing to the 722 

importance of stress-tolerant adaptations in buffering these communities against increasing 723 

drought. In deserts (biome 13), MAT Risk was greatest in the hottest sites and declined with 724 

P-Dry, indicating that hyper-arid communities already adapted to extreme water limitation may 725 

be less sensitive to further warming than those in comparatively milder desert environments. 726 

MAP Risk, however, increased in warmer and wetter desert areas and in sites where the driest 727 

month is less dry, suggesting that communities located in more semi-arid areas are more 728 

vulnerable to precipitation-driven change than those in the most extremely water-limited 729 

regions that are already adapted to drought. Together, these contrasting biome-level responses 730 

indicate that climate-change risk is shaped not only by absolute climatic stress but by how far 731 

future conditions will diverge from the specific adaptive strategies of the vegetation 732 

characteristic of each biome, thus underscoring the need for case-by-case assessments. 733 

Although we focused on mean climate changes, we acknowledge that extreme events (e.g. 734 

heatwaves, droughts and wildfires) can also shape species survival and drive ecosystem shifts 735 

(Lloret et al. 2012). 736 

 737 

4.2. Relationship between functional redundancy and climate change risk 738 

By integrating climate change risk with FR, we provide a robust assessment of Australian plant 739 

communities, capturing both their vulnerability to species loss and their potential resilience to 740 

functional disruption (traditionally ignored in climate change studies; Li et al. 2018). In this 741 

framework, communities with high climate risk and low FR are most vulnerable, whereas those 742 

with high risk but high FR may withstand some functional loss, and communities with low 743 

climate risk are inherently less threatened. At the continental-scale the negative relationship 744 

found between FR and precipitation-driven climate change risk, points out to the north and east 745 

coastlines as well as the mediterranean-climate regions as the most vulnerable areas to suffer 746 

changes in community composition and subsequent loss of ecosystem function.  747 

Unlike MAT Risk, MAP Risk exhibited clear relationships with community diversity 748 

metrics, reflecting the strong influence of rainfall and its seasonality on Australian plant 749 

communities. At the continental scale, communities with higher species richness experienced 750 
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lower MAP Risk, suggesting that richer communities are more buffered against precipitation-751 

driven turnover. 752 

At the biome scale, the influence of community diversity on climate-change risk varied 753 

markedly. In temperate forests (biome 4), higher species richness appeared to buffer 754 

communities against precipitation-driven turnover, suggesting that diverse forests maintain 755 

stability under altered rainfall regimes. In tropical savannas (biome 7), communities with larger 756 

species pools seem to be subjected to amplified compositional shifts under warming and altered 757 

rainfall, perhaps reflecting the exposure of less stress-tolerant species in these dynamic 758 

environments. In Mediterranean systems (biome 12) functional redundancy plays a key role, 759 

mitigating precipitation-driven risk, and highlighting the role of overlapping functional traits 760 

in stabilizing communities despite turnover in species composition. In deserts (biome 13), the 761 

contrasting effects of species and functional diversity climate-driven risk suggest that the 762 

vulnerability of arid communities is shaped by the balance between the breadth of functional 763 

strategies and species identities, with some aspects of diversity enhancing turnover while others 764 

confer resilience. Altogether, these patterns indicate that precipitation-driven climate risk is in 765 

general more sensitive to community structure than temperature-driven risk, and that the 766 

ecological consequences of diversity for climate vulnerability are highly context-dependent, 767 

reflecting the specific adaptive strategies and functional composition of each biome. 768 

The concept of functional redundancy deals with the local extinction of species, yet 769 

climate change may also add novel species, which can have diverse functional effects—from 770 

enhancing community resilience supporting mutualistic interactions, as seen on islands 771 

(Traveset et al. 2013), to detrimental impacts from non-native species (Wardle et al. 2011). 772 

Accounting for both, species gain and loss, is therefore essential to accurately predict climate-773 

driven community responses (Gallagher et al. 2013). A limitation of using FR to estimate 774 

community resilience is that a set of functionally redundant species can theoretically all 775 

respond similarly to a given threat, resulting in loss of ecosystem function (Mori et al. 2013). 776 

Thus, community resilience depends on both response diversity—the variety of species’ 777 

functional response traits—and functional redundancy (Elmqvist et al. 2003; Mori et al. 2013). 778 

Ideally, FR would be measured using effect traits with explicit links to a given ecosystem 779 

function and response traits with explicit links to a given threat; however, this is difficult as 780 

traits can often act as either depending on context (Suding et al. 2008). Additionally, at the 781 

continental-scale trait data availability is in general limited, reinforcing the importance of large 782 

open access trait databases such as AusTraits (Falster et al. 2021) and the ongoing work by 783 

numerous researchers to improve the taxonomic coverage of trait data. Because of the present 784 
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barriers to implementing the effect- response framework, the assumption that a higher degree 785 

of functional redundancy infers at least some degree of response diversity is often made 786 

(Laliberté et al. 2010; Pillar et al. 2013). 787 

While we retain the term “functional redundancy” for comparability with previous 788 

studies, we frame FR as functional similarity—a spectrum of overlapping but non-identical 789 

contributions to ecosystem processes—acknowledging concerns that the term redundancy may 790 

be ecologically misleading or counterproductive (Eisenhäuser et al. 2023). While Fischer and 791 

de Bello (2003) suggested redundancy implied resilience, with the loss of some species having 792 

little detectable effect at the community scale, Eisenhäuser et al. (2023) argue this framing 793 

risks underestimating the unique and context-dependent contributions of species to ecosystem 794 

functioning. We agree that the term “redundancy” can obscure the fact that species’ roles are 795 

not interchangeable across space, time, or environmental conditions; thus, FR should be 796 

interpreted here as functional similarity—recognizing that resilience is not guaranteed and 797 

functional loss might still remain a risk. 798 

Our findings can be useful to land managers and policy makers and guide conservation 799 

prioritization (Walker 1995; Rosenfeld 2002) in Australia, especially in highly vulnerable areas 800 

like the tropical North and the Mediterranean regions. Deliberately preserving high-FR 801 

communities could also help maintaining key ecosystem functionality (Mori et al. 2013). 802 

Having established FR and climate-driven risk across plant communities in the Australian 803 

continent, future work should explicitly test whether FR effectively enhances resilience over 804 

time—a crucial step given limited knowledge under certain conditions (Biggs et al. 2020). 805 

 806 

4.3. Future directions  807 

Future research should test whether functional redundancy enhances ecosystem resilience over 808 

time, leveraging networks such as TERN AusPlots to track changes in functional diversity and 809 

ecosystem function before and after disturbances. Remote sensing (e.g., NDVI) could 810 

complement plot data for retrospective analyses, enabling assessment of productivity responses 811 

to environmental stressors such as drought. For example, Aguirre‐Gutiérrez et al. (2022) linked 812 

aboveground biomass stability to FR in tropical forest plots following an El Niño drying event. 813 

While assisted translocation of functionally rare species may be required in extreme cases, a 814 

pragmatic approach emphasizes monitoring, maintaining habitat quality, supporting natural 815 

regeneration, and mitigating pressures such as altered fire regimes or invasive species. This 816 

strategy allows management without assuming that redundancy guarantees resilience, while 817 

keeping interventions open when critical functions are at risk. Long-term, standardized 818 
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monitoring combined with trait-based analyses is therefore essential, and the integration of 819 

AusPlots and AusTraits provides a robust foundation to couple FR with climate risk, identify 820 

conservation priorities, and anticipate when ecosystem resilience may be compromised.  821 

 822 

5. Conclusions 823 

Australian plant communities show strong regional variation in vulnerability to climate change, 824 

with the tropical north being at greatest risk due to shifts in rainfall and temperature combined 825 

with low functional redundancy, followed by the mediterranean regions of Western and South 826 

Australia. Communities with high climate risk and low redundancy are particularly prone to 827 

losing functionally unique species, thereby threatening ecosystem stability. These findings 828 

highlight priority areas for monitoring and management, providing a framework to safeguard 829 

ecosystem function under a changing climate. Targeted monitoring and prioritizing proactive 830 

management in these hotspots of high at-risk vegetation communities is therefore critical to 831 

prevent irreversible functional loss under future climate scenarios. 832 
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Supplementary material 1070 

 1071 

Supplemental table S1. Pairwise comparisons of functional redundancy (FR) among four 1072 

Australian biomes (IDs Tropical/subtropical grasslands, savannas and shrublands = 4, 1073 

Temperate broadleaf and mixed forests = 7, Mediterranean forests, woodlands and shrublands 1074 

= 12, Deserts and xeric shrublands = 13) using Tukey’s Honestly Significant Difference 1075 

(HSD) test. The table shows the mean difference in FR between each pair of biomes, the 1076 

lower and upper bounds of the 95% confidence interval, and the adjusted p-value (Adjusted 1077 

P-value) for multiple comparisons. Positive difference values indicate that the first biome 1078 

listed in the comparison has higher FR than the second. 1079 

Biome comparison Difference Lower_95CI Upper_95CI Adjusted P-value 

7 vs. 4 0.043 0.008 0.079 ≤0.01 

12 vs. 4 0.017 -0.019 0.052 n.s. 

13 vs. 4 0.050 0.015 0.084 ≤0.01 

12 vs. 7 -0.027 -0.046 -0.007 ≤0.01 

13 vs. 7 0.006 -0.012 0.025 n.s. 

12 vs. 13 0.033 0.015 0.052 ≤0.001 
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Supplemental table S2. Pearson correlation coefficients between pairs of climate variables. 1082 

Values are shown for the upper triangle of the correlation matrix. Asterisks indicate 1083 

significance levels: p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). 1084 

 1085 

 MAT T-Range T-Max MAP P-Dry P-Seasonality 

MAT 1 0.18*** 0.87*** 0.05 -0.83*** 0.76*** 

T-Range  1 0.63*** -0.78*** -0.25*** -0.32*** 

T-Max   1 -0.37*** -0.8*** 0.41*** 

MAP    1 0.3*** 0.48*** 

P-Dry     1 -0.55*** 

P-Seasonality      1 
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Supplemental table S3. Pearson correlation coefficients between pairs of diversity metrics. 1089 

Values are shown for the upper triangle of the correlation matrix. Asterisks indicate 1090 

significance levels: p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***).  1091 

 1092 

 Species 

richness (SR) 

Species 

diversity (SD) 

Functional 

diversity (FD) 

Functional 

redundancy (FR) 

Species richness (SR) 1 0.6*** 0.52*** -0.13** 

Species diversity (SD)  1 0.67*** 0.06 

Functional diversity (FD)   1 -0.69*** 

Functional redundancy (FR)    1 
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Supplemental table S4. Coefficients from the best-supported linear regression models for 1095 

plant diversity metrics (SR, SD, FD, FR) against bioclimatic variables at continental and biome 1096 

scales. Shown are the estimated slope (estimate), standard error (std.error), t-value (statistic), 1097 

and p-value for each predictor in the model. Models were selected based on the lowest AIC, 1098 

and only the best-supported models are presented. 1099 

Scale Response term estimate std.error statistic p.value 

Continental 

SR 

(Intercept) 24.2378 5.3295 4.5479 0.0000 

MAT -2.4493 0.5898 -4.1529 0.0000 

T_Max 2.2499 0.6237 3.6076 0.0003 

T_Range -1.3610 0.3007 -4.5261 0.0000 

MAP 0.0090 0.0018 4.9067 0.0000 

P_Season 0.0515 0.0261 1.9722 0.0490 

SD 

(Intercept) 0.9812 0.0698 14.0517 0.0000 

MAT -0.0138 0.0031 -4.5262 0.0000 

MAP 0.0002 0.0000 6.7622 0.0000 

P_Dry -0.0041 0.0011 -3.5507 0.0004 

FD 

(Intercept) 0.2397 0.0385 6.2291 0.0000 

MAT -0.0132 0.0031 -4.2162 0.0000 

T_Max 0.0090 0.0040 2.2219 0.0266 

T_Range -0.0041 0.0024 -1.7305 0.0840 

MAP 0.0001 0.0000 3.7973 0.0002 

P_Dry -0.0015 0.0006 -2.6001 0.0095 

FR 

(Intercept) 0.7850 0.0391 20.0707 0.0000 

MAT 0.0165 0.0043 3.8009 0.0002 

T_Max -0.0145 0.0046 -3.1631 0.0016 

T_Range 0.0058 0.0022 2.6490 0.0083 

MAP 0.0000 0.0000 -1.5771 0.1153 

P_Season -0.0004 0.0002 -2.2628 0.0240 

Biome 4 

SR 

(Intercept) 71.1624 13.6375 5.2181 0.0000 

T_Max 3.5419 0.5766 6.1431 0.0000 

T_Range -5.8727 1.0443 -5.6235 0.0000 

SD 

(Intercept) 0.6769 0.2134 3.1717 0.0038 

MAT 0.0160 0.0104 1.5366 0.1360 

MAP 0.0012 0.0004 3.4262 0.0020 

P_Dry -0.0155 0.0064 -2.4373 0.0217 

P_Season -0.0213 0.0077 -2.7533 0.0104 

FD 
(Intercept) 0.4416 0.0925 4.7714 0.0000 

T_Range -0.0106 0.0043 -2.4727 0.0193 

FR 
(Intercept) 0.6680 0.0393 16.9800 0.0000 

MAT 0.0041 0.0030 1.3494 0.1873 

Biome 7 SR 

(Intercept) 116.8951 23.9447 4.8819 0.0000 

MAT 4.5659 0.7575 6.0276 0.0000 

T_Max -4.5345 0.5650 -8.0260 0.0000 

P_Dry -0.7088 0.2469 -2.8706 0.0046 

P_Season -0.4184 0.0858 -4.8774 0.0000 
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SD 

(Intercept) 0.4751 0.1772 2.6813 0.0081 

MAT 0.0151 0.0105 1.4436 0.1507 

MAP 0.0002 0.0000 4.6174 0.0000 

P_Season -0.0026 0.0011 -2.3385 0.0205 

FD 

(Intercept) 0.1647 0.0207 7.9457 0.0000 

MAP 0.0001 0.0000 5.3350 0.0000 

P_Season -0.0004 0.0002 -2.0817 0.0389 

FR 
(Intercept) 0.6914 0.0285 24.2331 0.0000 

T_Range 0.0029 0.0011 2.4919 0.0137 

Biome 12 

SR 

(Intercept) 38.3001 11.2007 3.4195 0.0008 

MAT -4.6103 0.8921 -5.1679 0.0000 

T_Max 1.4021 0.4222 3.3212 0.0011 

P_Dry 0.4095 0.1826 2.2428 0.0263 

P_Season 0.4118 0.0468 8.8063 0.0000 

SD 

(Intercept) 1.0220 0.1279 7.9920 0.0000 

MAT -0.0214 0.0071 -3.0246 0.0029 

P_Season 0.0026 0.0006 4.4678 0.0000 

FD 

(Intercept) 0.0664 0.0212 3.1279 0.0021 

P_Dry 0.0048 0.0010 4.7827 0.0000 

P_Season 0.0016 0.0003 6.4811 0.0000 

FR 

(Intercept) 1.2241 0.0946 12.9357 0.0000 

MAT -0.0201 0.0045 -4.4583 0.0000 

MAP -0.0002 0.0000 -5.0010 0.0000 

P_Dry -0.0044 0.0011 -3.9035 0.0001 

Biome 13 

SR 

(Intercept) -3.5374 11.1735 -0.3166 0.7518 

MAT -3.3824 0.9721 -3.4794 0.0006 

T_Max 3.2492 1.1072 2.9346 0.0037 

T_Range -1.1241 0.5525 -2.0346 0.0430 

MAP 0.0409 0.0085 4.8065 0.0000 

SD 
(Intercept) 0.7469 0.0237 31.5031 0.0000 

P_Season -0.0009 0.0004 -2.1098 0.0359 

FD 

(Intercept) 0.0770 0.0921 0.8360 0.4040 

MAT -0.0271 0.0072 -3.7806 0.0002 

T_Max 0.0161 0.0045 3.6048 0.0004 

MAP 0.0001 0.0001 1.5899 0.1132 

P_Season 0.0011 0.0005 2.4453 0.0152 

FR 

(Intercept) 0.8491 0.0940 9.0303 0.0000 

MAT 0.0177 0.0051 3.4729 0.0006 

T_Range -0.0113 0.0024 -4.6601 0.0000 

MAP -0.0002 0.0001 -2.3200 0.0212 

P_Season -0.0015 0.0005 -3.0192 0.0028 
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Supplemental table S5. Coefficients from the best-supported linear regression models for 1102 

climate-driven risk (MAT Risk and MAP Risk) against bioclimatic variables at continental 1103 

and biome scales. Shown are the estimated slope (estimate), standard error (std.error), t-value 1104 

(statistic), and p-value for each predictor in the model. Models were selected based on the 1105 

lowest AIC, and only the best-supported models are presented. 1106 

Scale Response Term Estimate Std error Statistic P-value 

Continental 

risk_MAT 

(Intercept) -11.37 0.46 -24.81 0.0000 

MAT -0.16 0.07 -2.16 0.0315 

P_Season 0.03 0.00 10.31 0.0000 

T_Max 0.45 0.08 5.83 0.0000 

T_Range -0.16 0.04 -4.25 0.0000 

risk_MAP 

(Intercept) 480.92 56.07 8.58 0.0000 

MAP -0.63 0.02 -25.31 0.0000 

MAT 20.29 4.57 4.44 0.0000 

P_Dry -2.08 0.84 -2.47 0.0139 

T_Max -39.47 5.89 -6.71 0.0000 

T_Range 19.19 3.45 5.57 0.0000 

Biome 4 

risk_MAT 

(Intercept) -11.15 1.73 -6.45 0.0000 

MAT 0.29 0.06 4.86 0.0000 

P_Dry 0.06 0.03 1.87 0.0705 

risk_MAP 

(Intercept) -1031.03 516.70 -2.00 0.0546 

MAP 1.38 0.31 4.42 0.0001 

MAT -224.57 93.36 -2.41 0.0221 

P_Dry -13.81 6.58 -2.10 0.0439 

T_Max 302.50 118.41 2.55 0.0156 

T_Range -170.29 75.28 -2.26 0.0306 

Biome 7 

risk_MAT 

(Intercept) -19.01 1.42 -13.35 0.0000 

MAT 0.71 0.05 15.24 0.0000 

P_Dry 0.06 0.01 4.90 0.0000 

T_Range 0.05 0.01 3.66 0.0003 

risk_MAP 

(Intercept) -283.09 200.03 -1.42 0.1587 

MAP 0.53 0.06 9.36 0.0000 

MAT -40.95 23.02 -1.78 0.0768 

P_Season -2.26 0.81 -2.80 0.0057 

T_Max 72.00 22.29 3.23 0.0015 

T_Range -40.60 10.16 -3.99 0.0001 

Biome 12 

risk_MAT 

(Intercept) -9.74 1.27 -7.68 0.0000 

P_Season 0.05 0.01 8.17 0.0000 

T_Max 0.17 0.04 4.66 0.0000 

risk_MAP 

(Intercept) -539.78 81.75 -6.60 0.0000 

MAP 0.96 0.05 19.72 0.0000 

MAT 22.93 4.18 5.48 0.0000 

P_Season -0.92 0.31 -3.01 0.0030 

Biome 13 risk_MAT 
(Intercept) -16.44 1.78 -9.26 0.0000 

MAT 0.46 0.07 6.90 0.0000 
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P_Dry -0.09 0.03 -3.36 0.0009 

T_Max 0.15 0.06 2.57 0.0109 

risk_MAP 

(Intercept) -430.04 69.14 -6.22 0.0000 

MAP 1.15 0.04 27.45 0.0000 

MAT -17.14 3.93 -4.36 0.0000 

P_Dry 4.17 1.20 3.47 0.0006 

T_Max 16.35 2.55 6.40 0.0000 
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Supplemental table S6. Coefficients from the best-supported linear regression models for 1110 

climate-driven risk (MAT Risk and MAP Risk) against plant diversity metrics (SR, SD, FD, 1111 

FR) at continental and biome scales. Shown are the estimated slope (estimate), standard error 1112 

(std.error), t-value (statistic), and p-value for each predictor in the model. Models were 1113 

selected based on the lowest AIC, and only the best-supported models are presented. 1114 

Scale Response Term Estimate Std error Statistic p-value 

Continental 

risk_MAT (Intercept) -1.64 0.09 -17.50 0.0000 

risk_MAP 
(Intercept) -65.79 20.01 -3.29 0.0011 

SR -9.60 0.84 -11.44 0.0000 

Biome 4 

risk_MAT 
(Intercept) -6.53 0.84 -7.80 0.0000 

SR 0.04 0.03 1.64 0.1105 

risk_MAP 
(Intercept) -65.79 20.01 -3.29 0.0011 

SR -9.60 0.84 -11.44 0.0000 

Biome 7 

risk_MAT (Intercept) 0.33 0.11 3.09 0.0023 

risk_MAP 

(Intercept) 204.46 54.41 3.76 0.0002 

FD 504.12 344.16 1.46 0.1448 

SR 9.69 1.91 5.08 0.0000 

Biome 12 

risk_MAT 
(Intercept) -3.27 0.31 -10.62 0.0000 

SR 0.03 0.01 2.85 0.0049 

risk_MAP 

(Intercept) 354.88 107.14 3.31 0.0011 

FR -392.63 138.64 -2.83 0.0052 

SR 5.30 0.88 6.05 0.0000 

Biome 13 

risk_MAT 

(Intercept) -1.05 0.53 -1.99 0.0477 

FD 6.64 2.65 2.50 0.0129 

SD -2.16 0.94 -2.30 0.0226 

risk_MAP 

(Intercept) 132.51 24.58 5.39 0.0000 

FD 433.62 124.27 3.49 0.0006 

SD -242.05 47.84 -5.06 0.0000 

SR 4.39 0.82 5.33 0.0000 
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