

1 **Functional redundancy buffers plant communities against climate-driven
2 shifts in composition**

3 **Irene Martín-Forés^{1,2†*}, Rhys V. Morgan^{3†}, Samuel C. Andrew⁴, Rachael V.
4 Gallagher⁵, Greg R. Guerin¹**

5 ¹School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005,
6 Australia

7 ²TERN – Terrestrial Ecosystem Research Network, The University of Adelaide, Adelaide,
8 Australia

9 ³Department for Environment and Water (DEW). South Australian State Government

10 ⁴CSIRO Agriculture & Food, Canberra, Australian Capital Territory, Australia

11 ⁵Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New
12 South Wales, Australia

13 [†]These authors contributed similarly.

14 *Corresponding author: irene.martin@adelaide.edu.au

15

16 **Abstract**

17 Climate change threatens plant communities worldwide with significant species losses, yet the
18 consequences of reduced diversity for ecosystem function remain uncertain. Functional
19 redundancy—where multiple species fulfill similar ecological roles—may act as ‘functional
20 insurance’ by buffering ecosystem processes against species loss. Here, we combined plant
21 composition data from 646 TERN AusPlots with gap-filled trait data (i.e. maximum plant
22 height, leaf mass per area, and seed dry mass) from the AusTraits database to provide the first
23 continental-scale assessment of functional redundancy in Australian plant communities. We
24 estimated the potential impact of species losses under future climates based on community
25 thermal and aridity tolerances relative to projected climate exposure. We examined the
26 continental distribution of functional redundancy (in terms of competitive ability, resource
27 acquisition strategies, and dispersal-establishment trade-offs in reproductive strategy),
28 projected climate-driven compositional changes, and their relationship to bioclimate to identify
29 vulnerable native communities.

30 Our results revealed strong latitudinal gradients of climate-change impacts on
31 Australian plant communities, with those in the tropical north exposed to greater threat of
32 changes in community composition because of future hotter and drier conditions not being
33 unsuitable for monsoon-dependent species. Functional redundancy increased toward central
34 Australia, aligning with more stressful (hotter, drier) bioclimates. At the biome scale,
35 Mediterranean and arid communities showed higher functional redundancy and lower climate
36 risk due to functional similarity in drought-adapted traits. Future rainfall changes were the
37 dominant driver of climate-induced shifts in plant community composition.

38 The most vulnerable communities—at highest risk of functional destabilisation—were
39 located along the northern coastline, with additional hotspots in the southernmost parts of the
40 Mediterranean regions of South Australia and Western Australia. Conservation and monitoring
41 efforts should prioritise these areas. Our findings highlight the influence of local bioclimatic
42 factors on functional redundancy and the need to understand these dynamics to better forecast
43 ecosystem resilience under ongoing climate change, while providing a spatial framework to
44 guide biodiversity monitoring, policy, land management and conservation action across the
45 Australian continent.

46
47

48 **Keywords:** community ecology; climate change; climate risk; ecosystem function; functional
49 traits; functional redundancy; resilience; species loss; vulnerability.

50
51

1. Introduction

52 In the global context of rapid environmental change under widespread threatening processes
53 such as climate change, land use change, and biological invasions (Valladares *et al.* 2019),
54 there is an urgent need to protect biodiversity and better understand its role in the functioning
55 of ecosystems (Díaz *et al.* 2019; Pettorelli *et al.* 2021). By providing a range of functional traits
56 —measurable attributes or characteristics of species which relate to their fitness and ecological
57 role on ecosystem processes (Gallagher *et al.* 2020)— biodiversity affects ecosystem
58 functioning, productivity, resilience, and stability through complementary and overlapping
59 ecological roles. In this sense, functional redundancy (F_R) measures the overlap in functional
60 roles; it asserts that within an ecological community there may be functionally analogous
61 species which contribute similar ecological roles to the functioning of an ecosystem (Walker,
62 1992). Thus, if one or more of these species becomes locally extinct or declines considerably,
63 the remaining functionally analogous species will compensate for this loss and the net impact

64 on ecosystem function will be minimal (Walker, 1995). Consequently, higher F_R is predicted
65 to enhance the resilience of ecosystems in terms of functional stability in the face of
66 perturbation or species loss, while low F_R may indicate a lack of ecological resilience. Recent
67 discussion has highlighted that the term redundancy may overstate substitutability, with some
68 authors advocating for the broader concept of functional similarity instead (Eisenhäuer *et al.*,
69 2023). Here, we retain the F_R framework due to its ecological and conservation relevance in
70 illustrating that certain species can be lost within a community without immediate loss of
71 ecosystem functioning (Fischer and de Bello 2023); however, we acknowledge that it
72 represents one end of a continuum of functional overlap among species, better conceptualised
73 as functional similarity—a spectrum of overlapping but non-identical contributions to
74 ecosystem processes (Eisenhauer *et al.* 2023).

75 Functional redundancy is intricately linked to other biodiversity metrics within plant
76 communities, namely species diversity (S_D) and functional diversity (F_D) (Ricotta *et al.* 2016).
77 Species diversity summarises the variety and abundance of taxonomically distinct organisms
78 occurring in ecological communities, whereas F_D summarises the spread of functional traits
79 within a community. Species-rich communities (high S_D) often have more species that can
80 perform similar ecological roles, thus increasing the likelihood of functional redundancy
81 (Fonseca and Ganade, 2001). Higher F_D indicates a wide array of ecological functions, being
82 therefore widely considered to reflect overall ecosystem functioning (Cadotte *et al.* 2011).
83 Functional redundancy provides a more mechanistic link between biodiversity and ecosystem
84 resilience and stability; in the event of S_D loss, higher F_R should buffer a community from
85 losing F_D , as the likelihood of losing a functionally unique species is reduced. Despite the
86 growing interest in understanding how F_R affects ecosystem resilience (Biggs *et al.* 2020), how
87 F_R varies at macroecological scales, and the potential drivers of such variation remain
88 understudied.

89 Climate change has driven local and global species extinctions in deep time and is
90 predicted to be a driver of plant extinction in the Anthropocene (Valladares *et al.* 2019). This
91 loss of biodiversity is likely to impair the biological, chemical, and physical processes
92 performed by ecosystems with the specific functional implications of such species loss only
93 beginning to be understood (Hooper *et al.* 2012; Gallagher *et al.* 2013). Increasing temperature
94 and changes in precipitation patterns, with subsequent changes in the frequency and duration
95 of drought conditions, are likely to force many plant species beyond their climatic tolerance
96 limits and towards extinction (Lancaster & Humphreys, 2020; Bennett *et al.* 2021). Assessing
97 the vulnerability of different ecosystems to the effects of climate change has become a common

98 practice (Li *et al.* 2018). However, estimates of climate change vulnerability tend to focus on
99 predicted changes to mean climate conditions and the direct impact these will have on species,
100 while ignoring potential resilience mechanisms including individual physiological
101 adaptation/tolerances and community level resilience mechanisms. Gallagher *et al.* (2019)
102 addressed this limitation by measuring the adaptive capacity of Australian vegetation alongside
103 a climate change risk metric (in the sense of projected climate-driven changes in community
104 composition when the environmental niche limits are expected to be surpassed under future
105 climate conditions). We propose that understanding F_R across Australia will also provide
106 complementary information to the impact caused by climate change by indicating the
107 functional resilience of plant communities to species loss. At present, the F_R in Australian plant
108 communities has only been explicitly measured once as part of a global meta-analysis
109 (Laliberté *et al.* 2010). More broadly, continental-scale functional trends and their
110 environmental drivers have seldom been quantitatively investigated in Australian vegetation
111 (Andrew *et al.* 2021, 2025).

112 Given the potential importance of F_R as an indication of community resilience to
113 climate change induced species loss, our study seeks to achieve four main aims. These are to
114 (1) determine the geographic distribution of F_R among plant communities across the Australian
115 continent, (2) investigate how F_R varies along bioclimatic gradients, (3) map Australian
116 communities that are most vulnerable to climate change by integrating species' exposure to
117 projected climatic shifts with their sensitivity and adaptive capacity, and (4) examine the
118 relationship between F_R and projected climate driven changes in the composition of sampled
119 plant communities. Specifically, we hypothesised that (1) many locations across Australia
120 would have very low F_D coupled with very high F_R (Andrew *et al.* 2021), due to species niche
121 specialisation driven the continent's diverse and often extreme environmental gradients.
122 Although the direction of the relationship between F_R and bioclimatic variables is unclear in
123 terrestrial plant communities, we expect (2) F_R to be higher in more consistently extreme
124 conditions (e.g. increased aridity), where species display drought- and heat-adaptive traits and
125 therefore might be more similar functionally, and overlap more in their strategies evolved as
126 long-term adaptations to persistent environmental stress. Based on the findings of Gallagher *et*
127 *al.* (2019), we expect (3) the projected climate driven changes in composition not to be evenly
128 distributed across Australia's plant communities, but reflect instead distinct geographic drivers;
129 specifically, we expect temperature-driven changes to be most acute in the hotter northern
130 regions, and precipitation-driven risks most pronounced in Mediterranean-type ecosystems of
131 southwest Western Australia and southern South Australia. We expect these patterns assuming

132 that many species in these areas may already be close to their thermal or hydric limits, and
133 therefore shifts could occur if communities overpass their limit threshold, regardless of their
134 current F_R . Finally, we expect (4) F_R to be positively associated with projected climate-driven
135 shifts in community composition, particularly in areas expected to become more arid, due to
136 the synergistic effects of increasing heat and drought.

137

138 **2. Methods**

139 To achieve these aims we combined estimates of F_R with projected climate-driven changes in
140 composition across an existing continental-scale plot network monitoring Australian plant
141 communities. We measured F_R using the three traits of the leaf-height-seed (LHS) scheme
142 which reflects the major axes of plant function: leaf mass per area (LMA), maximum plant
143 height and seed dry mass (Westoby, 1998; Díaz *et al.* 2016). Leaf mass per area (LMA), the
144 inverse of specific leaf area (SLA), captures species' trade-off between carbon investment in
145 leaf-level photosynthetic tissues and leaf longevity (Westoby, 1998; Wright *et al.* 2004).
146 Maximum plant height reflects species' strategies in relation to competition for light and is
147 therefore related to canopy structure and shading in ecosystems (Westoby, 1998; Falster and
148 Westoby, 2003). Seed dry mass indicates species' maternal investment in reproduction and can
149 be related to the capacity to establish across different environmental niches (Westoby, 1998).
150 Afterwards, we measured the climate change risk of individual species based on their observed
151 climatic niches and then scaled this up to the community level by calculating the community
152 weighted mean climate change risk (Gallagher *et al.* 2019), and we mapped F_R and climate
153 change risk to determine their spatial distributions. Finally, we constructed linear regression
154 models to explore the relationship between F_R , climate change risk and environmental
155 variables.

156 We combined plant community composition data, species functional trait data, long-
157 term climate data, predicted climate change exposure data and species climate niche data to
158 generate our response and predictor variables. The continental approach enables broadscale
159 trends to be detected along key bioclimatic gradients such as temperature and precipitation,
160 elucidating environmental drivers of community-level properties such as F_R and climate
161 change risk (Violle *et al.* 2014). Furthermore, the Australian continental flora is a particularly
162 useful study system due to the contrasting climates existing across the land, that strongly
163 influence species distribution, and the characteristics of the different ecosystems (Hughes *et*
164 *al.*, 2003; Keith 2017). Australia is latitudinally characterised by a tropical north with wet
165 summers and dry winters, an arid to semi-arid interior covering most of the continent, and a

166 temperate south with hot dry summers and cool wet winters (Keith 2017). Apart from
167 analysing these trends at the continental scale, to detect scale-dependency in our results we
168 also conducted the analyses at two finer spatial scales. First, we replicated the analyses at the
169 biome scale, using the Ecoregion 2017 dataset based on the classification provided by Olson
170 *et al.* (2001) which designates 7 major biomes in Australia.

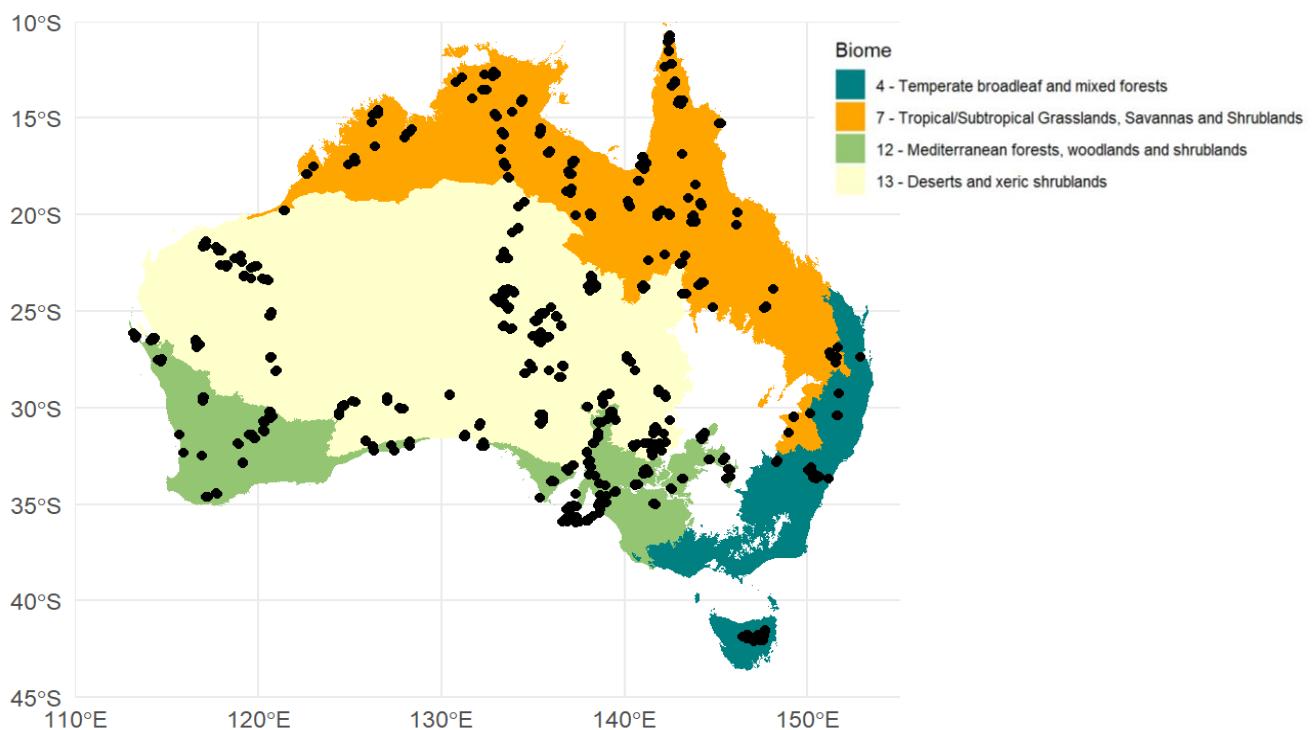
171

172 **2.1. Plant community composition data**

173 The Terrestrial Ecosystem Research Network (TERN) AusPlots ecosystem surveillance
174 program monitors over 1,000 1-ha plots across the Australian continent (Fig. 1) (Sparrow *et al.*
175 2020). The network is stratified by bioregion to maximise ecological coverage (Guerin *et al.*
176 2020a). All plots are systematically surveyed using a point-intercept method comprising a grid
177 of 1,010 points which yields robust estimates of species percent cover (White *et al.* 2012). A
178 specimen is collected from each recorded species and herbarium determinations are obtained
179 for all specimens, thus ensuring taxonomically sound data. We extracted plot-level vascular
180 plant species percent cover data for 787 TERN AusPlots using the ‘ausplotsR’ package (Guerin
181 *et al.* 2020b; Munroe *et al.* 2021). In cases where repeated surveys were available for plots, the
182 most recent survey was selected to ensure that the data best reflected current species
183 composition. We used species percent cover data as a proxy for species relative abundances.

184 For analyses at continental-scale we modelled all plots across the TERN AusPlots
185 network together. For biome-scale analyses we grouped plots according to the major biome
186 they occupy in the Olson *et al.* (2001) biome classification (Fig. 1). From analyses at the biome
187 scale, we selected four biomes, including temperate broadleaf and mixed forests (biome 4),
188 tropical/subtropical grasslands, savannas and shrublands (biome 7), Mediterranean forests,
189 woodlands and shrublands (biome 12), and deserts and xeric shrublands (biome 13). Other
190 biomes present in Australia (i.e. biome 1 - Tropical/Subtropical Moist Broadleaf Forests, biome
191 8 - Temperate Grasslands, Savannas & Shrublands and biome 10 - Montane Grasslands &
192 Shrublands) were excluded from this study due to the low number of TERN AusPlots within
193 their boundaries. These four biomes object of study capture the major climatic and ecological
194 gradients in Australian vegetation. Tropical and subtropical grasslands, savannas, and
195 shrublands (biome 7) are characterized by high mean annual temperatures, strong seasonality
196 in rainfall, and dominance of fire- and drought-adapted species, often occupying narrow
197 ecological niches (Shaw *et al.* 2000). Temperate broadleaf and mixed forests (biome 4), in
198 contrast, experience moderate temperatures and relatively stable precipitation, supporting
199 higher species richness and less extreme functional constraints (Bailey, 1964). Mediterranean

200 forests, woodlands, and shrublands (biome 12) in southwestern and southeastern Australia are
 201 shaped by hot, dry summers and mild, wet winters, favouring species with stress-tolerant or
 202 drought-avoidance strategies (Lionello *et al.* 2006). Deserts and xeric shrublands (biome 13)
 203 are characterized by extremely low precipitation, high temperatures, and high climatic
 204 variability, resulting in plant communities strongly constrained by environmental filtering
 205 (Noy-Meir, 1973). Grouping plots by these biomes allows us to assess context-specific
 206 functional responses, capturing how climate, species physiology, and evolutionary history
 207 interact to shape diversity and functional redundancy across contrasting environmental settings
 208 (Laliberté *et al.* 2010).



209
 210 **Figure 1.** Biomes of Australia used in this study and geographic locations of AusPlots flora
 211 inventories (black circles). Biome 4 – Temperate broadleaf and mixed forests (n = 43 plots),
 212 biome 7 – Tropical/Subtropical Grasslands, Savannas & Shrublands (n = 218 plots), biome
 213 12 - Mediterranean Forests, Woodlands & Shrublands (n = 203 plots), biome 13 - Deserts &
 214 Xeric Shrublands (n = 280 plots). Note that several biomes were excluded from this study
 215 due to the low number of TERN AusPlots within their boundaries: biome 1 -
 216 Tropical/Subtropical Moist Broadleaf Forests (n = 0), biome 8 - Temperate Grasslands,
 217 Savannas & Shrublands (n = 28) and biome 10 - Montane Grasslands & Shrublands (n = 15).
 218

219 **2.2. Trait data**

220 We extracted trait data from the AusTraits database 6.0.0 for all species occurring in our plots.
221 AusTraits contains data for 448 functional traits across 28,640 Australian taxa compiled from
222 multiple sources (Falster *et al.* 2021).

223 From the 4,428 species recorded in AusPlots with the point intercept methodology, we
224 obtained mean values for maximum plant height (3,641 species), leaf mass per area (LMA)
225 (1,304 species), and seed dry mass (2,574 species), respectively. We log transformed all trait
226 values to account for differences in their units and skewness in their distributions, which is
227 standard for community trait analysis (Bruelheide *et al.* 2018). To improve species
228 representation, we followed the methods outlined in Andrew *et al.* (2021), consisting of two
229 subsequent steps by which missing trait values were first estimated missing values via linear
230 models, and subsequently gap-filled utilising all accessible and relevant trait data from the
231 native Australian flora. In summary, to leverage the available measurements of leaf/phylode
232 and seed dimensions for a significant proportion of species in AusTraits, we first estimated leaf
233 area for species lacking direct area measurements based on measurements of leaf length and
234 width. To do so, we conducted Linear Mixed Models (LMM) using the lme4 R package (Bates
235 2010). Likewise, seed dry mass was estimated using seed length as a fixed effect, combined
236 with a random factor of family. Predicted trait values were well correlated to known values
237 (seed mass $r^2 = 0.85$, leaf area $r^2 = 0.81$). The models demonstrated strong explanatory power,
238 evidenced by high conditional R^2 values (R^2_c) for both trait models, with a substantial portion
239 of the explanatory power derived from fixed effects, reflected in high marginal R^2 values (seed
240 dry mass: $R^2_c = 0.85$; $R^2_m = 0.68$; leaf area: $R^2_c = 0.79$; $R^2_m = 0.66$).

241 We adopted a minimum threshold of 80% trait coverage by abundance for plots to be
242 included in our study as this threshold has been shown to limit the estimation bias of community
243 weighted functional properties (Borgy *et al.* 2017). In a second step, to increase the taxonomic
244 coverage of trait data we gap-filled values for species without direct observations in AusTraits
245 using the GapFilling() function from the BHPMF R package (Schrodt *et al.*, 2015), which
246 employs Bayesian hierarchical probabilistic matrix factorisation and correlation structure to
247 impute missing trait values. This method exploits trait–trait correlations and phylogenetic trait
248 signals within the existing trait data to predict unknown trait values. Gap-filling was run on a
249 matrix of trait values for plant height, leaf area, length, and width, leaf mass per area (inverse
250 of SLA), and seed mass and length; species with no available trait data were dropped from all
251 subsequent analyses ($n = 24,915$ native Australian plant species retained). Finally, we applied
252 the 80% trait coverage by abundance threshold to the total of 787 AusPlots, leaving 649 plots
253 which met the threshold.

254

255 **2.3. Diversity indices**

256 We calculated four diversity indices, including species richness (S_R), species diversity (S_D),
 257 functional diversity (F_D) and functional redundancy (F_R). We followed the methodology of
 258 Ricotta *et al.* (2016) in which S_D is calculated as Simpson's diversity index and F_D is calculated
 259 as Rao's quadratic entropy. Simpson's diversity is bound between 0 and 1 and it incorporates
 260 plot-level species relative abundances. Rao's quadratic entropy is also bound between 0 and 1
 261 and it accounts for plot-level species relative abundances as well as species pairwise functional
 262 dissimilarities. Rao's quadratic entropy is ultimately the mean functional dissimilarity of two
 263 randomly selected individuals from a given community (Botta-Dukát, 2005). Importantly, the
 264 maximum value of Rao's, when all species are maximally functionally dissimilar, is equal to
 265 Simpson's index. Therefore, dividing S_D by F_D yields a measure of the functional uniqueness
 266 of a community (U).

$$267 \quad U = \frac{F_D}{S_D} \quad (\text{eq. 1})$$

268 The complement of U is a measure of the functional redundancy of a community (F_R),
 269 which summarises the proportion of species diversity not encompassed by functional diversity.

$$270 \quad F_R = 1 - U \quad (\text{eq. 2})$$

271 All alpha diversity indices were computed with the 'uniqueness' R function provided
 272 by Ricotta *et al.* (2016).

273 To assess whether F_R exhibited any statistically detectable geographic structure, we
 274 quantified spatial autocorrelation using Moran's I with a 5-nearest-neighbour spatial weights
 275 matrix. In addition, we evaluated broad spatial trends by modelling F_R as a function of latitude
 276 and longitude (second-order polynomial terms). To assess whether F_R differs among major
 277 Australian biomes, we also conducted a one-way ANOVA with subsequent Tukey HSD post-
 278 hoc tests to evaluate pairwise differences among biomes.

279

280 **2.4. Bioclimatic data**

281 We obtained long term (1970-2000) mean climate data in a raster format from 'WorldClim 2.1'
 282 and extracted values at the coordinates of each plot (Fick and Hijmans, 2017) at a resolution of
 283 10 minutes of a degree. We extracted mean annual temperature (MAT; °C), temperature annual
 284 range (T-Range; °C), maximum temperature of the warmest month (T-Max; °C), mean annual
 285 precipitation (MAP; mm), precipitation seasonality (P-Seasonality) and precipitation of the
 286 driest month (P-Dry; mm). These variables reflect the mean, variability, and extremes of

287 temperature and precipitation, all of which are projected to change under future climate
288 scenarios for Australian ecosystems (Hughes, 2003).

289

290 **2.5. Future climate projections and climate change risk**

291 To assess the climate change risk faced by plant communities across Australia, we
292 followed an approach informed by Gallagher *et al.* (2019), by adapting their grid-based
293 methodology in order to calculate plot-based climate change risk metrics. We calculated
294 metrics of risk for changes to both MAT and MAP. For these calculations we used the same
295 set of species as in the diversity index calculations to enhance comparability between diversity
296 indices and climate change risk metrics. First, we obtained species-level climate niche data
297 compiled by Gallagher *et al.* (2019), which represents the realised climatic limits of Australian
298 plant species based on cleaned occurrence records for herbarium specimens from the Australian
299 Virtual Herbarium (AVH). To account for potential outliers in these occurrence records, we
300 defined species' temperature tolerance (MAT tolerance) as the 98th percentile of mean annual
301 temperature (MAT) values across their distribution, and precipitation tolerance (MAP
302 tolerance) as the 2nd percentile of mean annual precipitation (MAP) values. We then matched
303 these species-level climate tolerances to the species occurring in each plot and calculated
304 community-weighted mean (CWM) climate tolerances by multiplying each species' tolerance
305 value by its relative abundance in the plot. These CWMs represent the average climatic
306 tolerance of the plant community in terms of upper temperature and lower precipitation limits.

307 To assess current climatic safety margins, we subtracted the present-day (baseline)
308 climate conditions from the community-weighted mean tolerance values at each plot.
309 Specifically, for MAT and MAP, the safety margins were, respectively, calculated as:

$$310 \quad MAT \text{ Safety Margin} = CWM \text{ MAT Tolerance} - \text{Current MAT}$$

$$311 \quad MAP \text{ Safety Margin} = \text{Current MAP} - CWM \text{ MAP Tolerance}$$

312

313 These safety margins represent the climatic buffer a plant community has before it
314 reaches its collective thermal or drought limit.

315 Australia is projected to experience substantial warming by 2070, with mean annual
316 temperatures expected to increase across the continent, particularly in the interior and northern
317 regions. Precipitation patterns are likely to become more variable, with decreases in
318 cool-season rainfall and longer drought duration projected for many parts of the south and east
319 (especially mediterranean-type regions), while some northern areas may experience more
320 intense wet-season rainfall events (State of the Climate 2024). Hence, we then estimated future

321 climate exposure by calculating projected changes in MAT and MAP between current climate
322 conditions and predicted projections for 2070 under the high-emissions scenario RCP8.5
323 (rcp85, 800 ppm of CO₂ by 2070). For that, we used downscaled climate data from CHELSA
324 based on five global circulation models for 2061-2080, including ACCESS1.0, CNRM-CM5,
325 HADGEM2-CC, MIROC5, and NorESM1-M.

326 Finally, we calculated plot-level climate change risk as the difference between exposure
327 and safety margin:

328
$$MAT\ Risk = Exposure - Safety\ Margin$$

329
$$MAP\ Risk = - (Exposure - Safety\ Margin)$$

330

331 For MAT, a positive risk value indicates that future climate change by 2070 in terms of
332 temperature is expected to exceed the current adaptive capacity of the community (i.e. the
333 community's mean tolerance limit), placing it at greater risk. Conversely, negative or low risk
334 values suggest that the community's climatic buffer is sufficient to accommodate projected
335 temperature changes. For MAP, the opposite, when Exposure – Safety Margin has a negative
336 value indicates that future drought conditions by 2070 are expected to exceed the current
337 adaptive capacity of the community, placing it at greater risk, whereas positive values suggest
338 that the community's climatic buffer is sufficient to accommodate projected temperature
339 changes, hence why the values have been multiplied by (-1).

340 We acknowledge that species respond individually to climate change and that
341 communities are not strictly discrete units. Community-weighted mean (CWM) tolerances
342 provide an operational estimate of the average climatic tolerance of the dominant species in
343 each plot, capturing the functional response of the community as a unit. While individual
344 species may exceed their limits without immediately altering functional diversity, CWM-based
345 safety margins allow meaningful comparison of climate change risk across plant communities.

346

347 **2.6. Mapping alpha functional redundancy and climate change risk**

348 To visualise the spatial distribution of F_R and climate change risk we created maps depicting
349 their values across the TERN AusPlots continental network using the ggplot2 (Wickham 2016)
350 and ggpmisc (Aphalo 2025) packages in R. We generated separate maps for MAT Risk, MAP
351 Risk and alpha F_R. Additionally, we constructed bivariate maps –derived directly from
352 quantitative, plot-level metrics, ensuring that observed patterns reflect measured differences
353 rather than subjective interpretation– which illustrates F_R and climate change risk
354 simultaneously for each plot. For mapping functional redundancy (F_R) and climate change risk

355 (MAT and MAP), we classified plots into three categories each. F_R categories were defined as
356 follows: low redundancy corresponded to the lowest 33% of F_R values, medium redundancy
357 included values between the 33rd percentile and the median of plots considered at risk, and high
358 redundancy included values above that median. MAT Risk was classified as low risk for plots
359 that were not at risk ($MAT\ Risk < 0$); similarly, MAP Risk was classified as low risk for plots
360 that were not at risk ($MAP\ Risk > 0$). Among plots at risk ($MAT\ Risk \geq 0$ and $MAP\ Risk \leq 0$),
361 we then used the median of the at-risk subset to distinguish medium and high risk categories.
362 approach ensures that the classification reflects both the distribution of F_R and the degree of
363 climate change exposure among at-risk plots, avoiding the bias introduced by equal-interval or
364 quartile-based splits of the entire dataset. Beyond serving as a visual illustration, these bivariate
365 maps provide an analytical framework to identify spatial patterns and hotspots of vulnerability,
366 (high climate change risk and low F_R), highlighting plots that will likely undergo climate-
367 driven changes in community composition and enabling comparison across regions and
368 prioritisation for conservation or further study.

369

370 **2.7. Modelling the relationship between diversity indices, bioclimate and climate change risk**
371 We investigated the drivers of plant diversity metrics (species richness, S_R ; species diversity,
372 S_D ; functional diversity, F_D ; functional redundancy, F_R) and climate-driven vulnerability (MAT
373 Risk, MAP Risk) using linear regression models at two spatial scales: continental (all AusPlots
374 across Australia) and biome-specific. For diversity metrics, we included six bioclimatic
375 predictors (MAT, T-Max, T-Range, MAP, P-Dry and P-Season). For climate risk metrics, we
376 tested two complementary predictor sets: bioclimatic variables and diversity indices (S_R , S_D ,
377 F_D , F_R). All models were additive and excluded interactions. We evaluated all possible models
378 containing any subset of predictors, including the null model, and selected the best-supported
379 model based on the lowest Akaike Information Criterion (AIC). For each model, we calculated
380 ΔAIC and Akaike weights, with $\Delta AIC < 2$ indicating substantial support. From each best-
381 supported model, we extracted slopes, standard errors, t-values, p-values, and goodness-of-fit
382 metrics (R^2 , adjusted R^2 , residual standard error, AIC, BIC) to quantify the strength, direction,
383 and significance of predictors. Only results from the best-supported models are reported.

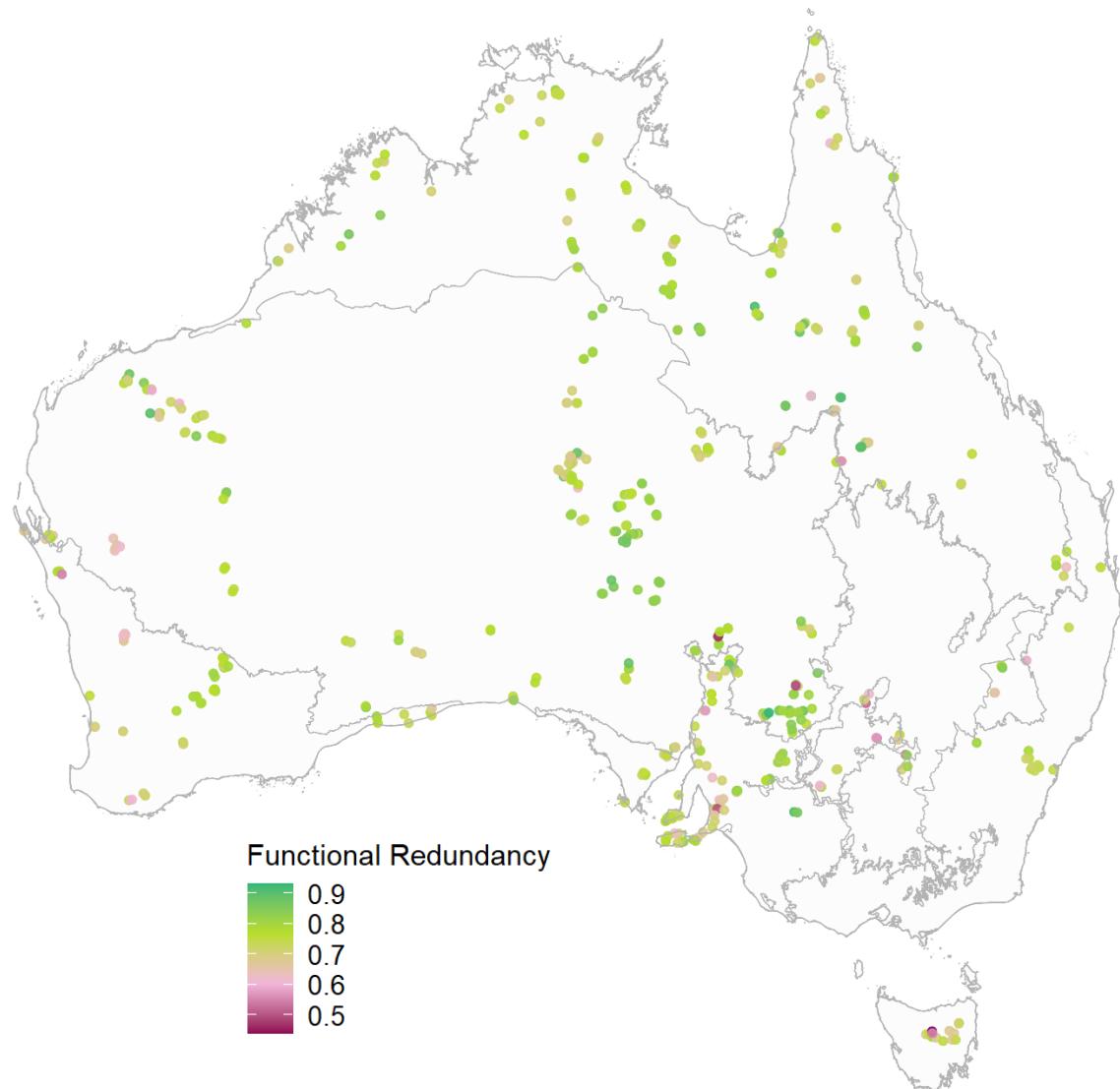
384

385 **3. Results**

386 Species richness (S_R) averaged 21.01 species per plot (± 11.17 Standard Deviation (SD); Inter
387 Quartile Range (IQR) = 13–27), indicating high variability across the sampled sites. Species
388 diversity (S_D) had a mean of 0.72 (± 0.18 SD; IQR = 0.64–0.85), while quadratic functional

389 diversity (F_D) averaged 0.18 (± 0.07 SD; IQR = 0.14–0.22). Functional redundancy (F_R) in
390 sampled plant communities ranged from 0.44 to 0.93, with a mean value of 0.75 (± 0.07 SD;
391 IQR = 0.71–0.80).

392 While no dominant spatial pattern for F_R was evident across the continent (Fig. 2), there
393 was a tendency for higher F_R in the interior regions. In this sense, F_R showed significant positive
394 spatial autocorrelation (Moran's $I = 0.205$, $p \leq 0.001$), indicating that nearby plots tend to be
395 more similar in F_R than expected by chance. However, spatial position explained only a small
396 proportion of variation (adjusted $R^2 = 0.048$) in the latitudinal–longitudinal model, suggesting
397 that while spatial structure is present, geographic trends are weak and consistent with our
398 description of broad tendencies rather than strong regional gradients. A linear regression of F_R
399 against latitude revealed a slight positive relationship (slope = 0.00095, $p = 0.020$, $R^2 = 0.008$),
400 indicating that F_R tends to increase slightly toward more northerly sites, although latitude alone
401 explains very little of the overall variation. As such, central Queensland, the arid zones of South
402 Australia and the Northern Territory, and parts of western New South Wales appeared as
403 hotspots of high F_R . In contrast, regions such as Tasmania, eastern New South Wales, the west
404 coast of Western Australia, the northern tip of the Northern Territory, and the Mount Lofty
405 Ranges in South Australia exhibited mostly lower F_R values. When comparing F_R across
406 biomes, we found significant differences (ANOVA: $F = 10.42$, $p \leq 0.001$). Pairwise
407 comparisons (Tukey HSD) indicate that some biomes, including the arid deserts and xeric
408 shrublands (biome 13) and the tropical and subtropical grasslands, savannas and shrublands
409 (biome 7), had significantly higher F_R than Mediterranean-type (biome 12) and temperate forest
410 (biome 4) biomes (see supplementary material for further details). Overall, plots with high F_R
411 were not strongly spatially segregated from those with low F_R ; thus, despite these broad-scale
412 differences, high and low F_R plots remain intermixed locally, supporting our original
413 conclusion that fine-scale hotspots (e.g., Central Queensland, Mount Lofty Ranges) reflect site-
414 level variation that cannot be fully captured by biome aggregation.



417 **Figure 2.** Map of plot-level functional redundancy values across the TERN continental
 418 vegetation monitoring plot network ($n = 646$; notice that for three plots, calculations of certain
 419 diversity metrics were not possible). Colour denotes functional redundancy (legend). The plant
 420 communities in highly redundant plots (dark green) are expected to maintain stable ecosystem
 421 functioning in the event of species loss. The plant communities in plots with low functional
 422 redundancy values (dark pink) are expected to experience unstable ecosystem functioning in
 423 the event of species loss. Black lines indicate the approximate boundaries of major Australian
 424 biomes, providing geographic context for the distribution of functional redundancy values.

426 **3.1. Variation of diversity indices along bioclimatic gradients**

427 While some temperature variables were correlated (e.g., MAT and T-Max, $r = 0.87$, $p \leq 0.001$;
428 see supplementary material for further details), we show their independent bivariate
429 relationships to illustrate the different ecological dimensions of each bioclimatic variable.

430 Across Australia, multivariate AIC-selected models revealed consistent and strong
431 climatic controls on plant diversity patterns. Species richness (S_R), species diversity (S_D), and
432 functional diversity (F_D) were primarily shaped by temperature–precipitation trade-offs, with
433 MAT exerting predominantly negative effects and MAP showing positive or stabilizing
434 influences (Table 1). In particular, at the continental scale, S_R decreased with MAT and T-
435 Range and increased with MAP and P-Season. S_D and F_D were negatively influenced by MAT
436 and P-Dry and positively influenced by MAP (and T-Max in the case of F_D). Together, these
437 models explained between 7% and 24% of the variation in S_R , S_D , and F_D . In contrast,
438 functional redundancy (F_R) responded only weakly to climate. F_R increased with MAT and T-
439 Range and decreased with T-Max and P-Season. Although several predictors were retained in
440 the best model for F_R , this only explained 4% of its variation, indicating that functional
441 redundancy seems to be decoupled from broad-scale climatic gradients.

442 Biome-level patterns revealed substantial regional differentiation in climatic drivers. In
443 temperate broadleaf and mixed forests (biome 4), S_R increased with T-Max and decreased with
444 T-Range, which also affected F_D negatively. However, S_D was determined by precipitation
445 variables, with MAP having a positive effect and P-Dry and P-Season a negative one. In
446 tropical and subtropical grasslands, savannas and shrublands (biome 7), S_R increased with
447 MAT but declined with T-Max, P-Dry and P-Season, while S_D and F_D were most strongly and
448 positively associated with MAP and negatively with P-Season; finally, F_R was positively
449 influenced by T-Range. Mediterranean forests, woodlands and shrublands (biome 12) showed
450 pronounced precipitation influences, with S_R , S_D and F_D all positively shaped by combinations
451 of P-Dry and P-Season, alongside negative MAT effects for S_R and S_D . F_R in biome 12 was
452 negatively affected by MAT, MAP and P-Dry. Finally, in deserts and xeric shrublands (biome
453 13), S_R was negatively affected by MAT, and T-Range and positively by T-Max and MAP; S_D
454 was positively influenced by P-Season, whereas F_D was negatively influenced by MAT,
455 and positively by T-Max and P-Season. F_R in biome 13 was positively influenced by MAT,
456 and negatively by T-Range, MAP, and P-Season. These contrasting results across biomes
457 indicate that diversity metrics respond to different climatic dimensions depending on regional
458 environmental context.

459 While we do not present ordinations of species or trait composition here, the
460 distinctness of biomes and habitats can be explored using the species and trait data available
461 through the ‘ausplotsR’ package (Guerin *et al.* 2020b; Munroe *et al.* 2021).

462

463 **Table 1. Best-fit linear models explaining spatial variation in species richness (SR), species diversity (SD), functional diversity (FD), and**
 464 **functional redundancy (FR) across Australia and within selected biomes. Models were selected using AIC-based stepwise selection. The**
 465 **table reports the retained predictors, model fit statistics (R^2 , adjusted R^2 , sigma), and information criteria (AIC, BIC). The direction and**
 466 **statistical significance of each predictor in the best model are shown in brackets after each term (+: positive effect; -: negative effect; * p**
 467 **≤ 0.05 , ** $p \leq 0.01$, *** $p \leq 0.001$). Predictors without brackets were retained in the best model but were not statistically significant.**

Response Variable	Best model formula	R^2	Adj R^2	sigma	AIC	BIC	$df_{residual}$
The whole Australia – All AusPlots							
S_R	$SR \sim MAT^{(-***)} + T_Max^{(+***)} + T_Range^{(-***)} + MAP^{(+***)}$ + $P_Season^{(+)}$	0.24	0.23	9.75	4783.56	4814.85	640
S_D	$SD \sim MAT^{(-***)} + MAP^{(+***)} + P_Dry^{(-***)}$	0.08	0.07	0.08	-434.38	-434.02	642
F_D	$FD \sim MAT^{(-***)} + T_Max^{(+)} + T_Range + MAP^{(+***)} + P_Dry^{(-*)}$	0.11	0.11	0.11	-1764.83	-1733.54	640
F_R	$FR \sim MAT^{(+***)} + T_Max^{(-**)} + T_Range^{(+**)} + MAP + P_Season^{(*)}$	0.04	0.04	0.04	-1566.12	-1534.83	640
Biome 4 – Temperate broadleaf and mixed forests							
S_R	$SR \sim T_Max^{(+***)} + T_Range^{(-***)}$	0.57	0.54	8.30	231.10	236.96	29
S_D	$SD \sim MAT + MAP^{(+**)} + P_Dry^{(-*)} + P_Season^{(-*)}$	0.31	0.21	0.16	-18.81	-10.01	27
F_D	$FD \sim T_Range^{(-*)}$	0.17	0.14	0.06	-84.79	-80.39	30
F_R	$FR \sim MAT$	0.06	0.03	0.07	-72.10	-67.70	30
Biome 7 – Tropical / subtropical grasslands, savannas and shrublands							
S_R	$SR \sim MAT^{(+***)} + T_Max^{(-***)} + P_Dry^{(-**)} + P_Season^{(-***)}$	0.31	0.29	9.91	1291.47	1310.39	168
S_D	$SD \sim MAT + MAP^{(+***)} + P_Season^{(-*)}$	0.13	0.12	0.17	-114.92	-99.15	169
F_D	$FD \sim MAP^{(+***)} + P_Season^{(-*)}$	0.14	0.13	0.06	-473.37	-460.76	170
F_R	$FR \sim T_Range^{(+*)}$	0.04	0.03	0.07	-431.87	-422.41	171
Biome 12 – Mediterranean forests, woodlands and shrublands							
S_R	$SR \sim MAT^{(-***)} + T_Max^{(+**)} + P_Dry^{(+***)} + P_Season^{(+)}$	0.50	0.48	8.30	1201.84	1220.62	164
S_D	$SD \sim MAT^{(-**)} + P_Season^{(+***)}$	0.17	0.16	0.15	-165.96	-153.44	166
F_D	$FD \sim P_Dry^{(+***)} + P_Season^{(+***)}$	0.21	0.21	0.06	-489.30	-476.78	166

F_R	FR ~ MAT^(-***) + MAP^(-***) + P_Dry^(-***)	0.20	0.18	0.07	-433.99	-418.34	165
Biome 13 – Deserts and xeric shrublands							
S_R	SR ~ MAT^(-***) + T_Max^(+**) + T_Range^(*) + MAP^(+***)	0.11	0.09	8.25	1658.41	1679.14	229
S_D	SD ~ P_Season^(+*)	0.02	0.01	0.17	-161.00	-150.63	232
F_D	FD ~ MAT^(-***) + T_Max^(+***) + MAP + P_Season^(+*)	0.08	0.06	0.06	-653.69	-632.96	229
F_R	FR ~ MAT^(+***) + T_Range^(-***) + MAP^(*) + P_Season^(-**)	0.15	0.13	0.07	-605.50	-584.77	229

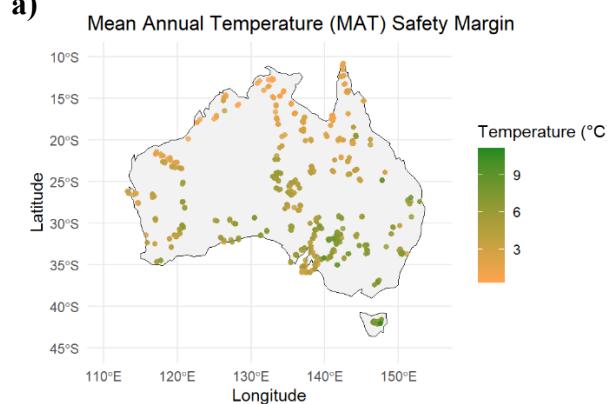
468

469

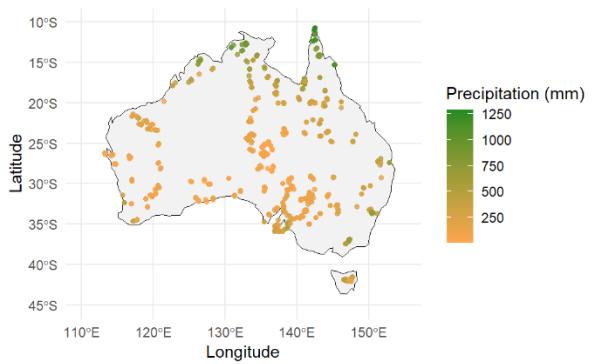
470 **3.2. Geographic distribution of climate change risk and its relationship to environmental**
471 **variables**

472 Out of 649 plots, 201 (31%) are considered at risk to species turnover and changes in
473 community composition due to projected changes in mean annual temperature (Risk MAT \geq
474 0; Fig. 3). Plots with the highest Risk MAT values are primarily located in the northern half of
475 the continent, whereas lower-risk plots occur at more southerly latitudes. Meanwhile, 608 plots
476 (93.7%) are considered at risk from predicted changes in mean annual precipitation (Risk MAP
477 ≤ 0), with the highest-risk plots generally located at the northern and southern extremes of the
478 continent and lower-risk plots in central regions (Fig. 3). Across the TERN AusPlots network,
479 regression analyses revealed that Risk MAT increases strongly with latitude ($R^2 = 0.58$, $p <$
480 0.001), indicating higher temperature-driven risk in northern regions (slope = 0.254 °C per
481 decimal degree latitude; Fig. 3c). Incorporating longitude slightly improved model fit ($R^2 =$
482 0.66, $p < 0.001$), showing that risk rises northwards but decreases slightly westwards (longitude
483 slope = -0.071 °C per decimal degree). In contrast, Risk MAP declines with latitude ($R^2 = 0.20$,
484 $p < 0.001$), suggesting greater precipitation-driven risk in southern regions. These regression
485 models complement the histograms and maps, quantitatively highlighting broad latitudinal
486 trends in climate change exposure.

a)

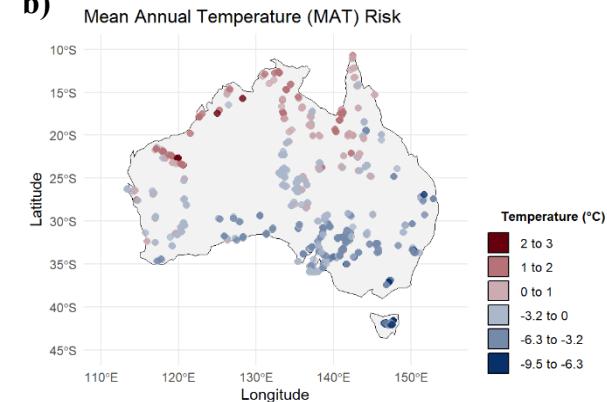


Mean Annual Precipitation (MAP) Safety Margin

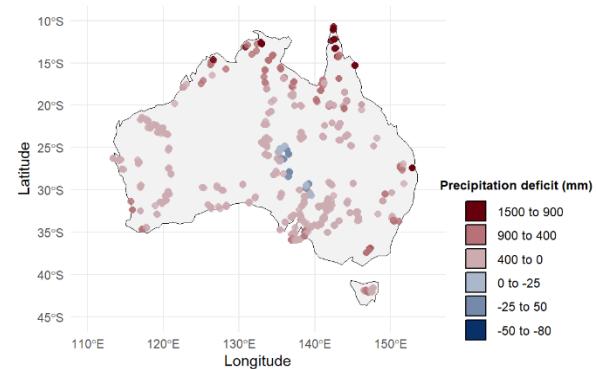


487

b)



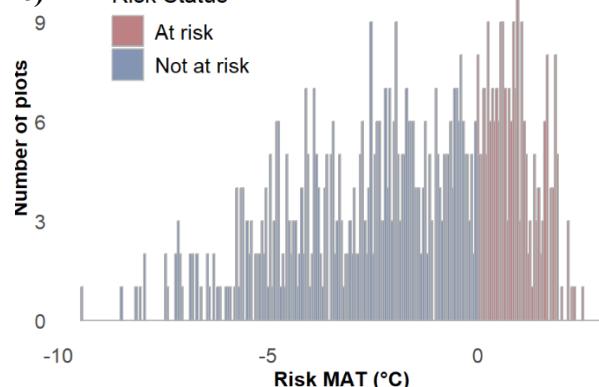
Mean Annual Precipitation (MAP) Risk



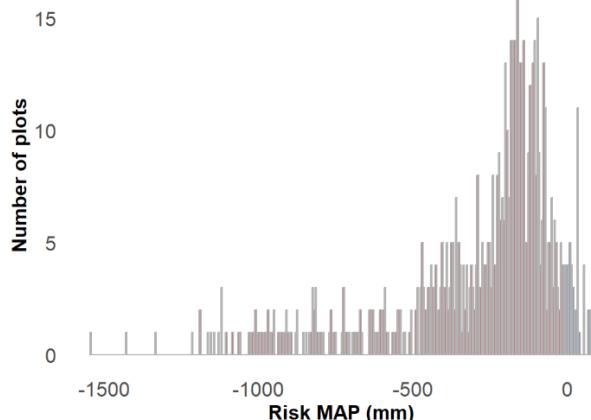
488

c) Risk Status

At risk
Not at risk

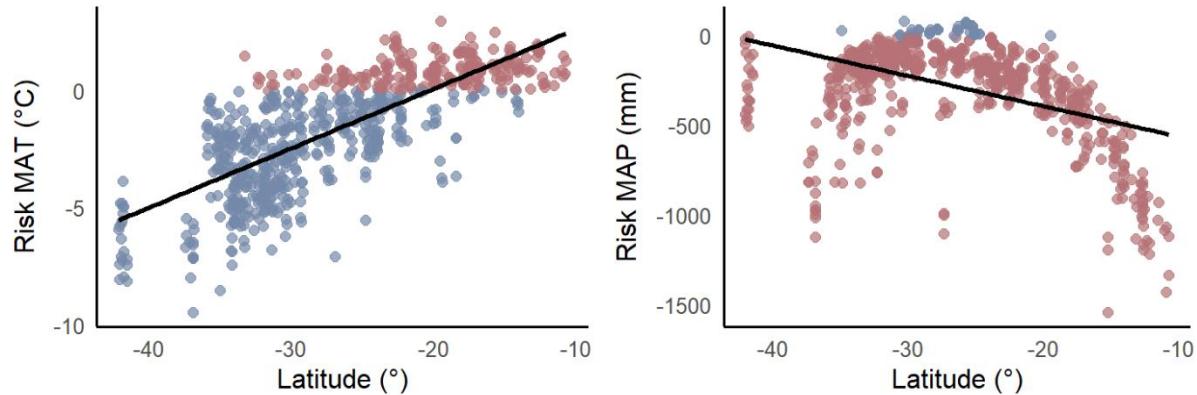


Number of plots
Risk MAP (mm)



489

d)



490 **Figure 3. a)** mean annual temperature (MAT) (left) and mean annual precipitation (MAP) (right) safety margins; **b)** climate change risk in terms of predicted changes to MAT (left) and MAP (right) across the TERN AuPlots network; **c)** distribution histograms of Risk MAT and Risk MAP; and **d)** scatterplots of Risk MAT and Risk MAP versus latitude with fitted linear regression lines (solid) and 95% confidence intervals (shaded), illustrating broad latitudinal trends in climate change exposure across the network. For MAT climate change risk, notice that the values in the legend represent $^{\circ}\text{C}$, over (positive) or below (negative) the safety margin, to which the vegetation community will be exposed in the future. For MAP climate change risk, notice that the values in the legend represent water deficit, over (positive; i.e. more water deficit and harsher conditions) or below (negative) the safety margin, to which the vegetation community will be exposed in the future. Red points on the map represent at risk plots, while blue colours represent plots with risk values of zero or less (the darker the blue the less at risk). On the histograms, bars for plots at risk (positive for MAT, negative for MAP) are shown in red, while plots not at risk are shown in blue, highlighting the big proportion of plots at risk across the network.

506
507 Across all AusPlots, MAT Risk increased with higher T-max and P-season, and
508 decreased with increasing MAT and temperature range (T-Range), indicating that sites in hotter
509 regions with marked precipitation seasonality are projected to experience greater temperature-
510 driven turnover (Table 2; see supplementary material for full model outputs). In contrast, MAP
511 Risk increased with MAT, MAP, P-dry, and P-season, and decreased with T-range and T-max,
512 suggesting that precipitation-driven turnover is highest in warm sites with moderate
513 temperature variability (Table 2; Supplementary material). MAP Risk displayed an inverse
514 pattern, increasing with MAT and T-Range and decreasing with MAP and T-Max, with an
515 additional negative effect of P-Dry. These patterns indicate that temperature-driven and

516 precipitation-driven turnover risks respond to distinct climatic axes, with the former most
517 elevated in warmer and seasonal environments, and the latter being greater in hotter and arid
518 regions.

519 At the biome scale, the relationships between MAT/MAP Risk and bioclimatic
520 variables were quite contrasting for different biomes (Table 2; Supplementary material). In
521 temperate forests (biome 4), MAT Risk increased with MAT, while MAP Risk was influenced
522 by nearly all predictors, including positive effects of MAP and T-Max and negative effects of
523 MAT, P-Dry, and T-Range (Table 2; Supplementary material). In tropical and subtropical
524 savannas (biome 7), MAT Risk increased with MAT, P-Dry, and T-Range, whereas MAP Risk
525 was primarily driven by precipitation (positive effect of MAP, although negative effect of and
526 P-Season) and moderated by temperature variability (negative effects of T-Range, and a
527 positive effect of T-Max). In Mediterranean systems (Biome 12), MAT Risk reflected the joint
528 influence of temperature and seasonality, increasing with T-Max and P-Season, while MAP
529 Risk was dominated by a strong positive effect of MAP and MAT and a negative effect of P-
530 Season. In deserts and xeric shrublands (Biome 13), MAT Risk was elevated in warmer sites
531 (positive effects of MAT and T-Max) and declined with P-Dry, while MAP Risk increased
532 with MAP, T-Max, and P-Dry and declined with MAT.

533

534

535 ***3.3. Relationship between climate change risk and diversity metrics***

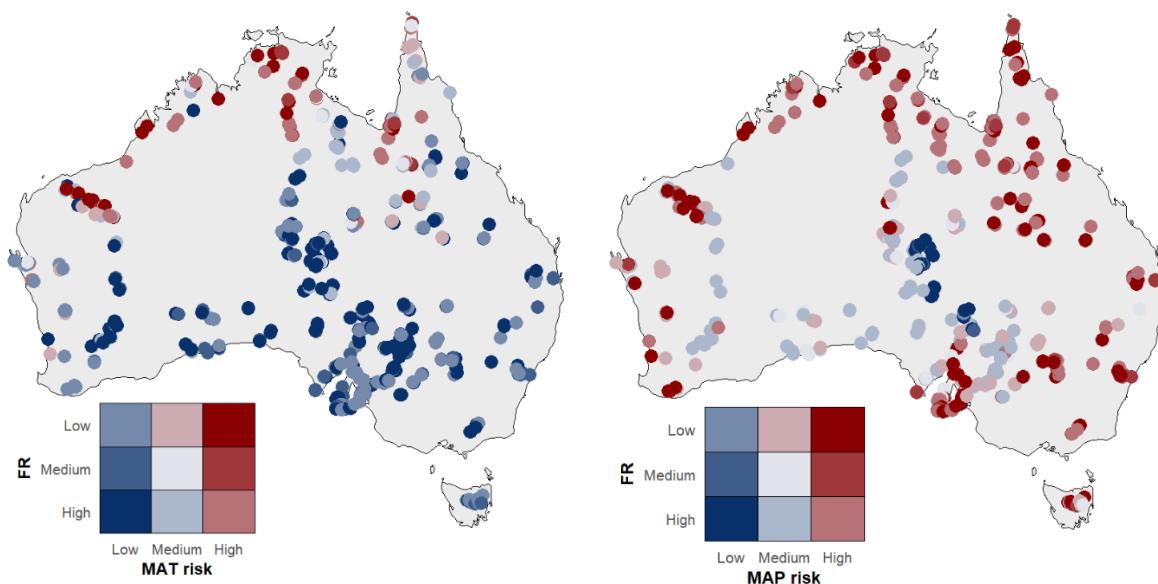
536 At the continental scale, MAT Risk was not significantly associated with any of the diversity
537 metrics (S_R , S_D , F_D , or F_R), indicating that variation in these community attributes does not
538 strongly predict temperature-driven turnover. By contrast, MAP Risk exhibited a strong
539 negative relationship with S_R , with communities containing more species showing lower
540 precipitation-driven risk (Table 3; supplementary material).

541 At the biome scale, the influence of diversity metrics on climate change driven risk was
542 more variable. For temperate forests (biome 4), no diversity metrics were significantly
543 associated with MAT Risk, while MAP Risk decreased significantly with S_R . In tropical
544 savannas (biome 7), MAT and MAP Risk increased with S_R . In Mediterranean systems (biome
545 12), MAT Risk was positively related to S_R , while MAP Risk increased with S_R but decreased
546 with F_R , suggesting that communities with high redundancy buffer better precipitation-driven
547 risk. In deserts (biome 13), MAT Risk increased with F_D but decreased with S_D , whereas MAP
548 Risk showed a more complex pattern, increasing with S_R and F_D but decreased with S_D ,

549 indicating that the structure of community diversity influences precipitation-driven risk in
550 multiple, and somewhat contrasting, ways.

551 Communities with low F_R and high MAT/MAP Risk are likely the most vulnerable to
552 climate-driven changes in composition, as they face both, climate change-induced species
553 turnover and a reduced capacity to maintain ecosystem function. These highly vulnerable sites
554 are primarily located in the northern areas of the continent (Fig. 4). In contrast, communities
555 with high F_R but high MAT/MAP Risk may still experience species loss but are expected to be
556 more resilient in maintaining function; these are also concentrated in the continent's eastern
557 interior. The least vulnerable communities—those with high F_R and low MAT/MAP Risk are
558 scattered across central Australia (Fig. 4).

559



560 **Figure 4.** Bivariate maps of functional redundancy (F_R) and climate change risk across the
561 Australian continent (646 TERN AusPlots). Left: F_R combined with mean annual temperature
562 risk (MAT Risk). Right: F_R combined with mean annual precipitation risk (MAP Risk). For
563 F_R , plots were categorized as low (bottom 33%), medium (33% up to the median of plots
564 considered at risk), or high (above that median). For MAT Risk, plots with risk < 0 were
565 classified as low risk, whereas for MAP Risk, plots with risk > 0 were classified as low risk.
566 Plots at risk ($MAT \text{ risk} \geq 0$ or $MAP \text{ risk} \leq 0$), were split into medium and high risk categories
567 using the median of the at-risk subset. Plots with high climate risk and low F_R (dark red) are
568 potentially most vulnerable to climate-driven changes in community composition and
569 associated loss of ecosystem functionality.

571 **Table 2. Best-fit linear models explaining variation in MAT Risk and MAP Risk against bioclimatic predictors across Australia and within**
 572 **selected biomes. Models were selected using AIC-based stepwise selection. The table reports the retained predictors, model fit statistics**
 573 **(R², adjusted R², sigma), and information criteria (AIC, BIC). The direction and statistical significance of each predictor in the best model**
 574 **are shown in brackets after each term (+: positive effect; -: negative effect; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Predictors without**
 575 **brackets were retained in the best model but were not statistically significant.**

Response Variable	Best model formula	R ²	Adj R ²	sigma	AIC	BIC	df _{residual}
The whole Australia – All AusPlots							
MAT Risk	MAT Risk ~ 1 + MAT ^(*) + T_Max ^(+***) + T_Range ^(-***) + P_Season ^(+***)	0.712	0.710	1.292	2372.09	2399.45	701
MAP Risk	MAP Risk ~ 1 + MAT ^(+***) + T_Max ^(-***) + T_Range ^(+***) + MAP ^(-***) + P_Dry ^(-*)	0.880	0.879	94.066	8427.64	8459.55	700
Biome 4 – Temperate broadleaf and mixed forests							
MAT Risk	MAT Risk ~ 1 + MAT ^(+***) + P_Dry	0.403	0.369	1.448	140.84	147.39	35
MAP Risk	MAP Risk ~ 1 + MAT ^(-*) + T_Max ^(+*) + T_Range ^(-*) + MAP ^(+***) + P_Dry ^(-*)	0.750	0.711	144.866	493.47	504.93	32
Biome 7 – Tropical / subtropical grasslands, savannas and shrublands							
MAT Risk	MAT Risk ~ 1 + MAT ^(+***) + T_Range ^(+***) + P_Dry ^(+***)	0.762	0.758	0.692	413.93	430.27	190
MAP Risk	MAP Risk ~ 1 + MAT + T_Max ^(+***) + T_Range ^(-***) + MAP ^(+***) + P_Season ^(-***)	0.868	0.864	107.674	2373.95	2396.82	188
Biome 12 – Mediterranean forests, woodlands and shrublands							
MAT Risk	MAT Risk ~ 1 + T_Max ^(+***) + P_Season ^(+***)	0.272	0.264	1.570	704.44	717.36	184
MAP Risk	MAP Risk ~ 1 + MAT ^(+***) + MAP ^(+***) + P_Season ^(-***)	0.803	0.800	65.296	2099.56	2115.72	183
Biome 13 – Deserts and xeric shrublands							
MAT Risk	MAT Risk ~ 1 + MAT ^(+***) + T_Max ^(+***) + P_Dry ^(-***)	0.770	0.767	0.940	673.78	691.31	242
MAP Risk	MAP Risk ~ 1 + MAT ^(-***) + T_Max ^(+***) + MAP ^(+***) + P_Dry ^(+***)	0.858	0.856	36.140	2470.07	2491.10	241

577 **Table 3. Best-fit linear models explaining variation in MAT Risk and MAP Risk against biodiversity metrics across Australia and within**
 578 **selected biomes. Models were selected using AIC-based stepwise selection. The table reports the retained predictors, model fit statistics**
 579 **(R², adjusted R², sigma), and information criteria (AIC, BIC). The direction and statistical significance of each predictor in the best model**
 580 **are shown in brackets after each term (+: positive effect; -: negative effect; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Predictors without**
 581 **brackets were retained in the best model but were not statistically significant.**

Response Variable	Best model formula	R ²	Adj R ²	sigma	AIC	BIC	df _{residual}
The whole Australia – All AusPlots							
MAT Risk	MAT Risk ~ 1	0.000	0.000	2.38	2954.80	2963.74	645
MAP Risk	MAP Risk ~ 1 + S _R (***)	0.169	0.168	236.82	8901.01	8914.42	644
Biome 4 – Temperate broadleaf and mixed forests							
MAT Risk	MAT Risk ~ 1 + S _R	0.083	0.052	1.854	134.24	138.64	30
MAP Risk	MAP Risk ~ 1 + S _R (***)	0.414	0.394	223.714	441.01	445.41	30
Biome 7 – Tropical / subtropical grasslands, savannas and shrublands							
MAT Risk	MAT Risk ~ 1	0.000	0.000	1.394	608.88	615.19	172
MAP Risk	MAP Risk ~ 1 + S _R (***) + F _D	0.234	0.225	245.523	2400.10	2412.71	170
Biome 12 – Mediterranean forests, woodlands and shrublands							
MAT Risk	MAT Risk ~ 1 + S _R (***)	0.046	0.041	1.742	671.14	680.53	167
MAP Risk	MAP Risk ~ 1 + S _R (***) + F _R (**)	0.232	0.223	129.872	2129.47	2141.99	166
Biome 13 – Deserts and xeric shrublands							
MAT Risk	MAT Risk ~ 1 + S _D (*) + F _D (*)	0.030	0.022	1.912	972.41	986.23	231
MAP Risk	MAP Risk ~ 1 + S _R (***) + S _D (***) + F _D (***)	0.171	0.160	88.621	2768.72	2785.99	230

582

583 **4. Discussion**

584 Here, we analysed multiple diversity metrics —including species richness, species diversity,
585 functional diversity, and functional redundancy, but with particular emphasis on functional
586 redundancy (F_R)— in Australian plant communities using continental-scale ecological and
587 functional trait datasets. Our results showed that the northern and eastern Australian coastlines,
588 as well as Mediterranean-climate regions in southwestern Western Australia and southeastern
589 South Australia, are particularly vulnerable to species loss, shifts in community composition,
590 and subsequent loss of ecosystem function under climate change. We find F_R was generally
591 high across sampled communities, suggesting some resilience to loss of ecosystem function in
592 the event of species loss (Walker 1995; Pimiento *et al.* 2020). Central, arid plant communities
593 may be more resilient to functional loss in the event of species loss given the structured pattern
594 emerging of increasing F_R with distance from the coast. At the continental scale, F_R variation
595 was related to macroclimate in terms of both, temperature (MAT) and precipitation seasonality
596 patterns (positive and negative relationships, respectively), while S_R , S_D and F_D showed
597 opposite patterns (negative relationships with MAT and positive with MAP). However, these
598 relationships explained limited variance, likely because macroclimate metrics do not capture
599 fine-scale environmental variation, which can be a stronger driver of community composition.
600 Declines in S_R with increasing temperature range suggest thermal variability acts as a filter,
601 favouring stress-tolerant or generalist species, which could subsequently reduce F_D even if
602 overall abundance is maintained. F_R may buffer functional loss, but this is context-dependent
603 and often coincides with lower F_D , reflecting interactions between habitat filtering and niche
604 partitioning (Spasojevic and Suding 2012). These patterns underscore how functional traits and
605 climatic variability combined shaping ecosystem resilience, and emphasise the need to
606 understand how F_R and F_D respond to environmental gradients for conservation planning.

607 Andrew *et al.* (2021) found that F_D across Australian vegetation was strongly linked to
608 climate using grid-cell-based models. In contrast, our plot-based analyses suggest communities
609 may possess greater F_R than broad-scale patterns would indicate, as local assembly processes—
610 environmental filtering and biotic interactions—can enhance F_R , whereas grid-cell models
611 reflect broader niche–environment relationships. Similarly, Guerin *et al.* (2022) found strong
612 climate–trait links at the single-trait level across the same plot network, suggesting that
613 aggregating traits into composite F_D and F_R metrics may dilute finer-scale trait–environment
614 relationships. Although single trait studies can better reveal functional responses to
615 environmental gradients (e.g., Funk *et al.* 2017), reductionist approaches offer more limited
616 insights into community dynamics. Community assembly operates hierarchically, with

617 macroclimate dominating at large scales and local factors shaping communities locally (Diaz
618 et al. 1998; Laliberté et al. 2010). Consistent with this, we found that biome-scale relationships
619 between diversity metrics and climate were notably stronger than continental-scale patterns,
620 particularly in Mediterranean forests (biome 12) and tropical/subtropical grasslands (biome 7),
621 suggesting that smaller-scale analyses capture more coherent functional responses (Bruelheide
622 *et al.* 2018).

623 At the biome scale, diversity metrics responded to bioclimate in highly context-specific
624 ways, reflecting how climate interacts with physiology, resource availability, and evolutionary
625 history to shape plant communities. The contrasting responses of communities' F_R to
626 bioclimatic factors within biomes point to different drivers depending on the limiting factor or
627 stressor within each climate. In tropical savannas (biome 7), extreme rainfall seasonality limits
628 species with narrow niches, yet F_R increases with temperature range, likely reflecting
629 convergence on heat-adapted strategies. Temperate forests (biome 4), with more benign
630 climatic conditions, exhibit richness increase with warmth and species diversity increase with
631 rainfall, while F_R remains largely independent of climate, suggesting the absence of a strong
632 limiting stressor. Mediterranean systems (biome 12) experience dual pressures of intense heat
633 and summer drought, which reduce S_R and S_D under hotter conditions, yet F_R increases with
634 reduced precipitation, most likely through the prevalence of stress-avoidance traits. Deserts
635 (biome 13) show strong drought-driven F_R , although extreme heat constrains it. In line with
636 this, our results showed lower F_D at hotter and drier locations, and higher F_D at cooler and
637 wetter locations – supported by Guerin *et al.* (2022) who showed F_D declined with aridity,
638 pointing towards trait convergence with extreme conditions. These patterns indicate that F_D -
639 to- F_R ratio emerges from the interplay of habitat filtering, niche partitioning, and local
640 environmental constraints, producing contrasting functional responses across biomes rather
641 than reflecting climate alone. Consequently, communities with high F_D may have low F_R and
642 therefore be more vulnerable to species loss, whereas those with lower functionality may be
643 more resilient (Ricotta *et al.* 2016).

644 Short-term drivers such as land-use change, disease, and direct anthropogenic pressures
645 may further reduce F_R (Fonseca and Ganade 2001); however, our study focused on plant
646 communities with minimal recent disturbance, suggesting that higher F_R under extreme
647 environments reflects long-term environmental effects rather than human impact. We note,
648 however, that because our analyses rely on contemporary surveys, current species composition
649 may already incorporate recent climate- and land-use-driven shifts, which could influence trait
650 filtering patterns and reduce predictive power. Inconsistent F_R metrics also complicate

651 comparisons, emphasizing the need for clear methodology and fine-resolution environmental
652 data when studying F_D and F_R (Biggs *et al.* 2020). Thus, we recommend clearly specifying F_R
653 calculations and noting that functional similarity does not always imply redundancy, and we
654 advocate for the use of finer-resolution environmental data (e.g., biome- or regional-scale)
655 where available, to better elucidate F_D -to- F_R ratio and trends.

656

657 **4.1. Climate change risk**

658 Climate change risk exhibited clear geographic patterns across Australian plant communities
659 and was strongly related to current climatic conditions, indicating that species safety margins
660 may be more important than predicted exposure in determining the risk of species turnover or
661 changes in community composition. Temperature-related risk (MAT Risk) varied with latitude,
662 increasing from south to north (also supported by Gallagher *et al.* 2019), while precipitation-
663 related risk (MAP Risk) was greatest in the coastline of the continent, especially in the North
664 and in mediterranean-climate regions, and lowest at the arid centre. This, therefore, points to
665 the northern coastline as a priority region for conservation practices to mitigate climate-driven
666 change in vegetation communities.

667 In general, we found strong links between climate change risk and current climate
668 conditions. The trends we found reflect the fact that as climates become more extreme in
669 temperature, species approach their tolerance limits, leading to the greatest temperature-driven
670 turnover in the hottest and most seasonally variable environments (Deutsch *et al.* 2008). For
671 example, our findings that MAT Risk increased with long-term T-max and P-Season and
672 decrease with MAT and T-Range, suggest that communities exposed to persistently high
673 temperature extremes and strong intra-annual rainfall variability will be most sensitive to future
674 warming, whereas broader thermal ranges may buffer against turnover. In contrast, MAP Risk
675 was highest in sites that are warm and experience pronounced temperature fluctuations, but
676 lowest in sites with high rainfall and dry-season precipitation, implying that plant communities
677 subjected to the combination of heat and drought will experience higher precipitation-driven
678 risk. Furthermore, this suggests that safety margins may be more important than exposure *per*
679 *se* in determining sensitivity to climate change vulnerability in Australian plant communities
680 (Foden *et al.* 2019), as the former takes a much wider range of values in Australian plant
681 communities. We acknowledge that species' climate tolerances are derived from their realised
682 rather than fundamental niches, potentially underestimating true physiological limits and
683 adaptive capacity (Sax *et al.* 2013). Yet, species already persisting in extreme environments

684 seem to possess greater adaptive potential precisely because of being shaped by harsher
685 conditions (Chevin and Hoffmann 2017).

686 Tropical savannas in northern Australia, where MAT Risk was found to be highest, are
687 key global carbon sinks (Grace *et al.* 2006) that rely on complex interactions between fire
688 regimes, water availability and vegetation dynamics (Moore *et al.* 2018), making them highly
689 vulnerable to climatic shifts. Their high sensitivity to future precipitation shifts (MAP Risk)
690 likely stem from the fact that these ecosystems are structured around strong wet–dry
691 seasonality, where even small changes in rainfall amount or timing can disrupt plant
692 recruitment, survival, and competitive ability. Unlike species in more southern arid zones,
693 many northern taxa are less drought-adapted, thus, reduced rainfall could push them beyond
694 their physiological limits. Moreover, biogeographic barriers constrain range shifts, as deserts
695 to the south and oceans to the north limit gradual migration. Together, these factors indicate
696 that northern Australia warrants particular attention from land managers and conservation
697 purposes to prevent climate-driven species loss.

698 Mediterranean regions in the South West Australian Floristic Region (SWAFR) and
699 South Australia showed high MAP Risk probably due to many species in these communities
700 already nearing their upper climate thresholds, particularly with regards to the intense summer
701 drought periods they face (Lewandrowski *et al.* 2021). In fact, drought-related dieback of
702 Australian mediterranean vegetation has been well-documented, with rainfall already in
703 decline and predicted to continue (Brouwers *et al.* 2013). Arid interiors exhibit low MAP Risk,
704 due to projected increases in precipitation by 2070 (Gallagher *et al.* 2019). These biome-
705 specific contrasts underscore the challenge of making generalizations when predicting changes
706 in vegetation dynamics (Mori 2011).

707 At the biome scale, the links between climatic variables and MAT and MAP Risk
708 highlight how different vegetation types may be exposed to shifts in community composition
709 under warming and drying trends. The benign climatic conditions of temperate forests (biome
710 4) make them vulnerable to temperature stress (i.e. increases in MAT and T-Max positively
711 affect MAT and MAP Risk respectively) and rainfall (i.e. lower P-Dry results in higher MAP
712 Risk), reflecting their dependence on stable mild temperatures and moisture regimes. In
713 tropical savannas (biome 7), MAT Risk increased in hotter sites and in areas with greater dry-
714 season rainfall, indicating that both chronic warmth and large annual temperature fluctuations
715 amplify sensitivity to warming. MAP Risk, by contrast, was highest in wetter and more heat-
716 exposed savannas but declined with greater temperature range and rainfall seasonality,
717 suggesting that climatic variability and pronounced wet–dry cycles may help buffer these

718 communities against precipitation-driven change. In Mediterranean systems (biome 12), both
719 MAT and MAP Risk were highest in the warmest areas and in sites with weaker rainfall
720 seasonality, indicating that communities occupying the margins of the Mediterranean climate
721 regime—where summer drought is less pronounced—are more vulnerable to climate-driven
722 change than those in strongly seasonal, drought-adapted environments, pointing to the
723 importance of stress-tolerant adaptations in buffering these communities against increasing
724 drought. In deserts (biome 13), MAT Risk was greatest in the hottest sites and declined with
725 P-Dry, indicating that hyper-arid communities already adapted to extreme water limitation may
726 be less sensitive to further warming than those in comparatively milder desert environments.
727 MAP Risk, however, increased in warmer and wetter desert areas and in sites where the driest
728 month is less dry, suggesting that communities located in more semi-arid areas are more
729 vulnerable to precipitation-driven change than those in the most extremely water-limited
730 regions that are already adapted to drought. Together, these contrasting biome-level responses
731 indicate that climate-change risk is shaped not only by absolute climatic stress but by how far
732 future conditions will diverge from the specific adaptive strategies of the vegetation
733 characteristic of each biome, thus underscoring the need for case-by-case assessments.
734 Although we focused on mean climate changes, we acknowledge that extreme events (e.g.
735 heatwaves, droughts and wildfires) can also shape species survival and drive ecosystem shifts
736 (Lloret *et al.* 2012).

737

738 ***4.2. Relationship between functional redundancy and climate change risk***

739 By integrating climate change risk with F_R , we provide a robust assessment of Australian plant
740 communities, capturing both their vulnerability to species loss and their potential resilience to
741 functional disruption (traditionally ignored in climate change studies; Li *et al.* 2018). In this
742 framework, communities with high climate risk and low F_R are most vulnerable, whereas those
743 with high risk but high F_R may withstand some functional loss, and communities with low
744 climate risk are inherently less threatened. At the continental-scale the negative relationship
745 found between F_R and precipitation-driven climate change risk, points out to the north and east
746 coastlines as well as the mediterranean-climate regions as the most vulnerable areas to suffer
747 changes in community composition and subsequent loss of ecosystem function.

748 Unlike MAT Risk, MAP Risk exhibited clear relationships with community diversity
749 metrics, reflecting the strong influence of rainfall and its seasonality on Australian plant
750 communities. At the continental scale, communities with higher species richness experienced

751 lower MAP Risk, suggesting that richer communities are more buffered against precipitation-
752 driven turnover.

753 At the biome scale, the influence of community diversity on climate-change risk varied
754 markedly. In temperate forests (biome 4), higher species richness appeared to buffer
755 communities against precipitation-driven turnover, suggesting that diverse forests maintain
756 stability under altered rainfall regimes. In tropical savannas (biome 7), communities with larger
757 species pools seem to be subjected to amplified compositional shifts under warming and altered
758 rainfall, perhaps reflecting the exposure of less stress-tolerant species in these dynamic
759 environments. In Mediterranean systems (biome 12) functional redundancy plays a key role,
760 mitigating precipitation-driven risk, and highlighting the role of overlapping functional traits
761 in stabilizing communities despite turnover in species composition. In deserts (biome 13), the
762 contrasting effects of species and functional diversity climate-driven risk suggest that the
763 vulnerability of arid communities is shaped by the balance between the breadth of functional
764 strategies and species identities, with some aspects of diversity enhancing turnover while others
765 confer resilience. Altogether, these patterns indicate that precipitation-driven climate risk is in
766 general more sensitive to community structure than temperature-driven risk, and that the
767 ecological consequences of diversity for climate vulnerability are highly context-dependent,
768 reflecting the specific adaptive strategies and functional composition of each biome.

769 The concept of functional redundancy deals with the local extinction of species, yet
770 climate change may also add novel species, which can have diverse functional effects—from
771 enhancing community resilience supporting mutualistic interactions, as seen on islands
772 (Traveset *et al.* 2013), to detrimental impacts from non-native species (Wardle *et al.* 2011).
773 Accounting for both, species gain and loss, is therefore essential to accurately predict climate-
774 driven community responses (Gallagher *et al.* 2013). A limitation of using F_R to estimate
775 community resilience is that a set of functionally redundant species can theoretically all
776 respond similarly to a given threat, resulting in loss of ecosystem function (Mori *et al.* 2013).
777 Thus, community resilience depends on both response diversity—the variety of species'
778 functional response traits—and functional redundancy (Elmqvist *et al.* 2003; Mori *et al.* 2013).
779 Ideally, F_R would be measured using effect traits with explicit links to a given ecosystem
780 function and response traits with explicit links to a given threat; however, this is difficult as
781 traits can often act as either depending on context (Suding *et al.* 2008). Additionally, at the
782 continental-scale trait data availability is in general limited, reinforcing the importance of large
783 open access trait databases such as AusTraits (Falster *et al.* 2021) and the ongoing work by
784 numerous researchers to improve the taxonomic coverage of trait data. Because of the present

785 barriers to implementing the effect- response framework, the assumption that a higher degree
786 of functional redundancy infers at least some degree of response diversity is often made
787 (Laliberté *et al.* 2010; Pillar *et al.* 2013).

788 While we retain the term “functional redundancy” for comparability with previous
789 studies, we frame F_R as functional similarity—a spectrum of overlapping but non-identical
790 contributions to ecosystem processes—acknowledging concerns that the term redundancy may
791 be ecologically misleading or counterproductive (Eisenhäuser *et al.* 2023). While Fischer and
792 de Bello (2003) suggested redundancy implied resilience, with the loss of some species having
793 little detectable effect at the community scale, Eisenhäuser *et al.* (2023) argue this framing
794 risks underestimating the unique and context-dependent contributions of species to ecosystem
795 functioning. We agree that the term “redundancy” can obscure the fact that species’ roles are
796 not interchangeable across space, time, or environmental conditions; thus, F_R should be
797 interpreted here as functional similarity—recognizing that resilience is not guaranteed and
798 functional loss might still remain a risk.

799 Our findings can be useful to land managers and policy makers and guide conservation
800 prioritization (Walker 1995; Rosenfeld 2002) in Australia, especially in highly vulnerable areas
801 like the tropical North and the Mediterranean regions. Deliberately preserving high- F_R
802 communities could also help maintaining key ecosystem functionality (Mori *et al.* 2013).
803 Having established F_R and climate-driven risk across plant communities in the Australian
804 continent, future work should explicitly test whether F_R effectively enhances resilience over
805 time—a crucial step given limited knowledge under certain conditions (Biggs *et al.* 2020).

806

807 **4.3. Future directions**

808 Future research should test whether functional redundancy enhances ecosystem resilience over
809 time, leveraging networks such as TERN AusPlots to track changes in functional diversity and
810 ecosystem function before and after disturbances. Remote sensing (e.g., NDVI) could
811 complement plot data for retrospective analyses, enabling assessment of productivity responses
812 to environmental stressors such as drought. For example, Aguirre-Gutiérrez *et al.* (2022) linked
813 aboveground biomass stability to F_R in tropical forest plots following an El Niño drying event.
814 While assisted translocation of functionally rare species may be required in extreme cases, a
815 pragmatic approach emphasizes monitoring, maintaining habitat quality, supporting natural
816 regeneration, and mitigating pressures such as altered fire regimes or invasive species. This
817 strategy allows management without assuming that redundancy guarantees resilience, while
818 keeping interventions open when critical functions are at risk. Long-term, standardized

819 monitoring combined with trait-based analyses is therefore essential, and the integration of
820 AusPlots and AusTraits provides a robust foundation to couple F_R with climate risk, identify
821 conservation priorities, and anticipate when ecosystem resilience may be compromised.

822

823 **5. Conclusions**

824 Australian plant communities show strong regional variation in vulnerability to climate change,
825 with the tropical north being at greatest risk due to shifts in rainfall and temperature combined
826 with low functional redundancy, followed by the mediterranean regions of Western and South
827 Australia. Communities with high climate risk and low redundancy are particularly prone to
828 losing functionally unique species, thereby threatening ecosystem stability. These findings
829 highlight priority areas for monitoring and management, providing a framework to safeguard
830 ecosystem function under a changing climate. Targeted monitoring and prioritizing proactive
831 management in these hotspots of high at-risk vegetation communities is therefore critical to
832 prevent irreversible functional loss under future climate scenarios.

833

834 **Author Contributions**

835 I.M.-F. and G.R.G. had the initial idea for the paper. R.V.M., I.M.-F., and S.C.A. contributed
836 to data analysis; I.M.-F. and R.V.M. produced results and figures with recommendations from
837 other authors. All authors contributed to drafting the paper, reviewed the manuscript and gave
838 final approval for publication.

839

840 **Acknowledgements**

841 The AusTraits project received investment (<https://doi.org/10.47486/TD044>,
842 <https://doi.org/10.47486/DP720>) from the Australian Research Data Commons (ARDC). The
843 ARDC is funded by the National Collaborative Research Infrastructure Strategy (NCRIS). This
844 work is supported by the use of Terrestrial Ecosystem Research Network (TERN)
845 infrastructure, which is enabled by the Australian Government's National Collaborative
846 Research Infrastructure Strategy (NCRIS).

847

848 **References**

849 Ackerly, DD, Cornwell, WK (2007) A trait-based approach to community assembly:
850 partitioning of species trait values into within-and among-community components.
851 *Ecology Letters* **10**, 135-145.

852 Aguirre-Gutiérrez, J, Berenguer, E, Oliveras Menor, I, Bauman, D, Corral-Rivas, JJ, Nava-
853 Miranda, MG, Both, S, Ndong, JE, Ondo, FE, Bengone, NNs, Mihinhou, V, Dalling,
854 JW, Heineman, K, Figueiredo, A, González-M, R, Norden, N, Hurtado-M, AB,
855 González, D, Salgado-Negret, B, Reis, SM, Moraes de Seixas, MM, Farfan-Rios, W,
856 Shenkin, A, Riutta, T, Girardin, CAJ, Moore, S, Abernethy, K, Asner, GP, Bentley,
857 LP, Burslem, DFRP, Cernusak, LA, Enquist, BJ, Ewers, RM, Ferreira, J, Jeffery, KJ,
858 Joly, CA, Marimon-Junior, BH, Martin, RE, Morandi, PS, Phillips, OL, Bennett, AC,
859 Lewis, SL, Quesada, CA, Marimon, BS, Kissling, WD, Silman, M, Teh, YA, White,
860 LJT, Salinas, N, Coomes, DA, Barlow, J, Adu-Bredou, S, Malhi, Y (2022) Functional
861 susceptibility of tropical forests to climate change. *Nature Ecology & Evolution* **6**,
862 878-889.

863 Andrew, SC, Mokany, K, Falster, DS, Wenk, E, Wright, IJ, Merow, C, Adams, V, Gallagher,
864 RV (2021) Functional diversity of the Australian flora: strong links to species richness
865 and climate. *Journal of Vegetation Science* **32**, e13018.

866 Andrew, SC, Martín-Forés, I, Guerin, G, Coleman, D, Falster, D, Wenk, E, Wright, I,
867 Gallagher, RV (2025). Mapping plant functional traits using gap-filled datasets to
868 inform management and modelling. *Global Ecology and Biogeography*.

869 Aphalo P (2025). *_ggpmisc: Miscellaneous Extensions to 'ggplot2'_*.

870 Bailey, HP (1964). Toward a unified concept of the temperate climate. *Geographical
871 Review*, **54**, 516-545.

872 Bates, DM, 2010. *lme4: Mixed-effects modeling with R*. Springer New York,

873 Bennett, JM, Sunday, J, Calosi, P, Villalobos, F, Martínez, B, Molina-Venegas, R, ..., Olalla-
874 Tárraga, MÁ (2021) The evolution of critical thermal limits of life on Earth. *Nature
875 communications*, **12**, 1198.

876 Biggs, CR, Yeager, LA, Bolser, DG, Bonsell, C, Dichiera, AM, Hou, Z, Keyser, SR,
877 Khursigara, AJ, Lu, K, Muth, AF (2020) Does functional redundancy affect
878 ecological stability and resilience? A review and meta-analysis. *Ecosphere* **11**,
879 e03184.

880 Borgy, B, Violle, C, Choler, P, Garnier, E, Kattge, J, Loranger, J, Amiaud, B, Cellier, P,
881 Debarros, G, Denelle, P (2017) Sensitivity of community-level trait–environment
882 relationships to data representativeness: A test for functional biogeography. *Global
883 Ecology and Biogeography* **26**, 729-739.

884 Botta-Dukát, Z (2005) Rao's quadratic entropy as a measure of functional diversity based on
885 multiple traits. *Journal of Vegetation Science* **16**, 533-540.

886 Brouwers, NC, Mercer, J, Lyons, T, Poot, P, Veneklaas, E, Hardy, G (2013) Climate and
887 landscape drivers of tree decline in a Mediterranean ecoregion. *Ecology and Evolution*
888 **3**, 67-79.

889 Bruelheide, H, Dengler, J, Purschke, O, Lenoir, J, Jiménez-Alfaro, B, Hennekens, SM, Botta-
890 Dukát, Z, Chytrý, M, Field, R, Jansen, F, Kattge, J, Pillar, VD, Schrottd, F, Mahecha,
891 MD, Peet, RK, Sandel, B, van Bodegom, P, Altman, J, Alvarez-Dávila, E, Arfin
892 Khan, MAS, Attorre, F, Aubin, I, Baraloto, C, Barroso, JG, Bauters, M, Bergmeier, E,
893 Biurrun, I, Bjorkman, AD, Blonder, B, Čarni, A, Cayuela, L, Černý, T, Cornelissen,
894 JHC, Craven, D, Dainese, M, Derroire, G, De Sanctis, M, Díaz, S, Doležal, J, Farfan-
895 Rios, W, Feldpausch, TR, Fenton, NJ, Garnier, E, Guerin, GR, Gutiérrez, AG, Haider,
896 S, Hattab, T, Henry, G, Hérault, B, Higuchi, P, Hölzel, N, Homeier, J, Jentsch, A,
897 Jürgens, N, Kącki, Z, Karger, DN, Kessler, M, Kleyer, M, Knollová, I, Korolyuk, AY,
898 Kühn, I, Laughlin, DC, Lens, F, Loos, J, Louault, F, Lyubenova, MI, Malhi, Y,
899 Marcenò, C, Mencuccini, M, Müller, JV, Munzinger, J, Myers-Smith, IH, Neill, DA,
900 Niinemets, Ü, Orwin, KH, Ozinga, WA, Penuelas, J, Pérez-Haase, A, Petřík, P,
901 Phillips, OL, Pärtel, M, Reich, PB, Römermann, C, Rodrigues, AV, Sabatini, FM,
902 Sardans, J, Schmidt, M, Seidler, G, Silva Espejo, JE, Silveira, M, Smyth, A, Sporbert,
903 M, Svenning, J-C, Tang, Z, Thomas, R, Tsiripidis, I, Vassilev, K, Violle, C, Virtanen,
904 R, Weiher, Eet al. (2018) Global trait–environment relationships of plant
905 communities. *Nature Ecology & Evolution* **2**, 1906-1917.

906 Cadotte, MW, Carscadden, K, Mirochnick, N (2011) Beyond species: functional diversity
907 and the maintenance of ecological processes and services. *Journal of applied ecology*
908 **48**, 1079-1087.

909 Chevin, LM, Hoffmann, AA (2017) Evolution of phenotypic plasticity in extreme
910 environments. *Philosophical Transactions of the Royal Society B: Biological Sciences*
911 **372**, 20160138.

912 Deutsch, CA, Tewksbury, JJ, Huey, RB, Sheldon, KS, Ghalambor, CK, Haak, DC, Martin,
913 PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude.
914 *Proceedings of the National Academy of Sciences* **105**, 6668-6672.

915 Díaz, S, Kattge, J, Cornelissen, JH, Wright, IJ, Lavorel, S, Dray, S, Reu, B, Kleyer, M, Wirth,
916 C, Colin Prentice, I (2016) The global spectrum of plant form and function. *Nature*
917 **529**, 167-171.

918 Díaz, S, Settele, J, Brondízio ES, Ngo, HT, Guèze, M, Agard, J, Arneth, A, Balvanera, P,
919 Brauman, KA, Butchart, SHM, Chan, KMA, Garibaldi, LA, Ichii, K, Liu, J,
920 Subramanian, SM, Midgley, GF, Miloslavich, P, Molnár, Z, Obura, D, Pfaff, A,
921 Polasky, S, Purvis, A, Razzaque, J, Reyers, B, Roy Chowdhury, R, Shin, YJ,
922 Visseren-Hamakers, IJ, Willis, KJ, Zayas, CN (Eds.). IPBES (2019): Summary for
923 policymakers of the global assessment report on biodiversity and ecosystem services
924 of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
925 Services. IPBES secretariat, Bonn, Germany. 56 pages.

926 Elmquist, T, Folke, C, Nyström, M, Peterson, G, Bengtsson, J, Walker, B, Norberg, J (2003)
927 Response diversity, ecosystem change, and resilience. *Frontiers in Ecology and the
928 Environment* **1**, 488-494.

929 Eisenhäuer, N, Hines, J, Maestre, FT, Rillig, MC (2023). Reconsidering functional
930 redundancy in biodiversity research. *npj Biodiversity*, 2(1), 9.

931 Falster, D. S., & Westoby, M. (2003). Plant height and evolutionary games. *Trends in
932 Ecology & Evolution*, **18**, 337-343.

933 Falster, D, Gallagher, R, Wenk, EH, Wright, IJ, Indarto, D, Andrew, SC, Baxter, C, Lawson,
934 J, Allen, S, Fuchs, A (2021) AusTraits, a curated plant trait database for the
935 Australian flora. *Scientific data* **8**, 1-20.

936 Fick, SE, Hijmans, RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for
937 global land areas. *International journal of climatology* **37**, 4302-4315. Fischer, FM, de
938 Bello, F (2023). On the uniqueness of functional redundancy. *npj Biodiversity*, 2(1),
939 23.

940 Foden, WB, Young, BE, Akçakaya, HR, Garcia, RA, Hoffmann, AA, Stein, BA, Thomas,
941 CD, Wheatley, CJ, Bickford, D, Carr, JA, Hole, DG, Martin, TG, Pacifici, M, Pearce-
942 Higgins, JW, Platts, PJ, Visconti, P, Watson, JEM, Huntley, B. (2019). Climate
943 change vulnerability assessment of species. *Wiley interdisciplinary reviews: climate
944 change*, 10(1), e551.

945 Fonseca, CR, Ganade, G (2001) Species functional redundancy, random extinctions and the
946 stability of ecosystems. *Journal of Ecology* 118-125.

947 Funk, JL, Larson, JE, Ames, GM, Butterfield, BJ, Cavender-Bares, J, Firn, J, Laughlin, DC,
948 Sutton-Grier, AE, Williams, L, Wright, J (2017) Revisiting the Holy Grail: using
949 plant functional traits to understand ecological processes. *Biological reviews* 92,
950 1156-1173.

951 Gallagher, RV, Allen, S, Wright, IJ (2019) Safety margins and adaptive capacity of
952 vegetation to climate change. *Scientific Reports* 9, 1-11.

953 Gallagher, RV, Hughes, L, Leishman, MR (2013) Species loss and gain in communities
954 under future climate change: consequences for functional diversity. *Ecography* 36,
955 531-540.

956 Gallagher, RV, Falster, DS, Maitner, BS, Salguero-Gómez, R, Vandvik, V, Pearse, WD, ... &
957 Enquist, BJ (2020). Open Science principles for accelerating trait-based science
958 across the Tree of Life. *Nature ecology & evolution*, 4(3), 294-303.

959 Grace, J, José, JS, Meir, P, Miranda, HS, Montes, RA (2006) Productivity and carbon fluxes
960 of tropical savannas. *Journal of Biogeography* 33, 387-400.

961 Guerin, GR, Gallagher, RV, Wright, IJ, Andrew, SC, Falster, DS, Wenk, E, Munroe, SEM,
962 Lowe, AJ, Sparrow, B (2022) Environmental associations of abundance-weighted
963 functional traits in Australian plant communities. *Basic and Applied Ecology* 58, 98-
964 109.

965 Guerin, GR, Williams, KJ, Sparrow, B, Lowe, AJ (2020a) Stocktaking the environmental
966 coverage of a continental ecosystem observation network. *Ecosphere* 11, e03307.

967 Guerin, G, Saleeba, T, Munroe, S, Blanco-Martin, B, Martín-Forés, I, Tokmakoff, A (2020b)
968 ausplotsR: TERN AusPlots analysis package. *R package version 1*, Hooper, DU,
969 Adair, EC, Cardinale, BJ, Byrnes, JEK, Hungate, BA, Matulich, KL, Gonzalez, A,
970 Duffy, JE, Gamfeldt, L, O'Connor, MI (2012) A global synthesis reveals biodiversity
971 loss as a major driver of ecosystem change. *Nature* 486, 105-108.

972 Hughes, L (2003) Climate change and Australia: trends, projections and impacts. *Austral
973 Ecology* 28, 423-443.

974 Keith, DA (Ed.). (2017). Australian vegetation. Cambridge University Press.

975 Laliberté, E, Wells, JA, DeClerck, F, Metcalfe, DJ, Catterall, CP, Queiroz, C, Aubin, I,
976 Bonser, SP, Ding, Y, Fraterrigo, JM (2010) Land-use intensification reduces
977 functional redundancy and response diversity in plant communities. *Ecology Letters*
978 13, 76-86.

979 Lancaster, LT, Humphreys, AM (2020) Global variation in the thermal tolerances of
980 plants. *Proceedings of the National Academy of Sciences*, **117**, 13580-13587.

981 Lewandrowski, W, Stevens, JC, Webber, BL, L. Dalziel, E, Trudgen, MS, Bateman, AM,
982 Erickson, TE (2021) Global change impacts on arid zone ecosystems: Seedling
983 establishment processes are threatened by temperature and water stress. *Ecology and
984 Evolution* **11**, 8071-8084.

985 Li, D, Wu, S, Liu, L, Zhang, Y, Li, S (2018) Vulnerability of the global terrestrial ecosystems
986 to climate change. *Global change biology* **24**, 4095-4106.

987 Lionello, P, Malanotte-Rizzoli, P, Boscolo, R, Alpert, P, Artale, V, Li, L, ..., Xoplaki, E
988 (2006). The Mediterranean climate: an overview of the main characteristics and
989 issues. *Developments in Earth and Environmental Sciences*, **4**, 1-26.

990 Lloret, F, Escudero, A, Iriondo, JM, Martínez-Vilalta, J, Valladares, F (2012) Extreme
991 climatic events and vegetation: the role of stabilizing processes. *Global change
992 biology* **18**, 797-805.

993 Moore, CE, Beringer, J, Donohue, RJ, Evans, B, Exbrayat, J-F, Hutley, LB, Tapper, NJ
994 (2018) Seasonal, interannual and decadal drivers of tree and grass productivity in an
995 Australian tropical savanna. *Global change biology* **24**, 2530-2544.

996 Mori, AS (2011) Ecosystem management based on natural disturbances: hierarchical context
997 and non-equilibrium paradigm. *Journal of applied ecology* **48**, 280-292.

998 Mori, AS, Furukawa, T, Sasaki, T (2013) Response diversity determines the resilience of
999 ecosystems to environmental change. *Biological reviews* **88**, 349-364.

1000 Munroe, S, Guerin, G, Saleeba, T, Martín-Forés, I, Blanco-Martin, B, Sparrow, B,
1001 Tokmakoff, A, 2021. ausplotsR: An R package for rapid extraction and analysis of
1002 vegetation and soil data collected by Australia's Terrestrial Ecosystem Research
1003 Network. Wiley Online Library,

1004 Noy-Meir, I (1973). Desert ecosystems: environment and producers. *Annual review of
1005 ecology and systematics*, 25-51.

1006 Olson, DM, Dinerstein, E, Wikramanayake, ED, Burgess, ND, Powell, GVN, Underwood,
1007 EC, D'amico, JA, Itoua, I, Strand, HE, Morrison, JC, Loucks, CJ, Allnutt, TF,
1008 Ricketts, TH, Kura, Y, Lamoreux, JF, Wettengel, WW, Hedao, P, Kassem, KR (2001)
1009 Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map
1010 of terrestrial ecoregions provides an innovative tool for conserving biodiversity.
1011 *BioScience* **51**, 933-938.

1012 Pettorelli, N, Graham, NA, Seddon, N, Maria da Cunha Bustamante, M, Lowton, MJ,
1013 Sutherland, WJ, ... & Barlow, J (2021) Time to integrate global climate change and
1014 biodiversity science-policy agendas. *Journal of Applied Ecology* **58**, 2384-2393.

1015 Pillar, VD, Blanco, CC, Müller, SC, Sosinski, EE, Joner, F, Duarte, LD (2013) Functional
1016 redundancy and stability in plant communities. *Journal of Vegetation Science* **24**,
1017 963-974.

1018 Pimienta, C, Bacon, CD, Silvestro, D, Hendy, A, Jaramillo, C, Zizka, A, Meyer, X,
1019 Antonelli, A (2020) Selective extinction against redundant species buffers functional
1020 diversity. *Proceedings of the Royal Society B* **287**, 20201162.

1021 RCoreTeam (2018) The R Stats Package *CRAN Repository, R*

1022 Ricotta, C, de Bello, F, Moretti, M, Caccianiga, M, Cerabolini, BE, Pavoine, S (2016)
1023 Measuring the functional redundancy of biological communities: a quantitative guide
1024 *Methods in Ecology and Evolution* **7**, 1386-1395

1025 Rosenfeld, JS (2002) Functional redundancy in ecology and conservation. *Oikos* **98**, 156-162.

1026 Sax, DF, Early, R, Bellemare, J (2013) Niche syndromes, species extinction risks, and
1027 management under climate change. *Trends in ecology & evolution* **28**, 517-523.

1028 Schrodt, F., Kattge, J., Shan, H., Fazayeli, F., Joswig, J., Banerjee, A., ... & Reich, P. B.
1029 (2015). BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction
1030 for macroecology and functional biogeography. *Global Ecology and*
1031 *Biogeography*, **24**, 1510-1521.

1032 Shaw, RB, Jacobs, SWL, Everett, J (2000) Tropical grasslands and savannas. Grasses:
1033 Systematics and Evolution. CSIRO, Melbourne: CSIRO, 351-355.

1034 Sparrow, BD, Foulkes, JN, Wardle, GM, Leitch, EJ, Caddy-Retalic, S, Van Leeuwen, SJ,
1035 Tokmakoff, A, Thurgate, NY, Guerin, GR, Lowe, AJ (2020) A vegetation and soil
1036 survey method for surveillance monitoring of rangeland environments. *Frontiers in*
1037 *Ecology and Evolution* **8**, 157.

1038 Spasojevic, MJ, Suding, KN (2012) Inferring community assembly mechanisms from
1039 functional diversity patterns: the importance of multiple assembly processes. *Journal*
1040 *of Ecology* **100**, 652-661.

1041 State of the Climate 2024, CSIRO and Bureau of Meteorology, © Government of Australia.

1042 Suding, KN, Lavorel, S, Chapin III, F, Cornelissen, JH, Díaz, S, Garnier, E, Goldberg, D,
1043 Hooper, DU, Jackson, ST, Navas, ML (2008) Scaling environmental change through
1044 the community-level: A trait-based response-and-effect framework for plants. *Global*
1045 *change biology* **14**, 1125-1140.

1046 Traveset, A, Heleno, R, Chamorro, S, Vargas, P, McMullen, CK, Castro-Urgal, R, Nogales,
1047 M, Herrera, HW, Olesen, JM (2013) Invaders of pollination networks in the
1048 Galápagos Islands: emergence of novel communities. *Proceedings of the Royal
1049 Society B: Biological Sciences* **280**, 20123040.

1050 Valladares, F, Magro, S, Martín-Forés, I (2019). Anthropocene, the challenge for" Homo
1051 sapiens" to set its own limits. *Cuadernos de Investigación Geográfica*, 45(1), 33-59.

1052 Violette, C, Reich, PB, Pacala, SW, Enquist, BJ, Kattge, J (2014) The emergence and promise
1053 of functional biogeography. *Proceedings of the National Academy of Sciences* **111**,
1054 13690-13696.

1055 Walker, B (1992) Biodiversity and ecological redundancy. *Conservation Biology*, **6**, 18–23.

1056 Walker, B (1995) Conserving biological diversity through ecosystem resilience.
1057 *Conservation Biology* **9**, 747-752.

1058 Wardle, DA, Bardgett, RD, Callaway, RM, Van der Putten, WH (2011) Terrestrial ecosystem
1059 responses to species gains and losses. *science* **332**, 1273-1277.

1060 Westoby, M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. *Plant and soil*
1061 **199**, 213-227.

1062 White, A, Sparrow, B, Leitch, E, Foulkes, J, Flitton, R, Lowe, AJ, Caddy-Retalic, S (2012)
1063 AUSPLTS rangelands survey protocols manual.

1064 Wickham, H. (2016) *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New
1065 York.

1066 Wright, IJ, Reich, PB, Westoby, M, Ackerly, DD, Baruch, Z, Bongers, F, Cavender-Bares, J,
1067 Chapin, T, Cornelissen, JH, Diemer, M (2004) The worldwide leaf economics
1068 spectrum. *Nature* **428**, 821-827.

1069

1070 **Supplementary material**

1071

1072 **Supplemental table S1.** Pairwise comparisons of functional redundancy (F_R) among four
1073 Australian biomes (IDs Tropical/subtropical grasslands, savannas and shrublands = 4,
1074 Temperate broadleaf and mixed forests = 7, Mediterranean forests, woodlands and shrublands
1075 = 12, Deserts and xeric shrublands = 13) using Tukey's Honestly Significant Difference
1076 (HSD) test. The table shows the mean difference in F_R between each pair of biomes, the
1077 lower and upper bounds of the 95% confidence interval, and the adjusted p-value (Adjusted
1078 P-value) for multiple comparisons. Positive difference values indicate that the first biome
1079 listed in the comparison has higher F_R than the second.

Biome comparison	Difference	Lower 95CI	Upper 95CI	Adjusted P-value
7 vs. 4	0.043	0.008	0.079	≤ 0.01
12 vs. 4	0.017	-0.019	0.052	n.s.
13 vs. 4	0.050	0.015	0.084	≤ 0.01
12 vs. 7	-0.027	-0.046	-0.007	≤ 0.01
13 vs. 7	0.006	-0.012	0.025	n.s.
12 vs. 13	0.033	0.015	0.052	≤ 0.001

1080

1081

1082 **Supplemental table S2.** Pearson correlation coefficients between pairs of climate variables.
1083 Values are shown for the upper triangle of the correlation matrix. Asterisks indicate
1084 significance levels: $p \leq 0.05$ (*), $p \leq 0.01$ (**), $p \leq 0.001$ (***).

1085

	MAT	T-Range	T-Max	MAP	P-Dry	P-Seasonality
MAT	1	0.18***	0.87***	0.05	-0.83***	0.76***
T-Range		1	0.63***	-0.78***	-0.25***	-0.32***
T-Max			1	-0.37***	-0.8***	0.41***
MAP				1	0.3***	0.48***
P-Dry					1	-0.55***
P-Seasonality						1

1086
1087
1088

1089 **Supplemental table S3.** Pearson correlation coefficients between pairs of diversity metrics.
1090 Values are shown for the upper triangle of the correlation matrix. Asterisks indicate
1091 significance levels: $p \leq 0.05$ (*), $p \leq 0.01$ (**), $p \leq 0.001$ (***).

1092

	Species richness (SR)	Species diversity (SD)	Functional diversity (FD)	Functional redundancy (FR)
Species richness (SR)	1	0.6***	0.52***	-0.13**
Species diversity (SD)		1	0.67***	0.06
Functional diversity (FD)			1	-0.69***
Functional redundancy (FR)				1

1093

1094

1095 **Supplemental table S4.** Coefficients from the best-supported linear regression models for
 1096 plant diversity metrics (S_R , S_D , F_D , F_R) against bioclimatic variables at continental and biome
 1097 scales. Shown are the estimated slope (estimate), standard error (std.error), t-value (statistic),
 1098 and p-value for each predictor in the model. Models were selected based on the lowest AIC,
 1099 and only the best-supported models are presented.

Scale	Response	term	estimate	std.error	statistic	p.value
Continental	S_R	(Intercept)	24.2378	5.3295	4.5479	0.0000
		MAT	-2.4493	0.5898	-4.1529	0.0000
		T_Max	2.2499	0.6237	3.6076	0.0003
		T_Range	-1.3610	0.3007	-4.5261	0.0000
		MAP	0.0090	0.0018	4.9067	0.0000
		P_Season	0.0515	0.0261	1.9722	0.0490
	S_D	(Intercept)	0.9812	0.0698	14.0517	0.0000
		MAT	-0.0138	0.0031	-4.5262	0.0000
		MAP	0.0002	0.0000	6.7622	0.0000
		P_Dry	-0.0041	0.0011	-3.5507	0.0004
	F_D	(Intercept)	0.2397	0.0385	6.2291	0.0000
		MAT	-0.0132	0.0031	-4.2162	0.0000
		T_Max	0.0090	0.0040	2.2219	0.0266
		T_Range	-0.0041	0.0024	-1.7305	0.0840
		MAP	0.0001	0.0000	3.7973	0.0002
		P_Dry	-0.0015	0.0006	-2.6001	0.0095
	F_R	(Intercept)	0.7850	0.0391	20.0707	0.0000
		MAT	0.0165	0.0043	3.8009	0.0002
		T_Max	-0.0145	0.0046	-3.1631	0.0016
		T_Range	0.0058	0.0022	2.6490	0.0083
		MAP	0.0000	0.0000	-1.5771	0.1153
		P_Season	-0.0004	0.0002	-2.2628	0.0240
	S_R	(Intercept)	71.1624	13.6375	5.2181	0.0000
		T_Max	3.5419	0.5766	6.1431	0.0000
		T_Range	-5.8727	1.0443	-5.6235	0.0000
	S_D	(Intercept)	0.6769	0.2134	3.1717	0.0038
		MAT	0.0160	0.0104	1.5366	0.1360
		MAP	0.0012	0.0004	3.4262	0.0020
		P_Dry	-0.0155	0.0064	-2.4373	0.0217
	F_D	P_Season	-0.0213	0.0077	-2.7533	0.0104
		(Intercept)	0.4416	0.0925	4.7714	0.0000
	F_R	T_Range	-0.0106	0.0043	-2.4727	0.0193
		(Intercept)	0.6680	0.0393	16.9800	0.0000
		MAT	0.0041	0.0030	1.3494	0.1873
	S_R	(Intercept)	116.8951	23.9447	4.8819	0.0000
		MAT	4.5659	0.7575	6.0276	0.0000
		T_Max	-4.5345	0.5650	-8.0260	0.0000
		P_Dry	-0.7088	0.2469	-2.8706	0.0046
		P_Season	-0.4184	0.0858	-4.8774	0.0000

		(Intercept)	0.4751	0.1772	2.6813	0.0081
Biome 12	S _D	MAT	0.0151	0.0105	1.4436	0.1507
		MAP	0.0002	0.0000	4.6174	0.0000
		P_Season	-0.0026	0.0011	-2.3385	0.0205
		(Intercept)	0.1647	0.0207	7.9457	0.0000
	F _D	MAP	0.0001	0.0000	5.3350	0.0000
		P_Season	-0.0004	0.0002	-2.0817	0.0389
		(Intercept)	0.6914	0.0285	24.2331	0.0000
	F _R	T_Range	0.0029	0.0011	2.4919	0.0137
		(Intercept)	38.3001	11.2007	3.4195	0.0008
		MAT	-4.6103	0.8921	-5.1679	0.0000
		T_Max	1.4021	0.4222	3.3212	0.0011
	S _R	P_Dry	0.4095	0.1826	2.2428	0.0263
		P_Season	0.4118	0.0468	8.8063	0.0000
		(Intercept)	1.0220	0.1279	7.9920	0.0000
		MAT	-0.0214	0.0071	-3.0246	0.0029
	F _D	P_Season	0.0026	0.0006	4.4678	0.0000
		(Intercept)	0.0664	0.0212	3.1279	0.0021
		P_Dry	0.0048	0.0010	4.7827	0.0000
	F _R	P_Season	0.0016	0.0003	6.4811	0.0000
		(Intercept)	1.2241	0.0946	12.9357	0.0000
		MAT	-0.0201	0.0045	-4.4583	0.0000
		MAP	-0.0002	0.0000	-5.0010	0.0000
	S _R	P_Dry	-0.0044	0.0011	-3.9035	0.0001
		(Intercept)	-3.5374	11.1735	-0.3166	0.7518
		MAT	-3.3824	0.9721	-3.4794	0.0006
		T_Max	3.2492	1.1072	2.9346	0.0037
	F _R	T_Range	-1.1241	0.5525	-2.0346	0.0430
		MAP	0.0409	0.0085	4.8065	0.0000
		(Intercept)	0.7469	0.0237	31.5031	0.0000
		P_Season	-0.0009	0.0004	-2.1098	0.0359
Biome 13	F _D	(Intercept)	0.0770	0.0921	0.8360	0.4040
		MAT	-0.0271	0.0072	-3.7806	0.0002
		T_Max	0.0161	0.0045	3.6048	0.0004
		MAP	0.0001	0.0001	1.5899	0.1132
	F _R	P_Season	0.0011	0.0005	2.4453	0.0152
		(Intercept)	0.8491	0.0940	9.0303	0.0000
		MAT	0.0177	0.0051	3.4729	0.0006
		T_Range	-0.0113	0.0024	-4.6601	0.0000
	S _D	MAP	-0.0002	0.0001	-2.3200	0.0212
		P_Season	-0.0015	0.0005	-3.0192	0.0028

1100

1101

1102 **Supplemental table S5.** Coefficients from the best-supported linear regression models for
 1103 climate-driven risk (MAT Risk and MAP Risk) against bioclimatic variables at continental
 1104 and biome scales. Shown are the estimated slope (estimate), standard error (std.error), t-value
 1105 (statistic), and p-value for each predictor in the model. Models were selected based on the
 1106 lowest AIC, and only the best-supported models are presented.

Scale	Response	Term	Estimate	Std error	Statistic	P-value
Continental	risk_MAT	(Intercept)	-11.37	0.46	-24.81	0.0000
		MAT	-0.16	0.07	-2.16	0.0315
		P_Season	0.03	0.00	10.31	0.0000
		T_Max	0.45	0.08	5.83	0.0000
		T_Range	-0.16	0.04	-4.25	0.0000
Biome 4	risk_MAP	(Intercept)	480.92	56.07	8.58	0.0000
		MAP	-0.63	0.02	-25.31	0.0000
		MAT	20.29	4.57	4.44	0.0000
		P_Dry	-2.08	0.84	-2.47	0.0139
		T_Max	-39.47	5.89	-6.71	0.0000
Biome 7	risk_MAT	(Intercept)	19.19	3.45	5.57	0.0000
		(Intercept)	-11.15	1.73	-6.45	0.0000
		MAT	0.29	0.06	4.86	0.0000
		P_Dry	0.06	0.03	1.87	0.0705
		(Intercept)	-1031.03	516.70	-2.00	0.0546
Biome 12	risk_MAP	MAP	1.38	0.31	4.42	0.0001
		MAT	-224.57	93.36	-2.41	0.0221
		P_Dry	-13.81	6.58	-2.10	0.0439
		T_Max	302.50	118.41	2.55	0.0156
		T_Range	-170.29	75.28	-2.26	0.0306
Biome 13	risk_MAT	(Intercept)	-19.01	1.42	-13.35	0.0000
		MAT	0.71	0.05	15.24	0.0000
		P_Dry	0.06	0.01	4.90	0.0000
		T_Range	0.05	0.01	3.66	0.0003
		(Intercept)	-283.09	200.03	-1.42	0.1587
		MAP	0.53	0.06	9.36	0.0000
		MAT	-40.95	23.02	-1.78	0.0768
		P_Season	-2.26	0.81	-2.80	0.0057
		T_Max	72.00	22.29	3.23	0.0015
		T_Range	-40.60	10.16	-3.99	0.0001
		(Intercept)	-9.74	1.27	-7.68	0.0000
		P_Season	0.05	0.01	8.17	0.0000
		T_Max	0.17	0.04	4.66	0.0000
		(Intercept)	-539.78	81.75	-6.60	0.0000
		MAP	0.96	0.05	19.72	0.0000
		MAT	22.93	4.18	5.48	0.0000
		P_Season	-0.92	0.31	-3.01	0.0030
		(Intercept)	-16.44	1.78	-9.26	0.0000
		MAT	0.46	0.07	6.90	0.0000

	P_Dry	-0.09	0.03	-3.36	0.0009
	T_Max	0.15	0.06	2.57	0.0109
	(Intercept)	-430.04	69.14	-6.22	0.0000
	MAP	1.15	0.04	27.45	0.0000
risk_MAP	MAT	-17.14	3.93	-4.36	0.0000
	P_Dry	4.17	1.20	3.47	0.0006
	T_Max	16.35	2.55	6.40	0.0000

1107

1108

1109

1110 **Supplemental table S6.** Coefficients from the best-supported linear regression models for
 1111 climate-driven risk (MAT Risk and MAP Risk) against plant diversity metrics (S_R , S_D , F_D ,
 1112 F_R) at continental and biome scales. Shown are the estimated slope (estimate), standard error
 1113 (std.error), t-value (statistic), and p-value for each predictor in the model. Models were
 1114 selected based on the lowest AIC, and only the best-supported models are presented.

Scale	Response	Term	Estimate	Std error	Statistic	p-value
Continental	risk_MAT	(Intercept)	-1.64	0.09	-17.50	0.0000
	risk_MAP	(Intercept)	-65.79	20.01	-3.29	0.0011
		SR	-9.60	0.84	-11.44	0.0000
Biome 4	risk_MAT	(Intercept)	-6.53	0.84	-7.80	0.0000
		SR	0.04	0.03	1.64	0.1105
	risk_MAP	(Intercept)	-65.79	20.01	-3.29	0.0011
Biome 7		SR	-9.60	0.84	-11.44	0.0000
	risk_MAT	(Intercept)	0.33	0.11	3.09	0.0023
	risk_MAP	(Intercept)	204.46	54.41	3.76	0.0002
Biome 12		FD	504.12	344.16	1.46	0.1448
		SR	9.69	1.91	5.08	0.0000
	risk_MAT	(Intercept)	-3.27	0.31	-10.62	0.0000
Biome 13		SR	0.03	0.01	2.85	0.0049
	risk_MAT	(Intercept)	354.88	107.14	3.31	0.0011
	risk_MAP	FR	-392.63	138.64	-2.83	0.0052
Biome 13		SR	5.30	0.88	6.05	0.0000
	risk_MAT	(Intercept)	-1.05	0.53	-1.99	0.0477
		FD	6.64	2.65	2.50	0.0129
Biome 13		SD	-2.16	0.94	-2.30	0.0226
	risk_MAP	(Intercept)	132.51	24.58	5.39	0.0000
		FD	433.62	124.27	3.49	0.0006
Biome 13		SD	-242.05	47.84	-5.06	0.0000
		SR	4.39	0.82	5.33	0.0000

1115

1116