

A framework for predicting the dynamics of plant-mycorrhizal interactions

Tanner Dulay^{1,2}, Angelica Soriano¹, Priyanga Amarasekare¹

¹ Dept. of Ecology and Evolutionary Biology, University of California, Los Angeles

² Corresponding author: tdulay@g.ucla.edu

Short title: Plant-Mycorrhizal Interactions Model

Word Count (Main text): 5452 (Abstract: 180)

Manuscript Content: Abstract, Introduction, Mathematical Framework, Model Analysis, Results, Discussion, 2 Tables, 4 Figures, Literature Cited, 1 Appendix

1 Abstract

2 Interactions between plants and mycorrhizal fungi shape nutrient cycling and ecosystem
3 function on a global scale, but the dynamics of these interactions remain poorly understood. Due
4 to their below-ground nature, directly observing key dynamical features such as Allee effects and
5 oscillations is often not possible, hampering further progress in this area. Here we present a
6 mechanistic model of plant-mycorrhizal interactions to address this issue. By integrating the
7 facilitative and the antagonistic elements of plant-mycorrhizal interactions with explicit plant-
8 nutrient dynamics, our framework generates testable predictions about the dynamics and
9 persistence of these interactions. We find that plant-mycorrhizal interactions can exhibit different
10 dynamical realms ranging from Allee effects to consumer-resource oscillations, and that these
11 dynamics can be inferred from measurable system parameters (e.g., nutrient or carbohydrate
12 uptake rates and saturation constants) and plant/fungal biomasses. Furthermore, we find that
13 changes in the underlying soil nutrient supply can induce changes from one dynamical realm to
14 another. Finally, we present a decision tree framework for characterizing the dynamics of real
15 systems and discuss implications of our findings for plant-mycorrhizal communities in applied
16 and natural contexts.

17 *Keywords: mycorrhizae, mutualism, species interactions, mechanistic model, nutrient limitation*

18

19 Introduction

20 Interactions between plants and mycorrhizal fungi are ubiquitous, occurring in ca. 80% of
21 plant species and contributing substantially to global nutrient cycling and ecosystem services
22 (Brundrett, 2009; van der Heijden et al., 2015; Wang & Qiu, 2006). Whether fungal hyphae

23 penetrate plant roots as in arbuscular mycorrhizae (AMF) or form a sheath around the roots as in
24 ectomycorrhizae (ECM), mycorrhizal fungi facilitate plant acquisition of soil nutrients such as
25 Nitrogen, Phosphorous, and water (Smith & Read, 2010). In return, plant hosts provide their
26 fungal partners with a source of carbohydrates (Fellbaum et al., 2012). These interactions play a
27 foundational role in supporting terrestrial biodiversity and have been widely proposed as
28 sustainable tools to increase crop yield and facilitate restoration efforts (Asmelash et al., 2016;
29 Fester & Sawers, 2011; Neuenkamp et al., 2019; Solaiman & Mickan, 2014). However, owing to
30 their strong context-dependence and below-ground nature impeding comprehensive empirical
31 studies, we currently lack the understanding of plant-mycorrhizal dynamics necessary to
32 consistently predict their functioning in applied and natural contexts.

33 Despite their promise of enhancing agriculture and restoration, the application of
34 mycorrhizal fungi in these settings often yields inconsistent results. Although commercially
35 available fungal inoculants can decrease the need for fertilizers in agricultural soils, their effect
36 on crop yield can range from substantial increases to neutral or even negative impacts depending
37 on soil conditions, plant host identity, and existing microbial communities (Hart & Reader, 2002;
38 Hoeksema et al., 2010; Koziol et al., 2024; Ryan & Graham, 2002). In restoration, mycorrhizae
39 are suggested to facilitate the reintroduction of native plant species and support community
40 resilience (Asmelash et al., 2016; Solaiman & Mickan, 2014). In practice, however, it can be
41 hard to predict whether an introduced fungal strain will establish, persist, or interact beneficially
42 with target plant species (Maltz & Treseder, 2015; Neuenkamp et al., 2019; Verbruggen et al.,
43 2013). Our ability to predict outcomes in natural systems is similarly hampered. Although
44 multiple anthropogenic impacts are expected to degrade mycorrhizal diversity (Steidinger et al.,
45 2020; Van Diepen et al., 2007; Vogelsang & Bever, 2009), we do not fully understand how

46 species losses, replacements, or functional shifts caused by environmental perturbations will
47 affect the function and stability of the ecosystems in which they are embedded (Sapsford et al.,
48 2017; Staddon et al., 2002). All of these challenges stem from an incomplete understanding of
49 the dynamics of plant-mycorrhizal interactions.

50 Given the complex interplay of facilitation and consumption, plant-mycorrhizal
51 interactions likely exhibit a diverse array of dynamics. As mutualisms in which at least one
52 partner is typically obligate (as the fungus is in most AMF and ECM; Smith & Read, 2010),
53 plant-mycorrhizal interactions are thought to be subject to Allee effects – thresholds of
54 abundance below which the interaction goes deterministically extinct (Hale & Valdovinos, 2021;
55 Stephens et al., 1999). When assembling interactions from the ground up, as in agricultural and
56 restoration contexts, Allee effects may prevent the establishment of plants or fungi introduced at
57 an insufficient biomass (Armstrong & Wittmer, 2011). On the other hand, because plant-
58 mycorrhizal interactions include a consumer-resource element (Holland & DeAngelis, 2010),
59 they could exhibit oscillations in abundance that may also cause inoculations to fail due to
60 extinction at low abundances. Indeed, a previous model by Neuhauser and Fargione (2004)
61 suggests that plant-mycorrhizal interactions should exhibit both Allee effects and consumer-
62 resource oscillations. This model, however, did not include nutrient-plant dynamics, the key
63 element that connect below-ground and above-ground processes. This makes it difficult to
64 ascertain whether a combination of Allee effects and oscillations drives the dynamics of real
65 plant-mycorrhizal systems.

66 We are not aware of any studies that have directly observed the dynamics of plant-
67 mycorrhizal communities. This is most likely due to the below-ground nature of these
68 interactions precluding the repeated fine-scale observations necessary to identifying dynamics.

69 Further complicating the matter is the finding that the dynamics of plant-mycorrhizal interactions
70 are strongly context-dependent, varying by nutrient availability, light intensity, host plant
71 identity, and other factors (Bryant & Bever, n.d.; Hoeksema et al., 2010; Koorem et al., 2017).
72 Addressing these challenges requires a theoretical framework that incorporates this context
73 dependence in generating predictions about dynamics and long-term persistence of plant-
74 mycorrhizal interactions. Although existing theory has improved our understanding of plant-
75 mycorrhizal interactions, the models used are largely phenomenological models and cannot make
76 predictions that can guide specific empirical systems (Hale & Valdovinos, 2021; Neuhauser &
77 Fargione, 2004). We need mechanistic theory that is rooted in the biology of plant-mycorrhizal
78 interactions that can predict outcomes in terms of measurable parameters and state variables.

79 Here we take a first step toward addressing this key gap in our knowledge. We develop a
80 mechanistic model of plant-mycorrhizal interactions that integrates the facilitative and
81 consumptive aspects of the interaction with explicit nutrient-plant dynamics. By parameterizing
82 the model with empirical data from the literature, we generate predictions about the range of
83 dynamical outcomes that are likely to occur in real plant-mycorrhizal systems. We specifically
84 explore the context-dependence of plant-mycorrhizal dynamics along a gradient of nutrient
85 availability. We frame our findings in terms of measurable parameters (e.g., soil nutrient supply)
86 and variables (e.g., biomass) that researchers working in plant-mycorrhizal systems can use to
87 identify dynamical patterns in the real communities.

88 **Mathematical Framework**

89 We consider a closed system with a constant nutrient input in which the total nutrient
90 availability sets the upper limit to the total biomass. This is a reasonable assumption given
91 biological stoichiometric constraints and mechanisms maintaining nutrient limitation in

92 terrestrial ecosystems (Ågren et al., 2012; Menge et al., 2009; Vitousek et al., 1998). The plant
93 species' growth and reproduction depend on an essential nutrient (e.g., Nitrogen, Phosphorous),
94 for which the individuals in the plant population compete. The nutrient is returned to the soil in
95 turn through plant turnover and metabolic losses (i.e., leaf litter, root turnover, plant mortality).
96 The plant may form an association with a mycorrhizal fungus that facilitates nutrient uptake in
97 exchange for carbohydrates that the plant produces via photosynthesis. We consider the *de novo*
98 assembly of the plant-mycorrhizal interaction in an initially empty habitat.

99 Initial colonizers of empty habitats (e.g., early successional plant species) tend to exhibit
100 strategies for resource acquisition that do not depend on mutualistic partners (Nara, 2006b;
101 Tilman, 1986). Initial colonizers are likely to be plant species that can acquire nutrients in the
102 absence of mycorrhizal fungi but have a higher nutrient uptake rate in the presence of such fungi
103 (Nara, 2006a). Secondary colonizers can be either facultative or obligate in their reliance on
104 mutualists for nutrient acquisition. Most mycorrhizal fungi are obligate root symbionts and
105 therefore dependent on the plant for carbon (Smith & Read 2010). We therefore consider
106 situations in which the plant can be either obligate or facultative on the benefits conferred by
107 mycorrhizal fungi, while the fungus always requires a plant host in order to grow. Both spores
108 and dormant hyphae in the soil are sources by which fungi encounter and form mycorrhizae with
109 plant roots (McGEE et al., 1997; Pepe et al., 2018; Schubert et al., 1987).

110 Mycorrhizal fungi that associate with plant roots constitute two major types. Arbuscular
111 mycorrhizal fungi (AMF) enter the host plant's root system, while ectomycorrhizal fungi (ECM)
112 form a hyphal sheath around the plant's roots without penetrating them. In both cases, the fungal
113 hyphae extend from roots into the surrounding soil to forage for nutrients (predominantly
114 Phosphorous in the case of AMF, both Nitrogen and Phosphorous in varying degrees in the case

115 of ECM; van der Heijden et al., 2015), which are then transferred to the plant in exchange for
 116 photosynthates across the root-hyphae interface (Fellbaum et al., 2012). When the benefit of
 117 nutrient uptake exceeds biomass consumption, the fungus acts as a facilitator; when biomass
 118 consumption exceeds the benefit provided to the plant, the fungus acts as an antagonist (a
 119 consumer rather than a facilitator).

120 We formalize these ideas in the following mathematical model:

$$\begin{aligned} \frac{dN(t)}{dt} &= b(S - N(t)) - a_P e_P P(t)N(t) \left(\frac{A(t)}{A(t) + M} + r_P \right) + e_P d_P P(t) + e_A d_A A(t) \\ \frac{dP(t)}{dt} &= a_P \left(\frac{A(t)}{A(t) + M} + r_P \right) N(t)P(t) - m_{AP} \left(\frac{P(t)}{P(t) + H} \right) A(t) - d_P P(t) \\ \frac{dA(t)}{dt} &= \frac{e_P}{e_A} m_{AP} \left(\frac{P(t)}{P(t) + H} \right) A(t) - d_A A(t) \end{aligned} \quad (1)$$

121 Where S is the soil nutrient supply point, b is the nutrient turnover rate, $N(t)$ is the nutrient
 122 availability at time t , and $P(t)$ and $A(t)$ denote, respectively, the biomasses of the plant and
 123 mycorrhizal fungus. The parameters e_P and e_A depict the nutrient to Carbon ratios, i.e., the
 124 number of grams of nutrient contained in one gram of plant and fungal biomass, respectively.
 125 Both facilitation of nutrient uptake by plants and plant biomass consumption by the fungus are
 126 given by Monod functions (Monod, 1949). The plant's nutrient acquisition rate is a saturating
 127 function of fungal density where a_P is the maximum nutrient uptake rate, achieved only in the
 128 presence of its mycorrhizal partner, and M is the biomass density of the fungus at which the plant
 129 species' uptake rate is half its maximum ($a_P/2$). The parameter r_P is the fractional reduction in the
 130 uptake rate in the absence of the fungus, i.e., in the absence of facilitation of nutrient uptake by
 131 the fungus, the plant species' nutrient uptake rate is $r_P a_P$ ($r_P = 0$ when the plant cannot survive

132 in the absence of the fungus). Of note, although this formulation means the theoretical maximum
 133 nutrient uptake rate the plant can attain is $(1 + r_p) * a_p > a_p$ as $A(t) \rightarrow \infty$, in our study fungal
 134 biomass is never high enough for the maximum $(1 + r_p) * a_p$ to exceed a_p . We therefore retain
 135 this formulation as it provides for greater analytical tractability. The fungal strain's maximum
 136 carbohydrate consumption rate is m_{AP} and H is the biomass density of the plant at which the
 137 fungus's uptake rate is $m_{AP}/2$. Nutrient is returned to the soil through plant and fungal metabolic
 138 losses (e.g., mortality) with rates d_p and d_A , respectively.

139 When the system is closed (e.g., in the limit that the turnover rate b is on the same order
 140 as the mortality rates d), the equation for nutrient dynamics can be replaced with the following
 141 mass balance constraint (Grover, 1994; Loreau, 1994, 1995):

$$142 \quad N(t) = S - e_p P(t) - e_A A(t)$$

143 Preliminary analyses indicate that the results are qualitatively similar when we use explicit
 144 nutrient dynamics (Equation (1)) rather than the mass balance constraint. We conduct all analyses
 145 of the model using the mass balance constraint.

146 Of note, our model formulation is such that nutrient dynamics are explicitly modeled
 147 rather than phenomenologically incorporated via a carrying capacity. This allows for a
 148 mechanistic exploration of population dynamics and the measurable parameters that drive the
 149 dynamics. In addition, our model is not specific to a particular nutrient or type of root-hyphal
 150 interface and thus provides a general framework that is applicable to any type of mycorrhizal
 151 association (e.g., AMF, ECM, etc).

152 Phase plane analysis of Equation (1) combined with asymptotic analysis of long-term
 153 outcomes (Appendix 1) yields insights into the dynamical behavior of the plant-fungal

154 interaction. Depending on the relative costs and benefits to the plant based on its association with
 155 the fungus, the system can exist in three dynamical realms:

156 1. When the benefits to the plant provided by the fungus exceed the costs they incur, the
 157 plant's abundance at equilibrium in the presence of the fungus ($P^*|_{A^* > 0}$) exceeds that in
 158 the absence of the fungus ($P^*|_{A^* = 0}$), causing the fungal strain's zero growth isocline to
 159 cross closer to the vertex of the plant species' zero growth isocline (Fig. 1(a)). This
 160 generates an Allee effect with two interior equilibria, the lower of which is unstable and
 161 the higher of which is locally stable (see Appendix 1 for details). As a result, when plant
 162 or fungal abundance falls below the lower interior equilibrium, the interaction goes
 163 deterministically extinct.

164 2. When the benefit to the plant is less than the cost, $P^*|_{A^* > 0} < P^*|_{A^* = 0}$ and the fungal isocline
 165 crosses further away from the vertex and closer to the y-axis (Fig. 1(b)). Now there is
 166 only a single interior equilibrium, which can be a stable focus attained via damped
 167 oscillations or an unstable focus surrounded by persistent oscillations (Appendix 1).

168 3. When r_P tends to zero, the plant becomes increasingly dependent on the fungus (the plant
 169 is obligate when $r_P = 0$), and there is no longer a boundary equilibrium with only the
 170 plant species present (Fig. 1(c)).

171 Of note, despite the fact that the fungus provides a benefit to the plant in facilitating nutrient
 172 acquisition, their interaction is that between a consumer and resource. This can be shown
 173 formally by inspecting the elements of the Jacobian matrix of Equation (1). The off-diagonal
 174 elements have opposite signs such that the plant has a positive effect on the fungus while the
 175 fungus has a negative effect on the plant (see Appendix 1 for details). This is because the plant
 176 species' equilibrium biomass in the presence of the fungus is independent of M , the parameter

177 that determines the fungus' beneficial effect on the plant. This is one of the few instances we are
 178 aware of in which an Allee effect emerges naturally in a mechanistic consumer-resource model.

179 The dynamical behavior of the plant-fungal interaction depends on six key parameters
 180 (a_P , r_P , M , m_{AP} , H , and S). The system exhibits an Allee effect and multiple equilibria when a_P
 181 and r_P are low (i.e., the plant is more reliant on the fungus for nutrient acquisition) *and* H is high
 182 and m_{AP} is low (i.e., the fungus does not remove a large amount of carbohydrate from the plant)
 183 (Fig. 1(a) and (b)). The parameter M determines the shape of the plant species' zero growth
 184 isocline and the magnitude of the fungal strain's equilibrial biomass (A^*). When M is low, the
 185 plant isocline has a higher peak and vertex and higher A^* than when M is high (compare Fig. 1(a)
 186 with (d) and (b) with (e)). As noted above, when r_P is high the plant is facultative and can persist
 187 on its own, becoming obligate when $r_P \rightarrow 0$ (Fig. 1(c)). When S is high, the plant species'
 188 isocline has a higher peak and vertex, and $P^*|_{A^*=0} \gg P^*|_{A^*>0}$ making an Allee effect less likely
 189 (Fig. 1(f)). When S is low, the peak and vertex both shrink, and $P^*|_{A^*=0} \ll P^*|_{A^*>0}$, making an
 190 Allee effect more likely provided H is high and m_{AP} is low.

191

192 **Model Analysis**

193 We used numerical simulations to test whether the predictions made based on the phase
 194 plane and asymptotic analyses in the previous section are realized when the model is
 195 parameterized using empirically observed values. Given that Nitrogen constitutes the most
 196 limiting nutrient for most plant species, we considered S to depict the soil mineral Nitrogen
 197 content. Based on published data (Ansorg Omari et al., 2018; Pastor et al., 1987), S varies in the
 198 range 0.001-7.0 g m⁻², with tropical soils containing less mineralized nitrogen than temperate

199 soils. In our analysis we used an average value of $S=1.0$ g m $^{-2}$. The mean Nitrogen: Carbon ratios
200 for plants (e_P) and ectomycorrhizal hyphae (e_A) are 0.027 (Elser et al., 2000, 2010) and 0.069
201 (Zhang & Elser, 2017), respectively. Marx et al. (2019) calculate an average maximum nitrogen
202 uptake rate by plants (a_P) of 0.17 ± 0.2 g day $^{-1}$ (mean \pm SD). The contribution of
203 ectomycorrhizae to plant nitrogen acquisition, which we use to estimate r_P , varies from 0-80%
204 (van der Heijden et al., 2015), although there are some types of plant-mycorrhizal interactions in
205 which plants are obligate. Metabolic loss rate for plants (d_P) is 0.01 g day $^{-1}$ from Marx et al.
206 (2019). To the best of our knowledge, metabolic theory has yet to be applied in a comparable
207 way to fungi (but see Aguilar-Trigueros et al., 2017), but it is reported that hyphal turnover is
208 rapid compared to plants (Godbolt et al., 2006; Staddon et al., 2003). We therefore used the plant
209 loss rate as a lower bound for the fungal metabolic loss rate (d_A). Using empirically observed
210 ranges of the other parameters we calculated the upper bound above which the interaction
211 becomes inviable to be 0.04 g day $^{-1}$. Since varying the loss rate within this range leads only to
212 quantitative differences in model outcomes, we set the fungal loss rate at 0.03 g day $^{-1}$. Hobbie
213 and Hobbie (2006) report mycorrhizal fungi consume between 0.08 and 0.17 day $^{-1}$ of the host
214 plant's primary productivity (m_{AP}), although field estimates sometimes vary more widely
215 (Hobbie, 2006; Smith & Read 2010). We did not find published data on the half-saturation
216 densities for plant nutrient uptake rate facilitation (M) or consumption of plant biomass by fungi
217 (H). We conducted a sensitivity analysis, using empirically observed ranges for other
218 parameters, to identify the values of these two parameters that allowed for a viable plant-
219 mycorrhizal interaction.

220 We varied the six parameters our predictions are based on (a_P , r_P , m_{AP} , M , H and S) and
221 fixed the conversion efficiencies and background loss rates of both species at their empirical

222 values (Table 1). We varied the uptake parameters within the empirically observed ranges: 0.07-
223 0.27 g day^{-1} for a_P and $0.08-0.17 \text{ day}^{-1}$ for m_{AP} , and the saturation parameters within the ranges
224 identified in our sensitivity analysis: 0.1-2.0 g for M and 0.08-36.8 g for H . We used 10 evenly
225 spaced values spanning each of these ranges. We varied r_P from 0 when the plant is obligate to
226 0.2 (plant can attain 20% of its maximum uptake rate in isolation) in increments of 0.05. We
227 varied S as a 20% decrease/increase of the baseline value ($S=1.0 \text{ g m}^{-2}$) to test the predictions
228 about the effects of nutrient scarcity/enrichment on plant-fungal dynamics.

229 For every unique parameter combination delineated in the previous paragraph
230 ($N=150,000$), we simulated the *de novo* assembly of the plant-mycorrhizal interaction. We
231 initiated each simulation with the plant biomass set to its fungus-free equilibrium ($P^*|_{A=0}$) and
232 the fungal biomass set to zero. After 20 years (7,900 timesteps) we introduced the fungus at a
233 biomass 50% greater than the Allee threshold if an Allee effect was present, or at 0.1 g if there
234 was no Allee effect. We then let each simulation proceed for another 100 years (36,500
235 timesteps), setting either species biomass to zero if they fell below an extinction threshold of
236 10^{-10} g . We calculated the average biomasses of the plant and fungus over the last year of the
237 simulation run. All simulations were conducted in Python version 3.8 using the RK45 method
238 employed by the *solve_ivp* function of the *scipy* library.

239 We conducted two analyses. We first classified the interactions into the three predicted
240 dynamical realms by comparing the long-term outcomes predicted by the phase plane and
241 asymptotic analyses (Fig 1; Appendix 1) with those emerging from the numerical simulations.
242 Cases in which the analytical methods predicted no interior equilibria and simulations showed no
243 positive long-term biomasses for plant or fungus were classified as infeasible. Of the feasible
244 cases, those in which both the plant and fungus had long-term biomasses exceeding the

245 extinction threshold were classified as persistent interactions. Cases in which the plant species
246 was obligate was identified on the basis of a negative boundary equilibrium (i.e., $Sa_P r_P \leq d_P$;
247 see Appendix 1), and those with an Allee effect on the basis of a positive lower interior
248 equilibrium. Persistent oscillatory interactions were identified based on two criteria: (i) long-term
249 biomasses did not converge to the analytically predicted interior equilibrium, and (ii) the
250 eigenvalues of the Jacobian matrix evaluated at the interior equilibrium had positive real parts.

251 Our second analysis involved three steps. First, we explored how the parameters a_P , r_P ,
252 m_{AP} , M , and H influenced the frequency of the three dynamical realms at the baseline nutrient
253 availability ($S=1.0$). Second, we varied S by 20% to investigate how nutrient depletion and
254 enrichment influenced plant-mycorrhizal dynamics and long-term dynamics. Third, we used our
255 data to generate decision trees (using *sklearn.tree* and *dtreeviz* packages) – procedural algorithms
256 for diagnosing the likely dynamics of a given system based on the measured values of key
257 parameters. We provide examples of these decision trees for classifying system dynamics based
258 on both the individual parameters as well as combinations of parameters which may be more
259 easily estimated by for real plant-mycorrhizal systems by empiricists.

260

261 **Results**

262 *Identifying dynamical realms*

263 Across the parameter space investigated, 46% of parameter combinations yielded feasible
264 plant-mycorrhizal interactions, half of which constituted persistent plant-fungal interactions in
265 our simulations (22% of all combinations). Of the feasible interactions that did not persist in the
266 long-term, the majority were those in which the plant was obligate and went extinct before the

fungus was introduced (Table 2). The next most frequent case was divergent oscillations leading to deterministic collapse, followed by deterministic extinction via the Allee effect. In the latter case, the initial fungal biomass we introduced, although 50% greater than the Allee threshold, was not sufficiently above the threshold to avoid extinction.

The most frequent dynamical realm observed in our simulations was stable coexistence of the plant and fungus with neither Allee effects nor oscillations (55.2% of persistent interactions; Table 2). The next most frequent were stable (e.g., non-oscillatory) interactions subject to an Allee threshold (28.8%), followed by interactions with persistent oscillations and no Allee effects (15.9%). Interactions exhibiting both persistent oscillations and Allee effects were relatively infrequent (0.1%).

Overall, the distribution of the dynamical realms in our numerical analysis agreed with the analytical predictions made by the phase plane and asymptotic analyses (Figure 1; Appendix 1). As expected, Allee effects (and in more extreme cases, mutually obligate interactions) were more likely when a_P and/or r_P were low, while oscillations (both persistent and divergent) were more likely when H was low and m_{AP} was high (Figure 2). The dynamics of persistent interactions with median-to-high values of a_P and r_P spanned all three realms and were driven largely by H and m_{AP} (lower m_{AP} and higher H led to Allee effects while the reverse led to oscillations; intermediate values produced systems with stable coexistence; Figure 2 (e, f, h)). Infeasible interactions occurred mainly when the fungus was too inefficient a consumer of plant biomass to support itself (Figure 2).

Changes in nutrient supply

288 Decreasing the nutrient supply point (S) drove more qualitative changes in system
289 dynamics than increasing it. Consistent with our expectations, of the persistent interactions that
290 had no Allee effects at the baseline nutrient supply ($S=1.0$), 39% exhibited Allee effects under a
291 20% nutrient reduction (Figure 3). Interactions that exhibited Allee effects at the baseline
292 nutrient supply were prone to collapse under a 20% nutrient reduction, with 75% becoming
293 infeasible due to insufficient nutrient availability to support a viable interaction. Of the persistent
294 interactions that exhibited oscillations under the baseline nutrient supply, 58% remained
295 unchanged while 14% became non-oscillatory, attaining a stable equilibrium, 10% had the plant
296 species become obligate, and 6% became non-oscillatory but exhibited an Allee effect (Figure 3).

297 Increasing the nutrient supply point by 20% had a less pronounced impact on system
298 dynamics, and changes conformed to our expectations. Most persistent interactions had the same
299 qualitative dynamics following nutrient enrichment, with the exception of 7% of stable
300 interactions becoming oscillatory and Allee effects disappearing from 73% of the interactions
301 that had previously exhibited them (73%). Virtually all oscillatory interactions remained
302 oscillatory following nutrient enrichment.

303 *Decision trees for diagnosing system dynamics*

304 Reflecting the parameter space investigation, our decision tree analysis identified H and
305 m_{AP} as the most instructive in diagnosing dynamics of plant-mycorrhizal interactions. In
306 particular, nearly all oscillatory systems occur when $H < 6.2$ and $m_{AP} > 0.115$ (Figure 4 (a)).
307 However, discerning Allee effects was less effective using the original parameters at the decision
308 tree depth that we used, likely due to the complex nature of the plant-fungal interdependence. We
309 found certain parameter combinations to be more effective at characterizing dynamics: the

310 plant's nutrient uptake rate in isolation ($a_P * r_P$) and the fungus' consumption efficiency at low
 311 plant biomass ($\log \left[\frac{m_{AP}}{H} \right]$; Figure 4(b)).

312 A decision tree trained on the composite parameters was more effective at distinguishing
 313 between interactions exhibiting different types of dynamics than the one trained on the original
 314 parameters (compare Figures 4(a) and (b)). Persistent oscillations were likely in interactions with
 315 high consumption efficiency ($\log \left[\frac{m_{AP}}{H} \right] > -3.598$), save for a small portion of these interactions
 316 which also had a high rate of nutrient uptake ($a_P * r_P > 0.0357$) that were more likely to be
 317 stable. Allee effects were most likely in systems with low consumption efficiency ($\log \left[\frac{m_{AP}}{H} \right] \leq$
 318 -4.92), especially when the plant's nutrient uptake rate was also low ($a_P * r_P \leq 0.02$; Figure
 319 4(b)). Interactions outside of these ranges mostly fell into the stable dynamical regime, with
 320 smaller frequencies of the other regimes also possible.

321

322 **Discussion**

323 *Overview*

324 Despite the foundational role they play in plant communities and global nutrient cycling
 325 (Smith & Read, 2010; van der Heijden et al., 2015), we lack a comprehensive understanding of
 326 the dynamics of plant-mycorrhizal interactions. Such an understanding would not only increase
 327 our ability to conserve natural plant-fungal communities facing the combined threats of global
 328 change (Staddon et al., 2002; Steidinger et al., 2020; Van Diepen et al., 2007) but also enhance
 329 the application of mycorrhizae in agricultural and restoration contexts, which often encounter
 330 uncertain outcomes (Corrêa et al., 2012; Solaiman & Mickan, 2014). These uncertainties may

331 well be due to destabilizing dynamics (such as Allee effects and oscillations) that may well occur
332 in these systems but, due to the below-ground nature of plant-mycorrhizal interactions, are hard
333 to observe or even predict.

334 Here we take a step toward filling this gap by developing a mechanistic, predictive
335 framework for plant-mycorrhizal interactions. Our aim is to help empiricists working on these
336 interactions to identify key dynamics and their drivers by testing predictions of mathematical
337 models with measurable parameters and state variables. The novelty of our approach is threefold.
338 First, we develop a mechanistic theoretical framework that integrates both the consumptive and
339 facilitative aspects of plant-mycorrhizal interactions. Second, we explicitly consider nutrient-
340 plant dynamics thus connecting below-ground and above-ground processes in a single
341 framework. Third, we parameterize the model with extensive empirical data from the literature,
342 which allows us to make reasonably accurate predictions of the possible dynamics and long-term
343 outcomes of real plant-mycorrhizal interactions.

344 We report three key findings. First, we find that plant-mycorrhizal interactions can
345 exhibit a wide range of dynamics, including Allee effects as well as persistent consumer-resource
346 oscillations. Second, we find that these dynamics can be inferred using measurable parameters
347 and plant and fungal biomass patterns in the field. Third, we find a strong impact of nutrient
348 availability on plant-mycorrhizal interactions with nutrient scarcity increasing the incidence of
349 Allee effects and deterministic extinction at low abundances and nutrient enrichment inducing
350 consumer-resource oscillations in otherwise stable systems, or amplifying existing oscillations to
351 the point of interaction collapse. Below we discuss how these findings can guide further
352 experimental work as well as the restoration of degraded communities.

353 *Inferring plant-mycorrhizal dynamics*

354 The ability to accurately infer the dynamics of plant-mycorrhizal interactions (and their
355 underlying drivers) is essential in restoration. Restoration efforts in which both native plant
356 species and fungal symbionts are introduced at low initial biomasses may fail due to hidden
357 Allee effects that cause extinction when initial biomasses are insufficiently high (Armstrong &
358 Wittmer, 2011; Deredec & Courchamp, 2007). Whether this accounts for the often-unpredictable
359 success of mycorrhizal inoculation is not yet known (but see Verbruggen et al., 2013). Based on
360 our parameter space investigation, Allee effects are likely prevalent in many plant-mycorrhizal
361 associations, especially those in which the fungus is more facilitative than consumptive and those
362 in nutrient-poor habitats. The ability to infer the existence of Allee effects based on measurable
363 parameters and biomass patterns (e.g., a steady decline in plant and fungal biomasses following
364 inoculation) would greatly aid managers engaging in restoration efforts to introduce fungal
365 inoculants in sufficiently high initial biomass and to supplement nutrients if the soils tend to be
366 nutrient-poor.

367 More generally, our mechanistic framework and decision tree analysis provide a
368 quantitative roadmap that empiricists can use to infer the dynamics of the specific plant-
369 mycorrhizal systems being studied. The specific parameter thresholds we identified correspond
370 to a three-branching decision tree, but our available simulation data can be used to generate
371 diagnostic trees of any depth or precision. For a given plant-mycorrhizal system, dynamics can
372 be predicted by measuring key parameters and following the decision key diagnostic protocol. As
373 we have shown, whether or not a given interaction is likely to exhibit an Allee effect can be
374 determined by the plant's nutrient uptake rate in the absence of the fungus ($a_P * r_P$) and the
375 fungus' consumption efficiency at low plant biomass ($\frac{m_{AP}}{H}$) (Figure 4 (b)). While the former can
376 be measured using a number of well-established methods (e.g., Chapin & Van Cleve, 2000; Weih

377 et al., 2018, and citations therein), the latter requires fitting Monod growth curves for
378 mycorrhizal fungi (Monod, 1949). This can be done by introducing fungal inoculates across a
379 range of available host root biomass and measuring fungal biomass growth rates or a proxy such
380 as hyphal growth, optical density, or root colonization (Hameed et al., 2024; Schnepf et al., 2007,
381 2016).

382 *The role of nutrient availability in driving plant-mycorrhizal interactions*

383 Our results show the overriding importance of soil nutrient availability in driving the
384 dynamics of plant-mycorrhizal interactions, with important implications for agriculture,
385 restoration, and conservation. Nutrient depletion increases the plant's dependence on the fungus,
386 increasing the likelihood of both Allee effects and interaction collapse due to divergent
387 oscillations; nutrient surplus reduces this dependence but can lead to consumer-resource
388 oscillations reminiscent of the paradox of enrichment (Rosenzweig, 1971). While we only
389 considered moderate (20%) increase or decrease in nutrient availability, natural plant-
390 mycorrhizal communities exposed to increased Nitrogen or Phosphorous deposition from
391 fertilizer runoff or soil degradation via logging and agricultural intensification may experience
392 much higher levels of enrichment and depletion (Dentener et al., 2006; Kopittke et al., 2017;
393 Marx et al., 2019; Murty et al., 2002).

394 Nutrient supply change in either direction can destabilize plant-mycorrhizal interactions,
395 increasing their extinction risk. A nutrient deficit in the soil can cause fungal biomass to fall
396 below the Allee threshold, causing deterministic extinction of the fungus. In contrast, a nutrient
397 surplus can cause divergent oscillations leading to interaction collapse, especially when the
398 fungus has a high maximum uptake rate (m_{AP}) and a low half-saturation density (H). Even in
399 oscillatory systems not subject to deterministic interaction collapse, the high-amplitude

400 oscillations under enrichment can predispose species to extinction via demographic stochasticity
401 during periods of low biomass densities. Temporal and spatial variation in nutrient availability,
402 commonly observed in many plant communities (Jackson & Caldwell, 1993; Xue et al., 2019),
403 could not only affect where a plant-mycorrhizal interaction can establish, but also how it
404 functions and whether it is prone to extinction due to dynamical instabilities. Our findings
405 highlight the critical role that nutrient supply plays in the context dependency of plant-
406 mycorrhizal interactions, emphasizing the importance of measuring soil nutrient availability
407 prior to inoculating the soil during restoration efforts, or applying additional fertilizer in
408 agricultural settings.

409 In situations where the decision tree protocol is not feasible, our results provide an
410 alternative approach to inferring the dynamics of plant-mycorrhizal interactions. The existence of
411 an Allee effect can be inferred by comparing long-term plant growth without and without a
412 mycorrhizal inoculum across a range of soil nutrient densities. As predicted by our analyses, an
413 Allee effect is likely to be present if the plant's long-term biomass is increased by the presence of
414 a fungal symbiont (Figure 1). Our finding is that there is a critical nutrient supply below which
415 the facilitative component of the fungus' interaction with the plant exceeds the consumptive
416 component causing an increase in the plant's long-term biomass in the presence of the fungus.
417 Above this threshold, the fungus either reduces the long-term plant biomass if the interaction is
418 stable or causes persistent or divergent fluctuations in plant and fungal abundances. It is possible
419 to distinguish between these outcomes by recording plant and fungal biomasses across a range of
420 soil nutrient availability, and comparing biomasses with and without the fungus and determining
421 whether biomasses remain relatively stable over time or exhibit fluctuations. Repeating this
422 process for several commercially available fungal inoculants, crop species, and nutrient

423 conditions is admittedly time consuming and labor intensive but can yield important insights into
424 choosing inoculants and growing conditions that maximize the efficacy of mycorrhizal
425 applications in restoration and agriculture.

426 *Limitations and future directions*

427 Our model considers a pairwise plant-mycorrhizal interaction that utilizes a single
428 limiting nutrient. This is both because we need to understand the dynamics of pairwise
429 interactions before we consider multi-species communities and for the analytical tractability
430 necessary to generate *a priori* predictions that could be tested via numerical simulations.
431 Extending our model to include multiple-plant fungal interactions utilizing multiple limiting
432 nutrients is an important future direction. Given that plants in most soils are limited primarily by
433 either Nitrogen or Phosphorous (Du et al., 2020; Marx et al., 2019; Menge et al., 2009),
434 incorporating both N and P limitation is a logical next step. Similarly, multiple fungal species
435 may compete for the biomass of shared plant hosts, and both plants and fungi may compete for
436 the mutualistic benefits conferred by partner species (Johnson & Amarasekare, 2013; van der
437 Heijden et al., 2015). Extending our model to incorporate plant and fungal competition can yield
438 broader insights plant-mycorrhizal community persistence in both natural and agricultural
439 settings.

440

441

442

443

444 **Tables**

445 Table 1: Parameter values and ranges used in the numerical analysis.

Parameter	Value/Range	Units	Citations
Nutrient supply point (S)	0.01-7.0 ¹ (1.0±0.2 used)	g N m ⁻²	Ansong Omari et al., 2018; Pastor et al., 1987
Plant maximum nutrient uptake rate (a_P)	0.17±0.2 ²	g N ⁻¹ day ⁻¹	Marx et al., 2019
Fungus maximum plant C uptake rate (m_{AP})	0.08-0.17	day ⁻¹	Hobbie & Hobbie 2006
Plant half saturation constant (M)	0.1-2.0	g	This study
Fungus half saturation constant (H)	0.08-36.8	g	This study
Fractional reduction in uptake rate (r_P)	0.0-1.0 (0.0-0.2 used)	None	van der Heijden et al., 2015
Plant Nitrogen:Carbon ratio (e_P)	0.027	g N / g C	Elser et al., 2000, 2010
Fungus Nitrogen:Carbon ratio (e_A)	0.069	g N / g C	Zhang & Elser, 2017
Plant metabolic loss rate (d_P)	0.01	g day ⁻¹	Marx et al., 2019
Fungal metabolic loss rate (d_A)	0.03	g day ⁻¹	This study

446 1. Parameter ranges given in this format indicate observed ranges for which there was not an identifiable
 447 mean and standard error. For nutrient supply point, we used a median value of 1.0 g N m⁻² for all
 448 simulations.

449 2. The empirical range for a_{Pi} is given as mean±SE. We used a_{Pi} values in the range 0.07-0.27 g N⁻¹ day⁻¹
 450 for the simulations, which are within the 95% confidence interval.

451

452

453

454

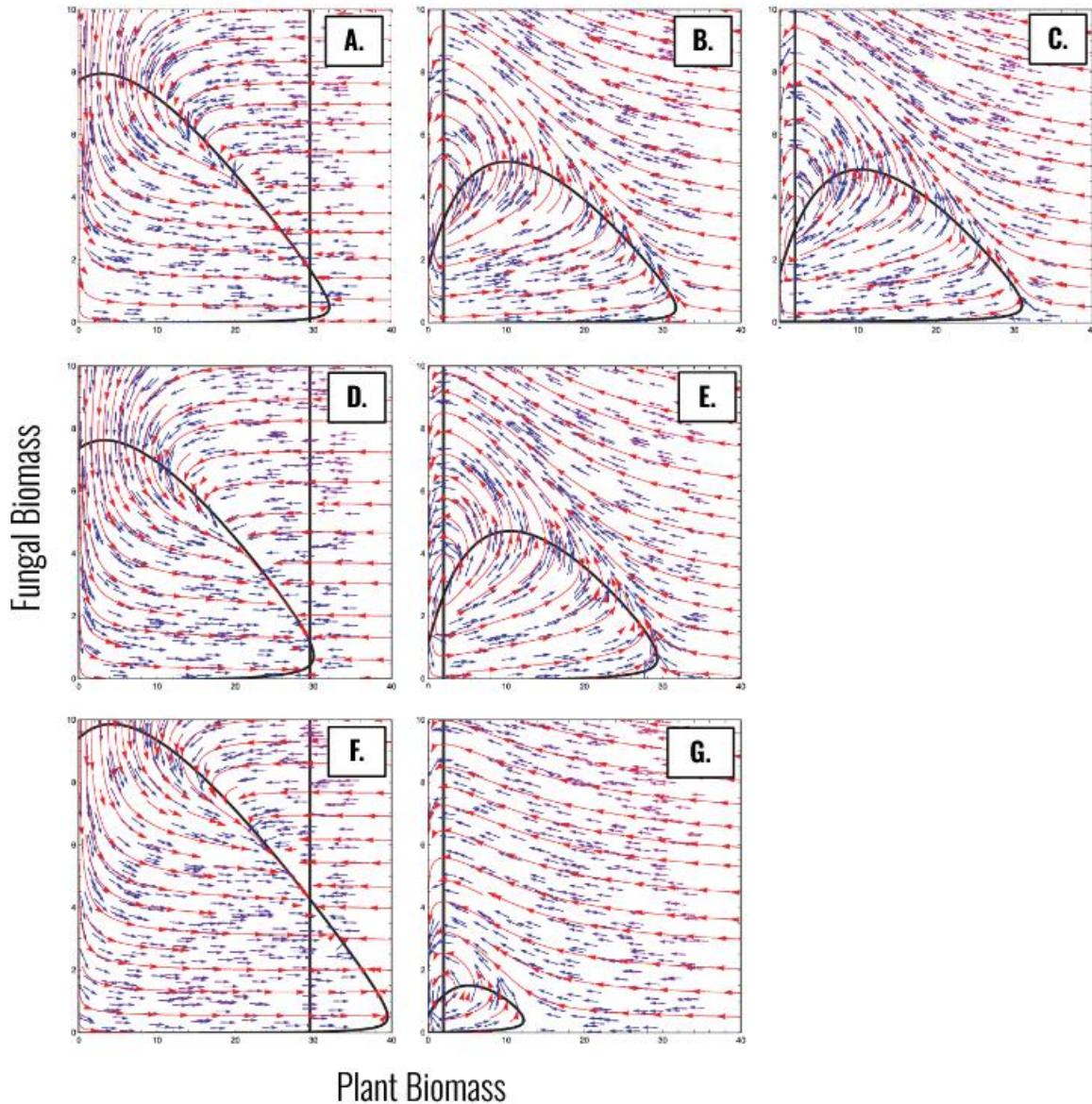
455

456 Table 2: Occurrence of different plant-mycorrhizal dynamical realms across the empirically
 457 observed parameter space. The “All Systems” column indicates the numbers of parameter
 458 combinations that were predicted to yield a given dynamical regime based on the asymptotic
 459 analyses. The “Persistent Systems” column indicates the same for systems that exhibited long-
 460 term persistence in our numerical simulations.

Dynamical Regime	Count	
	All systems (analytical)	Persistent systems (numerical)
Infeasible	80,975	8 ¹
No Allee effect, No Oscillations	17,851	17,849
Allee effect, no oscillations	15,437	9,298
Oscillatory, no Allee effect	14,549	5,141
Oscillatory with Allee effect	608	33
Obligate systems ²	20,580	0
Total	150,000	32,329

461 ¹All infeasible systems that remained persistent at the end of the simulation run were in a state of
 462 transient persistence in which the fungus was decreasing but had not yet crossed the extinction
 463 threshold. Increasing simulation runtime by 50% led to extinctions in all 8 cases.

464 ²Meaning both the plant *and* fungus are obligate on partners. Such systems are always subject to
 465 Allee effects, but we did not differentiate between oscillatory and non-oscillatory, since in our
 466 assembly framework all such interactions go extinct before introduction of the fungus.

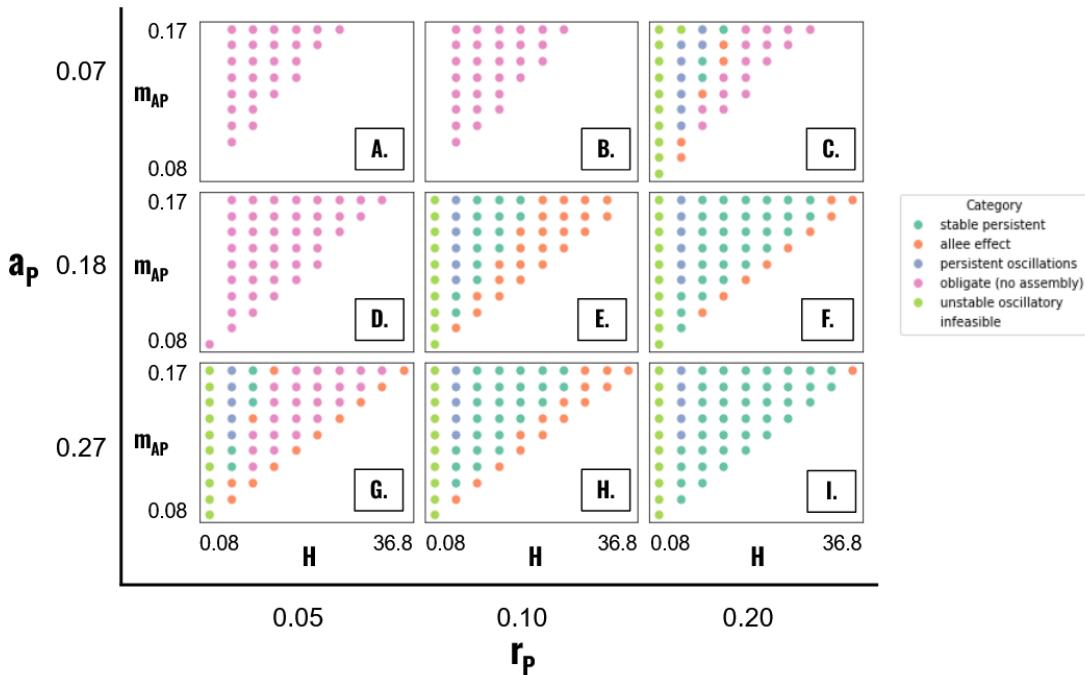

467

468

469

470

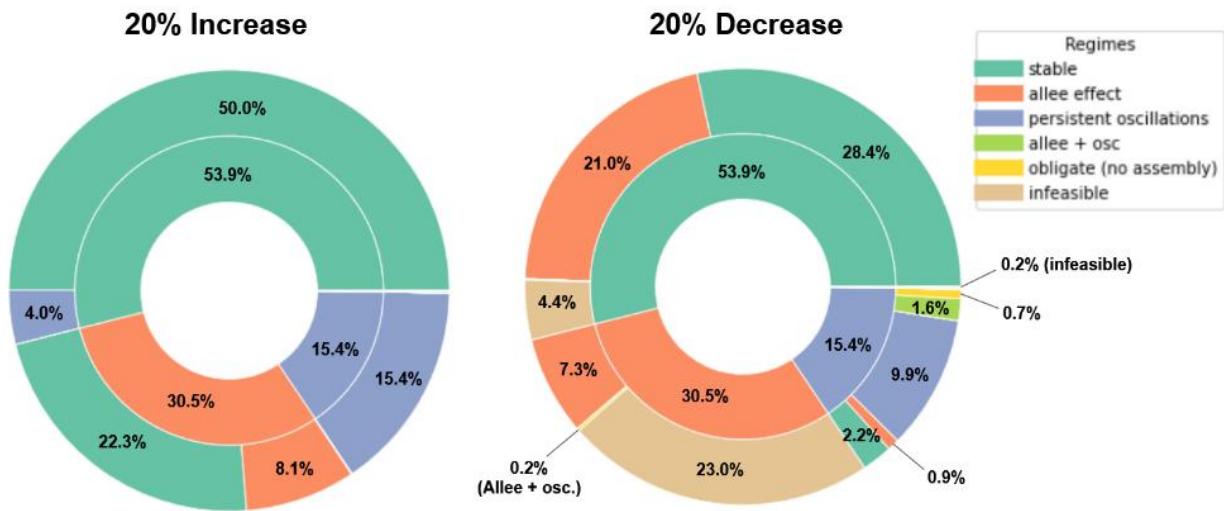
471


472 **Figures**

473

474 Figure 1: Phase plane diagrams for the plant-mycorrhizal model (Equation (1)). In all panels, the
 475 solid black curve and the solid vertical line depict, respectively, the zero growth isoclines for the
 476 plant species and the mycorrhizal fungal strain. The points at which the isoclines cross in the
 477 interior of the state space constitute interior equilibria with both plant and fungus present; the
 478 point at which the plant isocline crosses the x-axis constitutes the boundary equilibrium with only

479 the plant present. The model yields three dynamical realms (panels (a)-(c)). When the fungal
480 isocline crosses to the right of the maximum of the plant isocline and closer to its vertex (a_P and r_P
481 are low relative to d_P , H is high and m_{AP} is low), the interaction exhibits an Allee effect giving rise to
482 two internal equilibria the larger of which is locally stable and the smaller is locally unstable (panel
483 (a); $S=1.0$, $a_P = 0.2$; $r_P = 0.1$; $M = 0.6$; $m_{AP} = 0.1$; $H = 9.0$; See Appendix 1 for details). When the
484 fungal isocline crosses to the left of the maximum and farther away from the vertex (H is lower and
485 m_{AP} is higher), the Allee effect disappears and there is a single internal equilibrium that is either
486 locally stable or unstable with persistent oscillations around it (panel (b): $m_{AP} = 0.15$; $H = 1.9$). As r_P
487 tends to zero and the plant becomes increasingly dependent on the fungus, there is no longer a
488 feasible boundary (plant-only) equilibrium (panel (c); $r_P=0.02$). Panels (d) and (e) depict the effect
489 of M on the plant-fungal interaction. When there is an Allee effect and M is high (panel (d), $M=1.5$),
490 the plant's zero growth isocline has a lower maximum and a vertex leading to a lower equilibrium
491 biomass for the fungus (compare panels (a) and (d)). We see the same effect when there is no Allee
492 effect (panel (d), $M=1.5$; compare panels (b) and (e)). Panels (f) and (g) depict the effect of S on the
493 plant-fungal interaction. When S is relatively high (panel (f), $S=1.2$), the plant is less dependent on
494 the fungus for nutrient acquisition and the Allee effect disappears (compare panels (a) and (f)).
495 When S is low (panel (g), $S=0.8$), the plant becomes more dependent on the fungus, making an
496 Allee effect more likely (compare panels (b) and (g)). Parameters common to all panels: $e_P=0.027$,
497 $e_A=0.069$, $d_P=0.01$, $d_A=0.03$. For panels (b) and (d)-(f), the other parameters same as in panel (a).
498 For panel (c), the other parameters are the same as in panel (b).


499

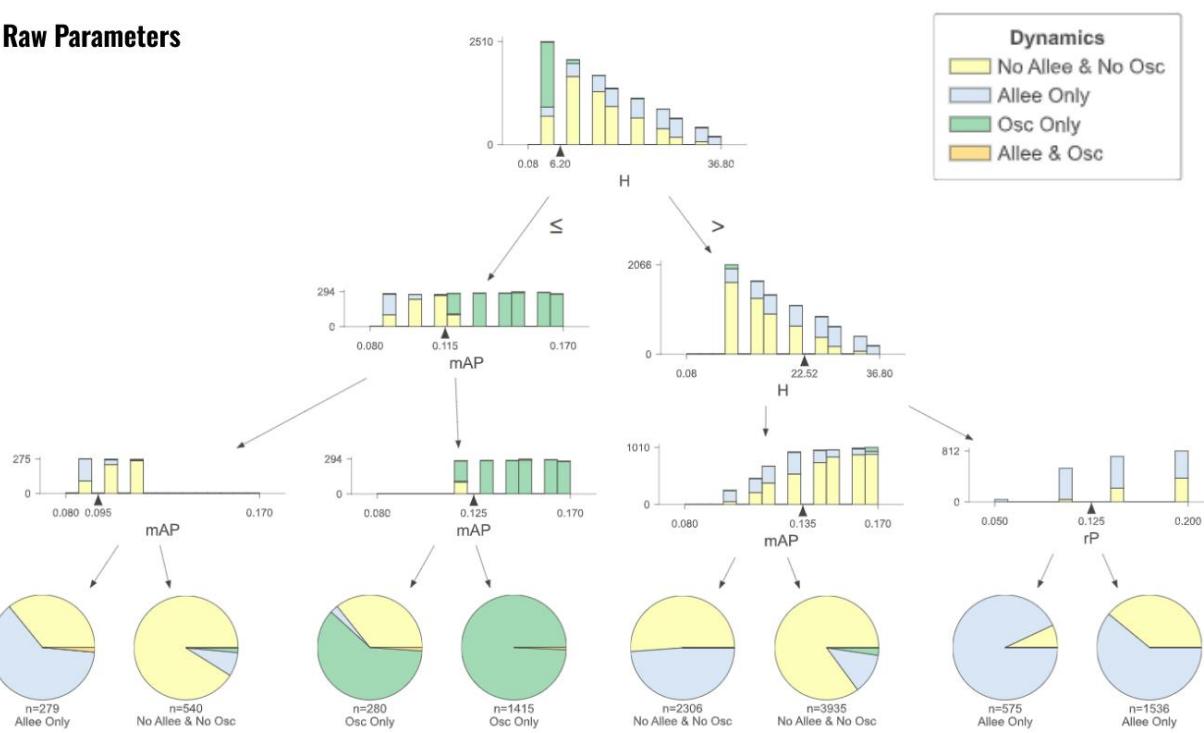
500

501 Figure 2: The effects of key parameters (a_P, r_P, m_{AP}, H) on the dynamical realms exhibited by the plant-
 502 mycorrhizal interaction. The main plot depicts the distribution of dynamical regimes as a function
 503 of a_P and r_P , while each subplot depicts the distribution as a function of m_{AP} and H . Because no
 504 interactions could assemble when $r_P=0$, we use the next lowest value (0.05) as the “minimum” for
 505 this parameter. The remaining parameters (S, M) are held at their median values. In all subplots, the
 506 white regions in the lower right depict the parameter space of infeasible interactions.

507

508

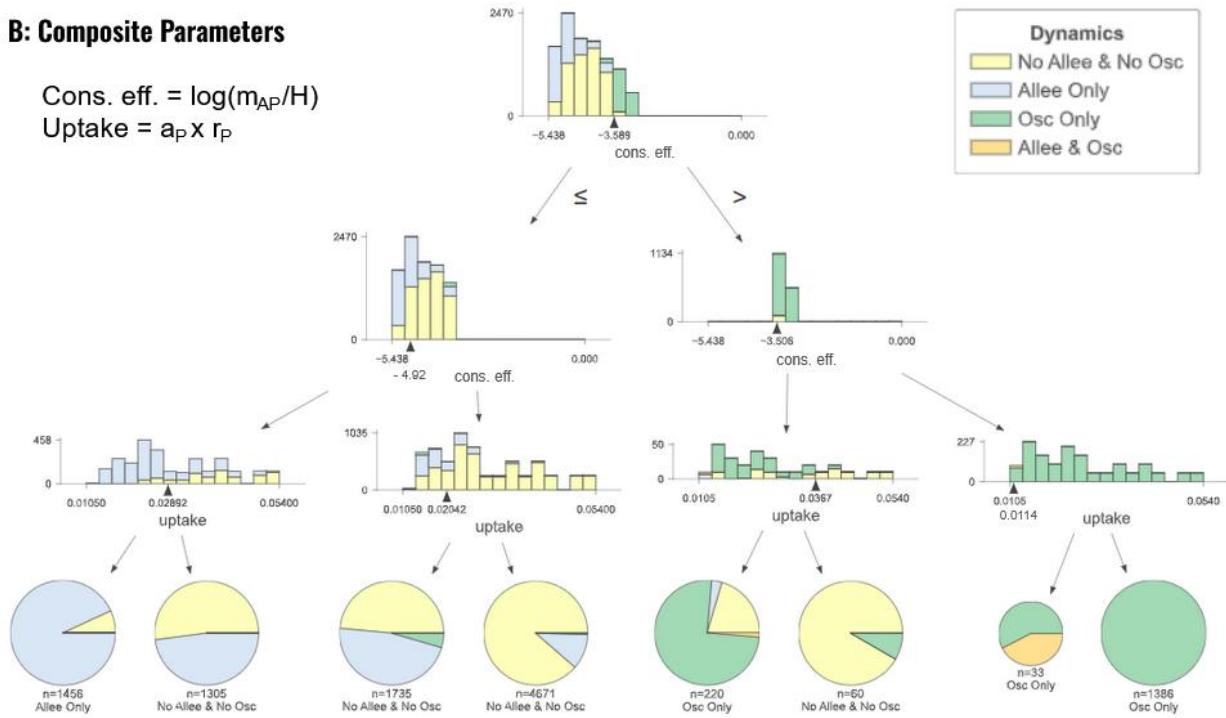
509 Figure 3: Nested pie charts illustrating the shift in dynamical realms following a change in the soil
 510 nutrient supply. In both panels, the inner ring shows the distribution of dynamical realms for
 511 persistent plant-mycorrhizal interactions at the baseline nutrient supply point ($S = 1.0 \text{ g m}^{-2}$). The
 512 outer rings depict the fractional distribution of these regimes after nutrient depletion or
 513 enrichment. Both the inner and outer rings add up to 100% (the remainders being made up of trace
 514 wedges with annotations omitted here for clarity).


515

516

517

A: Raw Parameters


518

B: Composite Parameters

$$\text{Cons. eff.} = \log(m_{AP}/H)$$

$$\text{Uptake} = a_P \times r_P$$

519

520 Figure 4: Decision trees for diagnosing plant-mycorrhizal interaction dynamics based on

521 measurable parameters (A) and combinations thereof (B). Trees were developed based on all

522 simulated interactions at S=1.0 in which both the plant and fungus were persistent at the end of the
523 simulation run.

524

525 Literature Cited

526 Ågren, G. I., Wetterstedt, J. Å. M., & Billberger, M. F. K. (2012). Nutrient limitation on terrestrial plant
527 growth – modeling the interaction between nitrogen and phosphorus. *New Phytologist*,
528 194(4), 953–960. <https://doi.org/10.1111/j.1469-8137.2012.04116.x>

529 Aguilar-Trigueros, C. A., Rillig, M. C., & Crowther, T. W. (2017). Applying allometric theory to fungi.
530 *The ISME Journal*, 11(10), Article 10. <https://doi.org/10.1038/ismej.2017.86>

531 Ansong Omari, R., Bellingrath-Kimura, D. S., Fujii, Y., Sarkodee-Addo, E., Appiah Sarpong, K., &
532 Oikawa, Y. (2018). Nitrogen Mineralization and Microbial Biomass Dynamics in Different
533 Tropical Soils Amended with Contrasting Organic Resources. *Soil Systems*, 2(4), Article 4.
534 <https://doi.org/10.3390/soilsystems2040063>

535 Armstrong, D. P., & Wittmer, H. U. (2011). Incorporating Allee effects into reintroduction strategies.
536 *Ecological Research*, 26(4), 687–695. <https://doi.org/10.1007/s11284-011-0849-9>

537 Asmelash, F., Bekele, T., & Birhane, E. (2016). The Potential Role of Arbuscular Mycorrhizal Fungi in
538 the Restoration of Degraded Lands. *Frontiers in Microbiology*, 7.
539 <https://doi.org/10.3389/fmicb.2016.01095>

540 Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants:
541 Understanding the global diversity of host plants by resolving conflicting information and
542 developing reliable means of diagnosis. *Plant and Soil*, 320(1), 37–77.
543 <https://doi.org/10.1007/s11104-008-9877-9>

544 Bryant, R. L., & Bever, J. D. (n.d.). Context dependence of grassland plant response to arbuscular
545 mycorrhizal fungi: The influence of plant successional status and soil resources. *Journal of
546 Ecology*, n/a(n/a). <https://doi.org/10.1111/1365-2745.14424>

547 Chapin, F. S., & Van Cleve, K. (2000). Approaches to studying nutrient uptake, use and loss in
548 plants. In R. W. Pearcy, J. R. Ehleringer, H. A. Mooney, & P. W. Rundel (Eds.), *Plant
549 Physiological Ecology: Field methods and instrumentation* (pp. 185–207). Springer
550 Netherlands. https://doi.org/10.1007/978-94-010-9013-1_10

551 Corrêa, A., Gurevitch, J., Martins-Loução, M. A., & Cruz, C. (2012). C allocation to the fungus is not a
552 cost to the plant in ectomycorrhizae. *Oikos*, 121(3), 449–463.
553 <https://doi.org/10.1111/j.1600-0706.2011.19406.x>

554 Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A. M., Hauglustaine, D., Horowitz,
555 L. W., Krol, M., Kulshrestha, U. C., Lawrence, M., Galy-Lacaux, C., Rast, S., Shindell, D.,
556 Stevenson, D., Van Noije, T., Atherton, C., Bell, N., Bergman, D., ... Wild, O. (2006). Nitrogen
557 and sulfur deposition on regional and global scales: A multimodel evaluation. *Global
558 Biogeochemical Cycles*, 20(4). <https://doi.org/10.1029/2005GB002672>

559 Deredec, A., & Courchamp, F. (2007). Importance of the Allee effect for reintroductions.
560 *Écoscience*, 14(4), 440–451. [https://doi.org/10.2980/1195-6860\(2007\)14\[440:IOTAEF\]2.0.CO;2](https://doi.org/10.2980/1195-6860(2007)14[440:IOTAEF]2.0.CO;2)

562 Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X., &
563 Jackson, R. B. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation.
564 *Nature Geoscience*, 13(3), Article 3. <https://doi.org/10.1038/s41561-019-0530-4>

565 Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., Interlandi, S.,
566 Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E. H., & Sterner, R. W. (2000). Nutritional

567 constraints in terrestrial and freshwater food webs. *Nature*, 408(6812), Article 6812.

568 <https://doi.org/10.1038/35046058>

569 Elser, J. J., Fagan, W. F., Kerkhoff, A. J., Swenson, N. G., & Enquist, B. J. (2010). Biological

570 stoichiometry of plant production: Metabolism, scaling and ecological response to global

571 change. *New Phytologist*, 186(3), 593–608. <https://doi.org/10.1111/j.1469-8137.2010.03214.x>

572

573 Fellbaum, C. R., Gachomo, E. W., Beesetty, Y., Choudhari, S., Strahan, G. D., Pfeffer, P. E., Kiers, E.

574 T., & Bücking, H. (2012). Carbon availability triggers fungal nitrogen uptake and transport in

575 arbuscular mycorrhizal symbiosis. *Proceedings of the National Academy of Sciences*,

576 109(7), 2666–2671. <https://doi.org/10.1073/pnas.1118650109>

577 Fester, T., & Sawers, R. (2011). Progress and Challenges in Agricultural Applications of Arbuscular

578 Mycorrhizal Fungi. *Critical Reviews in Plant Sciences*, 30(5), 459–470.

579 <https://doi.org/10.1080/07352689.2011.605741>

580 Godbold, D. L., Hoosbeek, M. R., Lukac, M., Cotrufo, M. F., Janssens, I. A., Ceulemans, R., Polle, A.,

581 Velthorst, E. J., Scarascia-Mugnozza, G., De Angelis, P., Miglietta, F., & Peressotti, A. (2006).

582 Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic

583 Matter. *Plant and Soil*, 281(1), 15–24. <https://doi.org/10.1007/s11104-005-3701-6>

584 Grover, J. P. (1994). Assembly Rules for Communities of Nutrient-Limited Plants and Specialist

585 Herbivores. *The American Naturalist*, 143(2), 258–282. <https://doi.org/10.1086/285603>

586 Hale, K. R. S., & Valdovinos, F. S. (2021). Ecological theory of mutualism: Robust patterns of stability

587 and thresholds in two-species population models. *Ecology and Evolution*, 11(24), 17651–

588 17671. <https://doi.org/10.1002/ece3.8453>

589 Hameed, T., Motsi, N., Bignell, E., & Tanaka, R. J. (2024). Inferring fungal growth rates from optical
590 density data. *PLOS Computational Biology*, 20(5), e1012105.
591 <https://doi.org/10.1371/journal.pcbi.1012105>

592 Hart, M. M., & Reader, R. J. (2002). Host plant benefit from association with arbuscular mycorrhizal
593 fungi: Variation due to differences in size of mycelium. *Biology and Fertility of Soils*, 36(5),
594 357–366. <https://doi.org/10.1007/s00374-002-0539-4>

595 Hobbie, E. A. (2006). Carbon Allocation to Ectomycorrhizal Fungi Correlates with Belowground
596 Allocation in Culture Studies. *Ecology*, 87(3), 563–569. <https://doi.org/10.1890/05-0755>

597 Hobbie, J. E., & Hobbie, E. A. (2006). 15n in Symbiotic Fungi and Plants Estimates Nitrogen and
598 Carbon Flux Rates in Arctic Tundra. *Ecology*, 87(4), 816–822. [https://doi.org/10.1890/0012-9658\(2006\)87\[816:NISFAP\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2)

600 Hoeksema, J. D., Chaudhary, V. B., Gehring, C. A., Johnson, N. C., Karst, J., Koide, R. T., Pringle, A.,
601 Zabinski, C., Bever, J. D., Moore, J. C., Wilson, G. W. T., Klironomos, J. N., & Umpanhowar, J.
602 (2010). A meta-analysis of context-dependency in plant response to inoculation with
603 mycorrhizal fungi. *Ecology Letters*, 13(3), 394–407. <https://doi.org/10.1111/j.1461-0248.2009.01430.x>

605 Holland, J. N., & DeAngelis, D. L. (2010). A consumer–resource approach to the density-dependent
606 population dynamics of mutualism. *Ecology*, 91(5), 1286–1295. <https://doi.org/10.1890/09-607 1163.1>

608 Jackson, R. B., & Caldwell, M. M. (1993). The Scale of Nutrient Heterogeneity Around Individual
609 Plants and Its Quantification with Geostatistics. *Ecology*, 74(2), 612–614.
610 <https://doi.org/10.2307/1939320>

611 Johnson, C. A., & Amarasekare, P. (2013). Competition for benefits can promote the persistence of
612 mutualistic interactions. *Journal of Theoretical Biology*, 328, 54–64.
613 <https://doi.org/10.1016/j.jtbi.2013.03.016>

614 Koorem, K., Tulva, I., Davison, J., Jairus, T., Öpik, M., Vasar, M., Zobel, M., & Moora, M. (2017).
615 Arbuscular mycorrhizal fungal communities in forest plant roots are simultaneously shaped
616 by host characteristics and canopy-mediated light availability. *Plant and Soil*, 410(1), 259–
617 271. <https://doi.org/10.1007/s11104-016-3004-0>

618 Kopittke, P. M., Dalal, R. C., Finn, D., & Menzies, N. W. (2017). Global changes in soil stocks of
619 carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural
620 production. *Global Change Biology*, 23(6), 2509–2519. <https://doi.org/10.1111/gcb.13513>

621 Koziol, L., Lubin, T., & Bever, J. D. (2024). An assessment of twenty-three mycorrhizal inoculants
622 reveals limited viability of AM fungi, pathogen contamination, and negative microbial effect
623 on crop growth for commercial products. *Applied Soil Ecology*, 202, 105559.
624 <https://doi.org/10.1016/j.apsoil.2024.105559>

625 Loreau, M. (1994). Material Cycling and the Stability of Ecosystems. *The American Naturalist*,
626 143(3), 508–513. <https://doi.org/10.1086/285616>

627 Loreau, M. (1995). Consumers as Maximizers of Matter and Energy Flow in Ecosystems. *The
628 American Naturalist*, 145(1), 22–42. <https://doi.org/10.1086/285726>

629 Maltz, M. R., & Treseder, K. K. (2015). Sources of inocula influence mycorrhizal colonization of
630 plants in restoration projects: A meta-analysis. *Restoration Ecology*, 23(5), 625–634.
631 <https://doi.org/10.1111/rec.12231>

632 Marx, J. M., Rall, B. C., Phillips, H. R. P., & Brose, U. (2019). Opening the black box of plant nutrient
633 uptake under warming predicts global patterns in community biomass and biological
634 carbon storage. *Oikos*, 128(10), 1503–1514. <https://doi.org/10.1111/oik.06141>

635 McGEE, P. A., Pattinson, G. S., Heath, R. A., Newman, C. A., & Allen, S. J. (1997). Survival of
636 propagules of arbuscular mycorrhizal fungi in soils in eastern Australia used to grow cotton.
637 *The New Phytologist*, 135(4), 773–780. <https://doi.org/10.1046/j.1469-8137.1997.00709.x>

638 Menge, D. N. L., Pacala, S. W., & Hedin, L. O. (2009). Emergence and Maintenance of Nutrient
639 Limitation over Multiple Timescales in Terrestrial Ecosystems. *The American Naturalist*,
640 173(2), 164–175. <https://doi.org/10.1086/595749>

641 Monod, J. (1949). The Growth of Bacterial Cultures. *Annual Review of Microbiology*, 3(1), 371–394.
642 <https://doi.org/10.1146/annurev.mi.03.100149.002103>

643 Murty, D., Kirschbaum, M. U. F., Mcmurtrie, R. E., & Mcgilvray, H. (2002). Does conversion of forest
644 to agricultural land change soil carbon and nitrogen? A review of the literature. *Global
645 Change Biology*, 8(2), 105–123. <https://doi.org/10.1046/j.1354-1013.2001.00459.x>

646 Nara, K. (2006a). Ectomycorrhizal networks and seedling establishment during early primary
647 succession. *New Phytologist*, 169(1), 169–178. <https://doi.org/10.1111/j.1469-8137.2005.01545.x>

649 Nara, K. (2006b). Pioneer dwarf willow may facilitate tree succession by providing late colonizers
650 with compatible ectomycorrhizal fungi in a primary successional volcanic desert. *New
651 Phytologist*, 171(1), 187–198. <https://doi.org/10.1111/j.1469-8137.2006.01744.x>

652 Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M., & Standish, R. J. (2019). Benefits of mycorrhizal
653 inoculation to ecological restoration depend on plant functional type, restoration context
654 and time. *Fungal Ecology*, 40, 140–149. <https://doi.org/10.1016/j.funeco.2018.05.004>

655 Neuhauser, C., & Fargione, J. E. (2004). A mutualism–parasitism continuum model and its
656 application to plant–mycorrhizae interactions. *Ecological Modelling*, 177(3), 337–352.
657 <https://doi.org/10.1016/j.ecolmodel.2004.02.010>

658 Pastor, J., Stillwell, M. A., & Tilman, D. (1987). Nitrogen mineralization and nitrification in four
659 Minnesota old fields. *Oecologia*, 71(4), 481–485. <https://doi.org/10.1007/BF00379285>

660 Pepe, A., Giovannetti, M., & Sbrana, C. (2018). Lifespan and functionality of mycorrhizal fungal
661 mycelium are uncoupled from host plant lifespan. *Scientific Reports*, 8(1), Article 1.
662 <https://doi.org/10.1038/s41598-018-28354-5>

663 Rosenzweig, M. L. (1971). Paradox of Enrichment: Destabilization of Exploitation Ecosystems in
664 Ecological Time. *Science*, 171(3969), 385–387.
665 <https://doi.org/10.1126/science.171.3969.385>

666 Ryan, M. H., & Graham, J. H. (2002). Is there a role for arbuscular mycorrhizal fungi in production
667 agriculture? In S. E. Smith & F. A. Smith (Eds.), *Diversity and Integration in Mycorrhizas* (pp.
668 263–271). Springer Netherlands. https://doi.org/10.1007/978-94-017-1284-2_26

669 Sapsford, S. J., Paap, T., Hardy, G. E. St. J., & Burgess, T. I. (2017). The ‘chicken or the egg’: Which
670 comes first, forest tree decline or loss of mycorrhizae? *Plant Ecology*, 218(9), 1093–1106.
671 <https://doi.org/10.1007/s11258-017-0754-6>

672 Schnepf, A., Leitner, D., Schweiger, P. F., Scholl, P., & Jansa, J. (2016). L-System model for the
673 growth of arbuscular mycorrhizal fungi, both within and outside of their host roots. *Journal
674 of The Royal Society Interface*, 13(117), 20160129. <https://doi.org/10.1098/rsif.2016.0129>

675 Schnepf, A., Roose, T., & Schweiger, P. (2007). Growth model for arbuscular mycorrhizal fungi.
676 *Journal of The Royal Society Interface*, 5(24), 773–784.
677 <https://doi.org/10.1098/rsif.2007.1250>

678 Schubert, A., Marzachí, C., MazziTElli, M., Cravero, M. C., & Bonfante-Fasolo, P. (1987).
679 Development of Total and Viable Extraradical Mycelium in the Vesicular–Arbuscular
680 Mycorrhizal Fungus *Glomus clarum* Nicol. & Schenck. *New Phytologist*, 107(1), 183–190.
681 <https://doi.org/10.1111/j.1469-8137.1987.tb04892.x>

682 Smith, S. E., & Read, D. J. (2010). *Mycorrhizal Symbiosis*. Academic Press.

683 Solaiman, Z. M., & Mickan, B. (2014). Use of Mycorrhiza in Sustainable Agriculture and Land
684 Restoration. In Z. M. Solaiman, L. K. Abbott, & A. Varma (Eds.), *Mycorrhizal Fungi: Use in*
685 *Sustainable Agriculture and Land Restoration* (pp. 1–15). Springer.

686 https://doi.org/10.1007/978-3-662-45370-4_1

687 Staddon, P. L., Heinemeyer, A., & Fitter, A. H. (2002). Mycorrhizas and global environmental change:
688 Research at different scales. *Plant and Soil*, 244(1), 253–261.

689 <https://doi.org/10.1023/A:1020285309675>

690 Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P., & Fitter, A. H. (2003). Rapid Turnover of Hyphae
691 of Mycorrhizal Fungi Determined by AMS Microanalysis of ^{14}C . *Science*, 300(5622), 1138–
692 1140. <https://doi.org/10.1126/science.1084269>

693 Steidinger, B. S., Bhatnagar, J. M., Vilgalys, R., Taylor, J. W., Qin, C., Zhu, K., Bruns, T. D., & Peay, K. G.
694 (2020). Ectomycorrhizal fungal diversity predicted to substantially decline due to climate
695 changes in North American Pinaceae forests. *Journal of Biogeography*, 47(3), 772–782.

696 <https://doi.org/10.1111/jbi.13802>

697 Stephens, P. A., Sutherland, W. J., & Freckleton, R. P. (1999). What Is the Allee Effect? *Oikos*, 87(1),
698 185–190. <https://doi.org/10.2307/3547011>

699 Tilman, D. (1986). Nitrogen-Limited Growth in Plants from Different Successional Stages. *Ecology*,
700 67(2), 555–563. <https://doi.org/10.2307/1938598>

701 van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A., & Sanders, I. R. (2015). Mycorrhizal ecology
702 and evolution: The past, the present, and the future. *New Phytologist*, 205(4), 1406–1423.

703 <https://doi.org/10.1111/nph.13288>

704 Van Diepen, L. T. A., Lilleskov, E. A., Pregitzer, K. S., & Miller, R. M. (2007). Decline of arbuscular
705 mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. *New
706 Phytologist*, 176(1), 175–183. <https://doi.org/10.1111/j.1469-8137.2007.02150.x>

707 Verbruggen, E., van der Heijden, M. G. A., Rillig, M. C., & Kiers, E. T. (2013). Mycorrhizal fungal
708 establishment in agricultural soils: Factors determining inoculation success. *New
709 Phytologist*, 197(4), 1104–1109. <https://doi.org/10.1111/j.1469-8137.2012.04348.x>

710 Vitousek, P. M., Hedin, L. O., Matson, P. A., Fownes, J. H., & Neff, J. (1998). Within-System Element
711 Cycles, Input-Output Budgets, and Nutrient Limitation. In M. L. Pace & P. M. Groffman
712 (Eds.), *Successes, Limitations, and Frontiers in Ecosystem Science* (pp. 432–451). Springer.
713 https://doi.org/10.1007/978-1-4612-1724-4_18

714 Vogelsang, K. M., & Bever, J. D. (2009). Mycorrhizal densities decline in association with nonnative
715 plants and contribute to plant invasion. *Ecology*, 90(2), 399–407.
716 <https://doi.org/10.1890/07-2144.1>

717 Wang, B., & Qiu, Y.-L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants.
718 *Mycorrhiza*, 16(5), 299–363. <https://doi.org/10.1007/s00572-005-0033-6>

719 Weih, M., Hamnér, K., & Pourazari, F. (2018). Analyzing plant nutrient uptake and utilization
720 efficiencies: Comparison between crops and approaches. *Plant and Soil*, 430(1), 7–21.
721 <https://doi.org/10.1007/s11104-018-3738-y>

722 Xue, W., Bezemer, T. M., & Berendse, F. (2019). Soil heterogeneity and plant species diversity in
723 experimental grassland communities: Contrasting effects of soil nutrients and pH at
724 different spatial scales. *Plant and Soil*, 442(1), 497–509. <https://doi.org/10.1007/s11104-019-04208-5>

725 Zhang, J., & Elser, J. J. (2017). Carbon:Nitrogen:Phosphorus Stoichiometry in Fungi: A Meta-
726 Analysis. *Frontiers in Microbiology*, 8, 1281. <https://doi.org/10.3389/fmicb.2017.01281>

728

Statements and Declarations729 Funding

730 This work was supported by an NIH Systems and Integrative Biology Training Grant to TD.

731

732 Competing Interests

733 The authors have no relevant financial or non-financial interests to disclose.

734

Appendix 1: Asymptotic analyses of the plant-mycorrhizal model736 Equation (1) admits four equilibria: the trivial equilibrium $\{P^*, A^*\} = \{0, 0\}$, the boundary737 equilibrium $P_0^* = \frac{a_P r_P S - d_P}{e_P a_P r_P}, S > \frac{d_P}{a_P r_P}, A^* = 0$, and two interior equilibria:

738
$$P_A^* = \frac{e_A d_A H}{e_P m_{AP} - e_A d_A}, e_P m_{AP} > e_A d_A, \quad A_{1,2}^* = \frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha},$$

739 in which

740
$$\alpha = -e_A a_P - e_A a_P r_P - \left(\frac{m_{AP}}{P_A^* + H} \right)$$

741
$$\beta = a_P (S - e_P P_A^*) (1 + r_P) - e_A a_P r_P M - \left(\frac{m_{AP} M}{P_A^* + H} \right) - d_P$$

742
$$\gamma = a_P r_P M (S - e_P P_A^*) - d_P M$$

743 The Jacobian matrix for Equation (1) yields the following elements:

744
$$f_{PP} = \frac{\partial \frac{dP}{dt}}{\partial P} = \left(\frac{m_{AP}}{H + P^*} \right)^2 A^* P^* - \frac{m_{AP}}{H + P^*} A^* + a_P \left(\frac{A^*}{A^* + M} + r_P \right) (N - e_P P^*) - d_P$$

745
$$f_{PA} = \frac{\partial \frac{dP}{dt}}{\partial A} = -a_P e_A \left(\frac{A^*}{A^* + M} + r_P \right) P^* + a_P \frac{MNP^*}{(A^* + M)^2} - \frac{m_{AP}P^*}{H + P^*}$$

746
$$f_{AP} = \frac{\partial \frac{dA}{dt}}{\partial P} = \frac{e_P m_{AP} H A^*}{e_A (H + P^*)^2}$$

747
$$f_{AA} = \frac{\partial \frac{dA}{dt}}{\partial A} = \frac{e_P m_{AP} P^*}{e_A (H + P^*)} - d_A$$

748 where $N = S - e_P P^* - e_A A^*$, with P^*, A^* denoting the equilibrium biomasses of the plant and
749 fungus. The Trace and Determinant of the Jacobian matrix are, respectively:

750
$$Tr(\mathbf{J}) = f_{PP} + f_{AA}$$

751
$$Det(\mathbf{J}) = f_{PP} * f_{AA} - f_{PA} * f_{AP}$$

752 A given equilibrium is stable to small perturbations in its vicinity if $Tr(\mathbf{J}) < 0$ and
753 $Det(\mathbf{J}) > 0$. The plant experiences strict nutrient limitation, which means that $N \rightarrow 0$, i.e., in the
754 presence of the mutualist, nearly all of the available nutrient is taken up by the plant. This in turn
755 means that $f_{PP} < 0$. The fungus does not experience any self-limitation which means that $f_{AA} =$
756 0, which we can verify by evaluating it at the interior equilibrium $P^* = \frac{e_A d_A H}{e_P m_{AP} - e_A d_A}$. This means
757 that $Tr(\mathbf{J}) = f_{PP}$ and $Det(\mathbf{J}) = -f_{PA} * f_{AP}$. We see by inspection that $f_{AP} > 0$ as long as
758 $\{P^*, A^*\} > \{0, 0\}$. That leaves us with the sign of f_{PA} . Since $N \rightarrow 0, \frac{a_P MN}{M + A^*} \rightarrow 0$ and $f_{PA} < 0$ as
759 long as the plant is nutrient-limited.

760 The key point to appreciate is that while Equation (1) differs from a standard consumer-
761 resource model in that the consumer (fungus) provides a benefit to the resource (plant), it retains
762 the fundamentally antagonistic nature of a consumer-resource interaction with the off-diagonal
763 Jacobian elements exhibiting opposite signs ($f_{PA} < 0, f_{AP} > 0$). However, the fact that the
764 fungus aids the plant in acquiring nutrients while removing carbohydrates leads to the emergence
765 of an Allee effect, thus fundamentally altering the dynamics of the interaction such that unlike in

766 a standard consumer-resource model, there are multiple stable equilibria and the long-term
 767 outcomes depend on initial condition (see main text for details). In the following sections we
 768 present the stability analyses for each of the four fixed points. Henceforth, we refer to the plant
 769 biomass at the boundary fixed point as P_0^* and at the interior fixed point(s) as P_A^* .

770 *Local Stability of the trivial equilibrium*

771 Evaluated at $\{P^*, A^*\} = \{0,0\}$, all elements of the Jacobian matrix are ≤ 0 except
 772 $f_{PP}(0,0) = Sa_P r_P - d_P$, which is the condition for a facultative plant. If $Sa_P r_P > d_P$, then
 773 $Det(\mathbf{J}) < 0$; the fixed point is unstable and the plant will increase from a small initial abundance
 774 until it reaches the boundary equilibrium $(P_0^*, 0)$. If $Sa_P r_P < d_P$, all eigenvalues of the Jacobian
 775 are negative and the trivial equilibrium is locally stable.

776 *Local Stability of the boundary equilibrium*

777 When the plant is facultative ($r_P > 0$), the Jacobian elements evaluated at the boundary
 778 equilibrium are:

779
$$f_{PP}(P_0^*, 0) = d_P - Sa_P r_P,$$

780
$$f_{PA}(P_0^*, 0) = (Sa_P r_P - d_P) \left(-\frac{e_A}{e_P} - \frac{m_{AP}}{(Ha_P e_P r_P + Sa_P r_P - d_P)} + \frac{d_P}{Me_P a_P r_P^2} \right),$$

781
$$f_{AP}(P_0^*, 0) = 0$$

782
$$f_{AA}(P_0^*, 0) = -d_A + \frac{m_{AP}(Sa_P r_P - d_P)}{a_P e_A r_P \left(H + \frac{Sa_P r_P - d_P}{a_P e_P r_P} \right)}.$$

783 In examining the Jacobian elements $f_{PP}(P_0^*, 0)$ is always negative since $r_P > 0$;
 784 $f_{PA}(P_0^*, 0)$ is positive if $P_0^* > \frac{m_{AP}}{\left(\frac{d_P}{r_P M} \right) - a_P r_P e_A} - H$. This inequality is always satisfied for a

785 facultative plant species within the empirical parameter space we investigated.

786 $f_{AP}(P_0^*, 0) = 0$ always and $f_{AA}(P_0^*, 0) > 0$ if $\frac{d_A e_A H}{m_A p e_P - d_A e_A} < \frac{s_A p r_P - d_P}{e_P a_P r_P}$ where $\frac{d_A e_A H}{m_A p e_P - d_A e_A}$ is the

787 equilibrium plant biomass in the presence of the fungus (P_A^*) and $\frac{s_A p r_P - d_P}{e_P a_P r_P}$ is the equilibrium

788 plant biomass in the absence of the fungus (P_0^*). If $f_{AA}(P_0^*, 0) > 0$ and $|f_{AA}(P_0^*, 0)| >$

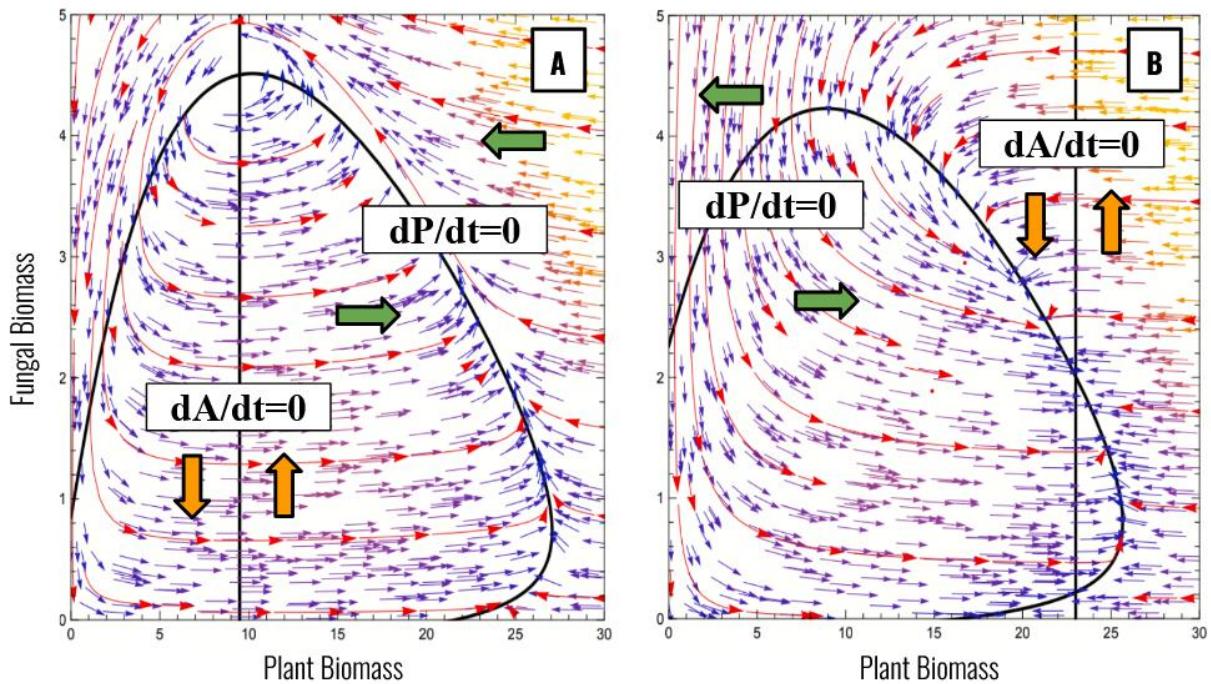
789 $|f_{PP}(P_0^*, 0)|$, then $Tr(\mathbf{J}) > 0$, $Det(\mathbf{J}) < 0$, and the boundary equilibrium is unstable, i.e., an

790 initial introduction of fungus will cause the system to move away from the $(P_0^*, 0)$. If the above

791 condition is not met, the boundary equilibrium will be locally stable and attract nearby initial

792 conditions.

793 *Local stability of the lower interior equilibrium (“Allee threshold”)*


794 When $P_0^* < P_A^*$, the fungal nullcline crosses the plant nullcline twice in positive phase
795 space. The complicated nature of the solutions for $A_{1,2}^*$ makes the Jacobian elements evaluated at
796 the lower fixed point (P_A^*, A_1^*) analytically intractable for all but $f_{AA}(P_A^*, A_{1,2}^*)$, which simplifies to
797 zero for both interior fixed points. For the rest, qualitative inferences can be made by analyzing
798 the phase planes and vector fields (Fig. S1).

799 In looking at the phase diagram (Figure S1), $\frac{dA(t)}{dt} < 0$ to the left of the fungal nullcline
800 (P_A^*) , and $\frac{dA(t)}{dt} > 0$ to the right of the fungal nullcline. As such, it is apparent that $\frac{\partial A}{\partial P} > 0$ for any
801 point on the fungal nullcline, including both (P_A^*, A_1^*) and (P_A^*, A_2^*) .

802 Outside the plant nullcline’s enclosed ellipsoid, $\frac{dP(t)}{dt} < 0$, while inside $\frac{dP(t)}{dt} > 0$. At the
803 lower fixed point (P_A^*, A_1^*) , increasing A brings the populations into the enclosed space, while
804 decreasing A brings them outside of it. Thus, that $f_{PA}(P_A^*, A_1^*) > 0$. Similarly, as the lower
805 equilibrium sits on the undercut of the ellipse (necessarily – if there were no undercut there could

806 not be two positive interior fixed points), increasing P causes $\frac{dP(t)}{dt} < 0$ and *vice versa*. Thus,
 807 $f_{PP}(P_A^*, A_1^*) < 0$.

808 Therefore, $Tr(J) < 0$ and $Det(J) < 0$, meaning the lower interior fixed point is locally
 809 unstable. The vector fields indicate the point is a saddle approached via trajectories starting to the
 810 upper-left and lower-right, and departed via trajectories toward the lower-left (toward the
 811 boundary equilibrium) and upper-right (toward the upper interior fixed point). Starting from
 812 $(P_0^*, 0)$, an initial biomass of introduced fungus must be great enough so the population trajectory
 813 passes through or above this point in order to potentially reach the basin of attraction of the
 814 upper interior point – this is the Allee threshold with respect to $A(t)$.

815
 816 Figure S1: Annotated phase planes for feasible plant-mycorrhizal interactions. Panel A depicts a
 817 system for which $P_A^* < P_0^*$, yielding only one positive interior fixed point (e.g., the lower fixed
 818 point has passed into the negative fungal biomass quadrant). Panel B depicts a system for which

819 $P_A^* > P_0^*$, yielding two positive interior fixed points, the lower of which is the Allee threshold.
 820 Large green arrows depict population trajectories for along the plant biomass axis within regions
 821 delineated by the plant nullcline; orange arrows depict the same for fungal biomass.

822 *Local stability of the upper interior equilibrium*

823 As with the lower interior fixed point, the upper interior fixed point does not lend to
 824 tractable analytical expressions for all the Jacobian elements. Once again, $f_{AA}(P_A^*, A_2^*) = 0$ and
 825 the rest can be deduced graphically. From the phase plane analysis it is clear that $f_{AP}(P_A^*, A_2^*) > 0$
 826 and $f_{PA}(P_A^*, A_2^*) < 0$. However, the sign of $f_{PP}(P_A^*, A_2^*)$ depends on the shape of the plant
 827 nullcline and the location of its intersection with the fungal nullcline. In Fig S1B, the position of
 828 the upper interior fixed point is such that $f_{PP}(P_A^*, A_2^*) < 0$, giving $Tr(\mathbf{J}) < 0$ and $Det(\mathbf{J}) > 0$.
 829 In this case the upper interior equilibrium is locally stable.

830 If the fungal nullcline crosses to the left of the maximum of the plant nullcline (as in Fig
 831 S1A), $f_{PP}(P_A^*, A_2^*) > 0$, giving $Tr(\mathbf{J}) > 0$ and $Det(\mathbf{J}) > 0$. In this case the upper interior
 832 equilibrium is locally unstable and leads to consumer-resource oscillations. Whether these
 833 oscillations exist as stable limit cycles around the equilibrium or become divergent, causing the
 834 system to collapse to the boundary or trivial equilibria, can only be determined numerically.

835
 836