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Abstract

Interactions between plants and mycorrhizal fungi shape nutrient cycling and ecosystem
function on a global scale, but the dynamics of these interactions remain poorly understood. Due
to their below-ground nature, directly observing key dynamical features such as Allee effects and
oscillations is often not possible, hampering further progress in this area. Here we present a
mechanistic model of plant-mycorrhizal interactions to address this issue. By integrating the
facilitative and the antagonistic elements of plant-mycorrhizal interactions with explicit plant-
nutrient dynamics, our framework generates testable predictions about the dynamics and
persistence of these interactions. We find that plant-mycorrhizal interactions can exhibit different
dynamical realms ranging from Allee effects to consumer-resource oscillations, and that these
dynamics can be inferred from measurable system parameters (e.g., nutrient or carbohydrate
uptake rates and saturation constants) and plant/fungal biomasses. Furthermore, we find that
changes in the underlying soil nutrient supply can induce changes from one dynamical realm to
another. Finally, we present a decision tree framework for characterizing the dynamics of real
systems and discuss implications of our findings for plant-mycorrhizal communities in applied

and natural contexts.

Keywords: mycorrhizae, mutualism, species interactions, mechanistic model, nutrient limitation

Introduction

Interactions between plants and mycorrhizal fungi are ubiquitous, occurring in ca. 80% of
plant species and contributing substantially to global nutrient cycling and ecosystem services

(Brundrett, 2009; van der Heijden et al., 2015; Wang & Qiu, 2006). Whether fungal hyphae
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penetrate plant roots as in arbuscular mycorrhizae (AMF) or form a sheath around the roots as in
ectomycorrhizae (ECM), mycorrhizal fungi facilitate plant acquisition of soil nutrients such as
Nitrogen, Phosphorous, and water (Smith & Read, 2010). In return, plant hosts provide their
fungal partners with a source of carbohydrates (Fellbaum et al., 2012). These interactions play a
foundational role in supporting terrestrial biodiversity and have been widely proposed as
sustainable tools to increase crop yield and facilitate restoration efforts (Asmelash et al., 2016;
Fester & Sawers, 2011; Neuenkamp et al., 2019; Solaiman & Mickan, 2014). However, owing to
their strong context-dependence and below-ground nature impeding comprehensive empirical
studies, we currently lack the understanding of plant-mycorrhizal dynamics necessary to

consistently predict their functioning in applied and natural contexts.

Despite their promise of enhancing agriculture and restoration, the application of
mycorrhizal fungi in these settings often yields inconsistent results. Although commercially
available fungal inoculants can decrease the need for fertilizers in agricultural soils, their effect
on crop yield can range from substantial increases to neutral or even negative impacts depending
on soil conditions, plant host identity, and existing microbial communities (Hart & Reader, 2002;
Hoeksema et al., 2010; Koziol et al., 2024; Ryan & Graham, 2002). In restoration, mycorrhizae
are suggested to facilitate the reintroduction of native plant species and support community
resilience (Asmelash et al., 2016; Solaiman & Mickan, 2014). In practice, however, it can be
hard to predict whether an introduced fungal strain will establish, persist, or interact beneficially
with target plant species (Maltz & Treseder, 2015; Neuenkamp et al., 2019; Verbruggen et al.,
2013). Our ability to predict outcomes in natural systems is similarly hampered. Although
multiple anthropogenic impacts are expected to degrade mycorrhizal diversity (Steidinger et al.,

2020; Van Diepen et al., 2007; Vogelsang & Bever, 2009), we do not fully understand how
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species losses, replacements, or functional shifts caused by environmental perturbations will
affect the function and stability of the ecosystems in which they are embedded (Sapsford et al.,
2017; Staddon et al., 2002). All of these challenges stem from an incomplete understanding of

the dynamics of plant-mycorrhizal interactions.

Given the complex interplay of facilitation and consumption, plant-mycorrhizal
interactions likely exhibit a diverse array of dynamics. As mutualisms in which at least one
partner is typically obligate (as the fungus is in most AMF and ECM; Smith & Read, 2010),
plant-mycorrhizal interactions are thought to be subject to Allee effects — thresholds of
abundance below which the interaction goes deterministically extinct (Hale & Valdovinos, 2021;
Stephens et al., 1999). When assembling interactions from the ground up, as in agricultural and
restoration contexts, Allee effects may prevent the establishment of plants or fungi introduced at
an insufficient biomass (Armstrong & Wittmer, 2011). On the other hand, because plant-
mycorrhizal interactions include a consumer-resource element (Holland & DeAngelis, 2010),
they could exhibit oscillations in abundance that may also cause inoculations to fail due to
extinction at low abundances. Indeed, a previous model by Neuhauser and Fargione (2004)
suggests that plant-mycorrhizal interactions should exhibit both Allee effects and consumer-
resource oscillations. This model, however, did not include nutrient-plant dynamics, the key
element that connect below-ground and above-ground processes. This makes it difficult to
ascertain whether a combination of Allee effects and oscillations drives the dynamics of real

plant-mycorrhizal systems.

We are not aware of any studies that have directly observed the dynamics of plant-
mycorrhizal communities. This is most likely due to the below-ground nature of these

interactions precluding the repeated fine-scale observations necessary to identifying dynamics.
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Further complicating the matter is the finding that the dynamics of plant-mycorrhizal interactions
are strongly context-dependent, varying by nutrient availability, light intensity, host plant
identity, and other factors (Bryant & Bever, n.d.; Hoeksema et al., 2010; Koorem et al., 2017).
Addressing these challenges requires a theoretical framework that incorporates this context
dependence in generating predictions about dynamics and long-term persistence of plant-
mycorrhizal interactions. Although existing theory has improved our understanding of plant-
mycorrhizal interactions, the models used are largely phenomenological models and cannot make
predictions that can guide specific empirical systems (Hale & Valdovinos, 2021; Neuhauser &
Fargione, 2004). We need mechanistic theory that is rooted in the biology of plant-mycorrhizal

interactions that can predict outcomes in terms of measurable parameters and state variables.

Here we take a first step toward addressing this key gap in our knowledge. We develop a
mechanistic model of plant-mycorrhizal interactions that integrates the facilitative and
consumptive aspects of the interaction with explicit nutrient-plant dynamics. By parameterizing
the model with empirical data from the literature, we generate predictions about the range of
dynamical outcomes that are likely to occur in real plant-mycorrhizal systems. We specifically
explore the context-dependence of plant-mycorrhizal dynamics along a gradient of nutrient
availability. We frame our findings in terms of measurable parameters (e.g., soil nutrient supply)
and variables (e.g., biomass) that researchers working in plant-mycorrhizal systems can use to

identify dynamical patterns in the real communities.

Mathematical Framework

We consider a closed system with a constant nutrient input in which the total nutrient
availability sets the upper limit to the total biomass. This is a reasonable assumption given

biological stoichiometric constraints and mechanisms maintaining nutrient limitation in



92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Plant-Mycorrhizal Interactions Model

terrestrial ecosystems (Agren et al., 2012; Menge et al., 2009; Vitousek et al., 1998). The plant
species’ growth and reproduction depend on an essential nutrient (e.g., Nitrogen, Phosphorous),
for which the individuals in the plant population compete. The nutrient is returned to the soil in
turn through plant turnover and metabolic losses (i.e., leaf litter, root turnover, plant mortality).
The plant may form an association with a mycorrhizal fungus that facilitates nutrient uptake in
exchange for carbohydrates that the plant produces via photosynthesis. We consider the de novo

assembly of the plant-mycorrhizal interaction in an initially empty habitat.

Initial colonizers of empty habitats (e.g., early successional plant species) tend to exhibit
strategies for resource acquisition that do not depend on mutualistic partners (Nara, 2006b;
Tilman, 1986). Initial colonizers are likely to be plant species that can acquire nutrients in the
absence of mycorrhizal fungi but have a higher nutrient uptake rate in the presence of such fungi
(Nara, 2006a). Secondary colonizers can be either facultative or obligate in their reliance on
mutualists for nutrient acquisition. Most mycorrhizal fungi are obligate root symbionts and
therefore dependent on the plant for carbon (Smith & Read 2010). We therefore consider
situations in which the plant can be either obligate or facultative on the benefits conferred by
mycorrhizal fungi, while the fungus always requires a plant host in order to grow. Both spores
and dormant hyphae in the soil are sources by which fungi encounter and form mycorrhizae with

plant roots (McGEE et al., 1997; Pepe et al., 2018; Schubert et al., 1987).

Mycorrhizal fungi that associate with plant roots constitute two major types. Arbuscular
mycorrhizal fungi (AMF) enter the host plant’s root system, while ectomycorrhizal fungi (ECM)
form a hyphal sheath around the plant’s roots without penetrating them. In both cases, the fungal
hyphae extend from roots into the surrounding soil to forage for nutrients (predominantly

Phosphorous in the case of AMF, both Nitrogen and Phosphorous in varying degrees in the case
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of ECM; van der Heijden et al., 2015), which are then transferred to the plant in exchange for
photosynthates across the root-hyphae interface (Fellbaum et al., 2012). When the benefit of
nutrient uptake exceeds biomass consumption, the fungus acts as a facilitator; when biomass
consumption exceeds the benefit provided to the plant, the fungus acts as an antagonist (a

consumer rather than a facilitator).

We formalize these ideas in the following mathematical model:

dI(\]/lit) =b(S—N()) — apepP(t)N(t) <A(f)% + rp> + epdpP(t) + e4d, A(t)
dP(t) A(t) P(t)
TR <m + Tp) N(®)P(t) — myp <m> A(t) — dpP(t) (1)

dA(t) ep ( P(t)

dt e, P\P(H) +H

>A(t) —d,A(t)

Where S is the soil nutrient supply point, b is the nutrient turnover rate, N (t) is the nutrient
availability at time ¢, and P(t) and A(t) denote, respectively, the biomasses of the plant and
mycorrhizal fungus. The parameters ep and e4 depict the nutrient to Carbon ratios, i.e., the
number of grams of nutrient contained in one gram of plant and fungal biomass, respectively.
Both facilitation of nutrient uptake by plants and plant biomass consumption by the fungus are
given by Monod functions (Monod, 1949). The plant’s nutrient acquisition rate is a saturating
function of fungal density where ap is the maximum nutrient uptake rate, achieved only in the
presence of its mycorrhizal partner, and M is the biomass density of the fungus at which the plant
species’ uptake rate is half its maximum (ap/2). The parameter rp is the fractional reduction in the
uptake rate in the absence of the fungus, i.e., in the absence of facilitation of nutrient uptake by

the fungus, the plant species’ nutrient uptake rate is 7p ap (rp = 0 when the plant cannot survive
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in the absence of the fungus). Of note, although this formulation means the theoretical maximum
nutrient uptake rate the plant can attain is (1 + rp) * ap > ap as A(t) — oo, in our study fungal
biomass is never high enough for the maximum (1 + ) * ap to exceed ap. We therefore retain
this formulation as it provides for greater analytical tractability. The fungal strain’s maximum
carbohydrate consumption rate is m4p and H is the biomass density of the plant at which the
fungus’s uptake rate is mup /2. Nutrient is returned to the soil through plant and fungal metabolic

losses (e.g., mortality) with rates dp and d,, respectively.

When the system is closed (e.g., in the limit that the turnover rate b is on the same order
as the mortality rates d), the equation for nutrient dynamics can be replaced with the following

mass balance constraint (Grover, 1994; Loreau, 1994, 1995):

N(t) =S —epP(t) — e4A(t)

Preliminary analyses indicate that the results are qualitatively similar when we use explicit
nutrient dynamics (Equation (1)) rather than the mass balance constraint. We conduct all analyses

of the model using the mass balance constraint.

Of note, our model formulation is such that nutrient dynamics are explicitly modeled
rather than phenomenologically incorporated via a carrying capacity. This allows for a
mechanistic exploration of population dynamics and the measurable parameters that drive the
dynamics. In addition, our model is not specific to a particular nutrient or type of root-hyphal
interface and thus provides a general framework that is applicable to any type of mycorrhizal

association (e.g., AMF, ECM, etc).

Phase plane analysis of Equation (1) combined with asymptotic analysis of long-term

outcomes (Appendix 1) yields insights into the dynamical behavior of the plant-fungal
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interaction. Depending on the relative costs and benefits to the plant based on its association with

the fungus, the system can exist in three dynamical realms:

1.

When the benefits to the plant provided by the fungus exceed the costs they incur, the
plant’s abundance at equilibrium in the presence of the fungus (P*|a*0) exceeds that in
the absence of the fungus (P*|ax-0), causing the fungal strain’s zero growth isocline to
cross closer to the vertex of the plant species’ zero growth isocline (Fig. 1(a)). This
generates an Allee effect with two interior equilibria, the lower of which is unstable and
the higher of which is locally stable (see Appendix 1 for details). As a result, when plant
or fungal abundance falls below the lower interior equilibrium, the interaction goes
deterministically extinct.

When the benefit to the plant is less than the cost, P*|a*-0 < P*|a*=o and the fungal isocline
crosses further away from the vertex and closer to the y-axis (Fig.1(b)). Now there is
only a single interior equilibrium, which can be a stable focus attained via damped
oscillations or an unstable focus surrounded by persistent oscillations (Appendix 1).
When 7, tends to zero, the plant becomes increasingly dependent on the fungus (the plant
is obligate when rp, = 0), and there is no longer a boundary equilibrium with only the

plant species present (Fig. 1(c)).

Of note, despite the fact that the fungus provides a benefit to the plant in facilitating nutrient

acquisition, their interaction is that between a consumer and resource. This can be shown

formally by inspecting the elements of the Jacobian matrix of Equation (1). The off-diagonal

elements have opposite signs such that the plant has a positive effect on the fungus while the

fungus has a negative effect on the plant (see Appendix 1 for details). This is because the plant

species’ equilibrium biomass in the presence of the fungus is independent of M, the parameter
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that determines the fungus’ beneficial effect on the plant. This is one of the few instances we are

aware of in which an Allee effect emerges naturally in a mechanistic consumer-resource model.

The dynamical behavior of the plant-fungal interaction depends on six key parameters
(ap,1p, M, myp, H, and S). The system exhibits an Allee effect and multiple equilibria when ap
and 7p are low (i.e., the plant is more reliant on the fungus for nutrient acquisition) and H is high
and myp is low (i.e., the fungus does not remove a large amount of carbohydrate from the plant)
(Fig. 1(a) and (b)). The parameter M determines the shape of the plant species’ zero growth
isocline and the magnitude of the fungal strain’s equilibrial biomass (A*). When M is low, the
plant isocline has a higher peak and vertex and higher A* than when M is high (compare Fig.1(a)
with (d) and (b) with (e)). As noted above, when 7, is high the plant is facultative and can persist
on its own, becoming obligate when rp = 0 (Fig. 1(c)). When S is high, the plant species’
isocline has a higher peak and vertex, and P*|axo >> P"|a*-0 making an Allee effect less likely
(Fig. 1(f)). When S is low, the peak and vertex both shrink, and P*|a*=o << P’|a*s0, making an

Allee effect more likely provided H is high and myp is low.

Model Analysis

We used numerical simulations to test whether the predictions made based on the phase
plane and asymptotic analyses in the previous section are realized when the model is
parameterized using empirically observed values. Given that Nitrogen constitutes the most
limiting nutrient for most plant species, we considered S to depict the soil mineral Nitrogen
content. Based on published data (Ansong Omari et al., 2018; Pastor et al., 1987), S varies in the

range 0.001-7.0 g m™, with tropical soils containing less mineralized nitrogen than temperate
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soils. In our analysis we used an average value of S=1.0 g m?. The mean Nitrogen: Carbon ratios
for plants (ep) and ectomycorrhizal hyphae (e4) are 0.027 (Elser et al., 2000, 2010) and 0.069
(Zhang & Elser, 2017), respectively. Marx et al. (2019) calculate an average maximum nitrogen
uptake rate by plants (ap) of 0.17 + 0.2 g day”! (mean = SD). The contribution of
ectomycorrhizae to plant nitrogen acquisition, which we use to estimate 7p, varies from 0-80%
(van der Heijden et al., 2015), although there are some types of plant-mycorrhizal interactions in
which plants are obligate. Metabolic loss rate for plants (dp) is 0.01 g day™! from Marx et al.
(2019). To the best of our knowledge, metabolic theory has yet to be applied in a comparable
way to fungi (but see Aguilar-Trigueros et al., 2017), but it is reported that hyphal turnover is
rapid compared to plants (Godbold et al., 2006; Staddon et al., 2003). We therefore used the plant
loss rate as a lower bound for the fungal metabolic loss rate (d,). Using empirically observed
ranges of the other parameters we calculated the upper bound above which the interaction
becomes inviable to be 0.04 g day™!. Since varying the loss rate within this range leads only to
quantitative differences in model outcomes, we set the fungal loss rate at 0.03 g day™'. Hobbie
and Hobbie (2006) report mycorrhizal fungi consume between 0.08 and 0.17 day™' of the host
plant’s primary productivity (m,p), although field estimates sometimes vary more widely
(Hobbie, 2006; Smith & Read 2010). We did not find published data on the half-saturation
densities for plant nutrient uptake rate facilitation (M) or consumption of plant biomass by fungi
(H). We conducted a sensitivity analysis, using empirically observed ranges for other
parameters, to identify the values of these two parameters that allowed for a viable plant-

mycorrhizal interaction.

We varied the six parameters our predictions are based on (ap, 1p, map, M, H and S) and

fixed the conversion efficiencies and background loss rates of both species at their empirical

10
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values (Table 1). We varied the uptake parameters within the empirically observed ranges: 0.07-
0.27 g day™! for ap and 0.08-0.17 day™! for m.p, and the saturation parameters within the ranges
identified in our sensitivity analysis: 0.1-2.0 g for M and 0.08-36.8 g for H. We used 10 evenly
spaced values spanning each of these ranges. We varied 1, from 0 when the plant is obligate to
0.2 (plant can attain 20% of its maximum uptake rate in isolation) in increments of 0.05. We
varied S as a 20% decrease/increase of the baseline value (S=1.0 g m™) to test the predictions

about the effects of nutrient scarcity/enrichment on plant-fungal dynamics.

For every unique parameter combination delineated in the previous paragraph
(N=150,000), we simulated the de novo assembly of the plant-mycorrhizal interaction. We
initiated each simulation with the plant biomass set to its fungus-free equilibrium (P*| 4-,) and
the fungal biomass set to zero. After 20 years (7,900 timesteps) we introduced the fungus at a
biomass 50% greater than the Allee threshold if an Allee effect was present, or at 0.1 g if there
was no Allee effect. We then let each simulation proceed for another 100 years (36,500
timesteps), setting either species biomass to zero if they fell below an extinction threshold of
10719 g. We calculated the average biomasses of the plant and fungus over the last year of the
simulation run. All simulations were conducted in Python version 3.8 using the RK45 method

employed by the solve_ivp function of the scipy library.

We conducted two analyses. We first classified the interactions into the three predicted
dynamical realms by comparing the long-term outcomes predicted by the phase plane and
asymptotic analyses (Fig 1; Appendix 1) with those emerging from the numerical simulations.
Cases in which the analytical methods predicted no interior equilibria and simulations showed no
positive long-term biomasses for plant or fungus were classified as infeasible. Of the feasible

cases, those in which both the plant and fungus had long-term biomasses exceeding the

11
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extinction threshold were classified as persistent interactions. Cases in which the plant species
was obligate was identified on the basis of a negative boundary equilibrium (i.e., Saprp < dp;
see Appendix 1), and those with an Allee effect on the basis of a positive lower interior
equilibrium. Persistent oscillatory interactions were identified based on two criteria: (i) long-term
biomasses did not converge to the analytically predicted interior equilibrium, and (i1) the

eigenvalues of the Jacobian matrix evaluated at the interior equilibrium had positive real parts.

Our second analysis involved three steps. First, we explored how the parameters ap, 1p,
mup, M, and H influenced the frequency of the three dynamical realms at the baseline nutrient
availability (S=1.0). Second, we varied S by 20% to investigate how nutrient depletion and
enrichment influenced plant-mycorrhizal dynamics and long-term dynamics. Third, we used our
data to generate decision trees (using sklearn.tree and dtreeviz packages) — procedural algorithms
for diagnosing the likely dynamics of a given system based on the measured values of key
parameters. We provide examples of these decision trees for classifying system dynamics based
on both the individual parameters as well as combinations of parameters which may be more

easily estimated by for real plant-mycorrhizal systems by empiricists.

Results

Identifying dynamical realms

Across the parameter space investigated, 46% of parameter combinations yielded feasible
plant-mycorrhizal interactions, half of which constituted persistent plant-fungal interactions in
our simulations (22% of all combinations). Of the feasible interactions that did not persist in the

long-term, the majority were those in which the plant was obligate and went extinct before the

12
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fungus was introduced (Table 2). The next most frequent case was divergent oscillations leading
to deterministic collapse, followed by deterministic extinction via the Allee effect. In the latter
case, the initial fungal biomass we introduced, although 50% greater than the Allee threshold,

was not sufficiently above the threshold to avoid extinction.

The most frequent dynamical realm observed in our simulations was stable coexistence of
the plant and fungus with neither Allee effects nor oscillations (55.2% of persistent interactions;
Table 2). The next most frequent were stable (e.g., non-oscillatory) interactions subject to an
Allee threshold (28.8%), followed by interactions with persistent oscillations and no Allee effects
(15.9%). Interactions exhibiting both persistent oscillations and Allee effects were relatively

infrequent (0.1%).

Overall, the distribution of the dynamical realms in our numerical analysis agreed with
the analytical predictions made by the phase plane and asymptotic analyses (Figure 1; Appendix
1). As expected, Allee effects (and in more extreme cases, mutually obligate interactions) were
more likely when ap and/or rp were low, while oscillations (both persistent and divergent) were
more likely when H was low and my,p was high (Figure 2). The dynamics of persistent
interactions with median-to-high values of ap and rp spanned all three realms and were driven
largely by H and myp (lower myp and higher H led to Allee effects while the reverse led to
oscillations; intermediate values produced systems with stable coexistence; Figure 2 (e, f, h)).
Infeasible interactions occurred mainly when the fungus was too inefficient a consumer of plant

biomass to support itself (Figure 2).

Changes in nutrient supply

13
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Decreasing the nutrient supply point (S) drove more qualitative changes in system
dynamics than increasing it. Consistent with our expectations, of the persistent interactions that
had no Allee effects at the baseline nutrient supply (S=1.0), 39% exhibited Allee effects under a
20% nutrient reduction (Figure 3). Interactions that exhibited Allee effects at the baseline
nutrient supply were prone to collapse under a 20% nutrient reduction, with 75% becoming
infeasible due to insufficient nutrient availability to support a viable interaction. Of the persistent
interactions that exhibited oscillations under the baseline nutrient supply, 58% remained
unchanged while 14% became non-oscillatory, attaining a stable equilibrium, 10% had the plant

species become obligate, and 6% became non-oscillatory but exhibited an Allee effect (Figure 3).

Increasing the nutrient supply point by 20% had a less pronounced impact on system
dynamics, and changes conformed to our expectations. Most persistent interactions had the same
qualitative dynamics following nutrient enrichment, with the exception of 7% of stable
interactions becoming oscillatory and Allee effects disappearing from 73% of the interactions
that had previously exhibited them (73%). Virtually all oscillatory interactions remained

oscillatory following nutrient enrichment.

Decision trees for diagnosing system dynamics

Reflecting the parameter space investigation, our decision tree analysis identified A and
myp as the most instructive in diagnosing dynamics of plant-mycorrhizal interactions. In
particular, nearly all oscillatory systems occur when H < 6.2 and myp > 0.115 (Figure 4 (a)).
However, discerning Allee effects was less effective using the original parameters at the decision
tree depth that we used, likely due to the complex nature of the plant-fungal interdependence. We

found certain parameter combinations to be more effective at characterizing dynamics: the

14
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plant’s nutrient uptake rate in isolation (ap * 1p) and the fungus’ consumption efficiency at low

plant biomass (log [=4*]; Figure 4(b)).

A decision tree trained on the composite parameters was more effective at distinguishing
between interactions exhibiting different types of dynamics than the one trained on the original
parameters (compare Figures 4(a) and (b)). Persistent oscillations were likely in interactions with
high consumption efficiency (log [%] > —3.598), save for a small portion of these interactions
which also had a high rate of nutrient uptake (ap * rp > 0.0357) that were more likely to be

stable. Allee effects were most likely in systems with low consumption efficiency (log [%] <

—4.92), especially when the plant’s nutrient uptake rate was also low (ap * rp < 0.02; Figure
4(b)). Interactions outside of these ranges mostly fell into the stable dynamical regime, with

smaller frequencies of the other regimes also possible.

Discussion
Overview

Despite the foundational role they play in plant communities and global nutrient cycling
(Smith & Read, 2010; van der Heijden et al., 2015), we lack a comprehensive understanding of
the dynamics of plant-mycorrhizal interactions. Such an understanding would not only increase
our ability to conserve natural plant-fungal communities facing the combined threats of global
change (Staddon et al., 2002; Steidinger et al., 2020; Van Diepen et al., 2007) but also enhance
the application of mycorrhizae in agricultural and restoration contexts, which often encounter

uncertain outcomes (Corréa et al., 2012; Solaiman & Mickan, 2014). These uncertainties may
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well be due to destabilizing dynamics (such as Allee effects and oscillations) that may well occur
in these systems but, due to the below-ground nature of plant-mycorrhizal interactions, are hard

to observe or even predict.

Here we take a step toward filling this gap by developing a mechanistic, predictive
framework for plant-mycorrhizal interactions. Our aim is to help empiricists working on these
interactions to identify key dynamics and their drivers by testing predictions of mathematical
models with measurable parameters and state variables. The novelty of our approach is threefold.
First, we develop a mechanistic theoretical framework that integrates both the consumptive and
facilitative aspects of plant-mycorrhizal interactions. Second, we explicitly consider nutrient-
plant dynamics thus connecting below-ground and above-ground processes in a single
framework. Third, we parameterize the model with extensive empirical data from the literature,
which allows us to make reasonably accurate predictions of the possible dynamics and long-term

outcomes of real plant-mycorrhizal interactions.

We report three key findings. First, we find that plant-mycorrhizal interactions can
exhibit a wide range of dynamics, including Allee effects as well as persistent consumer-resource
oscillations. Second, we find that these dynamics can be inferred using measurable parameters
and plant and fungal biomass patterns in the field. Third, we find a strong impact of nutrient
availability on plant-mycorrhizal interactions with nutrient scarcity increasing the incidence of
Allee effects and deterministic extinction at low abundances and nutrient enrichment inducing
consumer-resource oscillations in otherwise stable systems, or amplifying existing oscillations to
the point of interaction collapse. Below we discuss how these findings can guide further

experimental work as well as the restoration of degraded communities.

Inferring plant-mycorrhizal dynamics
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The ability to accurately infer the dynamics of plant-mycorrhizal interactions (and their
underlying drivers) is essential in restoration. Restoration efforts in which both native plant
species and fungal symbionts are introduced at low initial biomasses may fail due to hidden
Allee effects that cause extinction when initial biomasses are insufficiently high (Armstrong &
Wittmer, 2011; Deredec & Courchamp, 2007). Whether this accounts for the often-unpredictable
success of mycorrhizal inoculation is not yet known (but see Verbruggen et al., 2013). Based on
our parameter space investigation, Allee effects are likely prevalent in many plant-mycorrhizal
associations, especially those in which the fungus is more facilitative than consumptive and those
in nutrient-poor habitats. The ability to infer the existence of Allee effects based on measurable
parameters and biomass patterns (e.g., a steady decline in plant and fungal biomasses following
inoculation) would greatly aid managers engaging in restoration efforts to introduce fungal
inoculants in sufficiently high initial biomass and to supplement nutrients if the soils tend to be

nutrient-poor.

More generally, our mechanistic framework and decision tree analysis provide a
quantitative roadmap that empiricists can use to infer the dynamics of the specific plant-
mycorrhizal systems being studied. The specific parameter thresholds we identified correspond
to a three-branching decision tree, but our available simulation data can be used to generate
diagnostic trees of any depth or precision. For a given plant-mycorrhizal system, dynamics can
be predicted by measuring key parameters and following the decision key diagnostic protocol. As
we have shown, whether or not a given interaction is likely to exhibit an Allee effect can be

determined by the plant’s nutrient uptake rate in the absence of the fungus (ap * 1) and the

fungus’ consumption efficiency at low plant biomass (%) (Figure 4 (b)). While the former can

be measured using a number of well-established methods (e.g., Chapin & Van Cleve, 2000; Weih
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et al., 2018, and citations therein), the latter requires fitting Monod growth curves for
mycorrhizal fungi (Monod, 1949). This can be done by introducing fungal inoculates across a
range of available host root biomass and measuring fungal biomass growth rates or a proxy such
as hyphal growth, optical density, or root colonization (Hameed et al., 2024; Schnepf et al., 2007,

2016).

The role of nutrient availability in driving plant-mycorrhizal interactions

Our results show the overriding importance of soil nutrient availability in driving the
dynamics of plant-mycorrhizal interactions, with important implications for agriculture,
restoration, and conservation. Nutrient depletion increases the plant’s dependence on the fungus,
increasing the likelihood of both Allee effects and interaction collapse due to divergent
oscillations; nutrient surplus reduces this dependence but can lead to consumer-resource
oscillations reminiscent of the paradox of enrichment (Rosenzweig, 1971). While we only
considered moderate (20%) increase or decrease in nutrient availability, natural plant-
mycorrhizal communities exposed to increased Nitrogen or Phosphorous deposition from
fertilizer runoff or soil degradation via logging and agricultural intensification may experience
much higher levels of enrichment and depletion (Dentener et al., 2006; Kopittke et al., 2017;

Marx et al., 2019; Murty et al., 2002).

Nutrient supply change in either direction can destabilize plant-mycorrhizal interactions,
increasing their extinction risk. A nutrient deficit in the soil can cause fungal biomass to fall
below the Allee threshold, causing deterministic extinction of the fungus. In contrast, a nutrient
surplus can cause divergent oscillations leading to interaction collapse, especially when the
fungus has a high maximum uptake rate (m,p) and a low half-saturation density (/). Even in

oscillatory systems not subject to deterministic interaction collapse, the high-amplitude

18



400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

Plant-Mycorrhizal Interactions Model

oscillations under enrichment can predispose species to extinction via demographic stochasticity
during periods of low biomass densities. Temporal and spatial variation in nutrient availability,
commonly observed in many plant communities (Jackson & Caldwell, 1993; Xue et al., 2019),
could not only affect where a plant-mycorrhizal interaction can establish, but also how it
functions and whether it is prone to extinction due to dynamical instabilities. Our findings
highlight the critical role that nutrient supply plays in the context dependency of plant-
mycorrhizal interactions, emphasizing the importance of measuring soil nutrient availability
prior to inoculating the soil during restoration efforts, or applying additional fertilizer in

agricultural settings.

In situations where the decision tree protocol is not feasible, our results provide an
alternative approach to inferring the dynamics of plant-mycorrhizal interactions. The existence of
an Allee effect can be inferred by comparing long-term plant growth without and without a
mycorrhizal inoculum across a range of soil nutrient densities. As predicted by our analyses, an
Allee effect is likely to be present if the plant’s long-term biomass is increased by the presence of
a fungal symbiont (Figure 1). Our finding is that there is a critical nutrient supply below which
the facilitative component of the fungus’ interaction with the plant exceeds the consumptive
component causing an increase in the plant’s long-term biomass in the presence of the fungus.
Above this threshold, the fungus either reduces the long-term plant biomass if the interaction is
stable or causes persistent or divergent fluctuations in plant and fungal abundances. It is possible
to distinguish between these outcomes by recording plant and fungal biomasses across a range of
soil nutrient availability, and comparing biomasses with and without the fungus and determining
whether biomasses remain relatively stable over time or exhibit fluctuations. Repeating this

process for several commercially available fungal inoculants, crop species, and nutrient
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conditions is admittedly time consuming and labor intensive but can yield important insights into
choosing inoculants and growing conditions that maximize the efficacy of mycorrhizal

applications in restoration and agriculture.

Limitations and future directions

Our model considers a pairwise plant-mycorrhizal interaction that utilizes a single
limiting nutrient. This is both because we need to understand the dynamics of pairwise
interactions before we consider multi-species communities and for the analytical tractability
necessary to generate a priori predictions that could be tested via numerical simulations.
Extending our model to include multiple-plant fungal interactions utilizing multiple limiting
nutrients is an important future direction. Given that plants in most soils are limited primarily by
either Nitrogen or Phosphorous (Du et al., 2020; Marx et al., 2019; Menge et al., 2009),
incorporating both N and P limitation is a logical next step. Similarly, multiple fungal species
may compete for the biomass of shared plant hosts, and both plants and fungi may compete for
the mutualistic benefits conferred by partner species (Johnson & Amarasekare, 2013; van der
Heijden et al., 2015). Extending our model to incorporate plant and fungal competition can yield
broader insights plant-mycorrhizal community persistence in both natural and agricultural

settings.
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Table 1: Parameter values and ranges used in the numerical analysis.
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Parameter Value/Range Units Citations
Nutrient supply point (S) 0.01-7.0! gNm? | Ansong Omari et al., 2018;
(1.0£0.2 used) Pastor et al., 1987
Plant maximum nutrient uptake rate (ap) 0.17+0.2? g N' day! | Marx et al., 2019
Fungus maximum plant C uptake rate (map) 0.08-0.17 day! Hobbie & Hobbie 2006
Plant half saturation constant (M) 0.1-2.0 g This study
Fungus half saturation constant (H) 0.08-36.8 g This study
Fractional reduction in uptake rate (rp) 0.0-1.0 None van der Heijden et al., 2015
(0.0-0.2 used)
Plant Nitrogen:Carbon ratio (ep) 0.027 gN/gC | Elser etal., 2000, 2010
Fungus Nitrogen:Carbon ratio (ea) 0.069 gN/gC | Zhang & Elser, 2017
Plant metabolic loss rate (dp) 0.01 g day’! Marx et al., 2019
Fungal metabolic loss rate (da) 0.03 g day’! This study

mean and standard error. For nutrient supply point, we used a median value of 1.0 g N m™ for all

simulations.

for the simulations, which are within the 95% confidence interval.

21
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Table 2: Occurrence of different plant-mycorrhizal dynamical realms across the empirically
observed parameter space. The “All Systems” column indicates the numbers of parameter
combinations that were predicted to yield a given dynamical regime based on the asymptotic
analyses. The “Persistent Systems” column indicates the same for systems that exhibited long-

term persistence in our numerical simulations.

Count
Dynamical Regime
All systems (analytical) Persistent systems (numerical)
Infeasible 80,975 8’
No Allee effect, No Oscillations 17,851 17,849
Allee effect, no oscillations 15,437 9,298
Oscillatory, no Allee effect 14,549 5,141
Oscillatory with Allee effect 608 33
Obligate systems? 20,580 0
Total 150,000 32,329

'All infeasible systems that remained persistent at the end of the simulation run were in a state of
transient persistence in which the fungus was decreasing but had not yet crossed the extinction
threshold. Increasing simulation runtime by 50% led to extinctions in all 8 cases.

2Meaning both the plant and fungus are obligate on partners. Such systems are always subject to
Allee effects, but we did not differentiate between oscillatory and non-oscillatory, since in our
assembly framework all such interactions go extinct before introduction of the fungus.
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Fungal Biomass

o

Plant Biomass

Figure 1: Phase plane diagrams for the plant-mycorrhizal model (Equation (1)). In all panels, the
solid black curve and the solid vertical line depict, respectively, the zero growth isoclines for the
plant species and the mycorrhizal fungal strain. The points at which the isoclines cross in the
interior of the state space constitute interior equilibria with both plant and fungus present; the

point at which the plantisocline crosses the x-axis constitutes the boundary equilibrium with only
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the plant present. The modelyields three dynamical realms (panels (a)-(c)). When the fungal
isocline crosses to the right of the maximum of the plantisocline and closer to its vertex (ap and 7p
are low relative to dp, H is high and myp is low), the interaction exhibits an Allee effect giving rise to
two internal equilibria the larger of which is locally stable and the smaller is locally unstable (panel
(a); S=1.0,ap=0.2; 1 =0.1; M=0.6; myp = 0.1; H=9.0; See Appendix 1 for details). When the
fungal isocline crosses to the left of the maximum and farther away from the vertex (H is lower and
myp is higher), the Allee effect disappears and there is a single internal equilibrium that is either
locally stable or unstable with persistent oscillations around it (panel (b): myp =0.15; H=1.9). As 1p
tends to zero and the plant becomes increasingly dependent on the fungus, there is no longer a
feasible boundary (plant-only) equilibrium (panel (c); 7,=0.02). Panels (d) and (e) depict the effect
of M on the plant-fungal interaction. When there is an Allee effect and M is high (panel (d), M=1.5),
the plant’s zero growth isocline has a lower maximum and a vertex leading to a lower equilibrium
biomass for the fungus (compare panels (a) and (d)). We see the same effect when there is no Allee
effect (panel (d), M=1.5; compare panels (b) and (e)). Panels (f) and (g) depict the effect of S on the
plant-fungalinteraction. When S is relatively high (panel (f), S=1.2), the plantis less dependent on
the fungus for nutrient acquisition and the Allee effect disappears (compare panels (a) and (f)).
When S is low (panel (g), S=0.8), the plant becomes more dependent on the fungus, making an
Allee effect more likely (compare panels (b) and (g)). Parameters common to all panels: e,=0.027,
e4=0.069, d-=0.01, ds=0.03. For panels (b) and (d)-(f), the other parameters same as in panel (a).

For panel (c), the other parameters are the same as in panel (b).
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Figure 2: The effects of key parameters (ap r, map H) on the dynamical realms exhibited by the plant-
mycorrhizal interaction. The main plot depicts the distribution of dynamical regimes as a function
of ar and rp, while each subplot depicts the distribution as a function of mss and H. Because no
interactions could assemble when rp=0, we use the next lowest value (0.05) as the “minimum?” for
this parameter. The remaining parameters (S, M) are held at their median values. In all subplots, the

white regions in the lower right depict the parameter space of infeasible interactions.
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Figure 3: Nested pie charts illustrating the shift in dynamical realms following a change in the soil
nutrient supply. In both panels, the inner ring shows the distribution of dynamical realms for
persistent plant-mycorrhizal interactions at the baseline nutrient supply point (S=1.0 g m?). The
outer rings depict the fractional distribution of these regimes after nutrient depletion or
enrichment. Both the inner and outer rings add up to 100% (the remainders being made up of trace

wedges with annotations omitted here for clarity).
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simulated interactions at S=1.0 in which both the plant and fungus were persistent at the end of the

simulation run.
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Appendix 1: Asymptotic analyses of the plant-mycorrhizal model

Equation (1) admits four equilibria: the trivial equilibrium {P*, A*} = {0, 0}, the boundary

eger . aprpS—d d . . vqer .
equilibrium Pj = £2"—F § > —£ ' A* = 0, and two interior equilibria:
epaprp aprp
i} e,d H . _ —Btyp*—tay
Py = ,epMyp > exdy, 12 = )
epMyp — e,dy 2a
in which
AGp ~ €Ty ~ | pr iy

* mAPM
B = ap(S—epPy )(1+1p) —eqaprpM — <m> —dp

Y = aprpM(S — ePPA*) —dpM

The Jacobian matrix for Equation (1) yields the following elements:

dpP

0% 2 .

__dt _ (_™Mar spr _ AP, e P*) —
fr =55 = (G5 p) AP H+P*A+aP(A*+M+rP)(N epP”) — dp
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apr
fea=— =—wealgmyy T A+ M H + P
dA
f _ aE _ erApHA*
AP T 9P T ey (H + PY)?
504 »
faa = dt _ ol dy

0A e (H + P

where N = S — epP* — e4A", with P*, A* denoting the equilibrium biomasses of the plant and

fungus. The Trace and Determinant of the Jacobian matrix are, respectively:

Tr(J) = fpp + faa
Det(J) = fpp * faa — fra * far

A given equilibrium is stable to small perturbations in its vicinity if Tr(J) < 0 and
Det(J) > 0. The plant experiences strict nutrient limitation, which means that N — 0, i.e., in the
presence of the mutualist, nearly all of the available nutrient is taken up by the plant. This in turn

means that fpp < 0. The fungus does not experience any self-limitation which means that f,, =

. . L o ey daH .
0, which we can verify by evaluating it at the interior equilibrium P* = —2A%A%__ This means
epmap—eady

that Tr(J) = fpp and Det(J) = —fp4 * f4p. We see by inspection that f;p > 0 as long as

apMN
M+A*

{P*,A*} > {0,0}. That leaves us with the sign of fp,. Since N - 0, — 0and fp, <0 as

long as the plant is nutrient-limited.

The key point to appreciate is that while Equation (1) differs from a standard consumer-
resource model in that the consumer (fungus) provides a benefit to the resource (plant), it retains
the fundamentally antagonistic nature of a consumer-resource interaction with the oft-diagonal
Jacobian elements exhibiting opposite signs (fp4 < 0, fap > 0). However, the fact that the
fungus aids the plant in acquiring nutrients while removing carbohydrates leads to the emergence

of an Allee effect, thus fundamentally altering the dynamics of the interaction such that unlike in
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a standard consumer-resource model, there are multiple stable equilibria and the long-term
outcomes depend on initial condition (see main text for details). In the following sections we
present the stability analyses for each of the four fixed points. Henceforth, we refer to the plant

biomass at the boundary fixed point as P; and at the interior fixed point(s) as P;.
Local Stability of the trivial equilibrium

Evaluated at {P*, A*} = {0,0}, all elements of the Jacobian matrix are < 0 except
fpp(0,0) = Saprp — dp, which is the condition for a facultative plant. If Saprp > dp, then
Det(J) < 0; the fixed point is unstable and the plant will increase from a small initial abundance
until it reaches the boundary equilibrium (Py, 0). If Saprp < dp, all eigenvalues of the Jacobian

are negative and the trivial equilibrium is locally stable.
Local Stability of the boundary equilibrium

When the plant is facultative (rp > 0), the Jacobian elements evaluated at the boundary

equilibrium are:

fer(P5,0) = dp — Saprp,

fra(P5,0) = (Saprp — dp) (_e_A — map L _ar )’

ep (Hapeprp +Saprp — dp) Mepaprg

fAP(PSJ 0) =0

% _ map(Saprp — dp)
faa(P5,0) = —dy + Saprp —dp)’
apeArp(H +—)

apeprp

In examining the Jacobian elements fpp (Pg, 0) is always negative since 1, > 0;

fra(Pg,0) is positive if Py > @L — H. This inequality is always satisfied for a
()-ereen
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facultative plant species within the empirical parameter space we investigated.

dpeaH < Saprp—dp where dpeaH
mapep—dges epaprp mapep—dgen

1s the

fap(Py,0) = 0 always and f,,(Py,0) > 0 if

Saprp—dp

equilibrium plant biomass in the presence of the fungus (P,) and £ is the equilibrium

plant biomass in the absence of the fungus (Pg). If f44(P5,0) > 0 and |f4,(P§,0)| >
|fpp(Pg,0)]|, then Tr(J) > 0, Det(J) < 0, and the boundary equilibrium is unstable, i.e., an
initial introduction of fungus will cause the system to move away from the (Py, 0). If the above

condition is not met, the boundary equilibrium will be locally stable and attract nearby initial

conditions.
Local stability of the lower interior equilibrium (“Allee threshold”)

When P; < P, the fungal nullcline crosses the plant nullcline twice in positive phase
space. The complicated nature of the solutions for A7 , makes the Jacobian elements evaluated at
the lower fixed point (P, A7) analytically intractable for all but f,, (P,, A7 ), which simplifies to

zero for both interior fixed points. For the rest, qualitative inferences can be made by analyzing

the phase planes and vector fields (Fig. S1).

In looking at the phase diagram (Figure S1),

P (t)

(Py), an > 0 to the right of the fungal nullcline. As such, it is apparent that — > 0 for any

point on the fungal nullcline, including both (P, A7) and (P, 43).

(

Outside the plant nullcline’s enclosed ellipsoid, ) < 0, while inside 29 > 0. At the

lower fixed point (P,, A7), increasing A brings the populations into the enclosed space, while
decreasing A brings them outside of it. Thus, that fp, (P4, A7) > 0. Similarly, as the lower

equilibrium sits on the undercut of the ellipse (necessarily — if there were no undercut there could
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not be two positive interior fixed points), increasing P causes dz—it) < 0 and vice versa. Thus,
fep(Pa, A1) <0.

Therefore, Tr(J) < 0 and Det(J) < 0, meaning the lower interior fixed point is locally
unstable. The vector fields indicate the point is a saddle approached via trajectories starting to the
upper-left and lower-right, and departed via trajectories toward the lower-left (toward the
boundary equilibrium) and upper-right (toward the upper interior fixed point). Starting from
(Py, 0), an initial biomass of introduced fungus must be great enough so the population trajectory
passes through or above this point in order to potentially reach the basin of attraction of the

upper interior point — this is the Allee threshold with respect to A(t).

-

ity

dP/dt=0 | !
— “v”l\"\‘_\‘ ™ ‘f\

|

VAN TR S
T4
\ 4 W el T

s

Fungal Biomass

Plant Biomass Plant Biomass

Figure S1: Annotated phase planes for feasible plant-mycorrhizal interactions. Panel A depicts a
system for which P; < Pg, yielding only one positive interior fixed point (e.g., the lower fixed

point has passed into the negative fungal biomass quadrant). Panel B depicts a system for which
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P, > Py, yielding two positive interior fixed points, the lower of which is the Allee threshold.
Large green arrows depict population trajectories for along the plant biomass axis within regions

delineated by the plant nullcline; orange arrows depict the same for fungal biomass.
Local stability of the upper interior equilibrium

As with the lower interior fixed point, the upper interior fixed point does not lend to
tractable analytical expressions for all the Jacobian elements. Once again, f,,4(P;, 45) = 0 and
the rest can be deduced graphically. From the phase plane analysis it is clear that f,p (P4, 45) > 0
and fp, (P4, A3) < 0. However, the sign of fpp (P4, A5) depends on the shape of the plant
nullcline and the location of its intersection with the fungal nullcline. In Fig S1B, the position of
the upper interior fixed point is such that fpp (P, A3) < 0, giving Tr(J) < 0 and Det(J) > 0.

In this case the upper interior equilibrium is locally stable.

If the fungal nullcline crosses to the left of the maximum of the plant nullcline (as in Fig
S1A), fpp(P4,A3) > 0, giving Tr(J) > 0 and Det(J) > 0. In this case the upper interior
equilibrium is locally unstable and leads to consumer-resource oscillations. Whether these
oscillations exist as stable limit cycles around the equilibrium or become divergent, causing the

system to collapse to the boundary or trivial equilibria, can only be determined numerically.
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