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Abstract 77 

Spiders are remarkably diverse in caves and other subterranean habitats, where they play 78 
key ecological roles as generalist predators and strongly influence local food webs. They 79 
have been instrumental as model organisms for testing various eco-evolutionary 80 
hypotheses. Furthermore, strictly subterranean species exhibiting narrow ranges and high 81 
endemism are particularly significant for conservation planning and vulnerability 82 
assessments. Although high-quality data are essential for research on and conservation of 83 
subterranean spiders, such information remains scarce, especially regarding distribution 84 
patterns. To help fill this gap, we screened the literature, unpublished records, and open 85 
datasets to compile georeferenced occurrences of subterranean spiders across caves and 86 
other subterranean habitats throughout Europe. Based on these data—and to illustrate one 87 
potential application of the compiled dataset—we present the first prediction of subterranean 88 
spider richness patterns across Europe using stacked species distribution models. The 89 
European Subterranean Spider Dataset (ESSD) comprises 31,224 records of 637 90 
subterranean-dwelling spider species (including morphospecies under description), 91 
covering a range of information including taxonomy, locality details (such as location name, 92 
country, geographic coordinates, type of subterranean habitat), and reference information 93 
for each record. All variables are coded using the Darwin Core Standard, ensuring 94 
interoperability with the Global Biodiversity Information Facility (GBIF) and other biodiversity 95 
databases. By enabling integration with trait and phylogenetic resources, the ESSD provides 96 
a robust framework to investigate the drivers and processes shaping subterranean 97 
biodiversity, assess vulnerability to environmental change and anthropogenic pressures, 98 
and guide future sampling to progressively reduce geographic and taxonomic gaps through 99 
open data sharing. 100 

Keywords: Araneae, Darwin Core Standard, Hypogean, Open data, Species distribution 101 
modelling (SDM) 102 

 103 

Introduction 104 

In recent years, there has been an explosion of biogeography and (macro)ecology studies 105 
focused on uncovering the patterns and factors that shape biodiversity patterns at 106 
increasingly larger spatial scales—continental to global (e.g., Labouyrie et al., 2023; 107 
Martínez-Núñez et al., 2023, Sabatini et al., 2022). Building this understanding 108 
fundamentally relies on high-quality data, especially distribution records. Over the past few 109 
decades, online biodiversity databases have experienced substantial growth, largely due 110 
to collaborative efforts that have enhanced data accessibility and sharing. This progress 111 
has led to the formation of comprehensive databases covering a wide range of taxa, 112 
including the Global Biodiversity Information Facility (GBIF) (GBIF, 2025), LifeWatch ERIC 113 
(LifeWatch ERIC, 2025) and BioTIME (Dornelas et al., 2025). These repositories provide 114 
extensive taxonomic and distributional information on thousands of taxa across various 115 
ecosystem types and time scales. Despite these advances, large gaps and biases in 116 
species’ known geographic distributions, the so‑called Wallacean shortfall, continue to limit 117 
the completeness and reliability of macroecological and biogeographic inferences (e.g., 118 
Cardoso et al., 2011; Hortal et al., 2015; Hughes et al., 2021). 119 



Primarily due to accessibility challenges (Ficetola et al., 2019; Mammola et al., 120 
2021a), the documentation of biodiversity in subterranean ecosystems (caves, 121 
groundwaters, fissural systems, and the like) has historically progressed more slowly than 122 
at the surface. However, in recent years, a steady accumulation of knowledge, combined 123 
with the funding of specific projects focused on continental biodiversity inventories (e.g., 124 
PASCALIS, Biodiversa+ DarCo), has led many authors to compile this information and 125 
publish it in public datasets with varying resolutions and scales. For example, we now 126 
have the first global datasets on the distribution of cave-dwelling bats (Tanalgo et al., 127 
2022), cave fish (Bai et al., 2025), asellids (Saclier et al., 2024), and microwhip scorpions 128 
(Mammola et al., 2021b). In Europe, Pascalis dataset (Deharveng et al. 2009) and 129 
European Groundwater Crustaceans Dataset (Zagmajster et al. 2014) were used for early 130 
analyses of continental patterns, but publication of the continental datasets of distribution 131 
of subterranean organisms have started only in the last few years, like for bats (Fialas et 132 
al. 2025), copepods (Cerasoli et al., 2025) and ostracods (Mori et al., 2025). However, a 133 
similar large-scale dataset is still lacking for subterranean spiders. 134 

Spiders (Arachnida: Araneae), with over 53,000 species currently described (World 135 
Spider Catalog, 2025), and providing numerous essential ecosystem services (Cardoso et 136 
al.  2025), are among the most widespread and generalist predators in terrestrial habitats 137 
(Turnbull, 1973). Spiders are particularly diversified in caves and other subterranean voids, 138 
where they play a key ecological role as predators and strongly structure local food webs. 139 
Despite the growing interest in subterranean spiders (Mammola and Isaia, 2017), major 140 
knowledge gaps remain, especially regarding their distribution. Limited expertise and lower 141 
research interest in certain regions have delayed comprehensive data collection. However, 142 
recent efforts are beginning to address these gaps, contributing essential data for 143 
advancing our understanding of subterranean spider ecology and biodiversity. These 144 
efforts include the publication of trait data for all the species in Europe (Mammola et al., 145 
2022; Patiño-Sauma et al., 2025) and high-resolution distribution data for selected caves 146 
(Mammola et al., 2019a; Macías-Hernández et al., 2024) or regions (e.g., Western Alps; 147 
Nicolosi et al., 2025; Azores; Crespo et al. 2025). 148 

We present a novel dataset comprising occurrence records for all known species 149 
and morphospecies of subterranean spiders from Europe, spanning a wide range of 150 
ecological affinities to subterranean habitats, ranging from species still able to exploit 151 
surface habitats to obligate subterranean dwellers. This dataset is the result of a 152 
collaborative effort among multiple partners, including ecologists, conservationists, 153 
taxonomists, and biogeographers from various European countries and outermost islands 154 
of Europe (Azores, Madeira, Selvagens, and the Canary Islands). Their contributions have 155 
significantly enriched the data availability, culminating in a comprehensive, multi-species 156 
dataset designed to advance research and conservation efforts for these species. By 157 
making these data public, we hope to promote collaborative research on subterranean 158 
spider biodiversity, spatial patterns, drivers of distribution patterns, and quantitative 159 
conservation efforts. 160 

 161 

Methods 162 

 163 



Target species and habitats 164 

We focused on subterranean spiders across continental Europe, including the 165 
archipelagos of the Azores, Salvagens, Madeira, and Canary Islands. Following the 166 
function-based classification of Earth’s ecosystems (Keith et al., 2020, 2022), we focused 167 
on ecosystems belonging to the ‘Subterranean’ (S) domain, which includes diverse 168 
terrestrial subterranean systems: i) the ‘Subterranean lithic’ (S1) biome, namely various 169 
type of caves (e.g., aerobic caves, lava tubes, volcanic pits) and other subterranean voids 170 
of smaller sizes (e.g., fissure systems, deep scree strata, and the so-called Milieu 171 
Souterrain Superficial [MSS; reviewed in Mammola et al. (2016)]); and ii) the 172 
‘Anthropogenic subterranean voids’ (S2) biomes, namely all anthropogenic subterranean 173 
voids with cave-like environmental conditions, including mines, underground bunkers, 174 
blockhouses, tunnels, culverts, and cellars.  175 

For the list of target species, we used the latest checklist of European subterranean 176 
spiders by Patiño-Sauma et al. (2025), currently listing 637 species across 28 families. Of 177 
these, 64 are species under description (hereinafter ‘morphospecies’), identified by experts 178 
as new taxonomic entities based on morphological and/or genetic information.  179 

 180 

Data acquisition 181 

The spider dataset is a comprehensive compilation of diverse data sources, created 182 
through the collaboration of 40 researchers across Europe. For each of the target species, 183 
we compiled occurrence records based on different sources. First, we mined the primary 184 
literature for reported localities and georeferenced records. Second, we included 185 
unpublished records (e.g., data stored in personal and institutional collections) as provided 186 
by each contributor in the authors list. Third, we mined records from the main accessible 187 
databases on spiders in Europe, namely ArachnoMap (de Biurrun et al., 2022), Araneae.it 188 
(Pantini & Isaia, 2019), the UK Spider and Harvestman Recording Scheme 189 
(https://srs.britishspiders.org.uk/), Canary Islands Biodiversity Database (Gobierno de 190 
Canarias, 2024), the Cave fauna of Greece database (Paragamian et al., 2025) and 191 
regional database on subterranean species of the Western Balkans SubBioDB 192 
(Zagmajster 2016). Lastly, we mined the GBIF database, which yielded a great number of 193 
missing records, especially for the most widespread species. We downloaded the 194 
occurrence records from GBIF using the Python package “biodumpy” v.0.1.6 (Cancellario 195 
et al., 2025). Specifically, we employed the GBIF module, setting the parameter 196 
dataset_key to "d7dddbf4-2cf0-4f39-9b2a-bb099caae36c" and geometry to "POLYGON((-197 
30 25,50 25,50 72,-30 72,-30 25))". The script produced a list of JSON files, which we 198 
subsequently converted to CSV format to facilitate handling. 199 

 200 

Format type and data availability 201 

The dataset file is in comma-separated values (csv) format, not compressed. Data are 202 
available in Figshare at the following Digital Object Identifier: 203 
https://doi.org/10.6084/m9.figshare.30696173. 204 

 205 

http://araneae.it/


Header information 206 

The variables included in the dataset were selected in accordance with the Darwin Core 207 
standard (Wieczorek et al., 2012), and the corresponding categories are listed in Table S1. 208 
Headers are mostly self-explanatory. The dataset is fully interoperable with the European 209 
subterranean spider trait dataset (https://doi.org/10.6084/m9.figshare.16574255), allowing 210 
the extraction of morphological and ecological trait information for each species (Mammola 211 
et al., 2022; Patiño-Sauma et al., 2025). 212 

 213 

Taxonomic validation 214 

We standardized taxonomy to the species level when feasible, following the latest 215 
nomenclature of the World Spider Catalog (2025). Furthermore, we incorporated genus-216 
level records with uncertain specific attribution (e.g., Meta sp., Troglohyphantes cf. 217 
lucifuga), as well as morphospecies under description (labelled as Genus + an 218 
alphanumeric code [e.g., Meta sp.1]) to ensure maximal dataset breadth. Please refer to 219 
the column “acceptedNameUsage” for the most up-to-date, validated taxonomic attribution 220 
for each record (note that taxonomy will be updated with any new release of the dataset). 221 
Eventual remarks on taxonomic decisions are provided in column “identificationRemarks”. 222 

 223 

Spatial validation 224 

We validated geographic coordinates (based on the WGS84 datum) through cross-225 
referencing with online resources (e.g., speleological cadastres) and, where available, 226 
species-specific reference materials. We subsequently projected and visually inspected 227 
localities using both R (R Core Team, 2025) and QGIS (QGIS.org, 2025). We harmonized 228 
cave names and their corresponding coordinates, obtained from various sources, through 229 
additional verification with national speleological cadastres whenever possible. 230 
Notwithstanding these quality checks, due to missing information (especially for old 231 
records), the precision of 1,990 records remains low (e.g., georeferenced using the 232 
centroid of the municipality) and 108 records lack coordinates. Uncertainty in the precision 233 
of coordinates is provided in the column georeferenceRemarks. 234 

 235 

Prediction of species richness 236 

We illustrate a potential usage of the dataset by predicting species richness patterns in 237 
Europe. We achieved this by using stack species distribution modelling (SSDM) to 238 
calculate species potential distribution across the continent. A ODMAP (Overview, Data, 239 
Model, Assessment and Prediction) (Zurell et al., 2020) protocol for the model, detailing 240 
the main analytical steps, is available in the supplementary materials (Appendix 1).  241 

We included in the modelling all species with at least 10 independent records, 242 
defined as occurrences from different localities separated by at least 10 km (i.e., the 243 
spatial resolution of our environmental predictors), with a total of 99 different spider 244 
species distributions modelled in the present study. Note that species with fewer than 10 245 
independent records were only later included in the final richness prediction (see below). 246 
Since some localities in the species’ distribution data have highly precise geo-localization, 247 



multiple points may fall within the same cell of the downloaded abiotic layers, either due to 248 
the accuracy of the coordinates or because specimens were collected in nearby caves. To 249 
avoid redundant distribution points, we adjusted all coordinates to match the centroid of 250 
the corresponding cell. We then applied spatial thinning using the thin function from the R 251 
package “spThin” (Aiello‑Lammens et al. 2015). 252 

Previous research has shown the importance of present (Mammola and Leroy 253 
2018) and past climatic factors (Hewitt 1999; Mammola et al. 2018, 2019b; Knüsel et al. 254 
2024), as well as soil composition (Pavlek and Mammola 2021) in shaping subterranean 255 
species distributions. To include these variables in our model, we downloaded climatic and 256 
elevation data from the WorldClim 2 database (Fick and Hijmans 2017), specifically annual 257 
mean temperature (BIO 1), temperature seasonality (BIO 4), maximum temperature of the 258 
warmest month (BIO 5), annual precipitation (BIO 12), precipitation seasonality (BIO 15), 259 
precipitation of the warmest quarter (BIO 18) and precipitation of the coldest quarter (BIO 260 
19). All these variables have been shown to be good proxies for subterranean climatic 261 
conditions (Mammola and Leroy 2018). In addition, we included the differences between 262 
the present and past precipitation and temperature compared during the last glacial 263 
maximum (LGM). For soil composition, we downloaded layers from the SoilGrids database 264 
(Poggio et al. 2021), specifically the percentage of coarse fragments and the gravimetric 265 
content of sand and clay in the soil. Finally, we included layers regarding 266 
evapotranspiration (Muñoz Sabater, J. (2019), normalized difference vegetation index 267 
(NDVI) from Li et al. (2023), and the soil organic carbon (SOC) and organic carbon 268 
detection (OCD) downloaded using the soil_world function from the “geodata” R package 269 
(Hijmans et al. 2024). All these variables are potential proxies for energy availability within 270 
the subterranean domain. All layers had a resolution of approximately 10km. We 271 
calculated pairwise Pearson’s r correlation coefficients among these variables, and 272 
excluded those with high correlation (|r| ≥ 0.7), retaining only one variable from each 273 
correlated group based on ecological relevance, data quality, and consistency with 274 
previous subterranean ecology studies (Mammola & Leroy, 2018). The final list of 275 
predictors included: temperature seasonality, precipitation of the warmest quarter, 276 
evapotranspiration, percentage of coarse fragments and content of clay in the soil. 277 

We generated individual species models using the modelling function from the R 278 
package “SSDM” (Schmitt et al. 2017) with the MAXENT algorithm (Phillips et al., 2004, 279 
2006; Elith et al., 2011). To estimate species’ potential distributions and reduce 280 
overprediction, thresholds on environmental suitability were applied using Cohen's Kappa 281 
and True Skill Statistic (TSS) values via the ecospat.max.kappa and ecospat.max.tss 282 
functions from the R package “ecospat” (Broennimann et al. 2025), with the more 283 
restrictive threshold being selected. We then stacked all individual species distributions, 284 
and included species with fewer than 10 records as single-cell localities in the map. 285 

 286 

Results 287 

The dataset contains 31,224 records of subterranean spiders, accounting for 637 species, 288 
comprising all available georeferenced data on 31,116 records up to 2025, spanning 40 289 
countries also including Azerbaijan, Georgia, Turkey, and Russia. 290 



The spatial extent of the dataset ranges from -28.80°W to 50.02°E in longitude, and from 291 
27.65°N to 67.94°N in latitude.  292 

Occurrence densities are particularly high in several European regions. Northern 293 
Italy, especially the northwestern and northeastern Alps, shows the greatest number of 294 
records. Elevated densities also characterize northern Spain along the Atlantic coast, as 295 
well as Slovenia and Croatia within the Dinaric karst (Fig. 1A). Observed species richness 296 
closely matches these patterns. The highest values occur in Croatia (Dinaric karst) and 297 
Slovenia, where multiple taxa overlap, followed by parts of the Alps and northern Spain’s 298 
Atlantic region (Fig. 1B). 299 

A country-level summary highlights marked geographic disparities. Italy stands out for both 300 
richness and number of records, followed by Croatia, Spain, France, and Slovenia (Fig. 301 
1C). Most other European countries display comparatively low values, underscoring the 302 
strong imbalance in sampling effort. 303 

Predicted species richness (Fig. 1D) confirms the Alps and adjacent mountain systems, 304 
including the Dinaric Arc, as major hotspots, with high values spanning northern Italy, 305 
Slovenia, Croatia, and the Atlantic coast of northern Spain. Moderate richness also 306 
extends into parts of central and southeastern Europe, including Austria, Germany, 307 
France, and Bosnia and Herzegovina. 308 

 309 

 310 

 311 

 312 
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 328 

Figure 1. (A) Density of species occurrences across Europe. Points represent individual records, 329 
with color intensity reflecting local occurrence density; (B) Observed richness shows the number of 330 
species recorded per cell across the continent. (C) Geographic distribution of spider records in 331 
Europe. The map shows the combined effect of the number of records and the species richness for 332 
each country, classified into tertiles (Low, Medium, High). The 3×3 legend indicates the intersection 333 
between record abundance (rows) and species richness (columns). Countries without records are 334 
shown in grey. (D) Predicted richness shows the modelled species richness across Europe 335 
obtained through stacked species distribution modelling, with colours indicating the predicted 336 
number of species per grid cell. Mapping is restricted to countries with sufficient data availability; 337 
countries with very few records (e.g. Russia) are therefore not represented. 338 

 339 

Most records were collected from natural caves, totalling 25,947 (83.10%) of all 340 
occurrences. These were followed by artificial habitats (e.g., mines, bunkers, blockhouses, 341 
cellars), which accounted for 1,929 records (6.17%), and shallow subterranean habitats 342 
(SSH) with 323 records (1.03%). 343 

In terms of taxonomic distribution, most records belong to the family Tetragnathidae 344 
(9,951; 31.87%), followed by Linyphiidae (8,094; 25.93%), Nesticidae (3,483; 11.16%), 345 
Dysderidae (2,822; 9.04%), Agelenidae (2,378; 7.62%), Pholcidae (1,584; 5.07%), 346 
Leptonetidae (1,057; 3.39%), Pimoidae (618; 1.98%), and Amaurobiidae (362; 1.16%). 347 



Other families, including Sicariidae, Theridiidae, and Cicurinidae, were each represented 348 
by less than 1% of the total records (Fig. 2A).  349 

 350 

 351 

Figure 2. (A) Pie chart showing the relative percentage of occurrences records for each spider 352 
family in the dataset. Families representing less than 1% of records were grouped into the category 353 
“Others”. (B) Barplot displaying the number of records for the most common species in the spiders 354 
dataset. Only species with at least 300 records are shown.  355 

 356 



Among the 637 species in the dataset, the most frequently recorded species is Meta 357 
menardi (Latreille, 1804), with 5,914 occurrences. This is followed by Metellina merianae 358 
(Scopoli, 1763) with 2,412 records, Kryptonesticus eremita (Simon, 1880) with 1,482 359 
records, Meta bourneti (Simon, 1922) with 1,251 records, and Nesticus cellulanus (Clerck, 360 
1757) with 1,226 records. All other species are represented by fewer than 1,000 records 361 
(average number of records ± s.d. = 20 ± 38) (Fig. 2B). 362 

 363 

Discussion 364 

The dataset provides the most comprehensive distribution data for subterranean spiders 365 
across Europe. It brings together data from multiple countries and research groups, 366 
consolidating previously scattered information into a single, standardized, and harmonized 367 
resource. 368 

The taxonomic composition of the dataset reveals meaningful ecological and 369 
sampling-related patterns. In particular, some families are overrepresented in terms of 370 
occurrence records relative to their species richness. For example, Tetragnathidae account 371 
for a high number of records despite including few subterranean-associated species (Meta 372 
spp. and Metellina merianae; Fig. 2A). This likely reflects the large body size, high 373 
conspicuousness, and often high local densities of these spiders near cave entrances 374 
(Smithers 2005; Novak et al., 2010; Mammola & Isaia, 2014), all resulting in high 375 
detectability, as well as their broad geographic distributions in Europe (Mammola et al., 376 
2019a, 2021c). 377 

The predicted richness patterns (Fig. 1D) also illustrate the potential of the dataset to 378 
support macroecological inference. By integrating species distribution models for tens of 379 
taxa, the resulting map highlights broad-scale biogeographic structures that are not always 380 
evident from raw data alone. In particular, the Alps, the Dinaric Arc, and parts of northern 381 
Spain emerge as major hotspots of subterranean diversity, consistent with the long-term 382 
persistence of stable microclimatic refugia and the complex geomorphological history of 383 
these regions (Culver & Sket, 2000; Deharveng et al., 2024). The smoother gradients 384 
revealed by the prediction also indicate that true richness likely extends beyond areas with 385 
dense sampling, highlighting regions such as Austria, Germany, France, and Bosnia and 386 
Herzegovina as potentially important, yet comparatively understudied. This underscores 387 
both the ecological value of the modelling approach and the role of the dataset in identifying 388 
priority areas where additional sampling would substantially improve knowledge of 389 
subterranean biodiversity. Integrating predicted patterns with conservation planning may 390 
therefore help guide efforts toward mountain systems and karstic landscapes that harbour 391 
disproportionate levels of subterranean diversity. 392 

The initiative reflects the growing recognition that open data sharing at continental 393 
and global scales is essential to advance (macro)ecological research, improve biodiversity 394 
monitoring, and inform conservation strategies under increasing environmental threats 395 
(Urbano et al., 2024). This goal has been greatly facilitated in recent years by the 396 
development of international research infrastructures such as the Global Biodiversity 397 
Information Facility (GBIF; GBIF.org, 2025) and LifeWatch ERIC (Basset & Los, 2012), which 398 
promote standardized, interoperable, and openly accessible biodiversity data. 399 



Although focused on distributional records, its interoperability with other data sources 400 
makes it particularly valuable. For example, it can be combined with complementary 401 
resources, such as datasets on spider morphological and ecological traits (Mammola et al., 402 
2022; Patiño-Sauma et al., 2025) or phylogenetic information from other sources, thereby 403 
enabling comparative analyses, functional diversity assessments, and large-scale 404 
ecological modelling. By linking distributional data with traits and phylogenies, researchers 405 
can further explore questions related to the processes shaping subterranean biodiversity 406 
and identify species and regions most vulnerable to environmental change and 407 
anthropogenic pressures. 408 

The geographical and taxonomic breadth of the dataset makes it a valuable resource 409 
for addressing key questions in subterranean ecology, from species distributions and 410 
environmental drivers to long-standing gaps in conservation status, functional diversity, and 411 
the ecological factors structuring subterranean spider assemblages. While the dataset 412 
marks a substantial step forward, some regions and taxa remain underrepresented, 413 
reflecting historical biases in research effort and data availability. Open data sharing, 414 
however, provides the basis for progressively improving coverage and quality, fostering new 415 
sampling initiatives, comparative analyses, and multi-scale investigations of subterranean 416 
biodiversity. 417 

 418 
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Appendix 1. Summary of the modelling pipeline according to the 668 

ODMAP (Zurell et al., 2020) reporting protocol. 669 

 670 

 671 

OVERVIEW 672 

Title 673 

An open occurrence dataset for European subterranean spider 674 

Model objective 675 

Model objective: Mapping and interpolation. 676 

Target output: Obtaining a map of species richness based on stacked predicted distribution ranges of each 677 
species. 678 

Focal Taxon 679 

Focal Taxon: Spiders (Arachnida: Araneae). 
 680 

Location 681 

Location: Europe. 
 682 

Scale of Analysis 683 

Spatial extent: -30, 50, 25, 72 (xmin, xmax, ymin, ymax). 
Spatial resolution: 10 km. 
Temporal extent: Present. 
Temporal resolution: NA. 
Boundary: political. 

 684 

Biodiversity data 685 

Observation type: field survey, GPS tracking. 
Response data type: presence-only. 

 686 

Predictors 687 

Predictor types: climatic, habitat, edaphic. 
 688 

Hypotheses 689 

Hypotheses: No specific hypotheses were made regarding the species-environment relationships. 690 



Assumptions 691 

Model assumptions: Unlimited dispersal. 692 

Algorithms 693 

Modelling techniques: maxent. 
Model complexity: Only ecologically interpretable predictors 

were included, and interactions were not 
considered to maintain biological 
interpretability. 

Model averaging: NA. 
 694 

Workflow 695 

Environmental predictor layers were standardized prior to modelling. 696 

For each species, a MaxEnt model was fitted using presence locations and environmental predictors to 697 
generate continuous habitat suitability predictions. 698 

Predictions were spatially constrained using a buffer-based mask derived from the mean and maximum 699 
inter-point distances among occurrence records, and suitability values were smoothed as a function of 700 
distance to the accessible area boundary. 701 

Model performance was assessed by extracting predicted suitability values at observed presences and 702 
randomly sampled background points, and optimal thresholds were determined using both Kappa and True 703 
Skill Statistic (TSS). 704 

Binary presence–absence maps were generated using the most conservative threshold and combined 705 
across species to produce a stacked species distribution model representing predicted species richness. 706 

Software 707 

Software: R version 4.5.0. SSDM package version 0.2.9. 708 

Code availability: The code to run this analysis is available in the Figshare repository 

(https://doi.org/10.6084/m9.figshare.30696173). 

Data availability: Distribution data are available in the Figshare repository 

(https://doi.org/10.6084/m9.figshare.30696173). Environmental predictors are available from 

different sources (details in section: Predictor variables). 

DATA 709 

Biodiversity data 710 

Taxon names: 99 different spider species (including some under description) were modelled. Taxonomy is 711 
according to the World Spider Catalog version 26 (https://wsc.nmbe.ch/) and the version 3 of the Checklist 712 
of European Subterranean spider (https://doi.org/10.6084/m9.figshare.16574255). See supplementary 713 
material of the manuscript for a detailed list of all species analyzed. 714 



Taxonomic reference system 715 

Ecological level: species. 716 

Data sources 717 

Sampling design: Random. 718 

Sample size: 7000 different observations for 99 species (average number of records per species ± s.d.: 70.7 719 
± 180.7). 720 

Clipping: Europe. 721 

Scaling: We used one record per cell for each species. 722 

Cleaning: Species with less than 10 records where discarded for the modelling analyses. For species with 723 
less than 10 records, the observed distirbution was used to generate the stacked prediction of species 724 
richness. To address spatial sampling bias and spatial autocorrelation, occurrence records were spatially 725 
thinned separately for each species using a minimum nearest-neighbour distance of 10 km. The thinning 726 
procedure was repeated 100 times and a single thinned realization was retained for model fitting. 727 
Environmental predictor layers and model predictions were processed on a common raster grid and spatial 728 
resolution to ensure spatial consistency in subsequent thresholding and stacking. 729 

Absence data: No true absence data were available. 730 

Background data: Background data were derived separately for each species by defining a species-specific 731 
accessible area based on the spatial configuration of occurrence records. The mean and maximum pairwise 732 
distances among occurrence locations were used to generate a buffered spatial mask representing the area 733 
available for dispersal. Random background points were then sampled within this mask at approximately 734 
twice the number of presence records and used for threshold selection. This spatially constrained 735 
background sampling reduced the influence of environmentally unrealistic or geographically inaccessible 736 
areas on model assessment. 737 

Errors and biases: See main text for discussion. 738 

Data partitioning 739 

Training data: NA. 
Validation data: NA. 
Test data: Expert-based assessment. 

 740 

Predictor variables 741 

Predictor variables: Temperature seasonality, precipitation of the warmest quarter, evapotranspiration, 742 
percentage of coarse fragments and content of clay in the soil. 743 

Data sources: Evapotranspiration: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-744 
monthly-means?tab=overview; Bioclimatic data: https://www.worldclim.org/data/worldclim21.html; Soil 745 
data: https://soilgrids.org/. 746 

Spatial extent: -30, 50, 25, 72 (xmin, xmax, ymin, ymax). 747 

Spatial resolution: res: 0.08333333 (around 10km at the equator). 748 



Coordinate reference system: WGS84 decimal degrees. 749 

Temporal extent: 1970–2000 for Bioclimatic variables, 2020 for soil data, and 1950–2025 for 750 
evapotranspiration. 751 

Temporal resolution: NA. 752 

Data processing: Environmental predictor layers were standardized using z-score normalization (mean-753 
centering and scaling by standard deviation) prior to model fitting to ensure comparability among variables. 754 

Errors and biases: NA. 755 

Dimension reduction: Expert-based assessment. 756 

Transfer data 757 

Data sources: NA. 
Spatial extent:  
Spatial resolution: NA. 
Temporal extent: NA. 
Temporal resolution: NA. 
Models and scenarios: NA. 
Data processing: NA. 
Quantification of Novelty: NA. 

 

MODEL 758 

Variable pre-selection 759 

Variable pre-selection: NA. 760 

Multicollinearity 761 

Multicollinearity: We tested the correlation between all variables by calculating pairwise Pearson’s r  762 
correlations, setting a threshold for collinearity at |r|> 0.7, and then selected the variables with higher 763 
ecological meaning based on expert based assessment. 764 

Model settings 765 

maxent: featureSet (Default), featureRule (Default), regularizationMultiplierSet (1), regularizationRule 766 
(Default), convergenceThresholdSet (Default (0.00001)), samplingBiasRule (NA), samplingBiasNotes (NA), 767 
targetGroupSampleSize (NA), offsetSet (NA), offsetRule (NA), expertMapProbSet (NA), expertMapProbRule 768 
(NA), expertMapRateSet (NA), expertMapRateRule (NA), expertMapSkewSet (NA), expertMapSkewRule 769 
(NA), expertMapShiftSet (NA), expertMapShiftRule (NA), notes (NA). 770 

Model settings (extrapolation): Default. 771 

Model estimates 772 

Coefficients: Default. 773 

Parameter uncertainty: Parameter uncertainty was not explicitly quantified in this workflow. 774 



Variable importance: NA. 775 

Model selection - model averaging - ensembles 776 

Model selection: No applicable due to single model used. 777 

Model averaging: NA. 778 

Model ensembles: NA. 779 

Analysis and Correction of non-independence 780 

Spatial autocorrelation: NA. 781 

Temporal autocorrelation: NA. 782 

Nested data: NA. 783 

Threshold selection 784 

Threshold selection: Continuous habitat suitability predictions from MaxEnt were converted to binary 785 
presence–absence maps using species-specific thresholds. Thresholds were determined by maximizing both 786 
Cohen’s Kappa and the True Skill Statistic (TSS) based on model predictions at observed presences and 787 
randomly sampled background points. The most conservative threshold among the two was applied to 788 
generate final binary maps. 789 

ASSESSMENT 790 

Performance statistics 791 

Performance on training data: Expert-based  assessment on the stacked richness map as we were not 792 
interested in single species distributions performance. 793 

Performance on validation data: NA. 794 

Performance on test data: NA. 795 

Plausibility check 796 

Response shapes: NA.. 797 

Expert judgement: Yes 798 

PREDICTION 799 

Prediction output 800 

Prediction unit: Same as extent. 801 

Post-processing: NA. 802 

Uncertainty quantification 803 

Algorithmic uncertainty: NA. 804 



Input data uncertainty: NA. 805 

Parameter uncertainty: NA. 806 

Scenario uncertainty: NA. 807 

Novel environments: NA. 808 


