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Abstract

Spiders are remarkably diverse in caves and other subterranean habitats, where they play
key ecological roles as generalist predators and strongly influence local food webs. They
have been instrumental as model organisms for testing various eco-evolutionary
hypotheses. Furthermore, strictly subterranean species exhibiting narrow ranges and high
endemism are particularly significant for conservation planning and vulnerability
assessments. Although high-quality data are essential for research on and conservation of
subterranean spiders, such information remains scarce, especially regarding distribution
patterns. To help fill this gap, we screened the literature, unpublished records, and open
datasets to compile georeferenced occurrences of subterranean spiders across caves and
other subterranean habitats throughout Europe. Based on these data—and to illustrate one
potential application of the compiled dataset—we present the first prediction of subterranean
spider richness patterns across Europe using stacked species distribution models. The
European Subterranean Spider Dataset (ESSD) comprises 31,224 records of 637
subterranean-dwelling spider species (including morphospecies under description),
covering a range of information including taxonomy, locality details (such as location name,
country, geographic coordinates, type of subterranean habitat), and reference information
for each record. All variables are coded using the Darwin Core Standard, ensuring
interoperability with the Global Biodiversity Information Facility (GBIF) and other biodiversity
databases. By enabling integration with trait and phylogenetic resources, the ESSD provides
a robust framework to investigate the drivers and processes shaping subterranean
biodiversity, assess vulnerability to environmental change and anthropogenic pressures,
and guide future sampling to progressively reduce geographic and taxonomic gaps through
open data sharing.

Keywords: Araneae, Darwin Core Standard, Hypogean, Open data, Species distribution
modelling (SDM)

Introduction

In recent years, there has been an explosion of biogeography and (macro)ecology studies
focused on uncovering the patterns and factors that shape biodiversity patterns at
increasingly larger spatial scales—continental to global (e.g., Labouyrie et al., 2023;
Martinez-Nufez et al., 2023, Sabatini et al., 2022). Building this understanding
fundamentally relies on high-quality data, especially distribution records. Over the past few
decades, online biodiversity databases have experienced substantial growth, largely due
to collaborative efforts that have enhanced data accessibility and sharing. This progress
has led to the formation of comprehensive databases covering a wide range of taxa,
including the Global Biodiversity Information Facility (GBIF) (GBIF, 2025), LifeWatch ERIC
(Lifewatch ERIC, 2025) and BioTIME (Dornelas et al., 2025). These repositories provide
extensive taxonomic and distributional information on thousands of taxa across various
ecosystem types and time scales. Despite these advances, large gaps and biases in
species’ known geographic distributions, the so-called Wallacean shortfall, continue to limit
the completeness and reliability of macroecological and biogeographic inferences (e.g.,
Cardoso et al., 2011; Hortal et al., 2015; Hughes et al., 2021).
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Primarily due to accessibility challenges (Ficetola et al., 2019; Mammola et al.,
2021a), the documentation of biodiversity in subterranean ecosystems (caves,
groundwaters, fissural systems, and the like) has historically progressed more slowly than
at the surface. However, in recent years, a steady accumulation of knowledge, combined
with the funding of specific projects focused on continental biodiversity inventories (e.g.,
PASCALIS, Biodiversa+ DarCo), has led many authors to compile this information and
publish it in public datasets with varying resolutions and scales. For example, we now
have the first global datasets on the distribution of cave-dwelling bats (Tanalgo et al.,
2022), cave fish (Bai et al., 2025), asellids (Saclier et al., 2024), and microwhip scorpions
(Mammola et al., 2021b). In Europe, Pascalis dataset (Deharveng et al. 2009) and
European Groundwater Crustaceans Dataset (Zagmajster et al. 2014) were used for early
analyses of continental patterns, but publication of the continental datasets of distribution
of subterranean organisms have started only in the last few years, like for bats (Fialas et
al. 2025), copepods (Cerasoli et al., 2025) and ostracods (Mori et al., 2025). However, a
similar large-scale dataset is still lacking for subterranean spiders.

Spiders (Arachnida: Araneae), with over 53,000 species currently described (World
Spider Catalog, 2025), and providing numerous essential ecosystem services (Cardoso et
al. 2025), are among the most widespread and generalist predators in terrestrial habitats
(Turnbull, 1973). Spiders are particularly diversified in caves and other subterranean voids,
where they play a key ecological role as predators and strongly structure local food webs.
Despite the growing interest in subterranean spiders (Mammola and Isaia, 2017), major
knowledge gaps remain, especially regarding their distribution. Limited expertise and lower
research interest in certain regions have delayed comprehensive data collection. However,
recent efforts are beginning to address these gaps, contributing essential data for
advancing our understanding of subterranean spider ecology and biodiversity. These
efforts include the publication of trait data for all the species in Europe (Mammola et al.,
2022; Patifo-Sauma et al., 2025) and high-resolution distribution data for selected caves
(Mammola et al., 2019a; Macias-Hernandez et al., 2024) or regions (e.g., Western Alps;
Nicolosi et al., 2025; Azores; Crespo et al. 2025).

We present a novel dataset comprising occurrence records for all known species
and morphospecies of subterranean spiders from Europe, spanning a wide range of
ecological affinities to subterranean habitats, ranging from species still able to exploit
surface habitats to obligate subterranean dwellers. This dataset is the result of a
collaborative effort among multiple partners, including ecologists, conservationists,
taxonomists, and biogeographers from various European countries and outermost islands
of Europe (Azores, Madeira, Selvagens, and the Canary Islands). Their contributions have
significantly enriched the data availability, culminating in a comprehensive, multi-species
dataset designed to advance research and conservation efforts for these species. By
making these data public, we hope to promote collaborative research on subterranean
spider biodiversity, spatial patterns, drivers of distribution patterns, and quantitative
conservation efforts.

Methods
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Target species and habitats

We focused on subterranean spiders across continental Europe, including the
archipelagos of the Azores, Salvagens, Madeira, and Canary Islands. Following the
function-based classification of Earth’s ecosystems (Keith et al., 2020, 2022), we focused
on ecosystems belonging to the ‘Subterranean’ (S) domain, which includes diverse
terrestrial subterranean systems: i) the ‘Subterranean lithic’ (S1) biome, namely various
type of caves (e.g., aerobic caves, lava tubes, volcanic pits) and other subterranean voids
of smaller sizes (e.g., fissure systems, deep scree strata, and the so-called Milieu
Souterrain Superficial [MSS; reviewed in Mammola et al. (2016)]); and ii) the
‘Anthropogenic subterranean voids’ (S2) biomes, namely all anthropogenic subterranean
voids with cave-like environmental conditions, including mines, underground bunkers,
blockhouses, tunnels, culverts, and cellars.

For the list of target species, we used the latest checklist of European subterranean
spiders by Patifio-Sauma et al. (2025), currently listing 637 species across 28 families. Of
these, 64 are species under description (hereinafter ‘morphospecies’), identified by experts
as new taxonomic entities based on morphological and/or genetic information.

Data acquisition

The spider dataset is a comprehensive compilation of diverse data sources, created
through the collaboration of 40 researchers across Europe. For each of the target species,
we compiled occurrence records based on different sources. First, we mined the primary
literature for reported localities and georeferenced records. Second, we included
unpublished records (e.g., data stored in personal and institutional collections) as provided
by each contributor in the authors list. Third, we mined records from the main accessible
databases on spiders in Europe, namely ArachnoMap (de Biurrun et al., 2022), Araneae.it
(Pantini & Isaia, 2019), the UK Spider and Harvestman Recording Scheme
(https://srs.britishspiders.org.uk/), Canary Islands Biodiversity Database (Gobierno de
Canarias, 2024), the Cave fauna of Greece database (Paragamian et al., 2025) and
regional database on subterranean species of the Western Balkans SubBioDB
(Zagmajster 2016). Lastly, we mined the GBIF database, which yielded a great number of
missing records, especially for the most widespread species. We downloaded the
occurrence records from GBIF using the Python package “biodumpy” v.0.1.6 (Cancellario
et al., 2025). Specifically, we employed the GBIF module, setting the parameter
dataset_key to "d7dddbf4-2cf0-4f39-9b2a-bb099caae36¢" and geometry to "POLYGON((-
30 25,50 25,50 72,-30 72,-30 25))". The script produced a list of JSON files, which we
subsequently converted to CSV format to facilitate handling.

Format type and data availability

The dataset file is in comma-separated values (csv) format, not compressed. Data are
available in Figshare at the following Digital Object |dentifier:
https://doi.org/10.6084/m9.figshare.30696173.


http://araneae.it/

206

207
208
209
210
21
212

213

214

215
216
217
218
219
220
221
222

223

224

225
226
227
228
229
230
231
232
233
234

235

236

237
238
239
240
241

242
243
244
245
246
247

Header information

The variables included in the dataset were selected in accordance with the Darwin Core
standard (Wieczorek et al., 2012), and the corresponding categories are listed in Table S1.
Headers are mostly self-explanatory. The dataset is fully interoperable with the European
subterranean spider trait dataset (https://doi.org/10.6084/m9.figshare.16574255), allowing
the extraction of morphological and ecological trait information for each species (Mammola
et al., 2022; Patifio-Sauma et al., 2025).

Taxonomic validation

We standardized taxonomy to the species level when feasible, following the latest
nomenclature of the World Spider Catalog (2025). Furthermore, we incorporated genus-
level records with uncertain specific attribution (e.g., Meta sp., Troglohyphantes cf.
lucifuga), as well as morphospecies under description (labelled as Genus + an
alphanumeric code [e.g., Meta sp.1]) to ensure maximal dataset breadth. Please refer to
the column “acceptedNameUsage” for the most up-to-date, validated taxonomic attribution
for each record (note that taxonomy will be updated with any new release of the dataset).
Eventual remarks on taxonomic decisions are provided in column “identificationRemarks”.

Spatial validation

We validated geographic coordinates (based on the WGS84 datum) through cross-
referencing with online resources (e.g., speleological cadastres) and, where available,
species-specific reference materials. We subsequently projected and visually inspected
localities using both R (R Core Team, 2025) and QGIS (QGIS.org, 2025). We harmonized
cave names and their corresponding coordinates, obtained from various sources, through
additional verification with national speleological cadastres whenever possible.
Notwithstanding these quality checks, due to missing information (especially for old
records), the precision of 1,990 records remains low (e.g., georeferenced using the
centroid of the municipality) and 108 records lack coordinates. Uncertainty in the precision
of coordinates is provided in the column georeferenceRemarks.

Prediction of species richness

We illustrate a potential usage of the dataset by predicting species richness patterns in
Europe. We achieved this by using stack species distribution modelling (SSDM) to
calculate species potential distribution across the continent. A ODMAP (Overview, Data,
Model, Assessment and Prediction) (Zurell et al., 2020) protocol for the model, detailing
the main analytical steps, is available in the supplementary materials (Appendix 1).

We included in the modelling all species with at least 10 independent records,
defined as occurrences from different localities separated by at least 10 km (i.e., the
spatial resolution of our environmental predictors), with a total of 99 different spider
species distributions modelled in the present study. Note that species with fewer than 10
independent records were only later included in the final richness prediction (see below).
Since some localities in the species’ distribution data have highly precise geo-localization,



248
249
250
251
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

278
279
280
281
282
283
284
285

286

287

288
289
290

multiple points may fall within the same cell of the downloaded abiotic layers, either due to
the accuracy of the coordinates or because specimens were collected in nearby caves. To
avoid redundant distribution points, we adjusted all coordinates to match the centroid of
the corresponding cell. We then applied spatial thinning using the thin function from the R
package “spThin” (Aiello-Lammens et al. 2015).

Previous research has shown the importance of present (Mammola and Leroy
2018) and past climatic factors (Hewitt 1999; Mammola et al. 2018, 2019b; Knusel et al.
2024), as well as soil composition (Pavlek and Mammola 2021) in shaping subterranean
species distributions. To include these variables in our model, we downloaded climatic and
elevation data from the WorldClim 2 database (Fick and Hijmans 2017), specifically annual
mean temperature (BIO 1), temperature seasonality (BIO 4), maximum temperature of the
warmest month (BIO 5), annual precipitation (BIO 12), precipitation seasonality (BIO 15),
precipitation of the warmest quarter (BIO 18) and precipitation of the coldest quarter (BIO
19). All these variables have been shown to be good proxies for subterranean climatic
conditions (Mammola and Leroy 2018). In addition, we included the differences between
the present and past precipitation and temperature compared during the last glacial
maximum (LGM). For soil composition, we downloaded layers from the SoilGrids database
(Poggio et al. 2021), specifically the percentage of coarse fragments and the gravimetric
content of sand and clay in the soil. Finally, we included layers regarding
evapotranspiration (Mufioz Sabater, J. (2019), normalized difference vegetation index
(NDVI) from Li et al. (2023), and the soil organic carbon (SOC) and organic carbon
detection (OCD) downloaded using the soil_world function from the “geodata” R package
(Hijmans et al. 2024). All these variables are potential proxies for energy availability within
the subterranean domain. All layers had a resolution of approximately 10km. We
calculated pairwise Pearson’s r correlation coefficients among these variables, and
excluded those with high correlation (|r] 2 0.7), retaining only one variable from each
correlated group based on ecological relevance, data quality, and consistency with
previous subterranean ecology studies (Mammola & Leroy, 2018). The final list of
predictors included: temperature seasonality, precipitation of the warmest quarter,
evapotranspiration, percentage of coarse fragments and content of clay in the soil.

We generated individual species models using the modelling function from the R
package “SSDM” (Schmitt et al. 2017) with the MAXENT algorithm (Phillips et al., 2004,
2006; Elith et al., 2011). To estimate species’ potential distributions and reduce
overprediction, thresholds on environmental suitability were applied using Cohen's Kappa
and True Skill Statistic (TSS) values via the ecospat.max.kappa and ecospat.max.tss
functions from the R package “ecospat” (Broennimann et al. 2025), with the more
restrictive threshold being selected. We then stacked all individual species distributions,
and included species with fewer than 10 records as single-cell localities in the map.

Results

The dataset contains 31,224 records of subterranean spiders, accounting for 637 species,
comprising all available georeferenced data on 31,116 records up to 2025, spanning 40
countries also including Azerbaijan, Georgia, Turkey, and Russia.
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The spatial extent of the dataset ranges from -28.80°W to 50.02°E in longitude, and from
27.65°N to 67.94°N in latitude.

Occurrence densities are particularly high in several European regions. Northern
Italy, especially the northwestern and northeastern Alps, shows the greatest number of
records. Elevated densities also characterize northern Spain along the Atlantic coast, as
well as Slovenia and Croatia within the Dinaric karst (Fig. 1A). Observed species richness
closely matches these patterns. The highest values occur in Croatia (Dinaric karst) and
Slovenia, where multiple taxa overlap, followed by parts of the Alps and northern Spain’s
Atlantic region (Fig. 1B).

A country-level summary highlights marked geographic disparities. Italy stands out for both
richness and number of records, followed by Croatia, Spain, France, and Slovenia (Fig.
1C). Most other European countries display comparatively low values, underscoring the
strong imbalance in sampling effort.

Predicted species richness (Fig. 1D) confirms the Alps and adjacent mountain systems,
including the Dinaric Arc, as major hotspots, with high values spanning northern Italy,
Slovenia, Croatia, and the Atlantic coast of northern Spain. Moderate richness also
extends into parts of central and southeastern Europe, including Austria, Germany,
France, and Bosnia and Herzegovina.
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Figure 1. (A) Density of species occurrences across Europe. Points represent individual records,
with color intensity reflecting local occurrence density; (B) Observed richness shows the number of
species recorded per cell across the continent. (C) Geographic distribution of spider records in
Europe. The map shows the combined effect of the number of records and the species richness for
each country, classified into tertiles (Low, Medium, High). The 3x3 legend indicates the intersection
between record abundance (rows) and species richness (columns). Countries without records are
shown in grey. (D) Predicted richness shows the modelled species richness across Europe
obtained through stacked species distribution modelling, with colours indicating the predicted
number of species per grid cell. Mapping is restricted to countries with sufficient data availability;
countries with very few records (e.g. Russia) are therefore not represented.

Most records were collected from natural caves, totalling 25,947 (83.10%) of all
occurrences. These were followed by artificial habitats (e.g., mines, bunkers, blockhouses,
cellars), which accounted for 1,929 records (6.17%), and shallow subterranean habitats
(SSH) with 323 records (1.03%).

In terms of taxonomic distribution, most records belong to the family Tetragnathidae

(9,951; 31.87%), followed by Linyphiidae (8,094; 25.93%), Nesticidae (3,483; 11.16%),
Dysderidae (2,822; 9.04%), Agelenidae (2,378; 7.62%), Pholcidae (1,584; 5.07%),
Leptonetidae (1,057; 3.39%), Pimoidae (618; 1.98%), and Amaurobiidae (362; 1.16%).
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Other families, including Sicariidae, Theridiidae, and Cicurinidae, were each represented
by less than 1% of the total records (Fig. 2A).

N° of records for each species
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Figure 2. (A) Pie chart showing the relative percentage of occurrences records for each spider

family in the dataset. Families representing less than 1% of records were grouped into the category

“Others”. (B) Barplot displaying the number of records for the most common species in the spiders
dataset. Only species with at least 300 records are shown.
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Among the 637 species in the dataset, the most frequently recorded species is Meta
menardi (Latreille, 1804), with 5,914 occurrences. This is followed by Metellina merianae
(Scopoli, 1763) with 2,412 records, Kryptonesticus eremita (Simon, 1880) with 1,482
records, Meta bourneti (Simon, 1922) with 1,251 records, and Nesticus cellulanus (Clerck,
1757) with 1,226 records. All other species are represented by fewer than 1,000 records
(average number of records * s.d. = 20 + 38) (Fig. 2B).

Discussion

The dataset provides the most comprehensive distribution data for subterranean spiders
across Europe. It brings together data from multiple countries and research groups,
consolidating previously scattered information into a single, standardized, and harmonized
resource.

The taxonomic composition of the dataset reveals meaningful ecological and
sampling-related patterns. In particular, some families are overrepresented in terms of
occurrence records relative to their species richness. For example, Tetragnathidae account
for a high number of records despite including few subterranean-associated species (Meta
spp. and Metellina merianae; Fig. 2A). This likely reflects the large body size, high
conspicuousness, and often high local densities of these spiders near cave entrances
(Smithers 2005; Novak et al.,, 2010; Mammola & lIsaia, 2014), all resulting in high
detectability, as well as their broad geographic distributions in Europe (Mammola et al.,
2019a, 2021c¢).

The predicted richness patterns (Fig. 1D) also illustrate the potential of the dataset to
support macroecological inference. By integrating species distribution models for tens of
taxa, the resulting map highlights broad-scale biogeographic structures that are not always
evident from raw data alone. In particular, the Alps, the Dinaric Arc, and parts of northern
Spain emerge as major hotspots of subterranean diversity, consistent with the long-term
persistence of stable microclimatic refugia and the complex geomorphological history of
these regions (Culver & Sket, 2000; Deharveng et al., 2024). The smoother gradients
revealed by the prediction also indicate that true richness likely extends beyond areas with
dense sampling, highlighting regions such as Austria, Germany, France, and Bosnia and
Herzegovina as potentially important, yet comparatively understudied. This underscores
both the ecological value of the modelling approach and the role of the dataset in identifying
priority areas where additional sampling would substantially improve knowledge of
subterranean biodiversity. Integrating predicted patterns with conservation planning may
therefore help guide efforts toward mountain systems and karstic landscapes that harbour
disproportionate levels of subterranean diversity.

The initiative reflects the growing recognition that open data sharing at continental
and global scales is essential to advance (macro)ecological research, improve biodiversity
monitoring, and inform conservation strategies under increasing environmental threats
(Urbano et al., 2024). This goal has been greatly facilitated in recent years by the
development of international research infrastructures such as the Global Biodiversity
Information Facility (GBIF; GBIF.org, 2025) and LifeWatch ERIC (Basset & Los, 2012), which
promote standardized, interoperable, and openly accessible biodiversity data.
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Although focused on distributional records, its interoperability with other data sources
makes it particularly valuable. For example, it can be combined with complementary
resources, such as datasets on spider morphological and ecological traits (Mammola et al.,
2022; Patino-Sauma et al., 2025) or phylogenetic information from other sources, thereby
enabling comparative analyses, functional diversity assessments, and large-scale
ecological modelling. By linking distributional data with traits and phylogenies, researchers
can further explore questions related to the processes shaping subterranean biodiversity
and identify species and regions most vulnerable to environmental change and
anthropogenic pressures.

The geographical and taxonomic breadth of the dataset makes it a valuable resource
for addressing key questions in subterranean ecology, from species distributions and
environmental drivers to long-standing gaps in conservation status, functional diversity, and
the ecological factors structuring subterranean spider assemblages. While the dataset
marks a substantial step forward, some regions and taxa remain underrepresented,
reflecting historical biases in research effort and data availability. Open data sharing,
however, provides the basis for progressively improving coverage and quality, fostering new
sampling initiatives, comparative analyses, and multi-scale investigations of subterranean
biodiversity.
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Appendix 1. Summary of the modelling pipeline according to the
ODMAP (Zurell et al., 2020) reporting protocol.

OVERVIEW

Title

An open occurrence dataset for European subterranean spider

Model objective

Model objective: Mapping and interpolation.

Target output: Obtaining a map of species richness based on stacked predicted distribution ranges of each

species.

Focal Taxon

Focal Taxon:

Location

Location:

Scale of Analysis

Spatial extent:
Spatial resolution:
Temporal extent:

Temporal resolution:

Boundary:

Biodiversity data

Observation type:
Response data type:

Predictors

Predictor types:

Hypotheses

Spiders (Arachnida: Araneae).

Europe.

-30, 50, 25, 72 (xmin, xmax, ymin, ymax).
10 km.

Present.

NA.

political.

field survey, GPS tracking.
presence-only.

climatic, habitat, edaphic.

Hypotheses: No specific hypotheses were made regarding the species-environment relationships.
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Assumptions

Model assumptions: Unlimited dispersal.

Algorithms

Modelling techniques: maxent.

Model complexity: Only ecologically interpretable predictors
were included, and interactions were not
considered to maintain biological
interpretability.

Model averaging: NA.

Workflow

Environmental predictor layers were standardized prior to modelling.

For each species, a MaxEnt model was fitted using presence locations and environmental predictors to
generate continuous habitat suitability predictions.

Predictions were spatially constrained using a buffer-based mask derived from the mean and maximum
inter-point distances among occurrence records, and suitability values were smoothed as a function of
distance to the accessible area boundary.

Model performance was assessed by extracting predicted suitability values at observed presences and
randomly sampled background points, and optimal thresholds were determined using both Kappa and True
Skill Statistic (TSS).

Binary presence—absence maps were generated using the most conservative threshold and combined
across species to produce a stacked species distribution model representing predicted species richness.

Software

Software: R version 4.5.0. SSDM package version 0.2.9.

Code availability: The code to run this analysis is available in the Figshare repository
(https://doi.org/10.6084/m9.figshare.30696173).

Data availability: Distribution data are available in the Figshare repository
(https://doi.org/10.6084/m9.figshare.30696173). Environmental predictors are available from
different sources (details in section: Predictor variables).

DATA

Biodiversity data

Taxon names: 99 different spider species (including some under description) were modelled. Taxonomy is
according to the World Spider Catalog version 26 (https://wsc.nmbe.ch/) and the version 3 of the Checklist
of European Subterranean spider (https://doi.org/10.6084/m9.figshare.16574255). See supplementary
material of the manuscript for a detailed list of all species analyzed.
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748

Taxonomic reference system

Ecological level: species.

Data sources
Sampling design: Random.

Sample size: 7000 different observations for 99 species (average number of records per species *+ s.d.: 70.7
+180.7).

Clipping: Europe.
Scaling: We used one record per cell for each species.

Cleaning: Species with less than 10 records where discarded for the modelling analyses. For species with
less than 10 records, the observed distirbution was used to generate the stacked prediction of species
richness. To address spatial sampling bias and spatial autocorrelation, occurrence records were spatially
thinned separately for each species using a minimum nearest-neighbour distance of 10 km. The thinning
procedure was repeated 100 times and a single thinned realization was retained for model fitting.
Environmental predictor layers and model predictions were processed on a common raster grid and spatial
resolution to ensure spatial consistency in subsequent thresholding and stacking.

Absence data: No true absence data were available.

Background data: Background data were derived separately for each species by defining a species-specific
accessible area based on the spatial configuration of occurrence records. The mean and maximum pairwise
distances among occurrence locations were used to generate a buffered spatial mask representing the area
available for dispersal. Random background points were then sampled within this mask at approximately
twice the number of presence records and used for threshold selection. This spatially constrained
background sampling reduced the influence of environmentally unrealistic or geographically inaccessible
areas on model assessment.

Errors and biases: See main text for discussion.

Data partitioning

Training data: NA.
Validation data: NA.
Test data: Expert-based assessment.

Predictor variables

Predictor variables: Temperature seasonality, precipitation of the warmest quarter, evapotranspiration,
percentage of coarse fragments and content of clay in the soil.

Data sources: Evapotranspiration: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-
monthly-means?tab=overview; Bioclimatic data: https://www.worldclim.org/data/worldclim21.html; Soil
data: https://soilgrids.org/.

Spatial extent: -30, 50, 25, 72 (xmin, xmax, ymin, ymax).

Spatial resolution: res: 0.08333333 (around 10km at the equator).
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Coordinate reference system: WGS84 decimal degrees.

Temporal extent: 1970-2000 for Bioclimatic variables, 2020 for soil data, and 1950-2025 for
evapotranspiration.

Temporal resolution: NA.

Data processing: Environmental predictor layers were standardized using z-score normalization (mean-
centering and scaling by standard deviation) prior to model fitting to ensure comparability among variables.

Errors and biases: NA.

Dimension reduction: Expert-based assessment.

Transfer data

Data sources: NA.
Spatial extent:

Spatial resolution: NA.
Temporal extent: NA.
Temporal resolution: NA.
Models and scenarios: NA.
Data processing: NA.
Quantification of Novelty: NA.

MODEL

Variable pre-selection

Variable pre-selection: NA.

Multicollinearity

Multicollinearity: We tested the correlation between all variables by calculating pairwise Pearson’s r
correlations, setting a threshold for collinearity at |r|> 0.7, and then selected the variables with higher
ecological meaning based on expert based assessment.

Model settings

maxent: featureSet (Default), featureRule (Default), regularizationMultiplierSet (1), regularizationRule
(Default), convergenceThresholdSet (Default (0.00001)), samplingBiasRule (NA), samplingBiasNotes (NA),
targetGroupSampleSize (NA), offsetSet (NA), offsetRule (NA), expertMapProbSet (NA), expertMapProbRule
(NA), expertMapRateSet (NA), expertMapRateRule (NA), expertMapSkewSet (NA), expertMapSkewRule
(NA), expertMapShiftSet (NA), expertMapShiftRule (NA), notes (NA).

Model settings (extrapolation): Default.

Model estimates
Coefficients: Default.

Parameter uncertainty: Parameter uncertainty was not explicitly quantified in this workflow.
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Variable importance: NA.

Model selection - model averaging - ensembles
Model selection: No applicable due to single model used.
Model averaging: NA.

Model ensembles: NA.

Analysis and Correction of non-independence
Spatial autocorrelation: NA.

Temporal autocorrelation: NA.

Nested data: NA.

Threshold selection

Threshold selection: Continuous habitat suitability predictions from MaxEnt were converted to binary
presence—absence maps using species-specific thresholds. Thresholds were determined by maximizing both
Cohen’s Kappa and the True Skill Statistic (TSS) based on model predictions at observed presences and
randomly sampled background points. The most conservative threshold among the two was applied to
generate final binary maps.

ASSESSMENT

Performance statistics

Performance on training data: Expert-based assessment on the stacked richness map as we were not
interested in single species distributions performance.

Performance on validation data: NA.
Performance on test data: NA.
Plausibility check

Response shapes: NA..

Expert judgement: Yes

PREDICTION

Prediction output
Prediction unit: Same as extent.
Post-processing: NA.

Uncertainty quantification

Algorithmic uncertainty: NA.
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Input data uncertainty: NA.
Parameter uncertainty: NA.
Scenario uncertainty: NA.

Novel environments: NA.



