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Abstract: Ecological networks provide a critical framework for understanding the architecture
of biodiversity and predicting ecosystem responses to environmental change. However, the
application of network ecology is often hindered by a lack of clarity regarding the assumptions
inherent in different network representations. Here, we present a hierarchical framework that
distinguishes between ‘metawebs’ (representing the fundamental feasibility of interactions) and
‘realised webs’ (representing interactions expressed in specific spatiotemporal contexts). We
contrast our conceptual approach with recent data-centric reviews, focusing instead on the
theoretical gradients that govern network construction. We identify five core processes that
drive the transition from potential to realised interactions: evolutionary compatibility and co-
occurrence, which define the feasibility of links; and abundance, diet choice, and non-trophic
interactions, which determine their realisation. Furthermore, we map these processes onto a
methodological spectrum of network construction, distinguishing between inductive approaches
(e.g., trait-matching and stochastic models) that infer structure from observation, and deductive
approaches (e.g., neutral and optimal foraging models) that generate structure from mechanistic
first principles. By making explicit the assumptions and scale-dependent processes underpinning
these different representations, this framework clarifies the scope of inference possible with
each approach, ultimately facilitating more robust predictions of biodiversity dynamics in the
anthropocene.
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1 Introduction

At the heart of modern biodiversity science are a set of concepts and theories about species
richness, stability, and function, which have been discussed since the foundational work of
Elton (2001), Lindeman (1942), and MacArthur (1955) and more recently Loreau & de
Mazancourt (2013). These relate to the abundance, distribution, functions, and services
that biodiversity provides. Network representations of interactions among organisms are
increasingly argued to be an asset to understanding and predicting the impacts of multiple,
simultaneous stress on biodiversity (e.g., foundational studies on food web structure and
robustness: Cohen et al. (1990); Martinez & Dunne (1998); Dunne et al. (2002); Simmons
et al. (2021)). Documenting interactions between and among taxa is thus one of the
fundamental building blocks of community ecology and provides a powerful abstraction and
platform for mathematical and statistical modelling of biodiversity to make predictions,

and to mitigate and manage threats (Windsor et al., 2023).

However, there is a growing discourse around limitations to the interpretation and applied
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use of networks, which have been recognised since early discussions of sampling effort
and aggregation in food webs (Cohen et al. (1990); Polis (1991); Martinez (1991); recent
discussions: Dormann (2023); Bliithgen (2010)). Against this, it is important to evaluate
the value and the limitations of the various network conceptualisations and how these relate
to biodiversity concepts, such as community structure or ecosystem function (Bliithgen
& Staab, 2024). In this perspective we aim to provide an overview of different food
web representations, particularly how each representation embeds assumptions about the
processes that determine interactions (Section 3) about the levels of organization at which
this occurs (i.e. the biological, ecological, spatial/temporal scales) and the way in which

we construct the resulting networks (Section 4).

Fundamentally, we are talking about an intersection of the type of data used to construct
a network and the underlying theory as to what drives the resolution and occurrence of
interactions among species in those data. We still lack a clear explanation of the different
assumptions and scale dependent processes that underpin network construction alongside
extensive discussions about the challenges relating to data collection and observation
(Bliithgen & Staab, 2024; Brimacombe et al., 2023, 2024; Dunne, 2006; Martinez &
Dunne, 1998; Moulatlet et al., 2024; Pimm, 1984; Polis, 1991; Pringle & Hutchinson, 2020;
Saberski et al., 2024). Such an understanding should deliver an acceleration in capacity

to more effectively predict the impact of multiple stressors on biodiverse communities.

In their recent work, Gauzens et al. (2025) showcased a 242 decomposition of networks
around aggregated versus species level resolution of nodes and around potential and realised
links among the nodes. Their review delivers valuable insight into the methodologies used
to collect and manage data among the node and link differentiation. It also delivers an
overview of the scale and types of questions that are associated with each category of

differentiation.

Here we provide a complementary perspective focused on concepts, models, and theory,
in contrast to the data driven breakdown in Gauzens et al. (2025) (e.g., their Tables 1
and 2). Our approach delivers a hierarchical perspective on network construction based
on a gradient from feasibility, capturing the concept of metawebs and Gauzen et al’s
‘potential’ webs, through to realised webs as in Gauzens’ et al. In contrast to their 2
+ 2 decomposition (their Fig 1), our perspective showcases nested ecological scales and
processes that derive from shifts in the assumptions and theories embedded along this

gradient. This includes classic ecological ‘aggregations’ such as functional/phylogenetic
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groups through to species, populations and individuals, unique perspective on how space
and time intersect with node and link resolution, refined insight into which networks are
derived by induction vs. deduction and a revealing of a core transition between assumptions

about how links are derived based on evolutionary vs. ecological theories.

In the following sections we provide a scene-setting review of nodes and edges (links) in
networks before aligning various processes that determine interactions with the different
network representations. Ultimately, we provide a unique perspective on the nested
hierarchy of processes that govern transitions from meta-webs to realised webs. We finish
with a refined and nuanced alignment of models/representations and key questions in

biodiversity science in the anthropocene.

2 Setting the Scene: The Not So Basics of Nodes and

Edges

Ecological networks serve multiple uses, representing an ‘object’ from which inferences
can be made. While many aspects of community structure can be analysed without
networks (e.g., through trait distributions or abundance patterns) networks provide a
formal framework for capturing the organisation of interactions among species. The study
of network structure and topology has a long history in ecology, rooted in early theory on
energy flow (Lindeman, 1942; Odum, 1968), and later extended to questions of robustness,
stability, and complexity (Brose et al., 2006; Dunne et al., 2002; May, 1972; Montoya
et al., 2006; e.g., Pimm, 1984). More recent work has built on this foundation to link
network structure to ecosystem functioning, persistence, and dynamical behaviour (Danet
et al., 2024; Pilosof et al., 2017; e.g., Schneider et al., 2016). Networks are therefore
commonly treated as response variables in tests of ecological theory and statistical models
of the generative processes that give rise to observed structure, and are widely used to
compare communities across environmental gradients or through time (e.g., Hao et al.,
2025; Pecuchet et al., 2020). They also provide a platform for evaluating downstream
responses to perturbations, including secondary extinctions and robustness to species loss
(e.g., Dunne et al., 2002; Keyes et al., 2021, 2024; Staniczenko et al., 2010), as well as
for implementing dynamical process that inference about stability, ecosystem function,
invasions, climate change, contaminants, and extinction cascades (Curtsdotter et al., 2019;
e.g., Delmas et al., 2017; Terry et al., 2025). Against this backdrop of multiple research

agendas, the definition of ‘edges’ and ‘nodes’, and the levels of organisation at which they
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are defined, take many forms (Moulatlet et al., 2024; Poisot, Stouffer, et al., 2016), each of
which encode a series of assumptions within a network. Here we introduce a perspective

on these baseline assumptions.

2.1 How do we define a node?

While nodes are conventionally described as representing species, in practice they may
correspond to a range of taxonomic and non-taxonomic units, including sub-species,
genera, or families, as well as trophic species (e.g., Yodzis (1982); Williams & Martinez
(2000)), feeding guilds (e.g., Garcia-Callejas et al., 2023), or life-stage—specific subsets of
species (e.g., Clegg et al., 2018). These choices reflect differences in the level, type, and
consistency of resolution at which networks are constructed, rather than aggregation per se.
In many cases, aggregation is applied explicitly on top of more highly resolved—or unevenly
resolved—data to address particular questions, as in the construction of trophic species,
and the underlying data may remain available for alternative analyses. Nevertheless,
representing nodes at coarser or mixed resolutions can limit taxon-specific inference (e.g.,
whether species a consumes species b), bias estimates of degree distributions—particularly
generality and vulnerability—and complicate downstream analyses such as extinction or
invasion dynamics, where species identity and the consequences of loss may be obscured
(Beckerman et al., 2006; Clegg et al., 2018). At the same time, there are clear justifications
for using aggregated representations when the distribution of interactions among functional
or trophic units is more informative than species-level detail, for example when analysing
extinction patterns across feeding guilds (Dunhill et al., 2024). More broadly, issues of
resolution, scale, and sampling have long been recognised as central to the construction

and interpretation of food webs (Dunne, 2006; e.g., Martinez & Dunne, 1998).

2.2 What is captured by an edge?

In order to break down the definitions of an edge, it is important to introduce the concept
of potential versus realised links: potential links reflect feasibility while realised links are
connected to flux of some currency (typically energy; see below for more detail). Links
within food webs are thus a representation of either potential links between species Pringle
(2020) or fluxes within a system e.g., energy transfer or material flow as the result of
the feeding links between species (Lindeman, 1942; Proulx et al., 2005). Edges can thus
correspond to different ‘currencies’ (Gauzens et al., 2025). There are also a myriad of ways

in which the links themselves can be specified. Links between species can be treated as
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present or absent (i.e., binary), may be defined as probabilities (Banville et al., 2025; Poisot,
Cirtwill, et al., 2016) or by continuous functions which further quantify the strength of an
interaction (Berlow et al., 2004). How links are specified thus requires intersecting both
the currency being modelled and their specification. For example, feasibility is unlikely
to accommodate flux, but does align with binary or probability representations. Taking
a food web that consists of links representing feasible interactions among a collection of
species will be meaningless if one is interested in understanding the flow of energy through

the network as the links are not environmentally /energetically constrained.

2.3 Network representations

Against these definitions of nodes and edges, networks fall into two major ‘types’: metawebs,
traditionally defined as all the potential interactions for a specific species pool (Dunne,
2006); and realised networks, which is the subset of interactions in a metaweb that are
realised for a specific community at a given time and place. The fundamental differences
between these two network representations are the spatial and temporal scale at which
they are constructed, and the associated processes that are assumed to drive patterns at

these scales.

A metaweb is, at its core, a list of feasible interactions between pairs of species. The
feasibility for a given pair is derived from the complementarity of their traits, typically
aligned with feeding. Feasibility can be further refined by co-occurrence leading to
the transition from a global to regional metaweb. Metawebs thus provide a means to
identify evolutionary plausible links, regionally plausible interactions, the set of ecologically
impossible, i.e., forbidden, links (Jordano, 2016b), and ultimately a definition of the

plausible complete diet of a species (Strydom et al., 2023).

In contrast, realised networks are typically localised in space and time, with links contingent
on species co-occurrence, environmental conditions, and mechanisms of diet choice. As a
result, the presence or absence of a link reflects species behaviour, such that even when
a realised network is represented as a binary matrix, each edge implies an underlying
function describing interaction strength. A realised network is therefore not a simple
downscaling of a metaweb based on finer spatial or temporal resolution. Rather than
being obtained by filtering feasible interactions through co-occurrence alone, realised webs
capture the processes that govern whether interactions are expressed and how energy

flows through a community. In this sense, the definition of an edge shifts from one of
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feasibility to one of realised choice and consequence, centred on energy acquisition and
transfer. Consequently, a metaweb and a realised network constructed from the same set
of species may share node composition yet differ structurally, because they are constrained
by fundamentally different rules governing link presence. This distinction has important
implications for interpretation: links absent from a metaweb can be treated as truly absent
in terms of feasibility, whereas links absent from a realised network should instead be
interpreted as context-dependent absences arising from environmental, behavioural, or

community-level constraints.

3 From Nodes and Edges to Process and Constraints

In the previous section we discussed how the definition of nodes and edges, representing
different scales and processes, lead to the concept of a metaweb and a realised web. The
fundamental take-homes are that nodes vary in their resolution, edges vary in what kind
of process they represent and the intersection of these, defined by meta- vs. realised webs,
underpins distinct lines of inquiry and constraints on the type of inference we can make
with networks. Here we reveal five core constraints across evolutionary and ecological
scales that further delineate the transition from meta- to realised webs, exposing processes
that determine the nature of links among nodes: evolutionary compatibility, co-occurrence,

abundance, diet choice, and non-trophic interactions Figure 1.

[Figure 1 about here.]

3.1 Processes that determine the feasibility of an interaction

Evolutionary compatibility and co-occurrence are the two principal processes that ‘act’ at
the species pair of interest and define feasibility. The scale of inference and set of processes
embodied in these two constraints typically combine to define a ‘list’ of interactions that are
viable/feasible and defined strictly as present/absent. Reflecting on the previous section,
nodes are typically species and rules defining edges are defined by trait complementarity

(phylogenetic) and/or co-occurrence. Here we provide more insight into each process.
Evolutionary compatibility

This constraint is defined by shared (co)evolutionary history between consumers and
resources (Dalla Riva & Stouffer, 2016; Gémez et al., 2010; Rossberg et al., 2006; Segar et

al., 2020) which is manifested as ‘trait complementarity’ between two species (Benadi et
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al., 2022). In this body of theory, the consumer has the ‘correct’ set of traits that allow it
to acquire and consume the resource. Interactions that are not compatible are defined as
forbidden links (Jordano, 2016b); i.e., they are not physically possible and will always be

absent within a network.

Networks do not properly arise from models based on this constraint. Instead, interacting
species pairs are defined and these are represented as binary (possible vs forbidden)
or probabilistic (Banville et al., 2025). For example, in the metaweb constructed by
Strydom et al. (2022) probabilities are quantified as the confidence of a specific interaction
being possible between two species. A network constructed on the basis of evolutionary
compatibility is conceptually aligned with a ‘global metaweb’, and gives us information as
to the global feasibility of links between species pairs despite the fact that they do not

co-occur (see Figure 1).
(Co)occurrence

The co-occurrence of species in both time and space is a fundamental requirement for an
interaction between two species to occur (at least in terms of feeding links). Although
co-occurrence data alone is insufficient for building an accurate and ecologically meaningful
representation of feeding links (Blanchet et al., 2020), it is still a critical process that
determines the possible realisation of a feeding. Knowledge on the co-occurrence of species
allows us to spatially constrain a global metaweb to reflect regional metawebs (Dansereau,
Barros, et al., 2024). In the context of Figure 1 this would be the metawebs for regions

one and two.

We reinforce that these two constraints don’t deliver a network per se, but a list of feasible
species pairs. Although it is possible to build a network from the list of interactions
generated by these constraints, it is important to be aware that the structure of this
network is not constrained by any community context: just because species are able to

interact does not mean that they will (Caron et al., 2024; Poisot et al., 2015).

3.2 Processes that realise networks

In contrast to the above, here we highlight three processes that influence the realisation of
an interaction between species and thus form the conceptual basis for realised networks.
As we show in Figure 1, a ‘truly realised’ network is the product of properties of the
community (abundance and non-trophic interactions) and the individual (diet

choice). This represents a conceptual shift from considering the feasibility for species
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pairwise interactions to considering the edge as a representation of energy flow. Such
a transition requires information about how the community, the environment and the
individual constrains network topology as defined by consumer choice (Quintero et al.

(2024), Section 2.3)
Abundance

Abundance as a realising process emerges from a null model for energy acquisition:
organisms feeding randomly will consume resources in proportion to their abundance
(Stephens & Krebs, 1986). Here, abundance of different prey species influences the
distribution of links in a network (Vazquez et al., 2009) by defining a preference linked to
individuals among species meeting (Banville et al., 2025; Poisot et al., 2015). Abundance
data (linked to a derived metaweb) delivers a foundation ruleset that can define the
distribution and strength of links. Of note, however, is that such abundance constrained
interactions are not necessarily contingent on there being any compatibility between

species (E. Canard et al., 2012; Momal et al., 2020; Pomeranz et al., 2019).
Diet choice

It is well established that consumers make more active decisions than eating items in
proportion to their abundance (Stephens & Krebs, 1986). Ultimately, consumer choice
is underpinned by an energetic cost-benefit framework centered around profitability and
defined by traits associated with acquisition and consumption of a resource (Smith et al.,
2021; Wootton et al., 2023). Energetic constraints are invoked to construct networks in
a myriad of ways (e.g., Beckerman et al., 2006; Cherif et al., 2024; Pawar et al., 2012;
Portalier et al., 2019).

In contrast to metaweb ‘construction’ from a list of pairwise interactions, these methods
deliver a realised web directly and as an emergent property of node behaviour. We also
here make a distinction, developed below, with models like the Niche Model (Williams
& Martinez, 2000), where diet choice is implicit in its probabilistic network generating
function, but it is working to replicate the expected structure of the network, and this
structure does not emerge from node-based rules. Note that we select diet choice as a term
to capture rules linked to optimal foraging (Pyke, 1984) and metabolic theory (Brown et
al., 2004); it is a sensible ‘umbrella concept’ for capturing the energetic constraint on of

the distribution and strength of interactions.

Non-trophic interactions
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We include non-trophic interactions (see Miele et al., 2019) here not as a determinant
of links, but a modifier of them - they are the community context above and beyond
co-occurrence and abundance. Non-trophic interactions include competition for space,
predator interference, refuge provisioning, recruitment facilitation as well as non-trophic
effects that increase or decrease mortality. These interactions specifically modify either
the realisation or strength of trophic interactions (Golubski & Abrams, 2011; Ings et al.,
2009; Kamaru et al., 2024; Pilosof et al., 2017; Staniczenko et al., 2010) and represent
direct (e.g., predator a outcompetes predator b) and indirect (e.g., mutualistic/facilitative

interactions) mechanisms.

Some interactions, such as pollination, occupy an intermediate position in this framework,
as they combine trophic components (e.g. resource consumption) with non-trophic effects
that influence reproduction, recruitment, and population persistence (Bascompte &
Jordano, 2007; Holland et al., 2002; Sauve et al., 2016). They operate on the realisation
of a network by altering the fine-scale distribution and abundance of species and relative
contributions of direct and indirect effects to biomass, persistence, stability and the
functioning of the communities (Buche et al., 2024; Kéfi et al., 2012, 2015; Miele et al.,
2019).

4 Network construction

The above five processes are central to understanding the assumptions inherent in building
different types of networks. Each of the processes, or combinations thereof, deliver a
unique set of boundary conditions on what a network represents and can be used for. Here
we build on the introduction of these five processes to further categorise the approaches to
constructing networks. In doing so also introduce more detail on a variety of methodologies

used to construct networks.

4.1 Why construct networks?

Networks are a representation of biodiversity. In a perfect world, we might know about
all interactions. However, the empirical collection of interaction data is both costly and
challenging to execute (Jordano, 2016a, 2016b; Poisot et al., 2021). In the absence of
robust empirical data, we construct models that facilitate interpolation and gap-filling of
existing empirical datasets (e.g., Biton et al., 2024; Dallas et al., 2017; Poisot et al., 2023;

Stock et al., 2017), predict the feasibility of interaction among pairs of species, or directly

10



269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

predict network structure (see Strydom et al., 2021 for a broader discussion).

They are unique in delivering more than just estimates of species richness. As noted in
the introduction, a network embodies the organising structure of biodiversity and allows
numerous opportunities for ‘downstream’ analysis, including the comparison of structures,
estimation of energy flux or extinction dynamics and ultimately form the structural inputs
to dynamical systems models that facilitate ecological and conservation relevant inference
about productivity-diversity-stability-function relationships (Danet et al., 2024) in space
and time. But making such inferences requires careful attention to one or more of the

processes discussed in Section 3.

4.2 Construction through induction

Constructing feasible or realised networks can be framed as an ‘inductive reasoning’
process where insight and generalisation arises from a set of observations and relationships.
Inductive reasoning as a foundation for network construction is implemented at node
and network levels. When applied at the node level, species-specific networks are created
and judged by their association with expected feeding interactions. When applied at the

network level, networks are judged by their structural properties.

4.2.1 Species specific networks: construction through node level induction

Constructing feasible networks and facilitating the interpolation or gap-filling of existing
empirical datasets on sets of species interactions can be framed as an ‘inductive reasoning’
process where insight and generalisation arises from a set of observations and relationships
about feeding. All methods in this inference space rest on a set of three assumptions:
there are a set of ‘feeding rules’ that underpin interaction feasibility (Morales-Castilla et
al., 2015); these rules are phylogenetically conserved (Bramon Mora et al., 2018; Dalla
Riva & Stouffer, 2016); and they can be specified by matching the traits between consumer

and resource.

Evolutionary compatibility and co-occurrence constraints have been critical to the con-
struction of ‘first draft’ networks for communities for which we have no interaction data
(Strydom et al., 2022). They are also central to interpolation in data poor regions and
predicting interactions for ‘unobservable’ communities e.g., prehistoric networks (Dunhill
et al., 2024; Fricke et al., 2022; Yeakel et al., 2014) or future, novel community assemblages

(Van der Putten et al., 2010). Furthermore, they have the capacity to evaluate a role of
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interactions among species relative to their distribution by accounting for the role of the
environment and the role of species interactions (Albouy et al., 2014; Gravel et al., 2019;
Higino et al., 2023; Pollock et al., 2014). There are substantial data requirements for
these approaches including expert knowledge, species traits and phylogenetic relationships

and/or interaction data on related species or communities.

Feeding rules are defined in multiple ways. The determination of the feeding rules can be
defined a priori based on expert knowledge opinions. Typically this is done on a ‘trait
matching’ basis. An example are the paleo food web models of Shaw et al. (2024) and
Roopnarine (2017) that specify a series of rules for a set of traits and interactions deemed
feasible if all conditions are met. Alternatively the body size ratio between the consumer
and resource is often used (e.g., Gravel et al., 2013; Rohr et al., 2010), with the idea that
consumers will only utilise a resource with a body size is less than or equal to their own
(Brose et al., 2019; Yodzis & Innes, 1992), although it is broadly acknowledged that many
herbivores (such as insects) violate these assumptions (Valdovinos et al., 2023). However,
work from Van De Walle et al. (2023) seems to suggest that adding morphological traits

in addition to body size ratio improves model performance.

Rules are also defined by correlating real world interaction data with suitable ecological
proxies for which data is more widely available (e.g., traits) using some sort of binary
classifier (see Pichler et al. (2020) for an overview). These include generalised linear
models (e.g., Caron et al., 2022), random forest (e.g., Llewelyn et al., 2023), trait-based
k-NN (e.g., Desjardins-Proulx et al., 2017), and Bayesian models (Cirtwill et al., 2019;

e.g., EKIof et al., 2013).

Finally, graph embedding uses the structural features of a known network to infer the
position of species in an unknown network through the decomposition of the interaction
onto the embedding space. This decomposition relies on a combination of ecological proxies
(e.g., traits) in conjunction with known interactions to infer the latent values of species,
which can then be mapped onto decomposition of a known network. See Strydom et al.

(2023) for a detailed review of methods and Strydom et al. (2022) for a specific example.

4.2.2 Species agnostic networks: construction through structure induction

Networks in this category are generated using rules that create non-random networks
that reflect some minimal empirical knowledge of ecological networks. These can be

used in a variety of ways, for example comparing the structure of realised networks to
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quantify relative deviations from the model structure. They are also used as a way to
generate ‘realistic’ food web structures that are used for dynamical or other analyses.
The determination of links between species is only implicitly linked to properties of the
nodes. This means these networks are usually not species specific. Although these models
are data input light, often requiring only species richness and an estimate of the number
of expected links, they make clear assumptions regarding what the expectations are for
network structure. These are some of the most commonly used network generation tools
(e.g., the Niche model; Williams & Martinez (2000)). There are two sub-categories of

these species agnostic networks.

Stochastic network models use a probabilistic rule-set about diet choice and niche breadth
to reflect fundamental ideas of foraging biology. These models that are based on the
compartmentalisation and acquisition of energy for species at different trophic levels
(Allesina & Pascual, 2009; Krause et al., 2003) and that network structure can be
determined by distributing interactions along single dimension [the ‘niche axis’; Allesina
et al. (2008)]. Typically these models parametrise some aspect of the network structure
(although see Allesina & Pascual, 2009 for a parameter-free model). These models include
the most commonly used network generator, the Niche model (Williams & Martinez,
2000), as well as the original Cascade model (Cohen et al., 1990) and the derived Nested
hierarchy model (Cattin et al., 2004). These models often form the basis for dynamic
models e.g., the allometric trophic network (Brose et al., 2006; Schneider et al., 2016) and

bioenergetic food web models (Delmas et al., 2017).

4.3 Construction through deduction

In contrast to the above approaches centred on feasibility, realised networks via methods
reflecting abundance and diet choice typically rely on deductive reasoning and have a
unique agenda to those above. In contrast to the inductive methods, inference about a
realised network follows from a set of premises defining generative processes, often referred
to as mechanisms. Typically, models that embed abundance and diet choice constraints
reference theory that allows inference about the distribution and strength of interactions.
Such models are ‘network topology generators’ and have a strong representation in research
comparing network structures along environmental gradients and delivering inference about
extinctions and energy flux. They also provide the structural backbone for dynamical
systems modelling to address questions about stability-structure-productivity-function

relationships, secondary extinction dynamics, species invasion and climate change. There
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are two broad groups of models in this deductive category.

4.3.1 Species-specific networks

These models capture the behaviour of the nodes by explicitly taking into account the
properties of the different species in the community. Which means that there is a degree of
variance in which links are predicted between species unlike the more ‘static’ predictions
made by inductive models. However, these networks are ‘costly’ to construct in real world
settings (requiring data about the entire community, as it is the behaviour of the system
that determines the behaviour of the part) and also lack the larger diet niche context

afforded by metawebs.

Neutral networks are built on the assumption that foraging decisions are tied only to the
abundance of species within the community (E. F. Canard et al., 2014; Krishna et al.,
2008). Here links are solely determined by the relative abundance of the different species
in the community. Although it is highly unlikely that abundance is the only determinant
of interactions work by Pomeranz et al. (2019) showcases how these neutral processes
can be used in conjunction with inductive models to construct more refined /localised

networks.

There is a broader group of models that focus on determining interactions in terms of
energetic constraints on diet breadth, often using the ratio of consumer-resource bodysize as
a proxy for capturing the energetic constraints of feeding. Models such as those developed
by Portalier et al. (2019) and Wootton et al. (2023) are similar to the mechanistic
approaches discussed in Section 4.2, however instead of determining interactions based on
mechanistic feasibility it is rather constrained by the energetic cost of predation. Note
that although these models do not place any explicit constraints on the expected structure
of the network, the links should still be considered as ‘realised’ owing to the energetic
constraint placed on links. A different subset of diet models (e.g., Beckerman et al.,
2006; Petchey et al., 2008) use a diet choice approach, however similar to the stochastic
network models they also embed assumptions on network structure. Thus these models
predict both interactions and network structure simultaneously, although they would
benefit in being refined by more explicitly accounting for trait-based (i.e., feasibility)

parameterisation (Curtsdotter et al., 2019).
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5 Making Progress with Networks

The motivation to leverage network ecology in conservation ecology, environmental risk
assessment and natural resource management stems from a shift away from species/popu-
lation specific measures of the effects of stress and disturbance to community level metrics
of these impacts. These metrics, such as resilience and more generally stability, ecosystem
function and biodiversity per se, are natural properties of networks. This suggests that
modern conservation, risk assessment and resource management requires robust network

tools to support decision making.

This is also true in the disciplines of ecology and environmental science and their focus
on abundance, distribution, functions and services that biodiversity provides (Loreau &
de Mazancourt, 2013). Major questions remain, for example, about stability-diversity-
productivity relationships, the impacts of extinctions and invasions and the impacts of
multiple stressors operating at multiple ecological scales. A network approach to answering
these types of questions specifically allows us to evaluate how environmental gradients and
anthropogenic stress map through direct and indirect effects among species in a complex
community and reveal fundamental patterns and understanding of processes in the natural

world.

In order to effectively use networks to aid us in answering questions about conservation/risk
assessment /management and core ecological theory, we need to be mindful that we are
mapping the correct network representation to the question of interest (Gauzens et al.,
2025). Notably, there are certain questions that cannot be answered using specific network
representations as the scale of the question of interest is fundamentally misaligned with
either the process captured by a specific network representation Section 3.1, the underlying

data that is used to construct it Section 4 or both of these factors.

Here we discuss and map the different network representations shown in Figure 1 to
‘appropriate’ research questions and agendas see also 1. We also highlight some of the key
methodological challenges that currently limit our conceptualisation of a ‘network’ and

thus impact their effective practical application in real world settings.
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Table 1: Showcasing some of the broader avenues of inquiry, specifically how they map
to the different network representations. Additionally we highlight some studies that
address or present opening discussions around each research question. Superscripts at
the research question indicate the strength of the current literature in addressing that
research question: ¥ indicates area with strong foundational research, 2 partial/emerging
areas of research, and * areas where research is weak/largely absent

Net-
work
Rep-
resen-

tation

Example Research Question

Representative Studies

Global

How will novel communities respond

Metawebto e.g., extinction, turnover, invasion

Re-

gional

and rewilding ¥

Diet-based conservation focusing not
only on the target species but the
species it might depend on for food
resources

Rewiring capacity/potential of
species by looking at the entire diets
of species &

Eco-Evolutionary dynamics and how
they relate to the conservation and
origination of feeding strategies *

Applied use potential of questions

highlighted for global metawebs at

Metawebshe management scale e.g., a

protected area &

Refinement /extension of species
distribution models by incorporating
co-occurrence and species

associations e.g., predator and prey

v

16

Gravel, Albouy, et al. (2016); Dunne et
al. (2002)

Rooney & McCann (2012); Curtsdotter
et al. (2011)

Gilljam et al. (2015); Staniczenko et al.
(2010); Su et al. (2024); Marjakangas et
al. (2025)

Poisot et al. (2015); Baskerville et al.
(2011)

Albouy et al. (2014); Pellissier et al.

(2018)

Aratijo & Luoto (2007); Kissling et al.
(2012)



423

424

425

426

427

428

429

430

431

432

433

434

435

Net-
work
Rep-
resen-

tation

Example Research Question

Representative Studies

Re-
alised

webs

The allocation of multiple stressors

across networks 2

Temperature threshold to
community collapse &

Extinction and persistence after

Crain et al. (2008);
Beauchesne et al. (2021)

O’Gorman et al. (2019); Petchey et al.
(2010)
Allesina & Tang (2012); Yodzis (2001)

harvesting/invasion /extinction

Stability-diversity-productivity- Thébault & Fontaine (2010); Rooney &
function ¥ McCann (2012)

Explicilty tying ecosystem level Moore et al. (2004)
processes and nutrient flows to
networks *

Meta communities and the idea of Gravel, Massol, et al. (2016); Gilarranz

meta-network-communities * et al. (2017)

5.1 Key Eco-Evo-Conservation Questions
5.1.1 Global Metawebs

The interactions in global metawebs are not constrained by the realisation of specific
community assemblages (or species co-occurrence). These networks provide a platform
for answering questions that assume interactions could occur between species (feasibility)
or where the potential diet breadth of species is required. Examples of appropriate
research questions at this scale includes those about hypothetical or novel communities and
interactions under future climate change scenarios, or the potential ‘position’ of an invasive
(or re-introduced) species within a network (Hui & Richardson, 2019). This scale is also
appropriate for a particular class of questions related to the potential (eco-evolutionary)
rewiring capacity of species, and how this may help inform on the opportunities for
persistence of species within new community assemblages (Marjakangas et al., 2025). The

implicit focus on feasibility in these examples highlights that global metawebs are linked
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to strong proxies for targets and mechanisms of evolutionary change. This offers a network
scale for modelling ecological-evolutionary dynamics and the role that both evolutionary

history, natural selection, and phenotypic plasticity shapes the diet breadth of species.

5.1.2 Regional Metawebs

Regional metawebs are conceptually a spatially constrained global metaweb. They make
explicit the co-occurence between species. Against this backdrop, they are conceptually
aligned with similar questions to those posed above, with the added focus on a community
facing, real-world, challenge. Additionally, regional metawebs can and have been used
to refine and constrain species distribution model predictions, giving us more refined
range maps (Garcia-Callejas et al., 2023) or community composition under climate change

scenarios, even at global scales (Hao et al., 2025).

However we must exercise a high degree of caution when comparing structures among
regional metwebs, whether discrete collections or along environmental gradients. At this
scale, where the network embeds the assumptions of feasibility, the link distribution is
not meaningfully constrained by environmental factors (see Section 2.2) and it is vital to
disentangle structural change per se from the multiple processes that might determine

species turnover (e.g., - diversity).

5.1.3 Realised networks

Realised network are the most representative of what comes to mind when people think of
networks, and more specifically how we can use them to help inform on larger biogeographic
processes (Thuiller et al., 2024). This is partially because of the popularity and legacy of
generative network models (like the Cascade and Niche model) which produce realised
network representations, and represent the ideal ‘currency’ for which to understand the
constraints placed on interactions/network structure by the broader community and
environmental context. This change in currency and context affords us the opportunity to
ask questions that revolve around major ecological theory - e.g., community stability and
resilience, biodiversity dynamics, ecosystem function, structure-function relationships -
and around major conservation and climate change global challenges - e.g., temperature

change, extinction dynamics, invasion impacts and reintroductions/rewilding.

Realised networks embody an explicit focus on the link between network structure to

ecosystem function. Because the structure of realised webs are isolated from turnover
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processes they allow us to think about the propagation of change (across both time and
space) which allows us to ask questions about the persistence of communities and how
they respond to perturbations or stressors (at both the level of the node as well as the
modification of links). For example in Section 5.1.1 we discuss how global metawebs
can inform as to the rewiring capacity of a species, a realised network however would be
better suited to capture the rewiring of networks over time as a response to changes in

the environment or community.

Although the recent boom in the availability of long-term observation data is allowing us
to unpack decades of insights for stability-diversity-productivity relationships for more
complex communities (Danet et al., 2024) or to evaluate the impacts and efficacy of
re-introductions (Wooster et al., 2024), we need to be mindful that empirical interaction
data is typically accumulated over time and so it compresses the transient nature of the
interactions between species (Polis, 1991). Thus we need to apply a degree of caution
when using empirical data to construct realised networks - although there is scope to think
about developing methods that will allow us to modify metawebs in such a way that their

structures become more aligned with realised webs (see the next section).

5.2 Key methodological challenges

As noted above, the three types of networks help highlight longstanding methodological
challenges that affect our ability to increase both precision and accuracy of inference
derived from the questions we highlight above. Here we review some of these challenges

and opportunities that are arising to mitigate them.

Understanding what empirical data represents: Ultimately, knowing what is
right /precise/correct in an ecological network requires robust data. What does it mean
when we ‘observe’ an interaction be that directly (predator actively feeding on prey) or
indirectly via e.g., gut or isotope analysis. A network constructed with empirical data will
most likely still represent an ‘accumulation’ of feeding data making it conceptually more

closely aligned with the idea of a metaweb.

The validation of network structure: Progress has been made in the development of
tools and approaches of assessing how well a model recovers pairwise interactions (Poisot,
2023; Strydom et al., 2021), but we still lack a clear set of guidelines for benchmarking
the ability of models to recover structure (Allesina et al., 2008; Tylianakis et al., 2010).

This makes it challenging to assess if models are capturing network structure accurately,
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especially if one wants to use empirical data as the ‘testing set’ Specifically, can we use a
network constructed using long-term interaction observation data (i.e., conceptually a
metaweb) to assess the accuracy of a modelled (I don’t know how I feel about this word),
realised network? Additionally one needs to think about what aspect of accurate/precise
network construction is the most important - is it the structure or ability to correctly
predict pairwise links? In the case of attempting to construct a metaweb it is important
that one is accurately recovering both links that are truly present and absent, however in
the case of realised webs it is perhaps not that clear. Is it sufficient to correctly recover

structure e.g., connectance or do the pairwise links also need to be correct?

Transitioning between metawebs and realised webs: Currently most approaches
to modelling realised networks fail to explicitly account for any form of evolutionary
constraint (although see Van De Walle et al. (2023) and Wootton et al. (2023)) and
we need to develop either an ensemble modelling approach (Becker et al., 2022; Terry
& Lewis, 2020) or tools that will allow for the downsampling of metawebs into realised

networks, (e.g., Roopnarine, 2006).

Importantly we need to think critically how the creation of either an ‘ensemble network’ or
downsampled metaweb might change the underlying ‘currency’ of a network and thus the
underlying definition of the edge e.g. the downsampling approach developed by Roopnarine
(2006) structurally constrains the network to structurally look like a realised web, but the

links do not represent prey choice per se.

Having a well developed framework as well as ‘fluidity’ to allow us to scale up between
meta- and realised food webs lays the groundwork for us to actively begin the integration
of food webs into the classical metacommunity-metaecosystem space (Massol et al., 2011)
as well as ecosystem level processes (Liu et al., 2025). That being said developments in the
community-ecosystem space should be intentional about articulating a firm distinction as
to what defines a ‘network’ as a unit, as well as defining the logical (spatial and temporal)

boundaries between networks (Fortin et al., 2021).

Making networks more tractable in applied spaces: There is a disconnect when
it comes to effectively using networks in applied spaces. This is probably at least in
part related to the challenges with delineating ‘boundaries’ between networks, and how
these relate to ‘management units’ and scales in addition to a limited interpretability
of network metrics, specifically how this can be applied to conservation targets/indices

(Dansereau, Braga, et al., 2024). In order to address these shortcomings we need to make
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an effort to more efficiently map the form (structure) of a network to its function in order
to identify how this can effectively be integrated into policy to make it meaningful and
actionable (O’Connor et al., 2025), all while remaining mindful to ensure that we identify

the appropriate analytical tools and network representation (Pellissier et al., 2018).

Taken together, these challenges highlight three overarching messages. (i) Network
representations are inseparable from the data and assumptions used to construct them;
(ii) validation and benchmarking must be explicitly aligned with the intended network
type and question; (iii) greater conceptual clarity is needed when transitioning between
metawebs and realised networks, particularly in applied contexts. Explicitly articulating
these distinctions is essential if networks are to be used both rigorously and transparently

across scales.

6 Conclusion

Having a clear understanding of the interplay between network representations and the
processes that they are capable of encoding is critical if we are to understand exactly
which networks can be used to answer which questions. A central message of this synthesis
is that network representations are not interchangeable, and that their utility depends
explicitly on the assumptions, data, and processes they are intended to capture. As we
highlight in Section 5 the different network representations have different potential uses
and it should be clear that there is no ‘best’ network representation but rather a network
representation that is best suited to its intended purpose. By formalising the assumptions
and mechanisms underlying different network constructions, we provide a framework for
evaluating when and how particular representations are appropriate. This framework
aims to prevent the unintentional misuse or misinterpretation of networks. It also offers
a starting point for developing improved approaches to the applied use of networks in
addressing questions that are pressing both within the field and across broader biodiversity

science.
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Figure 1: Aligning the various processes that determine interactions (right column) with
the different network representations (left column). First, we start with a global metaweb
this network captures all possible interactions for a collection of species in the global
context. However, within the global environment different species occur in different
regions (region one = yellow and region 2 = orange), and it is possible to construct two
different metawebs (regional metawebs) for each region by taking accounting for the
co-occurrence of the difference species - as shown here we have two regions with some
species that are found in both regions (blue) and others endemic to either region one
(yellow) or region two (orange). However, even within a region we do not expect all
interactions to be realised but rather that there are multiple configurations of the regional
metaweb over both space and time. The ‘state’ of the different realised networks is
ultimately influenced not just by the co-occurrence of a species pair but rather the larger
community context such as the abundance of different species, maximisation of energy
gain, or indirect/higher order interactions.
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