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Abstract: Ecological networks provide a critical framework for understanding the architecture
of biodiversity and predicting ecosystem responses to environmental change. However, the
application of network ecology is often hindered by a lack of clarity regarding the assumptions
inherent in different network representations. Here, we present a hierarchical framework that
distinguishes between ‘metawebs’ (representing the fundamental feasibility of interactions) and
‘realised webs’ (representing interactions expressed in specific spatiotemporal contexts). We
contrast our conceptual approach with recent data-centric reviews, focusing instead on the
theoretical gradients that govern network construction. We identify five core processes that
drive the transition from potential to realised interactions: evolutionary compatibility and co-
occurrence, which define the feasibility of links; and abundance, diet choice, and non-trophic
interactions, which determine their realisation. Furthermore, we map these processes onto a
methodological spectrum of network construction, distinguishing between inductive approaches
(e.g., trait-matching and stochastic models) that infer structure from observation, and deductive
approaches (e.g., neutral and optimal foraging models) that generate structure from mechanistic
first principles. By making explicit the assumptions and scale-dependent processes underpinning
these different representations, this framework clarifies the scope of inference possible with
each approach, ultimately facilitating more robust predictions of biodiversity dynamics in the
anthropocene.
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1 Introduction1

At the heart of modern biodiversity science are a set of concepts and theories about species2

richness, stability, and function, which have been discussed since the foundational work of3

Elton (2001), Lindeman (1942), and MacArthur (1955) and more recently Loreau & de4

Mazancourt (2013). These relate to the abundance, distribution, functions, and services5

that biodiversity provides. Network representations of interactions among organisms are6

increasingly argued to be an asset to understanding and predicting the impacts of multiple,7

simultaneous stress on biodiversity (e.g., foundational studies on food web structure and8

robustness: Cohen et al. (1990); Martinez & Dunne (1998); Dunne et al. (2002); Simmons9

et al. (2021)). Documenting interactions between and among taxa is thus one of the10

fundamental building blocks of community ecology and provides a powerful abstraction and11

platform for mathematical and statistical modelling of biodiversity to make predictions,12

and to mitigate and manage threats (Windsor et al., 2023).13

However, there is a growing discourse around limitations to the interpretation and applied14
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use of networks, which have been recognised since early discussions of sampling effort15

and aggregation in food webs (Cohen et al. (1990); Polis (1991); Martinez (1991); recent16

discussions: Dormann (2023); Blüthgen (2010)). Against this, it is important to evaluate17

the value and the limitations of the various network conceptualisations and how these relate18

to biodiversity concepts, such as community structure or ecosystem function (Blüthgen19

& Staab, 2024). In this perspective we aim to provide an overview of different food20

web representations, particularly how each representation embeds assumptions about the21

processes that determine interactions (Section 3) about the levels of organization at which22

this occurs (i.e. the biological, ecological, spatial/temporal scales) and the way in which23

we construct the resulting networks (Section 4).24

Fundamentally, we are talking about an intersection of the type of data used to construct25

a network and the underlying theory as to what drives the resolution and occurrence of26

interactions among species in those data. We still lack a clear explanation of the different27

assumptions and scale dependent processes that underpin network construction alongside28

extensive discussions about the challenges relating to data collection and observation29

(Blüthgen & Staab, 2024; Brimacombe et al., 2023, 2024; Dunne, 2006; Martinez &30

Dunne, 1998; Moulatlet et al., 2024; Pimm, 1984; Polis, 1991; Pringle & Hutchinson, 2020;31

Saberski et al., 2024). Such an understanding should deliver an acceleration in capacity32

to more effectively predict the impact of multiple stressors on biodiverse communities.33

In their recent work, Gauzens et al. (2025) showcased a 2+2 decomposition of networks34

around aggregated versus species level resolution of nodes and around potential and realised35

links among the nodes. Their review delivers valuable insight into the methodologies used36

to collect and manage data among the node and link differentiation. It also delivers an37

overview of the scale and types of questions that are associated with each category of38

differentiation.39

Here we provide a complementary perspective focused on concepts, models, and theory,40

in contrast to the data driven breakdown in Gauzens et al. (2025) (e.g., their Tables 141

and 2). Our approach delivers a hierarchical perspective on network construction based42

on a gradient from feasibility, capturing the concept of metawebs and Gauzen et al’s43

‘potential’ webs, through to realised webs as in Gauzens’ et al. In contrast to their 244

+ 2 decomposition (their Fig 1), our perspective showcases nested ecological scales and45

processes that derive from shifts in the assumptions and theories embedded along this46

gradient. This includes classic ecological ‘aggregations’ such as functional/phylogenetic47
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groups through to species, populations and individuals, unique perspective on how space48

and time intersect with node and link resolution, refined insight into which networks are49

derived by induction vs. deduction and a revealing of a core transition between assumptions50

about how links are derived based on evolutionary vs. ecological theories.51

In the following sections we provide a scene-setting review of nodes and edges (links) in52

networks before aligning various processes that determine interactions with the different53

network representations. Ultimately, we provide a unique perspective on the nested54

hierarchy of processes that govern transitions from meta-webs to realised webs. We finish55

with a refined and nuanced alignment of models/representations and key questions in56

biodiversity science in the anthropocene.57

2 Setting the Scene: The Not So Basics of Nodes and58

Edges59

Ecological networks serve multiple uses, representing an ‘object’ from which inferences60

can be made. While many aspects of community structure can be analysed without61

networks (e.g., through trait distributions or abundance patterns) networks provide a62

formal framework for capturing the organisation of interactions among species. The study63

of network structure and topology has a long history in ecology, rooted in early theory on64

energy flow (Lindeman, 1942; Odum, 1968), and later extended to questions of robustness,65

stability, and complexity (Brose et al., 2006; Dunne et al., 2002; May, 1972; Montoya66

et al., 2006; e.g., Pimm, 1984). More recent work has built on this foundation to link67

network structure to ecosystem functioning, persistence, and dynamical behaviour (Danet68

et al., 2024; Pilosof et al., 2017; e.g., Schneider et al., 2016). Networks are therefore69

commonly treated as response variables in tests of ecological theory and statistical models70

of the generative processes that give rise to observed structure, and are widely used to71

compare communities across environmental gradients or through time (e.g., Hao et al.,72

2025; Pecuchet et al., 2020). They also provide a platform for evaluating downstream73

responses to perturbations, including secondary extinctions and robustness to species loss74

(e.g., Dunne et al., 2002; Keyes et al., 2021, 2024; Staniczenko et al., 2010), as well as75

for implementing dynamical process that inference about stability, ecosystem function,76

invasions, climate change, contaminants, and extinction cascades (Curtsdotter et al., 2019;77

e.g., Delmas et al., 2017; Terry et al., 2025). Against this backdrop of multiple research78

agendas, the definition of ‘edges’ and ‘nodes’, and the levels of organisation at which they79
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are defined, take many forms (Moulatlet et al., 2024; Poisot, Stouffer, et al., 2016), each of80

which encode a series of assumptions within a network. Here we introduce a perspective81

on these baseline assumptions.82

2.1 How do we define a node?83

While nodes are conventionally described as representing species, in practice they may84

correspond to a range of taxonomic and non-taxonomic units, including sub-species,85

genera, or families, as well as trophic species (e.g., Yodzis (1982); Williams & Martinez86

(2000)), feeding guilds (e.g., García-Callejas et al., 2023), or life-stage–specific subsets of87

species (e.g., Clegg et al., 2018). These choices reflect differences in the level, type, and88

consistency of resolution at which networks are constructed, rather than aggregation per se.89

In many cases, aggregation is applied explicitly on top of more highly resolved—or unevenly90

resolved—data to address particular questions, as in the construction of trophic species,91

and the underlying data may remain available for alternative analyses. Nevertheless,92

representing nodes at coarser or mixed resolutions can limit taxon-specific inference (e.g.,93

whether species a consumes species b), bias estimates of degree distributions—particularly94

generality and vulnerability—and complicate downstream analyses such as extinction or95

invasion dynamics, where species identity and the consequences of loss may be obscured96

(Beckerman et al., 2006; Clegg et al., 2018). At the same time, there are clear justifications97

for using aggregated representations when the distribution of interactions among functional98

or trophic units is more informative than species-level detail, for example when analysing99

extinction patterns across feeding guilds (Dunhill et al., 2024). More broadly, issues of100

resolution, scale, and sampling have long been recognised as central to the construction101

and interpretation of food webs (Dunne, 2006; e.g., Martinez & Dunne, 1998).102

2.2 What is captured by an edge?103

In order to break down the definitions of an edge, it is important to introduce the concept104

of potential versus realised links: potential links reflect feasibility while realised links are105

connected to flux of some currency (typically energy; see below for more detail). Links106

within food webs are thus a representation of either potential links between species Pringle107

(2020) or fluxes within a system e.g., energy transfer or material flow as the result of108

the feeding links between species (Lindeman, 1942; Proulx et al., 2005). Edges can thus109

correspond to different ‘currencies’ (Gauzens et al., 2025). There are also a myriad of ways110

in which the links themselves can be specified. Links between species can be treated as111
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present or absent (i.e., binary), may be defined as probabilities (Banville et al., 2025; Poisot,112

Cirtwill, et al., 2016) or by continuous functions which further quantify the strength of an113

interaction (Berlow et al., 2004). How links are specified thus requires intersecting both114

the currency being modelled and their specification. For example, feasibility is unlikely115

to accommodate flux, but does align with binary or probability representations. Taking116

a food web that consists of links representing feasible interactions among a collection of117

species will be meaningless if one is interested in understanding the flow of energy through118

the network as the links are not environmentally/energetically constrained.119

2.3 Network representations120

Against these definitions of nodes and edges, networks fall into two major ‘types’: metawebs,121

traditionally defined as all the potential interactions for a specific species pool (Dunne,122

2006); and realised networks, which is the subset of interactions in a metaweb that are123

realised for a specific community at a given time and place. The fundamental differences124

between these two network representations are the spatial and temporal scale at which125

they are constructed, and the associated processes that are assumed to drive patterns at126

these scales.127

A metaweb is, at its core, a list of feasible interactions between pairs of species. The128

feasibility for a given pair is derived from the complementarity of their traits, typically129

aligned with feeding. Feasibility can be further refined by co-occurrence leading to130

the transition from a global to regional metaweb. Metawebs thus provide a means to131

identify evolutionary plausible links, regionally plausible interactions, the set of ecologically132

impossible, i.e., forbidden, links (Jordano, 2016b), and ultimately a definition of the133

plausible complete diet of a species (Strydom et al., 2023).134

In contrast, realised networks are typically localised in space and time, with links contingent135

on species co-occurrence, environmental conditions, and mechanisms of diet choice. As a136

result, the presence or absence of a link reflects species behaviour, such that even when137

a realised network is represented as a binary matrix, each edge implies an underlying138

function describing interaction strength. A realised network is therefore not a simple139

downscaling of a metaweb based on finer spatial or temporal resolution. Rather than140

being obtained by filtering feasible interactions through co-occurrence alone, realised webs141

capture the processes that govern whether interactions are expressed and how energy142

flows through a community. In this sense, the definition of an edge shifts from one of143
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feasibility to one of realised choice and consequence, centred on energy acquisition and144

transfer. Consequently, a metaweb and a realised network constructed from the same set145

of species may share node composition yet differ structurally, because they are constrained146

by fundamentally different rules governing link presence. This distinction has important147

implications for interpretation: links absent from a metaweb can be treated as truly absent148

in terms of feasibility, whereas links absent from a realised network should instead be149

interpreted as context-dependent absences arising from environmental, behavioural, or150

community-level constraints.151

3 From Nodes and Edges to Process and Constraints152

In the previous section we discussed how the definition of nodes and edges, representing153

different scales and processes, lead to the concept of a metaweb and a realised web. The154

fundamental take-homes are that nodes vary in their resolution, edges vary in what kind155

of process they represent and the intersection of these, defined by meta- vs. realised webs,156

underpins distinct lines of inquiry and constraints on the type of inference we can make157

with networks. Here we reveal five core constraints across evolutionary and ecological158

scales that further delineate the transition from meta- to realised webs, exposing processes159

that determine the nature of links among nodes: evolutionary compatibility, co-occurrence,160

abundance, diet choice, and non-trophic interactions Figure 1.161

[Figure 1 about here.]162

3.1 Processes that determine the feasibility of an interaction163

Evolutionary compatibility and co-occurrence are the two principal processes that ‘act’ at164

the species pair of interest and define feasibility. The scale of inference and set of processes165

embodied in these two constraints typically combine to define a ‘list’ of interactions that are166

viable/feasible and defined strictly as present/absent. Reflecting on the previous section,167

nodes are typically species and rules defining edges are defined by trait complementarity168

(phylogenetic) and/or co-occurrence. Here we provide more insight into each process.169

Evolutionary compatibility170

This constraint is defined by shared (co)evolutionary history between consumers and171

resources (Dalla Riva & Stouffer, 2016; Gómez et al., 2010; Rossberg et al., 2006; Segar et172

al., 2020) which is manifested as ‘trait complementarity’ between two species (Benadi et173
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al., 2022). In this body of theory, the consumer has the ‘correct’ set of traits that allow it174

to acquire and consume the resource. Interactions that are not compatible are defined as175

forbidden links (Jordano, 2016b); i.e., they are not physically possible and will always be176

absent within a network.177

Networks do not properly arise from models based on this constraint. Instead, interacting178

species pairs are defined and these are represented as binary (possible vs forbidden)179

or probabilistic (Banville et al., 2025). For example, in the metaweb constructed by180

Strydom et al. (2022) probabilities are quantified as the confidence of a specific interaction181

being possible between two species. A network constructed on the basis of evolutionary182

compatibility is conceptually aligned with a ‘global metaweb’, and gives us information as183

to the global feasibility of links between species pairs despite the fact that they do not184

co-occur (see Figure 1).185

(Co)occurrence186

The co-occurrence of species in both time and space is a fundamental requirement for an187

interaction between two species to occur (at least in terms of feeding links). Although188

co-occurrence data alone is insufficient for building an accurate and ecologically meaningful189

representation of feeding links (Blanchet et al., 2020), it is still a critical process that190

determines the possible realisation of a feeding. Knowledge on the co-occurrence of species191

allows us to spatially constrain a global metaweb to reflect regional metawebs (Dansereau,192

Barros, et al., 2024). In the context of Figure 1 this would be the metawebs for regions193

one and two.194

We reinforce that these two constraints don’t deliver a network per se, but a list of feasible195

species pairs. Although it is possible to build a network from the list of interactions196

generated by these constraints, it is important to be aware that the structure of this197

network is not constrained by any community context: just because species are able to198

interact does not mean that they will (Caron et al., 2024; Poisot et al., 2015).199

3.2 Processes that realise networks200

In contrast to the above, here we highlight three processes that influence the realisation of201

an interaction between species and thus form the conceptual basis for realised networks.202

As we show in Figure 1, a ‘truly realised’ network is the product of properties of the203

community (abundance and non-trophic interactions) and the individual (diet204

choice). This represents a conceptual shift from considering the feasibility for species205
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pairwise interactions to considering the edge as a representation of energy flow. Such206

a transition requires information about how the community, the environment and the207

individual constrains network topology as defined by consumer choice (Quintero et al.208

(2024), Section 2.3)209

Abundance210

Abundance as a realising process emerges from a null model for energy acquisition:211

organisms feeding randomly will consume resources in proportion to their abundance212

(Stephens & Krebs, 1986). Here, abundance of different prey species influences the213

distribution of links in a network (Vázquez et al., 2009) by defining a preference linked to214

individuals among species meeting (Banville et al., 2025; Poisot et al., 2015). Abundance215

data (linked to a derived metaweb) delivers a foundation ruleset that can define the216

distribution and strength of links. Of note, however, is that such abundance constrained217

interactions are not necessarily contingent on there being any compatibility between218

species (E. Canard et al., 2012; Momal et al., 2020; Pomeranz et al., 2019).219

Diet choice220

It is well established that consumers make more active decisions than eating items in221

proportion to their abundance (Stephens & Krebs, 1986). Ultimately, consumer choice222

is underpinned by an energetic cost-benefit framework centered around profitability and223

defined by traits associated with acquisition and consumption of a resource (Smith et al.,224

2021; Wootton et al., 2023). Energetic constraints are invoked to construct networks in225

a myriad of ways (e.g., Beckerman et al., 2006; Cherif et al., 2024; Pawar et al., 2012;226

Portalier et al., 2019).227

In contrast to metaweb ‘construction’ from a list of pairwise interactions, these methods228

deliver a realised web directly and as an emergent property of node behaviour. We also229

here make a distinction, developed below, with models like the Niche Model (Williams230

& Martinez, 2000), where diet choice is implicit in its probabilistic network generating231

function, but it is working to replicate the expected structure of the network, and this232

structure does not emerge from node-based rules. Note that we select diet choice as a term233

to capture rules linked to optimal foraging (Pyke, 1984) and metabolic theory (Brown et234

al., 2004); it is a sensible ‘umbrella concept’ for capturing the energetic constraint on of235

the distribution and strength of interactions.236

Non-trophic interactions237
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We include non-trophic interactions (see Miele et al., 2019) here not as a determinant238

of links, but a modifier of them - they are the community context above and beyond239

co-occurrence and abundance. Non-trophic interactions include competition for space,240

predator interference, refuge provisioning, recruitment facilitation as well as non-trophic241

effects that increase or decrease mortality. These interactions specifically modify either242

the realisation or strength of trophic interactions (Golubski & Abrams, 2011; Ings et al.,243

2009; Kamaru et al., 2024; Pilosof et al., 2017; Staniczenko et al., 2010) and represent244

direct (e.g., predator 𝑎 outcompetes predator 𝑏) and indirect (e.g., mutualistic/facilitative245

interactions) mechanisms.246

Some interactions, such as pollination, occupy an intermediate position in this framework,247

as they combine trophic components (e.g. resource consumption) with non-trophic effects248

that influence reproduction, recruitment, and population persistence (Bascompte &249

Jordano, 2007; Holland et al., 2002; Sauve et al., 2016). They operate on the realisation250

of a network by altering the fine-scale distribution and abundance of species and relative251

contributions of direct and indirect effects to biomass, persistence, stability and the252

functioning of the communities (Buche et al., 2024; Kéfi et al., 2012, 2015; Miele et al.,253

2019).254

4 Network construction255

The above five processes are central to understanding the assumptions inherent in building256

different types of networks. Each of the processes, or combinations thereof, deliver a257

unique set of boundary conditions on what a network represents and can be used for. Here258

we build on the introduction of these five processes to further categorise the approaches to259

constructing networks. In doing so also introduce more detail on a variety of methodologies260

used to construct networks.261

4.1 Why construct networks?262

Networks are a representation of biodiversity. In a perfect world, we might know about263

all interactions. However, the empirical collection of interaction data is both costly and264

challenging to execute (Jordano, 2016a, 2016b; Poisot et al., 2021). In the absence of265

robust empirical data, we construct models that facilitate interpolation and gap-filling of266

existing empirical datasets (e.g., Biton et al., 2024; Dallas et al., 2017; Poisot et al., 2023;267

Stock et al., 2017), predict the feasibility of interaction among pairs of species, or directly268
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predict network structure (see Strydom et al., 2021 for a broader discussion).269

They are unique in delivering more than just estimates of species richness. As noted in270

the introduction, a network embodies the organising structure of biodiversity and allows271

numerous opportunities for ‘downstream’ analysis, including the comparison of structures,272

estimation of energy flux or extinction dynamics and ultimately form the structural inputs273

to dynamical systems models that facilitate ecological and conservation relevant inference274

about productivity-diversity-stability-function relationships (Danet et al., 2024) in space275

and time. But making such inferences requires careful attention to one or more of the276

processes discussed in Section 3.277

4.2 Construction through induction278

Constructing feasible or realised networks can be framed as an ‘inductive reasoning’279

process where insight and generalisation arises from a set of observations and relationships.280

Inductive reasoning as a foundation for network construction is implemented at node281

and network levels. When applied at the node level, species-specific networks are created282

and judged by their association with expected feeding interactions. When applied at the283

network level, networks are judged by their structural properties.284

4.2.1 Species specific networks: construction through node level induction285

Constructing feasible networks and facilitating the interpolation or gap-filling of existing286

empirical datasets on sets of species interactions can be framed as an ‘inductive reasoning’287

process where insight and generalisation arises from a set of observations and relationships288

about feeding. All methods in this inference space rest on a set of three assumptions:289

there are a set of ‘feeding rules’ that underpin interaction feasibility (Morales-Castilla et290

al., 2015); these rules are phylogenetically conserved (Bramon Mora et al., 2018; Dalla291

Riva & Stouffer, 2016); and they can be specified by matching the traits between consumer292

and resource.293

Evolutionary compatibility and co-occurrence constraints have been critical to the con-294

struction of ‘first draft’ networks for communities for which we have no interaction data295

(Strydom et al., 2022). They are also central to interpolation in data poor regions and296

predicting interactions for ‘unobservable’ communities e.g., prehistoric networks (Dunhill297

et al., 2024; Fricke et al., 2022; Yeakel et al., 2014) or future, novel community assemblages298

(Van der Putten et al., 2010). Furthermore, they have the capacity to evaluate a role of299
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interactions among species relative to their distribution by accounting for the role of the300

environment and the role of species interactions (Albouy et al., 2014; Gravel et al., 2019;301

Higino et al., 2023; Pollock et al., 2014). There are substantial data requirements for302

these approaches including expert knowledge, species traits and phylogenetic relationships303

and/or interaction data on related species or communities.304

Feeding rules are defined in multiple ways. The determination of the feeding rules can be305

defined a priori based on expert knowledge opinions. Typically this is done on a ‘trait306

matching’ basis. An example are the paleo food web models of Shaw et al. (2024) and307

Roopnarine (2017) that specify a series of rules for a set of traits and interactions deemed308

feasible if all conditions are met. Alternatively the body size ratio between the consumer309

and resource is often used (e.g., Gravel et al., 2013; Rohr et al., 2010), with the idea that310

consumers will only utilise a resource with a body size is less than or equal to their own311

(Brose et al., 2019; Yodzis & Innes, 1992), although it is broadly acknowledged that many312

herbivores (such as insects) violate these assumptions (Valdovinos et al., 2023). However,313

work from Van De Walle et al. (2023) seems to suggest that adding morphological traits314

in addition to body size ratio improves model performance.315

Rules are also defined by correlating real world interaction data with suitable ecological316

proxies for which data is more widely available (e.g., traits) using some sort of binary317

classifier (see Pichler et al. (2020) for an overview). These include generalised linear318

models (e.g., Caron et al., 2022), random forest (e.g., Llewelyn et al., 2023), trait-based319

k-NN (e.g., Desjardins-Proulx et al., 2017), and Bayesian models (Cirtwill et al., 2019;320

e.g., Eklöf et al., 2013).321

Finally, graph embedding uses the structural features of a known network to infer the322

position of species in an unknown network through the decomposition of the interaction323

onto the embedding space. This decomposition relies on a combination of ecological proxies324

(e.g., traits) in conjunction with known interactions to infer the latent values of species,325

which can then be mapped onto decomposition of a known network. See Strydom et al.326

(2023) for a detailed review of methods and Strydom et al. (2022) for a specific example.327

4.2.2 Species agnostic networks: construction through structure induction328

Networks in this category are generated using rules that create non-random networks329

that reflect some minimal empirical knowledge of ecological networks. These can be330

used in a variety of ways, for example comparing the structure of realised networks to331
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quantify relative deviations from the model structure. They are also used as a way to332

generate ‘realistic’ food web structures that are used for dynamical or other analyses.333

The determination of links between species is only implicitly linked to properties of the334

nodes. This means these networks are usually not species specific. Although these models335

are data input light, often requiring only species richness and an estimate of the number336

of expected links, they make clear assumptions regarding what the expectations are for337

network structure. These are some of the most commonly used network generation tools338

(e.g., the Niche model; Williams & Martinez (2000)). There are two sub-categories of339

these species agnostic networks.340

Stochastic network models use a probabilistic rule-set about diet choice and niche breadth341

to reflect fundamental ideas of foraging biology. These models that are based on the342

compartmentalisation and acquisition of energy for species at different trophic levels343

(Allesina & Pascual, 2009; Krause et al., 2003) and that network structure can be344

determined by distributing interactions along single dimension [the ‘niche axis’; Allesina345

et al. (2008)]. Typically these models parametrise some aspect of the network structure346

(although see Allesina & Pascual, 2009 for a parameter-free model). These models include347

the most commonly used network generator, the Niche model (Williams & Martinez,348

2000), as well as the original Cascade model (Cohen et al., 1990) and the derived Nested349

hierarchy model (Cattin et al., 2004). These models often form the basis for dynamic350

models e.g., the allometric trophic network (Brose et al., 2006; Schneider et al., 2016) and351

bioenergetic food web models (Delmas et al., 2017).352

4.3 Construction through deduction353

In contrast to the above approaches centred on feasibility, realised networks via methods354

reflecting abundance and diet choice typically rely on deductive reasoning and have a355

unique agenda to those above. In contrast to the inductive methods, inference about a356

realised network follows from a set of premises defining generative processes, often referred357

to as mechanisms. Typically, models that embed abundance and diet choice constraints358

reference theory that allows inference about the distribution and strength of interactions.359

Such models are ‘network topology generators’ and have a strong representation in research360

comparing network structures along environmental gradients and delivering inference about361

extinctions and energy flux. They also provide the structural backbone for dynamical362

systems modelling to address questions about stability-structure-productivity-function363

relationships, secondary extinction dynamics, species invasion and climate change. There364
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are two broad groups of models in this deductive category.365

4.3.1 Species-specific networks366

These models capture the behaviour of the nodes by explicitly taking into account the367

properties of the different species in the community. Which means that there is a degree of368

variance in which links are predicted between species unlike the more ‘static’ predictions369

made by inductive models. However, these networks are ‘costly’ to construct in real world370

settings (requiring data about the entire community, as it is the behaviour of the system371

that determines the behaviour of the part) and also lack the larger diet niche context372

afforded by metawebs.373

Neutral networks are built on the assumption that foraging decisions are tied only to the374

abundance of species within the community (E. F. Canard et al., 2014; Krishna et al.,375

2008). Here links are solely determined by the relative abundance of the different species376

in the community. Although it is highly unlikely that abundance is the only determinant377

of interactions work by Pomeranz et al. (2019) showcases how these neutral processes378

can be used in conjunction with inductive models to construct more refined/localised379

networks.380

There is a broader group of models that focus on determining interactions in terms of381

energetic constraints on diet breadth, often using the ratio of consumer-resource bodysize as382

a proxy for capturing the energetic constraints of feeding. Models such as those developed383

by Portalier et al. (2019) and Wootton et al. (2023) are similar to the mechanistic384

approaches discussed in Section 4.2, however instead of determining interactions based on385

mechanistic feasibility it is rather constrained by the energetic cost of predation. Note386

that although these models do not place any explicit constraints on the expected structure387

of the network, the links should still be considered as ‘realised’ owing to the energetic388

constraint placed on links. A different subset of diet models (e.g., Beckerman et al.,389

2006; Petchey et al., 2008) use a diet choice approach, however similar to the stochastic390

network models they also embed assumptions on network structure. Thus these models391

predict both interactions and network structure simultaneously, although they would392

benefit in being refined by more explicitly accounting for trait-based (i.e., feasibility)393

parameterisation (Curtsdotter et al., 2019).394
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5 Making Progress with Networks395

The motivation to leverage network ecology in conservation ecology, environmental risk396

assessment and natural resource management stems from a shift away from species/popu-397

lation specific measures of the effects of stress and disturbance to community level metrics398

of these impacts. These metrics, such as resilience and more generally stability, ecosystem399

function and biodiversity per se, are natural properties of networks. This suggests that400

modern conservation, risk assessment and resource management requires robust network401

tools to support decision making.402

This is also true in the disciplines of ecology and environmental science and their focus403

on abundance, distribution, functions and services that biodiversity provides (Loreau &404

de Mazancourt, 2013). Major questions remain, for example, about stability-diversity-405

productivity relationships, the impacts of extinctions and invasions and the impacts of406

multiple stressors operating at multiple ecological scales. A network approach to answering407

these types of questions specifically allows us to evaluate how environmental gradients and408

anthropogenic stress map through direct and indirect effects among species in a complex409

community and reveal fundamental patterns and understanding of processes in the natural410

world.411

In order to effectively use networks to aid us in answering questions about conservation/risk412

assessment/management and core ecological theory, we need to be mindful that we are413

mapping the correct network representation to the question of interest (Gauzens et al.,414

2025). Notably, there are certain questions that cannot be answered using specific network415

representations as the scale of the question of interest is fundamentally misaligned with416

either the process captured by a specific network representation Section 3.1, the underlying417

data that is used to construct it Section 4 or both of these factors.418

Here we discuss and map the different network representations shown in Figure 1 to419

‘appropriate’ research questions and agendas see also 1. We also highlight some of the key420

methodological challenges that currently limit our conceptualisation of a ‘network’ and421

thus impact their effective practical application in real world settings.422
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Table 1: Showcasing some of the broader avenues of inquiry, specifically how they map
to the different network representations. Additionally we highlight some studies that
address or present opening discussions around each research question. Superscripts at
the research question indicate the strength of the current literature in addressing that
research question: ✓ indicates area with strong foundational research, Δ partial/emerging
areas of research, and × areas where research is weak/largely absent

Net-

work

Rep-

resen-

tation Example Research Question Representative Studies

Global

Metaweb

How will novel communities respond

to e.g., extinction, turnover, invasion

and rewilding ✓

Gravel, Albouy, et al. (2016); Dunne et

al. (2002)

Diet-based conservation focusing not

only on the target species but the

species it might depend on for food

resources Δ

Rooney & McCann (2012); Curtsdotter

et al. (2011)

Rewiring capacity/potential of

species by looking at the entire diets

of species Δ

Gilljam et al. (2015); Staniczenko et al.

(2010); Su et al. (2024); Marjakangas et

al. (2025)

Eco-Evolutionary dynamics and how

they relate to the conservation and

origination of feeding strategies ×

Poisot et al. (2015); Baskerville et al.

(2011)

Re-

gional

Metawebs

Applied use potential of questions

highlighted for global metawebs at

the management scale e.g., a

protected area Δ

Albouy et al. (2014); Pellissier et al.

(2018)

Refinement/extension of species

distribution models by incorporating

co-occurrence and species

associations e.g., predator and prey
✓

Araújo & Luoto (2007); Kissling et al.

(2012)
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Net-

work

Rep-

resen-

tation Example Research Question Representative Studies

Re-

alised

webs

The allocation of multiple stressors

across networks Δ

Crain et al. (2008);

Beauchesne et al. (2021)

Temperature threshold to

community collapse Δ

O’Gorman et al. (2019); Petchey et al.

(2010)

Extinction and persistence after

harvesting/invasion/extinction ✓

Allesina & Tang (2012); Yodzis (2001)

Stability-diversity-productivity-

function ✓

Thébault & Fontaine (2010); Rooney &

McCann (2012)

Explicilty tying ecosystem level

processes and nutrient flows to

networks ×

Moore et al. (2004)

Meta communities and the idea of

meta-network-communities Δ

Gravel, Massol, et al. (2016); Gilarranz

et al. (2017)

5.1 Key Eco-Evo-Conservation Questions423

5.1.1 Global Metawebs424

The interactions in global metawebs are not constrained by the realisation of specific425

community assemblages (or species co-occurrence). These networks provide a platform426

for answering questions that assume interactions could occur between species (feasibility)427

or where the potential diet breadth of species is required. Examples of appropriate428

research questions at this scale includes those about hypothetical or novel communities and429

interactions under future climate change scenarios, or the potential ‘position’ of an invasive430

(or re-introduced) species within a network (Hui & Richardson, 2019). This scale is also431

appropriate for a particular class of questions related to the potential (eco-evolutionary)432

rewiring capacity of species, and how this may help inform on the opportunities for433

persistence of species within new community assemblages (Marjakangas et al., 2025). The434

implicit focus on feasibility in these examples highlights that global metawebs are linked435
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to strong proxies for targets and mechanisms of evolutionary change. This offers a network436

scale for modelling ecological-evolutionary dynamics and the role that both evolutionary437

history, natural selection, and phenotypic plasticity shapes the diet breadth of species.438

5.1.2 Regional Metawebs439

Regional metawebs are conceptually a spatially constrained global metaweb. They make440

explicit the co-occurence between species. Against this backdrop, they are conceptually441

aligned with similar questions to those posed above, with the added focus on a community442

facing, real-world, challenge. Additionally, regional metawebs can and have been used443

to refine and constrain species distribution model predictions, giving us more refined444

range maps (García-Callejas et al., 2023) or community composition under climate change445

scenarios, even at global scales (Hao et al., 2025).446

However we must exercise a high degree of caution when comparing structures among447

regional metwebs, whether discrete collections or along environmental gradients. At this448

scale, where the network embeds the assumptions of feasibility, the link distribution is449

not meaningfully constrained by environmental factors (see Section 2.2) and it is vital to450

disentangle structural change per se from the multiple processes that might determine451

species turnover (e.g., 𝛽 - diversity).452

5.1.3 Realised networks453

Realised network are the most representative of what comes to mind when people think of454

networks, and more specifically how we can use them to help inform on larger biogeographic455

processes (Thuiller et al., 2024). This is partially because of the popularity and legacy of456

generative network models (like the Cascade and Niche model) which produce realised457

network representations, and represent the ideal ‘currency’ for which to understand the458

constraints placed on interactions/network structure by the broader community and459

environmental context. This change in currency and context affords us the opportunity to460

ask questions that revolve around major ecological theory - e.g., community stability and461

resilience, biodiversity dynamics, ecosystem function, structure-function relationships -462

and around major conservation and climate change global challenges - e.g., temperature463

change, extinction dynamics, invasion impacts and reintroductions/rewilding.464

Realised networks embody an explicit focus on the link between network structure to465

ecosystem function. Because the structure of realised webs are isolated from turnover466
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processes they allow us to think about the propagation of change (across both time and467

space) which allows us to ask questions about the persistence of communities and how468

they respond to perturbations or stressors (at both the level of the node as well as the469

modification of links). For example in Section 5.1.1 we discuss how global metawebs470

can inform as to the rewiring capacity of a species, a realised network however would be471

better suited to capture the rewiring of networks over time as a response to changes in472

the environment or community.473

Although the recent boom in the availability of long-term observation data is allowing us474

to unpack decades of insights for stability-diversity-productivity relationships for more475

complex communities (Danet et al., 2024) or to evaluate the impacts and efficacy of476

re-introductions (Wooster et al., 2024), we need to be mindful that empirical interaction477

data is typically accumulated over time and so it compresses the transient nature of the478

interactions between species (Polis, 1991). Thus we need to apply a degree of caution479

when using empirical data to construct realised networks - although there is scope to think480

about developing methods that will allow us to modify metawebs in such a way that their481

structures become more aligned with realised webs (see the next section).482

5.2 Key methodological challenges483

As noted above, the three types of networks help highlight longstanding methodological484

challenges that affect our ability to increase both precision and accuracy of inference485

derived from the questions we highlight above. Here we review some of these challenges486

and opportunities that are arising to mitigate them.487

Understanding what empirical data represents: Ultimately, knowing what is488

right/precise/correct in an ecological network requires robust data. What does it mean489

when we ‘observe’ an interaction be that directly (predator actively feeding on prey) or490

indirectly via e.g., gut or isotope analysis. A network constructed with empirical data will491

most likely still represent an ‘accumulation’ of feeding data making it conceptually more492

closely aligned with the idea of a metaweb.493

The validation of network structure: Progress has been made in the development of494

tools and approaches of assessing how well a model recovers pairwise interactions (Poisot,495

2023; Strydom et al., 2021), but we still lack a clear set of guidelines for benchmarking496

the ability of models to recover structure (Allesina et al., 2008; Tylianakis et al., 2010).497

This makes it challenging to assess if models are capturing network structure accurately,498
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especially if one wants to use empirical data as the ‘testing set’. Specifically, can we use a499

network constructed using long-term interaction observation data (i.e., conceptually a500

metaweb) to assess the accuracy of a modelled (I don’t know how I feel about this word),501

realised network? Additionally one needs to think about what aspect of accurate/precise502

network construction is the most important - is it the structure or ability to correctly503

predict pairwise links? In the case of attempting to construct a metaweb it is important504

that one is accurately recovering both links that are truly present and absent, however in505

the case of realised webs it is perhaps not that clear. Is it sufficient to correctly recover506

structure e.g., connectance or do the pairwise links also need to be correct?507

Transitioning between metawebs and realised webs: Currently most approaches508

to modelling realised networks fail to explicitly account for any form of evolutionary509

constraint (although see Van De Walle et al. (2023) and Wootton et al. (2023)) and510

we need to develop either an ensemble modelling approach (Becker et al., 2022; Terry511

& Lewis, 2020) or tools that will allow for the downsampling of metawebs into realised512

networks, (e.g., Roopnarine, 2006).513

Importantly we need to think critically how the creation of either an ‘ensemble network’ or514

downsampled metaweb might change the underlying ‘currency’ of a network and thus the515

underlying definition of the edge e.g. the downsampling approach developed by Roopnarine516

(2006) structurally constrains the network to structurally look like a realised web, but the517

links do not represent prey choice per se.518

Having a well developed framework as well as ‘fluidity’ to allow us to scale up between519

meta- and realised food webs lays the groundwork for us to actively begin the integration520

of food webs into the classical metacommunity-metaecosystem space (Massol et al., 2011)521

as well as ecosystem level processes (Liu et al., 2025). That being said developments in the522

community-ecosystem space should be intentional about articulating a firm distinction as523

to what defines a ‘network’ as a unit, as well as defining the logical (spatial and temporal)524

boundaries between networks (Fortin et al., 2021).525

Making networks more tractable in applied spaces: There is a disconnect when526

it comes to effectively using networks in applied spaces. This is probably at least in527

part related to the challenges with delineating ‘boundaries’ between networks, and how528

these relate to ‘management units’ and scales in addition to a limited interpretability529

of network metrics, specifically how this can be applied to conservation targets/indices530

(Dansereau, Braga, et al., 2024). In order to address these shortcomings we need to make531
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an effort to more efficiently map the form (structure) of a network to its function in order532

to identify how this can effectively be integrated into policy to make it meaningful and533

actionable (O’Connor et al., 2025), all while remaining mindful to ensure that we identify534

the appropriate analytical tools and network representation (Pellissier et al., 2018).535

Taken together, these challenges highlight three overarching messages. (i) Network536

representations are inseparable from the data and assumptions used to construct them;537

(ii) validation and benchmarking must be explicitly aligned with the intended network538

type and question; (iii) greater conceptual clarity is needed when transitioning between539

metawebs and realised networks, particularly in applied contexts. Explicitly articulating540

these distinctions is essential if networks are to be used both rigorously and transparently541

across scales.542

6 Conclusion543

Having a clear understanding of the interplay between network representations and the544

processes that they are capable of encoding is critical if we are to understand exactly545

which networks can be used to answer which questions. A central message of this synthesis546

is that network representations are not interchangeable, and that their utility depends547

explicitly on the assumptions, data, and processes they are intended to capture. As we548

highlight in Section 5 the different network representations have different potential uses549

and it should be clear that there is no ‘best’ network representation but rather a network550

representation that is best suited to its intended purpose. By formalising the assumptions551

and mechanisms underlying different network constructions, we provide a framework for552

evaluating when and how particular representations are appropriate. This framework553

aims to prevent the unintentional misuse or misinterpretation of networks. It also offers554

a starting point for developing improved approaches to the applied use of networks in555

addressing questions that are pressing both within the field and across broader biodiversity556

science.557
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Figure 1: Aligning the various processes that determine interactions (right column) with
the different network representations (left column). First, we start with a global metaweb
this network captures all possible interactions for a collection of species in the global
context. However, within the global environment different species occur in different
regions (region one = yellow and region 2 = orange), and it is possible to construct two
different metawebs (regional metawebs) for each region by taking accounting for the
co-occurrence of the difference species - as shown here we have two regions with some
species that are found in both regions (blue) and others endemic to either region one
(yellow) or region two (orange). However, even within a region we do not expect all
interactions to be realised but rather that there are multiple configurations of the regional
metaweb over both space and time. The ‘state’ of the different realised networks is
ultimately influenced not just by the co-occurrence of a species pair but rather the larger
community context such as the abundance of different species, maximisation of energy
gain, or indirect/higher order interactions.
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