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Darwinian shortfalls and their drivers 51 

 52 

ABSTRACT 53 

Understanding the Darwinian shortfall (i.e., the lack of knowledge about phylogenetic 54 

relationships) can help us to guide future biodiversity research and conservation efforts. 55 

Overcoming this shortfall is essential to develop robust strategies to preserve the Tree of 56 

Life while facing the ongoing biodiversity crisis. Here, we present the first global 57 

assessment of Darwinian shortfalls and their drivers in one of the main groups of 58 

pollinators, the bees. We built phylogenies for over 12000 bee species, combining the 59 

most comprehensive phylogeny and an algorithm with random solutions to insert missing 60 

lineages. The Darwinian shortfall was quantified as the Phylogenetic Diversity (PD) 61 

deficit, the ratio of inserted branch lengths, at the assemblage level. The highest shortfalls 62 

were identified in the Southern Hemisphere. Mean species range size and species richness 63 

were the strongest drivers, as smaller ranges and higher richness were associated with 64 

higher deficits. Per capita GDP was negatively associated with PD deficits, while 65 

population and road densities showed positive but weak effects. Sample completeness 66 

had a weaker effect, limited by missing occurrence data in many regions. Our findings 67 

underscore the need for integrative efforts combining taxonomy, data digitization, 68 

adequate research investments, and targeted sampling, especially in the Global South. 69 

KEYWORDS: Anthophila, biodiversity, evolution, knowledge shortfalls, phylogenetic 70 

diversity 71 

 72 

1. Background 73 

A rare bimodal latitudinal gradient of taxonomic diversity is known and well described 74 

for bees, with the species richness peaking at dry, Mediterranean-type habitats outside the 75 

tropical zone. This was first theoretically discussed in light of the biogeography of bees 76 

(1) and more recently emphasized considering macroecological analysis (2). On the other 77 

hand, publicly available datasets of bees are biased towards North America and Europe, 78 

where knowledge about bee taxonomy and distribution is comparatively more 79 

consolidated, while well-known knowledge gaps are found for South America, Africa, 80 

and Asia (2, 3). Additionally, richness-based accounting for diversity can often lead to 81 

biased biodiversity estimates, especially when considering the Linnean (i.e., discrepancy 82 

between described species and the number of all existing species (4, 5)) and the Wallacean 83 
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shortfalls (i.e., lack of knowledge about geographic distribution of species (4, 5)). 84 

Biodiversity shortfalls have been demonstrated to hamper large-scale biodiversity 85 

assessments of bees, such as species decline and distribution patterns, even in Europe, 86 

where the bee fauna is relatively well-known due to a long tradition in melittology (6). 87 

Such shortfalls are expected to be even more pronounced in tropical regions, especially 88 

in Global South countries (3, 7, 8), as demonstrated for bees in Brazil (9).   89 

Integrating evolutionary information is essential to better evaluate 90 

macroecological patterns, while identifying the impacts of biodiversity loss on the Tree 91 

of Life and, in some situations, partially overcoming Linnean shortfalls (10). However, 92 

knowledge about species taxonomy, geographic distribution, and evolutionary 93 

relationships remains incomplete, varying among taxa, and being unevenly distributed 94 

around the world, with more pronounced knowledge gaps for megadiverse taxa and 95 

regions (11, 12, 13, 14). Thus, efforts to measure the Darwinian shortfall (i.e., the lack of 96 

evolutionary knowledge about phylogenetic relationships (10)) are crucial and might 97 

improve the rigor of evaluations of macroecological biodiversity patterns (10, 15), as 98 

demonstrated for European bees (16). Further, phylogenetic information can guide 99 

conservation priorities by identifying evolutionary distinct clades and regions that 100 

contribute disproportionately to better protect the Tree of Life (14, 16). In addition, 101 

phylogenetic-based metrics are less sensitive to the Linnean shortfall and to the 102 

description of new species compared to those based exclusively on taxonomic richness 103 

(10); although the accuracy of diversification patterns descriptions may be positively 104 

affected by the addition of recent divergencies in phylogenies (15, 17). Therefore, 105 

addressing and understanding the lack of knowledge about the evolutionary history of 106 

bees might lead to more effective strategies for further research and conservation (6, 10).  107 



5 
 

Evolutionary relationships among bees have been better understood in the last 108 

decades, with huge efforts to clarify the origin, and diversification of major lineages (18, 109 

19, 20, 21, 22). Recently, a phylogenomic and fossil-calibrated tree shed light on the 110 

origin and evolutionary history of bees, including 216 species representing all major 111 

lineages (22). Subsequently, a supermatrix phylogenetic tree was produced compiling all 112 

available phylogenetic data for bees, including 4,586 species, covering 22% of known 113 

species and 72% of genera – the most taxon-comprehensive phylogenetic tree currently 114 

available for bees (23). Presently, evolutionary relationships among bee families, 115 

subfamilies, and tribes are well known, remaining stable across different evaluations (20, 116 

22, 23). However, the phylogenetic placement of nearly 80% of bee species remain 117 

unknown, evidencing unsolved uncertainties in relationships between and within most 118 

genera (23). This percentage indicates the extent of the large Darwinian shortfall observed 119 

for the group, although still unknown which clades and groups are predominantly affected 120 

by these shortfalls, where these lack of phylogenetic information are spatially 121 

concentrated, and what are their main drivers. 122 

Phylogenetic lineage imputation (i.e., inserting missing species and lineages into 123 

a backbone phylogeny) is a feasible strategy to gather phylogenetic information from 124 

multiple sources (e.g., molecular phylogenies, taxonomy, and expert opinion), while 125 

accounting for the effect of uncertainty caused by incomplete phylogenetic knowledge. 126 

(24, 25, 26). Further, imputed phylogenies are useful to address the Darwinian shortfall 127 

in order to guide further research and conservation efforts (14, 26). In this sense, the 128 

Darwinian shortfall can be quantified in terms of phylogenetic diversity (PD) deficit, the 129 

proportion of branch lengths that refers to imputed species in relation to the “complete” 130 

phylogeny, as proposed by Nakamura et al. (26). This approach provides a robust 131 

alternative to estimate our ignorance about the Tree of Life, as it relies on a measure of 132 
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missing branch lengths. It presents advantages by considering the proportion of missing 133 

evolutionary history rather than just quantifying the proportion of species with publicly 134 

available gene sequences – as often quantified in the literature (e.g. (6, 12)). 135 

Our main goal here is to address the global Darwinian shortfall of bees worldwide 136 

by (i) comparing regional PD of bees worldwide before and after imputations (26); (ii) 137 

highlighting clades in which there are more phylogenetically unrepresented species;  (iii) 138 

locating spatial gaps of phylogenetic information for bees; and (iv) identifying 139 

macroecological and socioeconomic drivers of the lack of phylogenetic data for bees 140 

worldwide. Thus, we expect that our results will provide a pathway to direct future efforts 141 

to fill the gaps, increasing biodiversity knowledge and conservation of bees worldwide. 142 

 143 

2. Methods 144 

2.1. Occurrence data 145 

Global occurrence data was obtained following a recently published workflow 146 

implemented in the BeeBDC R package (3). This workflow was proposed to aggregate, 147 

standardize, add record-level flags for potential quality issues, and clean bee occurrence 148 

data from multiple sources. Also, the authors provided a global bee occurrence dataset 149 

combining more than 18 million uncleaned (6.9 million standardized and cleaned) bee 150 

occurrences from multiple public repositories (e.g., GBIF, SCAN, iDigBio) and other 151 

smaller data sources (i.e., non-public, private, or publicly inaccessible sources that shared 152 

their data) – which are better detailed in the original publication.  153 

Here we obtained the completely cleaned global dataset, publicly available and 154 

last updated in February 2024 (27).  For this dataset, the authors removed all records that 155 

failed any of the filtering steps except for: (1) coordinate uncertainty based on a threshold 156 

of ~1.1 km at the equator and (2) flagged old records collected before 1950. We have 157 
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decided to keep these records, as they provide valuable information on a macroecological 158 

scale. This cleaned dataset comprises 6,785,860 occurrence records for 11,607 bee 159 

species – meaning that occurrence data is openly available for only 55.4% of known 160 

species (28).  161 

We applied a spatial rarefaction of points for each species by identifying those 162 

with the same first two decimal digits in their coordinates (~1.1 km at the equator) and 163 

randomly keeping only one while discarding the others (resulting in 2,478,875 unique 164 

records). This was a practical decision to remove very close points that introduced some 165 

geometrical complications when defining geographical ranges in an initial trial (see next 166 

section). Also, we removed records of Apis mellifera, as their present distribution mostly 167 

results from human-driven actions (i.e., apiculture) and subsequent invasion events, 168 

making it difficult to delineate its current native range. Finally, we removed exotic records 169 

of species known to be (accidentally or intentionally) introduced outside their native 170 

range, based on the most recent list available (29). In this latter process, six species for 171 

which only exotic records are available were dropped. This dataset comprises 1,653,222 172 

occurrence records for 11,600 bee species. 173 

Additionally, we integrated a comprehensive database of bee occurrences in 174 

Brazil (see (9) for further details), comprising over 500,000 records. This database 175 

compiles digitized data from the public repositories GBIF and SIBBR 176 

(https://www.sibbr.gov.br/), as well as the Moure’s Bee Catalogue 177 

(https://moure.cria.org.br/ (30)), which is the main reference for Neotropical bees. This 178 

database also includes information from several entomological collections and from 179 

digitized scientific articles. After removing duplicates (keeping only unique occurrences 180 

that were absent in BeeBDC, and also removing close points with the same first two 181 

decimal degrees, as above), we obtained 47,162 occurrences for the 1,965 bee species 182 

https://www.sibbr.gov.br/
https://moure.cria.org.br/
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known to occur in Brazil, of which 771 (39%) species (excluding synonyms based on the 183 

Discover Life Apoidea Catalogue (28)) were absent in the BeeBDC database.  184 

A final step in data acquisition was to ensure that every species present in the 185 

backbone phylogeny ((23), see 2.4 Phylogenetic data section for further detail) had 186 

occurrence data, as 482 of the 4586 species in the phylogeny were missing in the dataset 187 

with geographical records. For those species, we searched for occurrences in the primary 188 

literature by simply searching the species name in Google Scholar and obtaining 189 

occurrence records available from taxonomic studies. When no primary study about a 190 

species was found, we obtained occurrences available in the Discover Life Apoidea 191 

Catalogue (28). The entire process resulted in the addition of 3,133 records for all 482 192 

species previously lacking distribution data (see supplementary material 1).  193 

Our final dataset comprised over 1.7 million occurrences for 12,853 bee species – 194 

61,5% of the 20,925 known valid species (28). 195 

 196 

2.2. Species geographical ranges 197 

We estimated the geographical ranges for each species, representing the extent of their 198 

occurrence records. For species with four or more occurrence records (n = 8,197), we 199 

estimated species ranges using alpha-hulls, as they reduce overprediction compared to 200 

convex hulls (i.e., minimum convex polygons) (31). Since different species require 201 

different alpha values (32), we fitted alpha-hulls for each species, starting with an alpha 202 

value of one and then increasing it incrementally by one until it returned a valid hull – 203 

encompassing at least 95% of occurrences (which allows the exclusion of dubious records 204 

too far from the others). The alpha-hulls algorithm is implemented in the rangeBuilder R 205 

package (33). 206 
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For some species, alpha-hulls could not be fitted (n = 9); for these species, as well 207 

as those with only three unique occurrences (n = 902), we used convex hulls plus a 100 208 

km buffer instead. Finally, for species with one or two records (n = 3,754), we estimated 209 

species’ ranges using 100 km buffers around each occurrence as a measure to address 210 

distribution uncertainty and data scarcity (34, 35). Both convex hulls and buffers were 211 

created using the sf R package (36). 212 

 213 

2.3. Presence-absence matrix 214 

Species geographical ranges were gridded at a resolution of 100 x 100 km using the 215 

Behrmann equal-area projection. Species ranges were cropped to fit terrestrial 216 

landmasses, resulting in the exclusion of 187 ranges of species distributed in small islands 217 

or with small ranges near coasts. We then obtained a presence-absence matrix that 218 

displays all co-occurring species found in each grid cell for the 12,666 species. These 219 

procedures were carried out using the EcoPhyloMapper R package (37). 220 

 221 

2.4. Phylogenetic data 222 

We obtained “complete” phylogenetic trees for the 12,666 bee species by integrating the 223 

most taxon-comprehensive and up-to-date hypothesis available for the group ((23) 224 

available for download at BeeTree (<http://beetreeoflife.org/>)). This latter is based on a 225 

supermatrix approach, concatenating public genetic sequence data, including as the 226 

backbone the fossil-calibrated phylogenomic hypothesis of Almeida et al. (22). The 227 

resulting supermatrix phylogeny comprises 4,586 bee species, representing 23% of valid 228 

species and 82% of genera (23), and was used here as the backbone tree for the 229 

phylogenetic imputations of missing species.  230 



10 
 

We then obtained species-level phylogenetic trees using the framework proposed 231 

by Rangel et al. (24). The first step consisted in identifying a Phylogenetically Uncertain 232 

Taxon (“PUT”, for a single taxon or clade, or “PUTs”, for multiple taxa or clades), which 233 

are the species, groups of species, or even lower taxonomic groups of bees that are 234 

missing from the backbone (23). Subsequently, for each PUT, we defined their respective 235 

Most Derived Consensus Clade (MDCC) – corresponding to the node in the backbone 236 

tree that unequivocally contains each PUT (24).  237 

To conservatively define the PUTs and MDCCs, we searched in the literature ( 238 

“species name + phylogeny” in Google Scholar) for other phylogenetic studies that were 239 

not included in the original supermatrix tree (i.e., morphological phylogenies and recent 240 

molecular phylogenies published after the supermatrix tree). This search was replicated 241 

for each PUTs. This step provided valuable information to better define where each PUT 242 

would be imputed based on the most reliable information available (see supplementary 243 

material 2). For those PUTs lacking any hypothesis for phylogenetic placement, we 244 

defined the MDCCs as the clade corresponding to the highest taxonomic level available 245 

in the backbone tree (i.e., if other species from the same subgenus were available, we 246 

defined the subgenus as the MDCC; if no species from the same subgenus were available, 247 

then we defined the genus as the MDCC; and so on). Further, the resulting polytomies 248 

were solved by using an algorithm that applies random solutions for PUTs positions 249 

within their respective MDCCs ((24) but see (38) for detailed algorithm description). We 250 

simulated 1,000 trees accounting for uncertainty in imputations using an R package in 251 

development (Araújo et al., in prep.).   252 

 253 

2.5. Measuring the Darwinian shortfall 254 
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First, species’ geographical ranges were overlapped with 100 km Behrmann equal-area 255 

grid cells (herein assemblages) to obtain a presence-absence matrix accounting for 256 

species composition in each assemblage. We removed grid cells with less than three 257 

species to mitigate the impact of undersampled and unrealistic assemblages that might 258 

generate noise in the analysis. Second, the Phylogenetic Diversity (PD) was calculated as 259 

the sum of branch lengths (39) separately for each assemblage using both the backbone 260 

phylogeny (23) and the 1000 imputed phylogenies. Then, the Darwinian shortfall was 261 

measured as the Phylogenetic Diversity deficit (PD deficit), as proposed by Nakamura et 262 

al. (26): 263 

𝑃𝐷𝑑𝑒𝑓𝑖𝑐𝑖𝑡 =
𝑃𝐷𝑃𝑈𝑇𝑠 

𝑃𝐷𝑡𝑜𝑡𝑎𝑙
  264 

Where PDPUTS is the PD corresponding exclusively to inserted species in a given 265 

assemblage, while PDtotal is the total PD from that assemblage. Finally, the mean values 266 

of PD deficits at the assemblage level were retained for further analysis of drivers of 267 

phylogenetic diversity, as well as the standard deviations of PD deficits to describe 268 

statistical uncertainty (supplementary material 3, figure s3). Therefore, the measured PD 269 

deficit represents the component of Darwinian shortfall led by the absence of 270 

phylogenetic information in the Tree of Life (14, 26).  271 

 272 

2.6. Drivers of the Darwinian shortfall 273 

To identify drivers of the Darwinian shortfall at the assemblage level, we selected some 274 

general, widely used macroecological and socioeconomic variables. First, for biological 275 

potential predictors, we considered the following: (i) species richness, (ii) mean species 276 

range size, and (iii) corrected weighted endemism.  The proxy of bee species richness is 277 

simply the species count for each assemblage based on the overlap of known species 278 

ranges. Mean species range sizes were calculated as the mean range size in km² of the bee 279 
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species occurring in the assemblage. Endemism was calculated as the sum of the inverse 280 

of the range sizes of the species that occur in each cell divided by the total number of 281 

species in each cell (40, 41).  282 

For socioeconomic variables we considered (i) population density for the year 283 

2020 – gridded data at 30 arc seconds (~1 km) resolution (available from Center for 284 

International Earth Science (42)); (ii) per capita gross domestic product (GDP) at 1 km² 285 

resolution (43); and (iii) road density at 5 arc minutes (44). All socioeconomic variables 286 

were aggregated to match the 100 km equal-area resolution. For population and road 287 

density we extracted mean values, whereas for GDP we first summed gridded per capita 288 

GDP within each 100 x 100 km grid cell and then divided this value by the total 289 

population (population density * 10000 (area of each grid cell in km²)). 290 

Additionally, we included sample completeness, as a measure of Wallacean 291 

shortfall (5, 45), as another potential driver of Darwinian shortfall. We quantified sample 292 

completeness following the approach proposed by Chao et al. (46) using incidence data 293 

for each assemblage. First, we created a presence-absence matrix for sub-grid cells of 10 294 

km x 10 km resolution using the complete dataset of occurrence records (before the spatial 295 

rarefaction by removing those with the same first two decimal coordinates digits). Then 296 

incidences were quantified for each species present at each 100 km grid cell (i.e., the 297 

frequencies of sub-grid cells occupied by each species), as incidence data are less 298 

sensitive to aggregation and clustering found on abundance-based data (46, 47). We 299 

removed cells with fewer than 10 incidences as a filter rule to avoid unrealistic 300 

extrapolations (46). Finally, we estimated sample completeness profiles for each 100 km 301 

grid cells by estimating the slopes of incidence-based species accumulation curves (46). 302 

We set q = 1 (i.e., the Hill number equivalent to the Shannon diversity index), as this 303 

estimator accounts for the total number of incidences belonging to detected species, 304 
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without being too sensitive to infrequent species (as when q = 0, species richness) or 305 

favouring highly frequent species as in q = 2 (i.e., the Simpson diversity index). This 306 

approach properly quantifies sample completeness for incidence data when a species’ 307 

weight is treated proportionally to its detection probability, as all individuals are weighted 308 

equally regardless of species identity (46). Sample completeness was computed using the 309 

iNEXT R package (48).  310 

 311 

2.7. Modelling Phylogenetic Deficit  312 

First, all variables, except for sample completeness (percentage), were log-transformed 313 

to improve normality. Then, the variables were standardized into Z-scores to allow 314 

comparability between effect sizes. Potential multicollinearity between variables was 315 

assessed by first fitting an ordinary least squares (OLS) regression model and then 316 

calculating variance inflation factor (VIF) values. As VIFs were moderate for all 317 

variables, ranging from 1.1 for endemism to 2.8 for GDP (supplementary material 3, table 318 

S1), we did not drop any variables. Residuals of the OLS were evaluated with Moran’s I 319 

autocorrelation coefficient and a correlogram (supplementary material 3, figure S2). As 320 

significant spatial autocorrelation was found, we switched to simultaneous autoregressive 321 

(SAR) models (49), integrating spatial error into SAR models. We tested different 322 

neighbourhoods to define the list of weights, and we found that distance-based weights 323 

using inverse distance weighting (IDW) for neighbours in a radius of 3000 km were the 324 

most effective to reduce spatial autocorrelation. We fitted SAR error models for all 325 

combinations of predictors (12), considering only combinations of three or more variables 326 

– resulting in 99 candidate models.  327 

We extracted model averaging based on Akaike information criterion (AIC) 328 

weights as model coefficients (i.e., slopes) across all candidate models (50). We selected 329 
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the minimum adequate model based on the AIC and, the, used Nagelkerke’s pseudo-R2 330 

as a measure of explained variation (51). These models were fitted using the spdep R 331 

package (52). 332 

Finally, we performed an independent cross-species analysis to evaluate the effect 333 

of range size on the probability of a species being phylogenetically known by fitting a 334 

standard logistic regression of knowledge status (1 = presence, and 0 = absence in the 335 

backbone phylogenetic tree) on square-root transformed range sizes (12). This model was 336 

fitted using the glm function in base R.  337 

 338 

3. Results 339 

3.1. Phylogenetic insertions 340 

Our phylogenies included 91% of all bee genera recognized (543 out of 598) after the 341 

imputation of PUTs, with 72% of genera already present in the original backbone (figure 342 

1a,c). The 543 genera comprise 12,666 bee species, over 60% of the 20,925 currently 343 

described species (28). Out of all bee richness, 22% were already included in the 344 

backbone phylogeny (23), and other 38% were imputed herein (figure 1b,d). 345 

As expected, the phylogenetic imputations of PUTs increased the proportion of 346 

species included per family more than the proportion of genera, since a high proportion 347 

of genera – but a relatively low number of species – were already represented in the 348 

backbone tree (figure 1). Halictidae and Megachilidae were the families for which 349 

imputations most significantly increased the proportional representativeness of genera 350 

(figure 1a), while the distribution of species proportions was more evenly spread across 351 

families (figure 1b).  352 

 353 
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 354 
Figure 1. Bar plots summarize the percentage of (a) genera and (b) species, as well as the absolute 355 
number of (c) genera and (d) species, included in the phylogeny for each bee family. Blue 356 
represents genera or species already present in the backbone phylogeny (23), orange represents 357 
the portion imputed into the phylogeny, and grey represents the portion of genera or species absent 358 
from the final phylogeny due to lack of geographical information. 359 

 360 

 Coverage of genera and species included in the phylogeny after imputations 361 

varied among the seven bee families, ranging from 71% up to 100% for genera (figure 362 

1a) and from 49% to 71% for species (figure 1b). The bee families with higher 363 

representativeness of genera were Megachilidae (n = 89) and Stenotritidae (n = 2), both 364 

with all genera included in the phylogeny after imputations of PUTs. The most diverse 365 

bee family, Apidae, was represented by 99% of the valid genera. On the other hand, 366 

Colletidae was the family with the lowest genera representativity, with 71%. As expected, 367 

Stenotritidae was the family with the highest proportion of species included in the 368 

phylogeny (71%), as this is the least diverse family with only 21 valid species, followed 369 

by Melittidae (the second least diverse family) with 68% of species. Finally, the bee 370 

family with the lowest proportion of species included in the phylogeny was Halictidae 371 

(49%), the second most diverse bee family (figure 1d). 372 
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 373 

3.2. Sample completeness and the Wallacean shortfall 374 

Higher sample completeness values were found in the midwestern and western regions 375 

of the USA, indicating lower Wallacean shortfalls. Northern portions of Mexico also 376 

showed high sample completeness. Interestingly, moderate to high completeness was 377 

quantified for assemblages along the southeastern and eastern coasts of Brazil, what may 378 

be due to the inclusion of additional occurrence records for Brazil. However, most parts 379 

of Brazil – especially the central and northern regions – still lack information on bee 380 

distributions. The same is observed across much of South America, where few 381 

assemblages have available occurrence records (figure 2). Overall, occurrence data 382 

deficiency remains predominant across most regions, except for North America and 383 

Western Europe (figure 2). 384 

 385 

 386 

Figure 2. Incidence-based sample completeness of wild bees estimated for 100 x 100 km equal-387 
area grid cells. Sample completeness was estimated using q = 1 (equivalent to Shannon diversity); 388 
see Methods for further details. Lower sample completeness indicates higher Wallacean shortfall.  389 
 390 

 391 
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3.3. The Darwinian shortfall in phylogenetic knowledge of wild bees 392 

The mean values of PD deficits at the assemblage-level (from the 1,000 replicates) were 393 

a consistent measure of the Darwinian shortfall, as standard deviations were extremely 394 

low – with a maximum SD of 0.013 (supplementary material, figure S3). Substantial 395 

differences between PD values measured using only the backbone tree (figure 3a) and 396 

after the imputation of PUTs (figure 3c) were particularly evident in the USA and Mexico, 397 

southeastern South America, southern Africa, and eastern and western coasts of Australia. 398 

This pattern is even more pronounced when considering only the branch lengths of PUTs 399 

inserted into the backbone tree (figure 3b), where longer branch lengths were added, 400 

indicating that major lineages from these regions lack phylogenetic information. In 401 

contrast, PUTs from western Europe contributed relatively little to the PD of assemblages, 402 

suggesting that most lineages (i.e., most tribes and genera) from these regions are already 403 

represented in existing molecular phylogenies.  404 

Higher PD deficits were observed across the Neotropics, Afrotropic, western and 405 

eastern coast of Australia, New Guinea, and southwestern USA (figure 3d). Some of these 406 

regions were expected to exhibit higher PD deficits due to a combination of high bee 407 

diversity and limited species representation in the backbone phylogeny (as for 408 

southeastern South America and southern Africa). Conversely, lower PD deficits were 409 

found in most regions of Europe. Despite being one of the countries with good 410 

representation of bees in the backbone phylogeny, moderate to high PD deficits were 411 

found for the USA, suggesting that substantial phylogenetic knowledge remains to be 412 

uncovered even in regions known for their high bee richness (e.g., the southwestern 413 

USA). Additionally, lower PD deficits were observed in regions where bee diversity is 414 

naturally lower, such as the high latitudes of the Northern Hemisphere (figure 3d).  415 
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 416 

Figure 3. Phylogenetic diversity (PD) and Darwinian shortfall (PD deficit) of wild bees worldwide. (a) Phylogenetic diversity measured using only the backbone 417 
tree; (b) Phylogenetic diversity corresponding to the branch lengths of PUTs inserted into the backbone; (c) PD measured using the final phylogenetic tree after 418 
the imputation of PUTs; (d) PD deficit, representing the Darwinian shortfall. Latitudinal distribution curves are shown on the right side of each map.   For (b–419 
d), we are using means over the 1,000 imputed phylogenies. Pixels in white represent cells without any known species ranges overlapping. 420 
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3.4. Drivers of the Darwinian shortfall 421 

The best-fitting model to explain Darwinian shortfalls of wild bees worldwide included all 422 

variables except endemism as predictors, explaining 82% of the variance in the PD deficit 423 

(pseudo-R2 = 0.825). The other model with ΔAIC < 2 included all the seven variables and 424 

with basically the same pseudo-R2 (equal to 0.825). Across all models, mean range size had 425 

the strongest negative effect. Sample completeness and GDP also had negative effects, 426 

although with shallower standardized slopes. Endemism has a very weak negative effect, 427 

with almost flat slope. On the other hand, species richness had the strongest positive effect.  428 

Population density and road density also had positive effects, but with shallower slopes (table 429 

1).  430 

Table 1. Standardized slopes (z) of predictors of bee PD deficits included in all candidate 431 

SAR error models. Model averaged z values, as well as 95% interval standard errors (SE), 432 
were obtained from AIC-weighted averaging across all candidate models and then 433 

standardized with PD deficit and the predictors. Best model z values refer to the best-fitting, 434 
minimum adequate model. Best model’s pseudo-R2 and AIC weight are also presented. 435 

Detailed information is presented in supplementary material 3, tables S2 and S3.  436 

Predictor Model averaged z SE Best model z 

Species richness 0.2259 0.0020 0.2276 

Sample completeness -0.0469 0.0003 -0.0472 

Mean range size -0.3513 0.0045 -0.3475 

Population density 0.0985 0.0023 0.0970 

per capita GDP -0.0765 0.0020 -0.0749 

Road density 0.0497 0.0003 0.0494 

Endemism -0.0107 0.0000 NA 

Peudo-R2 - - 0.825 

AIC weight - - 0.58 

 437 

 Species richness and sample completeness were the predictors with the highest 438 

importances across models (>0.99), followed by mean range size (0.58) and population 439 

density (0.41). On the other hand, GDP, road density, and endemism (<0.01) were identified 440 
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with lower importances across models (figure 4). Candidate models with a similar formula 441 

to the best model, but either removing species richness or mean species range had slightly 442 

smaller R2 compared to the full model (pseudo-R2 = 0.793 for the one excluding mean range, 443 

and pseudo-R2 = 0.811 for the one excluding species richness; see supplementary material 3, 444 

table S3). 445 

446 
Figure 4. (a) Averaged z values with 95% confidence intervals, and (b) variable importance from 447 
model averaging across all candidate models for the included predictors. Averaged standardized 448 
coefficients, as well as 95% Confidence Intervals (CI), were obtained from AIC-weighted averaging 449 
across all candidate models and then standardized with PD deficit and the predictors. Variable 450 
importance was calculated as the sum of weights of models containing the variable. Blue represents 451 
macroecological variables, while orange represents socioeconomic variables. 452 

 453 

 Although our model explained over 80% of the variance in the PD deficit, it could 454 

not completely remove the spatial autocorrelation (supplementary material 3, figures S4–S6). 455 

This is especially due to some regions exhibiting lower species richness (supplementary 456 

material 3, figure S7), lower PD and relatively high PD deficits values, and the Andes, where 457 
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a relatively high richness and lower PD deficits are found (figure 3c,d).  On the other hand, 458 

the model was effective in reducing spatial autocorrelation in all the other regions where bee 459 

data is more abundant and more consistent values of PD are found (figure 3c). 460 

 Finally, species with larger range sizes had higher probabilities of being 461 

phylogenetically sampled (i.e., included in the backbone tree), with an increase of 0.15% per 462 

unit increase in square-root range size (estimate = 0.00153 ± 0.000041, z = 37.34, p < 0.001), 463 

as estimated with logistic regression (figure 5). 464 

 465 

Figure 5. Logistic regression of phylogenetic knowledge status of a species (1 = presence, and 0 = 466 
absence in the backbone phylogenetic tree) and their square-root transformed range size. Probability 467 
of being phylogenetically known is indicated by the orange curve.  468 
 469 

 470 

4. Discussion 471 
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Here, we present the first global-scale assessment of the Darwinian shortfall in wild bees, 472 

based on publicly available occurrence data and phylogenetic imputations into a broadly 473 

comprehensive phylogeny. Although this approach incorporated ~60% of known bee species, 474 

over 90% of genera were successfully included. As previously demonstrated, bee data 475 

availability is biased toward North America and Western Europe, especially in terms of 476 

sample completeness (2, 3) and phylogenetically addressed species (22, 23). Phylogenetic 477 

imputations allowed us to demonstrate a substantial increase in PD in southern continents. 478 

Consequently, higher Darwinian shortfalls, in terms of PD deficits, were found in these 479 

regions, highlighting that they harbour substantial evolutionary diversity of bees that has yet 480 

to be documented. We found that Darwinian shortfalls in wild bees, in general, increase in 481 

assemblages with higher estimates of species richness due to larger numbers of missing 482 

species, although this result is far from homogenous across the globe. Additionally, our 483 

results show that PD deficits decrease with higher mean species range size and sample 484 

completeness. Two of the socioeconomic factors, population and road densities, are 485 

associated with higher PD deficits, though with weaker effects. Finally, species with larger 486 

range sizes are more likely to be included in a phylogeny than those with smaller range sizes. 487 

Furthermore, we demonstrate that the bimodal latitudinal taxonomic diversity pattern 488 

of bees (1, 2) is followed by a similarly shaped phylogenetic diversity gradient (figure 2). 489 

This pattern can be clearly visualized from the backbone tree, being reproduced in the 490 

analysis based on the imputed phylogeny. In addition, it is worth mentioning that we found 491 

the peak of phylogenetic diversity in the Northern Hemisphere to be only slightly higher than 492 

that in the Southern Hemisphere. This is a much smaller difference than that shown for bee 493 

species richness (2). Even though our imputations successfully incorporated many missing 494 

branches from Southern Hemisphere lineages, a comparatively larger deficit of phylogenetic 495 



23 
 

lineage sampling in the Southern Hemisphere – as evidenced by the peaks of PD deficits. In 496 

this sense, we can expect equal or even higher phylogenetic diversity in the Southern 497 

Hemisphere than in the North as we overcome the Darwinian shortfall. From a historical 498 

biogeography perspective, this is not unexpected, given that many early-diverging lineages 499 

representing long branches can be found in South America and Africa, as those regions 500 

housed the earliest steps of bee evolution (1, 21, 22). 501 

 502 

4.1. Taxonomic coverage  503 

Taxonomic representation of bee species in the backbone phylogeny is uneven across 504 

families at both the genus and species levels (23). Although our phylogenetic imputations 505 

improved overall coverage, some families remained comparatively more well represented. 506 

Regarding genera, Colletidae were proportionally the least represented, leaving fine-scale 507 

relationships within its clades unresolved (see (53, 54)). At the species level, Halictidae, the 508 

second most diverse family, remained poorly represented, with fewer than 50% of the known 509 

species included in the imputed phylogeny. This is particularly evident in the species-rich 510 

and widely distributed genus Lasioglossum, which comprises more than 1,800 described 511 

species (28), yet still presents major uncertainties regarding relationships within and among 512 

subgenera (23, 55, 56). Similar issues are found in Andrena (Andrenidae), although 513 

substantial progress has been made in the past decade (e.g. (57, 58)). While a group-by-group 514 

evaluation is beyond the scope of this study, these examples illustrate persistent gaps in 515 

phylogenetic knowledge of bees. Future research expanding taxonomic representation in 516 

these key groups is expected to refine their phylogenetic relationships and clarify their 517 

evolutionary histories. 518 

 519 
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4.2. Data availability 520 

The pervasive impacts of the Wallacean shortfall on bees are stronger in Global South 521 

countries, as recently demonstrated for Brazil (9), where almost 60% of the country’s land 522 

area is devoid of distribution records. Although some of these regions truly represent 523 

understudied areas where little or nothing is known about their bee faunas (59), important 524 

distribution data may exist for many of them but remain inaccessible or undigitized (9). This 525 

issue is not exclusive to Brazil but rather a major problem across most regions of the world 526 

(3, 7, 8). Data inaccessibility also affects inferences even for the relatively more well-known 527 

bee faunas of Western Europe and the contiguous USA(6, 60). 528 

Despite increasing efforts in data digitization of bees in Western Europe, moderate to 529 

high Wallacean shortfalls are still evident throughout the region, as also noted in a previous 530 

analysis (6). Lower completeness values were also observed in most of Africa, where 531 

Wallacean shortfalls are even more pronounced, given the widespread scarcity of bee 532 

distribution data across the continent. Similarly, bee occurrence data is sparse throughout 533 

Asia, except for Japan and South Korea. Australia presents moderate sample completeness 534 

for assemblages near the coasts – particularly in the east – while central regions are mostly 535 

devoid of data, likely due to the dominance of desert areas.  536 

 537 

4.3. The Darwinian shortfall in wild bees 538 

Higher degrees of Darwinian shortfall underestimation are expected for regions where bee 539 

research has been historically less developed. This is of especial relevance given that 540 

occurrence data is not publicly available for nearly 40% of bee species. In addition, the range 541 

for part of the sampled species is presumably underestimated, since they may spread to 542 
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regions without extensive sampling efforts. The lack of digitization of data that has been 543 

already sampled may also hinder the evaluation of the Darwinian shortfall in these regions, 544 

especially in the tropics (2, 3, 23). Furthermore, expressive Linnean shortfall is also evident 545 

in these areas, where a significant proportion of species remain undescribed and major 546 

additions are expected in the future (8). Nevertheless, the present identification of major 547 

Darwinian shortfalls and their drivers is relatively sound, as it relies on information available 548 

for over 90% of known bee genera worldwide. Moreover, these findings align with previous 549 

studies demonstrating that the tropics are overall the least represented in molecular databases, 550 

paramount for building robust phylogenetic hypotheses (12, 61). The relatively lower 551 

representation of tropical species is expected to have a major impact on estimates even for 552 

taxa that are more diverse in mid latitudes, as is the case of bees. 553 

 554 

4.4. Drivers of the Darwinian shortfall 555 

Species with more widespread distributions are more likely to be detected and subsequently 556 

addressed in phylogenetic investigations (12, 62). Species richness was the next most 557 

influential factor, with PD deficits increasing in speciose areas. This result was expected, as 558 

larger Darwinian shortfalls might be expected in species-rich regions due to the given 559 

relationship between PD metrics and richness (63). Furthermore, it is important to note that 560 

regions with higher estimates of species richness may also be the ones with lower Linnean 561 

shortfalls, while other regions presenting lower richness may be a reflect of incomplete 562 

knowledge rather than a biological process (8).   563 
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  Per capita GDP negatively affects PD deficit (though with smaller effect than mean 564 

range size and richness), indicating that regions with higher incomes also have better-565 

understood clades, likely related to larger research expenditures (12, 64). The gap between 566 

the Global North and South is even more pronounced when considering molecular 567 

phylogenies. Even though access to molecular data has increased in recent decades due to the 568 

overall reduction in the cost of DNA sequencing (65), it is still unavailable for many research 569 

groups in megadiverse regions (66, 67). Nonetheless, GDP values alone may not translate 570 

the effort in studying a particular region. Biodiversity research efforts in Global South 571 

regions are frequently done by researchers from the Global North, thus reflecting a 572 

geopolitical process (12, 68, 69, 70).  573 

Although the slope is shallow, the PD deficit also decreases with higher sample 574 

completeness, suggesting that well-sampled assemblages are more likely to have more 575 

represented lineages in terms of phylogenetic knowledge. However, sample completeness 576 

could not be estimated for many assemblages, especially in Asia, Africa, and South America 577 

(figure 2). This limitation may explain the small effect of this predictor, as those cells were 578 

treated as having zero completeness.  579 

In contrast, PD deficit increases with population density and road density. The 580 

positive effect of population density is expected in regions where high human populations 581 

coincide with lesser-known bee faunas (e.g., southern and southeastern Asia). The 582 

relationship with road density is less straightforward, since accessibility is expected to reduce 583 

deficits (71). However, it is possible that regions that are inaccessible have substantial 584 

Linnean shortfall (8), which bias the Darwinian shortfall to lower values. Still, road density 585 

showed only marginal effects and may influence Darwinian shortfalls more strongly at 586 
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broader spatial scales (12, 14). Finally, the negative but almost flat association between PD 587 

deficit and endemism contradicts the expectation that species with smaller ranges are less 588 

likely to have been studied, as reflected by mean range size. Even though this relation is 589 

weak, it can potentially reflect focused efforts of researchers to sample areas known to house 590 

highly unique bee faunas – something essential for lineage representativity in phylogenetic 591 

studies.  592 

 593 

4.5. Conclusion and future perspectives 594 

This study provides the first comprehensive evaluation of Darwinian shortfalls worldwide, 595 

highlighting both progress and our limitations in understanding the bee Tree of Life. While 596 

our results are robust, encompassing over 90% of bee genera, persistent biases in occurrence 597 

records and limited data digitization indicate that knowledge gaps remain particularly severe 598 

and underestimated in tropical and Global South regions. These areas often coincide with 599 

highly threatened biodiversity hotspots, underscoring the urgent need for increased sampling 600 

and conservation efforts to better understand and protect them (72). Addressing Darwinian 601 

shortfalls in wild bees, as well as other biodiversity knowledge gaps, will require effective 602 

broad-scale data sharing from collections and museums (3, 9, 64, 73), alongside sustained 603 

investment in fieldwork and taxonomic expertise (74). Finally, strengthening international 604 

collaboration will be critical to ensure that the evolutionary history of bees is adequately 605 

documented and can inform effective conservation strategies. 606 

 607 

Data accessibility 608 
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The data and code used for the analysis of this manuscript is available in a Figshare 609 

repository, which can be accessed with a private anonymous link  created for the reviewing 610 

process (https://figshare.com/s/694071403bcd34143484).   611 

https://figshare.com/s/694071403bcd34143484
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