

Microbial drivers of woody plant encroachment in fire-maintained grasslands and savannas

Short title: Microbe impacts on woody encroachment

Number of text boxes: 0

Number of figures: 4

Number of tables: 1

Author information:

Corresponding author: Anita Simha, Department of Biological Sciences, Louisiana State University. anitasimha@gmail.com.

Coauthor: Gaurav Kandlikar, Department of Biological Sciences, Louisiana State University. gkandlikar@lsu.edu

Words in Main Text and Abstract: 5299 (237 in abstract)

1 **Abstract**

2 Woody plant encroachment into grasslands and savannas is a global phenomenon with wide-
3 ranging consequences for people and nature, but we lack a comprehensive understanding of its
4 drivers. Various factors can contribute to woody encroachment across ecosystems, but a notable
5 commonality is that transitions from herbaceous to woody vegetation are spatially and temporally
6 abrupt, suggesting that positive feedbacks play a role. Positive feedbacks are well-studied in the
7 context of vegetation–fire dynamics, but growing evidence points to the potential importance of
8 microbially mediated plant–soil feedbacks in woody plant encroachment. For example, ectomyc-
9 orrhizal association, often associated with positive feedback, is especially common among woody
10 plants known to encroach grass-dominated systems, while herbaceous plants tend to accumulate
11 self-limiting microbial communities. To fill this gap, we developed a novel patch occupancy
12 modeling framework for predicting microbial impacts on vegetation dynamics in fire-maintained
13 grasslands, and parameterized this model with empirically derived estimates of plant–microbe
14 interactions from global meta-analyses. We find that empirically measured microbial feedbacks
15 can sharply constrain the fire regimes under which herbaceous communities are maintained. We
16 also show that woody-favoring soil communities increase the duration of fire-based management
17 necessary to recover grassland after encroachment and narrows the conditions under which such
18 recovery is possible. In all, our model points to the overlooked yet consequential role of plant–
19 soil feedbacks in driving changing vegetation patterns in fire-prone grass-dominated systems and
20 the urgent need for empirical data testing this process.

1. Introduction

Expansion of woody vegetation into grasslands and savannas has been widespread and consistent over the last several decades, and is now affecting an estimated 500 billion hectares globally (Archer *et al.* 2017; Deng *et al.* 2021; Ding & Eldridge 2024; Sala & Maestre 2014; Venter *et al.* 2018). Woody plant encroachment has been documented in grassy biomes on every continent besides Antarctica, including desert grasslands, semiarid and mesic savannas, and alpine and Arctic tundra (Aguirre *et al.* 2021; Van Auken 2000; Bond & Midgley 2012; Britz & Ward 2007; Peng *et al.* 2013; Robinson *et al.* 2008; Romero Ovalle *et al.* 2021; Silapaswan *et al.* 2001; Tormo *et al.* 2020), and it has far-reaching consequences. Increases in woody plant abundance are not only associated with reduced herbaceous plant diversity (Ratajczak *et al.* 2012; Wieczorkowski & Lehmann 2022), but can also restructure mammalian and herpetofaunal diversity, especially in less productive ecosystems (Stanton *et al.* 2017). Woody encroachment also impacts ecosystem function (Eldridge *et al.* 2011; Sala & Maestre 2014). In Patagonian rangelands, for example, vegetation structure (e.g., grass vs. shrub cover) has as strong of an impact as climatic drivers on variation in key ecosystem functions like net primary productivity and precipitation-use efficiency (Gaitán *et al.* 2014). Finally, woody plant encroachment can impact human wellbeing, particularly among pastoralist communities who rely on rangelands for subsistence and income (Ding & Eldridge 2024; Skhosana *et al.* 2025). In all, understanding and managing woody plant encroachment represents a central challenge for 21st century ecologists.

Despite considerable interest in understanding the processes giving rise to woody plant encroachment, its global extent has precluded the development of a robust general framework of its key drivers (Archer *et al.* 2017; Deng *et al.* 2021). Part of the challenge is that both global and local processes likely contribute to this phenomenon. Global factors like increased atmospheric CO₂ have been hypothesized to favor woody plants with C3 photosynthesis systems in communities dominated by C4 grasses (Wang *et al.* (2011); Archer *et al.* (2017), but see Reich *et al.* (2018)). Similarly, altered climate patterns in which precipitation is concentrated among fewer but more intense rainfall events can contribute to woody plant dominance by increasing pools of deep soil water that are less accessible to shallow-rooting grasses than to woody plants (Kulmatiski & Beard 2013). However, global factors alone are insufficient to explain the considerable landscape-level heterogeneity in woody encroachment patterns (Archer *et al.* 2017; Van Auken 2009), which underscores the potential importance of local factors like herbivory and fire (Sankaran *et al.* 2005; Staver & Bond 2014). In less-arid ecosystems in particular, fire-related management practices likely play a key role in shaping variation in the rates and extent of woody plant encroachment

53 (Werner & Prior 2013). Frequent fires can act to exclude shrubs and trees from pyrophilic savanna
54 communities due to higher susceptibilities of woody plants' seedlings and saplings to fire, while
55 long periods of fire suppression allow woody plants to establish and reach maturity, potentially
56 becoming fire-insensitive (Baudena *et al.* 2009).

57 Although multiple processes likely play a role in woody plant encroachment, one common-
58 ality across systems is that transitions from herbaceous to woody vegetation tend to be spatially
59 and temporally abrupt (D'Odorico *et al.* 2011), and often, encroachment is not reversible by woody
60 plant removal (Ding & Eldridge 2022). These commonalities suggest that positive feedbacks likely
61 contribute to the development and persistence of woody plant encroachment (Nowacki & Abrams
62 2008; Ratajczak *et al.* 2011; Wilson & Agnew 1992).

63 Positive feedbacks in communities experiencing woody plant encroachment could arise
64 through various processes. One such process is a “fire-vegetation feedback”, which can arise when
65 woody-dominated plant communities that develop under fire-suppression are less fire-prone than
66 herbaceous vegetation and thus suppress future fires (Nowacki & Abrams 2008; Tepley *et al.* 2018).
67 Positive feedbacks can also arise due to woody plants' impacts on biotic and abiotic soil properties
68 (Schlesinger *et al.* 1996). For example, woody plant establishment in drylands can give rise to
69 “fertile islands” characterized by higher levels of soil moisture, nutrients, and organic matter
70 (Ding & Eldridge 2020; Ochoa-Hueso *et al.* 2017; Schlesinger *et al.* 1996), which could subsequently
71 impact plant germination and growth (Bonanomi *et al.* 2007). Woody plant encroachment can also
72 alter the abundance and composition of microbial communities in the soil (Sha *et al.* 2025). These
73 impacts could arise directly due to different soilborne symbionts of woody vs. herbaceous plants,
74 and indirectly because woody encroachment alters abiotic soil properties such as texture and pH
75 (Du *et al.* 2024). These changes to the soil could in turn affect the structure of the vegetation.
76 Indeed, over the past several decades, an emerging paradigm in plant ecology positions soil
77 microbes as the “unseen majority” that drives a variety of plant community outcomes (Bever *et al.*
78 2010; Van Der Heijden *et al.* 2007; Reynolds *et al.* 2003), including by driving feedback loops
79 that can favor coexistence and/or species replacement (Bever *et al.* 1997; Kandlikar *et al.* 2019).

80 Since their incorporation into plant community ecology in the 1990s (Bever *et al.* 1997; Putten
81 *et al.* 1993), microbe-mediated plant–soil feedbacks have been shown to affect plant community
82 diversity and functioning across a wide range of ecosystems (Crawford *et al.* 2019; Jiang *et al.*
83 2024). These feedbacks arise when plant species have differential impacts on the composition
84 of the soil community, which in turn differentially impacts the growth of plant species in the

85 community. Pairwise negative feedback, in which a conditioned soil microbe community benefits
86 another plant species more than its host, can stabilize coexistence because the more common soil
87 community provides a net benefit to the rarer plant species (Bever *et al.* 1997; Kandlikar 2024).
88 Meanwhile, microbial feedbacks can promote monotypic plant stands, particularly if there are
89 strong positive pairwise feedbacks between competitors (Kadowaki *et al.* 2018; Kandlikar 2024;
90 Teste *et al.* 2017; Yan *et al.* 2022).

91 Although there has been virtually no experimental work on microbially-mediated plant–
92 soil feedback in the context of woody plant encroachment, several lines of evidence point to the
93 potential importance of these interactions. First, global meta-analyses have revealed that, unlike
94 woody plants, grasses and forbs tend to cultivate soil communities that suppress conspecific
95 plant growth (Jiang *et al.* 2024; Kulmatiski *et al.* 2008). This difference is potentially driven by
96 different functional traits of woody vs. non-woody species: at a global scale, herbaceous plants
97 tend to be shorter and have higher specific leaf area and specific root length than woody plants
98 (Díaz *et al.* 2015; Freschet *et al.* 2017) – traits associated with cultivating more self-limiting soil
99 communities (Xi *et al.* 2021). Second, whereas most herbaceous species form mutualistic associa-
100 tions with arbuscular mycorrhizal fungi, some woody species associate with ectomycorrhizal
101 fungi (Soudzilovskaia *et al.* 2020), which can directly protect plants against soilborne pathogens
102 (Strobel & Sinclair 1992), and which tend to promote more positive feedback (Bennett *et al.* 2017).
103 Moreover, ectomycorrhizal association is especially common among woody plants that are known
104 to encroach herbaceous systems worldwide (Supplement S1), suggesting that these associations
105 may contribute to their dominance.

106 In fire-maintained grasslands, the impacts of plant–soil feedback may be further mediated
107 by changes to fire regimes, which can disrupt pairwise interactions between plants and soil
108 microbes (Hewitt *et al.* 2022; Revillini *et al.* 2021). Fire can disrupt plant–microbe interactions
109 directly by causing mortality among plants and soil microbes, and indirectly through changes to
110 soil physical and chemical properties, potentially leading to a short-term “nullified” effect of soil
111 microbes on plant growth (Kardol *et al.* 2022). Though more empirical studies are needed, available
112 evidence suggests that fire can weaken plant–soil feedbacks (Senior *et al.* 2018; Warneke *et al.*
113 2023), including neutralizing microbial self-limitation in grasses (Hopkins & Bennet 2024). On the
114 other hand, high-severity wildfires can have persistent impacts on the diversity and composition
115 of ectomycorrhizal fungi (Pulido-Chavez *et al.* 2021), which could disrupt woody plant-favoring
116 positive feedbacks. Further, recent theoretical and empirical advances have shown that plant–

117 soil feedbacks strengthen over a host plant's lifetime and that microbial legacies can persist for
 118 years after host death (Ke *et al.* 2025; Magee *et al.* 2025). As a result, variation in the timing and
 119 intensity of fires relative to the rates of conditioning and decay of microbial feedbacks could
 120 impact the development and consequences of plant–soil feedback in grasslands experiencing
 121 woody encroachment.

122 Here, we seek to systematically explore how soil microbes could impact woody plant
 123 encroachment. To do so, we use a patch occupancy modeling framework in which grasses and
 124 woody plants can occupy patches and, over time, condition those patches with a soil microbial
 125 community. Microbial communities then play a role in plant dynamics by modifying species'
 126 establishment rates into previously conditioned patches. We derive realistic estimates of woody
 127 plant self-facilitation and grass self-limitation from the empirical literature. We also evaluate how
 128 fires of varying frequencies and intensities alter predicted plant dynamics. With this framework,
 129 we answer the following questions: (1) Under what scenarios of microbial effects can grasses and
 130 woody plants both persist? (2) What impact do plant–soil microbial feedbacks have on the fire
 131 regimes that can maintain grassy systems? (3) When is woody plant encroachment reversible?

2. Methods

132 Our approach builds on a patch occupancy model for plant–soil microbe dynamics introduced
 133 by Ke & Levine (2021), which we modified to evaluate the role of plant–soil feedback in driving
 134 woody plant encroachment in fire-prone grassland systems (Fig. 1A). This framework assumes
 135 that the landscape can be characterized as comprising an infinite number of patches, each of
 136 which can be occupied by one plant (here, either a grass or woody plant). Reflecting empirical
 137 evidence that woody species vary in their reproductive capacity and fire sensitivity across life
 138 stages (Hoffmann *et al.* 2019; Sankaran *et al.* 2005; Werner & Prior 2013), and consistent with
 139 past models of tree–grass dynamics in savannas (Baudena *et al.* 2009), we model the dynamics
 140 of woody species with a two-stage life history (nonreproductive seedlings, denoted σ , and
 141 reproductive adults, denoted s). Grasses are not assumed to have stage structure. Each patch also
 142 hosts a soil microbial community, which is either in a “background” state, or which represents the
 143 conditioning effect of a grass or a woody plant. We use the notation P_{ij} to refer to the proportion
 144 of patches that are occupied by plant i ($i = g, \sigma, s$, indicating grass, woody seedling, or woody-
 145 adult) and harbor soil microbial community j ($j = g, s$, indicating grass-conditioned or woody-
 146 conditioned soils). i and j can also be 0, representing patches that have no plant growing in it
 147 or that have a baseline (unconditioned) soil community, respectively. As the system of equations

describes the dynamics of each patch type in terms of its proportion, the sum of all P values at each timestep is always 1.

Our framework assumes that plants can only establish into patches that are currently unoccupied, i.e., plants cannot displace established individuals from their patches. This assumption is consistent with empirical evidence that in savannas and grasslands, established grasses tend to limit the survival and growth of woody plant seedlings (Riginos 2009), and conversely, that grass establishment is suppressed near woody plants (Köchy & Wilson 2000; Peters 2002). Rates of establishment into empty patches are determined by the relative frequency of grasses and adult woody plants, as well as by the soil microbial status of the patch. In other words, our model assumes that soil microbes primarily impact plants by altering the establishment process (which encompasses both germination and growth immediately after germination), rather than by affecting adult survival or reproduction. This assumption is consistent with the broader field of plant–soil feedback, which has traditionally focused on microbial effects on biomass accumulation rates of young plants (reviewed in Ke *et al.* (2025), but see Dostál (2025) for evidence that microbes can also affect other demographic processes). The model also assumes that all dynamics take place at the landscape scale (there is no explicit spatial structuring), and that each individual of a given species and stage is equally likely to experience mortality or contribute to establishment in other patches (there is no genetic variation).

2.1. Model dynamics in the absence of fire

Patches that are unoccupied and have a unconditioned (or baseline) soil community (i.e., P_{00} , Eqn. 1) can become occupied by either a grass or woody plant at a species-specific establishment rate r_i , proportional to the prevalence of reproductive individuals and of unoccupied patches. In patches that are currently unoccupied but whose soils have the microbial legacy of a previous plant resident (i.e., P_{0g} and P_{0s} , Eqns. 2-3), establishment rates r_i are further modified by the soil community j ($m_{ij} > 1$ indicating that microbial community j increases plant i 's establishment rate relative to its establishment in unconditioned soils, and vice-versa for $m_{ij} < 1$). The prevalence of unoccupied patches increases with plant mortality (μ_i), and is also affected by the decay rate of conditioned soil communities (d_j). These dynamics are formalized as follows:

$$\frac{dP_{00}}{dt} = -\overbrace{r_s P_{00}(P_{ss})}^{\text{woody establishment}} - \overbrace{r_g P_{00}(P_{g0+}P_{gg} + P_{gs})}^{\text{grass establishment}} + \overbrace{\mu_g P_{g0} + \mu_s P_{s0}}^{\text{mortality in unconditioned patch}} + \overbrace{d_g P_{0g} + d_s P_{0s}}^{\text{microbial decay in unoccupied patch}} \quad (1)$$

$$\frac{dP_{0g}}{dt} = -\overbrace{r_g m_{gg} P_{0g} (P_{g0} + P_{gg} + P_{gs})}^{\text{grass establishment}} - \overbrace{r_s m_{sg} P_{0g} (P_{ss})}^{\text{woody establishment}} + \overbrace{\mu_g P_{gg} + \mu_s P_{\sigma g}}^{\text{mortality in grass-conditioned patch}} - \overbrace{d_g P_{0g}}^{\text{microbial decay}} \quad (2)$$

$$\begin{aligned} \frac{dP_{0s}}{dt} = & -\overbrace{r_s m_{ss} P_{0s} (P_{ss})}^{\text{woody establishment}} - \overbrace{r_g m_{gs} P_{0s} (P_{g0} + P_{gg} + P_{gs})}^{\text{grass establishment}} + \\ & \overbrace{\mu_s P_{ss} + \mu_s P_{\sigma s} + \mu_g P_{gs}}^{\text{mortality in woody-conditioned patch}} - \overbrace{d_s P_{0s}}^{\text{microbial decay}} \end{aligned} \quad (3)$$

175 Patches with a grass or a woody plant present but that have an unconditioned soil community (i.e.,
 176 $P_{g0}, P_{\sigma,0}$, Eqns 4-5) arise when the corresponding plant species establishes into an unconditioned
 177 patch. Mortality in these patches returns them to P_{00} , while plant conditioning (or in the case of
 178 woody plants, conditioning and growth), which occurs at a rate c_i , alters the microbial status of
 179 the patch.

$$\frac{dP_{g0}}{dt} = \overbrace{r_g P_{00} (P_{g0} + P_{gg} + P_{gs})}^{\text{grass establishment in unconditioned patch}} - \overbrace{\mu_g P_{g0}}^{\text{grass mortality}} - \overbrace{c_g P_{g0}}^{\text{grass conditioning}} \quad (4)$$

$$\frac{dP_{\sigma 0}}{dt} = \overbrace{r_s P_{00} (P_{ss})}^{\text{woody establishment in unconditioned patch}} - \overbrace{\mu_s P_{\sigma 0}}^{\text{woody mortality}} - \overbrace{c_s P_{\sigma 0}}^{\text{woody conditioning}} \quad (5)$$

180 The prevalence of patches occupied by a grass or a woody plant and with a corresponding grass-
 181 or woody-conditioned soil microbial community (i.e., $P_{gg}, P_{\sigma S}$, and P_{ss} , Eqns 6-8) grows due to
 182 plant establishment in to previously-conditioned patches or due to plant conditioning of baseline
 183 soil, and declines due to plant mortality. The prevalence of nonreproductive woody plants on
 184 woody-conditioned soils ($P_{\sigma S}$) also decreases as these plants mature into reproductive adults,
 185 which in our model occurs at the same rate at which woody plants condition soils (c_s).

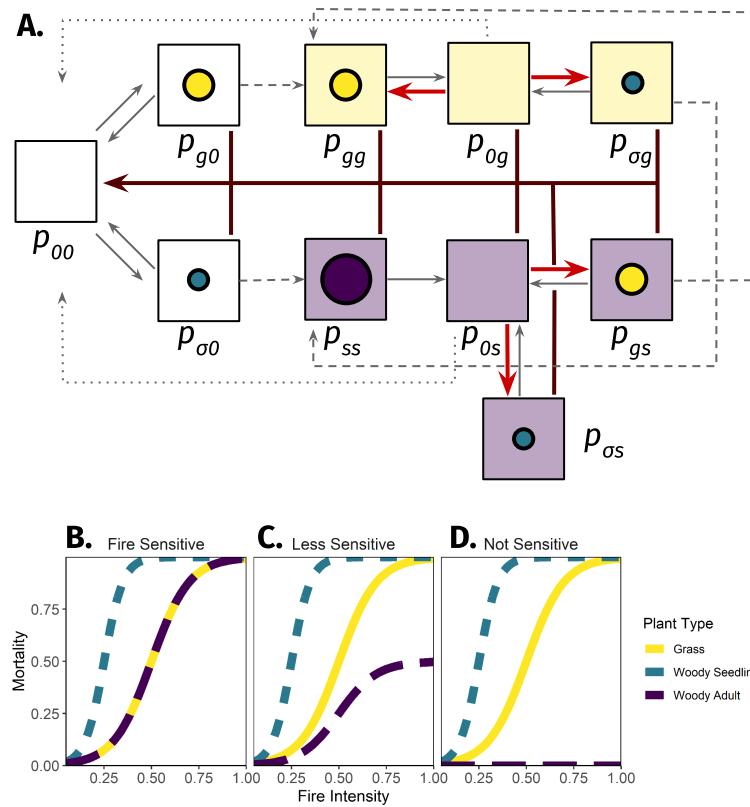
$$\frac{dP_{gg}}{dt} = \overbrace{r_g m_{gg} P_{0g} (P_{g0} + P_{gg} + P_{gs})}^{\text{grass establishment in grass-conditioned patch}} + \overbrace{c_g (P_{g0} + P_{gs})}^{\text{conditioning}} - \overbrace{\mu_g P_{gg}}^{\text{mortality}} \quad (6)$$

$$\frac{dP_{\sigma s}}{dt} = \underbrace{r_s m_{ss} P_{0s} P_{ss}}_{\text{woody establishment in woody-conditioned patch}} - \underbrace{c_s P_{\sigma s}}_{\text{growth into adult stage}} - \underbrace{\mu_s P_{\sigma s}}_{\text{mortality}} \quad (7)$$

$$\frac{dP_{ss}}{dt} = \underbrace{c_s (P_{\sigma 0} + P_{\sigma g} + P_{\sigma s})}_{\text{conditioning and growth of woody seedlings}} - \underbrace{\mu_s P_{ss}}_{\text{mortality}} \quad (8)$$

186 Finally, the prevalence of patches occupied by a grass or a woody plant but that have the soil
 187 community of the other species (i.e., P_{gs} or $P_{\sigma g}$, Eqns 9–10) grows due to plant establishment into
 188 conditioned patches, and decreases due to plant conditioning and mortality.

$$\frac{dP_{gs}}{dt} = \underbrace{r_g m_{gs} P_{0s} (P_{g0} + P_{gg} + P_{gs})}_{\text{grass establishment in woody-conditioned patch}} - \underbrace{\mu_g P_{gs}}_{\text{mortality}} - \underbrace{c_g P_{gs}}_{\text{conditioning}} \quad (9)$$


$$\frac{dP_{\sigma g}}{dt} = \underbrace{r_s m_{sg} P_{0g} (P_{ss})}_{\text{woody establishment in grass-conditioned patch}} - \underbrace{\mu_s P_{sg}}_{\text{mortality}} - \underbrace{c_s P_{\sigma g}}_{\text{conditioning}} \quad (10)$$

2.2. Impacts of fire

189 We model fires as discrete events that alter the relative frequencies of patches. Broadly, plant
 190 and microbial mortality due to fire of intensity f follows a logistic distribution (See Fig. 1B–
 191 D), and P_{00} is increased correspondingly so all state variables sum to 1. Patches that experience
 192 plant mortality also lose any microbial conditioning, and soils in unoccupied patches with a
 193 legacy-conditioned effect also decay to P_{00} , with both following a logistic distribution. In this
 194 spatially implicit implementation, a low intensity fire could represent a low temperature fire that
 195 causes little mortality or a heterogeneous fire that only burns some areas (Fill & Crandall 2023;
 196 Loudermilk *et al.* 2012).

197 Within this framework, we evaluate the role of microbes in shaping plant community
 198 dynamics under three scenarios that capture variation in woody adults' fire sensitivities. In all
 199 scenarios, the logistic function relating fire intensity to plant mortality is parameterized such that
 200 a fire of intensity 0.5 causes 50% mortality of the grass, and woody seedlings are more sensitive
 201 to fire than are grasses (50% mortality at a fire intensity of 0.25). The fire sensitivity of woody
 202 adults varies across the three scenarios, each reflecting empirical trends. In the first scenario,
 203 woody adults experience mortality due to fire at the same rate that grasses do (Fig. 1B). This case

204 corresponds to dwarf shrubs and semi-shrubs like *Vaccinium* spp. in the Arctic and *Sarcopoterium*
 205 *spinosa* in the Mediterranean steppe, which are susceptible to fire even as adults (Henkin *et*
 206 *al.* 1999; Narita *et al.* 2015). In the second scenario, woody adults are half as sensitive to fire as
 207 grasses (Fig. 1C). This case corresponds to shrubs or small trees that may partially escape fire
 208 as adults, such as *Vachellia drepanolobium* in eastern African woodlands and savannas (LaMalfa
 209 *et al.* 2019). In the third scenario, woody adults are totally insensitive to fire, experiencing zero
 210 mortality (Fig. 1D). This corresponds to trees that escape the “fire trap” through vertical growth,
 211 self-pruning, and/or thick bark in surface fire systems like the Brazilian cerrado or longleaf pine
 212 savanna [Pausas *et al.* (2015); Martin and Sapsis 1991].

213
 214 **Figure 1: Overview of model dynamics.** Panel A illustrates transitions between patch types, which
 215 are defined by plant status (no circle, yellow circle, small blue circle, or large purple circle, representing
 216 empty, grass, woody seedling, or woody adult presence) and soil microbial status (white, yellow, or purple
 217 backgrounds, representing unconditioned, grass-conditioned, or woody-conditioned soils respectively). Soil
 218 microbial conditioning affects establishment rates of plants (transitions indicated with red arrows). Solid
 219 lines indicate transitions caused by plant establishment or death, dashed arrows indicate transitions caused
 220 by microbial conditioning, and dotted arrows indicate transitions caused by the decay of conditioned soil
 221 microbes. Panels B-D illustrate three scenarios of varying fire sensitivity of grasses (solid yellow line),
 222 woody seedlings (blue dashed line), or woody adults (purple dashed line). Grass and woody seedlings' fire
 223 sensitivities are the same across all scenarios, but woody adults are either equally sensitive to fire as grasses
 224 (Panel B), half as fire-sensitive as grasses (C), or are fire insensitive (D).

2.3. Numerical simulations

We implemented this model and ran simulations in **Julia** (Bezanson *et al.* 2017) version 1.11.5. We used the packages **ParameterizedFunctions**, **DifferentialEquations**, and **DataFrames** (Bouchet-Valat & Kamiński 2023; Rackauckas & Nie 2017) to write the models, numerically solve each ODE problem, and retrieve the resulting time-series. Numerical solutions were generated using **Tsit5()**, an efficient fifth-order Runge-Kutta method (Tsitouras 2011). Fires were implemented with a preset time callback function, which allows for changes to state variables at specified instances. Fire years were randomly sampled over the given timespan based on the specified fire frequency. We used **JuliaCall** (Li 2019) in R version 4.4.2 to execute the Julia code, running each simulation with fire 100 times for 2000 timesteps.

3. Model Analysis and Results

3.1. Empirical estimates of model parameters

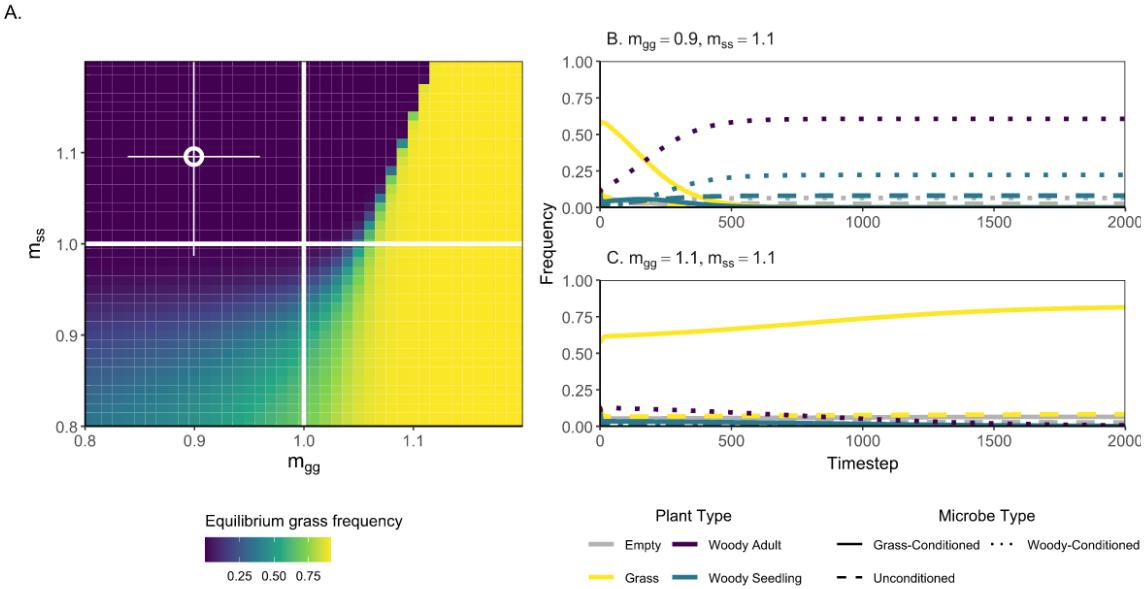
Wherever possible, we chose empirically validated estimates for model parameters. Specifically, we chose reasonable values for m_{ss} and m_{gg} parameters by identifying species in a global meta-analysis of woody plant encroachment (Ding & Eldridge 2024) that had also been included in a global meta-analysis of plant-soil feedback studies (Jiang *et al.* (2024); see Appendix S2 for details). This meta-analysis revealed that grass species that are being encroached by woody plants tend to experience self-limiting microbial feedbacks ($\widehat{m}_{gg} = 0.9$), while encroaching woody plant species tend to experience self-facilitating feedbacks ($\widehat{m}_{ss} = 1.1$). Thus, after exploring how variation in m_{gg} and m_{ss} terms impact model dynamics in our first analysis (Section 3.2), we explore the consequences of varying fire regime assuming soil-mediated self-limitation among grasses and self-facilitation among woody plants. Across all analyses, we assume neutral inter-specific feedback, i.e., $m_{sg} = m_{gs} = 1$. Finally, while timesteps in the model do not correspond to any particular timescale, we interpret each step as a year for simplicity. In this interpretation, our assumed microbial conditioning rate c of 0.2 indicates that a patch becomes host-conditioned after 5 years, and our assumed decay rate d of 0.25 indicates that microbial legacies in unoccupied patches decay over 4 years – estimates that are generally consistent with empirically measured rates of microbial conditioning and decay (Ke & Levine 2021; Magee *et al.* 2025). The historic fire frequency in grasslands and savannas can range from every 1-5 years to decadal intervals (Frost 1993; Stambaugh *et al.* 2011), so we consider high frequency fire in this model to be every 2 timesteps and low frequency fire to be every 50 timesteps. All parameter values used in our analyses are presented in Table 1.

254

Warning: package 'tinytable' was built under R version 4.4.3

255

Table 1: Model parameters and values used in simulations (unless otherwise indicated)


256

Parameter	Units	Value	Definition
r_g	time ⁻¹	1.00	Grass establishment rate
r_s	time ⁻¹	1.55	Woody establishment rate
μ_g	time ⁻¹	0.10	Grass mortality rate
μ_s	time ⁻¹	0.10	Woody mortality rate
d_g	time ⁻¹	0.25	Grass microbial decay rate
d_s	time ⁻¹	0.25	Woody microbial decay rate
c_g	time ⁻¹	0.20	Grass conditioning rate
c_s	time ⁻¹	1.55	Woody conditioning rate
m_{gg}	unitless	0.90	Impact of grass microbial community on grass establishment
m_{gs}	unitless	1.00	Impact of woody microbial community on grass establishment
m_{sg}	unitless	1.00	Impact of grass microbial community on woody establishment
m_{ss}	unitless	1.10	Impact of woody microbial community on woody establishment

3.2. Plant community dynamics in the absence of fire

272

Varying m_{ii} values in the model lead to qualitatively different outcomes in terms of grass and woody plant persistence. Grass generally dominates when $m_{gg} > 1$ (yellow region in Fig. 2A), and microbial effects stabilize coexistence when both m_{gg} and m_{ss} are less than 1. However, the average empirically observed impact of the conspecifically conditioned microbial community is self-facilitating for woody plants and self-limiting for grasses (white point in Fig. 2A), which generates a woody-dominated system. The time series in Fig. 2B and C show the dynamics of each of the ten patch types under different scenarios of microbial impacts on plant establishment. These are aggregated by plant species to generate grass and woody plant ending frequencies throughout the results.

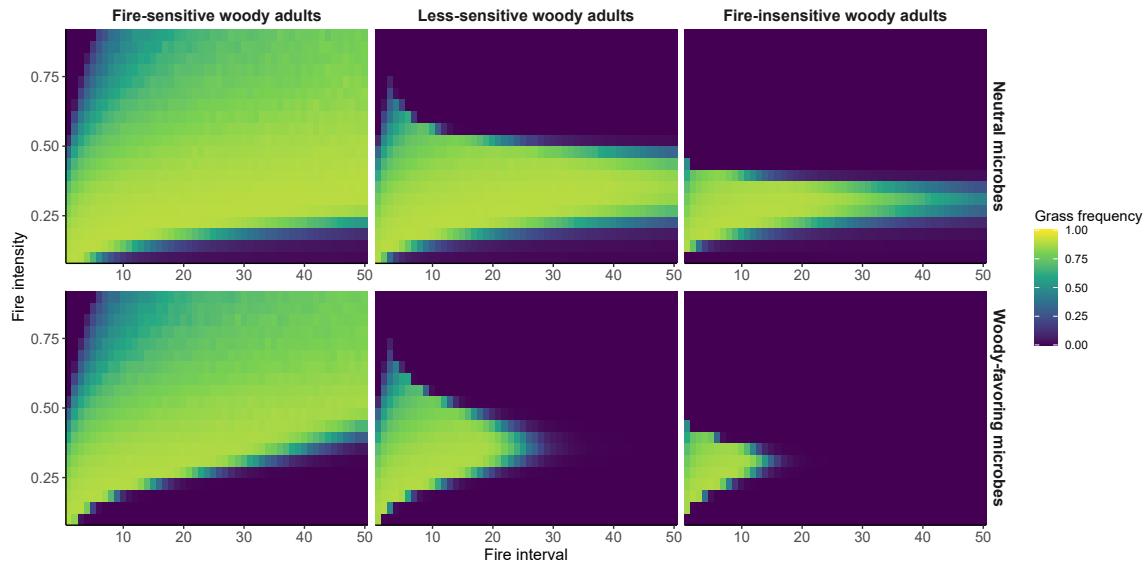
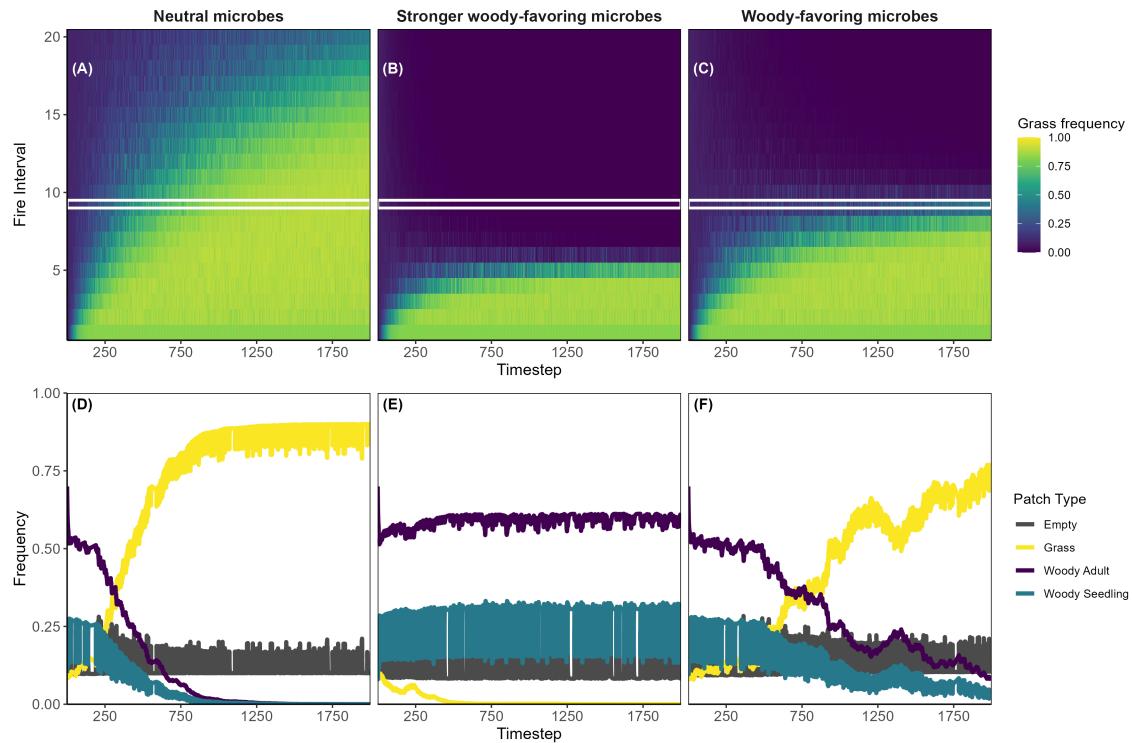


Figure 2: Impacts of microbially mediated patch establishment on grass-woody plant dynamics. Panel A shows the ending grass frequency across combinations of m_{gg} and m_{ss} . The white point and standard errors show the results of a meta-analysis of m_{ii} values from grass and woody plant species that have been observed in studies of woody plant encroachment (see Supplement S2). Panels B and C show patch dynamics over time for two combinations of m_{gg} and m_{ss} . To generate ending grass frequencies in panel A, the sum of the frequencies of each grass patch type (m_{g0} , m_{gg} , and m_{gs}) were averaged over the last 50 timesteps. These simulations show model dynamics for $r_g = 1$ and $r_s = 1.5$; values used for other parameters are provided in Table 1. See Supplement S3 for an exploration of r values on model behavior. See Supplement S4 for an exploration of initial patch frequencies on model behavior when grass and woody microbes both self-facilitate as in Panel C.

3.3. Microbial mediation of fire impacts on plant communities

For our chosen parameter values (Table 1) and fire sensitivities (Fig. 1B–C), frequent and low-intensity fires are necessary to maintain grassy communities even in the absence of microbial feedbacks (top row of Fig. 3). As woody adults become less sensitive to fire across the three different fire sensitivity scenarios we explore, the set of fire regimes that maintain grassy plant communities become increasingly constrained. Irrespective of their fire sensitivity, woody plants dominate in systems with infrequent, low-intensity fires (Fig. 3A; see Supplement S5 for impacts of fire regime on woody plant frequency), and when woody plants are less prone to fire-induced mortality than grasses, they also dominate under infrequent, high-intensity fires (Fig. 3B–C). Neither grasses nor woody plants persist under frequent and high intensity fires (top-left corner of each panel in Fig. 3) except when woody adults are totally insensitive to fire (rightmost column of panels; see Supplement S5).

303 Our empirically estimated measures of microbial impacts on plant performance indicate that
 304 microbial effects further reduce the fire regimes under which grass is maintained (bottom row
 305 of Fig. 3). Specifically, when woody adults are fire-sensitive, microbial feedbacks increase the
 306 minimum fire intensities required to maintain grassy plant communities for a given fire interval.
 307 Additionally, when woody adults are less sensitive to fire than grasses (Fig. 3E–F), the fire intervals
 308 that maintain grassiness must be far more frequent under microbial mediation of plant dynamics.



310 **Figure 3: Woody plant-facilitating microbial feedbacks restrict the fire regimes that permit grass**
 311 **persistence.** Each panel shows grass frequencies at 2000 timesteps under variable fire regimes (varying
 312 fire frequency and fire intensity within each panel) and under varying effects of fire on woody adult
 313 mortality (across different columns). Plots in the top row show grass frequencies assuming no microbial
 314 feedbacks (i.e., all m terms equal to 1); plots in the bottom row show grass frequencies assuming that
 315 microbes generate positive feedbacks for woody plants and negative feedbacks for grasses, as indicated
 316 by our meta-analysis (Supplement S2, $m_{gg} = 0.9$; $m_{ss} = 1.1$; $m_{gs} = m_{sg} = 1$). In Panel A, mature woody
 317 plants are as susceptible to fire-induced mortality of a given intensity as grasses (as in Fig. 1B). In panel B,
 318 woody adults are half as susceptible to fire-induced mortality as grasses (as in Fig. 1C). In panel C, woody
 319 adults are insensitive to fire (as in Fig. 1D).

3.4. Impacts of microbes on grassland restoration

320 We next evaluated how microbial feedbacks modify the fire frequencies necessary to recover
 321 grass-dominated communities after woody plant encroachment has occurred. To do so, we
 322 conducted simulations in which the initial conditions of the community represented a woody-
 323 dominated system ($p_{ss} = 0.7$, indicating a high frequency of patches occupied by woody plants
 324 and with woody-conditioned soils), and evaluated the temporal dynamics of grass recovery under
 325 different low-intensity fire regimes (intensity = 0.25). Generally, we find that more frequent
 326 application of low-intensity fires leads to more rapid grass recovery (more rapid transitions from

purple to yellow in the top row of Fig. 4). Moreover, we find that woody-favoring microbial effects substantially constrain the fire regimes under which grassy restoration is possible, regardless of whether microbial feedbacks provide only provide a small benefit to woody plants ($m_{gg} = 0.9$; $m_{ss} = 1.1$, as indicated in our meta-analysis; Fig. 4B) or strongly benefit woody plants ($m_{gg} = 0.75$; $m_{ss} = 1.25$, Fig. 4C). In Figure 4, we assume that adult woody plants are fire-insensitive, but we verified that microbes consistently constrain the conditions for grass restoration regardless of woody adult fire sensitivities (shown in Supplement S6).

334
 335 **Figure 4: Dynamics of grass recovery after woody encroachment under variable fire regimes and**
 336 **varying plant-microbe interactions.** Panels A–C show overall grass frequency over time (x-axis) under
 337 variable fire intervals (y-axis), assuming microbes give rise neutral or woody-favoring feedbacks. In Panel
 338 A, $m_{gg} = m_{ss} = 1$; in panel B, $m_{gg} = 0.75$ and $m_{ss} = 1.25$; Panel C, $m_{gg} = 0.9$ and $m_{ss} = 1.1$. Panels
 339 D–F illustrate time-series of grass and woody plant dynamics at a fire interval of 8 timesteps under three
 340 corresponding scenarios of microbial impacts (white horizontal rectangles in Panels A–C). In all scenarios
 341 shown here, woody adults are insensitive to fire; see Supplement S6 for dynamics under other scenarios of
 342 woody adult sensitivity to fire.

4. Discussion

343 Woody plant encroachment is widespread in herbaceous communities worldwide, with important
 344 implications for biodiversity and ecosystem functioning. Here we developed a novel theoretical
 345 framework to evaluate the interactive roles of plant-microbe interactions and wildland fires in

shaping the dynamics and reversibility of in woody encroachment. Our model, combined with realistic estimates of plant–microbe interactions derived from experimental studies, suggests that woody plant-favoring soil microbial feedbacks are common (Fig. 2), and can sharply constrain the fire regimes under which grassy communities are maintained (Fig. 3). This pattern was consistent across a range of potential woody adult fire responses, each chosen for their ecological relevance. This consistency suggests that microbe-mediated feedbacks could have important implications for many fire-prone systems, including both savannas with fire-escaping trees and grasslands with smaller-statured shrubs. Further, we find that strong microbial feedbacks can impede restoration of already encroached systems, requiring more frequent fire to recover grassy states. Even when grass recovery is possible, stronger woody-favoring microbial feedbacks require more successive fires for conversion back to a grassy state, meaning recovery is slowed (Fig. 4). In all, our work points to the potentially transformative role of soil microbial feedbacks in shaping vegetation dynamics in fire-prone biomes experiencing woody plant encroachment. We therefore echo recent calls in the literature to better understand how plant communities are shaped by the interactive impacts of soil microbial feedbacks and of disturbances like fire (Kardol *et al.* 2022; De Long *et al.* 2018).

Previous models of savanna-forest transitions have emphasized the role of stochastic fire in maintaining a grassland state, particularly in less arid climates. These have mostly focused on vegetation-fire feedback, in which fire properties like frequency, intensity, or percolation depend on vegetation structure (Baudena *et al.* 2009; D’Odorico *et al.* 2006; Magnani *et al.* 2023). Our results suggest that qualitatively similar dynamics regarding the importance of fire for the maintenance of grassy vegetation can also arise due to plants’ conditioning and responding to the soil environment. Although we center soil microbes as the primary drivers of this process, plant impacts on abiotic properties of the soil, including those that are commonly evaluated under the “fertile island” framework for woody plant encroachment (e.g., soil texture, nutrients, and hydrology; Schlesinger *et al.* (1996)), could in principle give rise to similar outcomes, provided that grasses and woody plants respond differently to these soil changes. Regardless of the mechanism driving the feedback, fires appear to increase the range of conditions in which both grasses and woody plants coexist. Our model also corroborates empirical observations of higher frequency fire regimes than the historic norm being necessary for grassland restoration in some cases (Case & Staver 2016).

377 Although we parameterized our model with estimates grounded in empirical data wherever
 378 possible, this work underscores the need for further experimentation on plant–soil feedbacks
 379 in fire-prone systems, particularly between grasses and woody plants. While most studies of
 380 plant–soil feedbacks have taken place in grasslands (Kulmatiski *et al.* 2008), including in fire-
 381 prone systems like the North American prairie, they have focused on interactions within the
 382 same plant functional type. We know comparably little about microbially mediated grass–shrub
 383 interactions (m_{gs} and m_{sg} in our model). For example, out of 666 pairwise interactions in a recent
 384 meta-analysis of pairwise plant–soil feedback, only 26 directly evaluated feedbacks between an
 385 herbaceous and a woody plant species (Yan *et al.* (2022); See Supplement S2). Our analysis of
 386 grass recovery after woody encroachment suggests that the exact nature of these interactions in a
 387 given community of concern can sharply impact the success of fire in restoring grassy states. This
 388 underscores the value of explicitly measuring these interaction strengths, along with conditioning
 389 and decay rates.

390 Our results suggest several further avenues for future theoretical research that are likely to
 391 yield important insights. First, our numerical simulations assume that the frequency and intensity
 392 of fire are independent of the vegetation structure – an assumption that more closely reflects fire
 393 dynamics in systems actively managed with fire (e.g., periodic lower-intensity prescribed burns)
 394 than in plant communities where fires arise and are allowed to proceed naturally (Boer *et al.* 2009;
 395 Govender & Van Wilgen 2006; Waldrop *et al.* 1992). In such ecosystems, higher flammability of
 396 grasses could result in more frequent and contiguous fires in grass-dominated communities that
 397 eliminate self-suppressing microbial communities of grasses more efficiently than in our model.
 398 Conversely, lower shrub or tree flammability could result in woody-favoring microbes persisting
 399 more through fire than in our model (Magnani *et al.* 2023; Pausas *et al.* 2016), thus compounding
 400 woody dominance in systems that have already undergone encroachment. A second promising
 401 advancement would be to model fire-mediated plant–microbe interactions among multispecies
 402 plant communities comprising grasses, forbs, shrubs, and trees that vary in their sensitivity to fire
 403 and strength of microbial feedback. This would enable predictions not only regarding the relative
 404 frequencies of grasses and woody plants in the system but also other important system properties
 405 such as abundance distributions and functional diversity, which are important regulators of
 406 ecosystem function (Van Der Plas 2019). Finally, there is growing evidence that fungal species
 407 can vary in their sensitivities to fire and in their dynamics post-fire (Fox *et al.* 2022), suggesting
 408 that future modeling work that incorporates the possibility of varying microbial fire sensitivities
 409 could yield more robust predictions of microbe-mediated plant dynamics in fire-prone systems.

410 In addition to their relevance for understanding woody plant encroachment, our results also
411 point to important directions for future research to understand how plant–soil feedback shapes
412 vegetation dynamics in the “real world” (De Long *et al.* 2018). A growing number of studies
413 find mismatches between predictions of microbe-mediated plant community dynamics based on
414 interaction strengths measured in controlled conditions and observed dynamics in field settings
415 (e.g., Forero *et al.* 2019). Our model suggests that exogenous events like fires could help explain
416 such discrepancies – for example, even when microbes strongly favor woody plants, sufficiently
417 frequent fires can drive grassy dominance (Fig. 4c). Our framework can be readily extended to
418 project the consequences of other exogenous, pulsed disturbances like tornados (Nagendra and
419 Peterson 2016). In such systems, understanding rates of microbial conditioning and decay relative
420 to the frequency of the disturbance regime will provide crucial insight into the potential impact
421 of soil-mediated plant interactions. Further modifications to our theoretical framework could also
422 shed light onto the impacts of press disturbances like saltwater intrusion and sea level rise on plant
423 community shifts, where soil-mediated processes have been identified as potential contributors
424 to shrubification (Ury *et al.* 2021).

425 Overall, the findings presented here have important implications for the study and manage-
426 ment of woody plant encroachment. We show that woody-favoring soil microbial conditioning
427 can narrow the fire intervals under which grassland recovery is possible and, in those scenarios
428 of possible recovery, increase the duration of fire-based management necessary to recover. This is
429 crucial information because woody plant encroachment is a consistent and global phenomenon
430 that is of increasing concern for management goals related to grassland-associated biodiversity
431 and maintenance of rangeland economies. Uncertainties persist in identifying the most critical
432 aspects of fire-prone ecosystems, with efforts largely focused on climate, plant flammability, and
433 plant fire response (Magnani *et al.* 2023; Williams & Abatzoglou 2016). Our model points to the
434 overlooked yet potentially transformative role of the host plant-conditioned soil microbiome in
435 driving changing vegetation patterns in these systems and the urgent need for empirical data
436 testing this process.

Bibliography

437 Aguirre, D., Benhumea, A.E. & McLaren, J.R. (2021). Shrub encroachment affects tundra ecosystem
438 properties through their living canopy rather than increased litter inputs. *Soil Biology and*
439 *Biochemistry*, 153, 108121.

440 Archer, S.R., Andersen, E.M., Predick, K.I., Schwinnig, S., Steidl, R.J. & Woods, S.R. (2017). Woody
441 Plant Encroachment: Causes and Consequences. In: *Rangeland Systems*. Springer International
442 Publishing, pp. 25–84.

443 Van Auken, O.W. (2000). Shrub Invasions of North American Semiarid Grasslands. *Annual Review*
444 *of Ecology and Systematics*, 31, 197–215.

445 Van Auken, O. (2009). Causes and consequences of woody plant encroachment into western North
446 American grasslands. *Journal of Environmental Management*, 90, 2931–2942.

447 Baudena, M., D'Andrea, F. & Provenzale, A. (2009). An idealized model for tree–grass coexistence
448 in savannas: the role of life stage structure and fire disturbances. *Journal of Ecology*, 98, 74–80.

449 Bennett, J.A., Maherli, H., Reinhart, K.O., Lekberg, Y., Hart, M.M. & Klironomos, J. (2017). Plant–
450 soil feedbacks and mycorrhizal type influence temperate forest population dynamics. *Science*,
451 355, 181–184.

452 Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J., Moora, M., *et al.* (2010). Rooting
453 theories of plant community ecology in microbial interactions. *Trends in Ecology & Evolution*,
454 25, 468–478.

455 Bever, J.D., Westover, K.M. & Antonovics, J. (1997). Incorporating the Soil Community into Plant
456 Population Dynamics: The Utility of the Feedback Approach. *The Journal of Ecology*, 85, 561.

457 Bezanson, J., Edelman, A., Karpinski, S. & Shah, V.B. (2017). Julia: A fresh approach to numerical
458 computing. *SIAM Review*, 59, 65–98.

459 Boer, M.M., Sadler, R.J., Wittkuhn, R.S., McCaw, L. & Grierson, P.F. (2009). Long-term impacts of
460 prescribed burning on regional extent and incidence of wildfires—Evidence from 50 years of
461 active fire management in SW Australian forests. *Forest Ecology and Management*, 259, 132–
462 142.

463 Bonanomi, G., Rietkerk, M., Dekker, S.C. & Mazzoleni, S. (2007). Islands of fertility induce co-
464 occurring negative and positive plant-soil feedbacks promoting coexistence. *Plant Ecology*,
465 197, 207–218.

466 Bond, W.J. & Midgley, G.F. (2012). Carbon dioxide and the uneasy interactions of trees and
467 savannah grasses. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 367,
468 601–612.

469 Bouchet-Valat, M. & Kamiński, B. (2023). DataFrames.jl: Flexible and Fast Tabular Data in Julia.
470 *Journal of Statistical Software*, 107, 1–32.

471 Britz, M.-L. & Ward, D. (2007). Dynamics of woody vegetation in a semi-arid savanna, with a focus
472 on bush encroachment. *African Journal of Range & Forage Science*, 24, 131–140.

473 Case, M.F. & Staver, A.C. (2016). Fire prevents woody encroachment only at higher-than-historical
474 frequencies in a South African savanna. *Journal of Applied Ecology*, 54, 955–962.

475 Crawford, K.M., Bauer, J.T., Comita, L.S., Eppinga, M.B., Johnson, D.J., Mangan, S.A., *et al.* (2019).
476 When and where plant-soil feedback may promote plant coexistence: a meta-analysis. *Ecology
477 Letters*, 22, 1274–1284.

478 Deng, Y., Li, X., Shi, F. & Hu, X. (2021). Woody plant encroachment enhanced global vegetation
479 greening and ecosystem water-use efficiency. *Global Ecology and Biogeography*, 30, 2337–2353.

480 Ding, J. & Eldridge, D. (2022). The success of woody plant removal depends on encroachment
481 stage and plant traits. *Nature Plants*, 9, 58–67.

482 Ding, J. & Eldridge, D.J. (2020). The fertile island effect varies with aridity and plant patch type
483 across an extensive continental gradient. *Plant and Soil*, 459, 173–183.

484 Ding, J. & Eldridge, D.J. (2024). Woody encroachment: social–ecological impacts and sustainable
485 management. *Biological Reviews*, 99, 1909–1926.

486 Dostál, P. (2025). Predicting microbially mediated plant coexistence is sensitive to vital rate
487 identity and soil conditioning history. *Ecology*, 106.

488 Du, Z., Zheng, H., Penuelas, J., Sardans, J., Deng, D., Cai, X., *et al.* (2024). Shrub encroachment
489 leads to accumulation of C, N, and P in grassland soils and alters C:N:P stoichiometry: A meta-
490 analysis. *Science of The Total Environment*, 951, 175534.

491 Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., *et al.* (2015). The global
492 spectrum of plant form and function. *Nature*, 529, 167–171.

493 D'Odorico, P., Laio, F. & Ridolfi, L. (2006). A Probabilistic Analysis of Fire-Induced Tree-Grass
494 Coexistence in Savannas. *The American Naturalist*, 167, E79–E87.

495 D'Odorico, P., Okin, G.S. & Bestelmeyer, B.T. (2011). A synthetic review of feedbacks and drivers
496 of shrub encroachment in arid grasslands. *Ecohydrology*, 5, 520–530.

497 Eldridge, D.J., Bowker, M.A., Maestre, F.T., Roger, E., Reynolds, J.F. & Whitford, W.G. (2011).
498 Impacts of shrub encroachment on ecosystem structure and functioning: towards a global
499 synthesis: Synthesizing shrub encroachment effects. *Ecology Letters*, 14, 709–722.

500 Fill, J. & Crandall, R. (2023). Prescribed Fire Size, Patchiness, and Pyrodiversity in the Southeastern
501 United States: FOR399/FR470, 8/2023. *EDIS*, 2023.

502 Fox, S., Sikes, B.A., Brown, S.P., Cripps, C.L., Glassman, S.I., Hughes, K., *et al.* (2022). Fire as a
503 driver of fungal diversity—A synthesis of current knowledge. *Mycologia*, 114, 215–241.

504 Freschet, G.T., Valverde-Barrantes, O.J., Tucker, C.M., Craine, J.M., McCormack, M.L., Violle, C., *et*
505 *al.* (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation.
506 *Journal of Ecology*, 105, 1182–1196.

507 Frost, C. (1993). History and Future of the Longleaf Pine Ecosystem. In: *The Longleaf Pine*
508 *Ecosystem*. Springer New York, pp. 9–48.

509 Gaitán, J.J., Oliva, G.E., Bran, D.E., Maestre, F.T., Aguiar, M.R., Jobbágy, E.G., *et al.* (2014). Vegeta-
510 tion structure is as important as climate for explaining ecosystem function across<scp>P</
511 >scp>atagonian rangelands. *Journal of Ecology*, 102, 1419–1428.

512 Govender, T.W.S.W., Navashni & Van Wilgen, B.W. (2006). The effect of fire season, fire frequency,
513 rainfall and management on fire intensity in savanna vegetation in South Africa. *Journal of*
514 *Applied Ecology*, 43, 748–758.

515 Van Der Heijden, M.G.A., Bardgett, R.D. & Van Straalen, N.M. (2007). The unseen majority: soil
516 microbes as drivers of plant diversity and productivity in terrestrial ecosystems. *Ecology*
517 *Letters*, 11, 296–310.

518 Henkin, Z., Seligman, N.G., Noy-Meir, I. & Kafkafi, U. (1999). Secondary succession after fire in a
519 Mediterranean dwarf-shrub community. *Journal of Vegetation Science*, 10, 503–514.

520 Hewitt, R.E., Day, N.J., DeVan, M.R. & Taylor, D.L. (2022). Wildfire impacts on root-associated
521 fungi and predicted plant–soil feedbacks in the boreal forest: Research progress and recom-
522 mendations. *Functional Ecology*, 37, 2110–2125.

523 Hoffmann, W.A., Sanders, R.W., Just, M.G., Wall, W.A. & Hohmann, M.G. (2019). Better lucky than
524 good: How savanna trees escape the fire trap in a variable world. *Ecology*, 101.

525 Hopkins, J.R. & Bennet, A.E. (2024). Fire effects on soil biota alter the strength and direction of
526 plant-soil feedbacks between *Schizachyrium scoparium* (Michx.) Nash and *Rudbeckia hirta* L.
527 *Plant and Soil*.

528 Jiang, F., Bennett, J.A., Crawford, K.M., Heinze, J., Pu, X., Luo, A., *et al.* (2024). Global patterns and
529 drivers of plant–soil microbe interactions. *Ecology Letters*, 27.

530 Kadowaki, K., Yamamoto, S., Sato, H., Tanabe, A.S., Hidaka, A. & Toju, H. (2018). Mycorrhizal fungi
531 mediate the direction and strength of plant–soil feedbacks differently between arbuscular
532 mycorrhizal and ectomycorrhizal communities. *Communications Biology*, 1.

533 Kandlikar, G.S. (2024). Quantifying soil microbial effects on plant species coexistence: A concep-
534 tual synthesis. *American Journal of Botany*, 111.

535 Kandlikar, G.S., Johnson, C.A., Yan, X., Kraft, N.J. & Levine, J.M. (2019). Winning and losing
536 with microbes: how microbially mediated fitness differences influence plant diversity. *Ecology*
537 *Letters*, 22, 1178–1191.

538 Kardol, P., Yang, T., Arroyo, D.N. & Teste, F.P. (2022). Plant-soil feedback in the ‘real world’: how
539 does fire fit into all of this?. *Plant and Soil*, 485, 91–102.

540 Ke, P.-J. & Levine, J.M. (2021). The Temporal Dimension of Plant-Soil Microbe Interactions: Mech-
541 anisms Promoting Feedback between Generations. *The American Naturalist*, 198, E80–E94.

542 Ke, P., Kandlikar, G.S., Ou, S.X., Hsu, G., Wan, J. & Krishnadas, M. (2025). Time will tell: The tem-
543 poral and demographic contexts of plant–soil microbe interactions. *Ecological Monographs*, 95.

544 Kulmatiski, A. & Beard, K.H. (2013). Woody plant encroachment facilitated by increased precipi-
545 tation intensity. *Nature Climate Change*, 3, 833–837.

546 Kulmatiski, A., Beard, K.H., Stevens, J.R. & Cobbold, S.M. (2008). Plant–soil feedbacks: a meta-
547 analytical review. *Ecology Letters*, 11, 980–992.

548 Köchy, M. & Wilson, S.D. (2000). Competitive effects of shrubs and grasses in prairie. *Oikos*, 91,
549 385–395.

550 LaMalfa, E.M., Kimuyu, D.M., Sensenig, R.L., Young, T.P., Riginos, C. & Veblen, K.E. (2019). Tree
551 resprout dynamics following fire depend on herbivory by wild ungulate herbivores. *Journal*
552 *of Ecology*, 107, 2493–2502.

553 Li, C. (2019). JuliaCall: an R package for seamless integration between R and Julia. *The Journal of*
554 *Open Source Software*, 4, 1284.

555 De Long, J.R., Fry, E.L., Veen, G.F. & Kardol, P. (2018). Why are plant–soil feedbacks so unpre-
556 dictable, and what to do about it?. *Functional Ecology*, 33, 118–128.

557 Loudermilk, E.L., O'Brien, J.J., Mitchell, R.J., Cropper, W.P., Hiers, J.K., Grunwald, S., *et al.* (2012).
558 Linking complex forest fuel structure and fire behaviour at fine scales. *International Journal*
559 *of Wildland Fire*, 21, 882–893.

560 Magee, L.J., Smith, D.J.B., Bauman, D., Ke, P., Muller-Landau, H.C., Anderson-Teixeira, K.J., *et*
561 *al.* (2025). Memories of Trees Past: Coexistence Implications of Legacy Conspecific Density
562 Dependence. *Ecology Letters*, 28.

563 Magnani, M., Díaz-Sierra, R., Sweeney, L., Provenzale, A. & Baudena, M. (2023). Fire Responses
564 Shape Plant Communities in a Minimal Model for Fire Ecosystems across the World. *The*
565 *American Naturalist*, 202, E83–E103.

566 Narita, K., Harada, K., Saito, K., Sawada, Y., Fukuda, M. & Tsuyuzaki, S. (2015). Vegetation and
567 Permafrost Thaw Depth 10 Years after a Tundra Fire in 2002, Seward Peninsula, Alaska. *Arctic,*
568 *Antarctic, and Alpine Research*, 47, 547–559.

569 Nowacki, G.J. & Abrams, M.D. (2008). The Demise of Fire and “Mesophication” of Forests in the
570 Eastern United States. *BioScience*, 58, 123–138.

571 Ochoa-Hueso, R., Eldridge, D.J., Delgado-Baquerizo, M., Soliveres, S., Bowker, M.A., Gross, N., *et*
572 *al.* (2017). Soil fungal abundance and plant functional traits drive fertile island formation in
573 global drylands. *Journal of Ecology*, 106, 242–253.

574 Pausas, J.G., Keeley, J.E. & Schwilk, D.W. (2016). Flammability as an ecological and evolutionary
575 driver. *Journal of Ecology*, 105, 289–297.

576 Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., *et al.* (2015).
577 Towards understanding resprouting at the global scale. *New Phytologist*, 209, 945–954.

578 Peng, H.-Y., Li, X.-Y., Li, G.-Y., Zhang, Z.-H., Zhang, S.-Y., Li, L., *et al.* (2013). Shrub encroachment
579 with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of
580 China. *CATENA*, 109, 39–48.

581 Peters, D.P.C. (2002). Recruitment potential of two perennial grasses with different growth forms
582 at a semiarid-arid transition zone. *American Journal of Botany*, 89, 1616–1623.

583 Van Der Plas, F. (2019). Biodiversity and ecosystem functioning in naturally assembled commu-
584 nities. *Biological Reviews*, 94, 1220–1245.

585 Pulido-Chavez, M.F., Alvarado, E.C., DeLuca, T.H., Edmonds, R.L. & Glassman, S.I. (2021). High-
586 severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-
587 severity adapted ponderosa pine forests. *Forest Ecology and Management*, 485, 118923.

588 Putten, W.H. Van der, Van Dijk, C. & Peters, B.A.M. (1993). Plant-specific soil-borne diseases
589 contribute to succession in foredune vegetation. *Nature*, 362, 53–56.

590 Rackauckas, C. & Nie, Q. (2017). DifferentialEquations.jl – A Performant and Feature-Rich Ecosys-
591 tem for Solving Differential Equations in Julia. *The Journal of Open Research Software*, 5, .

592 Ratajczak, Z., Nippert, J.B., Hartman, J.C. & Ocheltree, T.W. (2011). Positive feedbacks amplify
593 rates of woody encroachment in mesic tallgrass prairie. *Ecosphere*, 2, art121.

594 Ratajczak, Z., Nippert, J.B. & Collins, S.L. (2012). Woody encroachment decreases diversity across
595 North American grasslands and savannas. *Ecology*, 93, 697–703.

596 Reich, P.B., Hobbie, S.E., Lee, T.D. & Pastore, M.A. (2018). Unexpected reversal of C 3 versus C 4
597 grass response to elevated CO₂ during a 20-year field experiment. *Science*, 360, 317–320.

598 Revillini, D., David, A.S., Menges, E.S., Main, K.N., Afkhami, M.E. & Searcy, C.A. (2021). Micro-
599 biome-mediated response to pulse fire disturbance outweighs the effects of fire legacy on plant
600 performance. *New Phytologist*, 233, 2071–2082.

601 Reynolds, H.L., Packer, A., Bever, J.D. & Clay, K. (2003). GRASSROOTS ECOLOGY: PLANT–
602 MICROBE–SOIL INTERACTIONS AS DRIVERS OF PLANT COMMUNITY STRUCTURE AND
603 DYNAMICS. *Ecology*, 84, 2281–2291.

604 Riginos, C. (2009). Grass competition suppresses savanna tree growth across multiple demo-
605 graphic stages. *Ecology*, 90, 335–340.

606 Robinson, T., Klinken, R. van & Metternicht, G. (2008). Spatial and temporal rates and patterns of
607 mesquite (*Prosopis* species) invasion in Western Australia. *Journal of Arid Environments*, 72,
608 175–188.

609 Romero Ovalle, P.E., Bisigato, A.J. & Campanella, M.V. (2021). Soil erosion facilitates shrub
610 encroachment in Patagonian herbaceous steppes. *Land Degradation & Development*, 32,
611 3377–3385.

612 Sala, O.E. & Maestre, F.T. (2014). Grass–woodland transitions: determinants and consequences for
613 ecosystem functioning and provisioning of services. *Journal of Ecology*, 102, 1357–1362.

614 Sankaran, M., Hanan, N.P., Scholes, R.J., Ratnam, J., Augustine, D.J., Cade, B.S., *et al.* (2005).
615 Determinants of woody cover in African savannas. *Nature*, 438, 846–849.

616 Schlesinger, W.H., Raikes, J.A., Hartley, A.E. & Cross, A.F. (1996). On the Spatial Pattern of Soil
617 Nutrients in Desert Ecosystems: Ecological Archives E077-002. *Ecology*, 77, 364–374.

618 Senior, J.K., O'Reilly-Wapstra, J.M., Schweitzer, J.A., Bailey, J.K. & Potts, B.M. (2018). Forest fire
619 may disrupt plant–microbial feedbacks. *Plant Ecology*, 219, 497–504.

620 Sha, G., Chen, S., Liu, X., Xia, W., Cui, H., Zhang, A., *et al.* (2025). Woody Plant Encroachment
621 Significantly Alters Grassland Soil Microbial Community: A Global Meta-Analysis. *Global
622 Ecology and Biogeography*, 34.

623 Silapaswan, C., Verbyla, D. & McGuire, A. (2001). Land Cover Change on the Seward Peninsula:
624 The Use of Remote Sensing to Evaluate the Potential Influences of Climate Warming on
625 Historical Vegetation Dynamics. *Canadian Journal of Remote Sensing*, 27, 542–554.

626 Skhosana, F.V., Stevens, N., Maoela, M.A., Archibald, S. & Midgley, G.F. (2025). The impacts of
627 woody encroachment on nature's contributions to people in North America and Africa: A
628 systematic review. *People and Nature*, 7, 2585–2601.

629 Soudzilovskaia, N.A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., *et al.* (2020).
630 FungalRoot: global online database of plant mycorrhizal associations. *New Phytologist*, 227,
631 955–966.

632 Stambaugh, M.C., Guyette, R.P. & Marschall, J.M. (2011). Longleaf pine (*Pinus palustris* Mill.) fire
633 scars reveal new details of a frequent fire regime: Longleaf pine (*Pinus palustris* Mill.) fire
634 scars reveal fire regime. *Journal of Vegetation Science*, 22, 1094–1104.

635 Stanton, R.A., Boone, W.W., Soto-Shoender, J., Fletcher, R.J., Blaum, N. & McCleery, R.A. (2017).
636 Shrub encroachment and vertebrate diversity: A global meta-analysis. *Global Ecology and
637 Biogeography*, 27, 368–379.

638 Staver, A.C. & Bond, W.J. (2014). Is there a 'browse trap'? Dynamics of herbivore impacts on trees
639 and grasses in an African savanna. *Journal of Ecology*, 102, 595–602.

640 Strobel, N.E. & Sinclair, W.A. (1992). Role of Mycorrhizal Fungi in Tree Defense Against Fungal
641 Pathogens of Roots. In: *Defense Mechanisms of Woody Plants Against Fungi* (eds. Blanchette,
642 R.A. & Biggs, A.R.). Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 321–353.

643 Tepley, A.J., Thomann, E., Veblen, T.T., Perry, G.L.W., Holz, A., Paritsis, J., *et al.* (2018). Influences
644 of fire–vegetation feedbacks and post-fire recovery rates on forest landscape vulnerability to
645 altered fire regimes. *Journal of Ecology*, 106, 1925–1940.

646 Teste, F.P., Kardol, P., Turner, B.L., Wardle, D.A., Zemunik, G., Renton, M., *et al.* (2017). Plant-soil
647 feedback and the maintenance of diversity in Mediterranean-climate shrublands. *Science*, 355,
648 173–176.

649 Tormo, J., Amat, B. & Cortina, J. (2020). Effects of woody vegetation patches on species compo-
650 sition in *Stipa tenacissima* steppes. *Journal of Arid Environments*, 181, 104246.

651 Tsitouras, C. (2011). Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying
652 assumption. *Computers & Mathematics with Applications*, 62, 770–775.

653 Ury, E.A., Yang, X., Wright, J.P. & Bernhardt, E.S. (2021). Rapid deforestation of a coastal landscape
654 driven by sea-level rise and extreme events. *Ecological Applications*, 31.

655 Venter, Z.S., Cramer, M.D. & Hawkins, H.-J. (2018). Drivers of woody plant encroachment over
656 Africa. *Nature Communications*, 9.

657 Waldrop, T.A., White, D.L. & Jones, S.M. (1992). Fire regimes for pine–grassland communities in
658 the southeastern United States. *Forest Ecology and Management*, 47, 195–210.

659 Wang, D., Heckathorn, S.A., Wang, X. & Philpott, S.M. (2011). A meta-analysis of plant physio-
660 logical and growth responses to temperature and elevated CO₂. *Oecologia*, 169, 1–13.

661 Warneke, C.R., Yelenik, S.G. & Brudvig, L.A. (2023). Fire modifies plant–soil feedbacks. *Ecology*,
662 104.

663 Werner, P.A. & Prior, L.D. (2013). Demography and growth of subadult savanna trees: interactions
664 of life history, size, fire season, and grassy understory. *Ecological Monographs*, 83, 67–93.

665 Wieczorkowski, J.D. & Lehmann, C.E.R. (2022). Encroachment diminishes herbaceous plant
666 diversity in grassy ecosystems worldwide. *Global Change Biology*, 28, 5532–5546.

667 Williams, A.P. & Abatzoglou, J.T. (2016). Recent Advances and Remaining Uncertainties in
668 Resolving Past and Future Climate Effects on Global Fire Activity. *Current Climate Change
669 Reports*, 2, 1–14.

670 Wilson, J.B. & Agnew, A.D. (1992). Positive-feedback Switches in Plant Communities. In: *Advances
671 in Ecological Research Volume 23*. Elsevier, pp. 263–336.

672 Xi, N., Adler, P.B., Chen, D., Wu, H., Catford, J.A., Bodegom, P.M. van, *et al.* (2021). Relationships
673 between plant–soil feedbacks and functional traits. *Journal of Ecology*, 109, 3411–3423.

674 Yan, X., Levine, J.M. & Kandlikar, G.S. (2022). A quantitative synthesis of soil microbial effects on
675 plant species coexistence. *Proceedings of the National Academy of Sciences*, 119.