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Highlights

® The first movement analysis using eye lens isotopes for European anchovy and
sardine

® Anchovy populations were separated between west and south Iberian coasts

® In contrast, sardine was mixed considerably between west and south coasts

® Trans-boundary connectivity between west and north coasts may exist in anchovy

® Inferences from eye lens isotopes will help fisheries management under climate
change

Abstract

Small pelagic fish are key components of productive coastal ecosystems, yet their
migration ecology remains poorly understood, causing challenges for management. We
applied stable carbon and nitrogen isotope (0'*C and 0'°N) analyses of eye lenses to
investigate movements of European anchovy (Engraulis encrasicolus) and sardine
(Sardina pilchardus) around the Iberian Peninsula. Muscle isotopes showed strong spatial
heterogeneity, largely consistent between species and reflecting differences in baseline
values. Eye lens centres of small anchovy, and to a lesser extent sardine, also showed

clear geographic variation: higher 0'"°N off the Atlantic south coast, lowest 6'°N in the
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Alboran Sea, and lower 0'*C off the west coast. These patterns persisted across years and
fish sizes in anchovy, with only minor outliers, suggesting limited cross regional
migration. An exception was the overlap between west coast and Cantabrian Sea values,
consistent with connectivity supported by cohort tracking. In contrast, sardine isotopes
from the west and south coasts converged into a unimodal distribution with growth,
indicating frequent exchange between these regions. These findings support recent
revision of stock limits that separate south and west coast anchovy stocks and maintain a
single Iberian sardine stock, but they question the current assumption of separation
between western and northern anchovy stocks. Eye lens isotopes provide a powerful
complementary tool to resolve nursery origin and connectivity, offering new opportunities
for fisheries management in shorter time scales than molecular techniques, which is
paramount to be able to cope with rapid changes of fish distribution due to climate change,

and for spatially explicit management.

Introduction

Marine fish often change their habitats with ontogeny and seasons to avoid predation,
meet physiological requirements and maximise fitness, resulting in diverse migration
patterns among and within species or populations (Bauer and Hoye, 2014). Resolving
each unique migration pattern is critical for defining management boundaries and
assessing connectivity (Frisk et al., 2013), which is key for developing effective
management practices. Stock assessment models, that provide the framework for setting
exploitation limits, often rely on the assumption of well-mixed, self-recruiting population
within boundaries (Cadrin et al., 2023). Connectivity determines whether local
populations persist through self-recruitment or depend on external sources, with direct
consequences for resilience to environmental change and fishing pressure (Sakamoto et
al., 2024). Misspecifications of boundaries or inaccurate estimation of connectivity can
therefore lead to biased assessments (Berger et al., 2021), overexploitation and stock
collapses (Petitgas et al., 2010). Mass migrations of fish can also have substantial
ecological impacts on ecosystems through alterations of energy flow, food-web topology
and stability, and trophic cascades (Bauer and Hoye, 2014). Understanding migration
patterns of abundant species and its ecological function should significantly contribute to

ecosystem-based managements (Link et al., 2020).

European anchovy Engraulis encrasicolus and European sardine Sardina pilchardus are
key components in the Northeast Atlantic and Mediterranean shelf ecosystems. These

small pelagic fishes are short-lived and abundant plankton feeders (Garrido et al., 2015)
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and, being fed by many predators including fish (Cardona et al., 2015), mammals (Santos
et al., 2014) and seabirds (Martinez-Abrain et al., 2019), they play a critical role in energy
transfer from low to high trophic levels (Veiga-Malta et al., 2019). They are also important
targets of pelagic fisheries, particularly off Western Moroccan waters and around the Bay
of Biscay and Iberian Peninsula, providing several hundred thousand tonnes of landing
annually (FAO 2025). However, the sustainability of the fishery is challenged by
biological changes in recent years, such as a reduction of body sizes of both species in
the Bay of Biscay (Véron et al., 2020; Taboada et al., 2024), declined sardine abundance
off the Iberian west coast where anchovy bloomed for the first time since it started being
recorded (Ferreira et al., 2023; 2024). Their migrations can cause significant changes in
trophic structures, predator distribution and abundance, and increase challenges for
fishery management. Despite their importance, the migration ecology of both species
remains poorly studied, primarily due to the lack of appropriate techniques to track

individual movements.

Population structure of the two species have been studied mainly by using genomics and
morphological traits (e.g., Zarraonaindia et al., 2012), although many issues remain
regarding the connectivity of Iberian Peninsula populations (Caballero-Huertas et al.,
2022a). Currently, different anchovy stocks are assumed in the Bay of Biscay, western
Iberian coast (hereafter West coast), and south Iberian coast (hereafter, the South coast),
Alboran Sea and Atlantic Africa (three different stocks assessed by FAO) for management
(Fig. 1). The border between the anchovy populations inhabiting the West and South
coasts has been added only recently (ICES, 2024a), which was supported by a compilation
of published and unpublished evidences from genomics, larval dispersal, fish and
fisheries distribution, morphometrc and genomic studies (Garrido et al., 2024) but would
benefit from further analysis. In particular, potential connectivity between the populations
of the West coast and the Bay of Biscay has been suggested recently (Teles-Machado et
al., 2024; Pyjolar et al., 2025), against the current assumption of two different stocks in
these areas. Adding another layer of complexity, two genetically and morphologically
distinct ecotypes, namely marine and coastal ecotypes, have been identified in anchovies
in the Mediterranean, Bay of Biscay and the North Sea (Le Moan et al., 2016; Huret et
al., 2020). The former thrives preferentially in pelagic systems and the latter in estuaries

and lagoons, whose distributions and proportions in other regions are unknown.

Sardine in the Cantabrian Sea, West and South coasts is managed as one stock (Fig. 1).

This is consistent with the genomic analyses that assigned those surrounding the Iberian
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Peninsula into a single cluster (da Fonseca et al., 2024; Sabatino et al., 2025), and cohort
tracking analysis that suggests that the connectivity across these regions is mediated by
migrating adults (Silva et al., 2019). Meanwhile, morphometric analysis suggests the
existence of several clusters between the northern and southern Iberia (Neves et al., 2023),
and the connectivity between west and east of the Strait of Gibraltar have been indicated,
with unknown extent (Caballero-Huertas et al., 2022b; Hidalgo et al., 2024).
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Figure 1. Sampling locations of anchovy (a) and sardine (b) used for isotope analyses, with
representation of stock boundaries (black lines), 200 m bathymetric contour and major
rivers. The broken line shows the new stock boundary added recently between west and south
coast populations (a). River positions were taken from Global River Width from Landsat dataset

(Allen and Pavelsky, 2018).

Stable isotopes in eye lenses may provide a complementary measure of fish movements,
which can be a particularly helpful tool to understand the migrations of abundant small
pelagic fish. Eye lenses are incrementally growing protein structure that lack turnover
(Wallace et al., 2014), and therefore the history of isotopes of diet are recorded in their
layers i.e. laminae with some isotopic offsets (Yoshikawa et al., 2025). The carbon and
nitrogen stable isotopes of marine organisms often show significant gradients across
oceanographic conditions and from inshore to offshore (Minagawa and Wada 1986; Rau

et al., 1989; Montoya and McCarthy, 1995), reflecting differing primary producer
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isotopes and dietary plasticity (Bode et al., 2007; Chouvelon et al., 2015; Sakamoto et al.,
2023b). Thus, the isotopes recorded in eye lenses can be used as a marker of organisms’
locations  (Vecchio and Peebles, 2022; Sakamoto et al., 2023a; 2025), making them one
of the rare natural tags applicable to full-marine systems where water chemistry is largely
homogenous. Sequential analysis from the inner to outer laminae to infer ontogenetic
habitat and trophic changes has been the major usage, although analysing only the central
part as a marker of nursery origin can be beneficial to analysis broad scale mixing from
larger datasets (Vecchio and Peebles, 2022; Sakamoto et al., 2025). As eye lenses can be
delaminated manually, the analysis is less time-consuming and equipment-dependent
when compared to conventional otolith chemical analyses that requires substantial sample
preparation efforts. This analysis can also detect movements on an ecological timescale
that is directly relevant to management, which distinguishes it from genetic markers that
indicate connectivity on an evolutionary timescale. However, overlapping isotope values
do not necessarily lead to the same nursery, as organisms from distinct locations can show
similar isotope values from different dynamics. This limitation should be considered,
being preferable to complement this method with other approaches, to accurately

understand mixing processes.

In this study, we investigated migration patterns of European anchovy and sardine around
the Iberian Peninsula. To understand the geographical variations of §'°C and §'°N of their
diets, muscles isotopes were first analysed. The isotopes of eye lens centre, which reflect
the diet isotopes during early life stages, were then analysed for the two species across
different size classes, to infer their nursery origin and detect ontogenetic migrations
between areas. To aid the inferences obtained from eye lens analysis, we also investigated
the connectivity by cohort tracking, comparing the abundance at ages of anchovy from
the Cantabrian Sea, West coast and South coast, estimated during acoustic surveys in the
last 10 years and interpreting the results in light of previously published results of sardine
cohort tracking (Silva et al. 2019).

The water surrounding the Iberian Peninsula includes regions of distinct oceanographic
conditions. The West coast of the Peninsula is a highly productive region, as a
consequence of strong and frequent upwelling events, particularly during spring and
summer, and due to freshwater discharge by several rivers and rias, particularly during
fall and winter months (Ferreira et al. 2021). The Cantabrian Sea, in the north, is the
transition zone between the western upwelling region and strong freshwater input in the

eastern end, and has lower and more variable productivity compared to western waters.
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The southern Atlantic coast including the Gulf of Cadiz, hereafter the South coast, is
generally warm and oligotrophic except for some local upwelling and freshwater-input
spots (Lafuente and Ruiz, 2007). The Alboran Sea in the east of the Strait of Gibraltar is
even warmer in summer to which a jet current persistently flows (Hidalgo et al., 2024).
Located further south is the northwest African coast, whose Atlantic side is a coastal area
with permanent upwelling, and is more productive and warmer than the Iberian west coast.
This environmental heterogeneity offers a unique opportunity to study how European

anchovy and sardine move across different oceanographic conditions.

Material and Methods

Sample collection

European anchovy and sardine samples for stable isotope analysis were collected during
acoustic and trawl surveys during 2016 to 2023 conducted by multiple institutes, which
includes the spring acoustic survey PELAGO off Atlantic west and south Iberian coasts
(2016, 2018, 2020, 2022, 2023), the autumn acoustic recruitment survey IBERAS off the
west coast (2018, 2022, 2023), the autumn demersal survey IBTS off the west coast,
summer MEDIAS survey in the Alboran Sea (2023), SARLINK 1117 winter survey
covering the Alboran Sea, Atlantic African coast and south Iberian coast (2017), and
PELACUS spring survey in the Cantabrian Sea (2022). A total of 691 anchovy and 590
sardine specimens were available. After measuring the total length (TL), wet weight and
gonad weight and recording sex, white muscle tissues were extracted from dorsal side
and stored in 1.5 ml plastic tubes. Eye lenses were also extracted from both eyes and
stored in 96-well plates. Muscle and eye lenses were frozen at —20°C until later use. Fish
were then classified into three size ranges, small (< 120 mm TL for anchovy and < 140
mm TL for sardine), medium (120-140 mm and 140-180 mm, respectively) and large
(>140 mm and >180 mm, respectively), which roughly correspond to typical sizes of age
0, I and > 2 of each species around Iberian Peninsula with 1-2 errors (Uriarte et al., 2016;
Silva et al., 2008).

Analysis of muscles

To understand the geographical variations of stable isotopes of the diet, the §'°N and 6'*C
of muscles were analysed for a subset of the samples. As fish of similar sizes in the same
haul often have similar values (Sakamoto et al., 2023b), up to six individuals per size
range were selected. In total, 106 anchovy from 18 hauls and 112 sardine from 19 hauls
collected in 2016, 2017, 2022 and 2023 were selected for the isotope analysis to cover

the geographical and temporal range of the target. Muscle tissues were freeze-dried and
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ground into powder. Lipids were extracted using a 2:1 chloroform:methanol solution,
freeze-dried again and 800 pg of a subsample was extracted. The §'°N and §'>C values of
the samples were analysed at GeoScience Laboratory (Nagoya, Japan) using a
continuous-flow stable isotope ratio mass spectrometer (IsoPrimel00, Elementar,
Stockton, UK) coupled to an elemental analyser (vario MICRO cube, Elementar;
FLASH2000, Thermo Fisher Scientific, Yokohama Japan). The 6'°N and §'3C values
were reported in J-notation against the atmospheric N> standard and the VPDB reference
standard (Vienna Pee Dee Belemnite), respectively, and given as a %o value. Analytical
precisions assessed by repeated measurements of laboratory standards were + 0.2%o for
0"°N and 6'3C.

Analysis of eye lenses

Thawed eye lenses were placed on a slide glass under a stereo microscope with a
micrometre scale for delamination. Using forceps, gelatinous cortex was removed and
outer laminae were peeled off until the diameter of the remaining lens became smaller
than 1 mm, typically 0.7 to 0.9 mm, under 10—20X magnification. The eye lens centre
diameter corresponds to a fish size of 3 to 4 cm SL, for Japanese sardine (Sakamoto et al.,
2025), which has similar morphology with European sardine and anchovy. The remaining
centre part was rinsed with distilled water to remove potentially tangled fibres from outer
laminae, then attached to the inner wall of 1.5 ml tube. After drying the lens centres for
more than a day at a room temperature, tube lids were sealed, then the samples were sent
to Stable Isotopes Analysis Facility, Sciences Faculty at the University of Lisboa, Portugal.
Samples were weighted, then §'°N and §'3C were determined by continuous flow isotope
mass spectrometry, on a Sercon Hydra 20-22 (Sercon, UK) stable isotope ratio mass
spectrometer, coupled to a EuroEA (EuroVector, Italy) elemental analyser for online
sample preparation by Dumas-combustion. The §'°N and §'°C values were reported in -
notation against the atmospheric N> standard and the VPDB reference standard (Vienna
Pee Dee Belemnite), respectively, and given as a %o value. Analytical precisions
calculated using repeated measurements of laboratory standard in every batch of analysis
were < 0.2%o for 6'°N and 6'°C.

Correction of eye lens isotope values

As larger fish tend to have higher 6'°C and 6'°N values due to the increase of trophic
position, higher eye lens isotopes are expected in larger eye lens centres. To account for
size variations in the peeled eye lens centre, effects of sample dry weight on isotope values

were assessed using linear models including fish sampling region as a factor for each
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species (6'°C or 6”°N ~ Region + Sample weight). When a significant effect of sample
weight was detected, which was the case for §'°C and §'°N, the isotope values were

corrected to the value at 0.3 mg of sample weight using the estimated slope.

Data analysis

Consistent analysis flow was used for the two species to reveal their different migration
ecologies. To confirm that the isotopes values of eye lens centre are linked to nursery area,
the geographical differences in the value distributions were visualised using scatter plots
and kernel density estimations for each fish size class (small, medium, large). If many
fishes migrated to different regions with growth, this would result in significant changes
of data distributions between size classes. The temporal stability as a marker of nursery
origin was assessed by calculating the mean isotope values of small-sized anchovy and
sardine for each sampling year. Geographical variations of eye lens isotopes of
small-medium-sized fish were compared to those of muscles of small-medium sized fish
to test whether the eye lens isotopes reflect prey isotopes in each region. The inclusion of

medium sized fish here was to cover regions with limited number of small fishes available.

To investigate the temporal variations in the extent of fish mixing/separation, overlaps of
eye lens isotope value distributions were quantified between each group of sampling
region/sampling year/fish size. For each pair of groups, two-dimensional histogram with
0.5 and 1.0%o bins for 6°C and §'°N respectively, reflecting the greater variations in 6'°N,
were calculated for each group. For each bin, the smaller proportion between the two
groups was retained, and the sum of these across all bins provided a metric of
distributional overlap. While this allows the visualisation of major mixing/separations in
a group level, minor differences between individuals of different origins can be of
significant importance in terms of gene flow cannot be detected. As a complement, data
points outside the 95% or 99% confident ellipses, calculated based on Mahalanobis
distance, for fish across all size classes in each region were considered outliers. When
outliers were just one in a given station, they were considered potential analytical errors
and discarded. When multiple outliers were detected for a given station, they were
considered valid and used for further analysis. The nursery origins of the valid outliers
were inferred based on main data distributions of other sampling regions, defined as the
50% probability mass area of kernel density estimation, and their muscle isotope values

when available.
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Cohort tracking analysis

To contrast our results with observations of potential source and sink areas based on
cohort analysis, we used published literature for the sardine (Silva et al. 2019) and
conducted a cohort tracking analysis for the anchovy. Particularly, we compared the
abundance at age of anchovy between contiguous areas using estimates of two
complementary spring acoustic surveys used for stock assessment: PELACUS, conducted
in the Cantabrian Sea and Western Galician waters and PELAGO, conducted in the
Western Portuguese coast and South Iberia, including the Spanish Gulf of Cadiz.

Natural logarithms of abundance indices (In(N+k)) per age were compared between the
contiguous areas by adjusting a linear regression model to the data, where N is number
of individuals at age and K is half the minimum but non-zero N observed for scaling. The
abundance-at-age was compared either for individuals of same age in a given year for
different areas (corresponding to matching dynamics of cohorts) or comparing the
abundance of individuals at age x and year y in a given area, with the abundance of
individuals of age x+/ in year y+/ in the contiguous area (testing for migration from one
area to the other during the time between surveys). Correlations were tested between the

Cantabrian Sea and the West coast and between the West coast and the South coast.

Results

Muscle isotope distribution

The 6"3C and 6'°N values of the muscles of anchovy (70-184 mm TL) and sardine (104—
220 mm TL) showed significant variations among and within regions (Fig. 2a—j). The
613C value ranged from —20.1%o to —15.6%o in anchovy and from —19.6%o to —16.2%o in
sardine, with the general tendency of higher values in sardine (Fig. 2a, ¢). The 5'°N values
ranged from +8.1%o to +14.1%0 and from +8.1%o0 to +12.9%0 for anchovy and sardine,
respectively (Fig. 2c, d). Exceptionally high 6'°N anchovy were found for large
individuals (151-173 mm) caught during October 2022 in the Ria de Arousa estuary
(+13.4 £ 0.8%o, Fig. 2a, c), and from medium individuals (124-134 mm) caught close to
the Tagus River estuary during March 2022, both in the West coast (Fig. 2¢). As such,
only in the West coast, significant correlations were detected between anchovy 6'°C and
SN and logarithm of distance from the coast (6'°C: Peason’s r = —0.50, p = 7.7*1073;
S"°N: Peason’s r = —0.50, p = 1.5%10°°, n = 27), revealing the marked inshore-offshore
gradients there. The geographical variation of §'*C was less clear, except for low values

of anchovy caught off the South coast and Cantabrian Sea, which were not observed for
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sardine (Fig. 2i). On the other hand, 6'°N values were significantly different between
regions for both species, with higher values (10—12%o) mainly observed in the Cantabrian
Sea, inshore (< 10 km) the West coast and in the South coast. Moderate values (9—10%o)
were found offshore (> 10 km) the West coast and Atlantic Africa, and the lowest (< 9%o)

in the Alboran Sea (Fig. 2j), likely reflecting different isotope baselines across regions.
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Figure 2. Variations of muscle isotopes. Station-mean §'3C (a, b) and 6"°N (c, d) of anchovy (a,
¢) and sardine white muscles (b, d). Relationships between distance from coast and station/size
class-mean 6'3C (e, f) and 6"°N (g, h) of anchovy (e, g) and sardine (f, h). Regional difference of
03C (i) and 6N (j) of small to medium anchovy and sardine, shown as boxplots. The west coast

data is split into close or far from the coast at 10 km (i, j), given the significant gradient there (g).
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315

316 Eye lens isotopes

317  The dry weight of delaminated eye lens centres ranged between 0.10 and 0.53 mg, whose
318 effect on isotope values were assessed by linear model (Supplementary Table 1;
319  Supplementary Fig. 1). For anchovy, the estimated slope of the effect was 1.14%o/mg for
320  6"C and 6.71%0/mg for 6'°N, likely reflecting the change of trophic position with growth.

321  For sardine, the effect on §'°C was not significant, while the effect on 6'°N was 4.78%o/mg.
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Hereafter, the eye lens 6'°C and 5'°N values corrected to those at 0.3 mg of sample weight

using the slopes were used in downstream analyses to account for this effect.

The 5'3C and 6'°N of eye lens centre values varied significantly by species, sampling area
and ontogeny (Fig. 3a—f). Anchovy showed distinct values between region, largely
consistent across size ranges (Fig. 3a—c): high §"°N (+9.6 + 1.3%o0 (1SD)) in the South
coast, lower 6'°N (+6.8 £ 1.8%o) and ¢'°C (-20.7 + 0.8%o) in the West coast, low 6'°N
(+5.9 + 0.8%o) and higher 6'*C (~19.2 + 0.6%o) in the Alboran Sea, and moderate 6'°N
(+7.7 £ 0.6%o) and higher 6'3C (~19.1 £ 0.9%o) in the Atlantic Africa. The Cantabrian Sea
showed values similar to those of the West coast, but also included higher ranges (Fig. 3b,
¢). In sardine, 6'*C values showed less geographical variations and mostly fell in the range
between —21%o and —17%o, though tended to be lower in the Alboran Sea (Fig. 3d—f). In
small sardine (< 140 mm), 6'°N values were higher in the South coast (+10.1 = 1.3%o)
and lower in the West coast (+8.7 & 0.8%o). This difference between the West and South
coasts decreased in medium and large sizes (Fig. 3d—f). In medium and large sardines,
SN were lower in the Alboran Sea (+6.5 = 1.6%o) and moderate in the Atlantic Africa
(+8.1 = 1.2%0), and were distinct from those in the West and South coasts. Among
sampling years, mean eye lens isotope values of small anchovy and sardine in each region
varied by < 1%o for 6'°C and < 1.5%o 6'°N, showing the robustness against inter-annual
variations. Compared to muscle isotopes, eye lens isotopes showed greater extent of
geographical variation (Fig. 4a, b). The difference of mean 6'°C in eye lens and muscle
for each region was less than 1%o in most cases, except for the West coast and Cantabrian
Sea anchovy that differed by 1-2%o. The 6'°N were generally lower in eye lens centre by
1-3%o, although the ranks were mostly consistent between muscles and eye lens centres
if we use offshore (>10 km) mean for the West coast for the muscle (Fig. 4b). The
exception here was the Cantabrian Sea, where muscles showed highest ¢'°N values but

lower in eye lenses.



351
352

353

® West coast
® South coast

Region
®  Alboran Sea

® Atlantic Africa

® Cantabrian Sea

SREN

® 2016
W 2017

A
*

2018
2019

Year
V¥ 2020
& 2022

# 2023

a. Anchovy <120 mm

e. Sardine 140-180 mm
: . 14 [omed :
{ { ; . H
: MY I : AL
- | O e o 1 - o
£ : Ke il : .
i m o+ H . .
Z s e NG % 8 e I —
w H H H H
5 |- i 5 i F.
2L i 2 i ‘ i
-23 -21 -19 =17 =23 =21 -19 =17
&3C (%o) 813C (%) 5'3C (%o)
® Anchovy<120mm O Sardine < 140 mm ® Anchovy<120mm O Sardine <140 mm
9 125 1h (:)
£ 18 5?10.0—(? ¢ ¢ + o $
3 # é? z Q0 o
9 50 o Ea) 75 4
© o ¢ ¢
5.0 A ‘
T T T T T T T T T T T T T T T T
2016 2017 2018 2019 2020 2021 2022 2023 2016 2017 2018 2019 2020 2021 2022 2023
i 12 5
— 181 ¢ — ! .’
Eole W i1t S g, %
R ? Z o1 d ¢
w© + © {0
T T T T T T T
Anchovy Anchovy Sardine Sardine Anchovy Anchovy Sardine Sardine
eye lens muscle eye lens muscle eye lens muscle eye lens muscle
(<140 mm) (<140mm) (<180 mm) (<180 mm) (<140mm) (<140mm) (<180mm) (<180 mm)

Figure 3. Variations of eye lens centre isotopes. Eye lens centre §'°C and 6'°N of anchovy (a, b,

¢) and sardine (d, e, f) of small (a, d), medium (b, €) and large size (c, f), where colours and symbols

represent sampling regions and years, respectively. Inter-annual variations of eye lens 6'3C (g) and

0N (h) of small anchovy (filled) and sardine (open). Comparison of geographical differences in

0"3C (i) and 6"°N (j) between eye lens centre and muscle. The nearshore muscle data (< 10 km) in

the West coast fishes are excluded given the strong inshore-offshore gradient there (i, j). The plots

and error bars show mean and 1 SD, respectively (g—j).
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The similarity of eye lens centre isotopes between regions, size classes and sampling year
were assessed as the overlaps of 2-D histograms (Fig. 4). For anchovy, higher overlaps
(> 0.5) were mostly observed within each sampling region and not between the regions
across size classes and years, except for the West coast and Cantabrian Sea that showed
high overlaps (Fig. 4a). These results are indicative of limited movements of anchovies
between the Atlantic Africa, Alboran Sea, South coast and West coast, and potential
mixing between the West coast and the Cantabrian Sea. Despite this general trend, there
were outliers in each region that suggest individuals of different origins (Fig. 4b). In the
West coast, high eye lens 6'°N outliers were found in hauls in the Ria de Arousa and close
to the Tagus River mouth (Fig. 4b, c), which mostly matched the exceptionally high
muscle 5N individuals (Fig. 4d). This suggests the individuals’ strong preference for
coastal environment potentially throughout life stages. At around the western edge of
South coast (stations “14”, “15” and “17”, Fig. 4c), six large anchovies showed similar
isotope values with the Alboran Sea or West coast fishes (Fig. 4b), which are likely
migrants from the adjacent regions. Similarly, the three small individuals found in the
westmost station (“67”) in the Alboran Sea with higher 5'"°N may have originated from
the South coast.

For sardine, higher histogram overlaps were shown within the Alboran Sea stations, but
also between medium to large individuals in the West and South coasts (Fig. 4e). These
are indicative of general separation between the Alboran Sea and the South coast at the
Strait of Gibraltar, and the mixing between the West and South coasts with age. The
highest overlap between the 2022 small and 2023 medium sardines stood up as an
exception, showing the strength of West coast recruits in 2022. Many of the outliers in
the West coast were collected in March 2016 (“W12”, “22”) in the low biomass period.
Outliers found in the South coast in 2022 (“S12”) and 2019 (“1”’) with low 6'°N likely
originated from the Alboran Sea, showing the possibility of minor migration across the
Strait.
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Figure 4. General trends and outliers of eye lens isotopes. Histogram overlaps between different
sampling year/size class (Small, Medium, Large)/region groups for anchovy (a) and sardine (e).
The outliers out of 95% (larger plots) and 99% (largest plots) confident ellipse based on
Mahalanobis distance for each region, with small plots showing non-outliers and lines showing
main data distributions based on kernel density estimation (50% probability mass area) for
anchovy (b) and sardine (f). The annotations in (b, f) are station IDs from which multiple outliers

were detected (¢, g). The muscle 6'°N of West coast anchovy, with the detected high eye lens 6'°N

outliers shown in red, others in blue plots or a boxplot.
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Cohort tracking of anchovy

Potential connectivity of anchovy populations from the North, West and South Iberia was
investigated by cohort tracking, comparing the abundance-at-age of fish from synoptical
spring acoustic surveys. The correlation of the abundance of fish from the West and South
Iberia was not significant for fish of the same age (p-values > 0.35, Fig. 5a, b, ¢).
Moreover, no significant correlation was found between age 1 individuals from the South
and age 2 individuals from the West in the following year (Fig. 5d), discarding the
hypothesis of a significant migration of recruits from the Gulf of Cadiz recruitment

hotspot to the West coast.
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Figure 5. Cohort tracking of the West coast and South coast anchovies. Relationship between

the abundance of Age 1, 2 and 3 individuals estimated in the PELAGO+PELACUS survey series

in the West and the South Atlantic Iberian coast (a, b, ¢), and with Age 1 in the South and Age 2 in

the West coast (d). Units for both axes are Log the number of individuals (N) + K, being K half

the minimum non-zero N observed, method described in ICES, 2004; Payne et al., 2009). The

labels represent year-classes.

The potential connectivity between the West coast and the North (Cantabrian Sea,
corresponding to Division 8c which is part of the Bay of Biscay stock) was tested using
the same approach. A significant correlation was found between the abundance of fish of
the same age between both areas, for the three ages groups tested (p-values < 0.012, Fig.
6a, b, ¢). Moreover, a significant correlation was found between age 1 individuals in the
North with age 2 individuals found in the West Iberia in the following year, suggesting a

potential southern migration during the juvenile stage (Fig.6d).
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Figure 6. Cohort tracking of the West coast and Cantabrian Sea anchovies. Relationship
between the abundance of Age 1, 2 and 3 individuals estimated in the PELAGO+PELACUS
survey series and in the Cantabrian Sea (division 8c) (top panels and right bottom panel), and with
Age 1 in the Cantabric and Age 2 in the West Iberian coast (left bottom panel). Units for both axes
are Log the number of individuals + K, being K half the minimum N observed, method described

in ICES, 2004; Payne et al., 2009). The labels represent year-classes.

Discussion

In this study, we analysed the migration patterns of European anchovy and sardine around
the Iberian Peninsula, by introducing stable isotopes of eye lenses for the first time for
the species. The eye lens centre isotopes, particularly 6'°N, were significantly different
between recruitment areas around the Iberian Peninsula, thereby showing its utility as a
marker of individual nursery origin in a shelf ecosystem of a scale of several-hundred
kilometres. The analysis allowed to us to effectively visualise the overall mixing and
separation patterns across regions that changed with ontogeny, and detected the outliers

representing rare migrants or different ecotypes. With the support from cohort tracking
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analysis, our results revealed the difference in migration ecology between the two small

pelagic species of similar niches, which have important implications for management.

The geographical variations of eye lens isotopes are mainly driven by difference in
primary producer isotopes. The eye lens centre record body isotope values during larval
stage with several permill offset in 5'°N (Sakamoto et al., 2025), which sensitively reflects
local prey isotopes in a short time period (Sakamoto et al., 2023a). This explains the lower
SN, and similar but more exaggerated geographical isotopic differences in eye lenses
than in muscles of juveniles and adults (Fig. 3). The important factors affecting
phytoplankton isotopes are nutrient source and availability for 6'°N (Minagawa and Wada,
1986; Montoya and McCarthy, 1995), and temperature-dependent phytoplankton growth
rates for 6°C (Rau et al., 1989). The lower §'°N in the Alboran Sea likely reflect the
contribution of nitrogen originated from N> fixation that are active in the Mediterranean
(Béthoux and Copin-Montégut, 1986). In contrast, the higher 6'°N in the West coast
nearshore waters likely reflects inputs from anthropogenic origin nitrogen that has high
SN (Vinagre et al., 2011; Bode et al., 2025). On the other hand, the West coast and
Atlantic Africa are both part of Canary Current upwelling system, where abundant
nutrients supplied from deep waters. Preferential uptake of lighter nitrogen by
phytoplankton from a rich pool likely led to the lower baseline §'°N there, which may
have worked otherwise in the nutrient-limited South coast. For 6'°C, lower values in
anchovy eye lens in the Cantabrian Sea and the West coast likely reflect lower nursery
temperatures than in southern areas. Trends in 6'*C were inconsistent across species and
tissues, suggesting that the spatial differences in baselines can be outweighed by species
or life-stage dependent factors such as spawning seasonality or local-scale habitat
selection particularly near river mouth. The results for the Cantabrian Sea anchovy were
unexpected, having high 6'°N and moderate 6'°C in muscle but both lower in eye lens
centres (Fig. 3j). This is attributable to the unique movement pattern of anchovy there,
where some individuals spend their early life stage off the shelf before migrating back
closer to the coast (Irigoien et al., 2008), where zooplankton §'°N and 6'°C are likely

lower.

A self-recruiting anchovy population likely exists in the South Atlantic coast of Iberian
Peninsula. The separations of eye lens centre isotopes between the Atlantic Africa,
Alboran Sea, South coast and West coast—Cantabrian Sea regions, consistently evident

across different size classes and sampling years, suggest limited migrations across these
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regions. The separation between the West and South coasts is also corroborated with the
lack of correlations of abundance at ages between the two areas (Fig. 5). While our
analyses cannot reject the mixing during larval stage via ocean transport (Casaucao et al.,
2021), the genomic differentiation between fish from the West and South coasts also
suggest the separation there (Pujolar et al., 2025). The Strait of Gibraltar, between the
South coast and the Alboran Sea, have not been identified as a significant barrier of gene
flow (Zarraonaindia et al., 2012; Alexandridis et al., 2025), although distinct otolith
morphometrics have been detected (Bacha et al., 2014), consistently with our inference
from eye lens isotope. Importantly, the existence of some large-sized migrants in the
western part of the South coast, likely from the West coast or the Alboran Sea, suggest
that the separation is not complete. As large anchovies are often collected as a minor
portion of a mixture with other species such as sardine and chub mackerels in trawl
surveys in the area (0.03—12% in 2023 PELAGO survey, ICES, 2024b), they may have
been trapped in the schools of larger fishes (Bakun and Cury, 1999) and taken to the area.
However, given the lack of such migrants in the Gulf of Cadiz, the eastern part South
coast where the major spawning activities in the South coast occur, the impact of the
migrants on abundance are likely limited. This line of evidence supports the recent
decision to split the South coast from the West coast stocks (ICES, 2024a) and different

managing units.

The anchovy populations in the West coast likely have a more complex structure. Despite
the current management assumption of considering the West populations as a stock unit,
the existence of a self-recruiting population here is disputable, as shown in the recent
genomic analysis that have suggested connectivity between anchovies from the West
coast and Ireland (Pujolar et al., 2025). Larval dispersal simulations also suggest that the
rapid population increase in the West coast since 2015 may be a result of colonisation
from Bay of Biscay populations, driven by anomalously strong and persistent westward
currents that occurred in the Cantabrian Sea in 2014 and 2015 (Teles-Machado et al.,
2024). Eye lens 6"°C and §'°N were overlapping between anchovies in the West coast and
the Cantabrian Sea even in small sizes, but there was a discrepancy between 6'°C of eye
lens centre and muscle in the West coast (Fig. 31). This can be reasonably explained if
most of the West coast anchovy spent their early life stage in the Cantabrian Sea and then
moved to the West coast. Moreover, the significant correlation of abundance at age
between the west and north Iberian coasts (Fig. 6) support the mixing. The western and
northern populations are currently managed as two independent stock units, but it is

advised to review stock limits, which is critical as underlying basis of stock assessment
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and fisheries management. The West coast is characterised by frequent and strong coastal
upwelling events during spring and summer months, which provides a cooler and
productive environment for the mid-latitude area, with potential to host a population

adapted to higher latitudes.

Furthermore, the high §'°N individuals in the Ria de Arousa and Tagus River estuaries
may be coastal ecotypes such as the ones identified in the Bay of Biscay, Mediterranean
Sea and North Sea (Huret et al., 2020; Le Moan et al., 2016) and have not been recognised
yet in the West coast. The impact of the estuarine ecotypes on stock assessment is likely
limited, as they were only found in low proportions. As the scattered estuarine ecotype
populations are known to be genetically differentiated while having a shared ancestry,
however, they deserve attention for conservation of genetic diversity. These are the
remaining issues for West coast anchovy managements that need to be solved by future
investigations, which should include whole-genome sequencies (e.g., Pujolar et al., 2025)
with spatially dense sampling, and inferences about individual movement histories based

on otolith oxygen isotopes (Sakamoto et al., 2024).

Sardine likely have broader migration ranges than anchovy. The previous cohort tracking
analysis across the Bay of Biscay shelf and the Iberian coasts predicted significant
migrations of sardines of age 1 to 3 among adjacent areas (Silva et al., 2019). The
converged eye lens isotope distributions of larger sardines in the West and South coasts,
despite the difference in small sardines, suggest the gradual ontogenetic mixing with age,
thereby providing empirical support for the prediction. The stock biomass of Iberian
sardine is under recovery from the historical low-levels during the 2010s. The suggested
mixing of the medium and large sardines in 2020s indicates that the recruitment hotspots
off the West and South coasts that respond differently to environmental variabilities
(Ferreira et al., 2023) both contributed significantly to the recovery, showing the
importance of the both for population fluctuations. Migrations though the Strait of
Gibraltar may occur occasionally from the East to the West against the Atlantic Jet, as a
minor number of outlier individuals with low eye lens ¢'°N similar to the those in Alboran
Sea can be found in the South coast. The migrants may mediate gene flows suggested by
genomic studies (da Fonseca et al., 2024; Sabatino et al., 2025), although their low
proportions suggest limited impact on abundance. For practical management and stock
assessment, therefore, we present results support the assumption of a single
metapopulation extending from the north, west and south Iberian coasts, and splitting the
Alboran Sea and Africa.
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The distinct migration patterns of sardines and anchovies off the Iberian Peninsula are
likely influenced by a combination of ecological and physiological factors. Anchovy
experience peak spawning in the spring and summer months, when upwelling events
enhance productivity, especially along the West coast where they are frequent and intense.
On the South coast, upwelling events occur less often and with lower intensity. Anchovy
larvae require higher energy intake to meet their physiological demands by developing in
warmer temperatures. Therefore spawning in the proximity of river runoff might be
essential, and this requirement to find such spawning locations for adults can limit their
migration far away from nursery areas. In contrast, sardines typically spawn between
October and March in colder waters, a period when downwelling conditions dominate off
western Iberia. The reduced metabolic costs of larvae in lower temperatures may relax
selections for spawning location of spawners, which may allow the adults to migrate more
freely to maximise energy acquisition. This is consistent with the view that sardine in the
European Atlantic do not show natal homing for spawning (Silva et al., 2019). Leaving
the nursery area and reproducing in other area has also been observed in Sardinops species
off South Africa coast and in the western North Pacific (Teske et al., 2021; Sakamoto et

al., 2025), which could be a general feature of sardines.

The different migration ecology of anchovy and sardine indicates that significant changes
in their abundance, which have been observed elsewhere (Chavez et al., 2003), can have
ecosystem-level impacts. Anchovy and sardine are both predominant zooplankton feeders
that prey on secondary productions and transfer the energy to higher trophic levels. Their
migrations from a nursery to different regions is therefore an energy export, suggesting
that the primary production in migration source areas can enrich higher level production
in the sink neighbouring areas (Hutchings et al., 2010). The excretion and death of fish in
the sink can also enhance nutrient recycling (Bauer and Hoye, 2014). The greater ability
of sardine to migrate suggests that the lateral energy transfer process would be
pronounced under sardine dominant condition and less in anchovy flourishing
environment. This leads to the hypothesis that the distribution and abundances of high
trophic level predators can be geographically more homogenised under sardine-
dominance but patchier and more concentrated under anchovy-dominance. Future
quantifications of the biomass of migrators, which could be predicted by cohort tracking
(Silvaetal., 2019) and calibrated by eye lens isotopes analyses as in this study, may allow
assessments of the significance of the processes when combined with ecosystem models

(Veiga-Malta et al., 2019). This quantification should also be of great help to develop
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spatial explicit management, which is crucial in the Iberian shelf system with significant

environmental heterogeneity.

Overall, we demonstrated that the stable isotopes in eye lenses are useful to understand
movement dynamics of marine fish. Given the similar isotopic trends between species,
the method would also be applicable for other species around Iberian Peninsula, and
beyond. Using only two isotope values for broader geographical range, however,
increases the risk of confusion of different nursery areas accidently showing similar
values through different dynamics. The combination with other natural tags is therefore
the key for geographical expansions. Nevertheless, eye lens isotopes would remain an
important option due to the feasibility to generate large dataset, which allows to resolve
spatiotemporally varying mixing processes (Sakamoto et al., 2025). Such analysis allows
to remove spatial components from the temporal variation of population dynamics, which
would be of significant help to understand and predict marine fish population fluctuations.
in shorter time scales than molecular techniques, which is paramount to be able to cope
with rapid changes of fish distribution due to climate change and for spatially explicit

management.
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Supplementary Figure 1. The effect of sample weight on eye lens centre 6'3C (a, ¢) and 6'5N
(b, d) in anchovy (a, b) and sardine (¢, d). Colours indicate sampling region.
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862
863  Supplementary Table 1.
864  Summary results of linear model (6”°C and 6'°N ~ Sample weight + Region).

Anchovy o BN~ Sample weight + Region

Estimate  Std. Error t-value p-value

(Intercept) 4.07 0.28 14.34 <2E-16  ***
Sample weight 6.71 0.88 7.59 1.2.E-13 ***
Region:Atlantic Africa 1.58 0.36 4.40 1.3.E-05 ***
Region:Cantabrian Sea 1.14 0.26 4.45 1.0.E-05 ***
Region:South coast 3.36 0.19 17.80 <2E-16  ***
Region:West coast 0.76 0.17 439 1.3.E-Q5 ***

Residual standard error: 1.46 on 621 degrees of freedom
Multiple R-squared: 0.483, Adjusted R-squared: 0.4788
F-statistic: 116 on 5 and 621 DF, p-value: <2.2e-16

865

Anchovy 0 Be~ Sample weight + Region

Estimate  Std. Error t-value p-value

(Intercept) -19.55 0.15  -129.50 <2e-16  ***
Sample weight 1.14 0.47 2.43 0.016 *
Region:Atlantic Africa 0.12 0.19 0.61 0.54
Region:Cantabrian Sea -1.44 0.14 -10.51 <2e-16 ok
Region:South coast -0.23 0.10 -2.29 0.022 *
Region:West coast -1.50 0.09 -16.28 <2e-16  ***

Residual standard error: 0.7764 on 621 degrees of freedom
Multiple R-squared: 0.4403, Adjusted R-squared: 0.4358
366 F-statistic: 97.69 on 5 and 621 DF, p-value: <2.2e-16

867
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Supplementary Table 1 (continued).

Sardine 6 N ~ Sample weight + Region

Estimate  Std. Error t-value p-value

(Intercept) 5.30 0.31 17.16 <2e-16  ***
Sample weight 4.16 0.97 4,28 2.23E-Q5 ***
Region: Atlantic Africa 1.33 0.47 2.89 0.0040 **

Region: South coast 3.50 0.22 16.09 <2e-16  ***
Region: West coast 2.70 0.21 12.66 <2e-16  ***

Residual standard error: 1.337 on 589 degrees of freedom
Multiple R-squared: 0.3551, Adjusted R-squared: 0.3508
F-statistic: 81.1 on 4 and 589 DF, p-value: <2.2e-16

Sardine 6" C ~ Sample weight + Region

Estimate  Std. Error t-value p-value

(Intercept) -19.43 0.24 -81.99 <2e-16  ***
Sample weight 0.18 0.75 0.25 0.81

Region: Atlantic Africa 1.79 0.37 5.06 5.66E-07 ***
Region: South coast 1.12 0.17 6.74 3.88E-11 ***
Region: West coast 0.90 0.17 549 6.16E-08 ***

Residual standard error: 1.061 on 589 degrees of freedom
Multiple R-squared: 0.07797, Adjusted R-squared: 0.07171
F-statistic: 12.45 on 4 and 589 DF, p-value: 9.932¢-10



