

1    **The evolution of niche construction in social species**

2    Mirjam J. Borger<sup>1</sup>, Peter Czuppon<sup>2,3</sup>, Melanie Dammhahn<sup>4</sup>

3

4    <sup>1</sup>Department of Evolutionary Biology, Bielefeld University, Germany

5    <sup>2</sup>Institut de Mathématiques de Marseille, Aix-Marseille Université, France

6    <sup>3</sup>Institute for Evolution and Biodiversity, Münster University, Germany

7    <sup>4</sup>Institute for Neuro- and Behavioural Biology, Münster University, Germany

8    Corresponding author: Mirjam Borger, [mirjam.borger@uni-bielefeld.de](mailto:mirjam.borger@uni-bielefeld.de)

9

10    **Abstract**

11    Niche construction is a behaviour where the local environment is changed by individuals, often to  
12    improve reproductive success (e.g. nests or burrows). In social species, the niche construction  
13    behaviour of an individual also changes the local environment of others. In such cases,  
14    individuals could cheat and not contribute to the social behaviour, but instead make use of the  
15    efforts of others. While niche construction is often studied as a process that alters the  
16    environment also for future generations, there are also constructed niches that are not inherited  
17    (e.g. nests in many birds). Hence, we studied whether niche construction would evolve in social  
18    species without inherited environments, or if instead cheating would spread. To this end, we used  
19    an individual-based simulation and an adaptive dynamics approach. We found that niche  
20    construction can evolve in social species when the population is structured and multiple levels  
21    of selection arise, even when individuals disperse randomly. While cheating might result in higher  
22    fitness compared to others within the group, individuals from groups without cheaters ended up  
23    with even higher relative fitness, which consequently limits the spread of cheaters and allows for  
24    the evolution of cooperative behaviours like niche construction.

25

26 **Introduction**

27 Niche construction is a behaviour where individuals change their local environment (Odling-  
28 Smee et al., 1996). Often, niche construction has the goal of improving reproductive success (e.g.  
29 nest or burrow building), and it is a common behaviour in a plethora of species (e.g. burrow  
30 construction in African mole-rats, Šumbera et al., 2012, and mongooses, Schneider & Kappeler,  
31 2014; nest building in passerine birds, Collias, 1997, in sticklebacks, Barber et al., 2001, in  
32 pufferfish, Mizuuchi et al., 2018, in Anuran frogs and toads, Fischer, 2023, in spittlebugs,  
33 Sahayaraj et al., 2025, and in bees Michener, 1964). Generally, it is expected that niche  
34 construction evolves when the benefits in improvement of reproductive success (e.g. higher  
35 survival rates of offspring) outweigh the costs of niche construction (e.g. energy spent on  
36 construction that could have otherwise gone to improving the survival or reproductive success of  
37 the individual).

38

39 In some species, individuals share their local environment, and for the purpose of this research  
40 we define these species as social species. In these cases, the niche construction efforts of one  
41 individual also influence the environment of the others in that local environment. For example,  
42 burrow building in meerkats can be beneficial for all genetic parents in the group, and the  
43 excavation of a nest can benefit all acorn woodpecker parents in a breeding group. In social  
44 species, one could argue that niche construction can evolve more easily as the load can be  
45 shared and therefore each individual has to invest less in niche construction. However, niche  
46 construction can also become a public goods game (Ostrom, 2000). In public goods games,  
47 beneficial behaviours often do not evolve, because, while it would be helpful to do something (e.g.  
48 construct a niche), it is even more beneficial if others show the behaviour, and a cheater (who  
49 does not show the behaviour) can make use of the efforts of others without having to bear any  
50 costs of the behaviour. Thus, in such situations the beneficial behaviour generally does not evolve,  
51 as cheaters often have higher fitness than cooperators (who do show the behaviour), unless there  
52 is policing behaviour (Singh & Boomsma, 2015), where cheaters get punished, or when there are  
53 ways for cooperators to only cooperate with other cooperators (e.g. Gardner & West, 2010;  
54 Hamilton, 1964, 1972; Nowak & Sigmund, 2005; West Eberhard, 1975).

55

56 Another aspect that is important to consider in niche construction, is that in some species the  
57 constructed environment will be reused and can even be inherited by following generations  
58 (burrows in social mammals), while other niche construction behaviours have to be repeated  
59 every generation (e.g. bumble queens build new colonies, Alford, 1969; burying beetles bury a  
60 carcass to deposit their eggs and die after reproduction, Pellissier Scott, 1998), or every breeding

61 attempt or breeding season again (e.g. the nests of many songbirds, of anurans, pufferfish and  
62 sticklebacks), and hence the environmental change is not inherited by future generations.  
63 Whether the constructed environment gets inherited or not can change the long-term fitness  
64 consequences of niche construction strategies, and hence can have an impact on the evolution  
65 of niche construction. So far, most theoretical work on the evolution of nice construction has  
66 focussed on populations with inherited environments (e.g. Connelly et al., 2016; Fogarty & Wade,  
67 2022; Laland et al., 1996, 1999; Lehmann, 2008; Mullon et al., 2024; Silver & Di Paolo, 2006; see  
68 e.g. Scheiner et al., 2022 for a model without inherited environments). Yet, in the wild niche  
69 construction without environmental inheritance is also common.

70

71 Therefore, in this study, we researched whether niche construction can adaptively evolve in social  
72 species without environmental inheritance, and what the effect of sociality is on the evolution of  
73 niche construction. To this end, we used individual-based simulations and an analytical model to  
74 validate the simulations. Our models were simplified for traceability, but were inspired by multiple  
75 niche constructing species and we suggest to keep one or some of these species in mind for a  
76 better understanding of the biological relevance. For example, burying beetles (*Nicrophorus spp.*)  
77 often breed communally and bury a (mouse) carcass in which they lay their eggs. Parasitic wasps  
78 (*Nasonia vitripennis*) inject a venomous mixture into the host they parasitise on before they  
79 deposit their eggs, and females do sometimes lay their eggs in the same host. Red flour beetles  
80 (*Tribolium castaneum*) produce a quinone-rich secretion as an external immune defence that also  
81 protects the larvae produced in the surrounding area, which can be offspring of their own or of  
82 others.

83

84 To make our model more ecologically relevant, we explored two more aspects in the model. First,  
85 we studied the effect of environmental heterogeneity on the evolution of niche construction. In  
86 other words, what if local environmental patches are not all exactly the same? For example, some  
87 mouse carcasses might already be partially covered due to wind, and therefore less effort might  
88 be necessary to bury the carcass. Second, we studied the effect of individual differences in the  
89 optimal niche. For example, burying beetles might differ in how deep they want to bury the carcass  
90 (deeper might be warmer, but might also be more difficult for offspring to leave), or red flour  
91 beetles might want to excrete different levels of secretion, as more secretion means better  
92 protection but could also increase mortality of larvae.

93

#### 94 **Methods**

95 *Simulation overview*

96 Our individual-based simulation studies the effect of group size and environmental condition on  
97 the evolution of niche construction. The model is aimed to be conceptual, but is inspired by  
98 systems like the communally breeding burying beetles, parasitic wasp populations, or flour  
99 beetles, where multiple individuals lay their eggs in the same patch, to keep the model realistic.  
100 Each individual in the model has a certain amount of energy, which they can either spend on niche  
101 construction or on reproduction, and they have a gene  $x$  that determines which proportion of  
102 energy is spent on niche construction. Within each generation, individuals are first randomly  
103 distributed over the patches. Each patch has a value, and the closer this value is to the optimum  
104 value of individuals, the more efficient these individuals can convert their energy for reproduction  
105 into offspring. After arrival at the patch, individuals can change the value of the patch towards  
106 their optimum by investing energy in niche construction. After each individual in the patch had the  
107 opportunity to perform niche construction, the patch value gets updated. Next, reproduction  
108 takes place. Individuals reproduce asexually, and offspring inherit the gene  $x$  from their parent,  
109 with a small probability of mutation. Each individual obtains a fitness score, depending on the  
110 updated patch value and the remaining energy left for reproduction. The realised number of  
111 offspring produced by an individual is determined by its relative fitness score, relative to the  
112 scores of all the other individuals in the population, to keep the population size constant through  
113 time. As generations are non-overlapping, all adults die and the offspring are randomly distributed  
114 over all patches, starting a new generation. Over time, the niche construction behavioural strategy  
115 ( $x$ ) can evolve due to a combination of natural selection, genetic drift and mutation, altering the  
116 frequency distribution of values for  $x$  in the population.

117

118 *Simulation details*

119 Scenarios

120 We looked at four scenarios in the simulation. In scenario 1, we assumed that all patches within  
121 and between generations had the same start value (before niche construction), and that all  
122 individuals in the population had the same optimal patch value. Patch values were not inherited  
123 between generations, as the model was based on situations where patches are only shortly  
124 available (e.g. mouse carcasses, fly pupae), and hence each generation has to restart niche  
125 construction. In the second scenario, we assumed a heterogeneous environment. Here, in every  
126 generation the start values of patches were drawn from a uniform distribution between 0 and 1,  
127 and all individuals had the same optimal patch value. Hence, individuals in some patches were  
128 closer to the optimal patch value than others already before niche construction. In the third  
129 scenario, every patch had the same start value (as in scenario 1), but individuals had different  
130 optimal patch values. Per individual an optimum was drawn from a uniform distribution between

131 0 and 1. This could cause conflict between individuals in niche construction, as for some the  
132 optimal value might be further away, or even in a different direction, than for others. These optima  
133 were not inherited, but instead reflect current environmental conditions. In the fourth scenario,  
134 the environment was heterogeneous and start patch values were again drawn from a uniform  
135 distribution between 0 and 1 (as in scenario 2). Moreover, individuals all had a different optimal  
136 patch value (as in scenario 3), again drawn from a uniform distribution between 0 and 1.

137

138 For the first scenario, we also made an analytical model to check the validity of the simulation  
139 model and to compare outcomes between the analytical and simulation model (e.g. in case  
140 polymorphisms arise). We did not do so for the other scenarios, as environmental heterogeneity  
141 and individual differences in optimal patch value make analytical understanding much more  
142 complex and less insightful.

143

#### 144 Group and population size

145 We studied the evolution of niche construction for different group sizes within each patch. To keep  
146 the effect of evolutionary processes (stochasticity, mutation) comparable between these  
147 simulations, we kept the total population size  $N$  the same. In the results below, the total  
148 population size was 5000 individuals, and hence when the group size was 2 there were 2500  
149 patches, while for the group size of 5 there were 1000 patches.

150

#### 151 Niche construction

152 Each patch has a value  $p$  before niche construction. Niche construction changes the patch value  
153 to  $p'$  in the following way:

$$154 \quad p' = p + \sum_{i=1}^n (a * \pm x_i),$$

155 where  $a$  is the maximum amount of niche construction one individual can perform (if  $a=1$ , one  
156 individual can change the patch value from 0 to 1 if it invests all its energy in niche construction,  
157 while if  $a=0.5$  one individual can only change the patch value from 0 to 0.5 if it invests all its energy  
158 in niche construction).  $x_i$  is the value of  $x$  of individual  $i$  in the patch, and  $n$  represents the number  
159 of individuals within a patch. Individuals will perform niche construction towards their personal  
160 optimal patch value, hence in cases where the current patch value is higher than the personal  
161 optimal value, niche construction will decrease the patch value. Therefore, in scenarios 3 and 4,  
162 individuals might change the patch value in different directions.

163

#### 164 Reproduction

165 The individual fitness score of individuals was calculated in the following way:

$$166 \quad W_i = (1 - (p'_i(x_i) - \hat{p}_i)^2) * (1 - x_i^c).$$

167 Here,  $p'$  represents the patch value after niche construction (which depends on  $x$  of the individual  
168 and of that of its patch members) and  $\hat{p}$  is the optimal patch value of the individual. In words, the  
169 closer  $p'$  is to the optimal patch value, the more efficient energy can be transformed into offspring  
170 and hence the higher the fitness score. The second part of the equation,  $(1 - x_i^c)$ , represents the  
171 energy left for reproduction. The  $c$  indicates the costs of niche construction. Here, we studied the  
172 scenario where  $c = 1$  (a very high cost) and  $c = 2$  (a milder cost). The realised number of offspring  
173 was then determined by:

$$174 \quad \lambda(x)_i = \frac{W_i}{\bar{W} * N} * N = \frac{W_i}{\bar{W}},$$

175 where  $\bar{W}$  is the average population fitness score and  $N$  is the total population size.

176

177 Each offspring inherited its gene  $x$  from its parent. However, genes could also mutate. For this, a  
178 Bernoulli distribution was used to determine the probability that a gene would mutate, with an  
179 average value of 0.01. If a mutation occurred, the size of the mutation was drawn from a normal  
180 distribution with mean 0 and standard deviation 0.001. The mutational step size had a limited  
181 standard deviation as  $x$  was bounded between 0 and 1 and we wanted to keep the occurrence of  
182 large mutational changes small. The drawn value was added to the old value. When this resulted  
183 in  $0 > x$  or  $x > 1$ , a new mutational step size was drawn.

184

#### 185 The analytical model for scenario 1

186 The above model could for scenario 1, assuming a monomorphic population, be summarised in  
187 a fitness function:

$$188 \quad W(x) = (1 - x^c) * (1 - (p + anx - \hat{p})^2).$$

189 With this function we checked for optima, and, using adaptive dynamics, we checked whether  
190 these optima were evolutionary stable strategies. Please see Supplement XX for details on the  
191 mathematical calculations.

192

## 193 **Results**

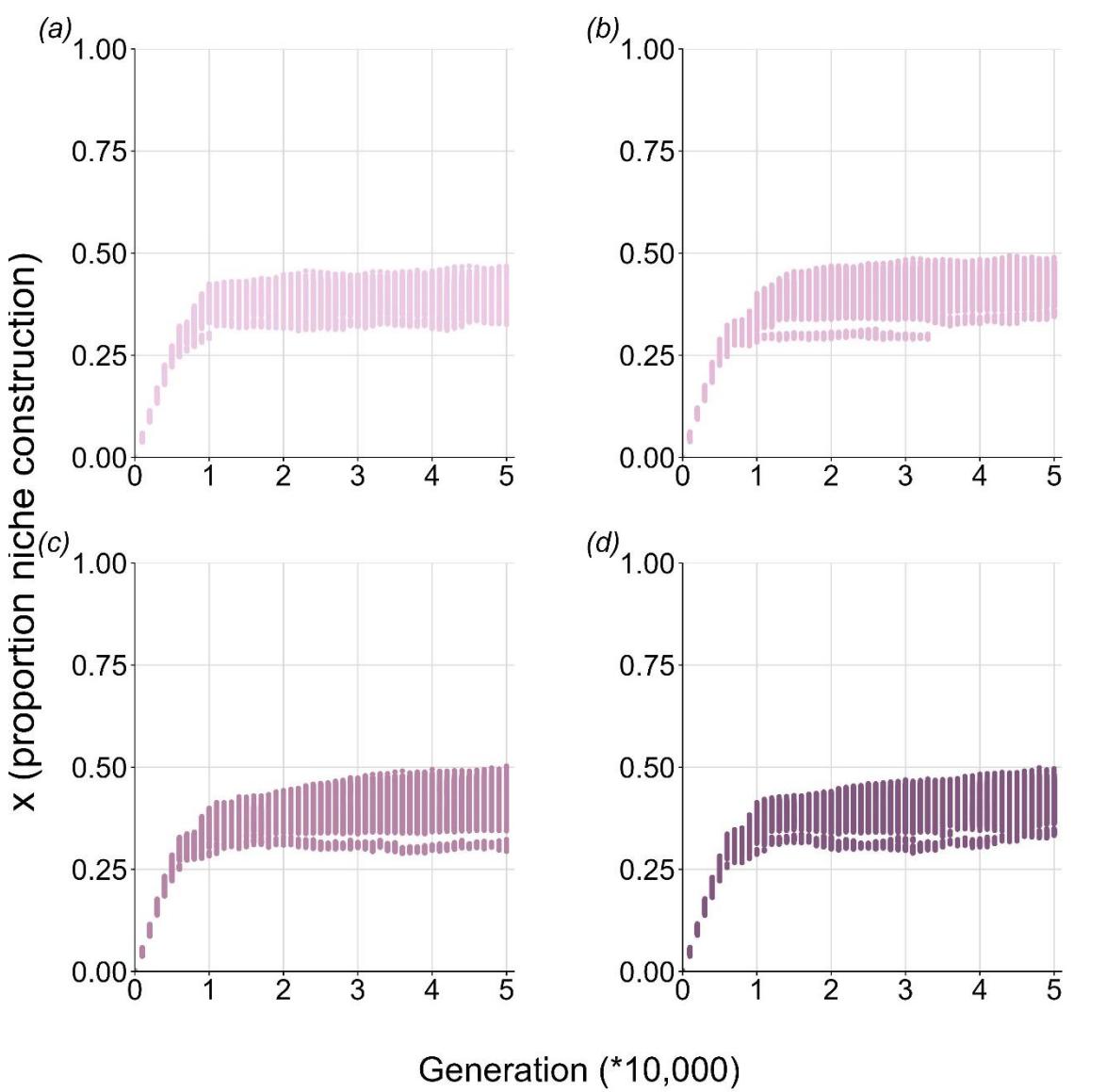
### 194 Evolution of niche construction in non-social species

195 In non-social species where niche construction does not affect the environment of others ( $n=1$   
196 within a patch), niche construction did not evolve under most conditions in scenario 1  
197 (homogeneous environment; everyone the same optimum) when the cost of niche construction  
198 was high ( $c=1$ ). Only when the optimal value of the patch was far away from the current patch  
199 value, some level of niche construction could evolve adaptively (in our analytical model at least a

200 difference  $\Delta$  of 0.42 between  $p$  and  $\hat{p}$  was necessary for any level of niche construction  $x>0.0$  to  
201 evolve, and in the simulation  $\Delta\geq 0.6$  to visibly distinguish an adaptive  $x>0.0$  from an adaptive level  
202  $x=0$  that is affected by mutation and drift).

203

204 Yet, niche construction evolved readily when the costs of niche construction were mild ( $c=2$ ), see  
205 Fig. 1 (now  $\Delta=0.01$  was enough for  $x>0.0$  to evolve in the analytical model). Interestingly, after a  
206 short period of rapid evolution on  $x$  to increase its value to a certain level, a wide variance of  
207 strategies evolved, and transient polymorphisms were present for distinct time periods, but were  
208 not stable and always disappeared after a while. When the population was followed for much  
209 longer (e.g. 5 million generations), the patterns stayed similar to what is shown in Fig. 1. These  
210 findings hint that natural selection is important early on until a certain level of niche construction  
211 is reached, and that afterwards selection becomes weaker, increasing the relative effects of drift  
212 and mutation.


213

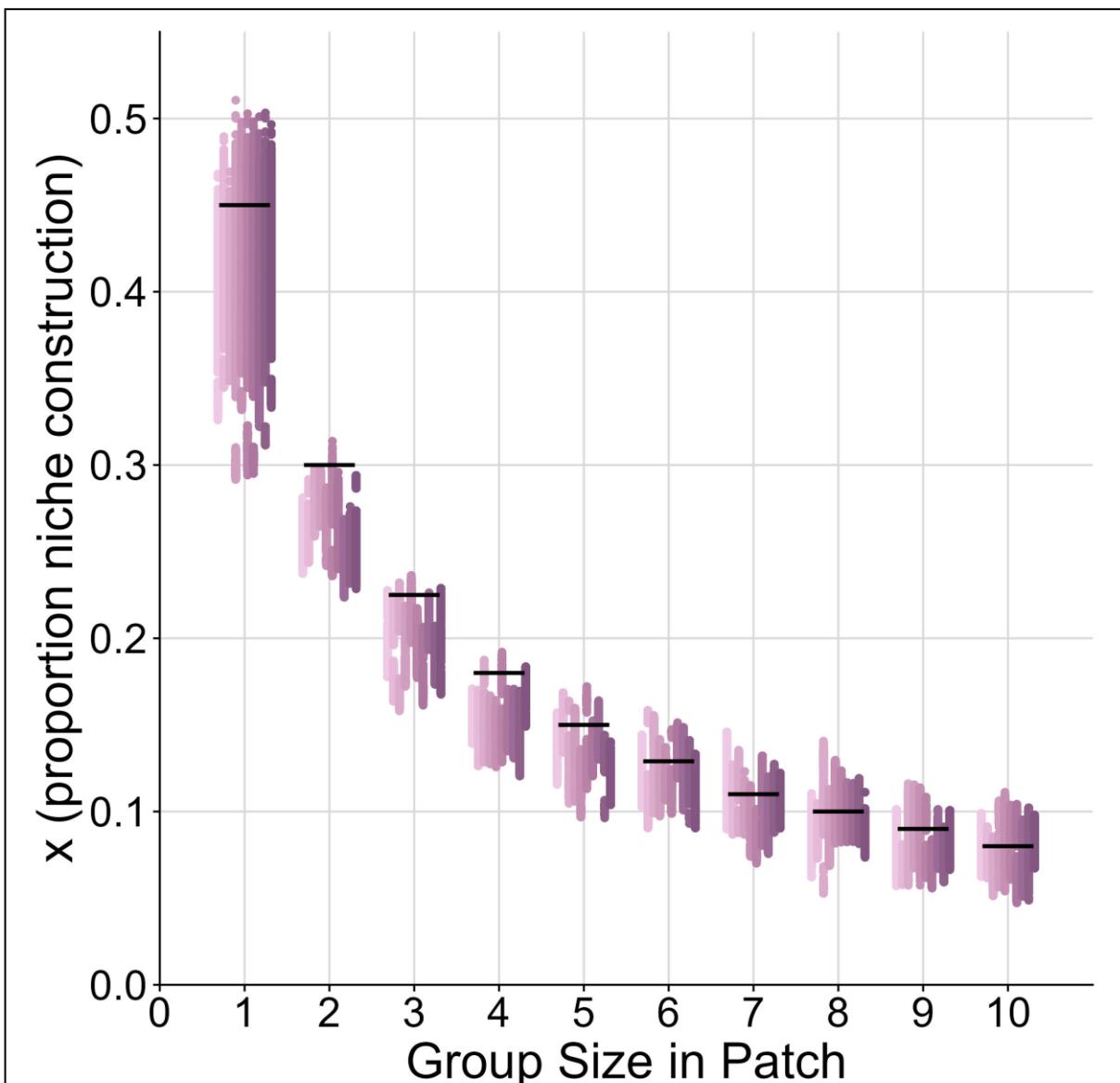
#### 214 Evolution of niche construction in social species

215 When multiple individuals shared a patch and niche construction affected others, niche  
216 construction still did not evolve under most conditions in scenario 1 when the cost of niche  
217 construction was high ( $c=1$ ). These conditions were the same as when individuals were alone in a  
218 patch. Therefore, we decided to drop this parameter combination for our other questions, as the  
219 expectation was that no niche construction would evolve there either. Hence, from now on we will  
220 focus on niche construction with milder costs ( $c=2$ ).

221

222 When the cost of niche construction was milder, niche construction again readily evolved in  
223 groups of different sizes, see Fig. 2. Transient polymorphisms were also present when groups were  
224 larger than one, but the total variance in niche construction strategies was smaller. Complete  
225 cheating (having a niche construction level of 0.0) did not evolve in any of the group sizes, and  
226 there were also no stable polymorphisms where one strategy had a much lower value for  $x$  than  
227 the other. Yet, there was variance in niche construction strategies, so some individuals did  
228 contribute more to niche construction than others. We expect that (strong) cheating behaviour  
229 did not evolve in this model due to the different selective pressures that individuals face. If  
230 individuals would only compete with others within their patch, then it seems likely that a cheating  
231 strategy would be most beneficial. However, individuals also compete with others from other  
232 patches, as their relative fitness score also depends on the individual fitness scores of others from  
233 other patches. The fitness scores of individuals from patches without cheaters were higher than

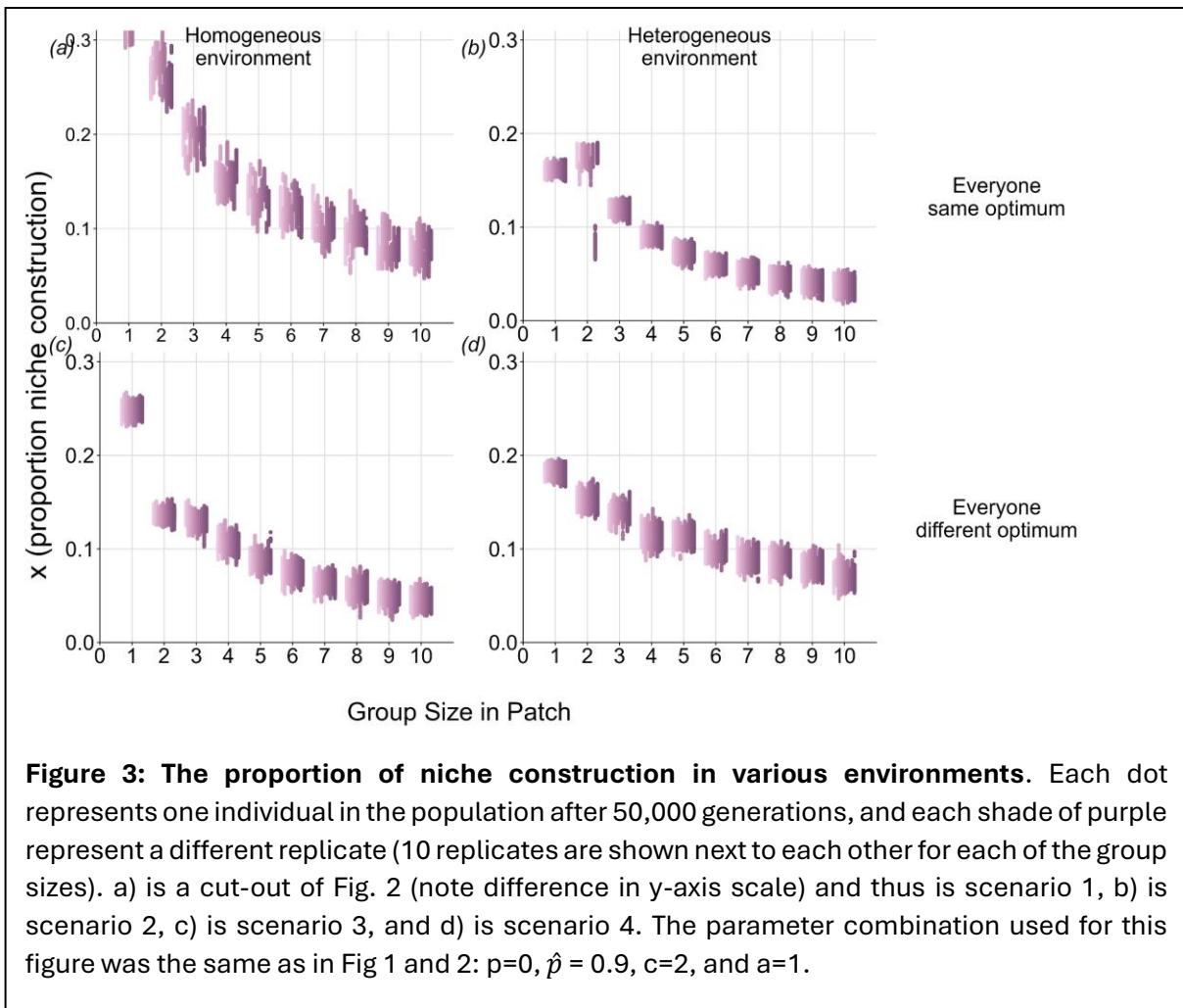



**Figure 1: The evolution of niche construction strategy  $x$  in a non-social population.** Four representative replicates of a simulation where individuals were alone in the patch ( $n=1$ ), in a population of 5000 individuals in each generation. Each dot represents a single individual. The parameter combination used for these plots was  $p=0$ ,  $\hat{p} = 0.9$ ,  $c=2$ , and  $a=1$ .

234 those of individuals from patches with cheaters, and therefore cheating did not spread in the  
 235 population.

236

237 The total level of niche construction all individuals in a patch additively perform also changed with  
 238 group size. While each individual separately spends less energy on niche construction, the total  
 239 energy spent on niche construction increased with increased group size. In other words, there is  
 240 not only load sharing when group size increases, but the total effort also increases.


241



**Figure 2: The proportion of niche construction of individuals in groups of different sizes.** Each dot represents one individual in the population after 50,000 generations, and each shade of purple represent a different replicate (10 replicates are shown next to each other for each of the group sizes). The horizontal lines indicate the optimal level of niche construction according to the analytical model. The parameter combination used for this figure was the same as in figure 1,  $p=0$ ,  $\hat{p} = 0.9$ ,  $c=2$ , and  $a=1$ .

242 The parameter  $a$  (the maximum amount of niche construction a single individual can perform) had  
 243 somewhat an effect on the evolutionary outcomes, see supplement XX. When  $a$  was low,  
 244 individuals in small groups (e.g.  $n=1$  or 2) evolved low levels of niche construction as the benefits  
 245 of niche construction were less pronounced. In larger groups (e.g.  $n = 4$  or 5), niche construction  
 246 did evolve to higher levels, as now the total group effort was enough to reach high benefits.  
 247 Overall, after the initial increase in niche construction, the same decreasing pattern as Fig. 2 was  
 248 found, where each individual invests less in niche construction with increasing group size.

249



250 Differences in the environment and between individuals

251 Next, we explored scenarios 2-4. Interestingly, all these three scenarios led to similar results, see  
 252 Fig. 3. A similar pattern as in Fig. 2 evolved, where with increasing group size the individual level  
 253 of niche construction decreased but the total level of niche construction of the entire group  
 254 increased. The value of  $x$  evolved to a lower level than in scenario 1, which we expect is caused by  
 255 a lower average distance from the current patch value to the optimal value. For instance, when all  
 256 individuals have a different optimum and the patches have a starting value of 0, the average  
 257 distance to an optimum will be 0.5, instead of the 0.9 in the case where everyone has the same  
 258 optimum.

259

260 Interestingly, the variance between individuals in niche construction strategies was lower in  
 261 scenarios 2-4 compared to scenario 1. Transient polymorphisms also evolved less often. We  
 262 expect this is caused because in situations like scenario 2-4, fitness is a geometric mean over all  
 263 conditions, and therefore more strategies had a low fitness (the fitness curve over all values of  $x$   
 264 became steeper, and only bet-hedging strategies could survive). In other words, when a strategy  
 265 ends up in different conditions over time, fitness of these different conditions interact. For

266 example, when a strategy has a fitness of 0 in one condition and ends up in that condition, it will  
267 not persist, no matter how good or bad the strategy performs in different conditions.

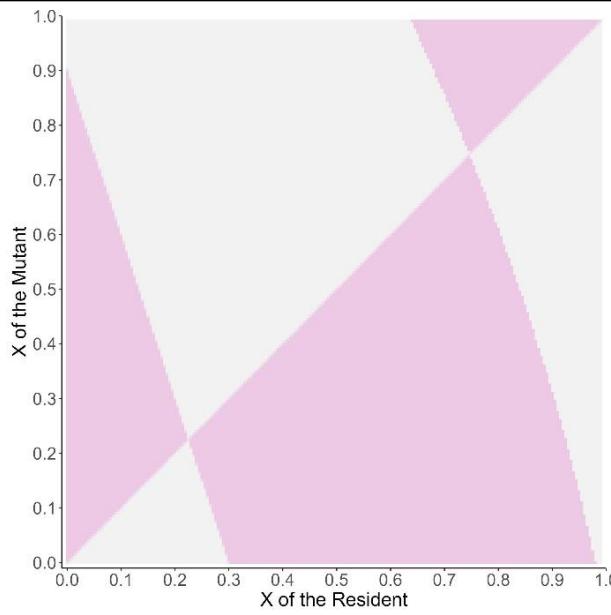
268

269 The analytical model of scenario 1

270 In the analytical model, we found similar conclusions as in the simulation, although the analytical  
271 optimal value of niche construction was on the higher end of the distributions found in the  
272 simulations, see Fig. 2. In other words, in the simulation selection against investing more than  
273 optimal was stronger than selection against investing less than optimal.

274

275 The analytical model was quite complex, and therefore we solved it numerically instead of  
276 producing a general solution. Moreover, we produced pairwise invasibility plots (PIPs) to check if  
277 the equilibria were evolutionary stable (the strategy cannot be invaded) and convergence stable  
278 (the population moves towards this optimum), see Fig. 4 for an example of  $n = 3$  and Supplement  
279 xx for PIPs of the other group sizes. By doing so, we found for all populations where the group size  
280 within a patch  $n$  was larger than one, that there was a second equilibrium. However, this second  
281 equilibrium was not convergence stable and instead was a repellor, hence populations tended to  
282 evolve towards the first equilibrium.


283

284 **Discussion**

285 We found that niche construction for groups of any size (also  $n = 1$ ) evolved when the costs of  
286 niche construction were mild, or when the difference between the local environment and the  
287 optimal local environment was large. When the costs of niche construction were high and the  
288 difference between the local and optimal environment was intermediate to small, the proportion  
289 of energy spent on niche construction stayed around zero.

290

291 Niche construction did evolve in social species, where the local environment was shared by  
292 multiple individuals, even without policing (Singh & Boomsma, 2015), kin selection benefits  
293 (Hamilton, 1964; West Eberhard, 1975), green beards (Gardner & West, 2010) or reciprocity  
294 (Nowak & Sigmund, 2005). There was some variance in strategies between individuals, which  
295 could be interpreted as very mild cheating, but no stable polymorphisms in strategies or strong  
296 cheating evolved. In spatially structured models the absence of cheaters is often explained by  
297 viscosity (Hamilton, 1972; Kümmerli & Brown, 2010; Wakano et al., 2009), where through limited  
298 dispersal individuals tend to interact mostly with relatives, and hence cooperators tend to be  
299 surrounded by other cooperators, while cheaters are surrounded by other cheaters. However, in  
300 our model there is random dispersal, as we assumed this would best represent burying beetle and



**Figure 4: The pairwise invasibility plot for individuals in groups of 3.** The x-axis shows the potential values of the niche construction strategies for the resident population. The y-axis shows the potential values of a niche construction strategy for a rare, invading mutant. The diagonal shows all cases where the mutant is the same as the resident and hence mutants and residents will always be able to co-exist. When a point is pink, the mutant has a higher fitness than the resident and can invade, changing the value of the resident population to that value. When a point is white, a mutant cannot invade. Here, the left equilibrium (at 0.23) is evolutionary stable as no mutant can invade a population with that value of  $x$ . It is also convergent stable as resident populations with lower strategy values than the equilibrium will be invaded by mutants with higher values, and resident populations with higher values of  $x$  than the equilibrium will be invaded by mutants with lower values, and hence the population will evolve towards the equilibrium. The right equilibrium (0.75) is not evolutionary stable as every strategy can invade, and is not convergent stable as mutant strategies will invade that take the population away from the equilibrium.

301 parasitic wasp populations, and hence kin selection benefits are very weak. Instead, we expect  
 302 that cheating does not evolve in this model due to multilevel selection effects (Okasha, 2007).  
 303 That is, when individuals compete with others within their local environment, cheaters will have  
 304 higher fitness relative to others within the local environment. However, in our model, individuals  
 305 also compete with other individuals from different patches, and individuals from patches without  
 306 cheaters have a higher relative fitness than individuals from patches with cheaters (both the  
 307 cooperating and cheating individuals in those patches). Therefore, in populations with a spatial  
 308 structure, cheating strategies cannot spread, and hence niche construction can evolve even when  
 309 cheating is a potential option. While others did reach similar conclusions about the importance

310 of multilevel selection on the evolution of cooperative behaviour like niche construction (e.g.,  
311 Traulsen & Nowak, 2006; Wakano et al., 2009), these models did include viscosity/limited  
312 dispersal. We show here that this is not a requirement for the evolution of niche construction or  
313 similar cooperative behaviour.

314

315 Interestingly, we found more variance in niche construction strategies when the environment was  
316 homogeneous and all individuals had the same optimal patch value, compared to when the  
317 environment was heterogeneous and/or individuals had different optimal patch values. While  
318 some may believe that variance in the environment always increases variance between  
319 individuals, this is not always true and highly depends on ecological circumstances. When  
320 individuals can choose their local environment (niche choice) and can specialise on the local  
321 conditions, variance in environmental conditions can lead to more variance between individuals.  
322 However, when individuals have to deal with all, or part of, the environmental conditions (as in our  
323 model) over space or time (e.g. seasons), bet hedging strategies will have higher fitness than  
324 specialising strategies (Autzen, 2024; Starrfelt & Kokko, 2012; Yasui, 2022), and hence variance in  
325 environmental conditions can also decrease variance between individuals.

326

327 We also found a dramatic decrease in variance in scenario 1 between populations where the local  
328 population size  $n$  was 1 compared to social species (where  $n \geq 2$ ). We hypothesise that this is  
329 again caused by multilevel selective pressures. In non-social species there is only between-patch  
330 competition, while in social species there is both competition between and within patches for a  
331 high relative fitness score. We expect that this changes the fitness function to become much  
332 steeper in social species and hence that the relative effects of selection and drift change between  
333 non-social and social species.

334

335 In conclusion, niche construction can evolve, also in social species, and purely due to multilevel  
336 selective pressures in spatially structured populations even without kin selection. Individual-  
337 based simulations are a great way of studying this, as it not only gives insights in optimal  
338 strategies, but also about variances between strategies and the relative effects of selection and  
339 drift.

340

#### 341 **Data Availability**

342 Data will be publicly available on Zenodo repository XXX once the paper is published. The code of  
343 the simulation will also be publicly available, on github XXX.

344

345 **Funding**  
346 M.J.B. was funded by the German Research Foundation (DFG Project no. 316099922) as part of  
347 the CRC NC<sup>3</sup> (SFB TRR 212).

348

349 **Acknowledgements**

350 We would like to thank Klaus Reinhold for his help with the development of this project.

351

352 **References**

353 Alford, D. V. (1969). A study of the hibernation of bumblebees (Hymenoptera:Bombidae) in  
354 Southern England. *The Journal of Animal Ecology*, 38(1), 149.  
355 <https://doi.org/10.2307/2743>

356 Autzen, B. (2024). The foundations of bet hedging. *Biology & Philosophy*, 39(6), 31.  
357 <https://doi.org/10.1007/s10539-024-09970-0>

358 Barber, I., Nairn, D., & Huntingford, F. A. (2001). Nests as ornaments: Revealing construction by  
359 male sticklebacks. *Behavioral Ecology*, 12(4), 390–396.  
360 <https://doi.org/10.1093/beheco/12.4.390>

361 Collias, N. E. (1997). On the origin and evolution of nest building by passerine birds. *The Condor*,  
362 99(2), 253–270. <https://doi.org/10.2307/1369932>

363 Connelly, B. D., Dickinson, K. J., Hammarlund, S. P., & Kerr, B. (2016). Negative niche  
364 construction favors the evolution of cooperation. *Evolutionary Ecology*, 30(2), 267–283.  
365 <https://doi.org/10.1007/s10682-015-9803-6>

366 Fischer, E. K. (2023). Form, function, foam: Evolutionary ecology of anuran nests and nesting  
367 behaviour. *Philosophical Transactions of the Royal Society B: Biological Sciences*,  
368 378(1884), 20220141. <https://doi.org/10.1098/rstb.2022.0141>

369 Fogarty, L., & Wade, M. J. (2022). Niche construction in quantitative traits: Heritability and  
370 response to selection. *Proceedings of the Royal Society B: Biological Sciences*,  
371 289(1976), 20220401. <https://doi.org/10.1098/rspb.2022.0401>

372 Gardner, A., & West, S. A. (2010). Greenbeards. *Evolution*, 64(1), 25–38.  
373 <https://doi.org/10.1111/j.1558-5646.2009.00842.x>

374 Hamilton, W. D. (1964). The genetical evolution of social behaviour. I. *Journal of Theoretical*  
375 *Biology*, 7(1), 1–16. [https://doi.org/10.1016/0022-5193\(64\)90038-4](https://doi.org/10.1016/0022-5193(64)90038-4)

376 Hamilton, W. D. (1972). Altruism and related phenomena, mainly in social insects. *Annual*  
377 *Review of Ecology and Systematics*, 3(1), 193–232.  
378 <https://doi.org/10.1146/annurev.es.03.110172.001205>

379 Kümmeli, R., & Brown, S. P. (2010). Molecular and regulatory properties of a public good shape  
380 the evolution of cooperation. *Proceedings of the National Academy of Sciences*, 107(44),  
381 18921–18926. <https://doi.org/10.1073/pnas.1011154107>

382 Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (1996). The evolutionary consequences of  
383 niche construction: A theoretical investigation using two-locus theory. *Journal of*  
384 *Evolutionary Biology*, 9(3), 293–316. <https://doi.org/10.1046/j.1420-9101.1996.9030293.x>

386 Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (1999). Evolutionary consequences of niche  
387 construction and their implications for ecology. *Proceedings of the National Academy of*  
388 *Sciences*, 96(18), 10242–10247. <https://doi.org/10.1073/pnas.96.18.10242>

389 Lehmann, L. (2008). The adaptive dynamics of niche constructing traits in spatially subdivided  
390 populations: Evolving posthumous extended phenotypes. *Evolution*, 62(3), 549–566.  
391 <https://doi.org/10.1111/j.1558-5646.2007.00291.x>

392 Michener, C. D. (1964). Evolution of the nests of bees. *American Zoologist*, 4(2), 227–239.  
393 <https://doi.org/10.1093/icb/4.2.227>

394 Mizuuchi, R., Kawase, H., Shin, H., Iwai, D., & Kondo, S. (2018). Simple rules for construction of a  
395 geometric nest structure by pufferfish. *Scientific Reports*, 8(1), 12366.  
396 <https://doi.org/10.1038/s41598-018-30857-0>

397 Mullon, C., Peña, J., & Lehmann, L. (2024). The evolution of environmentally mediated social  
398 interactions and posthumous spite under isolation by distance. *PLOS Computational*  
399 *Biology*, 20(5), e1012071. <https://doi.org/10.1371/journal.pcbi.1012071>

400 Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. *Nature*, 437(7063), 1291–  
401 1298. <https://doi.org/10.1038/nature04131>

402 Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (1996). Niche Construction. *The American  
403 Naturalist*, 147(4), 641–648.

404 Okasha, S. (2007). *Evolution and the Levels of Selection*. Oxford University Press.

405 Ostrom, E. (2000). Collective action and the evolution of social norms. *Journal of Economic  
406 Perspectives*, 14(3), 137–158.

407 Pellissier Scott, M. (1998). The ecology and behavior of burying beetles. *Annual Review of  
408 Entomology*, 43(1), 595–618. <https://doi.org/10.1146/annurev.ento.43.1.595>

409 Sahayaraj, K., Princess, A. A. G., Alkherb, W. A. H., Alshehri, M. A., Alkeridis, L. A., Estelle, L. Y. L.,  
410 Srinivasan, M., Sundar, S., Petchidurai, G., & Sayed, S. (2025). Preferential host plants  
411 and nesting sites for foam building by the spittlebug, *Poophilus costalis* Walker  
412 (Hemiptera: Aphrophoridae). *Phytoparasitica*, 53(2), 27. <https://doi.org/10.1007/s12600-025-01249-8>

414 Scheiner, S. M., Barfield, M., & Holt, R. D. (2022). Do I build or do I move? Adaptation by habitat  
415 construction versus habitat choice\*. *Evolution*, 76(3), 414–428.  
416 <https://doi.org/10.1111/evo.14355>

417 Schneider, T. C., & Kappeler, P. M. (2014). Social systems and life-history characteristics of  
418 mongooses. *Biological Reviews*, 89(1), 173–198. <https://doi.org/10.1111/brv.12050>

419 Silver, M., & Di Paolo, E. (2006). Spatial effects favour the evolution of niche construction.  
420 *Theoretical Population Biology*, 70(4), 387–400.  
421 <https://doi.org/10.1016/j.tpb.2006.08.003>

422 Singh, M., & Boomsma, J. J. (2015). Policing and punishment across the domains of social  
423 evolution. *Oikos*, 124(8), 971–982. <https://doi.org/10.1111/oik.02064>

424 Starrfelt, J., & Kokko, H. (2012). Bet-hedging—A triple trade-off between means, variances and  
425 correlations. *Biological Reviews*, 87(3), 742–755. <https://doi.org/10.1111/j.1469-185X.2012.00225.x>

427 Šumbera, R., Mazoch, V., Patzenhauerová, H., Lövy, M., Šklíba, J., Bryja, J., & Burda, H. (2012).

428 Burrow architecture, family composition and habitat characteristics of the largest social

429 African mole-rat: The giant mole-rat constructs really giant burrow systems. *Acta*

430 *Theriologica*, 57(2), 121–130. <https://doi.org/10.1007/s13364-011-0059-4>

431 Traulsen, A., & Nowak, M. A. (2006). Evolution of cooperation by multilevel selection.

432 *Proceedings of the National Academy of Sciences*, 103(29), 10952–10955.

433 <https://doi.org/10.1073/pnas.0602530103>

434 Wakano, J. Y., Nowak, M. A., & Hauert, C. (2009). Spatial dynamics of ecological public goods.

435 *Proceedings of the National Academy of Sciences*, 106(19), 7910–7914.

436 <https://doi.org/10.1073/pnas.0812644106>

437 West Eberhard, M. J. (1975). The evolution of social behavior by kin selection. *The Quarterly*

438 *Review of Biology*, 50(1), 1–33.

439 Yasui, Y. (2022). Evolutionary bet-hedging reconsidered: What is the mean–variance trade-off of

440 fitness? *Ecological Research*, 37(3), 406–420. <https://doi.org/10.1111/1440-1703.12303>

441

442