
Life-history evolution and uninvadable mortality schedules

with and without intergenerational energy transfers

Piret Avila1,∗

Laurent Lehmann2

1Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland

2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland

∗Correspondence: piret.avila@gmail.com

Abstract

Intergenerational energy transfers are widespread in nature, yet most life history theory assumes that organ-

isms balance energy production and consumption at each age, leaving the evolutionary consequences of transfers

underexplored. We develop a life history model under two energy budget constraints: (i) no transfers, where

production equals consumption at each age, and (ii) transfers, where energy is balanced over the lifetime. Us-

ing optimal control theory, we derive the necessary conditions for uninvadable life histories in age-structured

populations with development, yielding several general results. In particular, at any age in the uninvadable

life history, current fitness gains (from current reproduction, somatic investments, and transfers) are exactly

offset by the loss in the value of life due to mortality, where this marginal value reflects future fitness contri-

butions from reproduction and energy transfers. We show that the resulting uninvadable mortality schedule is

not necessarily senescent and how transfers lower it even after reproduction ceases, enabling longer lifespans

and a post-reproductive phase. We apply our results to human life history evolution by extending the model of

Kaplan and Robson (2009) to compare scenarios with and without transfers. We find that the shift to transfers

extends the juvenile growth phase, characterised by substantial early-life energy deficits, which are compensated

by enhanced lifetime productivity through somatic capital accumulation and longer lifespans. Post-reproductive

survival emerges when declining reproductive efficiency makes resource transfers to younger individuals optimal.

Our findings show that transitioning from individual energy balance to intergenerational transfers is sufficient

to account for several major hallmarks of human life history.

Keywords: life history evolution, optimal control theory, intergenerational transfers, mortality schedule, senes-

cence, reproductive value, human life history evolution

1 Introduction

Life history theory seeks to understand how organisms allocate limited resources between the competing functions

of survival, development, and reproduction throughout their lifespan (Stearns, 1992). Most life history evolution
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models assume that organisms must be self-sufficient in balancing energy production and consumption at each

moment in time, treating resource allocation as an individual-level optimisation problem (e.g., León, 1976; Schaffer,

1983; Stearns, 1992; Koz lowski, 1992; Perrin and Sibly, 1993; Cichoń and Koz lowski, 2000; Day and Taylor, 2000;

Metz et al., 2016; González-Forero et al., 2017). However, in nature, individuals routinely share resources across

age classes. Examples include (allo)parental provisioning common in birds and mammals, to bidirectional transfers

in cooperative breeders, and extensive intergenerational resource flows in human societies (Clutton-Brock, 1991;

Kaplan, 1994). The human case represents an evolutionary extreme as hunter-gatherer children consume more

resources than they produce for nearly two decades, whereas post-reproductive individuals continue to transfer

substantial resources long after stopping reproduction themselves (Kaplan, 1994; Gurven et al., 2006; Lee, 2020).

Energy budget constraints are fundamental to life history evolution because they determine not only current

resource allocation but also affect the entire life course of an individual. This is because life history decisions

are inherently intertemporal, creating path dependencies that constrain future energy allocation based on current

ones. For example, receiving parental energy transfers early in life can accelerate growth, building somatic capital

that enhances both reproductive capacity and survival later in life. The dynamic nature of resource allocation

makes life history evolution a problem of dynamic optimal control. Thus, optimal control theory approaches based

on Pontryagin’s maximum principle (e.g. León, 1976; Iwasa and Roughgarden, 1984; Perrin, 1992; Perrin and

Sibly, 1993; Day and Taylor, 2000) and dynamic programming (e.g., Houston and McNamara, 1999; Mangel and

Clark, 1988; Ewald et al., 2007; Nakamura and Ohtsuki, 2016) have been fruitful for modelling and understanding

life-history evolution.

The bulk of life history evolution models, however, focus on situations where resources between individuals

cannot be shared, and thus energy production must equal assimilation at every age. Although several models

with intergenerational transfers have been developed (e.g., Kaplan and Robson, 2002; Lee, 2003; Chu and Lee,

2006; Kaplan and Robson, 2009), this research line has mainly focused on understanding mortality patterns in

humans. Related approaches have examined how kin interactions modify selection on age-specific vital rates in

age-structured populations (Roper et al., 2023), though without explicit modelling resource transfers. As a result,

life history evolution models with and without intergenerational transfers have remained largely disconnected in

the literature. There is a lack of cohesive theoretical work that examines both budget constraints within a single

and same evolutionary framework. This leaves unanswered interesting questions, such as which specific life history

characteristics emerge from relaxing individual budget constraints by allowing transfers to occur?

Developing a life-history evolution model that encompasses both budget constraints would allow one to explicitly

compare evolutionary outcomes and better identify which life-history features emerge specifically from relaxing

individual energy budget constraints. The aim of this paper is to do just that by formalising natural selection on

life history evolution under the two budget constraints of (i) no energy transfers between individuals (intratemporal

budget constraint) and (ii) intergenerational transfers between individuals (intertemporal budget constraint). We

employ Pontryagin’s maximum principle to derive necessary conditions for uninvadable life histories under these

two scenarios, which in turn allows us to characterise selection pressures on traits affecting life-history evolution.

We then apply our results to understand specifically certain hallmark features of human life histories. The

human lineage exhibits a distinctive suite of life history traits that differentiate us from our closest relatives, the
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great apes: exceptionally prolonged juvenile dependency lasting nearly two decades, extended post-reproductive

lifespan, and elevated lifetime energy production coupled with high metabolic rates (e.g., Kaplan et al., 2000; Mace,

2000; Robson et al., 2006; van Schaik, 2016; Gurven, 2024). Evolutionary anthropologists have long been puzzled

about what mechanisms have driven all these changes (e.g., Gurven, 2024 for a recent review). Building on the

seminal model of Kaplan and Robson (2009) and extending their transfer-only analysis to include the case without

transfer, we characterise the uninvadable life history under both scenarios and compare them. This reveals how

intergenerational transfers can, by themselves, generate uniquely human life history characteristics as an uninvadable

life history strategy.

The rest of the paper is organised as follows. Section 2 presents the life history model, incorporating the two

energy budget constraints. Section 3 derives the maximum principle for life history evolution and the uninvadable

mortality schedule. Section 4 applies the general model to human life history evolution, building on and extending

Kaplan and Robson (2009). Section 5 discusses the implications for both life history theory and human evolution,

the limitations of our model and relevant extensions.

2 The model

Consider an age-structured population in continuous time where individuals reproduce asexually by collecting energy

from their surroundings (the assumption of asexual reproduction is standard in life-history evolution and assessed

in the Discussion). These individuals can also exchange energy in an intergenerational way (detailed below). Each

individual in this population is characterised by two phenotypic attributes at each age t ∈ T = [0,∞) of its lifespan

(see table 1 for a list of key symbols). First, a multidimensional quantitative physiological or functional state

variable x(t) ∈ Rnx consisting of a finite number nx of dimensions, e.g., size, amount of fat reserve, brain volume,

shell thickness, skill, etc., whose defining characteristic is that it requires energy for growth and maintenance

(state variable can thus be interpreted as embodied capital sensu Kaplan et al., 2001). Second, a phenotypic trait

u(t) ∈ U ⊆ Rnu consisting of a finite number nu of dimensions, which is assumed to be genetically evolving and

to affect the time dynamics of the state variables, as well as reproduction and survival. This evolving trait can be

thought of as an open-loop control variable (as per the literature on control theory, e.g. Kamien and Schwartz,

2012; Athans and Falb, 2007; Weber, 2011), and has been in standard use in the life history evolution literature

(e.g. León, 1976; Perrin and Sibly, 1993; Day and Taylor, 2000; Avila et al., 2021).

These phenotypes are assumed to affect the birth rate bi(t), death rate µi(t), and the rate of change dxi(t)/ dt =

gi(t) of the physiological state variable of an individual i with trait ui(t) and internal state xi(t) at age t. Collectively,

we refer to these as vital rates. Here, we focus on how natural selection affects the trait schedule or path u =

{u(t)}t∈T (formally u : T → Rnu) once definite assumptions are made on the dynamics of the state variables.

Since the trait u is infinite dimensional, the model is complicated, and here we restrict ourselves to an evolutionary

invasion analysis (e.g., Eshel and Feldman, 1984; Lessard, 1990; Metz et al., 1992; Charlesworth, 1994; Rand et al.,

1994; Ferrière and Gatto, 1995; Eshel et al., 1998; Rousset, 2004; Metz, 2011; Lehmann et al., 2016; Avila and

Mullon, 2023). Our aim then is to characterize for the two different types of energy budget constraints introduced

above (and to be detailed below), the necessary conditions for a trait schedule u∗ ∈ U [T ,U ] which, once established
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in the population, is resistant to invasion by any mutant trait schedule taken from the same trait space U [T ,U ].

Here, U [T ,U ] is the set of all bounded piecewise continuous functions with domain T and range U .

2.1 Invasion analysis

Let us now first characterise the invasion process of a mutant type. For this, we endorse the standard invasion

analysis assumptions that the population is large enough, so that we can neglect the effects of genetic drift (the

population is ideally infinite). An individual with a mutant trait schedule um = {um(t)}t∈T is then introduced as

a single copy in a population monomorphic for the resident schedule ur = {ur(t)}t∈T that is at its demographic

equilibrium. Then, it follows from our demographic assumptions and standard results on age-dependent branching

processes (Crump and Mode, 1968, Corollary 5.1 and example 8.2, Mode, 1971) that the lineage of mutants with

trait um descending from the ancestor introduced as a single copy into a monomorphic resident population with

individuals expressing trait ur goes extinct with probability one if and only if

R(um,ur) ≤ 1, (1)

where

R(um,ur) =

∫ ∞

0

lm(t)b (um(t),xm(t),ur) dt (2)

is the basic reproductive number of the mutant in the resident population; namely, the effective number of offspring

produced by the mutant over its whole lifespan. Therein, b (um(t),xm(t),ur) is the birth rate (or effective fecundity)

of an individual at age t expressing trait um(t) and the internal state xm(t). This birth rate depends on the resident

population schedule ur, which captures the fact that an individual may interact with its environment (e.g., fecundity

may depend on the behaviour of other individuals, on the density of conspecifics or predators, etc.). This form of

dependence assumes that the resident population is at a demographic equilibrium and that the interactions of an

individual with its surroundings at each age is mediated by its internal state (thus age does not need to enter as an

extra variable in the mortality). The probability of surviving to age t, lm(t), satisfies

dlm(t)

dt
= −µ (um(t),xm(t),ur) lm(t) with i.c. lm(0) = 1, (3)

where µ (um(t),xm(t),ur) is the death rate of the mutant individual at age t (and “i.c.” means initial condition).

Both the birth and death rates depend on the state xm(t) of the mutant, whose dynamics are given by

dxm(t)

dt
= g(um(t),xm(t),ur) with i.c. xm(0) = x0. (4)

Note that the dependence of the different quantities on the resident control schedule ur entails that each quantity
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may depend on the resident state schedules lr = {lr(t)}t∈T and xr = {xr(t)}t∈T , where the latter functions satisfy

dlr(t)

dt
= −µ (ur(t),xr(t),ur) lr(t) with i.c. lm(0) = 1. (5)

dxr(t)

dt
= g(ur(t),xr(t),ur) with i.c. xm(0) = x0. (6)

While it is not necessary for various applications of the model to explicitly detail how the resident properties

feedback on mutant vital rates, the general consistency assumption of such feedback is that, in a monomorphic

resident population, the basic reproductive number must be one (that is, R(ur,ur) = 1 for all ur ∈ U [T ,U ]. This

is the standard assumption for life history evolution in a regulated population, e.g., (Michod, 1979).

Together, eqs. (2)–(6) allow us to compute all quantities necessary to evaluate the basic reproductive number.

We next turn to specify the model from the energetic point of view, which puts further constraints on the dynamics

of the state variables.

2.2 Budget constraints

We now detail the two alternative budget constraints that we consider and for which we need to introduce three

additional concepts. First, let P (um(t),xm(t),ur) stand for the gross rate of total energy produced or collected

by an individual of age t with phenotype (um(t),xm(t)) (i.e., “power” measured in Watts), and which can depend

on the resident population. Second, let A(um(t),xm(t)) be the assimilation rate of an individual of age t with the

phenotype (um(t),xm(t)). This is the rate at which energy is consumed by the different activities and physiological

structures of the individual. It is assumed to be independent of the environment determined by ur, since assimilation

refers to the energy used specifically by the organism itself. We partition energy assimilation into different activities

and/or structures as

A(um(t),xm(t)) = Eb(um(t),xm(t)) + Eµ(um(t),xm(t)) + Ex(um(t),xm(t)) + EM(um(t),xm(t)). (7)

Here, Ei refers to the energy used in activity or vital rate i ∈ {b, µ, x,M}, which on the right-hand side of eq. (7),

stands, respectively, for the rate of energy used in reproduction, survival, state variables, and finally maintenance.

The energy Ei(um(t),xm(t)) allocated to activity i can depend on both evolving traits and the state variables (e.g.,

the energetic cost of maintenance depends on the size).

Since vital rates depend on energy allocation, this dependence can be emphasised by writing the vital rates

determining the basic reproductive number (recall eq. (2)) as

b(um(t),xm(t),ur) = b̃(Eb(um(t),xm(t)),xm(t),ur) (8)

µ(um(t),xm(t),ur) = µ̃(Eµ(um(t),xm(t)),xm(t),ur) (9)

g(um(t),xm(t),ur) = g̃(Ex(um(t),xm(t)),xm(t),ur) . (10)

On the right-hand side, the vital rates are written as functions of energies. This shows upfront that the effects of

traits on the vital rates come through energy allocation, since vital rates are functions of energy consumption. The

5



formulation of eqs. (7)–(10) is based on the seminal life history evolution model of León (1976). One can often

adopt a simpler formulation in which the allocated energy is taken to be directly proportional to the evolving traits

and independent of state variables xm(t). For example, one could write Ei(um(t)) = um,i(t) where um,i(t) is the

control variable for the total resources allocated to activity i ∈ {b, µ, x,M} (for example, León, 1976). A whole

class of classical life history evolution models even simplify things a step further by expressing the controls in terms

of proportional allocations, such that the allocation traits are defined by um,i(t) = Ei(um(t))/P (um(t),xm(t),ur)

and satisfy
∑

i∈{b,µ,x,M} um,i(t) = 1 (e.g., Perrin and Sibly, 1993 for a review), and where “x” may itself be a

multi-index if we wish to differentiate the allocation to the nx physiological subsystems. However, in the literature

on intergenerational energy transfers (e.g. Kaplan and Robson, 2009; Chu et al., 2008), energy expenditure may

depend non-linearly on controls. In order to cover such models, we do not make any specific assumptions about the

relationship between traits and energy allocation at this stage.

Finally, let us define the net energy transfer rate at time t as

T (um(t),xm(t),ur) = P (um(t),xm(t),ur) −A(um(t),xm(t),ur), (11)

which is the difference between the energy production rate and the energy assimilation rate. When T > 0, the

organism generates an energy surplus, producing more than it consumes. Conversely, when T < 0, the organism

operates in an energy deficit, assimilating more energy than it produces.

We are now ready to specify two distinct budget constraints that govern the relationship between an individual’s

gross energy production rate and the gross energy assimilation rate at time t. The first budget constraint enforces

strict individual temporal balance, requiring that production and assimilation rates match exactly at each age t,

i.e. there are no energy transfers between individuals:

T (um(t),xm(t),ur) = 0. (12)

This constraint represents an intratemporal budget balance, in which energy cannot be transferred between gen-

erations. Classical life history evolution models endorse this assumption (e.g., León, 1976; Stearns, 1992; Perrin,

1992; Perrin and Sibly, 1993) and we will refer to this as the model without transfers. The second budget constraint

allows for flexible energy allocation across time, requiring only that lifetime energy production matches lifetime

consumption: ∫ ∞

0

lm(t)T (um(t),xm(t),ur) dt = 0. (13)

Eq. (13) implies that each individual respects an intertemporal energy budget balance, in which the expected total

energy produced over its lifespan balances its energy expenditure. It is as if an individual can exchange energy with

copies of itself living in different generations, i.e. with other lineage members, so that total energy produced and

consumed by an individual throughout their lifespan balances out. This amounts to a standard assumption in life

history evolution models for intergenerational transfers (e.g., Kaplan and Robson, 2002; Lee, 2003; Chu and Lee,

2006; Kaplan and Robson, 2009).

Note that no mutant growth rate weighing appears in eq. (13), which is different from previous formulations of
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these budget constraints (Chu and Lee, 2006, eq. 6, Chu et al., 2008, eq. 4’, and Kaplan and Robson, 2009, eq. 4.2

for comparison). This is because our measure of fitness, eq. (2), is the basic reproductive number of an individual,

and so all accounting is done at the individual, instead of being done at the lineage level. The basic reproductive

number is an appropriate fitness proxy for the mutant’s growth rate (e.g., Mode, 1971; Karlin and Taylor, 1981;

Caswell, 2000; Metz et al., 2008 and no mutant growth rate weighing appears in eq. (2) either).

2.3 Uninvadability

Our model, with the fitness formulation and the dynamic constraints given by eqs. (2)–(6) and the budget constraints

eqs. (12)–(13), then encapsulates two classes of previous evolutionary models. First, the standard life-history

evolution models with allocation of resources to different functions without any transfers (e.g., León, 1976; Oster

and Wilson, 1977; Schaffer, 1982; Iwasa and Roughgarden, 1984; Stearns, 1992; Perrin, 1992; Koz lowski, 1992;

Perrin and Sibly, 1993; Bulmer, 1994; Irie and Iwasa, 2005). Second, life-history models involving intergenerational

transfers of energy (e.g., Kaplan and Robson, 2002; Lee, 2003; Kaplan and Robson, 2009; Chu et al., 2008). In most

of these analyses, the goal is usually to identify the necessary conditions for a trait value u∗ taken from the state

space U [T ,U ] to be uninvadable, i.e., resistant to invasion. An uninvadable control u∗ must be a maximiser of the

basic reproductive number holding the resident population at this trait value and thus must satisfy

u∗ ∈ arg max
u∈U [T ,U ]

R(u,u∗) (14)

subject to the mutant dynamic constraints eqs. (3)–(4) and the energy budget constraints; namely, eq. (12) under

intratemporal balance and eq. (13) under intertemporal balance. This constitutes a constrained maximisation

problem, for which we derive necessary conditions for uninvadability using optimal control theory, specifically

Pontryagin’s maximum principle (e.g., Bryson and Ho, 1975; Athans and Falb, 2007; Liberzon, 2011; Weber, 2011

for useful textbooks). Formally, the case with transfers corresponds to an optimal control problem with mixed

equality constraints (see e.g., Bryson and Ho, 1975, p. 99–100 and Hartl et al., 1995, p. 186–187), while the case

without transfers corresponds to an isoperimetric optimal control problem (see e.g., Bryson and Ho, 1975, p. 90–91).

3 Natural selection on life-histories

3.1 Necessary conditions for uninvadability

3.1.1 The maximum principle

In order to apply optimal control theory to our two budget balance scenarios, let us now introduce the Hamiltonian

function

H(um(t),ym(t),λ(t),ur) = lm(t)
[
b (um(t),xm(t),ur) − λl(t)µ (um(t),xm(t),ur)

]
+ λx(t) · g(um(t),xm(t),ur) + η(t)T (um(t),xm(t),ur), (15)
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where ym(t) = (lm(t),xm(t)) collects all mutant state variables and λ(t) = (λl(t),λx(t), η(t)) collects all costates

variables–also called “shadow values”– associated with state variables ym(t) and energy transfers T (t), respectively.

The interpretation of the costates λl(t) and λx(t) are as the marginal effects of an increase in the corresponding

state variable on expected reproduction starting at age t, i.e. the marginal effects of survival lm(t) and physiological

state xm(t) on remaining expected fitness
∫∞
t

l(t)b(t) dt (for more information on costate variables, Dorfman, 1969;

Caputo, 2005; Sydsaeter et al., 2008; Weber, 2011 and Appendix A). The shadow value of the energy η(t) takes

different forms under the two budget constraints:

η(t) =

ηC(t) no transfers

ηT lm(t) with transfers.

(16)

Here, the subscript “C” in ηC(t) refers to the “classic” life history scenario without transfers. This shadow value

gives the marginal effect on its remaining fitness at age t of an individual transferring a unit of energy at that age

(see Appendix A.2 for more details). Namely, the change in fitness if the intra-temporal budget constraint (11)

were released at t and the individual would make a positive transfer. In the presence of transfers, the interpretation

of ηT is the marginal effect on remaining fitness at time t of increasing the cumulative transfers obtained at age t

(see Appendix A.1 for more details). The constancy of ηT reflects the ability to freely exchange energy across the

lifespan, such that the future reproductive value of past transferred energy remains age-invariant. The weighting by

the survival probability in η(t) = ηT lm(t) occurs because energy transfers can only take place when an individual

is alive to participate in the exchange. Intuitively, one expects ηC(t) < 0 for all ages t, since it is always costly

to make a positive transfer (lose energy), as there is no expectation of return when transfers are not allowed. In

contrast, one expects ηT > 0, as the positive value indicates that this intertemporal exchange is beneficial overall.

The Hamiltonian can be interpreted as the rate of fitness gain either directly through reproduction or indirectly

through survival, growth, and maintenance. These four life history functions are weighed according to their contri-

bution to fitness gains. The weights are measured against the effective fecundity rate (the first term in eq. (15)),

which has a fitness value of “1”, which is the reproductive value of a newborn. Decreasing mortality rate (i.e.

increasing survival, the second term) has the fitness value λl(t), which we refer to as the value of life. Investing

in the soma (physiological structures) has the fitness value of λx(t), which we refer to as the value of the soma.

Finally, transferring energy T (t) has the fitness value of η(t).

In order to apply the Hamiltonian eq. (15) to characterise uninvadability, we introduce a final piece of notation,

which is the state-dependent control region:

Ω(x(t),ur) = {u(t) ∈ U : T (u(t),x(t),ur) = 0}. (17)

This is the set of feasible controls under the intratemporal budget constraint (eq. 12). In terms of the Hamiltonian

eq. (15), and applying standard optimal control theory results (e.g. Caputo, 2005 for a comprehensive text), we

show in Appendix A that an uninvadable life history schedule needs to satisfy the following properties.

The maximum principle for life history evolution. Suppose that the control u∗ = {u∗(t)}t∈T with associated
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state schedule y∗ = (l∗,x∗) is uninvadable. Then, it is necessary that the control function maximises the Hamiltonian

for all t ∈ T :

u∗(t) ∈ arg max
um(t)∈Ω(t)

H(um(t),y∗(t),λ(t),u∗), (18)

where the control region is scenario-specific:

Ω(t) =

Ω(x∗(t),u∗) without transfers

U with tranfers.

(19)

Regardless of the scenario, and except at points of discontinuities, the costates satisfy

−dλl(t)

dt
=

∂H(u∗(t),ym(t),λ(t),u∗)

∂lm(t)

∣∣∣
∗

(20)

−dλx(t)

dt
=

∂H(u∗(t),ym(t),λ(t),u∗)

∂xm(t)

∣∣∣
∗
. (21)

The notation means that the derivative (the vector of derivatives of the shadow values of the soma) is evaluated

with all variables held at their uninvadable values. The state variables satisfy

dl∗(t)

dt
= −µ (u∗(t),y∗(t),u∗)) l∗(t) with i.c. l∗(0) = 1 (22)

dx∗(t)

dt
= g(u∗(t),y∗(t),u∗) with i.c. x∗(0) = x0, (23)

and T (u∗(t),x∗(t),u∗) = 0 for all t without transfers∫∞
0

l∗(t)T (u∗(t),x∗(t),u∗) dt = 0 with tranfers.

(24)

Moreover, the maximized Hamiltonian H(u∗(t),y∗(t),λ(t),u∗) = maxum(t)∈Ω(t) H(um(t),y∗(t),λ(t),u∗) is zero for

all t ∈ T :

H(u∗(t),y∗(t),λ(t),u∗) = 0. (25)

Suppose further that the resident schedule does not affect mortality, µ(um(t),xm(t),ur) = µ̂(um(t),xm(t)), soma

dynamics, g(um(t),xm(t),ur) = g(um(t),xm(t)), the rate of transfers, T (um(t),xm(t),ur) = T (um(t),xm(t)), and

that resident effects on fertility are multiplicatively separable b (um(t),xm(t),ur) = b̂ (um(t),xm(t)) gb(ur) for some

gb(ur) ∈ R capturing density-dependent population regulation. Then, the previous results hold by setting gb(ur) = 1

and the maximum principle becomes fully independent of resident properties. Namely, characterising uninvadability

becomes an optimisation problem that can be characterised using a Hamiltonian H(um(t),ym(t),λ(t)) independent

of ur.

An uninvadable schedule thus maximises the Hamiltonian throughout the lifespan. At each moment in time, the

uninvadable life-history thus balances the trade-off between (i) present reproduction, (ii) staying alive to acquire

future reproduction, (iii) transferring resources, and (iv) investing in the soma (or more generally embodied capital).
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It follows from the maximum principle that the value of life changes according to

dλl(t)

dt
= −

[
b (u∗(t),x∗(t),u∗) + ηTT (u∗(t),x∗(t),u∗)

]
+ µ∗(u∗(t),x∗(t),u∗)λl(t), (26)

where the second term in the brackets is nil without transfers. Hence, the value of life decreases with forgone

reproduction, increases with forgone death proportionally to its value, and increases with transfers given away.

Setting the value of life of a newborn to one, λl(0) = 1, we find in Appendix B.2 that

λl(t) = vF(t) + ηTvT(t), (27)

where

vF(t) =
1

l∗(t)

∫ ∞

t

l∗(τ)b (u∗(τ),x∗(τ),u∗) dτ (28)

is Fishers’ reproductive value at age t (Fisher, 1930), and

vT(t) =
1

l∗(t)

∫ ∞

t

l∗(τ)T (u∗(τ),x∗(τ),u∗) dτ (29)

is the “transfer value” of an individual. This is the remaining net energy balance at age t, given that the individual

is alive at age t (note that when an individual is born, then vT(0) = 0). Thus, in the absence of intergenerational

transfers, the value of life reduces to Fisher’s reproductive value vF(t), as it should (Perrin, 1992). With transfers,

the value of life can be positive even when an individual has ceased to reproduce, as long as it transfers resources

(as noted earlier by Kaplan and Robson, 2009, p. 1841 where V (t) in their model corresponds to our vT(t)). If an

individual at age t has received a substantial amount of transfers earlier in life, then the transfer value vT(t) of

that individual is positive, as everything received by transfers must eventually be repaid due to the budget balance

constraint (13).

The maximum principle also shows that the value of the soma λx(t) satisfies the dynamics

dλx(t)

dt
= l∗(t)

[
−∂b (u∗(t),xm(t),u∗)

∂xm(t)
+ λl(t)

∂µ (u∗(t),xm(t),u∗)

∂xm(t)

]
∗

− λx(t) · ∂g(u∗(t),xm(t),u∗)

∂xm(t)

∣∣∣∣∣
∗

− η(t)
∂T (u∗(t),xm(t),u∗)

∂xm(t)

∣∣∣∣∣
∗

, (30)

which is driven by four forces. First, when the marginal increase in a given state variable xm,i(t) ∈ xm(t) enhances

current reproduction (∂b(t)/∂xm,i(t) > 0), then the corresponding shadow value decreases as these reproductive

benefits are realised immediately, depleting the remaining potential fitness gains available from that state vari-

able. Second, when a marginal increase in the state variable reduces mortality (∂µ(t)/∂xm,i(t) < 0), the shadow

value decreases because it is depleting the remaining potential for that state variable to contribute to future fit-

ness by increasing survival. Third, when a marginal increase in the state variable increases its own growth rate

(∂gi(t)/∂xm,i > 0), the shadow value decreases. This reflects a compound interest effect, whereby initial invest-

ments into the state are more valuable. Finally, for the case of transfers, when a marginal increase in the state

variable enhances energy production available to make transfers (∂T/∂xm,i > 0), the shadow value decreases as
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these resources are allocated to lineage members, depleting remaining fitness benefits analogously to how current

reproduction depletes individual fitness potential. In the absence of transfers, the marginal effects of state variables

are constrained by the requirement that production equals assimilation at each age. Owing to the fact that eq. (30)

defines a multidimensional linear dynamical system with varying coefficients, no general explicit representation of

λx(t) can be obtained (see Appendix B.1). Although typically the shadow value of the soma decreases over the

lifespan, stationary values are possible when the competing forces remain balanced, as may occur in steady-state

life histories. Finally, note that there are no dynamical equations associated with the variable η(t). In the transfer

case, ηT is a constant determined by the integral constraint (recall the second line of eq. (24)). In the case without

transfers, ηC(t) is a Lagrange multiplier function implicitly determined by enforcing T (t) = 0 at each age (first line

of eq. (24)). The constraints given by eq. (24) provide the additional relationships needed to determine ηT or ηC(t).

3.1.2 Transversality conditions

As is usual for infinite-horizon optimal control problems, the maximum principle as stated above does not yet

contain in itself enough information to single out one or a few candidates for uninvadability. This is because no

boundary conditions are given for the costate variables in the statement of the maximum principle. This is the

well-known problem of identifying the correct transversality conditions for infinite-horizon optimal control problems

(Caputo, 2005; Sydsaeter et al., 2008; Weber, 2011). This problem is often sidelined in life history evolution models

by working with the assumption of a finite horizon (e.g. the review by Perrin and Sibly, 1993). But this problem

needs to be confronted in the infinite-horizon case, which allows us to model an unknown time of death and this is

of biological relevance.

In order to identify the transversality conditions for our model, we make the following observations. First, the

value of life (the righ-hand-side of eq. (27)) should remain bounded at all times, since infinite reproductive value

does not appear to be biologically meaningful. This in turn entails that the value of life of a newborn must be one,

which provides a transversality condition for the costate λl(t) and leads to its general solution given by eq. (27) (see

Appendix B.2 for details). To obtain a boundary condition for the value of the soma λx(t), we note that eq. (25)

provides the transversality condition limt→∞ H(u∗(t),y∗(t),λ(t),ur) = 0. In force of eq. (15) and owing to the fact

that limt→∞ l∗(t) = 0, this transversality condition then implies that limt→∞ λx(t) = 0. This then provides a final

condition to eq. (21). Thus, the maximum principle for life history evolution with boundary conditions λl(0) = 1

and limt→∞ l∗(t) = 0 to eqs. (20)–(21) provides enough information to solve for all dynamic equations and single out

one or a few candidates for uninvadability. Sufficient conditions for uninvadability can, as is usual, be established

using the Mangasarian or Arrow conditions (Sydsaeter et al., 2008, Theorem 10.3.2, p. 372, Caputo, 2005, Theorem

14.4, p. 388), but we do not delve into such conditions here.

We close this section by clarifying that the maximum principle for life history evolution presented above gen-

eralizes previous versions of optimal control models found in the life-history evolution literature (e.g., León, 1976;

Schaffer, 1982; Iwasa and Roughgarden, 1984; Perrin, 1992; Perrin and Sibly, 1993; Day and Taylor, 2000; Kaplan

and Robson, 2009) by simultaneously incorporating (i) both intratemporal and intertemporal energy budget con-

straints within a single model, (ii) ecological embedding through resident-dependent vital rates, and (iii) allowing for

an infinite horizon. Further, it brings upfront the role of the shadow value of the energy η(t), which does generally
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not appear in previous versions of the maximum principle for life history owing to more specific assumptions made

on the controls (e.g., comments below eq. 10).

3.2 Selection pressures and characteristics of uninvadable life-histories

3.2.1 The selection pressures

According to the maximum principle, the necessary first-order condition for the i-th component u∗
i (t) of the trait

u∗(t) to be uninvadable is

if u∗
i (t) = ωi(t) then

∂H(um(t),y∗(t),λ(t),u∗)

∂um,i(t)

∣∣∣
∗
≤ 0,

if ωi(t) < u∗
i (t) < ωi(t) then

∂H(um(t),y∗(t),λ(t),u∗)

∂um,i(t)

∣∣∣
∗

= 0,

if u∗
i (t) = ωi(t) then

∂H(um(t),y∗(t),λ(t),u∗)

∂um,i(t)

∣∣∣
∗
≥ 0,

(31)

where ωi(t) and ωi(t) are the lower and upper values the i-th component of the trait can take at time t. Setting

U =
∏nu

i=1[ui, ui], we have ωi(t) = ui and ωi(t) = ui for the case with transfers and thus u∗
i (t) ∈ [ui, ui]. For the case

without transfers, u∗
i (t) ∈ [ωi(t), ωi(t)] = {ui ∈ [ui, ui] : T (u∗(t),x∗(t),u∗) = 0} (recall eq. (19)). The derivative in

eq. (31) can be unpacked as follows

∂H(um(t),y∗(t),λ(t),u∗)

∂um,i(t)

∣∣∣
∗

= l∗(t)

[
∂b (um(t),x∗(t),u∗)

∂um,i(t)
− λl(t)

∂µ (um(t),x∗(t),u∗)

∂um,i(t)

]
∗

+ λx(t) · ∂g(um(t),x∗(t),u∗)

∂um,i(t)

∣∣∣∣∣
∗

+ η(t)
∂T (um(t),x∗(t),u∗)

∂um,i(t)

∣∣∣∣∣
∗

. (32)

This represents the age-specific force of selection, or the selection pressure (the i-th component of the selection

gradient). It consists of the marginal effect of the trait value on all vital rates, including the transfers, weighted by

the costates. Because both l∗(t) and λx(t) approach asymptotically zero, we see that the force of selection generally

decreases as time passes by.

A special yet important case in practice is when the Hamiltonian is linear in the control u∗
i (t) ∈ [ωi(t), ωi(t)].

In this case, a non-zero selection pressure becomes sufficient to determine boundary control values and one has

if
∂H(um(t),y∗(t),λ(t),u∗)

∂um,i(t)

∣∣∣
∗
< 0 then u∗

i (t) = ωi(t),

if
∂H(um(t),y∗(t),λ(t),u∗)

∂um,i(t)

∣∣∣
∗

= 0 then ωi(t) ≤ u∗
i (t) ≤ ωi(t),

if
∂H(um(t),y∗(t),λ(t),u∗)

∂um,i(t)

∣∣∣
∗
> 0 then u∗

i (t) = ωi(t)

(33)

(Caputo, 2005, p. 135). This allows for a so-called bang-bang solution in which the control can switch between

boundary values, except when the selection pressure vanishes. When the selection pressure vanishes, the control

may take an interior value ωi(t) < u∗
i (t) < ωi(t) , which can hold for some time interval resulting in a so-called

singular arc. The control in this case can be determined by repeatedly differentiating ∂H/∂um,i(t)|∗ = 0 with
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respect to time: (
d

dt

)i(
∂H(t)

∂um,i(t)

∣∣∣
∗

)
= 0 ∀i ∈ {1, 2, ...}, (34)

until the control um,i(t) appears explicitly in the equation (e.g., Kopp and Moyer, 1965). Obtaining a singular arc,

however, requires specific restrictions on the functional form of the model and tends to be more common in models

with high-dimensional state spaces (Rebhuhn, 1978, yet see Iwasa and Roughgarden, 1984; Perrin et al., 1993 for

examples in the context of life-history evolution).

3.2.2 The uninvadable mortality schedule

The vanishing Hamiltonian H(t) = 0 (eq. (25), see also Appendix A.3) provides a useful optimality principle; namely,

an uninvadable life history must allocate resources such that the immediate fitness gains from current activities are

perfectly balanced against their effects on future fitness opportunities, ensuring that no reallocation of resources at

any age can improve lifetime fitness. This condition can be used to reveal the mortality schedule on an uninvadable

path by substituting eq. (15) into eq. (25) and solving for mortality. This yields

µ (u∗(t),x∗(t),u∗) =
fc (u∗(t),x∗(t),u∗)

λl(t)
=

fc (u∗(t),x∗(t),u∗)

vF(t) + ηTvT(t)
, (35)

where

fc (u∗(t),x∗(t),u∗) = b (u∗(t),x∗(t),u∗) + λc
x(t) · g(u∗(t),x∗(t),u∗) + ηc(t)T (u∗(t),x∗(t),u∗) (36)

is the fitness gain from current activities (reproduction, changes in the state of the soma, and transfers). Here,

λc
x(t) = λx(t)/l∗(t) and ηc(t) = η(t)/l∗(t) are the current values of the soma and the energy (marginal values

conditional on survival) and in force of eq. (30), we get

dλc
x(t)

dt
=

[
µ(u∗(t),x∗(t),u∗) − ∂g(u∗(t),xm(t),u∗)

∂xm(t)

]
∗
λc
x(t)

+

[
−∂b (u∗(t),xm(t),u∗)

∂xm(t)
+ λl(t)

∂µ (u∗(t),xm(t),u∗)

∂xm(t)
− ηc(t)

∂T (u∗(t),xm(t),u∗)

∂xm(t)

]
∗
. (37)

Eq. (35) reveals five insights about life-history evolution. First, mortality increases when current activities rise

relative to future fitness potential, showing that the mortality rate represents a direct trade-off between current

reproduction, growth, and transfers and future reproduction and transfers. Second, it generalises Fisher’s (1930)

observation that mortality varies inversely with reproductive value to incorporate intergenerational transfers. Third,

because vT(t) > 0 increases the denominator of eq. (35), transfers reduce the uninvadable mortality rate and thereby

extend lifespan, all else being equal. Fourth, without transfers, mortality becomes unbounded (µ∗(t) → ∞), when

reproductive value vanishes (vF(t) → 0), and thus selection would not favour survival after reproduction has ceased.

However, with transfers, the value of life remains positive, with ηTvT(t) > 0 even after reproduction ceases, showing

that a post-reproductive lifespan can be favoured under transfers.

Finally, λc
x(t) may reach a stationary value (its dynamic, eq. 37, is not weighed by l∗(t), compare to eq. 30).

Hence, all life history component may reach a steady state (that is, limt→∞ u∗(t) = û∗, limt→∞ x∗(t) = x̂∗,

limt→∞ λl(t) = λ̂l, limt→∞ λc
x(t) = λ̂c

x, and limt→∞ ηc(t) = η̂c). The uninvadable mortality rate in this case is given
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by

µ (û∗, x̂∗,u∗) =
1

λ̂l

[
b (û∗, x̂∗,u∗) + λ̂c

x · g(û∗, x̂∗,u∗) + η̂c T (û∗, x̂∗,u∗)
]
, (38)

which is stationary. Although schedules leading to stationary life history have not been much investigated in

evolutionary biology, their prevalence in economic problems concerned with intertemporal allocations (e.g. Dorfman,

1969; Caputo, 2005; Sydsaeter et al., 2008; Weber, 2011) suggests that they are possible outcomes of evolution. In

other words, a life history in which mortality decreases early in life and then increases later in life is not a necessary

outcome of evolution.

Given that the uninvadable mortality rate does not necessarily have to increase with age, why did Kaplan

and Robson (2009) conclude that senescence (increase in mortality rate with age) is inevitable? Their conclusion

stems from a specific assumption of their model and the parameter space they considered, which can be examined

using eq. (35). In their model, mortality is directly a control variable, and thus an evolving trait, written now as

µ (u∗(t),x∗(t)) = µ(t) with associated cost of resources Eµ(µ(t)) depending only on the trait itself. Differentiating

eq. (35) with respect to mortality, and using eq. (11) and eq. (7), shows that the necessary first-order condition for

the uninvadable mortality schedule satisfies ∂Eµ(µ(t))/∂µ(t) ∝ λl(t). Using the fact that µ(t) = exp[log(µ(t))] we

can write ∂Eµ(µ(t))/∂µ(t) = (∂Eµ(µ(t))/∂ log(µ(t))/µ(t), whereby

µ(t) ∝ 1

λl(t)

∂Eµ(µ(t))

∂ log(µ(t))
. (39)

Hence, mortality varies inversely with the value of life under the stated assumptions. Furthermore, Kaplan and

Robson (2009) assumed that somatic maintenance costs are sufficiently high to ensure that the value of life λl(t)

declines rather than reaches a steady state. However, these assumptions are unlikely to hold in general. Moreover,

when mortality emerges indirectly from the allocation to multiple life history traits (rather than being directly

controlled), the relationship between age and mortality becomes even more complex, allowing for diverse ageing

patterns including negligible or even negative senescence (e.g, Vaupel et al., 2004). The goal of this paper, however,

is not to investigate these various forms of mortality schedules, but to compare the broad features of life-history

evolution with and without transfers. For this, it is useful to analyse a concrete model to which we next turn.

4 Application: life history evolution with and without transfers

4.1 Model formulation

We now apply our results to analyse life history evolution in a model that allows us to compare evolutionary out-

comes with and without intergenerational energy transfers. This model builds upon that of Kaplan and Robson

(2009), which considered only intertemporal budget balance (recall eq. (13)). To build the model, we first follow

the biological assumptions of Kaplan and Robson (2009) and let the control schedule consist of four evolving traits

um(t) = (bm(t), µm(t), gm(t), zm(t)). These stand, respectively, for the birth rate, the mortality rate, the somatic

growth rate, and the rate of maintenance of the somatic quality (see table 2 for a list of key symbols). We further

assume that both the mortality rate µm(t) and the quality maintenance rate zm(t) are unbounded from above
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(µm(t), zm(t) ∈ R+), reflecting that these quantities are only constrained by the budget balance condition. For the

scenario without transfers, we similarly assume that bm(t) and gm(t) have fixed bounds from below (bm(t), gm(t) ≥ 0),

but their maximum feasible values are determined endogenously by the intratemporal budget constraint eq. (12),

which defines the feasible control region (recall eq. (17)). However, for the scenario with transfers, the intertem-

poral budget constraint eq. (13) is not constraining enough for bm(t) and gm(t). Without additional physiological

constraints, this permits extremely rapid early-life growth through essentially unlimited energy borrowing, leading

to biologically unrealistic somatic capital accumulation. Therefore, we impose upper limits bmax and gmax on both

bm(t) and gm(t), which capture limits on cellular production capacity.

Given these assumptions, we write the effective fertility and mortality rates as

b(um(t),xm(t),ur) = gb(ur)bm(t) and µ (um(t),xm(t),ur) = µm(t) + µe, (40)

where gb(ur) accounts for density-dependence regulation affecting fertility and µe is the external mortality rate.

The probability of survival thus satisfies

dlm(t)

dt
= −(µm(t) + µe)lm(t) with i.c. lm(0) = 1. (41)

The somatic state xm(t) = (km(t), qm(t)) at age t is assumed to consist of the quantity and quality of somatic

capital, respectively, which satisfy

dkm(t)

dt
= gm(t) with i.c. km(0) = k0 (42)

dqm(t)

dt
= zm(t) − ϵ with i.c. qm(0) = q0, (43)

where ϵ > 0 is a positive parameter describing the baseline depreciation rate of the somatic quality (in the absence

of allocation of resources to maintenance).

We write the energy transfer (eq. (11) with (7)) for this model as

T (um(t),xm(t)) = F
(
P (km(t), qm(t)), Eb(bm(t), km(t), qm(t))

)
−
(
Eµ(µm(t))+Ek(gm(t))+Eq(km(t), zm(t))

)
, (44)

where Ei is the energy used for life history trait i ∈ {b, µ, k, q} and

F
(
P (km(t), qm(t)), bm(t)

)
= P (km(t), qm(t)) − Eb(bm(t), P (km(t), qm(t))) (45)

is the energy available after accounting for reproduction cost. The production rate P (t) and the surplus en-

ergy F (t) after reproductive cost correspond to the functions G(t) and F (t), respectively, in Kaplan and Robson

(2009, p. 1839), and we follow their assumptions of the properties of these functions. In particular, we assume

that the production rate is zero if any of its arguments is zero and is monotonically increasing in each argument

(P (0, qm) = P (km, 0) = 0, ∂P (km, qm)/(∂km) > 0 and ∂P (km, qm)/(∂qm) > 0), F (P, bm) be a concave function of

P and a decreasing function of bm such that as the gross energy increases, reproduction is cheaper at the margin
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(∂F (P, bm)/∂zm > 0, and ∂2F (P, bm)/(∂P∂bm) > 0). The energies devoted to survival (reducing mortality rate),

the somatic quantity, and the somatic quality are given by

Eµ(µm(t)) = e(µm(t)), (46)

Ek(gm(t)) = αgm(t), (47)

Eq(km(t), zm(t)) = d(km(t), zm(t)), (48)

where e(µm) is a decreasing convex function of the mortality rate (∂e(µm)/∂µm < 0 and ∂2e(µm)/∂µ2
m > 0). In

eq. (47), α is the cost of producing one unit of somatic capital. In eq. (48), d(km(t), zm(t)) is the cost function of

investing in somatic quality (i.e. maintenance cost of soma) and it is a monotonically increasing in somatic capital km

(∂d(km, zm)/∂km(t) > 0 ), a convex function in somatic quality zm (∂d(km, zm)/∂zm(t) > 0, ∂2d(km, zm)/∂z2m > 0),

and additionally it is zero if any of its arguments is zero (d(0, zm) = d(km, 0) = 0).

We now depart slightly from the original model of Kaplan and Robson (2009). They assumed that the time of

onset of reproduction is determined by a switching time where allocation to growth ceases. We do not make this

assumption and let the time of reproduction be determined by the allocation schedule to reproduction, which is

more in line with classical life-history evolution models in the absence of transfer (e.g., Perrin and Sibly, 1993). To

that end, we assume that

Eb(bm(t), P (km(t), qm(t))) = bm(t)G(P (km(t), qm(t))) (49)

for some monotonically decreasing function G(P ) of P . Here, G(P ) can be interpreted as the marginal cost of

reproduction and is assumed to be high when individuals are less productive (low P ).

4.2 The optimal life-history with transfers

We first analyse the model with transfers because it turns out to be simpler and can also be read as a sanity check

of the formulation of our model, since we need to recover the main results of Kaplan and Robson (2009) who used

a different approach; namely, dynamic programming, to derive their results. Let then λx(t) = (λk(t), λq(t)) stand

for the physiological costate variables associated with km(t) and qm(t), respectively. In force of the assumptions of

section 4.1 and the last statement (ii) of the maximum principle, we can write the Hamiltonian for the model in

the presence of transfers as

H(um(t),ym(t),λ(t)) = lm(t)
[
bm(t) − λl(t)(µm(t) + µe)

]
+ λk(t)gm(t) + λq(t)(zm(t) − ϵ)

+ ηTlm(t)
[
F
(
P (km(t), qm(t)), Eb(bm(t), km(t), qm(t))

)
− αgm(t) − d(km(t), zm(t)) − e(µm(t))

]
. (50)
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Applying eq. (32), we get the selection pressures on the evolving traits as

∂H(t)

∂bm(t)

∣∣∣
∗

= l∗(t) [1 − ηTG(P (t))] , (51)

∂H(t)

∂µm(t)

∣∣∣
∗

= l∗(t)

[
−λl(t) − ηT

∂e(t)

∂µ∗(t)

]
, (52)

∂H(t)

∂gm(t)

∣∣∣
∗

= λk(t) − ηTl
∗(t)α, (53)

∂H(t)

∂zm(t)

∣∣∣
∗

= λq(t) − ηTl
∗(t)

∂d(t)

∂z∗(t)
, (54)

where we used shorthand notations, writing e.g., P (t) = P (k∗(t), q∗(t)), thus suppressing the explicit dependence

on state variables while retaining time dependence, and similarly for other functions of various variables. The first

and second terms on the right-hand sides of eqs. (51)–(54) are the marginal benefits and costs, respectively, of

increasing the corresponding trait values. From the maximum principle, the costates satisfy

dλl(t)

dt
= − ∂H(t)

∂lm(t)

∣∣∣
∗

= λl(t)(µ
∗(t) + µe) − b∗(t) − ηTT (t), (55)

dλk(t)

dt
= − ∂H(t)

∂km(t)

∣∣∣
∗

= −ηTl
∗(t)

(
∂F (t)

∂k∗(t)
− ∂d(t)

∂k∗(t)

)
, (56)

dλq(t)

dt
= − ∂H(t)

∂qm(t)

∣∣∣
∗

= −ηTl
∗(t)

∂F (t)

∂q∗(t)
. (57)

Applying eq. (B.6) along eq. (B.10), we get that the costate can be written as

λl(t) =
1

l∗(t)

∫ ∞

t

l∗(τ)
[
b∗(τ) + ηTT (τ)

]
dτ, (58)

λk(t) = ηT

∫ ∞

t

l∗(τ)

(
∂F (τ)

∂k∗(τ)
− ∂d(τ)

∂k∗(τ)

)
dτ, (59)

λq(t) = ηT

∫ ∞

t

l∗(τ)
∂F (τ)

∂q∗(τ)
dτ. (60)

Let us now identify the general properties of a candidate uninvadable allocation schedule and let us first consider

selection pressures on survival and quality, given by eq. (52) and eq. (54). Because the cost functions for maintenance

d(t) = d(k∗(t), z∗(t)) and survival e(t) = e(µ∗(t)) are convex, with respect to the rates of maintenance z∗(t) and

mortality µ∗(t), respectively. Thus, an interior solution satisfied by both µ∗(t) and z∗(t) for all t exists and is

characterised by

∂d(t)

∂z∗(t)
=

λc
q(t)

ηT
=

1

l∗(t)

∫ ∞

t

l∗(τ)
∂F (τ)

∂q∗(τ)
dτ, (61)

− ∂e(t)

∂µ∗(t)
=

λl(t)

ηT
=

1

l∗(t)

∫ ∞

t

l∗(τ)
[b∗(τ)

ηT
+ T (τ)

]
dτ. (62)

Both shadow values, λc
q(t) and λl(t), can be nonmonotonic functions of time. For example, if the value of life λl(t)

is dome-shaped, then the schedule of µ∗(t) is therefore expected to be U-shaped (due to the negative sign on the

left-hand side in eq. (62)). Similarly, if the value of quality λc
q(t) is dome-shaped, then the somatic quality schedule

z∗(t) would be dome-shaped.
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Let us now turn to the selection pressures on reproduction and growth, focusing first on growth. Since the

growth rate g∗(t) enters the Hamiltonian (50) linearly, the selection pressure given by eq. (53) does not explicitly

depend on growth rate g∗(t). For this case, we know from eq. (33) that when the selection pressure (53) is strictly

positive, the uninvadable growth rate takes its maximal value g∗(t) = gmax, and when strictly negative, no growth

occurs (g∗(t) = 0). Thus, it follows from eq. (53) that when the marginal benefit exceeds the marginal cost

λk(t) > ηTl
∗(t)α, growth occurs at its maximal rate gmax. From eq. (59) it follows that λk(t) is high early in life

and decreases with age. Thus, early in life, condition λk(t) > ηTl
∗(t)α is expected to occur, which yields that

growth occurs at its maximal rate gmax early in life. As λk(t) decreases with age, the growth can eventually cease

when the marginal benefit becomes less than the cost λk(t) < l∗(t)ηTα. If this is the case, the age at which growth

ceases t∗g is given by requiring that the marginal benefit is equal to the marginal cost

λk(t∗g) = l∗(t∗g)ηTα. (63)

It is theoretically possible that after reaching age t∗g, the condition (63) holds over a period of time, yielding a

singular arc, where 0 < g∗(t) < umax for some period of time, but we were unable to find illuminating analytical

results about candidate singular arcs and do not investigate this further here (in section (4.4) we fully solve the

model numerically and do not detect singular arcs).

Now, let us consider reproduction. Like the growth rate g∗(t), the birth rate b∗(t) also enters the Hamiltonian (50)

linearly, so the selection pressure (51) does not explicitly depend on birth rate b∗(t). Thus, when the selection

pressure (51) is strictly positive, reproduction occurs at its maximal rate b∗(t) = bmax, and when strictly negative,

no reproduction occurs (b∗(t) = 0). From the expression of the selection pressure (51) we observe that the benefit

of reproduction is constant, while the cost ηTG(P (t)) is a decreasing function of productivity P (t) (recall the

assumption after eq. (49)). Thus, we expect that reproduction is initially suppressed early in life, b∗(t) = 0, due

to low production (consistent with the assumption below eq. (45) that production increases with soma size). As

production P (t) increases with age, the cost of reproduction ηTG(P (t)) decreases. Eventually, at some time t∗b, the

benefit of reproduction becomes equal to the cost:

1 = ηTG(P (t∗b)), (64)

which determines the start of reproduction. It is again possible that this condition holds over a period of time,

yielding a singular arc with intermediate value for reproductive investment (0 < bm(t) < bmax), but this requires

that production P (t) remains constant and appears here unrealistic. If production P (t) further increases after

the start of reproduction (e.g., due to continued growth), then we can have 1 > ηTG(P (t∗b)), which means that

reproduction should be set at its maximum rate b∗(t) = bmax. Production P (t) can also decline if quality q∗(t)

declines with age, and this decline can cause reproduction to eventually stop, as the cost of reproduction increases

with decreasing P (t). Thus, if 1 = ηTG(P (t∗m)) at some age t∗m > t∗b, then age t∗m can be interpreted as the onset of

post-reproductive age, which is caused by quality decline making reproduction more expensive at the margin. Note

also that determining b∗(t) requires estimating ηT , as it appears in eq. (64). To obtain ηT, we can use the constraints
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that the transfer T ∗(t) = T (b∗(t), µ∗(t), g∗(t), z∗(t), k∗(t), q∗(t)) given by eq. (44) must satisfy the budget balance∫∞
0

l∗(t)T ∗(t)(t) dt = 0. In practice, such calculations are complicated, and we will resort to numerical calculations

to illustrate solutions for the optimal life history schedule in section 4.4.

In summary, from the analytical analysis above, we outline some general properties of the candidate allocation

schedule favoured by selection. Allocation of survival and maintenance occurs throughout the lifespan, with µ∗(t) >

0 and z∗(t) > 0 for all t ∈ T . Growth is expected to be positive early in life and is given by the maximum growth

rate gmax. Allocation to reproduction begins when production is high enough (once a sufficient somatic size is

reached) and should, in general, be given by its maximal value bmax, when growth continues after reproduction has

started, as this causes the cost of reproduction to grow. Somatic quality decline can cause reproduction later in

life, giving rise to a post-reproductive period. We also discussed how we cannot formally exclude the possibility of

growth and reproduction to take some intermediate values, i.e. 0 < g∗(t) < gmax and 0 < b∗(t) < bmax for some

periods, but there are restrictions for such singular arcs to be optimal.

These results are broadly consistent with those of Kaplan and Robson (2009, pp. 1840-1841) and eqs. (61)–(62)

recover exactly their first-order conditions, as it should. Kaplan and Robson (2009) further proved that the function

µ∗(t) is U-shaped, while z∗(t) is dome-shaped under the assumption that reproduction does not occur during growth

(b∗(t) = 0 for t ∈ [0, t∗g]). However, we do not make such an assumption here and, thus, we do not exclude the

possibility of continued growth after reproduction has started. Kaplan and Robson (2009) also left the parameter ηT

(which corresponds to their 1/η) undetermined as they were concerned only with the general shape of the optimal

trait schedules. In Section (4.4), we numerically investigate the above model in more detail and demonstrate that

different qualitative results are possible. Before presenting these results, we analyse the qualitative results for the

model without transfers.

4.3 The optimal life-history without transfers

To analyse the model without resource transfer, we assume the intra-temporal budget balance eq. (12). On substi-

tuting eqs. (45)–(49) into eqs. (11)-(12), the budget balance constraint can be written as

F (P (km(t), qm(t)), bm(t))) − [αgm(t) + d(km(t), zm(t)) + e(µm(t))] = 0. (65)

Thereby, the Hamiltonian in the absence of transfers can be expressed as

H(um(t),ym(t),λ(t)) = lm(t)
[
bm(t) − λl(t)(µm(t) + µe))

]
+ λk(t)gm(t) + λq(t)(zm(t) − ϵ)

+ ηC(t)
(
F (P (km(t), qm(t)), bm(t)) − [αgm(t) + d(km(t), zm(t)) + e(µm(t))]

)
. (66)
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Applying eq. (32), the selection pressures are

∂H(t)

∂bm(t)

∣∣∣
∗

= l∗(t)
(

1 − ηC(t)

l∗(t)
G(P (t))

)
, (67)

∂H(t)

∂µm(t)

∣∣∣
∗

= −l∗(t)λl(t) − ηC(t)
∂e(t)

∂µ∗(t)
, (68)

∂H(t)

∂gm(t)

∣∣∣
∗

= λk(t) − ηC(t)α, (69)

∂H(t)

∂zm(t)

∣∣∣
∗

= λq(t) − ηC(t)
∂d(t)

∂z∗(t)
. (70)

The difference between these selection pressures and the corresponding ones for the case with transfers (given by

eq. (51)–(54)) is that in the second summand of each term, the weight ηTl
∗(t) has been replaced by ηC(t). In turn,

the costates satisfy

dλl(t)

dt
= − ∂H(t)

∂lm(t)

∣∣∣
∗

= λl(t)(µ
∗(t) + µe)) − b∗(t), (71)

dλk(t)

dt
= − ∂H(t)

∂km(t)

∣∣∣
∗

= −ηC(t)

(
∂F (t)

∂k∗(t)
− ∂d(t)

∂k∗(t)

)
, (72)

dλq(t)

dt
= − ∂H(t)

∂qm(t)

∣∣∣
∗

= −ηC(t)
∂F (t)

∂q∗(t)
, (73)

where the value of life no longer has a transfer component and the weight ηTl
∗(t) has been replaced by ηC(t). The

application of eq. (B.6) along eq. (B.10) now leads to

λl(t) =
1

l∗(t)

∫ ∞

t

l∗(τ)b∗(τ) dτ, (74)

λk(t) =

∫ ∞

t

ηC(τ)

(
∂F (τ)

∂k∗(τ)
− ∂d(τ)

∂k∗(τ)

)
dτ, (75)

λq(t) =

∫ ∞

t

ηC(τ)
∂F (τ)

∂q∗(τ)
dτ. (76)

As in the case with transfers, let us identify the candidate uninvadable allocation schedule and consider again

first selection on survival and quality, given by eq. (68) and eq. (70), which are both explicit functions of the controls.

Since the cost of each allocation are convex functions of the corresponding allocation, an interior solution satisfied

by both µ∗(t) and z∗(t) for all t has to exist and is characterized by

∂d(t)

∂zm(t)
=

λq(t)

ηC(t)
, (77)

−∂e(µm(t))

∂µm(t)
=

l∗(t)λl(t)

ηC(t)
, (78)

which is obtained by setting the derivativers in eq. (68) and eq. (70) to zero. Similarly to the case with transfers,

we expect the mortality schedule µm(t) to be the inverse of the value of life λl(t), which here is given by Fisher’s

reproductive value (recall eq. (27)). The maintenance shedule zm(t) is proportional to λq(t)/ηC(t).

Since reproduction and growth schedule enter linearly in the Hamiltonian (66), these controls generally switch

between their boundary values (recall section 3.2.1), and here the upper bounds are endogenously determined from
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the budget balance condition (65). Let us then first consider the growth allocation schedule. From eq. (69), we can

expect growth to occur early in life, because the marginal benefit of growth is expected to be greater than the cost

(λk(t) > ηC(t)α). In contrast to the case without transfers, where growth was given by the maximal rate gmax,

here the growth rate is constrained by the budget balance condition eq. (65) (e.g. Appendix D for a worked-out

example). Growth will eventually stop when the cost of further growth exceeds its benefit (λk(t) < ηC(t)α). Age

t∗g at which growth stops is given by the condition when the marginal benefit is equal to the cost

λk(t∗g) = ηC(t∗g)α. (79)

This condition differs from the case with transfers (see eq. (63)) in that it explicitly depends on the shadow value of

energy ηC(t) at a given age. Similarly to the case with transfers, eq. (79) may hold over a period of time, yielding

a singular arc, which we do not investigate further analytically (we did not detect singular arcs numerically, see

section (4.4)) Let us thus turn to the reproduction allocation schedule. From eq. (67), we observe that, for similar

reasons as for the case of transfers, reproduction due to low productivity P (t) early in life causes the cost of

reproduction to be high compared to the benefit [i.e., G(P (t)) > l∗(t)/ηC(t)], whereby b∗(t) = 0. As productivity

increases, eventually a time t∗b is reached when the marginal benefit of reproduction becomes equal to the cost:

1 =
ηC(t∗b)

l∗(t∗b)
G(P (t∗b)), (80)

which determines the switch to reproduction. Compared to the case with transfers (recall eq. (64)), instead of the

constant multiplier ηT, the condition here depends additionally on survival l∗(t) and the shadow value of energy

ηC(t) (note that again, we cannot exclude the possibility of singular arcs).

In summary, we find that the candidate resource allocation schedule favoured by selection has the following

qualitative characteristics. The allocation of survival and maintenance occurs throughout the lifespan, i.e. µ∗(t) > 0

and z∗(t) > 0 for all t ∈ T , whereby the mortality rate µ∗(t) is proportional to the inverse of Fisher’s reproductive

value. Allocation to growth occurs early in life until a switching time t∗g is reached; namely g∗(t) > 0 for all

t ∈ [0, t∗g]. The allocation to reproduction is nil early in life and necessarily occurs after a switching time t∗b has been

reached. As in the case of transfers, we cannot formally exclude the possibility of growth and reproduction to have

intermediate values, i.e. 0 < g∗(t) < gmax and 0 < b∗(t) < bmax for some periods, but there are many restrictions

for such a life history to be optimal. The rates of g∗(t) and b∗(t) are here constrained by the intratemporal budget

balance condition eq. (65) which also causes a direct linear trade-off between growth and reproduction, and in the

absence of singular arcs, growth and reproduction are expected to be sequential t∗g = t∗g as is the case of standard

bang-bang solutions. This allocation schedule is qualitatively similar to that obtained under classical life history

evolution models (e.g.,Perrin, 1992; Perrin and Sibly, 1993; Cichoń and Koz lowski, 2000).

4.4 Worked-out example: evolution with and without intergenerational transfers

We now present a complete implementation of the model given by eqs. (40)–(49), which will allow for a detailed

comparison of the evolutionary outcomes under both energy budget scenarios. To that end, we assume that the
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production function is given by

P (km(t), qm(t)) = a[km(t)]cqm(t), (81)

where a > 0 and 0 < c < 1. This entails a standard power-law assumption between energy acquisition and body

size (e.g. Day and Taylor, 1997), and here we also assume that production is proportional to somatic quality. The

energy cost of reproduction is assumed to be

G(P (km(t), qm(t))) = αb exp(−rbP (km(t), qm(t))), (82)

where αb > 0 is the efficiency of the conversion of resources to reproduction and rb > 0 determines the rate at which

reproductive costs decline with increasing productivity. The exponential decline reflects economies of scale, where

organisms near peak capacity become more efficient through metabolic reallocation, achieving lower per-offspring

costs paralleling how production costs decrease with scale in economics (e.g., Pontzer, 2015, section 1.2 in Tirole,

1988). The energy cost of survival is assumed to be

e(µm(t)) =
αµ

µm(t) − µ0
, (83)

where µ0 represents the lower bound of mortality achievable when allocating infinite energy to survival (in the

absence of external mortality), αµ > 0 and ζ > 0 are parameters for the energy conversion to survival. Finally, the

energy cost of maintenance is taken to be

d(km(t), zm(t)) = αq[zm(t)]κkm(t), (84)

where αq > 0 determines the conversion of energy to quality, and κ > 0 is an exponents that govern the cost of

investment in quality, which is assumed to scale with body size.

With these specifications, the life history model described by eqs. (40)–(49) is closed. Because the model is

complicated, we did not further explore the analytical results and used the optimal control software GPOPS-II

(Patterson and Rao, 2014) to explicitly solve the model numerically for the two energy budget scenarios described

by eq. (12) and eq. (13). We verified that the numerical results, shown in Figs. 1 and 3, satisfy the necessary

conditions for the maximum principle, which by the same token allows to confirm the results of sections 4.2–4.3 (see

Appendix section D for additional details on the consistency between numerical results and analytical findings).

Next, we summarise the key findings from the numerical analysis illustrated in Figs. 1–3.

4.4.1 Transfers lead to higher investment into somatic capital and energetic productivity

Comparing life history evolution under the two energy budget scenarios reveals that allowing for transfers leads to an

overall energetically more productive life history, namely a higher P ∗
T =

∫∞
0

l∗(t)P ∗(t) dt. This energy productivity

is achieved through an increased investment in early life growth. With transfers, juveniles sustain maximum growth

rates, g∗(t) = gmax, throughout an extended period (see Fig. 1 panels (a) and (b)). In contrast, without transfers,

the growth period is significantly shorter and is restricted by juvenile production capacity, as juveniles must rely
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only on the energy they can produce themselves. Thus, somatic capital k∗(t) accumulates to a higher level in the

case of transfers (Fig. 3 panel (b)). This yields substantial returns through the elevated lifetime energy production

(Fig. 3 panels (b)-(d)). Furthermore, higher productivity creates a positive feedback loop: more resources can be

allocated to maintain somatic quality and higher survival, which in turn sustains high productivity levels over an

extended period of life (Fig. 3 panels (a) and (c)). Thus, transfers allow for running energy deficits early in life,

while increasing somatic investments that generate compound returns through enhanced productivity later in life.

4.4.2 Transfers lead to continued growth after reproduction and a post-reproductive phase

The life course without transfers follows the typical two-phase life-history (see Fig. 2 panel (a)): (i) a juvenile

growth phase [0, t∗g], where growth occurs, somatic quality declines and mortality rate decreases, and (ii) an adult

reproductive phase [t∗b,∞], where reproduction occurs and mortality rate starts to increase. We find that growth

and reproduction are sequential (t∗g = t∗b) because the intratemporal budget constraint T ∗(t) = 0 creates a direct

trade-off between energy allocated to growth and reproduction. This is consistent with our analytical results because

the Hamiltonian is linear in both control variables and thus selection favours bang-bang solutions. But we did not

observe any singular arc for growth or reproduction across different parameter values in either budget-constraint

scenario.

When transfers are allowed, four distinct life history phases are observed (see Fig. 2 panel (b)): (i) a juvenile

growth phase [0, t∗b], during which the individual grows and is a net energy consumer (T ∗(t) < 0) and the quality

does not degrade and the mortality rate decreases; (ii) a transitional mixed growth and reproduction phase [t∗b, t
∗
g]

during which individuals simultaneously grow and reproduce and reach peak energy deficit, with quality beginning

to decline and mortality rate continues to decrease; (iii) an adult reproductive phase [t∗g, t
∗
m] during which repro-

duction continues and individual becomes net energy producer (T ∗(t) > 0), somatic quality continues to degrade,

while mortality rate begins to increase; and (iv) an adult post-reproductive producer phase [t∗m, t
∗
L] during which

reproduction has ceased, but individuals keep on investing substantially to survival and maintenance, while ma-

jority of resources are transferred. The emergence of continued growth after reproduction is due to a much less

restrictive assumption of the intertemporal balance condition (
∫∞
0

l∗(t)T ∗(t) dt = 0), which allows organisms to

run large energy deficits when reproduction and growth overlap. The post-reproductive phase emerges because the

decline in somatic quality raises the marginal cost of reproduction (recall eqs. (49) and (82)), leading to a transfer

of resources to younger, more fitness enhancing individuals.

4.4.3 Transfers lead to longevity and increased investment in maintenance

Mortality rates exhibit U-shaped curves under both scenarios, with the lowest point occurring at the end of the

growth phase, as expected from life history theory (compare Fig. 1 panels (a) and (c)). Consistent with eq. (35),

mortality varies inversely with the value of life in both scenarios (compare Fig. 3 panel (f)). However, under inter-

generational transfers, mortality rates are consistently lower throughout life compared to the no-transfer scenario

(compare Fig. 1 panels (a) and (c)), because more resources are available under the transfer scenario and the value of

life is higher under transfers even after reproduction ceases. Thus, intergenerational transfers facilitate significantly

longer lifespans as organisms can allocate more energy to survival throughout life (Fig. 3 panel (a)). We observe
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that the somatic quality degrades under both scenarios, but more slowly under the case of transfers (see Fig. 1

panels (a) and (c)). Since somatic capital is much higher and the cost of maintenance increases nonlinearly with

somatic capital under the case of transfers, investing resources into somatic capital is substantially higher under

the case of transfers (see Fig. 1 panels (b) and (d)).

4.4.4 Shadow value of energy

The magnitude |η(t)| of the shadow value of energy decreases monotonically with age in both scenarios, indicating

that energy investments in younger individuals yield the highest fitness returns (Fig. 3 panel (h)). The shadow value

of the energy is particularly high at young ages in the no-transfer scenario due to severe resource constraints: young

individuals have minimal somatic capital and must rely entirely on their limited self-produced energy, making any

additional received energy yield substantial fitness gains. In contrast, with intergenerational transfers, the shadow

value η(t) = ηTl
∗(t) reflects the equilibrium value ηT of energy exchanges throughout the lineage, weighted by

survival probability l∗(t).

4.5 Robustness analysis of the worked-out example

We now assess the robustness of our main findings from section 4.4 through two complementary analyses. First, we

examine whether our results hold under a more biologically realistic constraint on energy assimilation that scales

with body size (section 4.5.1). Second, we explore how variation in key model parameters affects the qualitative

and quantitative differences between transfer and non-transfer scenarios (section 4.5.2).

4.5.1 Age-dependent metabolic capacity on energy assimilation under transfers

For the scenario with intergenerational transfers, we imposed upper bounds b(t) ≤ bmax and g(t) ≤ gmax on

reproduction and growth rates (and where bmax and gmax were taken to the the maximum values of b(t) and g(t)

obtained in the scenario without transfers, e.g.,4.1). This entails that total assimilated energy A(t) at age t is

not constrained by age. A more biologically grounded assumption is that assimilation is constrained, taking, for

instance, the form

A(t) ≤ Amax(km(t), qm(t)) = amaxkm(t)cqm(t), (85)

where Amax(km(t), qm(t)) is the maximal metabolic capacity at age t. Here, this capacity is assumed to scale with

somatic quantity following Kleiber’s law (West et al., 1997) as well as with somatic quality, such that Amax(t) has the

same functional form as the production function P (t) (recall eq. (81)). The parameter amax is a metabolic capacity

coefficient, and if amax > a an individual can metabolise more energy than it produces, a necessary condition for

intergenerational transfers to occur (when amax = a, one recovers exactly the case without transfers). While the

metabolic constraint A(t) ≤ Amax(km(t), qm(t)) is more biologically grounded, it complicates the formal analysis

by introducing an additional inequality constraint to the life-history evolution problem (eq. (14)), which will have

an associated shadow value ηA(t), measuring the fitness benefit an organism would gain from increased metabolic

capacity at age t (see Appendix C for details). When ηA(t) > 0 the organism is constrained by its metabolic
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capacity and would benefit from being able to process energy faster. When ηA(t) = 0 the organism is assimilating

below its metabolic limit.

In Figures 4–6, we compare the results of endorsing the constratins eq. (85) under a tight metabolic constraint

(amax = 1.1, allowing only 10% more assimilation than production since a = 1) and a more relaxed constraint

(amax = 1.3, permitting 30% excess assimilation). Broadly, with this more realistic model, we recover our main

findings: intergenerational transfers lead to longer growth phases, greater somatic capital accumulation, higher

lifetime productivity, extended lifespans, and a post-reproductive phase. The key qualitative difference is the ab-

sence of a mixed growth-and-reproduction phase. This occurs because the metabolic constraint caps total energy

assimilation at each age, preventing the large simultaneous investments in both growth and reproduction that char-

acterise this phase in the baseline model for transfers (as presented in section 4.2), where growth and reproduction

are capped separately and thus do not directly trade off with each other. Notably, ηA(t) > 0 throughout the growth

phase, indicating that juveniles are operating at their metabolic limit and would benefit from higher metabolic

capacity. Once growth ceases, ηA(t) drops to zero, indicating that organisms no longer fully utilise their metabolic

capacity. Thus, while we recover the main qualitative results from intergenerational transfers observed in the base-

line model, the extent to which transfers alter life history outcomes relative to the case without transfers depends

critically on the metabolic capacity coefficient amax.

4.5.2 Parameter variation analysis

To further assess the robustness of our numerical results in Figs. 1–3 and to explore their ecological relevance,

we examine how key parameters affect life history evolution under both scenarios (see S.I. for detailed results).

While an exhaustive parameter analysis is infeasible given the high dimensionality of the parameter space, we focus

on biologically meaningful variations that illuminate the conditions under which transfers most strongly influence

life history evolution. This analysis reveals the following results. First, ageing is not an inevitable outcome of

natural selection in our version of the model of Kaplan and Robson (2009). When the cost of quality maintenance

is reduced (from αq = 40 to αq = 30), mortality decreases early in life and then remains constant throughout the

evolutionarily relevant lifespan (during the lifespan when natural selection can act, defined as the age range where

survival probability remains high enough for natural selection to meaningfully shape trait evolution (i.e., where

changes in age-specific traits can affect R0; see Fig. S4, where we have shown results for l∗(t) < 0.001). We observe

that for this parameter combination, the quantitative advantages of transfers largely disappear, with both transfer

and non-transfer scenarios achieving nearly identical somatic capital accumulation, production levels, and lifespans.

Second, increasing external mortality (from me = 0.01 to me = 0.04) produces shorter growth phases, earlier onset

of reproduction, reduced somatic investment, and steeper declines in the shadow value of energy. Here we chose a

dramatic increase in external mortality to better illustrate the classic result that external mortality drives “live fast,

die young” strategies, when density-dependence acts on fecundity (e.g. Charlesworth, 1994; André and Rousset,

2020). Finally, a reduction in the baseline quality depreciation rate (from ϵ = 0.1 to ϵ = 0.09) delays the onset of

somatic quality degradation, extends growth periods, and enhances the quantitative differences between transfer

and non-transfer scenarios. Lower depreciation rates enable greater somatic capital accumulation and longer periods

before quality decline becomes the dominant factor driving mortality increases.
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5 Discussion

Applying optimal control theory, we derived necessary conditions for uninvadable life histories under two types

of energy budget constraints: (i) no transfers between individuals and (ii) intergenerational transfers between

individuals. Our main theoretical result is the (Pontryagin’s) maximum principle for life history evolution that

encompasses both budget-constraint scenarios and yields an age-specific selection gradient on genetic traits affecting

vital rates, regardless of the mechanistic details of development (e.g., eq. (32)). Our contribution lies in unifying the

two types of energy budget constraints within a single modelling framework. Previous applications of optimal control

theory to life history theory have typically treated them separately with different underlying assumptions, often

more restrictive, and have not explicitly compared their evolutionary implications. By enabling such comparisons,

we can clarify how resource transfers shape life history evolution. We first discuss some general theoretical results

that emerge from the maximum principle for life history evolution, and then discuss results from the worked-out

example that explicitly contrast the two transfer scenarios.

5.1 Natural selection on life-histories

The maximum principle for life history evolution entails that the optimal (uninvadable) life history strategy has to

maximise at each point in time the Hamiltonian function, which quantifies how age-specific trait expression affects

current and future fitness gains including those through transfers (eq. (15)). While this qualitative feature is well

established in evolutionary models without transfers (e.g., Perrin and Sibly, 1993; Day and Taylor, 2000), it is usually

left implicit in models with transfers (e.g., Chu et al., 2008; Kaplan et al., 2009). We showed that the maximised

Hamiltonian with and without transfers vanishes at all ages (eq. (25)). This yields that, at uninvadability, fitness

gains f∗
c (t) from current activities (reproduction, somatic investments and transfers) are exactly balanced by the

loss of future fitness due to mortality (λl(t)µ
∗(t)). This ensures that no further fitness can be gained by reallocating

resources among the different life history functions of reproduction, survival, somatic investments, and transfers.

Although the vanishing maximised Hamiltonian is standard in autonomous optimal control problems with infinite

horizon (e.g. Caputo, 2005, Theorem 14.9), we are not aware that it has been previously applied in the life history

theory evolution literature.

The vanishing maximised Hamiltonian result yields an explicit expression for the uninvadabe mortality schedule

(µ∗(t) = f∗
c (t)/λl(t)), which is the ratio of current fitness gains f∗

c (t) to future fitness gains– the value of life λl(t)

(eq. (27)). This result yields several relevant insights. First, mortality increases when current fitness gains rise

relative to future fitness potential, revealing that the uninvadable mortality rate reflects a direct trade-off between

present and future fitness gains. Second, senescence is not an inevitable outcome of selection on life history, since

steady-state life-histories are plausible evolutionary outcomes (i.e., eq. (39)). Third, without transfers, we recover

Fisher’s (1930) prediction that mortality varies inversely with reproductive value. Fourth, transfers reduce mortality

and thereby extend lifespan, all else being equal. Fifth, a post-reproductive period can emerge with transfers, but

not without, all else being equal.

The maximum principle for life history evolution also provides insight into the marginal fitness value of receiving
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energy transfers. For the case without transfers, our analysis quantifies the shadow value of energy η(t), the fitness

benefit of transferring a unit energy at age t, which is a marginal value typically absent from classical life history

models (León, 1976; Stearns, 1992; Perrin and Sibly, 1993; Cichoń and Koz lowski, 2000). Without transfers, η(t) is

strongly negative throughout life, with the largest magnitude at birth, declining with age. This reveals that juveniles

would benefit most from additional energy, providing a conceptual explanation for why young organisms across taxa

have evolved powerful resource extraction mechanisms, from begging displays in birds to manipulation tactics in

mammals (Clutton-Brock, 1991; Hrdy, 2009). Juveniles are expected to be net energy consumers because somatic

investment early in life yields high future fitness returns, while older individuals can become post-reproductive

producers because their accumulated somatic capital enables efficient resource acquisition even as reproductive

efficiency declines. Together, these results establish that the marginal value of receiving energy is highest in

juveniles, explaining formally the widespread pattern of resource flows from older to younger individuals across

taxa with parental care and intergenerational transfers.

5.2 Life history with and without transfers: implications from the example

As an application, we extended the seminal baseline model of Kaplan et al. (2009) to cover the case without transfers

in order to be able to explicitly compare evolutionary outcomes under the two energy budget constraints. The model

is involved, and so the analytical analysis (section 4.2–4.3) needs to be complemented by a numerical one (section

4.4). This enabled us to explicitly solve the model for all control and state variables under both scenarios with and

without transfers, thereby highlighting qualitatively and quantitatively the role of transfers in life history evolution.

In the absence of transfers, the uninvadable life history consists of two phases: juvenile growth and adult

reproduction, throughout which energy production equals consumption (P ∗(t) = A∗(t)), constraining individuals

to energetic self-sufficiency (Fig. 2, panel (a)). This is qualitatively in line with standard results (e.g., Perrin

and Sibly, 1993). In contrast, transfers, T ∗(t) = P ∗(t) − A∗(t) ̸= 0, cause a temporal decoupling of resource

production P ∗(t) and assimilation A∗(t) (Fig. 2) that enable four distinct phases, defined by both the life history

phases and net energy status (Fig. 2, panel (b)): (i) juvenile dependency, where individuals are net consumers

(T ∗(t) < 0) and invest maximally in growth; (ii) mixed growth and reproduction, where peak consumption occurs

while individuals remain net consumers (T ∗(t) < 0); (iii) reproductive production, where individuals become net

producers (T ∗(t) > 0), transferring surplus energy to repay earlier deficits; and (iv) post-reproductive production,

where reproduction ceases but substantial energy production and transfers continue (T ∗(t) > 0).

The decoupling of consumption from production enables significantly higher lifetime energy productivity, as

early-life energy deficits facilitate the accelerated accumulation of somatic capital. This generates compound re-

turns through an elevated productivity rate and allows for longer lifetimes by making more resources available for

maintenance and survival. Post-reproductive production emerges as older individuals are less efficient at reproduc-

tion due to somatic quality declines, and thus transferring resources to younger adults yields higher fitness returns.

Kaplan and Robson (2009) already demonstrated that intergenerational transfers can lead to a post-reproductive

lifespan, thereby reducing mortality rate later in life by increasing the value of life. Our contribution here lies in

explicitly comparing life history evolution with and without transfers, and thus we are able to explicitly show that in-

tergenerational transfers trigger a cascade of life history changes, producing a unique combination of metabolically
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costly future-oriented investments (high somatic investment, extended growth period, and increased investment

in survival and maintenance) along with high investment in reproduction during midlife and the emergence of a

postreproductive period and long lifespan (see also table 3 for details). In Table 3, we summarise results from the

parameter variation analysis. Most notably, from that analysis, we observe that when the somatic maintenance

cost is low enough, senescence becomes negligible under both scenarios of budget constraints (see S.I. for further

details).

The results of the baseline model prove robust to alternative assumptions about physiological constraints on

energy processing. When we replace fixed upper bounds on growth and reproduction with a more realistic age-

dependent metabolic capacity constraint following Kleiber’s law (Section 4.5.1 and Appendix C), the core findings

persist. Namely, intergenerational transfers lead to longer growth phases, greater somatic capital accumulation,

higher lifetime productivity, extended lifespans, and post-reproductive survival. The key qualitative difference is

the absence of a mixed growth-and-reproduction phase, which is arguably more realistic. This occurs because

the metabolic constraint caps total energy assimilation at each age, preventing the large simultaneous investments

that characterise this phase when growth and reproduction are bounded separately. This analysis also reveals that

growing organisms operate at their maximal physiological capacity and would benefit from increasing their metabolic

capacity. This finding is consistent with the high metabolic rates observed in juveniles across taxa (Glazier, 2005;

Hou et al., 2008). Once growth ceases, organisms no longer fully utilise their metabolic capacity (assimilation is

lower than the maximal metabolic capacity).

The life history differences identified through comparing the two scenarios of budget constraints mirror the

distinctive human life-history features among great apes, demonstrating how transfers enable enhanced somatic

capital, prolonged development, and extended post-reproductive lifespan as observed in humans (e.g. Mace, 2000;

Robson et al., 2006; van Schaik, 2016; Gurven, 2024). More precisely, the patterns that emerge when allowing

for intergenerational transfers to occur in the worked-out example align with convergent empirical evidence from

paleontological, ethnographic, and comparative physiological studies of human life history. First, in subsistence

societies, individuals consume more than they produce until their late teens (Kaplan, 1994; Gurven et al., 2006),

while older individuals produce surpluses that they transfer to younger individuals (Lee, 2020), aligning with

our age-specific transfer predictions. Second, humans evolved substantially higher metabolic rates and energy

expenditure than great apes (Pontzer et al., 2016; Yegian et al., 2024), consistent with the prediction of our model

of enhanced lifetime energy production under transfers. Third, dietary changes and intergenerational transfers

appear to have co-evolved in a mutually reinforcing manner (Wrangham, 2009; Wood and Gilby, 2017). More

broadly, our result aligns with embodied capital theory, demonstrating that intergenerational transfers and somatic

investment operate as mutually reinforcing mechanisms rather than independent adaptations (e.g. Kaplan et al.,

2001, see also Davison and Gurven, 2022 for further empirical support using ethnographic production-consumption

data). Post-reproductive survival emerges here under the transfer scenario (as well as in Kaplan and Robson, 2009)

as an optimal life-history outcome when transferring resources to younger, more reproductively efficient individuals

yields higher fitness returns than continued reproduction. We show that this outcome obtains only when transfers

are allowed. This result formalises a key mechanism that can drive the so-called grandmother hypothesis (Hawkes

et al., 1998), and is likely extends beyond humans to other taxa with extensive intergenerational transfers and
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post-reproductive life, such as toothed whales (Ellis et al., 2024).

5.3 Limitations and conclusion

Our model relies on the simplifying assumption of clonal interactions. While clonal interactions are usually assumed

in the literature on intergenerational transfer and life history evolution (León, 1976; Schaffer, 1983; Perrin and Sibly,

1993; Cichoń and Koz lowski, 2000; Lee, 2003; Chu et al., 2008; Kaplan and Robson, 2009; Metz et al., 2016; Avila

et al., 2021; Avila and Lehmann, 2023), as well as adaptive dynamics more generally (e.g., Geritz et al., 1998),

that assumption does not affect the location of evolutionary equilibria by invasion analyis when gene action is

additive and thus applies under sexual reproduction (Mullon and Lehmann, 2017). Our assumptions, however,

overlook the additional costs of resource transfer when genetic relatedness between individuals falls below unity,

which inevitably occurs under sexual reproduction, where donors and recipients are not clones. Conceptually, we

anticipate that introducing sexual reproduction into our model would diminish the magnitude of transfers, but not

alter our qualitative results. The effects of transfers under sexual reproduction in the population in the absence

of a market for energy transfer would likely fall between the two extremes presented here: the no-transfer scenario

and the clonal transfer scenario. However, if a market for resource exchange exists, then our results for the transfer

scenario extend beyond the assumption of interactions occurring among fully related individuals. This is so because

any Pareto-efficient allocation can be implemented through a competitive market mechanism (see e.g., Mas-Colell

et al., 1995). Since the uninvadable life history derived here under the assumption of clonal interactions is Pareto

efficient, a well-functioning resource transfer market can, in principle, allow to sustain the same intergenerational

transfer schedule without requiring clonal interactions. Our model thus characterises transfers in the absence of

transaction costs (e.g., bargaining or information costs), representing an upper bound on what markets can achieve

for enhanced somatic capital and survival.

A relevant extension of our model would be to incorporate sex-specific differences in life-history traits and

resource transfer patterns, which are also fundamental to human evolution. Evidence from modern horticultural

and hunter-gatherer societies reveals a striking sexual division in resource production and allocation, with men

typically producing significantly more caloric resources, while women focus primarily on childcare and the provision

of offspring (Kaplan et al., 2010; Gurven et al., 2012). Thus, the outcomes of sex-specific differences in the division

of labour (e.g., Gavrilets, 2012; Loo et al., 2020; Alger et al., 2020, 2023) on life-history evolution could be explored.

In conclusion, we derived a maximum principle for life-history evolution that unifies intratemporal budget

balance (without transfers) and intertemporal budget balance (with transfers) within a single life history model.

The uninvadable mortality schedule result provides a foundation for understanding how intergenerational transfers

can lead to longer lifespans and post-reproductive lifespan. Application to human life history illustrates how these

predictions can account for increased somatic capital, prolonged development, and an extended lifespan with a

postreproductive phase.
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Appendix

Appendix A: The maximum principle for life history evolution

To prove the maximum principle stated in the main text, we prove the case with and without transfer separately,

and then bring together their common structure.

A.1 Maximum principle with transfers

To prove the maximum principle with transfers, let us rewrite the basic reproductive number eq. (2) subject to its

dynamics constraints in the form

R(um,ur) =

∫ ∞

0

f (um(t), zm(t),ur) dt, (A.1)

where f (um(t), zm(t),ur) = lm(t)b (um(t),xm(t),ur) and zm(t) = (lm(t),xm(t), km(t)) is a vector of state variables

satisfying

dlm(t)

dt
= −µ (um(t),xm(t),ur) lm(t) with i.c. lm(0) = 1. (A.2)

dxm(t)

dt
= g(um(t),xm(t),ur) with i.c. xm(0) = x0 (A.3)

dkm(t)

dt
= lm(t)T (um(t),xm(t),ur) with i.c. km(0) = 0 and f.c. lim

t→∞
km(t) = 0. (A.4)

To obtain eq. (A.1) we have introduced a new state variable km(t) that expresses the integral constraints eq. (13) as

a differential equation and have made explicit through the function f that the objective function R may potentially

depend directly on all state variables, although in our specific problem it depends only on the state variable

ym(t) = (lm(t),xm(t)), and not on km(t). In our application km(t) can be interpreted as the cumulative expected

transfer until age t, since eq. (A.4) entails that km(t) =
∫ t

0
lm(τ)T (um(τ),xm(τ),ur) dτ .

Holding ur fixed, the maximisation of eq. (A.1) with respect to the variable um varying in U [T ,U ] and subject to

the dynamics constraints eqs. (A.2)–(A.4) defines an infinite horizon optimal control problem with nx + 1 free state

variables and one asymptotically fixed state variable (e.g., problem 1 described in Sydsaeter et al., 2008, section

10.3, p. 370 and problem 1 described in Caputo, 2005, section 14 in the absence of path constraints). For such an

optimal control problem with standard end constraints, it is well established that the Pontryagin maximum principle

holds (e.g., Sydsaeter et al., 2008, Theorem 10.1.1 and Caputo, 2005, Theorem 14.3). In particular, suppose the

schedule u∗ is optimal with associated state path {z∗(t)}t∈T = {(y∗(t), k∗(t))}t∈T , where y∗(t) = (l∗(t),x∗(t)), and

that this holds for the resident population state ur itself held at this schedule ur = u∗. Then, in force of Caputo

(2005, Theorem 14.3), it is necessary that the control function u∗ satisfies for all t ∈ T

u∗(t) ∈ arg max
um(t)∈U

H(um(t), z∗(t),λ(t),u∗), (A.5)
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where

H(um(t), z(t), λ̃(t),ur) = lm(t)
[
b (um(t),xm(t),ur) − λl(t)µ (um(t),xm(t),ur) + λη(t)T (um(t),xm(t),ur)

]
+ λx(t) · g(um(t),xm(t),ur) , (A.6)

with λ̃(t) = (λl(t),λx(t), λη(t)) being a vector of costates variables corresponding to the state variables lm(t), xm(t),

and km(t), respectively. Except at points of discontinuities, the costates satisfy

−dλl(t)

dt
=

∂H(u∗(t), z(t), λ̃(t),u∗)

∂lm(t)

∣∣∣
∗

(A.7)

−dλx(t)

dt
=

∂H(u∗(t), z(t), λ̃(t),u∗)

∂xm(t)

∣∣∣
∗

(A.8)

−dλη(t)

dt
=

∂H(u∗(t), z(t), λ̃(t),u∗)

∂km(t)

∣∣∣
∗

= 0 (A.9)

and the state variables satisfy

dl∗(t)

dt
=

∂H(u∗(t), z∗(t), λ̃(t),u∗)

∂λl(t)
with i.c. l∗(0) = 1 (A.10)

dx∗(t)

dt
=

∂H(u∗(t), z∗(t), λ̃(t),u∗)

∂λx(t)
with i.c. x∗(0) = x0 (A.11)

dk∗(t)

dt
=

∂H(u∗(t), z∗(t), λ̃(t),u∗)

∂λη(t)
with i.c. km(0) = 0 and f.c. lim

t→∞
km(t) = 0. (A.12)

Eqs. (A.5)–(A.12) are standard necessary conditions for the maximum principle (e.g., Sydsaeter et al., 2008, section

10.3 and Caputo, 2005, section 14), but we need to note one specific clarification about this application to our mod-

elling context. In our biological setting, the maximum principle provides a necessary condition for uninvadability,

i.e. for u∗ to solve maxu∈U [T ,U ] R(u,u∗) so that u∗ specifies a best reply to self.

Now, since − dλη(t)/ dt = 0, we can set λη(t) = ηT, a constant and the dynamics constraint eq. (A.12) can be

expressed upon integration as

0 =

∫ ∞

0

l∗(t)T (u∗(t),x∗(t),u∗) dt. (A.13)

With this and writing the Hamiltonian directly as H(um(t), zm(t), λ̃(t),ur) = H(um(t),ym(t), λ̃(t),ur) because the

right-hand side of eq. (A.6) does not depend explicitly on the variable km(t), the maximum principle defined by

eq. (A.5)—(A.12) can be expressed as in the main text by way of eqs. (15)–(25) for the case with transfers.

Costate interpretation. In order to have an interpretation for each costate variable in the vector λ̃(t) =

(λl(t),λx(t), λη(t)), let us introduce

V ∗(z∗(t)) =

∫ ∞

t

f (u∗(τ), z∗(τ),u∗) dτ. (A.14)

This is the so-called value function at age t; namely, the expected remaining fitness on the uninvadable path of an

individual of age t in state z∗(t), whereby V ∗(z∗(0)) = R(u∗,u∗). This value function depends on time only through
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the value of the state variable, since the optimisation problem is autonomous (i.e., f does not depend directly on

time). Then, the shadow values of the state variables are the marginal changes of the remaining fitness V ∗(z∗(t))

with respect to change in the corresponding state variable of the vector z(t) = (lm(t),xm(t), km(t)):

λ̃(t) = ∇z∗(t)V
∗(z∗(t)), (A.15)

where ∇z denotes the gradient with respect to z (e.g. Dorfman, 1969; Caputo, 2005; Sydsaeter et al., 2008). Hence,

the interpretation of λη(t) = ∂V ∗(z∗(t))/∂k∗(t) is as the marginal change of expected fitness from t onwards with

respect to the cumulative expected transfer until t (recall eq. (A.4)).

A.2 Maximum principle without transfers

For the case without transfers, eqs. (A.1)–(A.3) still apply but with zm(t) = ym(t) = (lm(t),xm(t)) because the

variable km(t) no longer appears in the constraints (eq. 11). The maximisation of eq. (A.1) with respect to the

variable um varying in U [T ,U ] subject to the dynamic constraints eqs. (A.2)–(A.3) defines an infinite horizon optimal

control problem with nx free state variables and mixed equality constraints (e.g., problem 1 described in Caputo,

2005, section 14 with mixed path constraints). For such an optimal control problem, it is again well established

that the Pontryagin maximum principle holds (e.g., Caputo, 2005, Theorem 14.3). Then, in force of Caputo (2005,

Theorem 14.3) and recalling that the constraints for this model (eq. 11) entail that the control variable u(t) at time

t is restricted to the feasible set Ω(x(t),ur) = {u(t) ∈ U : T (u(t),x(t),ur) = 0} (recall eq. (17)), it is necessary that

the control function u∗ satisfies for all t ∈ T

u∗(t) ∈ arg max
um(t)∈Ω(y∗(t),u∗)

H(um(t),y∗(t), λ̃(t),u∗). (A.16)

Here,

H(um(t),ym(t), λ̃(t),ur) = lm(t)
[
b (um(t),xm(t),ur) − λl(t)µ (um(t),xm(t),ur)

]
+ λx(t) · g(um(t),xm(t),ur)

+ ηC(t)T (um(t),xm(t),ur), (A.17)

where λ̃(t) = (λl(t),λx(t), ηC(t)) now stands for a vector of costate variables, of the states variables lm(t), and xm(t),

and of a Lagrange multiplier ηC(t), where the latter is associated to the equality constraint T (um(t),xm(t),ur) = 0.

Except at points of discontinuities, the costates satisfy

−dλl(t)

dt
=

∂H(u∗(t),ym(t), λ̃(t),u∗)

∂lm(t)

∣∣∣
∗

(A.18)

−dλx(t)

dt
=

∂H(u∗(t),ym(t), λ̃(t),u∗)

∂xm(t)

∣∣∣
∗
, (A.19)
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the state variables satisfy

dl∗(t)

dt
=

∂H(u∗(t),y∗(t), λ̃(t),u∗)

∂λl(t)
with i.c. l∗(0) = 1 (A.20)

dx∗(t)

dt
=

∂H(u∗(t),y∗(t), λ̃(t),u∗)

∂λx(t)
with i.c. x∗(0) = x0, (A.21)

and the Lagrange multiplier satisfies for all t

∂H(u∗(t),y∗(t), λ̃(t),u∗)

∂ηC(t)
= T (u∗(t),y∗(t),u∗) = 0. (A.22)

Eqs. (A.16)–(A.22) are the standard necessary conditions for the maximum principle under mixed-path equality

constraints, but we need to note two specific clarifications about this application to our model context. First, and

as already noted in section A.1, the maximum principle provides a necessary condition for uninvadability, i.e. for

u∗ to solve maxu∈U [T ,U ] R(u,u∗) so that u∗ specifies a best reply to self. Second, technically equation eq. (A.17)

represents an extended Hamiltonian (or Lagrangian), which incorporates the constraint T (um(t),xm(t),ur) = 0 via

the Lagrange multiplier ηC(t). Specifically, the extended Hamiltonian equals the regular Hamiltonian, which is the

first line of eq. (A.17), plus ηC(t) × T (um(t),xm(t),ur) (e.g., Caputo, 2005, Theorem 14.3). However, since the

constraint is T (um(t),xm(t),ur) = 0 for all time, then this additional term consists of adding a zero term to the

regular Hamiltonian. Therefore, the extended Hamiltonian reduces to the regular Hamiltonian. With this in mind,

the maximum principle defined by eqs. (A.16)–(A.22) for the case of transfers can be expressed as in the main text

by way of eqs. (15)–(25).

Lagrange multiplier interpretation. Since both λl(t) and λx(t) in λ̃(t) = (λl(t),λx(t), ηC(t)) are shadow

values, they take their interpretation from eq. (A.15). We now provide an interpretation for the Lagrange multiplier

ηC(t), which, it turns out, can be regarded as the marginal effect

ηC(t) =
∂V ∗(z∗(t))

∂ϵ(t)
(A.23)

on the value function of releasing the budget constraints at time t; namely, obtaining some posititve transfer ϵ(t)

at time t. To obtain this interpretation, we treat the deviation ϵ(t) as a parameter of the Hamiltonian (A.17) and

proceed in three steps. First, according to the dynamic envelope theorem (Caputo, 2005, Theorem 14.10), we have

that
∂V ∗(0, z0)

∂ϵ(t)
=

∫ ∞

0

∂H(u∗(τ),y∗(τ), λ̃(τ),u∗)

∂ϵ(t)
dτ, (A.24)

where z0 = (1,x0) is the initial condition for the state variables. Second, we clarify that ϵ(t) affects the Hamiltonian

(A.17) by relaxing the budget constraint only at time t by setting

T (um(τ),ym(τ), er(τ)) =

ϵ(t) if τ = t

0 if τ ̸= t.

(A.25)
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This can be written more formally using the Dirac delta function

T (um(τ),ym(τ), er(τ)) = ϵ(t)δ(τ − t). (A.26)

Then, substituting into eq. (A.17) and eq. (A.24), we have

∂V ∗(z0)

∂ϵ(t)
=

∫ ∞

0

∂H(u∗(τ),y∗(τ), λ̃(τ),u∗)

∂ϵ(t)
dτ

=

∫ ∞

0

ηC(τ)
∂

∂ϵ(t)
[ϵ(t)δ(τ − t)] dτ =

∫ ∞

0

ηC(τ)δ(τ − t) dτ = ηC(t)

(A.27)

Third, we note that owing to the optimality principle and because the integral is additive, we can decompose the

value function, eq. (A.14), as

V ∗(z0) =

∫ t

0

f (u∗(τ), z∗(τ),u∗) dτ + V ∗(z∗(t)). (A.28)

Because the first term on the right-hand side is unaffected by a perturbation ηC(t) occurring at time t, since ϵ(t)

can only change reproduction and survival from time t onwards, we also have that

∂V ∗(z0)

∂ϵ(t)
=

∂V ∗(z∗(t))

∂ϵ(t)
. (A.29)

Eq. (A.29) together with (A.27) yields eq. (A.23) and thus we have derived the interpretation of the Lagrange

multiplier ηC(t).

A.3 Vanishing Hamiltonian

Let us now show that the maximized Hamiltonian function is nil for all t ∈ T :

H(u∗(t),y∗(t),λ(t),u∗) = max
um(t)∈Ω(t)

H(um(t),y∗(t),λ(t),u∗) = 0. (A.30)

This is a standard infinite horizon optimal control theory result (Michel, 1982), which also holds for the case of

equality constraints–thus covering the case without transfers–since then only a zero is added to the Hamiltonian.

We here provide a heuristic proof of this result using the argument of Caputo (2005, Theorem 14.8); why the proof

is heuristic is explained after the proof.

Let us then use again the value function and write it as

V ∗(z∗(τ)) =

∫ ∞

τ

f (u∗(t), z∗(t),u∗) dt = max
um∈U [T ,U ]

∫ ∞

τ

f (um(t), zm(t),u∗) dt, (A.31)

where the maximization problem over the whole schedule on the right-hand side is subject to the dynamical con-

straints
dzm(t)

dt
= h(um(t), zm(t),u∗) with b.c. zm(τ) = zτ (A.32)
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and some mixed path constraints

c(um(t), zm(t)) = 0 for all t ∈ [τ,∞). (A.33)

This value function accommodates free end as well as fixed end constraints, and path constraints, and thus covers

the scenario with and without transfers. Now owing to the optimality principle and because the integral is additive,

and thus repeating the argument underlying eq. (A.28), we can write

V ∗(z0) =

∫ τ

0

f (u∗(t), z∗(t),u∗) dt + V ∗(z∗(τ)). (A.34)

Differentiating with respect to τ yields

0 = f (u∗(τ), z∗(τ),u∗) + ∇z∗(τ)V
∗(z∗(τ)) · dz∗(τ)

dτ
, (A.35)

where ∇z denotes the gradient with respect to z. Adding the equality constraints, we can also write

0 = f (u∗(τ), z∗(τ),u∗) + ∇z∗(τ)V
∗(z∗(τ)) · dz∗(τ)

dτ
+ ηC(τ)c(u∗(τ), z∗(τ)), (A.36)

for some Lagrange multiplier ηC(τ). Now, since ∇z∗(τ)V
∗(z∗(τ)) = λ̃(τ) are the costate on the optimal path

associated to the state dynamics (recall eq. (A.15)), we can recognize the right-hand side of eq. (A.36) as being the

(extended) Hamiltonian for our model. This produces the desired result eq. (A.30) of vanishing Hamiltonian for

the case with transfers, where the maximised Hamiltonian is obtained from eqs. (A.5)–(A.6), as well as for the case

without transfer, where the maximised Hamiltonian is obtained from eqs. (A.16)–(A.17).

We mentioned that the above proof is heuristic. This is so because we have not made sure that the partial

derivatives of the optimal value function exist, and it can happen that the value function is not differentiable even if

the f , h and c functions are (Liberzon, 2011). Yet it is customary in the control literature to apply proofs under the

assumption that the value function is differentiable (e.g., Dockner et al., 2000; Caputo, 2005; Sydsaeter et al., 2008;

Kamien and Schwartz, 2012), since such results often hold more generally, and a rigorous proof of the vanishing

Hamiltonian can be found in Michel (1982).

A.4 Optimisation versus best-reply

Let us now prove the last statement in the maximum principle of the main text. Suppose, g(um(t),xm(t),ur) =

g(um(t),xm(t)), µ(um(t),xm(t),ur) = µ̂(um(t),xm(t)),T (um(t),xm(t),ur) = T (um(t),xm(t)), and substitute into

eq. (2) along b (um(t),xm(t),ur) = b̂ (um(t),xm(t)) gb(ur). Then, we can write

R(um,ur) = R̂(um)gb(ur), (A.37)

where

R̂(um) =

∫ ∞

0

lm(t)b̂ (um(t),xm(t)) dt. (A.38)
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Thus, the basic reproductive number is multiplicatively separable in terms of mutant and resident properties and

where gb(ur) accounts for density-dependent regulation. Then maximizing R(um,ur) with respect to um is akin

to maximizing R̂(um). That is, solving for the uninvadable life-history becomes a pure optimisation problem,

instead of computing a best-reply. It is a standard result of evolutionary theory that when the fitness function is

multiplicatively separable in mutant and resident quantities, then evolution optimises (Metz et al., 2008).

Appendix B: Cauchy formula

B.1 General considerations

We here give a representation of the solution to the non-homogeneous linear system of ordinary differential equations

of the form dλ(t)/ dt = −A(t)λ(t)−b(t) with boundary condition λ(ζ) at t = ζ. According to the Cauchy formula,

the following solution is unique and holds for all t ∈ [0, T ]:

λ(t) = Ψ(t, ζ)

[
λ(ζ) −

∫ t

ζ

Ψ(τ, ζ)−1b(τ) dτ

]
= Ψ(t, ζ)λ(ζ) −

∫ t

ζ

Ψ(t, τ)b(τ) dτ, (B.1)

where Ψ(t, τ) is the so-called fundamental matrix satisfying

dΨ(t, τ)

dt
= −A(t)Ψ(t, τ) with i.c. Ψ(τ, τ) = I (B.2)

as well as

Ψ(t, τ) = Ψ(t, ζ)Ψ(ζ, τ) = Ψ(t, ζ)Ψ(τ, ζ)−1 (B.3)

with I being the identity matrix (e.g., Athans and Falb, 2007, pp. 127–130, Weber, 2011, pp. 69–72, Aseev and

Kryazhimskiy, 2008, eq. 15). The ith column of Ψ(t, τ) is the solution λ(t) of the system dλ(t)/ dt = −A(t)λ(t) at

time t when the initial condition λ(τ) at time τ is the standard basis with unit value at entry i, zero otherwise.

For the multidimensional case, there is no analytic representation for Ψ(t, τ) when the system has variable

coefficients and various method have been developed to evaluate it Ψ(t, τ) (Weber, 2011, p. 71). But if the system

is one-dimensional, namely, dλ(t)/ dt = −a(t)λ(t) − b(t) with b.c. λ(ζ) at t = ζ, then the solution to eq. (B.3) is

Ψ(t, τ) = exp
(
−
∫ t

τ
a(h) dh

)
and recalling that

∫ t

τ
f(h) dh = −

∫ τ

t
f(h) dh, we can write the Cauchy formula as

λ(t) = exp

(∫ ζ

t

a(h) dh

)
λ(ζ) +

∫ ζ

t

exp

(∫ τ

t

a(h) dh

)
b(τ) dτ. (B.4)

This shows that regardless of the sign of a(h) and its pattern, a positive increase in b(τ) for at least some τ and

holding every else the same, can only increase the shadow value since Ψ(t, τ) ≥ 0. For the boundary condition taken

at the limit ζ → ∞ when λ(ζ) = 0, we further get

λ(t) =

∫ ∞

t

exp

(∫ τ

t

a(h) dh

)
b(τ) dτ, (B.5)
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and when a(h) = 0 for all h, i.e., the diffential equation reduces to dλ(t)/ dt = −b(t), we then get

λ(t) =

∫ ∞

t

b(τ) dτ. (B.6)

B.2 The value of life

We here focus on solving for the value of life eq. (26) written in terms of the short-hand notations b (t) =

b (u∗(t),x∗(t),u∗), T (t) = T (u∗(t),x∗(t),u∗), and µ(t) = µ∗(u∗(t)x∗(t),u∗), which gives

dλl(t)

dt
= − [b (t) + ηTT (t)] + µ(t)λl(t). (B.7)

Owing to eq. (B.4), using ζ = 0, and l(t) = exp
(
−
∫ t

0
µ(h) dh

)
yields

λl(t) = exp

(
−
∫ 0

t

µ(h) dh

)
λ(0) +

∫ 0

t

exp

(
−
∫ τ

t

µ(h) dh

)
[b(τ) + ηTT (τ)] dτ (B.8)

= exp

(∫ t

0

µ(h) dh

)
λ(0) −

∫ t

0

exp

(
−
∫ τ

t

µ(h) dh

)
[b(τ) + ηTT (τ)] dτ

=
1

l(t)

(
λ(0) − l(t)

∫ t

0

exp

(
−
∫ τ

t

µ(h) dh

)
[b(τ) + ηTT (τ)] dτ

)
=

1

l(t)

(
λ(0) −

∫ t

0

exp

(
−
[∫ t

0

µ(h) dh +

∫ τ

t

µ(h) dh

])
[b(τ) + ηTT (τ)] dτ

)
=

1

l(t)

(
λ(0) −

∫ t

0

exp

(
−
∫ τ

0

µ(h) dhh

)
[b(τ) + ηTT (τ)] dτ

)
=

1

l(t)

(
λ(0) −

∫ t

0

l(τ) [b(τ) + ηTT (τ)] dτ

)
=

1

l(t)

(
λ(0) − 1 + 1 −

∫ t

0

l(τ) [b(τ) + ηTT (τ)] dτ

)
=

1

l(t)

(
λ(0) − 1 +

∫ ∞

t

l(τ) [b(τ) + ηTT (τ)] dτ

)
,

where the last equality follows from see that 1 =
∫∞
0

l(τ) [b(τ) + ηTT (τ)] dτ , which follows from
∫∞
0

l(τ)T (τ) dτ = 0

and
∫∞
0

l(τ)b(τ) dτ = 1, since in any monomorphic resident population, the basic reproductive number must be one

(i.e., R(ur,ur) = 1 for all ur ∈ U [T ,U ]). Hence, we have established that

λl(t) =
(λl(0) − 1)

l(t)
+

1

l(t)

∫ ∞

t

l(τ) [b(τ) + ηTT (τ)] dτ. (B.9)

The second summand represents the current value reproductive value, which is the expected reproduction when an

individual has reached age t. This has to be finite in a population that is density-dependent regulated, since on

average every individual just replaces itself in the resident population. For the same reason, the value of life cannot

be infinite and hence the right-hand side of eq. (B.9) must converge as t → ∞. This occurs when λl(0) = 1, and

thus we have shown that for biological reasons the value of life satisfies

λl(t) =
1

l(t)

∫ ∞

t

l(τ) [b(τ) + ηTT (τ)] dτ. (B.10)
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Appendix C: Age-dependent metabolic constraint on assimilation under transfers

In this Appendix, we present the key components needed to apply the maximum principle to the scenario with

transfers when subject to the age-dependent metabolic constraint eq. (85), without deriving the complete set of

necessary conditions, as we analyse this model only numerically. The standard optimal control theory results for

inequality constraints (e.g. Caputo, 2005, Theorem 4.4. and Theorem 14.3), imply that when we have an additional

inequality constraint in the form of eq. (85), we need to augment the Hamiltonian, eq. (15), to

H(um(t),ym(t),λ(t), ηA(t),ur) = lm(t)
[
b (um(t),xm(t),ur) − λl(t)µ (um(t),xm(t),ur)

]
+ λx(t) · g(um(t),xm(t),ur) + η(t)T (um(t),xm(t),ur) + ηA(t) [Amax(xm(t)) −A(um(t),xm(t))] , (C.1)

where

Amax(xm(t)) −A(um(t),xm(t)) ≥ 0, (C.2)

is the inequality constraint (85) of the main text where xm(t) = km(t), qm(t), but we have re-arranged to be of the

standard form (see e.g. Caputo, 2005, p. 104–105). Formally, the shadow value ηA(t) ≥ 0 is a Lagrange multiplier

associated with the inequality constraint (C.2) and the Hamiltonian augmented with inequality constraints is

usually called a Lagrangian (see Caputo, 2005, p. 105). The necessary conditions for maximising eq. (C.1) subject

to eq. (C.2) include the complementary slackness condition

ηA(t) ≥ 0, ηA(t) [Amax(xm(t)) −A(um(t),xm(t))] = 0, (C.3)

which requires that either the constraint (C.2) be binding (Amax(xm(t)) = A(um(t),xm(t))) or the Langrange

multiplier ηA(t) is zero. Given the augmented Hamiltonian (C.1) and the complementary slackness condition (C.3),

the necessary first-order conditions follow from standard optimal control theory (see e.g. Caputo, 2005, Chapter

14).

Appendix D: Consistency of numerical solutions and analytical expressions obtained

from the maximum principle

In this section, we verify that our numerically obtained uninvadable trait values g∗(t), b∗(t), z∗(t), and µ∗(t) using

the GPOPS-II optimal control solver (Fig. 1 panels (a) and (c)) satisfy the maximum principle (recall, eq. (18)–

(25)). Specifically, we verify that these solutions satisfy both (i) the first-order conditions, where the selection

gradients are given by eqs. (51)–(54) (with transfers) and eqs. (67)–(70) (without transfers) and (ii) the vanishing

maximised Hamiltonian condition eq. (35). Fig. S4 in S.I. displays both the numerical solutions (bullets) and

analytical predictions (solid and dashed lines) for the evolving traits, demonstrating close agreement between them.

We next detail how we obtained the analytical predictions displayed in Fig. S4 in S.I..

We first derive explicit expressions for traits z∗(t) and µ∗(t) from the first-order conditions of the maximum

principle given by eqs. (52), (54) (with transfers) and eqs. (68), and (70) (without transfers). Since z∗(t) and µ∗(t)
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enter nonlinearly into the Hamiltonian (eq. (50) with transfers and eq. (66) without transfers), they are expected

to take interior solutions rather than boundary values. We thus obtain expressions for z∗(t) and µ∗(t) by setting

the first-order conditions to zero (i.e., ∂H(t)/∂zm(t)|∗ = 0 and ∂H(t)/∂µm(t)|∗ = 0 assuming eqs. (81)–(84)) and

solve explicitly for z∗(t) and µ∗(t). For our parameter values of interest, κ = 2, these interior solutions take the

following forms

z∗(t) =
λq(t)

2αqηTk∗(t)l∗(t)
(with transfers), (D.1)

µ∗(t) =

√
αµηT
λl(t)

+ µ0 (with transfers), (D.2)

z∗(t) =
λq(t)

2αqk∗(t)λk(t)
(without transfers), (D.3)

µ∗(t) =

√
αµλk(t)

αλ(t)l∗(t)
+ µ0 (without transfers). (D.4)

These expressions for z∗(t) and µ∗(t) depend on k∗(t), l∗(t), λl(t), λk(t), λq(t), ηT, which we obtain numerically

from the GPOPS solver. In Fig. S4 in S.I., we show that the numerical values for z∗(t) and µ∗(t) (red and pink

bullets, respectively) obtained from solving the optimal control problem with GPOPS directly match closely with

the analytically obtained predictions eq. (D.1)–(D.4) (red and pink solid lines, respectively).

Second, we notice that the traits g∗(t) and b∗(t) enter linearly in the Hamiltonian (eq. (50) with transfers and

eq. (66) without transfers), and they take values at the boundaries of the feasible control space (recall, eq. (17) and

section 4.1 of the main text) whereby the feasible control space for g∗(t) and b∗(t) for the scenario with transfers

is [0, gmax] and [0, bmax], respectively. For the scenario without transfers, the controls are restricted by the budget

balance constraint, eq. (65). At specific ages, these controls switch between boundary values, creating discrete

switching times that we determined as follows. For growth, we determined that growth is positive g∗(t) > 0 from

birth until the switching time t∗g, which are roots to eq. (63) (with transfers) and eq. (79) (without transfers). We

also determined that there is no reproduction until t∗b, which are roots to eq. (64) (with transfers) and eq. (80)

(without transfers). After age t∗b, the birth rate remains b∗(t) > 0 for the case without transfers, while for the case

of transfers, there is a second switch time t∗m, also determined by eq. (64), after which b∗(t) = 0. From the boundary

constraints for the two scenarios, we have that for the case of transfers, we have g∗pred(t) = gmax and b∗(t) = bmax,

whenever g∗(t) > 0 and b∗(t) > 0. For the scenario without transfers, we assumed that reproduction follows growth

and thus from eq. (65) we have that

g∗(t) =
P (k∗(t), q∗(t)) − e(µ∗(t)) − d(k∗(t), z∗(t))

α
(D.5)

when g∗(t) > 0 and

b∗(t) =
P (k∗(t), q∗(t)) − e(µ∗(t)) − d(k∗(t), z∗(t))

G(P (k∗(t), q∗(t)))
(D.6)

whenever b∗(t) > 0.

Third, we also verified the consistency of the results with the vanishing maximised Hamiltonian condition, which

yields an explicit expression for the mortality rate (recall eq. (35)). For this consistency check, we derived the explicit
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formula for the uninvadible mortality schedule µ∗ for our worked-out example, by substituting eqs. (40)–(43) into

(35) to obtain

µ∗(t) =


b∗(t) + λc

k(t)g∗(t) + λc
q(t)(z∗(t) − ϵ) + ηT(t)T (u∗(t),x∗(t),u∗)

λl(t)
− µe with transfers

b∗(t) + λc
k(t)g∗(t) + λc

q(t)(z∗(t) − ϵ)

λl(t)
− µe without transfers.

(D.7)

In summary, we first determined the expressions for z∗(t) and µ∗(t) consistent with the first-order condition.

Then, using these results, we determined the switching times and boundary conditions for g∗ and b∗. Finally, we

also obtained an expression for µ∗(t) from the vanishing maximised Hamiltonian condition. Fig. S4 in S.I. we show

that the numerically obtained evolving traits (bullets) match with the prediction based on the maximum principle

(solid lines) and for the expression of mortality µ∗(t) on the uninvadable path (shown in dashed pink line in Fig. S4

in S.I.).
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André, J.-B. and F. Rousset. 2020. Does extrinsic mortality accelerate the pace of life? A bare-bones approach.

Evolution and Human Behavior 41:486–492.

Aseev, S. M. and A. Kryazhimskiy. 2008. Shadow prices in infinite-horizon optimal control problems with dominating

discounts. Applied Mathematics and Computation 204:519–531.

Athans, M. and P. L. Falb. 2007. Optimal control: an introduction to the theory and its applications. Dover

Publications, New York (Original work published 1966).

Avila, P. and L. Lehmann. 2023. Life history and deleterious mutation rate coevolution. Journal of Theoretical

Biology 573:111598.

Avila, P. and C. Mullon. 2023. Evolutionary game theory and the adaptive dynamics approach: adaptation where

individuals interact. Philosophical Transactions of the Royal Society B 378:615255.

Avila, P., T. Priklopil, and L. Lehmann. 2021. Hamilton’s rule, gradual evolution, and the optimal (feedback)

control of phenotypically plastic traits. Journal of Theoretical Biology 526:110602.

Bryson, A. E. and Y.-C. Ho. 1975. Applied optimal control: optimization, estimation and control. CRC Press, New

York.

Bulmer, M. G. 1994. Theoretical evolutionary ecology. Sinauer Associates, Massachusetts.

Caputo, M. R. 2005. Foundations of dynamic economic analysis. Cambridge University Press, Cambridge, UK.

Caswell, H. 2000. Matrix population models. Sinauer Associates, Massachusetts.

Charlesworth, B. 1994. Evolution in age-structured populations. Cambridge University Press, Cambridge, 2th edn.

Chu, C. C., H.-K. Chien, and R. D. Lee. 2008. Explaining the optimality of U-shaped age-specific mortality.

Theoretical Population Biology 73:171–180.

Chu, C. C. and R. D. Lee. 2006. The co-evolution of intergenerational transfers and longevity: an optimal life

history approach. Theoretical Population Biology 69:193–201.
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Table 1: Summary of key variables in Sections 2 and 3 and their biological meanings

Variable Symbol Biological Meaning
Fitness proxy, control, and state variables
Age t ∈ T = [0,∞) Age of an individual throughout its lifespan.
Control schedule u = {u(t)}t∈T Genetically evolving multidimensional life history trait with trait expression

at age t being u(t) ∈ U ⊂ Rnu . Mutant, resident, and uninvadable controls
are noted as um(t), ur(t), u∗(t) ∈ U ⊂ Rnu , respectively.

State schedule x = {x(t)}t∈T Multidimensional quantitative state (e.g. body size, brain size, fat reserve)
with state expressed at age t being x(t) ∈ Rnx . Mutant, resident, and unin-
vadable state variables xm(t), xr(t), x∗(t) ∈ Rnx , respectively.

Survival probability lm(t), lr(t) Probability of surviving to age t of mutant and resident individuals, respec-
tively.

Basic reproductive
number

R(um,ur) Expected lifetime offspring production of an individual with trait um in a
population of resident individuals expressing trait ur.

Vital rates and energy rates.
All rates are for an individual expressing trait um(t) in state xm(t) at age t; dependence on ur indicates dependence on
the resident population schedule.
Birth rate b(um(t),xm(t),ur) Effective fecundity at age t.
Mortality rate µ(um(t),xm(t),ur) Mortality rate at age t.
State dynamics g(um(t),xm(t),ur) Rate of change of states at age t.
Production rate P (um(t),xm(t),ur) Gross rate of energy produced/collected at age t.
Assimilation rate A(um(t),xm(t)) Rate of energy consumed by the organism at age t.
Transfer rate T (um(t),xm(t),ur) Net energy transfer rate (production minus assimilation) at age t.
Reproduction cost Eb(um(t),xm(t)) Rate of energy allocated to reproduction at age t.
Survival cost Eµ(um(t),xm(t)) Rate of energy allocated to survival at age t.
Growth cost Ex(um(t),xm(t)) Rate of energy allocated to physiological state growth at age t.
Maintenance cost EM(um(t),xm(t)) Rate of energy allocated to maintenance at age t.
Fitness increase rate and shadow values
Hamiltonian H(t) The rate of fitness increase of a mutant individual at age t through re-

production, survival, and changes in somatic physiological state. Formally,
H(t) = H(um(t),ym(t),λ(t),ur), where ym(t) = (xm(t), lm(t)).

Shadow value of
energy

η(t) Marginal effect of transferring energy on remaining fitness evaluated in the
resident population.

Shadow value of
metabolic capacity

ηA(t) Marginal fitness benefit of increasing metabolic capacity at age t. When
ηA(t) > 0, the organism is operating at its maximal metabolic capacity
Amax(t) and would benefit from higher capacity. When ηA(t) = 0, the organ-
ism assimilates less energy than its maximal metabolic capacity.

Value of life λl(t) Marginal effect of increasing survival lm(t) on remaining fitness evaluated in
the resident population.

Shadow value of state λx(t) Vector of marginal effects of increasing the multidimensional physiological
state on remaining fitness evaluated in the resident population.

Fisher’s reproductive
value

vF(t) Expected future reproduction from age t onward evaluated in the resident
population.

Transfer value vT(t) Remaining net energy transfer from age t onward evaluated in the resident
population.
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Table 2: Summary of variables in Section 4 and their biological meanings

Variable Symbol Biological Meaning
Control variables (evolving traits)
Birth rate allocation bm(t) Rate of resource allocation to reproduction. Without transfers bm(t) ∈ R+

and with transfers bm(t) ∈ [0, bmax], where bmax is the maximal birth rate
from the scenario without transfers (see section 4.1 for more details).

Growth rate gm(t) Rate of somatic capital growth. Without transfers gm(t) ∈ R+ and with
transfers gm(t) ∈ [0, gmax], where gmax is the maximal growth rate from the
scenario without transfers.

Mortality rate µm(t) ∈ R+ Mortality conceived as a trait.
Quality investment zm(t) ∈ R+ Rate of investment in somatic quality maintenance.
State and costate variables
Somatic quantity km(t) Amount/size of somatic capital (e.g., body mass, brain size) at age t.
Somatic quality qm(t) Quality/efficiency of somatic capital at age t.
Survival probability lm(t) Probability of surviving to age t.
Shadow value of
somatic quantity

λk(t) Marginal effect of increasing somatic quantity on remaining fitness evaluated
in the resident population.

Shadow value of
somatic quality

λq(t) Marginal effect of increasing somatic quality on remaining fitness evaluated
in the resident population.

Value of life λl(t) Marginal effect of increasing survival lm(t) on remaining fitness evaluated in
the resident population.

Energy variables
Production rate P (km(t), qm(t)) Gross rate of total energy produced/collected. In the worked-out example,

we assume P (km(t), qm(t)) = a[km(t)]cqm(t).
Reproduction energy Eb(bm(t), km(t), qm(t)) Energy allocated to reproduction, Eb(bm(t), km(t), qm(t)) =

G(P (km(t), qm(t)))bm(t). In the worked-out example, we assume
G(P (km(t), qm(t))) = αb exp(−rbP (km(t), qm(t))).

Somatic quantity
energy

Ek(gm(t)) Energy allocated to increase the somatic quantity, Ek(gm(t)) = αgm(t).

Survival energy Eµ(u(t)) Energy allocated to survival. In the worked-out example, we assume
Eµ(u(t)) = e(u(t)) = αµ/(µm(t)− µ0).

Maintenance energy Eq(km(t), zm(t)) Energy allocated to quality maintenance. In the worked-out example, we
assume Eq(km(t), zm(t)) = d(km(t), zm(t)) = αq[zm(t)]κkm(t).

Parameters
Reproduction cost αb Parameter adjusting the energy cost per unit of reproduction.
Growth cost α Energy cost per unit of increasing somatic capital.
Survival cost αµ Parameter adjusting the energy cost per unit of allocating resources to in-

crease survival.
Maintenance cost αq Parameter adjusting the energy cost per unit of increasing the quality of

somatic capital.
Quality depreciation ϵ Baseline degradation rate of somatic quality.
External mortality µe External mortality
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Table 3: Key results on parameter variation analysis

Finding Without transfers With transfers Biological Relevance

Energy produc-
tivity

Limited early investment Enhanced early somatic investment
yields higher lifetime productivity

High productivity and high
energy expenditure over
lifespan, extended human
juvenile dependency

Life phases 2-phase: growth, reproduc-
tion

4-phase: growth (T < 0), mixed growth
and reproduction (T < 0), reproduction
(T > 0), post-reproductive (T > 0)

Post-reproductive lifespan is
an outcome of life history
optimisation under transfers

Mortality sched-
ule

U-shaped (lowest at the end
of growth)

U-shaped (lowest at the end of growth),
but overall lower mortality

Transfers lead to higher
longevity

Maintenance
schedule

U-shaped (low early, spike
late)

Dome-shaped (peaks before reproduc-
tion), but overall higher quality main-
tenance

Transfers lead to higher
quality maintenance

Shadow value of
energy (η(t))

Highest in young (very
strong), decreases through-
out life

Highest in young (moderate), decreases
throughout life

Evolution of parental care

Maintenance
cost (αq)

Scenarios converge under
lower αq, no ageing

Scenarios converge, no ageing Negligible senescence can
occur when αq is low enough

External mortal-
ity (me)

Increased me leads to
“faster” life history strategy

Increased me leads to “faster” life his-
tory strategy, but the effect is smaller
compared to the case without transfers

Transfers mitigate some of
the effect of high external
mortality.

Quality depreci-
ation rate (ϵ)

Lower ϵ increases invest-
ment into soma, longer
lifepan

Lower ϵ increases more investment into
soma, longer lifepan. Amplifies the
effects of transfers, creating stronger
divergence between the case without
transfers.

Transfer and longevity mu-
tually reinforce when the so-
matic depreciation rate ϵ is
low.
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Figure 1: Uninvadable life history rates (evolving traits) with and without intergenerational trans-
fers. Panels show age-specific reproduction (b∗, blue), somatic quality maintenance (z∗, red), growth (g∗, yellow),
and mortality (µ∗, purple) for scenarios (a) without and (b) with transfers. Model outputs are rescaled to a human-
like timeframe for ease of interpretation, tyears = tmodel × 4.5, and the plotted rates are u∗

years = u∗
model/4.5.

This scaling is illustrative rather than a calibration to empirical human data. See S.I. for the unscaled numerical
solutions. Parameter values: αb = 2, α = 2, αq = 40, αµ = 0.05, me = 0.01, m0 = 0.00001, rb = 0.001, a = 1,
c = 0.75, x0 = 1, q0 = 1, ϵ = 0.1, κ = 2, ξ = 1. Results plotted for survival l∗(t) > 0.01.
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Figure 2: Uninvadable life history phases and energy economics under the two budget constraints.
Panel (a): without transfers: two phases, juvenile growth (green area) followed by reproduction (red area), with
production equal to assimilation throughout (P ∗(t) = A∗(t), blue line). Panel (b): with transfers without age-
specific energy balance (P ∗(t) ̸= A∗(t), blue and red lines), two new phases emerge: continued growth after
reproduction (yellow area) and post-reproductive phase (purple area). Individuals are net-energy consumers until
growth stops (T ∗(t) < 0, negative, purple line). Parameter values and scaling details are given as in Figure 1.
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State variables and energy production Shadow-values of state variables and energy

Figure 3: Uninvadable state variables, energy production, and corresponding shadow values across
lifespan with and without transfers. The values without transfers (blue), with transfers (yellow). Left column:
survival probability l∗(t) (a), somatic capital k∗(t) (b), somatic quality q∗(t) (c), and energy production P ∗(t) (d).
Right column: value of life λl(t) (e), shadow value of somatic capital λk(t) (f), shadow value of somatic quality
q∗(t) (g), shadow value of energy: η(t) = ηTl

∗(t) (transfers), η(t) = ηC(t) (without transfers) (h). Parameter values
and scaling details are given as in Figure 1.
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Figure 4: Uninvadable life history rates (evolving traits) with intergenerational transfers assuming
Kleiber’s law in assimilated metabolic capacity. Panels show age-specific reproduction (b∗, blue), somatic
quality maintenance (z∗, red), growth (g∗, yellow), and mortality (µ∗, purple). Panel (a) low metabolic capacity
amax = 1.1 and panel (b) high metabolic capacity amax = 1.3. For comparison, the model outputs are rescaled:
tyears = tmodel × 4.5, and the plotted rates are u∗

years = u∗
model/4.5. Parameter values for the unscaled model:

αb = 2, α = 2, αq = 40, αµ = 2, ζ = 40, me = 0.01, m0 = 0.00001, rb = 0.001, a = 1, c = 0.75, x0 = 1, q0 = 1,
ϵ = 0.1, κ = 2, ξ = 1. Results plotted for survival l∗(t) > 0.01.

Figure 5: Uninvadable life history phases and energy economics with intergenerational transfers
assuming Kleiber’s law in assimilated metabolic capacity. Panel (a) low metabolic capacity amax = 1.1
and panel (b) high metabolic capacity amax = 1.3. Here, there are three life-history phases: juvenile growth (green
area), adult reproduction (red area), a post-reproductive phase (purple area). Transfers become positive at the end
of the reproductive phase. Parameter values and scaling details are given as in Figure 4.
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Figure 6: Uninvadable state variables, energy production, and corresponding shadow values across
lifespan with intergenerational transfers assuming Kleiber’s law in assimilated metabolic capacity.
The values low metabolic capacity amax = 1.1 (blue) and high metabolic capacity amax = 1.3 (yellow). Left column:
survival probability l∗(t) (a), somatic capital k∗(t) (b), somatic quality q∗(t) (c), and energy production P ∗(t) (d).
Right column: value of life λl(t) (e), shadow value of somatic capital λk(t) (f), shadow value of somatic quality
q∗(t) (g), shadow value of energy η(t) = ηTl

∗(t) (transfers) and η(t) = ηC(t) (without transfers), shadow value ηA(t)
associated with the metabolic constraint Amax(t) (h). Parameter values and scaling details are given as in Figure
4.
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Supplementary Information:

“Life-history evolution and uninvadable mortality schedules

with an without intergenerational energy transfers”

In this Supplementary Information (S.I.), we provide additional details on our numerical results. For ease of

comparison and reproducibility, all figures here use the unscaled time units. The baseline model from the main text,

given in Figs. 1–3, is reproduced in unscaled form in Figs. S2–S4. We first present a validation of the numerical

solutions against analytical predictions (Section S1), followed by sensitivity analyses examining how key parameters

affect our results (Section S2).

S1 Numerical validation of analytical predictions

To verify the accuracy of our numerical solutions, we compare the results obtained using the GPOPS-II optimal

control solver against the analytical predictions derived from the first-order conditions of Pontryagin’s maximum

principle (see Appendix D of the main text for details). Fig. S1 illustrates this comparison for the baseline parameter

values. These baseline results appear as Figs. 1–3 in the main text (Figs. S2–S4 presented in this S.I. show the same

results in unscaled time units). The close agreement between numerical results (shown as bullets) and analytical

predictions (solid lines) in Fig. S1 shows the agreement between analytical and numerical results. The dashed

pink line displays the mortality rate when the Hamiltonian equals zero, providing an additional consistency check

between analytics and numerics. Similar figures illustrating the agreement between numerical results and analytical

predictions are provided at the end of each sensitivity analysis in Section S2.

S2 Parameter variation analyses

We now examine how variations in key model parameters affect our main results. Each subsection below explores

the effect of changing a single parameter relative to the baseline case (Figs. S2–S4).

S2.1 The effect of the marginal cost of maintenance

Our analysis reveals that ageing, characterised by increasing mortality and declining fertility, is not an inevitable

outcome of the life history model presented in Section 4 of the main text, but rather emerges from the assumption

that the somatic maintenance costs are high enough. We demonstrate this by reducing the marginal cost of

1



quality maintenance by 25% (from αq = 40 in our baseline case Figs. S2–S4 to αq = 30 in Figs. S5–S7), which

produces dramatically different life histories. We observe from Fig. S5 panels (a) and (c) that actuarial and

reproductive ageing appears negligible under both budget-constraint scenarios (µ∗(t) ≈ const. and b∗(t) ≈ const.

after reproductive maturity has been reached, from age t ≈ 25 onward). Note that the results here are plotted

for survival l∗(t) > 0.001, which is a period of life, when natural selection can meaningfully optimise life history

traits and that the expected lifespan based on external mortality alone for this parameter combination is 100

years. We recall that the mortality rate µ∗(t) appearing constant is composed of an external mortality µe = 0.001

component and some additional component because energy devoted to lowering mortality is bounded (Eµ(t) < ∞,

recall our assumptions eqs. (40), (46) and (83)). Furthermore, we find that the energetic advantages conferred by

intergenerational transfers largely disappear. Although the transfer scenario allows slightly faster juvenile growth

(Fig. S7 panel (b)), both scenarios converge to nearly identical somatic capital and production levels (Fig. S7 panel

(d)). The quality of the somatic quantity is maintained throughout the lifespan (Fig. S7 panel (c)). The transfer

scenario produces a unique three-phase life history (Fig. S6 panel (b)), which differs from the baseline scenario,

where senescence occurs (Fig. S3 panel (b)). Here, we can observe from Fig. S6 panel (b) that the life history

follows three phases: (i) a juvenile growth phase with juveniles being energy consumers, (ii) a pre-reproductive

producer phase where individuals generate energy surpluses for transfers while neither growing nor reproducing,

and (iii) a reproductive phase during which energy balance is maintained. Thus, we find that the no-transfer

scenario maintains the classic two-phase pattern of juvenile growth followed by adult reproduction. In contrast, the

transfer scenario creates a unique life cycle in which resource transfers occur in a narrow window after growth ceases

but before reproduction begins. This temporal specialisation enables faster juvenile growth and slightly extended

lifespans, although both scenarios ultimately achieve similar levels of adult somatic capital and maintain quality

throughout life.

An important question is whether the approximately constant mortality observed in Fig. S5 represents a true

stationary state or whether senescence eventually emerges at later ages, as we do observe the value of life declining

at later ages (Fig. S7 panel (f)). Since we have external mortality causing survival l∗(t) → 0 as t → ∞, this

means that traits that affect vital rates beyond some age t > t′ when l∗(t′) ≈ 0 will have a negligible contribution

to fitness (this is the so-called “selection shadow”). This means that the optimal control solvers like GPOPS-II

are not able to optimise traits affecting vital rates for ages t > t′. However, we are also not able to analyse the

systems without external mortality. In fact, optimal control solvers like GPOPS-II are not well suited for steady-

state problems where control variables reach constant values, as such problems become numerically degenerate.

Therefore, we do not interpret solutions at late ages where l∗(t′) ≈ 0. Importantly, this numerical limitation aligns

with the fundamental biological constraint brought forth by external mortality. Natural selection operates only on

phenotypes expressed in organisms with non-negligible survival probability. Thus, the presence of external mortality

renders the distinction between true asymptotic stationarity and eventual senescence beyond some negligible survival

threshold biologically immaterial. Characterising life history solutions within the window before for ages t < t′ when

l∗(t′) ≈ 0, as we do here, is practically sufficient for understanding evolutionary outcomes and making predictions

that can be empirically verified.

These results suggest that intergenerational transfers produce more pronounced differences in life history out-
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comes when somatic maintenance costs are high enough to induce ageing within the expected lifespan before death

due to external mortality. Under such conditions, when ageing occurs, the benefits of transfers in terms of total

energy produced over a lifespan become more substantial, potentially creating stronger selection for compensatory

resource flows across generations. When somatic maintenance is relatively inexpensive and ageing is absent, the

impact of transfers on life history evolution is more modest, resulting in relatively similar outcomes in terms of

somatic capital accumulation and lifespan. Fig. S8 confirms the consistency between analytical and numerical

results for this parameter combination.

S2.2 The effect of external mortality

Our analysis reveals that higher external mortality rates (fourfold increase from me = 0.01 in Figs. S2–S4 to

me = 0.04 in Figs. S9–S11) produce results consistent with standard results on external mortality in classical life

history theory. In particular, we observe that increased external mortality induces shorter growth phases, decreased

investment into somatic quantity, earlier onset of reproduction, decreased investment in maintenance and survival,

and higher fecundity rate. However, our novel finding here is that higher external mortality causes a life history

strategy to be more “front loaded”, with greater assimilation of resources during the earlier stages of life and a

steeper decline in the value of energy over time. Fig. S12 confirms the consistency between analytical and numerical

results for this parameter combination.

S2.3 The effect of quality depreciation rate

The baseline quality depreciation rate ϵ (recall eq. (43) of the main text) can be interpreted as the natural rate

at which the soma degrades (e.g. via natural cellular damage, oxidative stress, external assaults) if there is no

investment into somatic maintenance. In Figs. S13–S15 we illustrate the results, where the quality depreciation

rate has been decreased from ϵ = 0.1 to ϵ = 0.09 (compared to the baseline scenario Figs. S2–S4). Unsurprisingly,

we observe that quality depreciation begins in later phases of development when the baseline depreciation rate is

lower, particularly in the transfers scenario. In the no-transfers scenario, we observe a “growth spurt” phenomenon

during which somatic quality begins to degrade. This lower depreciation rate enables a longer period of growth

and greater investment into somatic quantity, ultimately allowing for extended lifespans. Thus, a lower baseline

depreciation rate enhances the benefits from transitioning from no transfers to transfers. Fig. S16 confirms the

consistency between analytical and numerical results for this parameter combination.
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Figure S1: Numerical validation for the unscaled baseline model for scenarios without transfers
(panel a) and transfers (panel b). Age-specific reproduction (b∗, blue), somatic quality maintenance (z∗, red),
growth (g∗, yellow), and mortality (µ∗, purple) for scenarios without transfers (panel a) and with transfers (panel c).
Numerical results (bullets) with the predicted values for the evolving traits obtained from the first-order conditions
for the maximum principle (solid lines) and the mortality on the uninvadable path (dashed pink line). See Appendix
D for further details. Parameter values: αb = 2, αx = 2, αq = 40, αµ = 2, ζ = 40, me = 0.04, m0 = 0.00001,
rb = 0.001, a = 1, c = 0.75, x0 = 1, q0 = 1, ϵ = 0.1, κ = 2. Results plotted for survival l∗(t) > 0.001. Under
the case with transfers, growth and reproduction rate are capped by bmax = gmax = 0.3, which corresponds to the
highest growth/reproduction rate under the case without transfers.
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Figure S2: Unscaled baseline model. Uninvadable life history rates and assimilated energy with and
without intergenerational transfers. Age-specific reproduction (b∗, blue), somatic quality maintenance (z∗,
red), growth (g∗, yellow), and mortality (µ∗, purple) for scenarios without transfers (panel a) and with transfers
(panel c). Corresponding assimilated energy allocation rate to reproduction (Eb(t), blue), somatic maintenance
(Eq(t), red), growth (Ek(t), yellow), and survival (Eµ(t), purple) for scenarios without transfers (panel b) and with
transfers (panel d). Parameter values: αb = 2, αx = 2, αq = 40, αµ = 2, ζ = 40, me = 0.04, m0 = 0.00001,
rb = 0.001, a = 1, c = 0.75, x0 = 1, q0 = 1, ϵ = 0.1, κ = 2. Results plotted for survival l∗(t) > 0.001. Under
the case with transfers, growth and reproduction rate are capped by bmax = gmax = 0.3, which corresponds to the
highest growth/reproduction rate under the case without transfers.
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Figure S3: Unscaled baseline model. Uninvadable life history phases and energy economics; compar-
ison between life history without transfers (panel a) and with transfers (panel b). Under the classical
life history scenario (no transfers, panel a), there are two distinct phases: (i) a juvenile growth phase and (ii) a
reproductive phase. Intergenerational transfers (panel b) create four distinct life history phases: (i) growth phase,
during which individuals are net energy consumers (ii) mixed growth and reproduction, during which individuals
are mostly at net energy balance; (iii) reproduction phase, during which individuals are net energy producers; (iv)
reproductive phase, during which individuals become net energy balance. Parameter values are the same as in
Figure S2.
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Figure S4: Unscaled baseline model. Uninvadable state and costate variables (shadow-values). The
values without transfers (blue), with transfers (yellow). Left column: survival probability l∗(t) (a), somatic capital
k∗(t) (b), somatic quality q∗(t) (c), and energy production P ∗(t) (d). Right column: value of life λl(t) (e), shadow
value of somatic capital λk(t) (f), shadow value of somatic quality q∗(t) (g), shadow value of energy: η(t) = ηTl

∗(t)
(transfers), η(t) = ηC(t) (without transfers) (h). Parameter values and scaling details are given as in Figure S2.
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(a) Evolving traits (no transfers).
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(c) Evolving traits (transfers).
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(b) Assimilated energy allocation (no transfers).

0 20 40 60 80 100 120

0

0.5

1

1.5

2

2.5

3

3.5

4
(d) Assimilated energy allocation (transfers)

Figure S5: Negligible senescence after reaching reproductive maturity. Uninvadable life history rates
and assimilated energy with and without intergenerational transfers. Age-specific reproduction (b∗, blue),
somatic quality maintenance (z∗, red), growth (g∗, yellow), and mortality (µ∗, purple) for scenarios without transfers
(panel a) and with transfers (panel c). Corresponding assimilated energy allocation rate to reproduction (Eb(t),
blue), somatic maintenance (Eq(t), red), growth (Ek(t), yellow), and survival (Eµ(t), purple) for scenarios without
transfers (panel b) and with transfers (panel d). Parameter values: same as in Fig. S2, except αq = 30, i.e. the
marginal cost of maintenance of somatic capital is 25% smaller compared to the baseline case. Under the transfer
scenario, growth and reproduction rates are capped at bmax = gmax = 0.82, corresponding to the maximum rates
observed without transfers.
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Figure S6: Negligible senescence after reaching reproductive maturity. Uninvadable life history
phases and energy economics: comparison between life history without transfers (panel a) and with
transfers (panel b). Under the classical life history scenario (no transfers, panel a), there are two distinct phases:
(i) a juvenile growth phase and (ii) a reproductive phase. Here, intergenerational transfers (panel b) create three
distinct life history phases: (i) juvenile growth, during which individuals are net energy consumers; (ii) simultaneous
growth and reproduction, during which individuals are net energy producers; (iii) reproductive phase, during which
individuals are in net energy balance. Parameter values are as in Figure S5.

9



10
-4

10
-3

10
-2

10
-1

10
0

(a)

0

5

10

15
(b)

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

1.2
(c)

0 20 40 60 80 100 120

0

2

4

6

8
(d)

0

5

10

15

20
(e)

0

0.5

1

1.5

2

2.5
(f)

0 20 40 60 80 100 120

0

5

10

15 (g)

0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

(h)

State variables and energy production Shadow-values of state variables and energy

Figure S7: Negligible senescence after reaching reproductive maturity. Uninvadable state and costate
variables (shadow-values). The values without transfers (blue), with transfers (yellow). Left column: survival
probability l∗(t) (a), somatic capital k∗(t) (b), somatic quality q∗(t) (c), and energy production P ∗(t) (d). Right
column: value of life λl(t) (e), shadow value of somatic capital λk(t) (f), shadow value of somatic quality q∗(t) (g),
shadow value of energy: η(t) = ηTl

∗(t) (transfers), η(t) = ηC(t) (without transfers) (h). Note that here we observe
that survival l∗(t) in panel (a) appears as a linearly declining function (in log scale), in contrast to Fig. S4 panel
(a). Parameter values are as in Figure S5.
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(a) Evolving traits (no transfers).
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(b) Evolving traits (transfers).

Figure S8: Negligible senescence after reaching reproductive maturity. Numerical validation for
scenarios without transfers (panel a) and transfers (panel b). Numerical results (bullets) with the predicted
values for the evolving traits obtained from the first-order conditions for the maximum principle (solid lines) and
the mortality on the uninvadable path (dashed pink line). See Appendix D for further details. Parameter values as
in Figure S5.
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(c) Evolving traits (transfers).
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(b) Assimilated energy allocation (no transfers).

0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Figure S9: The effect of increased external mortality. Uninvadable life history rates and assimilated
energy with and without intergenerational transfers. Age-specific reproduction (b∗, blue), somatic quality
maintenance (z∗, red), growth (g∗, yellow), and mortality (µ∗, purple) for scenarios without transfers (panel a) and
with transfers (panel c). Corresponding assimilated energy allocation rate to reproduction (Eb(t), blue), somatic
maintenance (Eq(t), red), growth (Ek(t), yellow), and survival (Eµ(t), purple) for scenarios without transfers (panel
b) and with transfers (panel d). Parameter values: same as in Fig. S2, exceptme = 0.04. Results plotted for survival
l∗(t) > 0.001. Under the case with transfers, the rates of growth and reproduction are capped by bmax = gmax = 0.3,
which corresponds to the highest growth/reproduction rate under the case without transfers.
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Figure S10: The effect of increased external mortality. Uninvadable life history phases and energy
economics; comparison between life history without transfers (panel a) and with transfers (panel
b). Under the classical life history scenario (no transfers, panel a), there are two distinct phases: (i) a juvenile
growth phase and (ii) a reproductive phase. Here, intergenerational transfers (panel b) create three distinct life
history phases: (i) mixed growth and reproduction, during which individuals are in energy deficit; (ii) reproduction
phase, during which individuals are in net energy balance; (iii) reproductive phase, during which individuals transfer
resources. Parameter values are as in Figure S9.
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Figure S11: The effect of increased external mortality. Uninvadable state and costate variables
(shadow-values). The values without transfers (blue), with transfers (yellow). Left column: survival probability
l∗(t) (a), somatic capital k∗(t) (b), somatic quality q∗(t) (c), and energy production P ∗(t) (d). Right column: value
of life λl(t) (e), shadow value of somatic capital λk(t) (f), shadow value of somatic quality q∗(t) (g), shadow value
of energy: η(t) = ηTl

∗(t) (transfers), η(t) = ηC(t) (without transfers) (h). Parameter values are as in Figure S9.
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(a) Evolving traits (no transfers).
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(b) Evolving traits (transfers).

Figure S12: The effect of increased external mortality. Numerical validation for scenarios without
transfers (panel a) and transfers (panel b). Numerical results (bullets) with the predicted values for the
evolving traits obtained from the first-order conditions for the maximum principle (solid lines) and the mortality
on the uninvadable path (dashed pink line). See Appendix D for further details. Parameter values as in Figure S9.
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(a) Evolving traits (no transfers).
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(c) Evolving traits (transfers).
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(b) Assimilated energy allocation (no transfers).
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Figure S13: The effect of a lower baseline depreciation rate of the somatic capital. Uninvadable
life history rates and assimilated energy with and without intergenerational transfers. Age-specific
reproduction (b∗, blue), somatic quality maintenance (z∗, red), growth (g∗, yellow), and mortality (µ∗, purple) for
scenarios without transfers (panel a) and with transfers (panel c). Corresponding assimilated energy allocation
rate to reproduction (Eb(t), blue), somatic maintenance (Eq(t), red), growth (Ek(t), yellow), and survival (Eµ(t),
purple) for scenarios without transfers (panel b) and with transfers (panel d). Parameter values: same as in Fig.
S2, except ϵ = 0.09. Results plotted for survival l∗(t) > 0.001. Under the case with transfers, the rates of growth
and reproduction are capped by bmax = gmax = 0.82.
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Figure S14: The effect of a lower baseline depreciation rate of the somatic capital. Uninvadable
life history phases and energy economics; comparison between life history without transfers (panel
a) and with transfers (panel b). Under the classical life history scenario (no transfers, panel a), there are
two distinct phases: (i) a juvenile growth phase and (ii) a reproductive phase. Intergenerational transfers (panel
b) create four distinct life history phases: (i) growth phase, during which individuals are net energy consumers
(ii) mixed growth and reproduction, during which individuals are mostly at net energy balance; (iii) reproduction
phase, during which individuals are net energy producers; (iv) reproductive phase, during which individuals become
net energy balance. Parameter values are the same as in Figure S13.
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Figure S15: The effect of a lower baseline depreciation rate of the somatic capital. Uninvadable
state and costate variables (shadow-values). The values without transfers (blue), with transfers (yellow). Left
column: survival probability l∗(t) (a), somatic capital k∗(t) (b), somatic quality q∗(t) (c), and energy production
P ∗(t) (d). Right column: value of life λl(t) (e), shadow value of somatic capital λk(t) (f), shadow value of somatic
quality q∗(t) (g), shadow value of energy: η(t) = ηTl

∗(t) (transfers), η(t) = ηC(t) (without transfers) (h). Parameter
values as in Figure S13.
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(a) Evolving traits (no transfers).
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(b) Evolving traits (transfers).

Figure S16: The effect of a lower baseline depreciation rate of the somatic capital. Numerical
validation for scenarios without transfers (panel a) and transfers (panel b). Numerical results (bullets)
with the predicted values for the evolving traits obtained from the first-order conditions for the maximum principle
(solid lines) and the mortality on the uninvadable path (dashed pink line). See Appendix D for further details.
Parameter values as in Figure S13.
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