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TEASER 6 

The more the merrier? Perhaps not when it comes to cooperative groups. The more 7 
group members, the fewer resources to go around, which should limit group size. 8 
So how do large groups escape this conundrum? Using data from cooperative birds, 9 
we show that groups can avoid local competition for resources and increase in size 10 
by expanding their territory sizes. A large territory means more resources. And more 11 
resources means more and merrier group members. 12 

 13 

ABSTRACT 14 

Large cooperative groups are a common sight in nature. Their existence is puzzling, 15 
however, because local competition should keep groups relatively small. A simple 16 
but untested way large groups can avoid local competition is by increasing their 17 
resource base. We conducted a systematic review and phylogenetic meta-analysis 18 
to look for evidence of this effect in wild populations of cooperatively breeding 19 
birds. Across 634 groups from 29 species, group size and resource availability 20 
(territory area) were strongly positively correlated (Pearson’s r = 0.52). Furthermore, 21 
when a specific group changed size, its territory changed size correspondingly (N = 22 
34 groups). Our results support the prediction that large groups can avoid local 23 
competition by increasing their resource base and explain a sizeable fraction of 24 
group size variation in nature (R2 = 0.27). 25 
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Local competition is a big obstacle for cooperation. At least in theory (Taylor 1992; 31 
Wilson et al. 1992; Ferrando 2024). When there is strong local competition for 32 
resources, relatives are likely to compete. This will reduce the selective advantage of 33 
cooperation because helping one relative may be costly to another. This negative 34 
effect of local competition, which is captured by extended versions of Hamilton’s 35 
rule (West et al. 2002), suggests that cooperative groups should remain relatively 36 
small. Large groups are likely to experience intense resource competition, leading 37 
to conflicts within the group, reduced fitness, dispersal of group members, and, 38 
potentially, group extinction (e.g., Curry 1988; Creel and Creel 2015; Sorato et al. 39 
2016; Nelson-Flower et al. 2018; Riehl and Smart 2022; Downing 2024). Since large 40 
cooperative groups exist in nature (Rubenstein and Abbot 2017), they must avoid 41 
local competition. The question is, how? 42 

An obvious way groups can avoid local competition is by expanding their resource 43 
base as they increase in size. This is known as increasing local carrying capacity in 44 
the theoretical literature (Platt and Bever 2009; Van Dyken 2010; Van Dyken and 45 
Wade 2012). Surprisingly, this prediction is missing empirical support, which could 46 
be due to the difficulty of finding a suitable study system. In nature, we should see a 47 
positive relationship between group size and resource availability and, when a given 48 
group changes size, its resources should change correspondingly. This means that 49 
group size needs to vary and be measurable, the resources available to these 50 
groups must also be measurable, and ideally, we would be able to follow specific 51 
groups to examine how their resources change when group size changes. A tall 52 
order. 53 

Thankfully, cooperatively breeding birds have risen to the occasion. In these birds, 54 
adult individuals feed young produced by others. Decades of research on many 55 
different species and hundreds of groups has produced the data needed to quantify 56 
the relationship between group size and resource availability (Stacey and Koenig 57 
1990; Koenig and Dickinson 2016). Group size is measured as the number of adults 58 
in a breeding unit and resource availability can be approximated by examining 59 
space use (territory area) during the breeding season. The assumption is that 60 
territory area is positively correlated with the resources group members need to 61 
feed themselves and their group's young during this period. 62 

Our aim is simple. We look for evidence that group size covaries with territory area 63 
in cooperative birds using a systematic literature search and phylogenetic meta-64 
analysis. While it seems a foregone conclusion that it must, confirming this 65 
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relationship is important as it helps us explain variation in cooperative group size in 66 
nature, which is poorly understood. 67 

 68 

MATERIALS AND METHODS 69 

Overview 70 

We conducted a systematic literature search and phylogenetic meta-analysis to 71 
quantitatively estimate the relationship between group size and territory area in 72 
cooperative birds. This involved five main steps: (1) outlining study eligibility criteria, 73 
(2) search string construction and validation to find studies meeting these criteria, (3) 74 
searching Scopus and Web of Science and screening studies, (4) calculating effect 75 
sizes and (5) using a phylogenetic meta-analytic model to estimate the mean effect 76 
size and investigating how territory size changes when group size changes. This 77 
study is pre-registered with the Open Science Foundation. 78 

 79 

Eligibility criteria 80 

To quantify the relationship between group size and territory area, studies with data 81 
had to: (1) be in English, French, or Finnish; (2) be peer reviewed research papers, 82 
pre-prints, PhD / MSc theses, or monographs / books; (3) be on cooperatively 83 
breeding birds, defined as species in which adults feed offspring other than their 84 
own; (4) be field studies on wild populations without experimental manipulations, 85 
such as supplementary feeding, nest box additions, or removal of group members; 86 
(5) provide raw data in tables, figures, supplementary information, or report relevant 87 
test statistics and sample sizes, and the data should not have been included in 88 
another study; (6) group size must be continuous, rather than binary such as small vs 89 
large groups, and should reflect the number of adults in the breeding season; (7) 90 
territory area must be continuous, not binary such as large vs small, and should 91 
reflect space use during the breeding season. This last criterion matters because 92 
space use by cooperative birds can be substantially different between breeding and 93 
non-breeding seasons (e.g., Seddon et al. 2003; Radford and du Plessis 2004; 94 
Sorato et al. 2016). These criteria were used to construct a title and abstract 95 
decision tree and a full text decision tree which were used to screen studies (Figure 96 
S1). 97 

 98 
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Search string development and validation 99 

As we required data on group size and territory area from cooperatively breeding 100 
birds, we built three substrings targeting each of these components. For each 101 
substring, we identified possible synonyms using a word cloud of the titles and 102 
abstracts of 15 benchmark papers (Table S1) which we wanted the search to return. 103 
The search string was optimised to return between 1000 and 3000 studies, which is 104 
a feasible screening target (Foo et al. 2021). The substrings were then combined in 105 
the following way 106 

(bird* AND (cooperat* OR co-operat* OR help* OR alloparent*)) AND 107 
((territor* OR habitat* OR homerange* OR home-range*) AND (size* OR 108 
qualit* OR resource* OR tree*)) AND (group* OR “group size*” OR “number 109 
of individuals”) 110 

Based on a preliminary search in Web of Science, the miss rate was 33 % (5/15 111 
benchmark papers were missing) and the hit rate was 21 % (the number of studies 112 
out of 100 chosen at random that passed to full text screening using our title and 113 
abstract decision tree). Although the miss rate was a little high, ideally none of our 114 
benchmark papers would have been missing, the hit rate was excellent and 115 
modifying the search string to improve the miss rate resulted in an extremely high 116 
number of studies being returned (>10 000). 117 

 118 

Searches and screening 119 

The search was conducted on 18.3.2024 from the University of Oulu using Scopus 120 
(topic search, default settings) and Web of Science (topic search, databases 121 
covered: Core Collection, Current Contents Connect, SciELO, Data Citation Index, 122 
Grants Index, Korean Journal Database, medline, Policy Citation Index, Preprint 123 
Citation Index, ProQuest, Research Commons, Derwent Innovations Index). We 124 
used the full range of dates covered by each platform. 125 

The Scopus search returned 370 studies and the Web of Science search returned 126 
1080 studies (Figure S2). After removing 316 duplicates (in Rayyan), the titles and 127 
abstracts of 1134 studies were screened. Of these, 956 studies were excluded 128 
based on our decision tree. We screened the full text of the remaining 178 studies 129 
using our decision tree and included 26 studies. We identified 19 additional relevant 130 
studies during full text screening of which four were included. The 1990 and 2016 131 
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cooperative breeding books (Stacey and Koenig 1990; Koenig and Dickinson 2016) 132 
were also screened, but chapters with relevant data had already been identified in 133 
our main search. 134 

Our final sample size was 30 studies. These studies represent 29 different species. 135 
The numbers are not identical because two studies reported data for more than one 136 
species (Gaston 1976; Chan and Augusteyn 2003) and three species (superb 137 
fairywren, green woodhoopoe, laughing kookaburra) were the focus of multiple 138 
studies (Table 1). 139 

 140 

Effect sizes and within-group changes 141 

We used Zr as an effect size. In our case, this is simply the correlation between 142 
group size and territory area (ha), normalised using Fisher’s z-transformation: 0.5 * 143 
ln(1+r / 1-r). The sampling variance of this effect size is 1/(N-3) where N is the 144 
number of unique groups studied (Koricheva et al. 2013). The order of preference 145 
for our effect size calculations was: (1) Spearman’s r, Pearson's r, or R2 reported in 146 
the results, (2) raw data extracted from tables (main or supplementary), (3) raw data 147 
extracted from figures or written in the text. 148 

In summary, 10 studies reported Spearman's r, six reported Pearson's r, two 149 
reported R2, three reported raw data in Tables, six reported raw data in Figures 150 
(three scatterplots, three maps), two reported data in the text, and one study 151 
reported raw data in the supplementary information (Table S2). Full details on how 152 
each effect size was calculated are provided in the supplementary data extraction 153 
file. Territory area was measured in various ways in these studies including polygons 154 
estimated statistically and those drawn by hand. As the territory areas of all groups 155 
within a study were estimated using the same method, any resulting bias will be 156 
within- rather than between-study, and should not affect the strength of each 157 
correlation. 158 

We chose to analyse the data at the species level which meant pooling effect sizes 159 
for the three species that were the focus of multiple studies: two studies on the 160 
superb fairywren, two on the green woodhoopoe, and three on the laughing 161 
kookaburra. These were pooled by taking a weighted mean effect size, based on 162 
the number of groups studied, and using the combined number of groups studied 163 
to calculate the sampling variance (supplementary data extraction file). 164 
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Twelve of the thirty studies reported how territory size was adjusted following 165 
changes in group size for specific groups. Seven of these studies made qualitative 166 
statements. Five studies on four species provided quantitative data: jungle babbler, 167 
green woodhoopoe (two studies), grey-crowned babbler, and laughing kookaburra 168 
(Table S3). This data took the form of the change in group size between breeding 169 
seasons and its corresponding change in territory area (supplementary data 170 
extraction file). 171 

 172 

Statistical analyses 173 

Publication bias and heterogeneity 174 

There was no a priori expectation that non-significant results would remain 175 
unpublished (Nakagawa et al. 2022). The studies in our sample were typically 176 
observational, reporting natural history. Consistently, of the 21 studies that tested 177 
the relationship between group size and territory area, six found no relationship, 14 178 
found a significant positive relationship and one found a significant negative 179 
relationship. However, a trim and fill analysis, which identifies and imputes the 180 
number of missing studies needed to create a symmetric funnel plot, estimated that 181 
nine studies were missing from our sample. This would change our mean effect size 182 
from 0.57 (see results) to 0.43. The fail-safe number ranged from 29 to 1598 183 
depending on the estimation method. This is the number of unpublished non-184 
significant studies needed to make our mean effect size non-significant. Finally, we 185 
used Egger's regression accounting for phylogeny to estimate the mean effect size 186 
when sampling variance is zero (i.e. the intercept = 0.49, standard error = 0.13, p < 187 
0.001). Based on a random effects meta-analytic model that did not include 188 
phylogeny, the between-study variance (Tau2) was 0.09, giving an I2 value of 63% (Q 189 
= 78.7, p < 0.001). 190 

 191 

Main analysis 192 

We estimated the mean effect size using a phylogenetic meta-analytic model in the 193 
metafor R package (Viechtbauer 2010; R Core Team 2025). Our Zr effect sizes (N = 194 
29) were weighted by the inverse of their sampling variances and we included 195 
phylogeny (from Claramunt et al. 2025, Figure S3) as a random term to account for 196 
non-independence between species. Two species were missing from the phylogeny 197 
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we used: Climacteris affinis and Cyanocorax formosus. These were swapped with 198 
two species in the same genus that were in the phylogeny: Climacteris picumnus 199 
and Cyanocorax cyanomelas. 200 

To test for within-group changes, we used linear regression with the change in 201 
territory area for each group as the response variable and the corresponding 202 
change in group size as the predictor. This model treats each group as an 203 
independent datapoint even though there are dependencies in the data. However, 204 
due to the limited number of studies (N = 5) and the number of groups studied (N = 205 
34), it was not possible to use a random intercepts and slopes model or to estimate 206 
the slope for each study separately and then pool these (two-stage analysis). This 207 
represents a clear avenue for future research. 208 

 209 

Sensitivity analyses 210 

It was unclear whether the group size estimates for four of the species in our sample 211 
included juveniles: arrow marked babbler, red-cockaded woodpecker, rufous vanga, 212 
and Seychelles warbler. For each, it seemed likely that group size was the number of 213 
adults only, however, we re-estimated the mean effect size excluding these four 214 
species. Note that our effect size estimate for the Seychelles warbler had the 215 
additional issue that it was based on simulated data from reported means and 216 
standard errors (supplementary data extraction file). 217 

For our within-group analysis, one study accounted for 65% of the data (22/34 218 
groups). We therefore re-ran our linear regression excluding this study to get an 219 
estimate of the relationship between changes in group size and territory size that 220 
gives approximately equal weight to each of the other studies (N = 12 groups from 221 
four studies). 222 

 223 

RESULTS 224 

In total, 634 different cooperative bird groups were studied in the 29 species in our 225 
sample (Table 1). The number of groups studied per species ranged from four to 226 
110. The Seychelles warbler was the most intensively studied species, with more 227 
than twice as many groups sampled as the next best studied species (the laughing 228 
kookaburra). The curl-crested jay was the least intensively studied species. In 27 229 
species, the correlation between group size and territory area was positive and in 17 230 
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of these it was significant (Figure 1). In two species, the superb fairy wren and the 231 
acorn woodpecker, there was a non-significant negative correlation between group 232 
size and territory area. 233 

Table 1. The 29 cooperative bird species included in this study with sources and details on the 234 
number of groups studied, the range of observed group sizes during the breeding season, and the 235 
presence / absence (+ / -) of territorial displays. 236 

 237 

Across species and accounting for phylogeny, the mean correlation between group 238 
size and territory area was significantly positive (Zr = 0.57, 95% CI = 0.39 to 0.76; 239 
Figure 1). This corresponds to a Pearson's correlation of 0.52, which is considered to 240 
reflect a strong relationship (<0.5 is medium and <0.1 is small). The R2 value based 241 
on this correlation coefficient is 0.27. The mean effect size after excluding four 242 
species whose group size measures might have included juveniles (arrow marked 243 
babbler, red-cockaded woodpecker, rufous vanga, and Seychelles warbler) was 244 
slightly higher than our mean estimate including them (Zr = 0.61, 95% CI = 0.44 to 245 
0.77). 246 
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 247 

Figure 1. Forest plot showing the correlation (Zr) between group size and territory area for 29 248 
cooperative birds. Each effect size is bracketed by its 95% CI. The mean effect size is the centre of 249 
the diamond whose left and right limits represent the 95% CI. 250 

Five studies on four species measured how the sizes and territory areas of 34 251 
different groups changed across breeding seasons. These were: jungle babbler, 252 
green woodhoopoe (two studies), grey-crowned babbler, and laughing kookaburra. 253 
The territories of groups that increased in size tended to expand while the territories 254 
of groups that decreased in size tended to contract (slope estimate = 5.87, 95% CI 255 
= 4.58 to 7.15; Figure 2). This relationship remained significant after removing one 256 
study on the green woodhoopoe which accounted for 65% of the data (slope 257 
estimate = 7.00, 95% CI = 5.08 to 8.92, N = 12 groups). 258 
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 259 

Figure 2. Within-group changes in group size and territory area for 34 different bird groups from five 260 
populations (four species). The slope (y = 5.87x + 2.26) is the estimate form our linear regression. 261 
Each datapoint is a different group. 262 

 263 

 264 

DISCUSSION 265 

How local competition affects cooperative group size has rarely been considered in 266 
theoretical or empirical work. If cooperative groups cannot increase their resource 267 
base, it seems logical that their sizes should be limited. Our finding that group size 268 
and territory area are positively correlated in most cooperative bird species (Figure 269 
1) supports this, indicating that resource availability and group size go hand in hand. 270 
When specific groups increased or decreased in size, their territory expanded or 271 
contracted respectively (Figure 2), further supporting the idea that large groups 272 
need extra resources to avoid local competition. 273 

We assumed that territory area is a good proxy for resource availability. Territory 274 
area in our case corresponds to space use during the breeding season. This is 275 
appropriate because the cooperative behaviour we are interested in, feeding 276 
offspring produced by others, takes place during this period and more space should 277 
mean more food. There are other 'critical' resources which affect the survival and 278 
reproduction of cooperative breeders which also correlate with group size. In our 279 
sample of studies these include: mast storage holes in acorn woodpeckers (Zr = 280 
0.30), blackberry bramble in superb fairywrens (Zr = 0.79), bull-horn acacia in white-281 
throated magpie jays (Zr = 0.59), and Eucalyptus canopy trees (Zr = 0.83) and 282 
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hollow-bearing logs (Zr = 0.55) in the rufous treecreeper. Territory area has the 283 
advantage of being comparable between species. An alternative is to use a 284 
composite 'territory quality' measure, but this has only been done in three species: 285 
Seychelles warbler (Zr = 0.60), rufous treecreeper (Zr = 0.50), red-cockaded 286 
woodpecker (Zr = 0.30). 287 

Group size and territory area were negatively correlated in the acorn woodpecker 288 
and the superb fairywren. These appear to be outliers. The effect size we used for 289 
the superb fairywren is the weighted mean of two effect sizes in opposite directions: 290 
Zr = -0.51 and 0.56. It is negative overall (Zr = -0.17) because of the difference in 291 
sample size between studies (N = 19 vs 9 respectively). For the acorn woodpecker, 292 
we excluded one study whose group size measure included juveniles (MacRoberts 293 
and MacRoberts 1976). This study reported an extremely strong correlation between 294 
group size and territory area (Zr = 1.22) which would have resulted in a positive 295 
weighted mean effect size for this species (Zr = 0.59). 296 

A potential confounding variable which was not controlled for in any study is 297 
breeder quality (Rowley 1965; Downing et al. 2020). High quality breeders may have 298 
larger territories and more offspring than poor quality breeders. This would create a 299 
positive correlation between group size and territory area in species in which groups 300 
grow via natal philopatry, independently of resource availability. Three lines of 301 
evidence suggest that group size is adjusted to resources, however, and does not 302 
simply reflect breeder quality. First, within-group changes in size are tracked by 303 
changes in territory area (Figure 2). This is unlikely to be the case if territory area is 304 
determined by breeder quality alone. Second, in 22/25 species territorial displays 305 
between groups were reported (Table 1, four species were missing data) and group 306 
size influences the outcome of such displays (eg. MacRoberts and MacRoberts 1976; 307 
Ligon and Ligon 1978; Radford 2003; Hale et al. 2003; Seddon and Tobias 2003). In 308 
just three species was there movement between groups and no displays were 309 
reported. Third, experimental manipulations in several species show that territory 310 
quality influences dispersal, and hence group size, independently of breeder quality 311 
(Komdeur 1992; Walters et al. 1992; Covas 2004; Dickinson and McGowan 2005; 312 
Baglione et al. 2006), complementing the findings of multiple long-term field 313 
studies (e.g., Stacey and Ligon 1987; Koenig et al. 1992; Pasinelli and Walters 2002; 314 
Nelson-Flower et al. 2018; Suh et al. 2020; Cousseau et al. 2020). 315 

An expanding resource base can alleviate local competition, enabling group sizes to 316 
increase, seemingly without harmful effects. Two unknowns, however, are how 317 
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resource expansion affects a group's total reproductive output and reproductive 318 
skew within the group. Territory expansions could increase the output of the 319 
dominant breeders, akin to “resource enhancement” altruism where cooperation is 320 
selected because it increases the resource supply (Van Dyken and Wade 2012), but 321 
the extra resources may allow more individuals to reproduce (e.g. Stacey and 322 
Koenig 1990; Koenig and Dickinson 2016), destabilising cooperation. More work is 323 
needed to better understand the social consequences of resource enhancement for 324 
cooperative groups. 325 

The problem of local competition does not go away once cooperation has evolved. 326 
It probably gets worse as groups become larger, even if groups can expand their 327 
resource base. Although the theoretical literature is replete with ideas on how to 328 
avoid local competition (Rodrigues and Gardner 2013), these typically do not deal 329 
with group size evolution. This leaves us with an opportunity to develop and test 330 
new theory on how extremely large cooperative groups evolved. In superorganisms, 331 
for example, public goods production in the form of agriculture, and legionary 332 
behaviour, where colonies do not have permanent nests but continuously roam, 333 
both ease local competition. In addition to microbial systems, these provide a 334 
promising avenue for future empirical work. 335 
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