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TEASER

The more the merrier? Perhaps not when it comes to cooperative groups. The more
group members, the fewer resources to go around, which should limit group size.
So how do large groups escape this conundrum? Using data from cooperative birds,
we show that groups can avoid local competition for resources and increase in size
by expanding their territory sizes. A large territory means more resources. And more

resources means more and merrier group members.

ABSTRACT

Large cooperative groups are a common sight in nature. Their existence is puzzling,
however, because local competition should keep groups relatively small. A simple
but untested way large groups can avoid local competition is by increasing their
resource base. We conducted a systematic review and phylogenetic meta-analysis
to look for evidence of this effect in wild populations of cooperatively breeding
birds. Across 634 groups from 29 species, group size and resource availability
(territory area) were strongly positively correlated (Pearson’s r = 0.52). Furthermore,
when a specific group changed size, its territory changed size correspondingly (N =
34 groups). Our results support the prediction that large groups can avoid local
competition by increasing their resource base and explain a sizeable fraction of

group size variation in nature (R? = 0.27).
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INTRODUCTION
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Local competition is a big obstacle for cooperation. At least in theory (Taylor 1992;
Wilson et al. 1992; Ferrando 2024). When there is strong local competition for
resources, relatives are likely to compete. This will reduce the selective advantage of
cooperation because helping one relative may be costly to another. This negative
effect of local competition, which is captured by extended versions of Hamilton’s
rule (West et al. 2002), suggests that cooperative groups should remain relatively
small. Large groups are likely to experience intense resource competition, leading
to conflicts within the group, reduced fitness, dispersal of group members, and,
potentially, group extinction (e.g., Curry 1988; Creel and Creel 2015; Sorato et al.
2016; Nelson-Flower et al. 2018; Riehl and Smart 2022; Downing 2024). Since large
cooperative groups exist in nature (Rubenstein and Abbot 2017), they must avoid

local competition. The question is, how?

An obvious way groups can avoid local competition is by expanding their resource
base as they increase in size. This is known as increasing local carrying capacity in
the theoretical literature (Platt and Bever 2009; Van Dyken 2010; Van Dyken and
Wade 2012). Surprisingly, this prediction is missing empirical support, which could
be due to the difficulty of finding a suitable study system. In nature, we should see a
positive relationship between group size and resource availability and, when a given
group changes size, its resources should change correspondingly. This means that
group size needs to vary and be measurable, the resources available to these
groups must also be measurable, and ideally, we would be able to follow specific
groups to examine how their resources change when group size changes. A tall

order.

Thankfully, cooperatively breeding birds have risen to the occasion. In these birds,
adult individuals feed young produced by others. Decades of research on many
different species and hundreds of groups has produced the data needed to quantify
the relationship between group size and resource availability (Stacey and Koenig
1990; Koenig and Dickinson 2016). Group size is measured as the number of adults
in a breeding unit and resource availability can be approximated by examining
space use (territory area) during the breeding season. The assumption is that
territory area is positively correlated with the resources group members need to

feed themselves and their group's young during this period.

Our aim is simple. We look for evidence that group size covaries with territory area
in cooperative birds using a systematic literature search and phylogenetic meta-

analysis. While it seems a foregone conclusion that it must, confirming this
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relationship is important as it helps us explain variation in cooperative group size in

nature, which is poorly understood.

MATERIALS AND METHODS
Overview

We conducted a systematic literature search and phylogenetic meta-analysis to
quantitatively estimate the relationship between group size and territory area in
cooperative birds. This involved five main steps: (1) outlining study eligibility criteria,
(2) search string construction and validation to find studies meeting these criteria, (3)
searching Scopus and Web of Science and screening studies, (4) calculating effect
sizes and (5) using a phylogenetic meta-analytic model to estimate the mean effect
size and investigating how territory size changes when group size changes. This

study is pre-registered with the Open Science Foundation.

Eligibility criteria

To quantify the relationship between group size and territory area, studies with data
had to: (1) be in English, French, or Finnish; (2) be peer reviewed research papers,
pre-prints, PhD / MSc theses, or monographs / books; (3) be on cooperatively
breeding birds, defined as species in which adults feed offspring other than their
own; (4) be field studies on wild populations without experimental manipulations,
such as supplementary feeding, nest box additions, or removal of group members;
(5) provide raw data in tables, figures, supplementary information, or report relevant
test statistics and sample sizes, and the data should not have been included in
another study; (6) group size must be continuous, rather than binary such as small vs
large groups, and should reflect the number of adults in the breeding season; (7)
territory area must be continuous, not binary such as large vs small, and should
reflect space use during the breeding season. This last criterion matters because
space use by cooperative birds can be substantially different between breeding and
non-breeding seasons (e.g., Seddon et al. 2003; Radford and du Plessis 2004;
Sorato et al. 2016). These criteria were used to construct a title and abstract

decision tree and a full text decision tree which were used to screen studies (Figure
S1).
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Search string development and validation

As we required data on group size and territory area from cooperatively breeding
birds, we built three substrings targeting each of these components. For each
substring, we identified possible synonyms using a word cloud of the titles and
abstracts of 15 benchmark papers (Table S1) which we wanted the search to return.
The search string was optimised to return between 1000 and 3000 studies, which is
a feasible screening target (Foo et al. 2021). The substrings were then combined in

the following way

(bird* AND (cooperat* OR co-operat* OR help* OR alloparent*)) AND
((territor* OR habitat* OR homerange* OR home-range*) AND (size* OR
qualit* OR resource* OR tree*)) AND (group* OR “group size*” OR “number

of individuals”)

Based on a preliminary search in Web of Science, the miss rate was 33 % (5/15
benchmark papers were missing) and the hit rate was 21 % (the number of studies
out of 100 chosen at random that passed to full text screening using our title and
abstract decision tree). Although the miss rate was a little high, ideally none of our
benchmark papers would have been missing, the hit rate was excellent and
modifying the search string to improve the miss rate resulted in an extremely high
number of studies being returned (>10 000).

Searches and screening

The search was conducted on 18.3.2024 from the University of Oulu using Scopus
(topic search, default settings) and Web of Science (topic search, databases
covered: Core Collection, Current Contents Connect, SciELO, Data Citation Index,
Grants Index, Korean Journal Database, medline, Policy Citation Index, Preprint
Citation Index, ProQuest, Research Commons, Derwent Innovations Index). We

used the full range of dates covered by each platform.

The Scopus search returned 370 studies and the Web of Science search returned
1080 studies (Figure S2). After removing 316 duplicates (in Rayyan), the titles and
abstracts of 1134 studies were screened. Of these, 956 studies were excluded

based on our decision tree. We screened the full text of the remaining 178 studies
using our decision tree and included 26 studies. We identified 19 additional relevant

studies during full text screening of which four were included. The 1990 and 2016
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cooperative breeding books (Stacey and Koenig 1990; Koenig and Dickinson 2016)
were also screened, but chapters with relevant data had already been identified in

our main search.

Our final sample size was 30 studies. These studies represent 29 different species.
The numbers are not identical because two studies reported data for more than one
species (Gaston 1976; Chan and Augusteyn 2003) and three species (superb
fairywren, green woodhoopoe, laughing kookaburra) were the focus of multiple
studies (Table 1).

Effect sizes and within-group changes

We used Zr as an effect size. In our case, this is simply the correlation between
group size and territory area (ha), normalised using Fisher’s z-transformation: 0.5 *
In(1+r / 1-r). The sampling variance of this effect size is 1/(N-3) where N is the
number of unique groups studied (Koricheva et al. 2013). The order of preference
for our effect size calculations was: (1) Spearman’s r, Pearson's r, or R? reported in
the results, (2) raw data extracted from tables (main or supplementary), (3) raw data

extracted from figures or written in the text.

In summary, 10 studies reported Spearman's r, six reported Pearson's r, two
reported R?, three reported raw data in Tables, six reported raw data in Figures
(three scatterplots, three maps), two reported data in the text, and one study
reported raw data in the supplementary information (Table S2). Full details on how
each effect size was calculated are provided in the supplementary data extraction
file. Territory area was measured in various ways in these studies including polygons
estimated statistically and those drawn by hand. As the territory areas of all groups
within a study were estimated using the same method, any resulting bias will be
within- rather than between-study, and should not affect the strength of each

correlation.

We chose to analyse the data at the species level which meant pooling effect sizes
for the three species that were the focus of multiple studies: two studies on the
superb fairywren, two on the green woodhoopoe, and three on the laughing
kookaburra. These were pooled by taking a weighted mean effect size, based on
the number of groups studied, and using the combined number of groups studied

to calculate the sampling variance (supplementary data extraction file).
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Twelve of the thirty studies reported how territory size was adjusted following
changes in group size for specific groups. Seven of these studies made qualitative
statements. Five studies on four species provided quantitative data: jungle babbler,
green woodhoopoe (two studies), grey-crowned babbler, and laughing kookaburra
(Table S3). This data took the form of the change in group size between breeding
seasons and its corresponding change in territory area (supplementary data

extraction file).

Statistical analyses
Publication bias and heterogeneity

There was no a priori expectation that non-significant results would remain
unpublished (Nakagawa et al. 2022). The studies in our sample were typically
observational, reporting natural history. Consistently, of the 21 studies that tested
the relationship between group size and territory area, six found no relationship, 14
found a significant positive relationship and one found a significant negative
relationship. However, a trim and fill analysis, which identifies and imputes the
number of missing studies needed to create a symmetric funnel plot, estimated that
nine studies were missing from our sample. This would change our mean effect size
from 0.57 (see results) to 0.43. The fail-safe number ranged from 29 to 1598
depending on the estimation method. This is the number of unpublished non-
significant studies needed to make our mean effect size non-significant. Finally, we
used Egger's regression accounting for phylogeny to estimate the mean effect size
when sampling variance is zero (i.e. the intercept = 0.49, standard error = 0.13, p <
0.001). Based on a random effects meta-analytic model that did not include
phylogeny, the between-study variance (Tau?) was 0.09, giving an I? value of 63% (Q
= 78.7, p < 0.001).

Main analysis

We estimated the mean effect size using a phylogenetic meta-analytic model in the
metafor R package (Viechtbauer 2010; R Core Team 2025). Our Zr effect sizes (N =
29) were weighted by the inverse of their sampling variances and we included
phylogeny (from Claramunt et al. 2025, Figure S3) as a random term to account for

non-independence between species. Two species were missing from the phylogeny
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we used: Climacteris affinis and Cyanocorax formosus. These were swapped with
two species in the same genus that were in the phylogeny: Climacteris picumnus

and Cyanocorax cyanomelas.

To test for within-group changes, we used linear regression with the change in
territory area for each group as the response variable and the corresponding
change in group size as the predictor. This model treats each group as an
independent datapoint even though there are dependencies in the data. However,
due to the limited number of studies (N = 5) and the number of groups studied (N =
34), it was not possible to use a random intercepts and slopes model or to estimate
the slope for each study separately and then pool these (two-stage analysis). This

represents a clear avenue for future research.

Sensitivity analyses

It was unclear whether the group size estimates for four of the species in our sample
included juveniles: arrow marked babbler, red-cockaded woodpecker, rufous vanga,
and Seychelles warbler. For each, it seemed likely that group size was the number of
adults only, however, we re-estimated the mean effect size excluding these four
species. Note that our effect size estimate for the Seychelles warbler had the
additional issue that it was based on simulated data from reported means and

standard errors (supplementary data extraction file).

For our within-group analysis, one study accounted for 65% of the data (22/34
groups). We therefore re-ran our linear regression excluding this study to get an
estimate of the relationship between changes in group size and territory size that
gives approximately equal weight to each of the other studies (N = 12 groups from

four studies).

RESULTS

In total, 634 different cooperative bird groups were studied in the 29 species in our
sample (Table 1). The number of groups studied per species ranged from four to
110. The Seychelles warbler was the most intensively studied species, with more
than twice as many groups sampled as the next best studied species (the laughing
kookaburra). The curl-crested jay was the least intensively studied species. In 27

species, the correlation between group size and territory area was positive and in 17



231 of these it was significant (Figure 1). In two species, the superb fairy wren and the
232 acorn woodpecker, there was a non-significant negative correlation between group

233  size and territory area.

234  Table 1. The 29 cooperative bird species included in this study with sources and details on the
235  number of groups studied, the range of observed group sizes during the breeding season, and the

236 presence / absence (+ / -) of territorial displays.

Species N groups studied Group size range Territorial displays S

White-banded tanager (Neothraupis fasciata) 30 2-8 + Duca & Marini (2014)

White-browed sparrow-weaver (Plocepasser mahali) 34 2-12 + O'Callaghan (2021)

Arrow marked babbler (Turdoides jardineii) 14 3-9 + Monadjem et al. (1995)

Common babbler (Argya caudata) 13 2-15 + Gaston (1976)

Jungle babbler (Argya striata) 10 2-16 + Gaston (1976)

Taiwan yuhina (Yuhina brunneiceps) 13 2-7 - Lee et al. (2005)

Seychelles warbler (Acrocephalus sechellensis) 110 2-6 Brouwer et al. (2006)

Black tit (Melaniparus niger) 6 2-5 + Tarboton (1981)

Stripe-backed wren (Campylorhynchus nuchalis) 26 2-14 + Rabenold (1984)

Galapagos mockingbird (Mimus parvulus) 21 2-12 + Curry & Grant (1990)

White-throated magpie-jay (Cyanocorax formosus) 14 2-10 + Langen & Vehrencamp (1998)
Curl-crested jay (Cyanocorax cristatellus) 4 9-11 - Amaral & Macedo (2003)
Gray-backed fiscal shrike (Lanius excubitoroides) 12 2-9 + Zack & Ligon (1985)

Rufous vanga (Schetba rufa) 6 2-4 + Yamagishi et al. (1995)

Australian magpie (Gymnorhina tibicen) 36 2-15 + Hughes et al. (1996)

Grey-crowned babbler (Pomatostomus temporalis) 6 3-9 + King (1980)

Chesnut-crowned babbler (Pomatostomus ruficeps) 16 2-17 Sorato et al. (2016)

Red-backed fairy-wren (Malurus melanocephalus) 21 2-8 + Chan & Augusteyn (2003)

Superb fairy-wren (Malurus cyaneus) 28 2-7 + Chan & Augusteyn (2003); Nias (1984)
Variegated fairy-wren (Malurus lamberti) 10 2-10 + Chan & Augusteyn (2003)

Rufous treecreeper (Climacteris rufus) 30 2-7 - Luck (2002)

White-browed treecreeper (Climacteris affinis) 12 2-5 + Radford (2004)

Red-cockaded woodpecker (Dryobates borealis) 30 2-7 Walters et al. (2002)

Acom woodpecker (Melanerpes formicivorus) 20 2-5 + Trail (1980)

Laughing kookaburra (Dacelo novaeguineae) 48 2-8 + Legge (2000); Parry (1973); Reyer & Schimdl (1988)
Green woodhoopoe (Phoeniculus purpureus) 23 2-9 + Radford & du Plessis (2004); Ligon & Ligon (1990)
subdesert mesite (Monias benschi) 7 2-9 + Seddon et al. (2003)

Purple gallinule (Porphyrio martinica) 12 2-9 + Tarano (2008)

Groove-billed ani (Crotophaga sulcirostris) 22 2-8 Koford et al. (1986)

237

238  Across species and accounting for phylogeny, the mean correlation between group
239  size and territory area was significantly positive (Zr = 0.57, 95% Cl = 0.39 to 0.76;
240  Figure 1). This corresponds to a Pearson's correlation of 0.52, which is considered to
241 reflect a strong relationship (<0.5 is medium and <0.1 is small). The R? value based
242  on this correlation coefficient is 0.27. The mean effect size after excluding four

243  species whose group size measures might have included juveniles (arrow marked
244  babbler, red-cockaded woodpecker, rufous vanga, and Seychelles warbler) was

245  slightly higher than our mean estimate including them (Zr = 0.61, 95% Cl = 0.44 to
246 0.77).
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Figure 1. Forest plot showing the correlation (Zr) between group size and territory area for 29
cooperative birds. Each effect size is bracketed by its 95% Cl. The mean effect size is the centre of

the diamond whose left and right limits represent the 95% CI.

Five studies on four species measured how the sizes and territory areas of 34
different groups changed across breeding seasons. These were: jungle babbler,
green woodhoopoe (two studies), grey-crowned babbler, and laughing kookaburra.
The territories of groups that increased in size tended to expand while the territories
of groups that decreased in size tended to contract (slope estimate = 5.87, 95% Cl
= 4.58 to 7.15; Figure 2). This relationship remained significant after removing one
study on the green woodhoopoe which accounted for 65% of the data (slope
estimate = 7.00, 95% Cl = 5.08 to 8.92, N = 12 groups).
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Figure 2. Within-group changes in group size and territory area for 34 different bird groups from five
populations (four species). The slope (y = 5.87x + 2.26) is the estimate form our linear regression.

Each datapoint is a different group.

DISCUSSION

How local competition affects cooperative group size has rarely been considered in
theoretical or empirical work. If cooperative groups cannot increase their resource
base, it seems logical that their sizes should be limited. Our finding that group size
and territory area are positively correlated in most cooperative bird species (Figure
1) supports this, indicating that resource availability and group size go hand in hand.
When specific groups increased or decreased in size, their territory expanded or
contracted respectively (Figure 2), further supporting the idea that large groups

need extra resources to avoid local competition.

We assumed that territory area is a good proxy for resource availability. Territory
area in our case corresponds to space use during the breeding season. This is
appropriate because the cooperative behaviour we are interested in, feeding
offspring produced by others, takes place during this period and more space should
mean more food. There are other 'critical' resources which affect the survival and
reproduction of cooperative breeders which also correlate with group size. In our
sample of studies these include: mast storage holes in acorn woodpeckers (Zr =
0.30), blackberry bramble in superb fairywrens (Zr = 0.79), bull-horn acacia in white-
throated magpie jays (Zr = 0.59), and Eucalyptus canopy trees (Zr = 0.83) and

10
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hollow-bearing logs (Zr = 0.55) in the rufous treecreeper. Territory area has the
advantage of being comparable between species. An alternative is to use a
composite 'territory quality' measure, but this has only been done in three species:
Seychelles warbler (Zr = 0.60), rufous treecreeper (Zr = 0.50), red-cockaded
woodpecker (Zr = 0.30).

Group size and territory area were negatively correlated in the acorn woodpecker
and the superb fairywren. These appear to be outliers. The effect size we used for
the superb fairywren is the weighted mean of two effect sizes in opposite directions:
Zr =-0.51 and 0.56. It is negative overall (Zr = -0.17) because of the difference in
sample size between studies (N = 19 vs 9 respectively). For the acorn woodpecker,
we excluded one study whose group size measure included juveniles (MacRoberts
and MacRoberts 1976). This study reported an extremely strong correlation between
group size and territory area (Zr = 1.22) which would have resulted in a positive

weighted mean effect size for this species (Zr = 0.59).

A potential confounding variable which was not controlled for in any study is
breeder quality (Rowley 1965; Downing et al. 2020). High quality breeders may have
larger territories and more offspring than poor quality breeders. This would create a
positive correlation between group size and territory area in species in which groups
grow via natal philopatry, independently of resource availability. Three lines of
evidence suggest that group size is adjusted to resources, however, and does not
simply reflect breeder quality. First, within-group changes in size are tracked by
changes in territory area (Figure 2). This is unlikely to be the case if territory area is
determined by breeder quality alone. Second, in 22/25 species territorial displays
between groups were reported (Table 1, four species were missing data) and group
size influences the outcome of such displays (eg. MacRoberts and MacRoberts 1976;
Ligon and Ligon 1978; Radford 2003; Hale et al. 2003; Seddon and Tobias 2003). In
just three species was there movement between groups and no displays were
reported. Third, experimental manipulations in several species show that territory
quality influences dispersal, and hence group size, independently of breeder quality
(Komdeur 1992; Walters et al. 1992; Covas 2004; Dickinson and McGowan 2005;
Baglione et al. 2006), complementing the findings of multiple long-term field
studies (e.g., Stacey and Ligon 1987; Koenig et al. 1992; Pasinelli and Walters 2002;
Nelson-Flower et al. 2018; Suh et al. 2020; Cousseau et al. 2020).

An expanding resource base can alleviate local competition, enabling group sizes to

increase, seemingly without harmful effects. Two unknowns, however, are how

11
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resource expansion affects a group's total reproductive output and reproductive
skew within the group. Territory expansions could increase the output of the
dominant breeders, akin to “resource enhancement” altruism where cooperation is
selected because it increases the resource supply (Van Dyken and Wade 2012), but
the extra resources may allow more individuals to reproduce (e.g. Stacey and
Koenig 1990; Koenig and Dickinson 2016), destabilising cooperation. More work is
needed to better understand the social consequences of resource enhancement for

cooperative groups.

The problem of local competition does not go away once cooperation has evolved.
It probably gets worse as groups become larger, even if groups can expand their
resource base. Although the theoretical literature is replete with ideas on how to
avoid local competition (Rodrigues and Gardner 2013), these typically do not deal
with group size evolution. This leaves us with an opportunity to develop and test
new theory on how extremely large cooperative groups evolved. In superorganisms,
for example, public goods production in the form of agriculture, and legionary
behaviour, where colonies do not have permanent nests but continuously roam,
both ease local competition. In addition to microbial systems, these provide a

promising avenue for future empirical work.
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