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Abstract

Natural populations experience variable environments. Anthropogenically driven
environmental change, in particular, is expected to impose trends on key demographic
parameters such as reproduction and survival. Theoretical studies of how such environmental
changes affect populations have highlighted dynamical phenomena including
bifurcation-related tipping points — typically identified by comparing different, but constant,
environmental states — and long transients — that can arise after sudden environmental
perturbations. However, real-world environmental trends are neither instantaneous nor slow
enough to justify treating the environment as constant, motivating recent interest in r-tipping
points — regime shifts induced by r, the rate of environmental change in demographic
parameters. Most existing work examines this phenomenon in complex ecological models and
for specific values of r. Here, we develop tools to help ecologists investigate how populations
and communities respond to environmental trends across a continuum of r values. Using a
simple density-dependent model, we identify four qualitatively distinct responses to a trend as
a function of r — patterns that traditional methods fail to reveal — and we visualize them using
an r-bifurcation diagram introduced here. We also describe and mathematically explain the
emergence of abrupt regime shifts linked to delayed bifurcations, revealed by a novel
superimposition diagram. These findings are robust across modelling frameworks and
ecological contexts, providing new insights into interactions between short- and long-term

environmental change processes.
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1 Introduction

The environment of natural populations varies over time and space, leading to changes in
individual demographic parameters (reproduction, survival, dispersal, etc.) that, in turn, affect
population abundances. These time-varying demographic parameters (the demographic rates
varying with the environment, see glossary box 1) are often considered stationary (i.e., varying
around a constant mean, see, e.g., Chevin et al., 2017; Saether et al., 2013; Lee et al., 2020). They
may cycle regularly at different short-term, within-generation, timescales (e.g., diurnal, seasonal)
and are subject to environmental stochasticity (random, short-term changes in the environment),
but the mean demographic rate at the timescale of a relatively small number of generations is
considered approximately constant (see, e.g., Nisbet and Gurney, 1985; Greenman and Benton,

2003).

Studies of the consequences of these environmental fluctuations on population dynamics have
allowed ecologists to better understand the impacts of environmental stochasticity on population
or community dynamics (Ruokolainen et al., 2009; Gilljam et al., 2019; Shoemaker et al., 2020;
Ives and Carpenter, 2007). However, as a result of long-term climate change, the environment of
natural populations is, in general, not stationary. Over timescales spanning multiple generations,
the mean of many environmental signals that drive population dynamics follow a long-term trend,
and therefore, do do environmentally-driven demographic parameters (Burke et al., 2018; Lear

et al., 2020; Kemp et al., 2015; Song et al., 2021). These environmental trends can vary in both

magnitude and rate of change.

Despite their increasing importance, as we face unprecedented, anthropogenically driven, climate
change affecting temperatures (Hansen et al., 2006), precipitation (Le Treut and Somerville,
2007), and other key environmental drivers of populations (Gilljam et al., 2019; Cohen et al.,
2018), we lack a comprehensive theoretical framework to examine how these environmental

trends translate into quantitative and qualitative changes in population dynamics. This limits our
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understanding of major global challenges, including the (in)variance of abundance fluctuations,
future pest and disease outbreaks, threats from invasive species, and extinction risks. We require a
new perspective on the general consequences of environmental trends on ecological populations,
along with tools allowing us to better predict how focal populations or communities will fare

during environmental trends, as a function of the realised rate of environmental change.

Long term environmental trends are expected to be accompanied by an increase in the variability
of climate-change drivers (van der Wiel and Bintanja, 2021; Olonscheck et al., 2021). For
example, the mean temperature of most habitats is expected to increase, along with the
fluctuations around this mean (Lawson et al., 2015). Consequently, ecologists are now exploring
the combined effects of these two aspects of global change, changing mean and increasing
variance of demographic rates, on population dynamics (e.g., Campbell et al., 2012; Lawson

et al., 2015). However, most studies focus solely on the direction and long-term magnitude of
changes in the mean of time-varying demographic parameters, in a ’step-change’ design that
overlooks the rate at which these changes occur (see, e.g., Johnson et al., 2023; Burc et al., 2025;
Van De Pol et al., 2010; Sather et al., 2000; Kiritani, 2013). Using this "constant environment
framework", compares population dynamics under two different, but constant, environmental
regimes: a current and a projected future scenario. This framework neglects the population’s
trajectory between the old and new state, overlooking the potentially long transitional period
between the initial and final environmental conditions. This approach ignores the "environmental
debt" — the delayed effect of an environmental trend on population abundances — and generalises
the concept of extinction debt, the delay in extinction encountered in deteriorating environments
(Zarada and Drake, 2017; Highland and Jones, 2014; Ovaskainen and Hanski, 2002; Drake and
Griffen, 2010). For a population undergoing an environmental trend, the journey towards the

post-trend state may be as important as the destination.
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Density-dependent populations, tipping points and long transients Many dynamic
population or community models incorporate some dependence of demographic rates on
population abundances (Krebs, 1995; Elton and Nicholson, 1942; Royama, 1992). Density
dependence can yield qualitatively distinct population dynamics in constant environments, such as
stable point equilibria (including extinction), cycles and chaos, both in models and in natural
populations (May, 1974, 1976; Brauer and Castillo-Chavez, 2013; Barraquand et al., 2017; Myers,
2018; Mitani and Mougi, 2017; Rogers et al., 2022). The same species can exhibit qualitatively
different dynamics in different environments; e.g., Microtus and Clethrionomys voles display
quasi-stationary dynamics in the southern part of Fennoscandia and large amplitude quasi-cycles
in the northern part (Korpimaéki et al., 2005; Graham and Lambin, 2002; Turchin and Ellner,
2000). The responses of density-dependent populations to (abiotic) environmental changes has
prompted the recent development of the tipping-point and long-transient frameworks in population

biology (Hastings et al., 2018; Morozov et al., 2020; Francis et al., 2021; Abbott et al., 2024).

Bifurcation diagrams illustrate the long-term, steady-state (asymptotic) population dynamics as a
function of certain environmentally-driven demographic parameters (Fig.1). At certain parameter
values, called bifurcations, the asymptotic behaviour changes qualitatively. Assuming that a very
slow environmental trend produces dynamics predicted by the constant environment framework,
population abundances are expected to encounter a regime shift (a qualitative change of the

dynamics, Hastings et al., 2018) as a parameter passes, very slowly, through a bifurcation point.

For discontinuous (or critical) bifurcations, which correspond to abrupt changes in abundances
where there is no (positive) equilibrium point on one side of the bifurcation (such as fold or
saddle-node bifurcations, see, e.g., Boettiger and Batt, 2020), this leads to tipping points —
sudden, quantitative changes in the dynamics (also called b-tipping points as they are related to
bifurcations, Scheffer et al., 2001; Dakos et al., 2012; Boettiger and Hastings, 2012). A system
may not recover from passing a tipping-point (even when returning to previous conditions,

because of hysteresis, Scheffer et al., 2001b) and the approach to the bifurcation may exhibit a
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critical slow down (increasingly slow recovery from perturbations, Scheffer et al., 2009).
Continuous (e.g., period doubling) bifurcations, do not show drastic abundance changes, and are
deemed more innocuous than their discontinuous counterparts, therefore have received less
attention. For both types of bifurcations, however, we still largely ignore how slow an
environmental trend must be to ensure the dynamics correspond to predictions from the constant

environment framework, or how fast before this assumption breaks down (Vanselow et al., 2019).

An alternative simplifying assumption is that the consequences of an environmental trend can be
approximated by considering it instantaneous (a step-change), related to the study of long
transients. A transient is the route a dynamical system takes following a perturbation to
conditions, before reaching the long-term state of the system under the new conditions (Levin,
1976). This transient phase can be relatively short. However, even in simple population models,
the time required to reach the asymptotic state can be significantly longer than the species’
generation time, e.g., 20-30 generations in the prey-predator model of Poggiale (2020), or up to
"hundreds of generation times" in the age-structured single population model of Morozov et al.
(2016). Transitional periods of up to 100 generations have been observed in empirical systems
and interpreted as long transients (Hastings et al., 2018). The study of long transients therefore

provides an alternative framework for investigating dynamical regime shifts.

Morozov et al. (2016) showed that both the duration of the transient regime and the final
asymptotic regime are hard to predict when multiple attractors exist. Understanding transient
dynamics is further complicated by the possibility of regime shifts during the transient period
(Carpenter et al., 2011; Boettiger and Hastings, 2012), which can be caused, e.g., by "crawl-bys"
(when abundances pass close to an unstable, saddle, equilibrium Hastings et al., 2018; Rubin

et al., 2022). The study of long transients has highlighted the risk of focusing only on the constant
environment framework, showing that, while the asymptotic dynamics indicate that populations
are safe from quasi-extinction, populations can fall below that threshold during the transient

period (Morozov et al., 2020, 2024). A realistic trend is neither an instantaneous change, nor so
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slow that the environment can be considered constant. Recent studies of the effect of the rate of
change of the time-varying demographic parameter itself (Williams et al., 2021), have revealed

that it can induce tipping points (r-tipping points, Ashwin et al., 2012; Siteur et al., 2016).

Rate of environmental change, r-tipping points and population dynamics The existence,
relevance and mechanisms of r-tipping points in ecological systems show that, in many cases, the
rates of environmental change are at least as important as the magnitude of the change (Abbott

et al., 2024; Ritchie et al., 2023; Vanselow et al., 2022, and references therein). r-tipping points
are related to the idea of environmental tracking (i.e., how closely a population’s abundance
fluctuations follow environmental changes, Roughgarden, 1975), occurring when the environment
changes too quickly for the population to track the environmental change (Abbott et al., 2024).
E.g., rapid increases in fishing pressure in coral reef ecosystems are predicted to lead to system

collapse, while slower increases of the same total magnitude result in persistence (Gil et al., 2020).

The unprecedented rate of change of many anthropogenically driven environmental factors are
expected to impact ecosystems more than the magnitude of the change (Vitousek, 1994; Sage,
2020) and could (far) exceed the rate at which populations and communities can track these
changes (Walther et al., 2002). These studies show that r-tipping points may exist in many systems
with discontinuous bifurcations, raising the question of whether naturally observed regime shifts
tend to be rate- or bifurcation-induced (Vanselow et al., 2019). They do not, however, consider the
general effects of the rate of environmental change on population dynamics and, in particular, how
this rate can affect populations as they pass by bifurcations, with the notable exception of the
transcritical bifurcation (i.e., bifurcation to extinction Zarada and Drake, 2017). Extending the
study of the consequences of the rate of environmental change (which we term r here) beyond
r-tipping points and for any bifurcation, is, therefore, a key advance. This will allow ecologists to
understand the range of r for which the constant environment or transient dynamics framework(s)

are valid and, more generally, how populations will behave across a range of environmental trends.
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Here, we address these knowledge gaps, focusing on the validity of these two simplifying
assumptions, by analysing the consequences of the speed of an environmental trend » on
population trajectories over time. We consider a continuum of r-values, and study the ways r
affects the dynamics, such as r-tipping points, as well as more general effects of r on population
time-series, demonstrating that even continuous bifurcations can lead to b-tipping points. We
provide a novel tool to study the effect of non-stationary environmental changes on population
dynamics — the r-bifurcation diagram — depicting the value(s) of the time-varying demographic
parameter(s) corresponding to regime shifts, as a function of the rate of environmental change (r).
We illustrate our analysis with a simple density-dependent model for an unstructured population

that reproduces at discrete time intervals.

We initially explore an environment that impacts demographic rates, with a simple, linearly
increasing trend, comparing our findings with predictions from constant environment and
transient dynamics frameworks. We show that qualitative shifts in population dynamics driven by
an environmental trend are delayed compared to the corresponding constant environment
framework and can lead to b-tipping points, especially for fast trends. We illustrate this with
superimposition diagrams which allow us to compare the bifurcation diagram with the abundance
time-series, in a re-scaled timescale directly related to demographic rates. We analyse the
mechanisms underpinning these results and introduce a novel categorisation of four rates of
environmental change, ranging from very slow to very fast, as a function of their effect on
b-tipping points and transient dynamics. We show that our main findings are general enough to
apply in more complex ecological models, including those with stochastic fluctuations around the

linear trend and in continuous-time, multi-species models.
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2 A simple, deterministic density-dependent population model

In a constant environment, the population projection equation of the logistic map is (May, 1976):

nip1 = f(ng) = Any (1 —ny) (D

Here, n; is the population abundance (scaled by the carrying capacity) at generation ¢ and A is the
reproductive rate (i.e., the number of offspring produced by an adult before dying).
Density-dependence arises through the (1 — n;) term, representing the proportion of offspring that
survive the juvenile period as a (decreasing) function of n;. We can predict the final, long-term
(asymptotic) population densities (or attractor) that populations will approach from any
non-trivial initial condition (ng > 0). When A < 1, the population approaches a so-called trivial

(extinction) equilibrium (i.e., n; — 0). For 1 < A < 3, this is a stable point equilibrium:
Al =1--—. 2)

The bifurcation diagram (Figure 1) shows that for 4 > 3, 7i(21) is no longer stable (i.e., 71 is a
repeller, rather than an attractor; shown in grey). At A = 3 (itself corresponding to a — neutrally —
stable point equilibrium) a bifurcation occurs from a single-point equilibrium to a 2-generation
cycle (i.e., the population fluctuates deterministically between two different abundances in
alternate generations); this bifurcation is continuous (there is no discontinuity in the bifurcation
diagram at A = 3). Further increasing A generates subsequent period-doubling bifurcations
towards 4-, then 8-, then 16-generation cycles, etc., followed by the onset of chaos (at A ~ 3.54).
The chaotic range (interspersed with "periodic windows"; Appendix S1: Section A1) lasts until

the maximum reproductive rate of 1 = 4.

Predicting the consequences of environmental change from the constant environment framework,
as is classically (and often implicitly) done in ecology, implies considering the asymptotic

(long-term) abundance behaviour at two demographic parameter values (considered as two
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distinct, constant environments). In other words, for a "slow" speed of environmental change, the
abundances observed over time (7;) are expected to correspond to the asymptotic abundances of
the bifurcation diagram (Fig.1) and to follow a relatively simple trajectory between the
corresponding starting and final regimes. No b-tipping point is predicted to occur as bifurcations

are continuous (see Appendix S1: Section A2).

Transient dynamics of the logistic map

A bifurcation diagram describes the asymptotic population dynamics, but ignores the transient
phase leading to this final dynamical state. For example, the bifurcation diagram of figure 1 does
not distinguish between the under- and over-compensatory transient approaches to the equilibrium
attractor around A = 2 (which we have therefore differentiated with blue and magenta colours).
This distinction is crucial for transient regimes, as well as when studying environments that
fluctuate around a fixed mean value (Nisbet and Gurney, 1985; Greenman and Benton, 2003). The
sign and the amplitude of the derivative of the population growth function f (eq.1) —i.e., the
Jacobian, see Appendix S1: Section Al — provides useful information for small deviations from
the equilibrium and for certain equilibria, but is not generally sufficient to understand the road to
the asymptotic behaviour. E.g., for very close initial population values (), transients that
approach the same asymptotic behaviour can take very different paths, with the transient period
differing wildly in duration (Poggiale, 2020; Morozov et al., 2016; Hastings et al., 2018). This
also holds for the logistic map: e.g., for 4 = 3.9605, which corresponds to a 4-generation
asymptotic cycle, the transient period can vary between 1 and 850 generations, depending on the

value of ng (see Appendix S1: Section Al).

The Logistic map with an environmental trend
Here, we consider a case where the reproductive rate changes consistently over time (4;, eq.3a).
To reduce the number of parameters, we first consider a simple, linear, environmental trend

(eq.3b) — but relax this assumption in Appendix S1: Section A4, showing qualitatively similar

10
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results — via the following system of equations:

nev1 = A (1 = ny) (3a)
A=Ag+rtforO<tr<Tand A, =Apfort >T , (3b)
< Ao = 1.001 and A7 = 3.9605 (3¢)
no = i(4dp) = 0.001 (3d)

where T is the duration of the environmental trend and r the rate of environmental change (of the
time-varying demographic parameter, here the reproductive rate). We initiate the population at a
non-zero stable equilibrium (as 1 < Ap < 3). It then encounters a novel trend in the environment
that "benefits" the population by increasing the reproductive rate: A; increases over time, i.e., the
rate of environmental change r > 0. We set the initial reproductive rate at 1o = 1.001 (eq.3c),
which corresponds to ng = 71(1.001) = 0.001 (eq.3d and eq.2). However, we note that our main
conclusions hold when we start with higher Ay values and consider a "negative" environmental
trend that reduces reproductive output over time (r < 0, Appendix S1: Section AS). We focus
primarily on understanding how population abundance 7, responds to the environmental trend,

e, forO<r<T.

However, we are also interested in how the environmental trend affects the post-trend dynamics,
we, therefore, also consider the population dynamics after the environmental trend (n; for t > T).
For that part of the time-series, the environment is held constant at A;>7 = A7, and the abundance
time-series correspond to transient dynamics with initial condition nr (see Appendix S1: Section
A1l). To identify the time at which the population stabilises near the asymptotic dynamics, we
want A7 to correspond to an asymptotic cycle of short period, while still being close to the
maximum reproductive rate, A = 4, so that the trend goes though as wide a range of A values
(corresponding to non-extinct populations) as possible. Therefore, we end the environmental
trend at generation 7', such that A7 = 3.9605 (eq.3c), which produces an asymptotic 4-generation

cycle (see Fig.1 and Appendix S1: Section Al). The environmental trend duration 7" and its speed

11
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T X #. We study the dynamics of this population for

r are related: from eq.3, we have r =
various rates of environmental rates of change () in the following section, and go on to show that

our key findings hold in more complex ecological frameworks.

3 Population dynamics under an environmental trend

3.1 A slow trend

We initially consider a trend that lasts for T = 7,000 generations (i.e., r; ~ 4.2 x 10™). This
allows us to illustrate key dynamical features before introducing other rates of environmental
change below. This trend can be considered slow by contrast to the internal pace of change of the
system, which can yield transients of up to ~ 850 generations (see Appendix S1: Section Al) and

asymptotic cycles of less than 4 generations for most of the range of A; (Fig.1).

The time series of a population affected by this slow environmental trend (Figure 2a) initially
appears to correspond to the constant environment bifurcation diagram (Fig.1): population
abundances (blue) increase monotonically over time until they start oscillating (Figures 2b and

2¢). We denote the generation at which these oscillations start as
to(r) = ming{t, npvy < ng}

For this slow trend, we have ¢,(ry) = 5074 (Fig. 2c). These oscillations are initially 2-generation
quasi-cycles with mean and amplitude increasing over time, followed by quasi-cycles of period 4
and almost immediately by chaotic behaviour (at around ¢ = 6100, A, ~ 3.55). Once the trend is
over, at t = T, the abundances stabilise at the asymptotic 4-generation cycle associated with A7,
here, following a post-trend transient of around 25-30 generations (indicated by the initial
fluctuations after the vertical black line in Fig.2a). Surprisingly, as the period doubling

bifurcations of the constant environment framework are continuous and therefore expected to

12
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correspond to smooth regime shifts for slow trends, we observe that the transition from
monotonically increasing abundances to oscillations (Fig.2a) leads to an abrupt increase in cycle
amplitude, that occurs over ~ 60 generations starting at ¢, (Fig.2b), before the increase in

amplitude slows pace.

The superimposition diagram

To compare abundance dynamics for various rates of environmental change (r, and corresponding
T), we turn to an alternative timescale: A,. Instead of counting time as the succession of
generations, this timescale counts it as increments in the demographic parameter affected by the
environment. This transformation is valid for the period of environmental change, 0 <t < T,
where A; is a strictly monotonic function of ¢: each value of A, (top axis on Fig.2) corresponds to a
unique value of . We can study directly the abundance trajectories in this alternative timescale via
function composition, an operation that creates a new function by applying one function to the
result of another (i.e., nesting functions). The function composition of n, = n(t) —in blue on Fig.2
—and 7(4,) — the inverse of 1, = A(¢), in red on Fig.2 — yields n(4;) = n(¢(4,)) — in blue on Fig.3.
This alternative timescale allows us to superimpose the abundance time-series onto the bifurcation

diagram (in black on Fig.3).

This superimposition diagram shows the abundances initially tracking the moving equilibrium iy,

(in red on Fig.3, see glossary box 1):
A =n(d) =1- T “4)

Emergence of a b-tipping point

After passing the first period-doubling bifurcation of the constant environment framework, at

A = 3, the population continues to grow monotonically and track the moving equilibrium (7;)
despite it being in a range corresponding to unstable point-equilibria (2-generation cycle) in the

constant environment. In that range, the moving equilibrium is a ghost attractor, a
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non-equilibrium state that would be an (unstable) equilibrium in a constant environment.
Abundances (n;,) track the ghost attractor (71;) for some time, until a qualitative shift in dynamics
occurs once the time-varying reproductive rate (4;) passes b(ry) = A;, =~ 3.146 (grey vertical line
on Fig.2) when abundances start oscillating . The difference between this observed value and the
constant-environment bifurcation (i.e., here, b(ry) — 3) constitutes a delay in the bifurcation. This
phenomenon has been studied by mathematicians (e.g., Baer et al., 1989; Tsuchiya and Yamagishi,
1997; Miyazaki and Tchizawa, 2005) but rarely in the context of environmental change, with the
exception of the transcritical (extinction) bifurcation (at A = 1, e.g., Zarada and Drake, 2017,
Drake and Griffen, 2010). The subsequent abrupt and rapid increase in the amplitude of
oscillations corresponds to the population abundances rapidly catching up with that of the
2-generation cycles of the constant environment framework (here the quasi-2-generation-cycles
are reached at A = 3.174, see Figures 2b and 3 (insert)), which constitute a new ghost equilibrium

(of period 2).

We can quantify the abruptness of this quantitative shift (the increasing amplitude of oscillations)
by considering, first, the rate of change of the population abundances s, (the discrete time
equivalent to the first derivative) and, second, the rate of change of this rate of change, the

abundance acceleration a, (the second derivative):

S = |nper — ny 5)

ar = |Sp41 — 84

Figure 4 shows the acceleration time series (a;) for various rates of environmental change (7,
slower than the slow trend, i.e., r < ry). For each value of r, the acceleration is very small most of
the time but for a peak (occurring shortly after b(r)) where it reaches a maximum acceleration,

that we denote d(r) (the peak value on Fig.4):
d(r) = mtax(a,) (6)

14
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This abrupt, qualitative and quantitative change, shifts the dynamical regime quickly from a

monotonic increase in abundances to cycles of large amplitude: b(r) is a b-tipping point (of size

d(r)).

Both b(r) and d(r) increase with the rate of environmental change (7). The slower the trend, the
closer the b-tipping point b(r) is to 4 = 3 and the maximum acceleration in abundances d(r) is to
0 (see Fig.S5 of Appendix S1: Section A2; formally, lim,_,o b(r) = 3 and lim,_,o d(r) = 0). As a
consequence, b(r) is not a b-tipping point for a (paradoxical) trend of speed r = 0, but is one for
any real trend (r > 0, see Appendix S1: Section A2). We focus here on this particular
b-tipping-point, but note that the other period doubling bifurcations can also be delayed (see
below and Appendix S1: Section A2). We provide a mechanistic and graphical explanation for
this delay in bifurcation and related b-tipping point, via cobweb diagrams, in section 5.1, and a
more detailed mathematical analysis of the abundance behaviour, via the concepts of repelling

boundaries and cascading effects, in section 5.2.

3.2 Slower and Faster trends

We now consider a very slow (vs) environmental trend, where it takes T, = 1 x 10® generations to
reach A7 from Ag (i.e., r,s ~ 3 x 1078). The corresponding superimposition diagram (Figure 5a)
shows the realised abundance dynamics display closer alignment with the bifurcation diagram.
However, the b-tipping point at 1 = b(r) exists for any non-zero trend (Fig.4), even a very slow
one (Fig.5b, here, b(r,;) = 3.0009). The delay in the bifurcation (b(r,s) — 3) causes a sudden
acceleration in the dynamics and a rapid increase in cycle amplitudes (Fig.5b), even though the
amplitude of the discontinuity is smaller (d(r,s) < d(ry), see Fig.4) and the delay shorter in the A,
timescale than for the slow trend (3 < b(r,5) < b(ry)). Below, we show that, as the rate of
environmental change r decreases, the delay in bifurcation actually increases on the chronological
timescale: #,(r) — t3(r), where A;, = 3, is a decreasing function of r. Therefore, the slower the

trend, the more generations it takes for the first oscillation to occur, after passing 4 = 3 (and
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lim, 02, (r) = 13(r) = +00).

There are quantitative, but not qualitative differences in abundance dynamics between the slow
and the very slow trends; e.g., changes in the b-tipping point, b(r), in the generation of the onset
of abundance oscillations, 7,(r), and in the maximum acceleration in the amplitude of
oscillations, d(r). However, differences in the post-trend transient behaviour do justify
distinguishing between slow and very slow environmental trends. Under the very slow
environmental trend (r = r,), the population abundance at the end of the trend (n7) is close
enough to one of the four points of the 4-generation asymptotic cycle associated with

Ar = 3.9605, that there is no observable transient (Fig.5c). Under the slow trend (r = ry), a
post-trend transient of 20-30 generations can be observed (Fig.2a). For the very slow trend, there
is a short delay (in the demographic time-scale) for both the first and the second bifurcation (from
2- to 4-generation cycles), while for the slow trend (Fig.3), the second delay is so long that pseudo
4-generation cycles do not occur. Despite the self-similarity of the logistic map (Tan and Chia,
1996), it is possible for a given rate of environmental change (r) to encounter a b-tipping point at

one period-doubling bifurcation and not others.

The onset of cycling can be delayed further (on the demographic timescale, A;), with faster
environmental trends. For a fast environmental trend spanning 7y = 225 generations (ry ~ 0.013),
the population grows monotonically during the entire trend and only starts oscillating once the
trend is over; i.e., b(ry) = Ar = 3.9605 (Figure 6). At the beginning of the trajectory (1o = 1.001,
no = fip = 0.001), the abundances struggle to track the rapidly changing environment (compare
blue and red lines around A; = 1 in Fig.6), but eventually recover, tracking the environment (i.e.,
the moving/ghost equilibrium 7;) until the end of the trend (# = T'). This lagged "dip" at the start
of the abundance trajectory (1 < A; < 2) occurs for all trends, but is barely noticeable on the
abundance time series for the slow trend (Figs 2 and 3) and not at all for the very slow trend
(Fig.5). We provide a mathematical analysis of this phenomenon in section 5.2 and summarise the

key dynamical differences of the three characteristic rates of environmental considered so far via
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plots of abundance dynamics in chronological time, superimposition diagrams (demographic

timescale, A;) and cobweb diagrams, in Appendix S1: Section A2.

The speed of the environmental trend can be increased up to r, s = 2.96, corresponding to 7,y = 1
generation. Here, the trend corresponds to an instantaneous (step-) change (see Fig.S6d in
Appendix S1: Section A2). Contrary to slower trends, there is no initial monotonic increase in
abundances; the dynamics consist exclusively of a post-trend transient which lasts around 80
generations (from ng = 0.001), before settling on the asymptotic 4-generation cycle. The duration
and behaviour of the transient is very sensitive to the choice of initial condition (n() and constant
environment parameter (A7) (see Appendix S1: Section Al). We refer to environmental trends
that lead to dynamics that are dominated by transients, as very fast trends; we will see that, for our
study, they consist of the step-change (7" = 1) and trends made of a small number of generations

(T <34).

Because the transient of a step-change is very sensitive to the initial conditions, the duration and
behaviour of the transient stemming from a trend of a few steps will be very sensitive to the
number of steps taken to reach Ay: for T = 2, the transient drops to 3 generations, yet for 7 = 3 it
increases to 230 generations (see Appendix S1: Section A6). As a consequence, the generation of
first oscillation ¢, and its corresponding value of time-varying reproductive rate, b(r) = A,,, are
similarly unpredictable under very fast trends, which contrasts with the predictability of fast trends
(where, e.g., b(ry) = A7 = 3.9605). To illustrate these points and better understand what is

happening along this r-continuum, we introduce the r-bifurcation diagram.

3.3 The r-bifurcation diagram

We have considered four speeds of the environmental trend (r = 7, 1,5, 7 and 7, ¢) and the
corresponding population dynamics. The metrics we developed, including the generation of the
first abundance oscillation, 7, (r) and the associated value of the reproductive rate b(r) = A, (the

b-tipping point), allow us to go further and compare abundance dynamics under a continuum of
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environmental trends. Here we introduce another metric: the duration of the post-trend transient,
D(r) (Appendix S1: Section Al). Figure 7 introduces the r-bifurcation diagram which displays
the b-tipping point b(r) (blue points) and the duration of the post-trend transient D (r) (red points)
as a continuous function of the rate of environmental change (r). This diagram allows us to
identify four qualitatively different rates of environmental change () — of which the four specific
speeds of the environmental trend we have studied (very slow, slow, fast and very fast) are
archetypes— and to characterise their range. We will use the same names for the general ranges of

r corresponding to qualitatively different dynamics than for their archetypes studied above: .

The r-bifurcation diagram shows that the value of the time-varying demographic parameter (4;) at
which oscillations start (the b-tipping point, b(r)), tends towards b(0) = 3 as the speed of
environmental change slows towards r = 0 (Fig. 7). The r-bifurcation diagram further shows that
b(r) initially increases with the speed of the environmental trend (r) (very slow and slow
environmental trends, Fig.4 and Fig. 7), but this initial increase plateaus at b(r) = A7 (the
maximum possible value for A,) for a value of r = r¥ ~ 0.0114 (corresponding to T = 259
generations), which allows us to distinguish between slow and fast trends; across a range of
environmental change values " < r < r*, all trends are characterised as fast: b(r) = A7. Very fast
trends occur above r* Z 0.0870 (7' < 34 generations), including the step-change (7' = 1): they
correspond to cases where b(r) (that differs from A7) is a non-monotonic function of r. Figure 7
shows the b-tipping point (b(r)) initially decreasing rapidly, after r*, to b(r) = 2.5, before
returning to b(r) — Ay = 3.9605. For such rapid environmental trends, transient dynamics drive
the abundance patterns, and render the duration and behaviour of transients unpredictable, so that,
for some values of r, the onset of oscillations can occur before the end of the environmental trend,
i.e., b(r) < Ar or even before the constant-environment bifurcation, i.e., b(r) < 3, (black dots in

the very fast section of Fig.7).

Contrary to the continuous transition between slow and fast trends, and partly caused by the

choice of A7 (noting we are restricted to A7 < 4 for this simple model), the fast—uvery fast
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transition, r*, induces a regime shift: it is an r-tipping point. On the fast side of r*, population
abundances grow monotonically during the entire duration of the trend; on the very fast side, they
can start oscillating earlier. The b(r) metric does not segregate between very slow and slow
trends, but D () — the duration of the post-trend transient — does: very slow trends correspond to
r < F~5.7x%x 1077, for which there is no post-trend transient: the environmental trend is slow
enough, and therefore ny close enough to the asymptotic cycle, that the abundances converge

immediately on the cycle as the environmental trend ends.

We can perform the same analysis on the chronological timescale by considering the time at
which the first population decline is observed, t,(r). That is, the number of generations for which
the abundance keeps increasing monotonically having passed the constant environment
bifurcation point A;, = 3, 1i.e., t, — t3 (Fig.S8 in SMA2). The slower the environmental trend (r),
the more generations the population monotonically increases, after having passed A = 3, and the

(chronological) delay in oscillation (#,(r) — ¢3(r)) tends towards oo as r tends towards 0.

In summary, by considering dynamics on chronological and demographic (A;) timescales, we have
identified that, for a given (even simple, continuous) bifurcation (here, at A = 3), environmental

trends can generate b-tipping points and be categorised into four categories (see Figure 8):

» Very slow trends show a delayed bifurcation/b-tipping point (corresponding, for the logistic

map, to 3 < b(r) < Ar), but do not show post-trend transients at A;>7.

* Slow trends also show a delay in the bifurcation, after which abundances start cycling, with

transients at the end of the trend.

* For fast trends, the bifurcation delay extends to the end of the trend. Before then,
abundances follow the moving/ghost equilibrium (here, b(r) = Ar; abundances grow

monotonically until the end of the trend).

* Very fast trends are dominated by transient dynamics (unpredictability related to initial

conditions). The r* value separating the very fast and other regimes therefore constitutes an
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r-tipping point.

We note that the fast trends case is demographic rate- and trend-specific; in some cases it may be
impossible for the delay of a bifurcation to extend towards the end of the trend before entering the

realm of very fast trends: the r-tipping point then separates slow and very fast trends.

4 Extensions to other ecological scenarios

Here we demonstrate the generality of our findings with two further examples illustrating common
ecological scenarios; the addition of short-term stochastic variation around the long-term
environmental trend, and a continuous-time consumer-resource interaction model under a
long-term environmental trend that affects mortality rather than reproduction. These examples
reinforce our general finding that environmental trends generate r-tipping points and delays in
bifurcation leading to b-tipping points, emphasise that our findings are robust to fundamental
differences in modelling frameworks, and reveal new insights based on the interaction of short-
and long-term environmental change processes. Appendix S1: Section A5 also considers the

logistic map under a decreasing environmental trend (r < 0).

4.1 Noisy trend

When demographic rates are simultaneously affected by long- and short-term environmental
change, the environment is non-stationary and stochastic. We showed that a long-term
environmental trend alone delays the reproductive rate (4;) at which a density dependent
population’s abundance starts to cycle: as r increases, so does b(r). Previous work shows how
(stationary) fluctuations can “excite” underlying over-compensatory, but stable-point, equilibrium
behaviours (e.g., Nisbet and Gurney (1985), Greenman and Benton (2003)). For the logistic map,
noise can generate sustained quasi-2-generation cycles at a mean environmental value for 4 < 3
(that we denote b(n)), such that b(n) < 3, with b(n) decreasing as the variance of the noise n

increases (Appendix S1: Section A3). In other words, the short-term noise shifts the bifurcation
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b(n) to lower reproductive rates (4,), increasingly further into the ’stable’ region with higher noise
variance. Short-term noise and long-term trends therefore have opposite effects on the onset of
observed (quasi-) 2-generation cycles. The joint effects of short- and long-term environmental
change on the dynamics of a population undergoing a noisy environmental trend, are related to the
concept of "time of emergence" (e.g., Hawkins et al., 2020; Hawkins and Sutton, 2012), which
measures the time at which a noisy (often climatic) metric emerges as trendy. The relationship
between the time of emergence of a climatic metric and a population’s response to it have also
been studied previously, in a density-independent framework from which bifurcations and tipping
points are absent (Jenouvrier et al., 2022).

Here, we consider a simple extension of equation (3):

vt = A4y (1 = ny)

A = A; + € with ¢ ~ N(0,02) and p(e) = E (W)

, (7
A =Ag+rtfor0<t<T,

Ao = 1.001 and A7 = 3.9605

where the value of A;, is drawn at each generation, independently and at random from a normal
distribution with expected value 1,, variance o> and (one-generation, detrended) expected
autocorrelation p(€). For an environmental trend of » = 0.003 corresponding to 7 = 1000
generations, we simulated stochastic time-series ¢ for various values of o2 and p(€) (Fig.9). For
the deterministic model (Fig.9a), the population starts oscillating at the r-affected b-tipping point

b(r) =~ 3.4.

For a noisy trend with low stochastic variance (o, = 0.01, Fig.9b), the abundances show
pseudo-2-generation cycles earlier than the trend-only case, so that we have a noise and rate
induced "bifurcation"”, that we denote b(r, o) such that 3 < »(0.003,0.01) < 5(0.003,0) ~ 3.4.
This delay in the onset of 2-generation cycles is reduced compared to the deterministic case; yet

because of the trend, the onset of underlying oscillations occurs at higher A, values than the
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constant environment framework bifurcation at 4 = 3. For noise with higher variance (o, = 0.05,
Fig.9d), the effect of the noise appears to match or cancel out that of the trend, and the
pseudo-2-generation cycles start at »(0.003,0.05) = 3. For even larger environmental noise

(0. = 0.15, Fig.9f), the short-term noise dominates and 5(0.003, 0.15) < 3. Positive
autocorrelation in the short-term noise has a strong effect on the onset of oscillations, as it reduces

the effects of the noise on the dynamics (Figures 9c and 9e).

4.2 A predator-prey model in continuous time

Here we consider a classic predator-prey system (Hsu et al., 1978; Wrzosek, 1990), where the
population dynamics are defined by a system of differential equations, with intraspecific density
dependence in the prey and a Type Il functional response:

ang
1+ahn;

T =Ani (1 —ny) —ny
@ , )

any __ ang _
a — " (c1+ahn1 d)

where n| and n; are prey and predator abundances, a is the attack rate (here a = 0.4), c = 0.2 1s
the conversion rate, 7 = 3 the handling time, 4 = 0.1 the maximum prey growth rate (in the
absence of competition and predation). In this case, we set the density independent predator death
rate (d) as the time-varying demographic parameter, decreasing linearly from dy = 0.02 to

dr = 0.002 over a duration of length 7', before settling at d,>7 = dr.

The constant-environment bifurcation diagram shows how the asymptotic predator-prey dynamics
vary as a function of predator mortality (d). It is displayed in the background of the
superimposition diagrams (middle column, II, Fig. 10), in orange and light blue. For higher death
rates d > d, = 0.01 (e.g., at dy), all (positive) trajectories converge towards a two-species stable
equilibrium (71, /). For lower death rates d < d,, this equilibrium point is unstable and the
asymptotic trajectories are limit cycles in constant environments (e.g., at d7). When predator

dr—dy
T

mortality follows a very slow (declining) trend (7" = 750, 000, r = = —2.4107%, top row of
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Fig.10), prey abundances initially decrease and predator abundances increase slightly, with no or
very small oscillations,before starting to oscillate strongly as predator mortality (in orange, right
hand y-axis) passes a critical threshold b(r) < d,. The corresponding superimposition diagram
(Fig.10all, to be read from right to left as r < 0), shows the system initially tracking the moving

equilibrium (71 (), ix(¢)) (in black).

As with the single-species discrete time model, there is a delayed bifurcation (d,): abundances
keep tracking the moving equilibrium, which acts as a ghost attractor, for predator death rates
corresponding to an unstable point equilibrium in a constant environment, i.e., for d; < d,,.
Eventually, a qualitative and quantitative regime shift occurs (i.e., a b-tipping point) and the
population abundances oscillate with increasing amplitudes. The "catch-up" effect is noticeable:
the increase in the magnitude of oscillations is much faster (in the alternative timescale d; of the
superimposition diagram Fig.10all) than that predicted by the constant environment framework
(in orange and cyan). By the end of the environmental trend, the quasi-cycles have the same
amplitude as the asymptotic cycle at d = dr, as highlighted on the phase diagram (the continuous
time equivalent to the cobweb plots) of Fig. 10alll where the trend trajectories are in blue

(post-trend trajectory in grey and moving equilibrium in yellow): there is no post-trend transient.

The very slow trend contrasts quantitatively with the dynamics under a slow trend (T = 75, 000,
second row of Fig.10) where the delay in bifurcation is larger and the quasi-cycles at the end of
the trend are much smaller in amplitude that those of the constant environment framework. It
takes another 10, 000 time-steps in the post-trend constant environment (¢ > T) for the oscillations
to reach the asymptotic behaviour (post-trend trajectory in grey). As with the single-species
discrete time model, for a fast environmental trend (7" = 7, 500; third row of Fig.10), abundances
track the moving equilibrium during the entire duration of the trend. Significant oscillations (i.e.,
of the same order of magnitude as the bifurcation diagram) only occur after the environmental
trend has finished (r > T'), and a long transient is required for the abundances to reach the

asymptotic cycle, which they do from inside that cycle (Fig.10cIII).
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This contrasts qualitatively with the dynamics of a very fast trend (T = 20, lowest row of Fig.10)
where the dynamics are driven by the post-trend transient (there is continuity between the trend
(blue) and post-trend (grey) trajectories, Fig.10dIII) and the abundances cycle towards the
asymptotic orbit from outside the attractor. This is a proof of the existence of an r—tipping point
that segregates rates of environmental change where, on the fast side, abundances track the
moving equilibrium and then cycle towards the asymptotic attractor with increasing amplitudes
and, on the very fast side, abundances are driven by transient dynamics and cycle, from the start of

the trend, with decreasing amplitudes towards the attractor.

5 Mechanisms underlying the delay in bifurcation

In this section, we turn back to the logistic map with trending reproductive rate (eq.3) and provide
two approaches to understand mechanistically the observed population dynamics of section 3, and
in particular the delay in bifurcations. The first approach is graphical and uses cobweb diagrams

(section 5.1). The second approach is mathematical (section 5.2).

5.1 Illustrating the delay in bifurcation with cobweb diagrams

Under an environmental trend, the population dynamics emerge from the combination of two
forces:

(i) the transient dynamics pushing abundances n;;; towards the asymptotic behaviour determined
by A; (i.e., the moving equilibrium 7; for 1 < A < 3), and

(i) the shift, over time, of that equilibrium attractor (7i; is a "moving" function of ¢ via 4,, eq.4).

Cobweb diagrams provide a useful way to investigate how these two forces interact to shape
population dynamics. Fig.11a illustrates a "classic" constant environment framework, here for a
2-point cycle, corresponding to A = 3.1, reached from ng = 7i(d) = 0.6774. Fig.11b highlights the

first 15 generations. The population response (growth) curve n;; = f(n;) (in red) and the black
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1:1 line yield abundance trajectories (in blue). The response curve crosses the 1:1 curve at the
equilibrium: 71 =1 - % This equilibrium is unstable (Fig.1): abundances cycle away towards the
asymptotic 2-generation cycle. This trajectory corresponds to that of the slow environmental trend

(Fig.2) if the trend stopped at A, = 3.1.

Allowing the trend to continue at the slow pace (Fig.2), for 10 successive generations around

3 <A, #3.10 < b(r), results in Figure 11c. The temporally changing environment is reflected by
multiple (red) population response curves. Abundances (blue) smoothly track the moving
equilibrium (7;), located where the (red) response curves and the (black) 1:1 line intersect. As the
time-varying demographic parameter increases further, the distance between response curves
diminishes and abundances start to oscillate (at A; =~ b(r), Fig.11d). Eventually, they reach values
associated with the 2-generation cycle (Figures 11e and 11f). Then, the environment (and
response curve) still changes each generation, but this change is so small compared to the
amplitude of the cycles, that it can be considered constant over multiple generations. The 15
response curves (the f; of eq.3a), corresponding to the 15 successive values of A;, are almost
indistinguishable and, consequently, so are the 15 quasi 2-generation abundance cycles (blue,

Fig.11f).

Before the time-varying demographic parameter has reached the b-tipping point (Fig.11c), the

abundances track the moving equilibrium closely (with 7,_; < n; < 71;) with a lag:
ht =Ny — ﬁt. (9)

This lag (h;) corresponds to the distance between the realised abundances (in blue) and the
moving equilibrium (in red) of the superimposition diagram (Fig.3). On these cobweb diagrams,
the lag reflects the distance on the 1:1 line between the abundances (blue) and the response curves
(red). Holding A, constant (Fig.11b), shows abundances cycling away from the point equilibrium.

From n;, < #i;;, we would get ... < n; 42 <y, < Ay < g4 < 0y 43 < ... and the cycle increases in
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amplitude until it reaches its asymptotic 2-generation cycle. In contrast, with an environmental
trend, the lag is perpetuated because of the distance between the successive response curves, equal

to
r r

— (10)

S A +r) A2

g(r, ;) = fyp1 — 1y

which corresponds to the speed of the moving equilibrium. From #i;, 1 < n;, < fi;,, we therefore
get ii;, < ny 41. Then, as g(r, A;) > ny, 41 — i, we have ny 41 < iy, +1, and so on: as long as the
speed of the moving equilibrium, g(r, 4;), is large enough, the population abundance tracks the
moving equilibrium with a lag. For a given rate of environmental change r, the distance between
successive abundance attractors, g(r, 4;), diminishes over time, as A, increases (eq.10), so that at
the onset of oscillations (¢,, as A; passes the b-tipping point b(r)), the lag is no longer perpetuated

and the abundances start cycling (Figures 11d and 11e; see Appendix S1: Section A2).

5.2 Mathematical analysis along the reproductive rate line

The key to better understand the behaviour of abundances under an environmental trend is to
consider the distance of the abundances #n; to the “moving equilibrium” 7i; (eq.(4)), that is,

h; = n; — 11; (eq.(9)), and to analyse its dynamics as a function of the Jacobian and the speed of
change of the “moving equilibrium”. In the vicinity of 7i;, we can write, via first degree Taylor
approximation,

New1 — Ay = J () (ny = 7y), (11)

where J(7;) is the Jacobian of the projection function f, n,+1 = f(n;) (eq.1), evaluated at 7i;. This

implies, as ;41 = ny1 — Ay + (A, — fig41), that for small A,

hovr = J () by + (g = gsr). (12)
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In a uni-variate framework, such as the one we are considering here, the Jacobian is simply the

derivative and for the logistic map, f(x) = A;x(1 — x), so that J(x) = 2,;(1 — 2x) and
J(A) =2 -4, (13)
from eq.(4). Therefore for the logistic map under a trend (eq.3a), equation 12 becomes

/lt - /lt+l
hiv1 = (2 - A4)hy + ——, 14
t+1 ( t) t Lot (14)
In Appendix S1: Section A4, we use equation (14) to exhibit non-linear trends where abundances
remain at a constant distance from the "moving equilibrium". For a linear trend (eq.3b), equation
(14) becomes

r
hiv1 = (2= ) hy -

r
~2-A)h, — —, 15
/l[+1/lt ( t) t /ltz ( )

In all three of these equations (eqs (12),(14) and (15)), the first term corresponds to the Jacobian
and the second term to the speed of change of the "moving equilibrium". Here we study the

behaviour of n;, via that of A; (eq.(15)) for various sections of the A; parameter line.

For 1 < A, <2, hy goes from 0 to the vicinity of 0 via a dip
The populations are initiated at 19 = 1.001 and ng = 7o, therefore we have iy = 0. At the next
generation, we have, according to equation (15), 41 ~ —r. At the following generation, sy =~ —2r,
etc. The distance h;, negative, decreases (in absolute value) initially, and all the more so that the
trend is fast (that r is high). It is complex to follow up the dynamics after that initial dip (/4 is not
small enough for eq.(14) to be valid). However, as one reaches ?,, such that A(z;) = 2, from
eq.(15), we get that:

-

r
hl‘2+1 x (2 _Alz)hlz - _2 =~ _4

5]

(16)

At A, = 2, the distance &, between the “moving equilibrium” and the actual abundance is

independent from the trajectory so far (and therefore from the choice of Ag). It is negative and
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small (four times smaller than /1); the slower the trend, the smaller that distance; i.e., any initial

difference between the projected population size n, and the moving equilibrium 7, quickly shrinks.

For 2 < A, < 3, repelling boundaries with an overcompensatory attractor
Going one time-step further, we get h;,42 ~ —7(1 — 7). The lag h, remains negative but now
decreases (in absolute value) monotonically. We can show, that for A, for 2 < A; < 3 (see below),

h; is constrained by two repelling boundaries:

“Lo<h< 0 . 17)
/112 SN——
—— I

(1)

which constrains 4, inside a range of ever decreasing amplitude, so that in this range, for most
values of r, we have a ghost equilibrium n; ~ #i;. In fact, we have, from eq.(17), ii;—; < n; < iy, in
which we recognise, the initial step of our cobweb diagram analysis. Figure 12, displays A, for a
slow trend (r ~ 1.5 x 107*) in blue, and the boundaries. We also display, in red, &, (¢) for a
trajectory that has been artificially disturbed: hy(z,) = 0 (4;, = 2.92). After the perturbation,

hy(t) is repelled by both boundaries.

Nested functions
We have denoted 7;, the value of n, where n;; = n;. Similarly, let us denote fz,, the value of A, so

that h;41 = h;. From eq.(15), we can approximate it as

~ -r
hy ~ ———, (18)
=1
and, as per eq. (9), we can now consider the distance
g =h - ilt (19)

With the same reasoning on g; as that on /;, it can be shown that g, follows a narrow range in
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2 < A; < 3 with one boundary being /,, so that if at a first approximation 7, ~ 7, at a second
approximation

hl =~ ]’l[, (20)

that is n; ~ A, — h;. At a third approximation, we could be more precise and write
n; = iy — fz, — g;, with g, the value of g; so that g, = g;, then consider i; = g, — g;, etc. Att3

(such that 4;, = 3), eq.(20) leads to

-r -r

T L ——
TR -1 18

For 3 < A; < 4, cascading effects

For A; > 3, the induction leading to the boundaries of eq.(17) does not hold any longer (see
below). At a time ¢;,, which is an increasing function of r, h; starts oscillating around h. This
leads, quickly, to a time #, > t, where h; is expelled outside the boundaries (see Figure 12), and
therefore h;, > 0, that is n; > 7, which, from eq.(11) leads to n; 41 — 71z, < 0: att,, n; has started
oscillating. Considering, the nested functions further, one has ... < t; <1, <1, <t,, where t;
(respectively t,) corresponds to the generation at which i; (respectively g;) starts oscillating. As i;
is expelled from its boundaries at 7, g; starts oscillating before itself being expelled from its
boundaries at ¢, and so on. This corresponds to a cascading effect, that we illustrate in Figure 13,
which displays, for the same trend as Fig.12, and for a portion of the trajectory, g;, h; and n; (on

log scale to correct for their mean).

Induction on Repelling Boundaries

We have (eq.16), hy, = hyy1 = so that [(#2) < hy, < I;. Consider now that for a given 7, we

_I
227
%)

have I5(t) < h; < 1;. From the right side of that inequality, 4, < /1, and from eq.15, we get the left

side of the same equation at the next generation:

L s - —— = ha+)

h =~ (2—-A)h, — -
et (2= Ak =9 Adr Ay
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From the left side of that inequality, /,(¢) < h;, and from eq.(15), we get the right side of the same

equation at the next generation: for 2 < A, < 3,

r r r r r
his1 = Q=) — 5 <2-)h(t) -5 =-2-A4)5-—5=-750B-24)<0
A7 A P
For all t, 2 < A, < 3 and (for a speed of environmental change r that is not too fast, see below), we

have

L(t) < h <1y, A7)

which constrains /, inside a range of ever decreasing amplitude /1 — [(t) = %, so that indeed, at
t

first sight, in this range, for most values of r, we have n; ~ 71;. Indeed, inequality 17 can also be

written:

Ao < ny < Ay, 2D

in which we recognise the inequality resulting from the inspection of the cobweb diagram. From
this, we can conclude that /; and /() are repelling boundaries of the abundance trajectory for

2 < A; < 3, as per Fig.12.The induction above is loose. Focusing on /; = 0 and [5(7) = we

__r
/lt/lt—l >

get, from [,(¢) < h, < [; at the next generation A > — r+1 = [5(t + 1) from from eq.15. From

/lt/l[

_ r
/1t/lz+]

the same equation, we also have hry < (4 = 2) 77— . This expression is negative for

r
/lz/lt+1

most of the 2 < A, < 3 range. It becomes positive when (4; — 2)ﬁ = that is, when

2
(A —2)(A; + r) = A; — r, which corresponds to A; = 3%’ +4/r+ (321) which is very close to 3

for most values of r.

6 Discussion

We have explored the dynamical consequences of the rate of change of an environmentally driven
demographic parameter for density-dependent populations, in discrete- and continuous-time,
under coupled short- and long-term environmental change and with a trophic interaction. We

characterised four rates of long-term environmental change, corresponding to qualitatively and
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quantitatively different combinations of dynamical behaviours across these different, but familiar
ecological scenarios, and related our findings to recent developments in the study of regime shifts

in ecological dynamics — long transients and tipping points.

Long transients

The dynamics of very fast trends were mainly influenced by transient dynamics. This qualitative
regime appears for the highest rates of environmental change, where r > r* (the r-tipping point),
in the r-bifurcation diagram (fig. 7). Here, the population did not track the environment, but
showed highly unpredictable transient duration and amplitude range (fig. 7 and fig.S3 of SMA1).
The ecological behaviour of such (potentially) "long transients" has recently been described for
various types of attractors, including showing how the transient can push the population below
pseudo-extinction thresholds from abundant population sizes and/or on the way to an attractor
corresponding to high abundances, affecting population resilience (e.g., Baker and Rost, 2020;
Poggiale, 2020; Rubin et al., 2022; Morozov et al., 2016; Rubin et al., 2022; Morozov et al., 2020,
2024).

Most of the reproductive parameter values of the logistic map (1 < 2 < 3.57) lead to unique
attractors (stable point or n-point cycling equilibrium points) which are approached by any initial
population abundance (0 < ng < 1); as such the abundance trajectories are not subject to the
chaotic supertransients typical of spatio-temporal dynamical systems (Lai and Tél, 2011). We
showed that certain rates of environmental change led to unpredictable abundance dynamics and
transient durations, both during and after the environmental trend. However, one of our main
findings is that this behaviour is limited to a specific range that corresponds to very fast
environmental trends with respect to the natural speed of the system (fig.7), (i.e., the natural
fluctuations of demographic rates, here the fertility rate A;, which is not expected to transition
from its minimal value (1; 2 1) to its maximum value (1; < 4) in a matter of a few generations,
Vanselow et al., 2019). For very fast trends, the dynamics are driven by the transient, which is

sensitive to initial conditions and therefore very hard to predict.
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r-tipping points, delays in bifurcation and »-tipping points

When the environmental rate of change was slower than r*, population abundances initially
appeared to behave according to the constant environment framework; i.e., following the
bifurcation diagram which, for the logistic map, predicts a monotonic increase in long-term
abundances (71, 4 < 3) followed by oscillations (4 > 3). In other words, the rate of environmental
change was slow enough for the abundances to track the environment. This situates r* as a
bifurcation on an r-bifurcation diagram, or r-tipping point, segregating two qualitatively different
regimes (Ashwin et al., 2012; Siteur et al., 2016; Ritchie et al., 2023; Vanselow et al., 2022;
Abbott et al., 2024). We showed, however, that the effect of r on the dynamics goes beyond the
r-tipping point. On the slower side of r*, abundances track the environment, in the shape of the
moving equilibria corresponding to the attractors of the bifurcation diagram (Hastings et al.,
2018). However, because of the environmental trend, the bifurcations are delayed: in the case of
the logistic map with increasing reproductive rate (4,), the population abundances start oscillating

at a higher A; than the bifurcation point in the constant environment.

If the reproductive rate decreases over time (i.e., r < 0), the bifurcation is again delayed, but in the
opposite direction: the population stops oscillating at lower reproductive rates (4, < 3; SMADS).
During these bifurcation delays, the moving equilibrium tracked by the abundances does not
correspond, in the constant environment framework, to a stable equilibrium; it is a ghost
equilibrium. In ecology, delayed bifurctions have rarely been investigated, with the exception of
extinction (transcritical) bifurcations (Zarada and Drake, 2017; Drake and Griffen, 2010).
However, delayed bifurcations have been studied extensively in other non-ecological contexts (e.g.,

Wu and Wang, 2017; Su, 2001; Wei et al., 2008; Baer et al., 1989; Miyazaki and Tchizawa, 2005).

The bifurcation delay is accompanied by a catch-up effect: abundances quickly jump from the
ghost equilibrium to the next equilibrium (corresponding to the 2-generation cycles, when
considering the A = 3 bifurcation at of the logistic map with increasing reproductive rate). This

leads to an abrupt qualitative and quantitative change of regime for the abundances: a b-tipping
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point; b-tipping points are generally associated with complex (discontinuous) bifurcations where,
e.g., on one side of the bifurcation, there is no equilibrium (Boettiger and Batt, 2020; Scheffer

et al., 2001; Dakos et al., 2012; Boettiger and Hastings, 2012).

We showed that b-tipping points can also occur for the simpler (continuous), period-doubling
bifurcations of the logistic map, where passing the bifurcation leads to an abrupt regime change.
This implies that while the trend is slow enough for the abundances to track the environment, they
can track different versions of the environment for the same value of the environmentally driven
parameter, as a function of the environmental rate of change. That is, they track different moving

equilibria/ghost attractors, and rapidly shift between them to generate b-tipping points.

For the logistic map with increasing reproductive rate over time (r > 0), the abundances track the
unstable (ghost) point equilibrium up to the first b-tipping point and the stable 2-generation cycle
thereafter, with the change of regime occurring very rapidly. In summary, we defined very fast
trends, for a given demographic rate and related bifurcation, as environmental trends leading to
population dynamics dominated by transients. On the slower side of the r-tipping point, fast
trends correspond to cases where no bifurcation occurs (despite the temporally-changing
demographic rate passing the value of the constant-environment bifurcation). In slow trends, the
bifurcation is also delayed, but this delay occurs before the end of the trend. Very slow trends are a
special case of slow trends where the rate of environmental change is slow enough to avoid any

post-trend transient.

Risks of simplifying frameworks

Overall, we showed that a population’s trajectory under an environmental trend is the result of two
forces: the transient approach towards the asymptotic environmental attractor and the constant
temporal shift of that attractor (it is "moving"). The population trajectory cannot, therefore, be
understood by considering only the asymptotic abundances based on the bifurcation diagram, nor

the transient dynamics approaching these asymptotic abundances. Focusing solely on the
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asymptotic behaviour in two distinct, constant environments, as ecologists sometimes do to
anticipate population responses to global change, reduces the validity of such studies to
unrealistically slow trends. Focusing solely on the latter (transients), by considering an
instantaneous change between the initial and the long-term value of the environment following the
transient dynamics framework, is equally risky as it limits the validity range to unrealistically fast

trends.

We have shown here, that considering both, in the hope that a realistic trend will behave in an
intermediate way between a very fast and a very slow trend, is not satisfactory either: it prevents
us from observing the existence of an r-tipping point and the emergence of simple bifurcations as
b-tipping points. However, while simplifying assumptions are an unavoidable part of ecological
modelling, the most important risk lies in not expressing them explicitly when interpreting results

(Scheiner, 2013).

A general perspective and a toolkit for ecologists

We considered simple population models with linear trends in demographic rates, but note that the
approach can easily be extended to non-linear trends (SMA4). Our approach does not correspond
to a specific system or environmental trend but provides a general framework under which to
study any population model under environmental change; including those implemented
experimentally (generally, over relatively short timescales, e.g., Tabi et al., 2020). A researcher
equipped with a population projection model and the functional responses of relevant
demographic rates to environmental cues will be able, via the r-bifurcation diagram, to get a
broader picture of the future population dynamics under different environmental trend scenarios,
and identify r-tipping points. For a given scenario, the superimposition diagram will highlight the
consequences of passing certain (even simple, continuous) bifurcations and the potential regime
shifts, or b-tipping points, it may lead to. We hope these tools and this framework will allow more
complete investigations into population or community resilience to the ongoing global changes of

uncertain speeds.
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For example, global change has important impacts on sea temperature and ocean acidification, in
turn, affecting critical ecosystem services provided by fisheries (Jgrgensen et al., 2020; Mondal
and Lee, 2025). These long-term trends, for which the IPCC has proposed several scenarios in
terms of magnitude and duration (Diop et al., 2018; Cheung et al., 2016), impact the recruitment
of fish populations (Shoji et al., 2011; Mondal and Lee, 2025) and therefore the stocks which

leads to various trends in fishing pressure (Hilborn et al., 2022).

Projection models have been developed for various populations, communities or areas, embedding
the response of recruitment to these gradual changes in temperature, acidity and/or fishing
pressure (Sadykov et al., 2022; Brooks, 2024; Maunder and Thorson, 2019). They can further
incorporate life-history evolution (McKeon et al., 2024) and spatial structure (incorporating the
"tropicalization" of fishing areas, e.g., Cheung et al., 2013). From these inputs, the consequences
of the rate of environmental change on fish populations can be studied via superimposition
diagrams; they can provide crucial information on potential b-tipping points, delays in bifurcation,
and more generally the possibility of abrupt regime shifts in the abundance and distribution of fish
stocks. The r-bifurcation diagram, considering the speeds of these various trends on a continuum
(considered individually or jointly), yields important information on the effects of various global
change and fishing policy scenarios on long-term fish stock dynamics. It would inform on both
the dynamics during and after the trend, allowing predictions of what abundance levels and how

fast, fish stocks are expected to stabilise once/if CO, emissions are significantly reduced.

While we have focussed on the dynamics of density dependent population abundances under
(linear) environmental trends, we believe the approach and associated analytical tools, will
generalise to models of trait or other dynamics and a wide range of environmental change
scenarios. This should allow novel hypotheses to be developed and compared around constant vs.
changing environments, helping us to determine the importance of the existence and rates of

temporal environmental change on ecological and evolutionary dynamics.
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Box 1: Glossary

time-varying demographic parameter: demographic rate (e.g. survival) that varies with the environment and therefore over time. Its

time series accounts for both the time-series of environmental cues and the response of the demographic rate to these cues.

Stationary environment: environmental framework where demographic rates vary over time, but their long-term statistical properties

(e.g., mean, variance) are constant.

Environmental trend: (non-stationary) environmental framework where one (or more) demographic rate(s) increases or decreases

consistently over time.

Environmental rate of change (r): the speed at which a given demographic rate changes over time.

Regime shift: a qualitative change in the dynamics of a population, or the dynamics and/or composition of a community.

Tipping point: critical threshold that, when crossed, leads to a sudden, quantitative and qualitative change in population dynamics. For a
b-tipping point, this threshold corresponds to a certain, value of the focal demographic rate. For a r-tipping point, it corresponds to a
certain value of a the environmental rate of change.

Bifurcation: a certain value of a demographic rate separating, in a constant environment, qualitatively different long-term (asymptotic)
dynamics. The bifurcation diagram provides the asymptotic dynamics for a continuum of values of the demographic rate. For
discontinuous bifurcations, there is no (positive) equilibrium point on one side of the bifurcation (e.g., fold or saddle-node bifurcations).
Equilibrium: in a constant environment, the state of a system where dynamics have become constant over time (e.g., constant abundances
or generation cycles of constant period and amplitudes). If a small perturbation away from the equilibrium leads back to it, the equilibrium
is deemed stable (i.e., an attractor). An equilibrium can correspond to a single abundance value (point equilibrium) or a series of
values (cycle) that asymptotic abundances encounter with fixed period.

Chaotic range: range of values of the demographic rate where the asymptotic dynamics are chaotic (i.e., no stable attractor).

Moving equilibrium: abundance point, corresponding to an equilibrium in a constant environment, that changes over time due to
environmentally driven changes in a demographic parameter (see eq.4). Ghost attractor: In the context of this study, a ghost attractor is,
in a varying environment, a state of the system that would be an equilibrium (stable or unstable) if demographic rates were held constant.
More generally, it is "a state that is not an equilibrium, but would be under slightly different conditions" (Hastings et al., 2018).
Transients: transient dynamics correspond to the trajectory of a system towards the asymptotic regime, following an instantaneous
perturbation, or initiation of the population away from the asymptotic attractor. In some cases, called long transients these regimes
can last for many generations and incur sudden changes in abundances occurring long after the perturbation. Under-compensatory,
respectively over-compensatory, transients correspond to transient dynamics where the equilibrium is reached via monotonic — constantly
increasing or decreasing — changes in abundance, respectively via (damped) oscillating abundances (abundances overcompensate).

Superimposition diagram: superimposition of the bifurcation diagram with the abundance dynamics considered in the alternative

timescale of the demographic rate.

r-bifurcation diagram: Properties of population dynamics (e.g., bifurcation or post-trend transient) displayed for a continuum of values

of the rate of environmental change.

48



1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

List of Figures
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dynamics: the point equilibrium, in grey, is now unstable,(# is a repellor). For 4 > 3.54,
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Time series of population abundances for the slow trend (a trend lasting 75 = 7,000 gener-
ations corresponding to rg ~ 4.2 X 10~%). (a) Time series of abundances (blue); generation
T at which the trends ends is marked by a black vertical line, generation of first oscillation
to(rg) by a grey vertical line; top axis shows the corresponding value of the time-varying
demographic parameter (4,, red). Lower panels zoom into (b) 100 and (c) 30 generations of
the time series, starting 15 generations before #,(rs) =5074. . . . . . . . ... ... ...
Superimposition diagram (of environmentally driven population abundances and constant-
environment bifurcation diagram) for the slow trend (75 = 7,000; ry = 4.2 X 10~%). Bifurca-
tion diagram (black) and population abundance series as a function of alternative timescale
A; (blue); in red, the moving equilibrium 7i(A,); the grey vertical line shows the parameter
value of first oscillations, 4;, = b(r). Insert shows a zoom into 100 generations of the time
series starting 15 generations before the time of first oscillation ¢, (ry) = 5074. . . . . . . .
The acceleration at which abundances change (a;) varies with the rate of environmental
change (r). The acceleration of population abundance, a; (eq.5), are displayed in the
alternative demographic timescale (1,) for a range of values of r. For each value of r
(different coloured curves), the maximum acceleration d(r) (eq.6) corresponds to each
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Summarising key dynamical features for four qualitatively different rates of environmental
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very fast environmental trends. . . . . . ... Lo Lo
Population dynamics under a noisy environmental trend. Superimposition diagrams (abun-
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Predator-prey dynamics in continuous time (eq.8) where predator death rate (d;) follows an
environmental trend for a duration 7. Rows correspond to: (a) very slow, (b) slow, (c) fast
and (d) very fast rates of environmental change. Columns correspond to (I) abundance time
series of prey (blue lines) and predators (red), time-series of the predator death rate (green
dashed line, right-hand y-axis) and moving point-equilibria 7 (¢) and 7i;(¢) (black) during
and after the trend; (II) superimposition diagram (to be read from right to left): bifurcation
diagrams (orange and cyan for predators and prey, respectively) and abundance time series
(red and blue) and moving point-equilibria (black) on the alternative demographic timescale
dy; and (IIT) phase diagrams of prey vs predator abundances during (blue) and after (grey)
the trend; asymptotic cycle at d7 shown in black and moving equilibrium in green.

cobweb diagrams of abundance trajectories for (a,b) constant environment, and (c-f) a slow
trend (r¢ = 4.2 x 107*) at various values of A; . . . . . . v o i
Repelling boundaries: figure shows a representative portion of the trajectory of lag A,
(eq.9, blue points) as a function of time-varying reproductive rate A, for a trend of duration
T = 2 x 10* generations. In red, the same dynamics perturbed at tp corresponding to
Ay, = 2.92, such that hy(z,) = 0. In yellow, the lag equilibrium, h: (eq.18), and in black,
the repelling boundaries (eq.17) . . . . . . . . . ...
Cascading effect: figure shows the nested abundance difference functions g; (blue, eq.19)
and A, (red, eq.9) as well as the abundances n, (orange, right hand axis), on a log scale and
as a function of time-varying reproductive rate A, for an environmental trend r ~ 1.5 x 10~%
corresponding to 7 = 2x 10*. The regime shift in g, anticipates and leads to that of &, which

anticipates and leads to that of n,, i.e. to the b-tipping point . . . . . . . .. ... ... ..
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A1l Dynamics of the logistic map in constant environments

In a constant environment, the asymptotic behaviour of a population following the logistic map
(ny+1 = An; (1 — ny); eq. 1) is determined by the value of the parameter A, the reproductive rate in

the absence of intraspecific competition. Qualitative differences in population dynamics can be
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Figure S1: Transient and asymptotic dynamics of the logistic map (eq.1) for ng = 0.395 and various
values of A. For A4 < 1, the abundance converges towards 0. For 1 < A < 3, abundances converge
towards 71 = 1 — %, with damped (overcompensatory) oscillations for 4 > 2 (J(72) < 0) but no
oscillations for A < 2 (J(7i) > 0). The equilibrium is unstable for 4 > 3 (J(71)) < —1), which is a
period doubling bifurcation (1 = 3.2 generates a 2-generation asymptotic cycle), followed by others
(for A = 3.5 we have a 4-generation asymptotic cycle) until 4 ~ 3.54409 which is the onset of chaos
(e.g., for 1 = 3.9). Above that, the behaviour will be chaotic for most values of A, but there are
still certain "islands of periodic stability" or "periodic windows" such as 4 = 3.828 which exhibits
a 3-generation asymptotic cycle and 4 = 3.9605 = Ar which exhibits a 4-generation asymptotic

cycle.
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understood from the Jacobian, which corresponds, for unstructured models like the logistic map,
to the derivative of the population growth function J = % following an arbitrarily small
perturbation, evaluated at the non-trivial equilibrium: J(77) =2 — 1. Aslong as -1 < J(#) < 1,
the population will return to the equilibrium following a small perturbation, which maps onto the
stable equilibrium region 1 < A < 3 in fig.1. However the trajectory to the equilibrium will differ
qualitatively according to the sign of J(71). When 1 < A < 2, J(1) > 0, the stable equilibrium is
approached monotonically (i.e., smoothly; under-compensation), while for 2 < A < 3, J(#1) < 0,
the population trajectory shows damped oscillations (over-compensation). This distinction is
crucial for transient regimes, as well as when studying environments that fluctuate around a fixed
mean value (Nisbet and Gurney, 1985; Greenman and Benton, 2003). As A approaches 3 from
below, the 2-generation auto-correlation of the noisy (but stationary) version of the logistic map
approaches -1 (see SMA3): the population displays quasi 2-generation cycles, that is, noisy
oscillations between consecutive low- and high abundances that appear similar to a deterministic
2-generation cycle. The sign and the amplitude of the Jacobian therefore provides useful
information for small deviations from the equilibrium and for certain equilibria, but is not
generally sufficient to understand the road to the asymptotic behaviour. Fig.S1 shows the transient
and asymptotic population dynamics for representative values of A, for a given arbitrary initial

population abundance, ng = 0.395.

Periods of the generation cycles of the logistic map

The bifurcation diagram (fig.1) provides valuable information about the existence and range of
stable point equilibria, as well as the appearance of period-doubling bifurcations and the
amplitude of asymptotic cycles or chaotic bounds. However, the exact onset of chaos and the
"islands of periodic stability" that occur after that onset are less easy to spot on the bifurcation
diagram (without zooming in on narrower parameter ranges). Instead, one can compute the
Lyapunov exponent or directly compute the period of an asymptotic cycle (if it exists). For a range

of A values and for arbitrary initial condition ny = 0.1, we produce the abundance dynamics for

I
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the logistic map across 1, 000 generations and compute the Lyapunov exponent of the abundance
time-series (in red on fig.S2, right-hand scale). The Lyapunov exponent is negative for periodic
cycles and positive for chaotic dynamics. To compute the period of the cycles, we simulate
dynamics across 40, 000 generations and focus on the last 700 generations. We test whether
max,(n(t + j) — n(t))* < €, for e = 1073, for increasing values of j starting at 1. For each value of
the parameter A, we allocate the first value of j for which the condition is respected as its "cycle
period". When, by j = 100, no cycle has been found, we allocate a "cycle period" of -1, which we
call chaos (but it can also correspond to a cycle of period > 100 generations, or a shorter cycle
period with an extremely long, supertransient). We display these "cycle periods" in blue on
fig.S2; where we only focus on periods between 1 and 7, and allocate "cycle period" 0 to periodic
cycles of period comprised between 8 and 100. This allows to identify the highest values of A for
which one has an asymptotic cycle of period <8: it is a 4-generation range (highlighted with an

orange circle in fig.S2), comprising A7 = 3.9605.

7- S

= cycle period
= Lyapunov Exponent

6

cycle period
©
T
Lyapunov Exponent

Figure S2: cycle period (blue) and Lyapunov Exponent (red, rhs) for the logistic map (eq.1). Period
-1 indicates chaos (or cycles of period>100) and period O indicate a cyclic behaviour with 7 <
period < 100.
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Transient dynamics for a window of periodic stability: 4 = 17 = 3.9605

Focusing, in particular, on A = A7 = 3.9605, leading to an asymptotic 4-generation cycle for any
initial condition, we want to understand how the initial conditions (ng) affect the transient towards
the 4-generation cycle and its duration. For ng = 7i(1p) ~ 0.001, this corresponds to the
step-change, and the dynamics are displayed in fig.S6 (bottom row): the transient is roughly 80
generations (relatively long). Here we illustrate how sensitive the transient period is to initial
conditions by considering three further examples: an extremely short transient of 4-5 generations
when ng = 0.002, which corresponds to an initial condition for A; of 19 = 1.002, (fig.S4, top row);
the complete lack of any transient when ny = 0.0387 (which is the equilibrium for 1y = 1.0403,
and the lowest of the four abundances of the asymptotic cycle at A7, fig.S4, middle row); and
finally a very long transient of around 320 generations at no = 0.0377 (19 = 1.0392 fig.S4, bottom
TOW).

We note that this model is so sensitive to initial conditions that the precise transient period can be
sensitive to the numerical precision of the software used to simulate the system. Extending this
analysis for a wider range of values of ng, for which we estimate the duration of the transient via

min(t,max;|n(t +4) —n(t)| < €), for e = 0.0001, we plot the output in fig.S3, which shows that

900

. . . |
min(t, maz,|n(t +4) — n(t)| <€)
800 . cycle points at Ar

700 |
600F | - o e T Sy
500 |-

400 R

transient duration

300 f°

200

100 B

Figure S3: Transient duration for a step-change towards the logistic map of parameter A = Ay =
3.9605 (where the four points of the asymptotic cycle are represented as black vertical lines) for
various initial values ng, calculated as min(t, max;|n(t + 4) — n(t)| < €), for e = 0.0001.
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for the chosen asymptotic state corresponding to A = Ar, as a function of the choice of ng, one can

encounter transients as long as 850 generations.

A2 Bifurcation at 1 = 3 and b-tipping point

In the constant environmental framework, there is a period-doubling bifurcation at A = 3 that
segregates the fixed point, non-zero equilibrium regime (1 < A < 3) and a 2-generation cycles
regime (4 > 3); see fig.1. The A = 3 case is a neutrally stable 2-point cycle, i.e., the steady-state
cycle amplitude depends on ng. Contrary to a saddle node bifurcation — where on one side of the
bifurcation there is no equilibrium point — lim,_,o b(r) = 3 (which we denote b(0) for simplicity)
does not correspond to a discontinuity in the abundances over time. Equating the very slow trend
framework with the constant environment framework, implies considering that as the rate of
environmental change r — 0, n, corresponds to the asymptotic abundance of the bifurcation
diagram. Fig.4, shows the "acceleration" of population change time-series,

a; = ||ng+1 — ny| — |ny — ny—1]] in the A, time-scale for various rates of environmental change (r),.
The acceleration peaks later (b(r) increases with r) and higher as the rate of environmental
change r increases. Fig.S5 displays the value of the delay in the bifurcation b(r) (red, rhs) and
d(r) = max;(a;), the peak in acceleration, , as a function of r; a metric for the discontinuity
generated in abundance time series. As r — 0, b(r) — b(0) = 3 and d(r) — 0: there is no
regime shift or discontinuity, for a paradoxical trend with speed » = 0. However, for any "real"
positive trend, r > 0, there is a discontinuity as A; passes b(r) — measured by

d(r) = max(|ns+1 — ng| — |n; — n;—1|) — that increases in magnitude as r increases (figs 4,S5 and
S6). In other words, the trend turns a simple, continuous, bifurcation into a tipping point at

b(r)y V 0<r <t Insummary, b(r) is not a b-tipping point for a (paradoxical) trend of speed

r = 0, but one for any real trend r > 0 (see SMA2).
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Figure S4: Sensitivity of transient period to initial conditions; trends dynamics of a step change
(T=1) from Ay (and ng = 7i(g)) to Ar = 3.9605, followed by 500 generations at the constant
environment; (a) left panels: abundance n, (blue) and environmental parameter A, (red, secondary
axis); (b) right panels cobweb diagram: response curve (in red) and the abundance trajectory (in
blue, transient, in pink, asymptotic). (top) 4o = 1.002: extremely short transient dynamics (4
generations) ,(middle) 1o = 1.0403 complete lack of transient dynamics; A7 = 3.9605 (bottom)
Ao = 1.0392 very long transient dynamics (320 generations).
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Figure S5: Maximum acceleration d(r) (blue line, left hand vertical axis) and parameter value at
first oscillation b(r) (red line, right hand vertical axis) as functions of the rate of environmental
change, r.

Delay in bifurcation and onset of Cycling

Figure S6 summarises the abundance time-series in chronological time (1st column, I) and in the
re-scaled A, time-scale (2nd column, II), for the very slow (1st row, a), slow (2nd row, b), fast (3rd
row, c¢) and very fast trend (4th row, d) studied in the main text. The 3rd column (III) displays
cobweb diagrams of the abundance trajectories in the vicinity of the b-tipping point of the slow
environmental trend, A, = 3.146 = b(ry), for these four different trend speeds. For the slow trend,
it corresponds to the appearance of the first oscillations (fig.S6bIII). For the very slow trend
(fig.S6alll), the time period observed occurs long after the tipping point,

b(rys) = 3.0009 < b(ry): the population follows quasi-2-generation cycles very close to that
predicted by the constant environment for A = 3.144. For the fast trend (fig.S6c¢IIl) it occurs long
before, b(r;) < b(ry): the abundances track the (ghost) "moving equilibrium" (and will do all the
way to t = T). The different regimes for the same value of the environmentally driven parameter
A, for trends of different speeds, reflect the different regimes for various points along the trajectory

for one specific speed r as can be expected from eq. 10.
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Figure S6: Summarising population dynamics under continuous environmental change corre-
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Start of oscillation analysis and r-bifurcation diagrams

In the main text, we display the r-bifurcation diagram for the logistic map and a linear trend in A,
(fig.7), which shows b(r), the value of A, at the first oscillation in abundances (and the duration of
the post-trend transient, D(r)). We can also perform the same analysis on the chronological
time-scale by considering #o(r), the generation of the first oscillation in abundances (fig.S7 ).

Figure S7- a loglog plot so that we have [n(T') as linear function of In(r) — shows that ¢, (in blue)

10% i i 108 T

— t, —,
s £

T

—_—
T
7 =1l S-F trends border
e - = 7* 1-tipping point (F-VF border) | |

r=rl S-F trends border
s 7 = 1* 1-tipping point (F-VF border)

108

104

generation
generation

101 L

|

102F \

\\
100 - : . 100 ‘

102 107" 100 108 10 1074 102 10° 102
T r

Figure S7: The generation of first oscillation #,, (blue line), the generation #3 at which 4;, = 3 (red
line), and the number of generations of the trend 7" (orange line), for various values of r, on a loglog
scale. The 2 figure panels differ only by the range of r displayed. Green and grey vertical lines
illustrate borders between qualitatively different rates of environmental change.

is a decreasing function of r, up until the r-tipping point r*. The r-tipping-point (r*) segregates
monotonic ty(r) for fast trends (r < r*) and non-monotonic ty(r) for very fast trends (r > r*). In
the monotonic range, ' segregates the range where o > T (fast trends, r’ < r < r*) and where

t3 < to < T (slow and very slow trends, r < r™); where t3 is such that Ay, = 3. As the rate of
environmental trends slows towards O (r — 0), the generation of the first abundance oscillation
tends towards the constant framework bifurcation (¢, (r) — t3). The very fast trends range is
characterised by r values for which ¢y < T, that is, where the first oscillation occurs before the end
of the environmental trend; but fig.S7 also shows that we can have 7y < #3 in that range; that is,
oscillations before reaching the cycle range (1 < 3).

Figure S7 illustrates that on the A, time-scale, we have lim,_,o b(r) — 3 = 0, while on the

chronological time-scale lim, o ¢,(r) — t3(r) = +o0. It can be easier to understand why, by
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considering both the time at which the first decline in population size is observed, 7, (r), and the
number of generations for which the abundance keeps increasing monotonically having passed the
constant environment bifurcation point, 4;, = 3, thatis #, — t3, as per fig.S8. It helps to understand
why the slower the environmental trend, the longer (in number of generations) the population
increases monotonically after having passed A = 3, and the (chronological) delay in oscillation
(t,(r) — t3(r)) tends towards oo as r tends towards 0. While the projection of this delay onto the
alternative time-scale A;, b(r) — 3, increases with the rate of the environmental trend r (fig.7), the
opposite is true on the chronological time-scale (blue on fig.S8). In other words, the slower the
environmental trend, the longer (in number of generations) the population increases monotonically
after having passed A = 3, and the (chronological) delay in oscillation (¢,(r) — ¢3(r)) tends
towards oo as r tends towards 0. However, this delay in the time of first oscillation (¢, — t3)

decreases more slowly with » than 7' —#,, (red on fig.S8): relative to the time spent in the trend past

to—13

T=,)7(1,—5;) increases with r and tends

13, the proportion corresponding to monotonic increases
towards O as r does. On fig.S8, the border separating the slow and fast trends (r') corresponds to a
difference in slope of %, caused by the fact that, for fast trends, t, = T, so this slope is
"forced" at —1. It also corresponds to the point where T — t, becomes zero (for fast trends) and

cannot be computed on a log scale (red on fig.S8) Contrary to the fast trends, for very fast trends

we can have t, < T, so that T — ¢, can be displayed for some values of r on the loglog plot (in red).

Around the r-tipping point

It is clear from the r-bifurcation diagram (fig.7) that there is regime shift at r*, segregating a
smooth regime, for r < r*, where b(r) decreases monotonically (first as a plateau, then as a
strictly decreasing function) from b(r*) = Ay to the limit lim b(r),— = 3. In fig.S9, we illustrate
this by providing the dynamics of the trendy logistic map for rates of environmental change r in

the vicinity of r*.
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Figure S8: r-bifurcation diagrams illustrating quantitative characterisation of four qualitatively
different rates of environmental change (very slow, slow, fast and very fast; r on the (chronological)
delay in oscillations 7, — #3 and the (chronological) duration of the portion of the trend after the first
oscillation 7' — 7,, on a log scale

Other period doubling bifurcations

For certain rates of environmental change r, the abundance time series can display a delay in the
second period doubling bifurcation (from 2- to 4-generation cycles; fig.S10): abundances keep
tracking the 2-generation cycle ghost equilibrium past the constant-environment bifurcation,
before abruptly shifting to quasi-4-generation cycles. However, despite the self-similarity of the
logistic map, it is possible for a given speed of environmental change (7) to encounter a b-tipping

point at one period-doubling bifurcation and not others (as for ry, see fig.3).

A3 Auto-correlation of the noisy stationary logistic map

For the logistic map in a noisy (but stationary) environment, that is, for example, for

Neer = A (1 = ny)

A = max(0,min(A + ,4)) (22)

€t NN(O’O-ez)
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Figure S9: Summarising population dynamics under continuous environmental change for various
values of T (rows), on both sides of the r-tipping point r*, corresponding to 7 = 34. Plots of
the abundances over time (left column), the superimposition of the abundance dynamics over
the bifurcation diagram (centre column) and the cobweb diagram (right column), where response
curves are in red, asymptotic dynamics in black, trend dynamics in blue and post-trend transient
dynamics in green XIII
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Figure S10: Population size n; (in blue) given as a function of A; for a slow environmental
trend (r = 1.5 x 107 corresponding to T = 20,000 generations), superimposed over a classical
bifurcation diagram (black), starting at 19 = 1.001 and ny = 7i(4p) and followed by 500 generations
at constant A7 = 3.9605. The "moving equilibrium" 7i; is shown in red.

we generate a single time-series for ¢; for a standard deviation of o, = 0.1, that we apply to

various values of 1 and compute, for each, the corresponding #; time series (with n; = 0.1), and

Cov(n+1,m)

its one-generation auto-correlation p(A) = var(n)

(fig.S11). As expected from the

deterministic constant environment framework analysis, the autocorrelation is at its lowest in the
range 3 < A < 3.44949 corresponding to 2-generation asymptotic cycles. However, p(1) < —0.8
for A > 2.84, so that we have quasi-2-generation cycles for A in a range corresponding to a stable

fixed point equilibrium, corresponding to the overcompensatory transients leading to a stable

equilibrium attractor.

A4 A non-linear trend: with no oscillations and constant
distance to the moving/ghost equilibrium

For any trend, we never have ;41 = 7i; = 71 as this would imply 4; = 4,41 = 4 a constant
environmental parameter (eq.4). From eq.18, we see that similarly, for a linear trend, one can
never have A4, = h, = h. However this is possible for a non-linear trend, and that same equation

shows that the speed r; required for the population abundances to remain at a constant distance to
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Figure S11: 2-generation auto-correlation p(1) =

Cov(n+1,1)
var(ny)

(eq.22). We apply a given & ~ N (0, 0?) time series with o, = 0.1 to a range of mean parameter
value A.

for the noisy stationary logistic map

the moving equilibrium, h, has to increase with time. From eq.14, we can actually build a 4,

time-series that does that, by replacing A,41 and h, by h, we get h = (2 — A,)h + %, which

leads to

. -1
Ayl = (/1— + h(d; - 1))
t

(23)

For a given h, this yields an associated time-series for A, that increases exponentially over time

(see, for i = —0.001, the parameter and abundance time series in fig.S12).
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Figure S12: time-series (left), superimposition diagram (centre and right) for A; increasing expo-
nentially as per eq.23, with constant distance to ghost attractor: 2 = —0.001
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AS The trendy logistic map with a decreasing environmental
trend, r <0

Here, we briefly consider a linear trend on the parameter A of the logistic map (as per the main
text) but with negative speeds. That is, the initial and final value of A; are reversed: we now have
Ap = 3.9605 (4-point cycle) and A7 = 1.001 (under-compensatory stable equilibrium attractor).
Fig.S13 shows the abundance dynamics both in chronological time (on the left vertical axis) and
on the A, timescale (on the right axis), for an initial value of ny = 0.1476, one of the 4 points of
the asymptotic cycle corresponding to Ag. The result corresponds to what our study of » > 0 leads
us to expect: the dynamics follow the bifurcation diagram for slow trends (the first three rows of
the figure), but with a delay: the population encounters chaotic behaviour followed by
pseudo-cycles of decreasing period but those occur later (that is, for smaller A, values) than the
corresponding bifurcation point of the bifurcation diagram. This delay is most noticeable for the
bifurcation from 2-generation cycles to a stable equilibrium around A = 3: the corresponding end
of the pseudo-cycles towards a monotonic decrease in abundances occurs at values of A; that
decrease with the speed of the trend. Because the delay concerns a transition from cycles to a
stable point here, it does not lead to a discontinuity, or b-tipping point, for the abundances. As in
the main text, we also note that abundances track the ghost equilibrium corresponding to the
stable equilibrium of constant environments but struggle to do so for low values of A;: the faster
the trend the further from the ghost equilibrium the abundances are as the trend stops. Contrary to
the r > 0 study, the final value of A here, A7 = 1.001 corresponds to a stable point. The transient
post-trend dynamics are much simplified and consist of a monotonic decrease towards 7iz ~ 0.001.
For the decreasing A trend, the 4 = 3 bifurcation is delayed but there is no rate of change that
ensure that it is delayed until the end of the trend (no fast trends): the r—tipping point correspond
to the transitions between slow trends (delayed bifurcation) and very fast trends (no bifurcation,
transient dominates). As noted in the main text, the existence of fast trends is bifurcation

dependent: it depends on the relative rates of change of the moving equilibrium and the
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Figure S13: Abundance time-series, n; (blue points) and A, time-series (red, secondary axis) on
the left column and — on the right column — superimposition of the abundance time-series (blue
points) as a function of A, with the bifurcation diagram (black points); for a representative range of
values for the rate of environmental change r < O (different rows) and for ny = 0.1476
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environmental parameter. The difference between slow (rows 2 and 3 of fig.S13) and very slow
(first row) are noticeable via the superimposition diagrams (second column): for the very slow
trend, the abundances track the moving equilibrium closely enough so that there is no post-trend
transient while this transient is noticeable for the slow trends (at A; = 1 on the panels on the

second column and rows 2 and 3).

A6 Transient dynamics of the trendy logistic map

Long Transient Sensitivity to number of steps for a very fast trend

Here, we consider what occurs when a sudden environmental change takes more than a single
generation, i.e., two or three generations, thereby adding one or two "stepping stones" on the way
to the asymptotic cycle. We have seen how sensitive the duration of the transient is to the initial
condition of the step change, we therefore expect the same with regards to the number of
stepping-stones, as these will directly affect nr, the initial condition of the last step of the change,
which will drive the transient dynamics. Indeed, as we see in the top row of fig.S14, for T = 2, the
transient is very short (3 generations) while for 7" = 3, illustrated as the bottom row of fig.S14, the

transient lasts for 230 generations.
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Figure S14: 2-Step (r = 1.45, T = 2, top) and 3-step (r =~ 0.99, T = 3 bottom) environmental
change from 2o = 1.001 and ny = 7i(Ap), to A7 = 3.9605 followed by 500 generations at that constant
environment (d7); (a) abundance n; (blue) and environmental parameter A; (red, secondary axis);
(b) cobweb diagram: response curves (f(n;), in red) and the abundance trajectory (n,, transient
phase shown in blue; asymptotic phase shown in magenta). The n; = f(n;) line is shown in black.
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