

How does the rate of environmental change affect density-dependent population dynamics?

Christophe F. D. Coste^{1,4}, Brett Petersen¹, Dongbo Li², Chenggui Yuan³, Steven M. Sait², and Mike S. Fowler^{1,*}

¹Department of Biosciences and Centre for BioMathematics, Swansea University, Singleton Park, SA2 8PP, UK

²School of Biology, University of Leeds, Leeds, LS2 9JT, UK.

³Department of Mathematics and Centre for BioMathematics, Swansea University, Bay Campus, SA1 8EN, UK.

⁴Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), Trondheim, Norway

9 **Running title:** Populations under environmental trends

10 Journal: Ecological Monographs

11 Type of article: Article

¹² * Corresponding author:

13 Mike S. Fowler

¹⁴ E-mail: m.s.fowler@swansea.ac.uk ; Telephone: 01792 295 443

¹⁵ Department of Biosciences, Swansea University, Singleton Park, SA2 8PP, UK

16 E-mail addresses and ORCID:

¹⁷ Christophe F. D. Coste: c.f.d.coste.ecology@gmail.com and

¹⁸ christophe.coste@nina.no, 0000-0003-3680-5049.

¹⁹ Brett Petersen: Brett.petersen@btinternet.com.

²⁰ Dongbo Li: D.b.li@leeds.ac.uk, 0000-0003-0471-7917.

²¹ Chenggui Yuan: c.yuan@swansea.ac.uk, 0000-0003-0486-5450.

²² Steven M. Sait: S.M.Sait@leeds.ac.uk, 0000-0002-7208-8617.

²³ Mike S. Fowler: m.s.fowler@swansea.ac.uk, 0000-0003-1544-0407.

24 **Open research statement:** No new data are used.

Keywords: tipping points; long transients; density-dependence; environmental trend; time of

26 emergence; b-tipping points; r-tipping points; superimposition diagram; r-bifurcation diagram.

27 Content:

²⁸ Number of words in the abstract: 224

²⁹ Number of pages in the manuscript (main text): 64

³⁰ The main text contains 1 text box and 13 figures.

³¹ The supplementary information (Appendix S1) contains 6 sections.

Abstract

33 Natural populations experience variable environments. Anthropogenically driven
34 environmental change, in particular, is expected to impose trends on key demographic
35 parameters such as reproduction and survival. Theoretical studies of how such environmental
36 changes affect populations have highlighted dynamical phenomena including
37 bifurcation-related tipping points – typically identified by comparing different, but constant,
38 environmental states – and long transients – that can arise after sudden environmental
39 perturbations. However, real-world environmental trends are neither instantaneous nor slow
40 enough to justify treating the environment as constant, motivating recent interest in r -tipping
41 points – regime shifts induced by r , the rate of environmental change in demographic
42 parameters. Most existing work examines this phenomenon in complex ecological models and
43 for specific values of r . Here, we develop tools to help ecologists investigate how populations
44 and communities respond to environmental trends across a continuum of r values. Using a
45 simple density-dependent model, we identify four qualitatively distinct responses to a trend as
46 a function of r – patterns that traditional methods fail to reveal – and we visualize them using
47 an *r -bifurcation diagram* introduced here. We also describe and mathematically explain the
48 emergence of abrupt regime shifts linked to delayed bifurcations, revealed by a novel
49 *superimposition diagram*. These findings are robust across modelling frameworks and
50 ecological contexts, providing new insights into interactions between short- and long-term
51 environmental change processes.

52 1 Introduction

53 The environment of natural populations varies over time and space, leading to changes in
54 individual demographic parameters (reproduction, survival, dispersal, etc.) that, in turn, affect
55 population abundances. These *time-varying demographic parameters* (the demographic rates
56 varying with the environment, see glossary box 1) are often considered stationary (i.e., varying
57 around a constant mean, see, e.g., Chevin et al., 2017; Saether et al., 2013; Lee et al., 2020). They
58 may cycle regularly at different short-term, within-generation, timescales (e.g., diurnal, seasonal)
59 and are subject to *environmental stochasticity* (random, short-term changes in the environment),
60 but the mean demographic rate at the timescale of a relatively small number of generations is
61 considered approximately constant (see, e.g., Nisbet and Gurney, 1985; Greenman and Benton,
62 2003).

63 Studies of the consequences of these environmental fluctuations on population dynamics have
64 allowed ecologists to better understand the impacts of environmental stochasticity on population
65 or community dynamics (Ruokolainen et al., 2009; Gilljam et al., 2019; Shoemaker et al., 2020;
66 Ives and Carpenter, 2007). However, as a result of long-term climate change, the environment of
67 natural populations is, in general, not stationary. Over timescales spanning multiple generations,
68 the mean of many environmental signals that drive population dynamics follow a long-term trend,
69 and therefore, do do environmentally-driven demographic parameters (Burke et al., 2018; Lear
70 et al., 2020; Kemp et al., 2015; Song et al., 2021). These *environmental trends* can vary in both
71 magnitude and rate of change.

72 Despite their increasing importance, as we face unprecedented, anthropogenically driven, climate
73 change affecting temperatures (Hansen et al., 2006), precipitation (Le Treut and Somerville,
74 2007), and other key environmental drivers of populations (Gilljam et al., 2019; Cohen et al.,
75 2018), we lack a comprehensive theoretical framework to examine how these environmental
76 trends translate into quantitative and qualitative changes in population dynamics. This limits our

77 understanding of major global challenges, including the (in)variance of abundance fluctuations,
78 future pest and disease outbreaks, threats from invasive species, and extinction risks. We require a
79 new perspective on the general consequences of environmental trends on ecological populations,
80 along with tools allowing us to better predict how focal populations or communities will fare
81 during environmental trends, as a function of the realised rate of environmental change.

82 Long term environmental trends are expected to be accompanied by an increase in the variability
83 of climate-change drivers (van der Wiel and Bintanja, 2021; Olonscheck et al., 2021). For
84 example, the mean temperature of most habitats is expected to increase, along with the
85 fluctuations around this mean (Lawson et al., 2015). Consequently, ecologists are now exploring
86 the combined effects of these two aspects of global change, changing mean and increasing
87 variance of demographic rates, on population dynamics (e.g., Campbell et al., 2012; Lawson
88 et al., 2015). However, most studies focus solely on the direction and long-term magnitude of
89 changes in the mean of time-varying demographic parameters, in a 'step-change' design that
90 overlooks the rate at which these changes occur (see, e.g., Johnson et al., 2023; Burc et al., 2025;
91 Van De Pol et al., 2010; Sæther et al., 2000; Kiritani, 2013). Using this "constant environment
92 framework", compares population dynamics under two different, but constant, environmental
93 regimes: a current and a projected future scenario. This framework neglects the population's
94 trajectory between the old and new state, overlooking the potentially long transitional period
95 between the initial and final environmental conditions. This approach ignores the "environmental
96 debt" – the delayed effect of an environmental trend on population abundances – and generalises
97 the concept of *extinction debt*, the delay in extinction encountered in deteriorating environments
98 (Zarada and Drake, 2017; Highland and Jones, 2014; Ovaskainen and Hanski, 2002; Drake and
99 Griffen, 2010). For a population undergoing an environmental trend, the journey towards the
100 post-trend state may be as important as the destination.

101 **Density-dependent populations, tipping points and long transients** Many dynamic
102 population or community models incorporate some dependence of demographic rates on
103 population abundances (Krebs, 1995; Elton and Nicholson, 1942; Royama, 1992). Density
104 dependence can yield qualitatively distinct population dynamics in constant environments, such as
105 stable point equilibria (including extinction), cycles and chaos, both in models and in natural
106 populations (May, 1974, 1976; Brauer and Castillo-Chavez, 2013; Barraquand et al., 2017; Myers,
107 2018; Mitani and Mougi, 2017; Rogers et al., 2022). The same species can exhibit qualitatively
108 different dynamics in different environments; e.g., *Microtus* and *Clethrionomys* voles display
109 quasi-stationary dynamics in the southern part of Fennoscandia and large amplitude quasi-cycles
110 in the northern part (Korpimäki et al., 2005; Graham and Lambin, 2002; Turchin and Ellner,
111 2000). The responses of density-dependent populations to (abiotic) environmental changes has
112 prompted the recent development of the *tippping-point* and *long-transient* frameworks in population
113 biology (Hastings et al., 2018; Morozov et al., 2020; Francis et al., 2021; Abbott et al., 2024).

114 Bifurcation diagrams illustrate the long-term, steady-state (asymptotic) population dynamics as a
115 function of certain environmentally-driven demographic parameters (Fig.1). At certain parameter
116 values, called *bifurcations*, the asymptotic behaviour changes qualitatively. Assuming that a very
117 slow environmental trend produces dynamics predicted by the constant environment framework,
118 population abundances are expected to encounter a *regime shift* (a qualitative change of the
119 dynamics, Hastings et al., 2018) as a parameter passes, very slowly, through a bifurcation point.

120 For discontinuous (or critical) bifurcations, which correspond to abrupt changes in abundances
121 where there is no (positive) equilibrium point on one side of the bifurcation (such as fold or
122 saddle-node bifurcations, see, e.g., Boettiger and Batt, 2020), this leads to *tippping points* –
123 sudden, quantitative changes in the dynamics (also called *b-tippping points* as they are related to
124 bifurcations, Scheffer et al., 2001; Dakos et al., 2012; Boettiger and Hastings, 2012). A system
125 may not recover from passing a tipping-point (even when returning to previous conditions,
126 because of hysteresis, Scheffer et al., 2001b) and the approach to the bifurcation may exhibit a

127 critical slow down (increasingly slow recovery from perturbations, Scheffer et al., 2009).
128 Continuous (e.g., period doubling) bifurcations, do not show drastic abundance changes, and are
129 deemed more innocuous than their discontinuous counterparts, therefore have received less
130 attention. For both types of bifurcations, however, we still largely ignore how slow an
131 environmental trend must be to ensure the dynamics correspond to predictions from the constant
132 environment framework, or how fast before this assumption breaks down (Vanselow et al., 2019).

133 An alternative simplifying assumption is that the consequences of an environmental trend can be
134 approximated by considering it instantaneous (a step-change), related to the study of *long*
135 *transients*. A transient is the route a dynamical system takes following a perturbation to
136 conditions, before reaching the long-term state of the system under the new conditions (Levin,
137 1976). This transient phase can be relatively short. However, even in simple population models,
138 the time required to reach the asymptotic state can be significantly longer than the species'
139 generation time, e.g., 20-30 generations in the prey-predator model of Poggiale (2020), or up to
140 "hundreds of generation times" in the age-structured single population model of Morozov et al.
141 (2016). Transitional periods of up to 100 generations have been observed in empirical systems
142 and interpreted as *long transients* (Hastings et al., 2018). The study of *long transients* therefore
143 provides an alternative framework for investigating dynamical regime shifts.

144 Morozov et al. (2016) showed that both the duration of the transient regime and the final
145 asymptotic regime are hard to predict when multiple attractors exist. Understanding transient
146 dynamics is further complicated by the possibility of regime shifts *during* the transient period
147 (Carpenter et al., 2011; Boettiger and Hastings, 2012), which can be caused, e.g., by "crawl-bys"
148 (when abundances pass close to an unstable, saddle, equilibrium Hastings et al., 2018; Rubin
149 et al., 2022). The study of long transients has highlighted the risk of focusing only on the constant
150 environment framework, showing that, while the asymptotic dynamics indicate that populations
151 are safe from quasi-extinction, populations can fall below that threshold during the transient
152 period (Morozov et al., 2020, 2024). A realistic trend is neither an instantaneous change, nor so

153 slow that the environment can be considered constant. Recent studies of the effect of the *rate of*
154 *change* of the time-varying demographic parameter itself (Williams et al., 2021), have revealed
155 that it can induce tipping points (*r-tipping points*, Ashwin et al., 2012; Siteur et al., 2016).

156 **Rate of environmental change, *r*-tipping points and population dynamics** The existence,
157 relevance and mechanisms of *r-tipping points* in ecological systems show that, in many cases, the
158 rates of environmental change are at least as important as the magnitude of the change (Abbott
159 et al., 2024; Ritchie et al., 2023; Vanselow et al., 2022, and references therein). *r-tipping points*
160 are related to the idea of *environmental tracking* (i.e., how closely a population's abundance
161 fluctuations follow environmental changes, Roughgarden, 1975), occurring when the environment
162 changes too quickly for the population to track the environmental change (Abbott et al., 2024).
163 E.g., rapid increases in fishing pressure in coral reef ecosystems are predicted to lead to system
164 collapse, while slower increases of the same total magnitude result in persistence (Gil et al., 2020).

165 The unprecedented rate of change of many anthropogenically driven environmental factors are
166 expected to impact ecosystems more than the magnitude of the change (Vitousek, 1994; Sage,
167 2020) and could (far) exceed the rate at which populations and communities can track these
168 changes (Walther et al., 2002). These studies show that *r*-tipping points may exist in many systems
169 with discontinuous bifurcations, raising the question of whether naturally observed regime shifts
170 tend to be rate- or bifurcation-induced (Vanselow et al., 2019). They do not, however, consider the
171 general effects of the rate of environmental change on population dynamics and, in particular, how
172 this rate can affect populations as they pass by bifurcations, with the notable exception of the
173 transcritical bifurcation (i.e., bifurcation to extinction Zarada and Drake, 2017). Extending the
174 study of the consequences of the rate of environmental change (which we term *r* here) beyond
175 *r*-tipping points and for any bifurcation, is, therefore, a key advance. This will allow ecologists to
176 understand the range of *r* for which the constant environment or transient dynamics framework(s)
177 are valid and, more generally, how populations will behave across a range of environmental trends.

178 Here, we address these knowledge gaps, focusing on the validity of these two simplifying
179 assumptions, by analysing the consequences of the speed of an environmental trend r on
180 population trajectories over time. We consider a continuum of r -values, and study the ways r
181 affects the dynamics, such as r -tipping points, as well as more general effects of r on population
182 time-series, demonstrating that even continuous bifurcations can lead to b -tipping points. We
183 provide a novel tool to study the effect of non-stationary environmental changes on population
184 dynamics – the r -bifurcation diagram – depicting the value(s) of the time-varying demographic
185 parameter(s) corresponding to regime shifts, as a function of the rate of environmental change (r).
186 We illustrate our analysis with a simple density-dependent model for an unstructured population
187 that reproduces at discrete time intervals.

188 We initially explore an environment that impacts demographic rates, with a simple, linearly
189 increasing trend, comparing our findings with predictions from constant environment and
190 transient dynamics frameworks. We show that qualitative shifts in population dynamics driven by
191 an environmental trend are delayed compared to the corresponding constant environment
192 framework and can lead to b -tipping points, especially for fast trends. We illustrate this with
193 *superimposition diagrams* which allow us to compare the bifurcation diagram with the abundance
194 time-series, in a re-scaled timescale directly related to demographic rates. We analyse the
195 mechanisms underpinning these results and introduce a novel categorisation of four rates of
196 environmental change, ranging from *very slow* to *very fast*, as a function of their effect on
197 b -tipping points and transient dynamics. We show that our main findings are general enough to
198 apply in more complex ecological models, including those with stochastic fluctuations around the
199 linear trend and in continuous-time, multi-species models.

200 2 A simple, deterministic density-dependent population model

201 In a constant environment, the population projection equation of the logistic map is (May, 1976):

$$202 n_{t+1} = f(n_t) = \lambda n_t (1 - n_t) \quad (1)$$

202 Here, n_t is the population abundance (scaled by the carrying capacity) at generation t and λ is the
203 reproductive rate (i.e., the number of offspring produced by an adult before dying).

204 Density-dependence arises through the $(1 - n_t)$ term, representing the proportion of offspring that
205 survive the juvenile period as a (decreasing) function of n_t . We can predict the final, long-term
206 (asymptotic) population densities (or *attractor*) that populations will approach from any
207 *non-trivial* initial condition ($n_0 > 0$). When $\lambda < 1$, the population approaches a so-called *trivial*
208 (extinction) equilibrium (i.e., $n_t \rightarrow 0$). For $1 < \lambda < 3$, this is a *stable point* equilibrium:

$$\hat{n}(\lambda) = 1 - \frac{1}{\lambda}. \quad (2)$$

209 The bifurcation diagram (Figure 1) shows that for $\lambda > 3$, $\hat{n}(\lambda)$ is no longer stable (i.e., \hat{n} is a
210 repeller, rather than an attractor; shown in grey). At $\lambda = 3$ (itself corresponding to a – neutrally –
211 stable point equilibrium) a bifurcation occurs from a single-point equilibrium to a 2-generation
212 cycle (i.e., the population fluctuates deterministically between two different abundances in
213 alternate generations); this bifurcation is continuous (there is no discontinuity in the bifurcation
214 diagram at $\lambda = 3$). Further increasing λ generates subsequent period-doubling bifurcations
215 towards 4-, then 8-, then 16-generation cycles, etc., followed by the onset of chaos (at $\lambda \approx 3.54$).
216 The chaotic range (interspersed with "periodic windows"; Appendix S1: Section A1) lasts until
217 the maximum reproductive rate of $\lambda = 4$.

218 Predicting the consequences of environmental change from the constant environment framework,
219 as is classically (and often implicitly) done in ecology, implies considering the asymptotic
220 (long-term) abundance behaviour at two demographic parameter values (considered as two

221 distinct, constant environments). In other words, for a "slow" speed of environmental change, the
222 abundances observed over time (n_t) are expected to correspond to the asymptotic abundances of
223 the bifurcation diagram (Fig.1) and to follow a relatively simple trajectory between the
224 corresponding starting and final regimes. No b -tipping point is predicted to occur as bifurcations
225 are continuous (see Appendix S1: Section A2).

226 **Transient dynamics of the logistic map**

227 A bifurcation diagram describes the asymptotic population dynamics, but ignores the transient
228 phase leading to this final dynamical state. For example, the bifurcation diagram of figure 1 does
229 not distinguish between the under- and over-compensatory transient approaches to the equilibrium
230 attractor around $\lambda = 2$ (which we have therefore differentiated with blue and magenta colours).
231 This distinction is crucial for transient regimes, as well as when studying environments that
232 fluctuate around a fixed mean value (Nisbet and Gurney, 1985; Greenman and Benton, 2003). The
233 sign and the amplitude of the derivative of the population growth function f (eq.1) – i.e., the
234 Jacobian, see Appendix S1: Section A1 – provides useful information for small deviations from
235 the equilibrium and for certain equilibria, but is not generally sufficient to understand the road to
236 the asymptotic behaviour. E.g., for very close initial population values (n_0), transients that
237 approach the same asymptotic behaviour can take very different paths, with the transient period
238 differing wildly in duration (Poggiale, 2020; Morozov et al., 2016; Hastings et al., 2018). This
239 also holds for the logistic map: e.g., for $\lambda = 3.9605$, which corresponds to a 4-generation
240 asymptotic cycle, the transient period can vary between 1 and 850 generations, depending on the
241 value of n_0 (see Appendix S1: Section A1).

242 **The Logistic map with an environmental trend**

Here, we consider a case where the reproductive rate changes consistently over time (λ_t , eq.3a).
To reduce the number of parameters, we first consider a simple, linear, environmental trend
(eq.3b) – but relax this assumption in Appendix S1: Section A4, showing qualitatively similar

results – via the following system of equations:

$$\left\{ \begin{array}{l} n_{t+1} = \lambda_t n_t (1 - n_t) \end{array} \right. \quad (3a)$$

$$\left\{ \begin{array}{l} \lambda_t = \lambda_0 + rt \text{ for } 0 \leq t \leq T \text{ and } \lambda_t = \lambda_T \text{ for } t \geq T \end{array} \right. , \quad (3b)$$

$$\left\{ \begin{array}{l} \lambda_0 = 1.001 \text{ and } \lambda_T = 3.9605 \end{array} \right. \quad (3c)$$

$$\left\{ \begin{array}{l} n_0 = \hat{n}(\lambda_0) \approx 0.001 \end{array} \right. \quad (3d)$$

243 where T is the duration of the environmental trend and r the rate of environmental change (of the
 244 time-varying demographic parameter, here the reproductive rate). We initiate the population at a
 245 non-zero stable equilibrium (as $1 < \lambda_0 < 3$). It then encounters a novel trend in the environment
 246 that "benefits" the population by increasing the reproductive rate: λ_t increases over time, i.e., the
 247 rate of environmental change $r > 0$. We set the initial reproductive rate at $\lambda_0 = 1.001$ (eq.3c),
 248 which corresponds to $n_0 = \hat{n}(1.001) \approx 0.001$ (eq.3d and eq.2). However, we note that our main
 249 conclusions hold when we start with higher λ_0 values and consider a "negative" environmental
 250 trend that reduces reproductive output over time ($r < 0$, Appendix S1: Section A5). We focus
 251 primarily on understanding how population abundance n_t responds to the environmental trend,
 252 i.e., for $0 \leq t \leq T$.

253 However, we are also interested in how the environmental trend affects the post-trend dynamics,
 254 we, therefore, also consider the population dynamics after the environmental trend (n_t for $t \geq T$).
 255 For that part of the time-series, the environment is held constant at $\lambda_{t \geq T} = \lambda_T$, and the abundance
 256 time-series correspond to transient dynamics with initial condition n_T (see Appendix S1: Section
 257 A1). To identify the time at which the population stabilises near the asymptotic dynamics, we
 258 want λ_T to correspond to an asymptotic cycle of short period, while still being close to the
 259 maximum reproductive rate, $\lambda = 4$, so that the trend goes through as wide a range of λ values
 260 (corresponding to non-extinct populations) as possible. Therefore, we end the environmental
 261 trend at generation T , such that $\lambda_T = 3.9605$ (eq.3c), which produces an asymptotic 4-generation
 262 cycle (see Fig.1 and Appendix S1: Section A1). The environmental trend duration T and its speed

263 r are related: from eq.3, we have $r = \frac{\lambda_T - \lambda_0}{T} \approx \frac{2.96}{T}$. We study the dynamics of this population for
264 various rates of environmental rates of change (r) in the following section, and go on to show that
265 our key findings hold in more complex ecological frameworks.

266 3 Population dynamics under an environmental trend

267 3.1 A *slow* trend

268 We initially consider a trend that lasts for $T_s = 7,000$ generations (i.e., $r_s \approx 4.2 \times 10^{-4}$). This
269 allows us to illustrate key dynamical features before introducing other rates of environmental
270 change below. This trend can be considered slow by contrast to the internal pace of change of the
271 system, which can yield transients of up to ≈ 850 generations (see Appendix S1: Section A1) and
272 asymptotic cycles of less than 4 generations for most of the range of λ_t (Fig.1).

273 The time series of a population affected by this *slow* environmental trend (Figure 2a) initially
274 appears to correspond to the constant environment bifurcation diagram (Fig.1): population
275 abundances (blue) increase monotonically over time until they start oscillating (Figures 2b and
276 2c). We denote the generation at which these oscillations start as

$$t_o(r) = \min_t \{t, n_{t+1} < n_t\}$$

277 For this *slow* trend, we have $t_o(r_s) = 5074$ (Fig. 2c). These oscillations are initially 2-generation
278 quasi-cycles with mean and amplitude increasing over time, followed by quasi-cycles of period 4
279 and almost immediately by chaotic behaviour (at around $t = 6100$, $\lambda_t \approx 3.55$). Once the trend is
280 over, at $t = T$, the abundances stabilise at the asymptotic 4-generation cycle associated with λ_T ,
281 here, following a post-trend transient of around 25-30 generations (indicated by the initial
282 fluctuations after the vertical black line in Fig.2a). Surprisingly, as the period doubling
283 bifurcations of the constant environment framework are continuous and therefore expected to

284 correspond to smooth regime shifts for *slow* trends, we observe that the transition from
 285 monotonically increasing abundances to oscillations (Fig.2a) leads to an abrupt increase in cycle
 286 amplitude, that occurs over ~ 60 generations starting at t_o (Fig.2b), before the increase in
 287 amplitude slows pace.

288 **The *superimposition diagram***

289 To compare abundance dynamics for various rates of environmental change (r , and corresponding
 290 T), we turn to an alternative timescale: λ_t . Instead of counting time as the succession of
 291 generations, this timescale counts it as increments in the demographic parameter affected by the
 292 environment. This transformation is valid for the period of environmental change, $0 < t < T$,
 293 where λ_t is a strictly monotonic function of t : each value of λ_t (top axis on Fig.2) corresponds to a
 294 unique value of t . We can study directly the abundance trajectories in this alternative timescale via
 295 *function composition*, an operation that creates a new function by applying one function to the
 296 result of another (i.e., nesting functions). The function composition of $n_t = n(t)$ – in blue on Fig.2
 297 – and $t(\lambda_t) = \lambda(t)$, in red on Fig.2 – yields $n(\lambda_t) = n(t(\lambda_t))$ – in blue on Fig.3.
 298 This alternative timescale allows us to superimpose the abundance time-series onto the bifurcation
 299 diagram (in black on Fig.3).

300 This *superimposition diagram* shows the abundances initially tracking the *moving equilibrium* \hat{n}_t
 301 (in red on Fig.3, see glossary box 1):

$$\hat{n}_t = \hat{n}(\lambda_t) = 1 - \frac{1}{\lambda_t} \quad (4)$$

302 **Emergence of a *b*-tipping point**

303 After passing the first period-doubling bifurcation of the constant environment framework, at
 304 $\lambda = 3$, the population continues to grow monotonically and track the moving equilibrium (\hat{n}_t)
 305 despite it being in a range corresponding to unstable point-equilibria (2-generation cycle) in the
 306 constant environment. In that range, the moving equilibrium is a *ghost attractor*, a

307 non-equilibrium state that would be an (unstable) equilibrium in a constant environment.
 308 Abundances (n_t) track the ghost attractor (\hat{n}_t) for some time, until a qualitative shift in dynamics
 309 occurs once the time-varying reproductive rate (λ_t) passes $b(r_s) = \lambda_{t_o} \approx 3.146$ (grey vertical line
 310 on Fig.2) when abundances start oscillating . The difference between this observed value and the
 311 constant-environment bifurcation (i.e., here, $b(r_s) - 3$) constitutes a *delay in the bifurcation*. This
 312 phenomenon has been studied by mathematicians (e.g., Baer et al., 1989; Tsuchiya and Yamagishi,
 313 1997; Miyazaki and Tchizawa, 2005) but rarely in the context of environmental change, with the
 314 exception of the transcritical (extinction) bifurcation (at $\lambda = 1$, e.g., Zarada and Drake, 2017;
 315 Drake and Griffen, 2010). The subsequent abrupt and rapid increase in the amplitude of
 316 oscillations corresponds to the population abundances rapidly catching up with that of the
 317 2-generation cycles of the constant environment framework (here the quasi-2-generation-cycles
 318 are reached at $\lambda \approx 3.174$, see Figures 2b and 3 (insert)), which constitute a new ghost equilibrium
 319 (of period 2).

320 We can quantify the abruptness of this quantitative shift (the increasing amplitude of oscillations)
 321 by considering, first, the rate of change of the population abundances s_t (the discrete time
 322 equivalent to the first derivative) and, second, the rate of change of this rate of change, the
 323 abundance *acceleration* a_t (the second derivative):

$$\begin{cases} s_t = |n_{t+1} - n_t| \\ a_t = |s_{t+1} - s_t| \end{cases} \quad (5)$$

324 Figure 4 shows the acceleration time series (a_t) for various rates of environmental change (r ,
 325 slower than the *slow* trend, i.e., $r < r_s$). For each value of r , the acceleration is very small most of
 326 the time but for a peak (occurring shortly after $b(r)$) where it reaches a maximum acceleration,
 327 that we denote $d(r)$ (the peak value on Fig.4):

$$d(r) = \max_t(a_t) \quad (6)$$

328 This abrupt, qualitative and quantitative change, shifts the dynamical regime quickly from a
329 monotonic increase in abundances to cycles of large amplitude: $b(r)$ is a b -tipping point (of size
330 $d(r)$).

331 Both $b(r)$ and $d(r)$ increase with the rate of environmental change (r). The slower the trend, the
332 closer the b -tipping point $b(r)$ is to $\lambda = 3$ and the maximum acceleration in abundances $d(r)$ is to
333 0 (see Fig.S5 of Appendix S1: Section A2; formally, $\lim_{r \rightarrow 0} b(r) = 3$ and $\lim_{r \rightarrow 0} d(r) = 0$). As a
334 consequence, $b(r)$ is not a b -tipping point for a (paradoxical) trend of speed $r = 0$, but is one for
335 any real trend ($r > 0$, see Appendix S1: Section A2). We focus here on this particular
336 b -tipping-point, but note that the other period doubling bifurcations can also be delayed (see
337 below and Appendix S1: Section A2). We provide a mechanistic and graphical explanation for
338 this delay in bifurcation and related b -tipping point, via cobweb diagrams, in section 5.1, and a
339 more detailed mathematical analysis of the abundance behaviour, via the concepts of repelling
340 boundaries and cascading effects, in section 5.2.

341 3.2 Slower and Faster trends

342 We now consider a *very slow* (r_{vs}) environmental trend, where it takes $T_{vs} = 1 \times 10^8$ generations to
343 reach λ_T from λ_0 (i.e., $r_{vs} \approx 3 \times 10^{-8}$). The corresponding superimposition diagram (Figure 5a)
344 shows the realised abundance dynamics display closer alignment with the bifurcation diagram.
345 However, the b -tipping point at $\lambda = b(r)$ exists for any non-zero trend (Fig.4), even a *very slow*
346 one (Fig.5b, here, $b(r_{vs}) = 3.0009$). The delay in the bifurcation ($b(r_{vs}) - 3$) causes a sudden
347 acceleration in the dynamics and a rapid increase in cycle amplitudes (Fig.5b), even though the
348 amplitude of the discontinuity is smaller ($d(r_{vs}) < d(r_s)$, see Fig.4) and the delay shorter in the λ_t
349 *timescale* than for the slow trend ($3 < b(r_{vs}) < b(r_s)$). Below, we show that, as the rate of
350 environmental change r decreases, the delay in bifurcation actually increases on the *chronological*
351 timescale: $t_o(r) - t_3(r)$, where $\lambda_{t_3} = 3$, is a decreasing function of r . Therefore, the slower the
352 trend, the more generations it takes for the first oscillation to occur, after passing $\lambda = 3$ (and

353 $\lim_{r \rightarrow 0} t_o(r) - t_3(r) = +\infty$.

354 There are quantitative, but not qualitative differences in abundance dynamics between the *slow*
355 and the *very slow* trends; e.g., changes in the *b*-tipping point, $b(r)$, in the generation of the onset
356 of abundance oscillations, $t_o(r)$, and in the maximum acceleration in the amplitude of
357 oscillations, $d(r)$. However, differences in the post-trend transient behaviour do justify
358 distinguishing between *slow* and *very slow* environmental trends. Under the *very slow*
359 environmental trend ($r = r_{vs}$), the population abundance at the end of the trend (n_T) is close
360 enough to one of the four points of the 4-generation asymptotic cycle associated with
361 $\lambda_T = 3.9605$, that there is no observable transient (Fig.5c). Under the *slow* trend ($r = r_s$), a
362 post-trend transient of 20-30 generations can be observed (Fig.2a). For the *very slow* trend, there
363 is a short delay (in the demographic time-scale) for both the first and the second bifurcation (from
364 2- to 4-generation cycles), while for the *slow* trend (Fig.3), the second delay is so long that pseudo
365 4-generation cycles do not occur. Despite the self-similarity of the logistic map (Tan and Chia,
366 1996), it is possible for a given rate of environmental change (r) to encounter a *b*-tipping point at
367 one period-doubling bifurcation and not others.

368 The onset of cycling can be delayed further (on the demographic timescale, λ_t), with faster
369 environmental trends. For a *fast* environmental trend spanning $T_f = 225$ generations ($r_f \approx 0.013$),
370 the population grows monotonically during the entire trend and only starts oscillating once the
371 trend is over; i.e., $b(r_f) = \lambda_T = 3.9605$ (Figure 6). At the beginning of the trajectory ($\lambda_0 = 1.001$,
372 $n_0 = \hat{n}_0 = 0.001$), the abundances struggle to track the rapidly changing environment (compare
373 blue and red lines around $\lambda_t = 1$ in Fig.6), but eventually recover, tracking the environment (i.e.,
374 the moving/ghost equilibrium \hat{n}_t) until the end of the trend ($t = T$). This lagged "dip" at the start
375 of the abundance trajectory ($1 < \lambda_t \ll 2$) occurs for all trends, but is barely noticeable on the
376 abundance time series for the *slow* trend (Figs 2 and 3) and not at all for the *very slow* trend
377 (Fig.5). We provide a mathematical analysis of this phenomenon in section 5.2 and summarise the
378 key dynamical differences of the three characteristic rates of environmental considered so far via

379 plots of abundance dynamics in chronological time, superimposition diagrams (demographic
380 timescale, λ_t) and cobweb diagrams, in Appendix S1: Section A2.

381 The speed of the environmental trend can be increased up to $r_{vf} \approx 2.96$, corresponding to $T_{vf} = 1$
382 generation. Here, the trend corresponds to an instantaneous (step-) change (see Fig.S6d in
383 Appendix S1: Section A2). Contrary to slower trends, there is no initial monotonic increase in
384 abundances; the dynamics consist exclusively of a post-trend transient which lasts around 80
385 generations (from $n_0 = 0.001$), before settling on the asymptotic 4-generation cycle. The duration
386 and behaviour of the transient is very sensitive to the choice of initial condition (n_0) and constant
387 environment parameter (λ_T) (see Appendix S1: Section A1). We refer to environmental trends
388 that lead to dynamics that are dominated by transients, as *very fast* trends; we will see that, for our
389 study, they consist of the step-change ($T = 1$) and trends made of a small number of generations
390 ($T < 34$) .

391 Because the transient of a step-change is very sensitive to the initial conditions, the duration and
392 behaviour of the transient stemming from a trend of a few steps will be very sensitive to the
393 number of steps taken to reach λ_T : for $T = 2$, the transient drops to 3 generations, yet for $T = 3$ it
394 increases to 230 generations (see Appendix S1: Section A6). As a consequence, the generation of
395 first oscillation t_o and its corresponding value of time-varying reproductive rate, $b(r) = \lambda_{t_o}$, are
396 similarly unpredictable under *very fast* trends, which contrasts with the predictability of *fast* trends
397 (where, e.g., $b(r_f) = \lambda_T = 3.9605$). To illustrate these points and better understand what is
398 happening along this r -continuum, we introduce the *r-bifurcation diagram*.

399 **3.3 The *r*-bifurcation diagram**

400 We have considered four speeds of the environmental trend ($r = r_s, r_{vs}, r_f$ and r_{vf}) and the
401 corresponding population dynamics. The metrics we developed, including the generation of the
402 first abundance oscillation, $t_o(r)$ and the associated value of the reproductive rate $b(r) = \lambda_{t_o}$ (the
403 *b*-tipping point), allow us to go further and compare abundance dynamics under a continuum of

404 environmental trends. Here we introduce another metric: the duration of the post-trend transient,
405 $D(r)$ (Appendix S1: Section A1). Figure 7 introduces the *r-bifurcation diagram* which displays
406 the b -tipping point $b(r)$ (blue points) and the duration of the post-trend transient $D(r)$ (red points)
407 as a continuous function of the rate of environmental change (r). This diagram allows us to
408 identify four qualitatively different rates of environmental change (r) – of which the four specific
409 speeds of the environmental trend we have studied (*very slow*, *slow*, *fast* and *very fast*) are
410 archetypes – and to characterise their range. We will use the same names for the general ranges of
411 r corresponding to qualitatively different dynamics than for their archetypes studied above: .

412 The *r-bifurcation diagram* shows that the value of the time-varying demographic parameter (λ_t) at
413 which oscillations start (the b -tipping point, $b(r)$), tends towards $b(0) = 3$ as the speed of
414 environmental change slows towards $r = 0$ (Fig. 7). The r-bifurcation diagram further shows that
415 $b(r)$ initially increases with the speed of the environmental trend (r) (*very slow* and *slow*
416 environmental trends, Fig.4 and Fig. 7), but this initial increase plateaus at $b(r) = \lambda_T$ (the
417 maximum possible value for λ_t) for a value of $r = r^\dagger \approx 0.0114$ (corresponding to $T = 259$
418 generations), which allows us to distinguish between *slow* and *fast* trends; across a range of
419 environmental change values $r^\dagger < r < r^*$, all trends are characterised as *fast*: $b(r) = \lambda_T$. Very fast
420 trends occur above $r^* \gtrapprox 0.0870$ ($T \leq 34$ generations), including the step-change ($T = 1$): they
421 correspond to cases where $b(r)$ (that differs from λ_T) is a non-monotonic function of r . Figure 7
422 shows the b -tipping point ($b(r)$) initially decreasing rapidly, after r^* , to $b(r) \approx 2.5$, before
423 returning to $b(r) \rightarrow \lambda_T = 3.9605$. For such rapid environmental trends, transient dynamics drive
424 the abundance patterns, and render the duration and behaviour of transients unpredictable, so that,
425 for some values of r , the onset of oscillations can occur before the end of the environmental trend,
426 i.e., $b(r) < \lambda_T$ or even before the constant-environment bifurcation, i.e., $b(r) < 3$, (black dots in
427 the *very fast* section of Fig.7).

428 Contrary to the continuous transition between *slow* and *fast* trends, and partly caused by the
429 choice of λ_T (noting we are restricted to $\lambda_T < 4$ for this simple model), the *fast*—*very fast*

430 transition, r^* , induces a regime shift: it is an *r-tipping point*. On the fast side of r^* , population
 431 abundances grow monotonically during the entire duration of the trend; on the very fast side, they
 432 can start oscillating earlier. The $b(r)$ metric does not segregate between *very slow* and *slow*
 433 trends, but $D(t)$ – the duration of the post-trend transient – does: *very slow* trends correspond to
 434 $r < \check{r} \approx 5.7 \times 10^{-7}$, for which there is no post-trend transient: the environmental trend is slow
 435 enough, and therefore n_T close enough to the asymptotic cycle, that the abundances converge
 436 immediately on the cycle as the environmental trend ends.

437 We can perform the same analysis on the chronological timescale by considering the time at
 438 which the first population decline is observed, $t_o(r)$. That is, the number of generations for which
 439 the abundance keeps increasing monotonically having passed the constant environment
 440 bifurcation point $\lambda_{t_3} = 3$, i.e., $t_o - t_3$ (Fig.S8 in SMA2). The slower the environmental trend (r),
 441 the more generations the population monotonically increases, after having passed $\lambda = 3$, and the
 442 (chronological) delay in oscillation ($t_o(r) - t_3(r)$) tends towards ∞ as r tends towards 0.

443 In summary, by considering dynamics on chronological and demographic (λ_t) timescales, we have
 444 identified that, for a given (even simple, continuous) bifurcation (here, at $\lambda = 3$), environmental
 445 trends can generate *b-tipping points* and be categorised into four categories (see Figure 8):

- 446 • *Very slow* trends show a delayed bifurcation/b-tipping point (corresponding, for the logistic
 447 map, to $3 < b(r) \ll \lambda_T$), but do not show post-trend transients at $\lambda_{t \geq T}$.
- 448 • *Slow* trends also show a delay in the bifurcation, after which abundances start cycling, with
 449 transients at the end of the trend.
- 450 • For *fast* trends, the bifurcation delay extends to the end of the trend. Before then,
 451 abundances follow the moving/ghost equilibrium (here, $b(r) = \lambda_T$; abundances grow
 452 monotonically until the end of the trend).
- 453 • *Very fast* trends are dominated by transient dynamics (unpredictability related to initial
 454 conditions). The r^* value separating the *very fast* and other regimes therefore constitutes an

455 *r-tipping point.*

456 We note that the *fast* trends case is demographic rate- and trend-specific; in some cases it may be
457 impossible for the delay of a bifurcation to extend towards the end of the trend before entering the
458 realm of *very fast trends*: the *r*-tipping point then separates *slow* and *very fast* trends.

459 **4 Extensions to other ecological scenarios**

460 Here we demonstrate the generality of our findings with two further examples illustrating common
461 ecological scenarios; the addition of short-term stochastic variation around the long-term
462 environmental trend, and a continuous-time consumer-resource interaction model under a
463 long-term environmental trend that affects mortality rather than reproduction. These examples
464 reinforce our general finding that environmental trends generate *r*-tipping points and delays in
465 bifurcation leading to *b*-tipping points, emphasise that our findings are robust to fundamental
466 differences in modelling frameworks, and reveal new insights based on the interaction of short-
467 and long-term environmental change processes. Appendix S1: Section A5 also considers the
468 logistic map under a decreasing environmental trend ($r < 0$).

469 **4.1 Noisy trend**

470 When demographic rates are simultaneously affected by long- and short-term environmental
471 change, the environment is non-stationary and stochastic. We showed that a long-term
472 environmental trend alone delays the reproductive rate (λ_t) at which a density dependent
473 population's abundance starts to cycle: as r increases, so does $b(r)$. Previous work shows how
474 (stationary) fluctuations can “excite” underlying over-compensatory, but stable-point, equilibrium
475 behaviours (e.g., Nisbet and Gurney (1985), Greenman and Benton (2003)). For the logistic map,
476 noise can generate sustained quasi-2-generation cycles at a mean environmental value for $\lambda < 3$
477 (that we denote $b(n)$), such that $b(n) < 3$, with $b(n)$ decreasing as the variance of the noise n
478 increases (Appendix S1: Section A3). In other words, the short-term noise shifts the bifurcation

479 $b(n)$ to lower reproductive rates (λ_t), increasingly further into the 'stable' region with higher noise
 480 variance. Short-term noise and long-term trends therefore have opposite effects on the onset of
 481 observed (quasi-) 2-generation cycles. The joint effects of short- and long-term environmental
 482 change on the dynamics of a population undergoing a noisy environmental trend, are related to the
 483 concept of "time of emergence" (e.g., Hawkins et al., 2020; Hawkins and Sutton, 2012), which
 484 measures the time at which a noisy (often climatic) metric emerges as trendy. The relationship
 485 between the time of emergence of a climatic metric and a population's response to it have also
 486 been studied previously, in a density-independent framework from which bifurcations and tipping
 487 points are absent (Jenouvrier et al., 2022).

488 Here, we consider a simple extension of equation (3):

$$\begin{cases} n_{t+1} = \lambda_t n_t (1 - n_t) \\ \lambda_t = \bar{\lambda}_t + \epsilon_t \text{ with } \epsilon_t \sim \mathcal{N}(0, \sigma_e^2) \text{ and } \rho(\epsilon) = E \left(\frac{Cov(\epsilon_{t+1}, \epsilon_t)}{\sigma_e^2} \right) \\ \bar{\lambda}_t = \bar{\lambda}_0 + rt \text{ for } 0 \leq t \leq T, \\ \bar{\lambda}_0 = 1.001 \text{ and } \bar{\lambda}_T = 3.9605 \end{cases}, \quad (7)$$

489 where the value of λ_t , is drawn at each generation, independently and at random from a normal
 490 distribution with expected value $\bar{\lambda}_t$, variance σ_e^2 and (one-generation, detrended) expected
 491 autocorrelation $\rho(\epsilon)$. For an environmental trend of $r = 0.003$ corresponding to $T = 1000$
 492 generations, we simulated stochastic time-series ϵ_t for various values of σ_e^2 and $\rho(\epsilon)$ (Fig.9). For
 493 the deterministic model (Fig.9a), the population starts oscillating at the r -affected b -tipping point
 494 $b(r) \approx 3.4$.

495 For a noisy trend with low stochastic variance ($\sigma_e = 0.01$, Fig.9b), the abundances show
 496 pseudo-2-generation cycles earlier than the trend-only case, so that we have a noise and rate
 497 induced "bifurcation", that we denote $b(r, \sigma_e)$ such that $3 < b(0.003, 0.01) < b(0.003, 0) \approx 3.4$.
 498 This delay in the onset of 2-generation cycles is reduced compared to the deterministic case; yet
 499 because of the trend, the onset of underlying oscillations occurs at higher λ_t values than the

500 constant environment framework bifurcation at $\lambda = 3$. For noise with higher variance ($\sigma_e = 0.05$,
 501 Fig.9d), the effect of the noise appears to match or cancel out that of the trend, and the
 502 pseudo-2-generation cycles start at $b(0.003, 0.05) \approx 3$. For even larger environmental noise
 503 ($\sigma_e = 0.15$, Fig.9f), the short-term noise dominates and $b(0.003, 0.15) < 3$. Positive
 504 autocorrelation in the short-term noise has a strong effect on the onset of oscillations, as it reduces
 505 the effects of the noise on the dynamics (Figures 9c and 9e).

506 4.2 A predator-prey model in continuous time

507 Here we consider a classic predator-prey system (Hsu et al., 1978; Wrzosek, 1990), where the
 508 population dynamics are defined by a system of differential equations, with intraspecific density
 509 dependence in the prey and a Type II functional response:

$$\begin{cases} \frac{dn_1}{dt} = \lambda n_1(1 - n_1) - n_2 \frac{an_1}{1 + ahn_1} \\ \frac{dn_2}{dt} = n_2 \left(c \frac{an_1}{1 + ahn_1} - d \right) \end{cases}, \quad (8)$$

510 where n_1 and n_2 are prey and predator abundances, a is the attack rate (here $a = 0.4$), $c = 0.2$ is
 511 the conversion rate, $h = 3$ the handling time, $\lambda = 0.1$ the maximum prey growth rate (in the
 512 absence of competition and predation). In this case, we set the density independent predator death
 513 rate (d) as the time-varying demographic parameter, decreasing linearly from $d_0 = 0.02$ to
 514 $d_T = 0.002$ over a duration of length T , before settling at $d_{t \geq T} = d_T$.

515 The constant-environment bifurcation diagram shows how the asymptotic predator-prey dynamics
 516 vary as a function of predator mortality (d). It is displayed in the background of the
 517 superimposition diagrams (middle column, II, Fig. 10), in orange and light blue. For higher death
 518 rates $d > d_a \approx 0.01$ (e.g., at d_0), all (positive) trajectories converge towards a two-species stable
 519 equilibrium (\hat{n}_1, \hat{n}_2) . For lower death rates $d < d_a$, this equilibrium point is unstable and the
 520 asymptotic trajectories are limit cycles in constant environments (e.g., at d_T). When predator
 521 mortality follows a *very slow* (declining) trend ($T = 750,000$, $r = \frac{d_T - d_0}{T} = -2.410^{-8}$, top row of

522 Fig.10), prey abundances initially decrease and predator abundances increase slightly, with no or
523 very small oscillations, before starting to oscillate strongly as predator mortality (in orange, right
524 hand y-axis) passes a critical threshold $b(r) < d_a$. The corresponding superimposition diagram
525 (Fig.10aII, to be read from right to left as $r < 0$), shows the system initially tracking the moving
526 equilibrium $(\hat{n}_1(t), \hat{n}_2(t))$ (in black).

527 As with the single-species discrete time model, there is a delayed bifurcation (d_a): abundances
528 keep tracking the moving equilibrium, which acts as a ghost attractor, for predator death rates
529 corresponding to an unstable point equilibrium in a constant environment, i.e., for $d_t < d_a$.
530 Eventually, a qualitative *and* quantitative regime shift occurs (i.e., a b -tipping point) and the
531 population abundances oscillate with increasing amplitudes. The "catch-up" effect is noticeable:
532 the increase in the magnitude of oscillations is much faster (in the alternative timescale d_t of the
533 superimposition diagram Fig.10aII) than that predicted by the constant environment framework
534 (in orange and cyan). By the end of the environmental trend, the quasi-cycles have the same
535 amplitude as the asymptotic cycle at $d = d_T$, as highlighted on the phase diagram (the continuous
536 time equivalent to the cobweb plots) of Fig. 10aIII where the trend trajectories are in blue
537 (post-trend trajectory in grey and moving equilibrium in yellow): there is no post-trend transient.

538 The very slow trend contrasts quantitatively with the dynamics under a *slow* trend ($T = 75,000$,
539 second row of Fig.10) where the delay in bifurcation is larger and the quasi-cycles at the end of
540 the trend are much smaller in amplitude than those of the constant environment framework. It
541 takes another 10,000 time-steps in the post-trend constant environment ($t \geq T$) for the oscillations
542 to reach the asymptotic behaviour (post-trend trajectory in grey). As with the single-species
543 discrete time model, for a *fast* environmental trend ($T = 7,500$; third row of Fig.10), abundances
544 track the moving equilibrium during the entire duration of the trend. Significant oscillations (i.e.,
545 of the same order of magnitude as the bifurcation diagram) only occur after the environmental
546 trend has finished ($t \geq T$), and a long transient is required for the abundances to reach the
547 asymptotic cycle, which they do from *inside* that cycle (Fig.10cIII).

548 This contrasts qualitatively with the dynamics of a *very fast* trend ($T = 20$, lowest row of Fig.10)
549 where the dynamics are driven by the post-trend transient (there is continuity between the trend
550 (blue) and post-trend (grey) trajectories, Fig.10dIII) and the abundances cycle towards the
551 asymptotic orbit from *outside* the attractor. This is a proof of the existence of an r -tipping point
552 that segregates rates of environmental change where, on the fast side, abundances track the
553 moving equilibrium and then cycle towards the asymptotic attractor with increasing amplitudes
554 and, on the very fast side, abundances are driven by transient dynamics and cycle, from the start of
555 the trend, with decreasing amplitudes towards the attractor.

556 **5 Mechanisms underlying the delay in bifurcation**

557 In this section, we turn back to the logistic map with trending reproductive rate (eq.3) and provide
558 two approaches to understand mechanistically the observed population dynamics of section 3, and
559 in particular the delay in bifurcations. The first approach is graphical and uses cobweb diagrams
560 (section 5.1). The second approach is mathematical (section 5.2).

561 **5.1 Illustrating the delay in bifurcation with cobweb diagrams**

562 Under an environmental trend, the population dynamics emerge from the combination of *two*
563 *forces*:
564 (i) the *transient dynamics* pushing abundances n_{t+1} towards the asymptotic behaviour determined
565 by λ_t (i.e., the moving equilibrium \hat{n}_t for $1 < \lambda < 3$), and
566 (ii) the *shift, over time, of that equilibrium* attractor (\hat{n}_t is a "moving" function of t via λ_t , eq.4).

567 *Cobweb diagrams* provide a useful way to investigate how these two forces interact to shape
568 population dynamics. Fig.11a illustrates a "classic" constant environment framework, here for a
569 2-point cycle, corresponding to $\lambda = 3.1$, reached from $n_0 = \hat{n}(\lambda) = 0.6774$. Fig.11b highlights the
570 first 15 generations. The population response (growth) curve $n_{t+1} = f(n_t)$ (in red) and the black

571 1:1 line yield abundance trajectories (in blue). The response curve crosses the 1:1 curve at the
 572 equilibrium: $\hat{n} = 1 - \frac{1}{\lambda}$. This equilibrium is unstable (Fig.1): abundances cycle away towards the
 573 asymptotic 2-generation cycle. This trajectory corresponds to that of the *slow* environmental trend
 574 (Fig.2) if the trend stopped at $\lambda_t = 3.1$.

575 Allowing the trend to continue at the *slow* pace (Fig.2), for 10 successive generations around
 576 $3 < \lambda_t \approx 3.10 < b(r)$, results in Figure 11c. The temporally changing environment is reflected by
 577 multiple (red) population response curves. Abundances (blue) smoothly track the moving
 578 equilibrium (\hat{n}_t), located where the (red) response curves and the (black) 1:1 line intersect. As the
 579 time-varying demographic parameter increases further, the distance between response curves
 580 diminishes and abundances start to oscillate (at $\lambda_t \approx b(r)$, Fig.11d). Eventually, they reach values
 581 associated with the 2-generation cycle (Figures 11e and 11f). Then, the environment (and
 582 response curve) still changes each generation, but this change is so small compared to the
 583 amplitude of the cycles, that it can be considered constant over multiple generations. The 15
 584 response curves (the f_t of eq.3a), corresponding to the 15 successive values of λ_t , are almost
 585 indistinguishable and, consequently, so are the 15 quasi 2-generation abundance cycles (blue,
 586 Fig.11f).

587 Before the time-varying demographic parameter has reached the *b*-tipping point (Fig.11c), the
 588 abundances track the moving equilibrium closely (with $\hat{n}_{t-1} < n_t < \hat{n}_t$) with a lag:

$$h_t = n_t - \hat{n}_t. \quad (9)$$

589 This lag (h_t) corresponds to the distance between the realised abundances (in blue) and the
 590 moving equilibrium (in red) of the superimposition diagram (Fig.3). On these cobweb diagrams,
 591 the lag reflects the distance on the 1:1 line between the abundances (blue) and the response curves
 592 (red). Holding λ_t constant (Fig.11b), shows abundances cycling away from the point equilibrium.
 593 From $n_{t_1} < \hat{n}_{t_1}$, we would get $\dots < n_{t_1+2} < n_{t_1} < \hat{n}_{t_1} < n_{t_1+1} < n_{t_1+3} < \dots$ and the cycle increases in

594 amplitude until it reaches its asymptotic 2-generation cycle. In contrast, with an environmental
 595 trend, the lag is perpetuated because of the distance between the successive response curves, equal
 596 to

$$g(r, \lambda_t) = \hat{n}_{t+1} - \hat{n}_t = \frac{r}{\lambda_t(\lambda_t + r)} \approx \frac{r}{\lambda_t^2}, \quad (10)$$

597 which corresponds to the *speed of the moving equilibrium*. From $\hat{n}_{t_1-1} < n_{t_1} < \hat{n}_{t_1}$, we therefore
 598 get $\hat{n}_{t_1} < n_{t_1+1}$. Then, as $g(r, \lambda_t) > n_{t_1+1} - \hat{n}_t$, we have $n_{t_1+1} < \hat{n}_{t_1+1}$, and so on: as long as the
 599 speed of the moving equilibrium, $g(r, \lambda_t)$, is large enough, the population abundance tracks the
 600 moving equilibrium with a lag. For a given rate of environmental change r , the distance between
 601 successive abundance attractors, $g(r, \lambda_t)$, diminishes over time, as λ_t increases (eq.10), so that at
 602 the onset of oscillations (t_o , as λ_t passes the b -tipping point $b(r)$), the lag is no longer perpetuated
 603 and the abundances start cycling (Figures 11d and 11e; see Appendix S1: Section A2).

604 5.2 Mathematical analysis along the reproductive rate line

605 The key to better understand the behaviour of abundances under an environmental trend is to
 606 consider the distance of the abundances n_t to the “moving equilibrium” \hat{n}_t (eq.(4)), that is,
 607 $h_t = n_t - \hat{n}_t$ (eq.(9)), and to analyse its dynamics as a function of the Jacobian and the speed of
 608 change of the “moving equilibrium”. In the vicinity of \hat{n}_t , we can write, via first degree Taylor
 609 approximation,

$$n_{t+1} - \hat{n}_t \approx J(\hat{n}_t)(n_t - \hat{n}_t), \quad (11)$$

610 where $J(\hat{n}_t)$ is the Jacobian of the projection function f , $n_{t+1} = f(n_t)$ (eq.1), evaluated at \hat{n}_t . This
 611 implies, as $h_{t+1} = n_{t+1} - \hat{n}_t + (\hat{n}_t - \hat{n}_{t+1})$, that for small h_t ,

$$h_{t+1} \approx J(\hat{n}_t)h_t + (\hat{n}_t - \hat{n}_{t+1}). \quad (12)$$

612 In a uni-variate framework, such as the one we are considering here, the Jacobian is simply the
 613 derivative and for the logistic map, $f(x) = \lambda_t x(1 - x)$, so that $J(x) = \lambda_t(1 - 2x)$ and

$$J(\hat{n}_t) = 2 - \lambda_t, \quad (13)$$

614 from eq.(4). Therefore for the logistic map under a trend (eq.3a), equation 12 becomes

$$h_{t+1} \approx (2 - \lambda_t)h_t + \frac{\lambda_t - \lambda_{t+1}}{\lambda_{t+1}\lambda_t}, \quad (14)$$

615 In Appendix S1: Section A4, we use equation (14) to exhibit non-linear trends where abundances
 616 remain at a constant distance from the "moving equilibrium". For a linear trend (eq.3b), equation
 617 (14) becomes

$$h_{t+1} \approx (2 - \lambda_t)h_t - \frac{r}{\lambda_{t+1}\lambda_t} \approx (2 - \lambda_t)h_t - \frac{r}{\lambda_t^2}, \quad (15)$$

618 In all three of these equations (eqs (12),(14) and (15)), the first term corresponds to the Jacobian
 619 and the second term to the speed of change of the "moving equilibrium". Here we study the
 620 behaviour of n_t , via that of h_t (eq.(15)) for various sections of the λ_t parameter line.

621 For $1 \leq \lambda_t \leq 2$, h_t goes from 0 to the vicinity of 0 via a dip

622 The populations are initiated at $\lambda_0 = 1.001$ and $n_0 = \hat{n}_0$, therefore we have $h_0 = 0$. At the next
 623 generation, we have, according to equation (15), $h_1 \approx -r$. At the following generation, $h_2 \approx -2r$,
 624 etc. The distance h_t , negative, decreases (in absolute value) initially, and all the more so that the
 625 trend is fast (that r is high). It is complex to follow up the dynamics after that initial dip (h_t is not
 626 small enough for eq.(14) to be valid). However, as one reaches t_2 , such that $\lambda(t_2) = 2$, from
 627 eq.(15), we get that:

$$h_{t_2+1} \approx (2 - \lambda_{t_2})h_{t_2} - \frac{r}{\lambda_{t_2}^2} \approx -\frac{r}{4} \quad (16)$$

628 At $\lambda_t = 2$, the distance h_t between the "moving equilibrium" and the actual abundance is
 629 independent from the trajectory so far (and therefore from the choice of λ_0). It is negative and

630 small (four times smaller than h_1); the slower the trend, the smaller that distance; i.e., any initial
 631 difference between the projected population size n_t and the moving equilibrium \hat{n}_t quickly shrinks.

632 For $2 \leq \lambda_t \leq 3$, repelling boundaries with an overcompensatory attractor

633 Going one time-step further, we get $h_{t+2} \approx -\frac{r}{4}(1-r)$. The lag h_t remains negative but now
 634 decreases (in absolute value) monotonically. We can show, that for h_t for $2 < \lambda_t < 3$ (see below),
 635 h_t is constrained by two repelling boundaries:

$$\underbrace{-\frac{r}{\lambda_t^2}}_{l_2(t)} \leq h_t \leq \underbrace{0}_{l_1}. \quad (17)$$

636 which constrains h_t inside a range of ever decreasing amplitude, so that in this range, for most
 637 values of r , we have a *ghost equilibrium* $n_t \approx \hat{n}_t$. In fact, we have, from eq.(17), $\hat{n}_{t-1} \leq n_t \leq \hat{n}_t$, in
 638 which we recognise, the initial step of our cobweb diagram analysis. Figure 12, displays h_t for a
 639 slow trend ($r \approx 1.5 \times 10^{-4}$) in blue, and the boundaries. We also display, in red, $h_2(t)$ for a
 640 trajectory that has been artificially disturbed: $h_2(t_p) = 0$ ($\lambda_{t_p} = 2.92$). After the perturbation,
 641 $h_2(t)$ is repelled by both boundaries.

642 *Nested functions*

643 We have denoted \hat{n}_t , the value of n_t where $n_{t+1} = n_t$. Similarly, let us denote \hat{h}_t , the value of h_t so
 644 that $h_{t+1} = h_t$. From eq.(15), we can approximate it as

$$\hat{h}_t \approx \frac{-r}{\lambda_t^2(\lambda_t - 1)}, \quad (18)$$

645 and, as per eq. (9), we can now consider the distance

$$g_t = h_t - \hat{h}_t \quad (19)$$

646 With the same reasoning on g_t as that on h_t , it can be shown that g_t follows a narrow range in

647 $2 < \lambda_t < 3$ with one boundary being \hat{h}_t , so that if at a first approximation $n_t \approx \hat{n}_t$, at a second
 648 approximation

$$h_t \approx \hat{h}_t, \quad (20)$$

649 that is $n_t \approx \hat{n}_t - \hat{h}_t$. At a third approximation, we could be more precise and write
 650 $n_t \approx \hat{n}_t - \hat{h}_t - \hat{g}_t$, with \hat{g}_t the value of g_t so that $g_{t+1} = g_t$, then consider $i_t = g_t - \hat{g}_t$, etc. At t_3
 651 (such that $\lambda_{t_3} = 3$), eq.(20) leads to

$$h_{t_3} \approx \frac{-r}{\lambda_t^2(\lambda_t - 1)} = \frac{-r}{18}$$

652 *For $3 \leq \lambda_t < 4$, cascading effects*

653 For $\lambda_t > 3$, the induction leading to the boundaries of eq.(17) does not hold any longer (see
 654 below). At a time t_h , which is an increasing function of r , h_t starts oscillating around \hat{h} . This
 655 leads, quickly, to a time $t_o > t_h$ where h_t is expelled outside the boundaries (see Figure 12), and
 656 therefore $h_{t_o} \geq 0$, that is $n_{t_o} > \hat{n}_{t_o}$ which, from eq.(11) leads to $n_{t_o+1} - \hat{n}_{t_o} < 0$: at t_o , n_t has started
 657 oscillating. Considering, the nested functions further, one has $\dots < t_i < t_b < t_h < t_o$, where t_i
 658 (respectively t_g) corresponds to the generation at which i_t (respectively g_t) starts oscillating. As i_t
 659 is expelled from its boundaries at t_g , g_t starts oscillating before itself being expelled from its
 660 boundaries at t_h , and so on. This corresponds to a cascading effect, that we illustrate in Figure 13,
 661 which displays, for the same trend as Fig.12, and for a portion of the trajectory, g_t , h_t and n_t (on
 662 log scale to correct for their mean).

663 *Induction on Repelling Boundaries*

664 We have (eq.16), $h_{t_2} \approx h_{t_2+1} \approx -\frac{r}{\lambda_{t_2}^2}$, so that $l_2(t_2) \leq h_{t_2} \leq l_1$. Consider now that for a given t , we
 665 have $l_2(t) \leq h_t \leq l_1$. From the right side of that inequality, $h_t \leq l_1$, and from eq.15, we get the left
 666 side of the same equation at the next generation:

$$h_{t+1} \approx (2 - \lambda_t)h_t - \frac{r}{\lambda_t \lambda_{t+1}} \geq (2 - \lambda_t)l_1 - \frac{r}{\lambda_t \lambda_{t+1}} = -\frac{r}{\lambda_t \lambda_{t+1}} = l_2(t+1)$$

667 From the left side of that inequality, $l_2(t) \leq h_t$, and from eq.(15), we get the right side of the same
 668 equation at the next generation: for $2 \leq \lambda_t \leq 3$,

$$h_{t+1} \approx (2 - \lambda_t)h_t - \frac{r}{\lambda_t^2} \leq (2 - \lambda_t)l_2(t) - \frac{r}{\lambda_t^2} \approx -(2 - \lambda_t)\frac{r}{\lambda_t^2} - \frac{r}{\lambda_t^2} = -\frac{r}{\lambda_t^2}(3 - \lambda_t) \leq 0$$

669 For all t , $2 < \lambda_t < 3$ and (for a speed of environmental change r that is not too fast, see below), we
 670 have

$$l_2(t) \leq h_t \leq l_1, \quad (17)$$

671 which constrains h_t inside a range of ever decreasing amplitude $l_1 - l_2(t) = \frac{r}{\lambda_t^2}$, so that indeed, at
 672 first sight, in this range, for most values of r , we have $n_t \approx \hat{n}_t$. Indeed, inequality 17 can also be
 673 written:

$$\hat{n}_{t-1} \leq n_t \leq \hat{n}_t, \quad (21)$$

674 in which we recognise the inequality resulting from the inspection of the cobweb diagram. From
 675 this, we can conclude that l_1 and $l_2(t)$ are repelling boundaries of the abundance trajectory for
 676 $2 < \lambda_t < 3$, as per Fig.12. The induction above is loose. Focusing on $l_1 = 0$ and $l_2(t) = -\frac{r}{\lambda_t \lambda_{t-1}}$, we
 677 get, from $l_2(t) \leq h_t \leq l_1$ at the next generation $h_{t+1} \geq -\frac{r}{\lambda_t \lambda_{t+1}} = l_2(t+1)$ from eq.15. From
 678 the same equation, we also have $h_{t+1} \leq (\lambda_t - 2)\frac{r}{\lambda_t \lambda_{t-1}} - \frac{r}{\lambda_t \lambda_{t+1}}$. This expression is negative for
 679 most of the $2 \leq \lambda_t \leq 3$ range. It becomes positive when $(\lambda_t - 2)\frac{r}{\lambda_t \lambda_{t-1}} = \frac{r}{\lambda_t \lambda_{t+1}}$ that is, when
 680 $(\lambda_t - 2)(\lambda_t + r) = \lambda_t - r$, which corresponds to $\lambda_t = \frac{3-r}{2} + \sqrt{r + \left(\frac{3-r}{2}\right)^2}$ which is very close to 3
 681 for most values of r .

6 Discussion

683 We have explored the dynamical consequences of the rate of change of an environmentally driven
 684 demographic parameter for density-dependent populations, in discrete- and continuous-time,
 685 under coupled short- and long-term environmental change and with a trophic interaction. We
 686 characterised four rates of long-term environmental change, corresponding to qualitatively and

687 quantitatively different combinations of dynamical behaviours across these different, but familiar
688 ecological scenarios, and related our findings to recent developments in the study of regime shifts
689 in ecological dynamics – long transients and tipping points.

690 **Long transients**

691 The dynamics of *very fast* trends were mainly influenced by transient dynamics. This qualitative
692 regime appears for the highest rates of environmental change, where $r > r^*$ (the *r-tipping point*),
693 in the *r-bifurcation diagram* (fig. 7). Here, the population did not track the environment, but
694 showed highly unpredictable transient duration and amplitude range (fig. 7 and fig.S3 of SMA1).
695 The ecological behaviour of such (potentially) "long transients" has recently been described for
696 various types of attractors, including showing how the transient can push the population below
697 pseudo-extinction thresholds from abundant population sizes and/or on the way to an attractor
698 corresponding to high abundances, affecting population resilience (e.g., Baker and Röst, 2020;
699 Poggiale, 2020; Rubin et al., 2022; Morozov et al., 2016; Rubin et al., 2022; Morozov et al., 2020,
700 2024).

701 Most of the reproductive parameter values of the logistic map ($1 < \lambda \lesssim 3.57$) lead to unique
702 attractors (stable point or n-point cycling equilibrium points) which are approached by any initial
703 population abundance ($0 < n_0 < 1$); as such the abundance trajectories are not subject to the
704 chaotic supertransients typical of spatio-temporal dynamical systems (Lai and Tél, 2011). We
705 showed that certain rates of environmental change led to unpredictable abundance dynamics and
706 transient durations, both during and after the environmental trend. However, one of our main
707 findings is that this behaviour is limited to a specific range that corresponds to *very fast*
708 environmental trends with respect to the natural speed of the system (fig.7), (i.e., the natural
709 fluctuations of demographic rates, here the fertility rate λ_t , which is not expected to transition
710 from its minimal value ($\lambda_t \gtrsim 1$) to its maximum value ($\lambda_t \lesssim 4$) in a matter of a few generations,
711 Vanselow et al., 2019). For *very fast* trends, the dynamics are driven by the transient, which is
712 sensitive to initial conditions and therefore very hard to predict.

713 ***r*-tipping points, delays in bifurcation and *b*-tipping points**

714 When the environmental rate of change was slower than r^* , population abundances initially
715 appeared to behave according to the constant environment framework; i.e., following the
716 bifurcation diagram which, for the logistic map, predicts a monotonic increase in long-term
717 abundances ($\hat{n}, \lambda < 3$) followed by oscillations ($\lambda > 3$). In other words, the rate of environmental
718 change was slow enough for the abundances to track the environment. This situates r^* as a
719 bifurcation on an *r*-bifurcation diagram, or *r*-*tipping point*, segregating two qualitatively different
720 regimes (Ashwin et al., 2012; Siteur et al., 2016; Ritchie et al., 2023; Vanselow et al., 2022;
721 Abbott et al., 2024). We showed, however, that the effect of *r* on the dynamics goes beyond the
722 *r*-tipping point. On the slower side of r^* , abundances track the environment, in the shape of the
723 moving equilibria corresponding to the attractors of the bifurcation diagram (Hastings et al.,
724 2018). However, because of the environmental trend, the bifurcations are delayed: in the case of
725 the logistic map with increasing reproductive rate (λ_t), the population abundances start oscillating
726 at a higher λ_t than the bifurcation point in the constant environment.

727 If the reproductive rate decreases over time (i.e., $r < 0$), the bifurcation is again delayed, but in the
728 opposite direction: the population *stops* oscillating at lower reproductive rates ($\lambda_t < 3$; SMA5).

729 During these *bifurcation delays*, the moving equilibrium tracked by the abundances does not
730 correspond, in the constant environment framework, to a stable equilibrium; it is a *ghost*
731 *equilibrium*. In ecology, delayed bifurcations have rarely been investigated, with the exception of
732 extinction (transcritical) bifurcations (Zarada and Drake, 2017; Drake and Griffen, 2010).

733 However, delayed bifurcations have been studied extensively in other non-ecological contexts (e.g.,
734 Wu and Wang, 2017; Su, 2001; Wei et al., 2008; Baer et al., 1989; Miyazaki and Tchizawa, 2005).

735 The bifurcation delay is accompanied by a catch-up effect: abundances quickly jump from the
736 ghost equilibrium to the next equilibrium (corresponding to the 2-generation cycles, when
737 considering the $\lambda = 3$ bifurcation at of the logistic map with increasing reproductive rate). This
738 leads to an abrupt qualitative and quantitative change of regime for the abundances: a *b*-*tipping*

⁷³⁹ *point*; *b*-tipping points are generally associated with complex (discontinuous) bifurcations where,
⁷⁴⁰ e.g., on one side of the bifurcation, there is no equilibrium (Boettiger and Batt, 2020; Scheffer
⁷⁴¹ et al., 2001; Dakos et al., 2012; Boettiger and Hastings, 2012).

⁷⁴² We showed that *b*-tipping points can also occur for the simpler (continuous), period-doubling
⁷⁴³ bifurcations of the logistic map, where passing the bifurcation leads to an abrupt regime change.
⁷⁴⁴ This implies that while the trend is slow enough for the abundances to track the environment, they
⁷⁴⁵ can track different versions of the environment for the same value of the environmentally driven
⁷⁴⁶ parameter, as a function of the environmental rate of change. That is, they track different moving
⁷⁴⁷ equilibria/ghost attractors, and rapidly shift between them to generate *b*-tipping points.

⁷⁴⁸ For the logistic map with increasing reproductive rate over time ($r > 0$), the abundances track the
⁷⁴⁹ unstable (ghost) point equilibrium up to the first *b*-tipping point and the stable 2-generation cycle
⁷⁵⁰ thereafter, with the change of regime occurring very rapidly. In summary, we defined *very fast*
⁷⁵¹ trends, for a given demographic rate and related bifurcation, as environmental trends leading to
⁷⁵² population dynamics dominated by transients. On the slower side of the *r-tipping point*, *fast*
⁷⁵³ trends correspond to cases where no bifurcation occurs (despite the temporally-changing
⁷⁵⁴ demographic rate passing the value of the constant-environment bifurcation). In *slow* trends, the
⁷⁵⁵ bifurcation is also delayed, but this delay occurs before the end of the trend. *Very slow* trends are a
⁷⁵⁶ special case of *slow* trends where the rate of environmental change is slow enough to avoid any
⁷⁵⁷ post-trend transient.

⁷⁵⁸ **Risks of simplifying frameworks**

⁷⁵⁹ Overall, we showed that a population's trajectory under an environmental trend is the result of two
⁷⁶⁰ forces: the transient approach towards the asymptotic environmental attractor and the constant
⁷⁶¹ temporal shift of that attractor (it is "moving"). The population trajectory cannot, therefore, be
⁷⁶² understood by considering only the asymptotic abundances based on the bifurcation diagram, nor
⁷⁶³ the transient dynamics approaching these asymptotic abundances. Focusing solely on the

764 asymptotic behaviour in two distinct, constant environments, as ecologists sometimes do to
765 anticipate population responses to global change, reduces the validity of such studies to
766 unrealistically slow trends. Focusing solely on the latter (transients), by considering an
767 instantaneous change between the initial and the long-term value of the environment following the
768 transient dynamics framework, is equally risky as it limits the validity range to unrealistically fast
769 trends.

770 We have shown here, that considering both, in the hope that a realistic trend will behave in an
771 intermediate way between a *very fast* and a *very slow* trend, is not satisfactory either: it prevents
772 us from observing the existence of an r -tipping point and the emergence of simple bifurcations as
773 b -tipping points. However, while simplifying assumptions are an unavoidable part of ecological
774 modelling, the most important risk lies in not expressing them explicitly when interpreting results
775 (Scheiner, 2013).

776 A general perspective and a toolkit for ecologists

777 We considered simple population models with linear trends in demographic rates, but note that the
778 approach can easily be extended to non-linear trends (SMA4). Our approach does not correspond
779 to a specific system or environmental trend but provides a general framework under which to
780 study any population model under environmental change; including those implemented
781 experimentally (generally, over relatively short timescales, e.g., Tabi et al., 2020). A researcher
782 equipped with a population projection model and the functional responses of relevant
783 demographic rates to environmental cues will be able, via the *r-bifurcation diagram*, to get a
784 broader picture of the future population dynamics under different environmental trend scenarios,
785 and identify r -tipping points. For a given scenario, the *superimposition diagram* will highlight the
786 consequences of passing certain (even simple, continuous) bifurcations and the potential regime
787 shifts, or b -tipping points, it may lead to. We hope these tools and this framework will allow more
788 complete investigations into population or community resilience to the ongoing global changes of
789 uncertain speeds.

790 For example, global change has important impacts on sea temperature and ocean acidification, in
791 turn, affecting critical ecosystem services provided by fisheries (Jørgensen et al., 2020; Mondal
792 and Lee, 2025). These long-term trends, for which the IPCC has proposed several scenarios in
793 terms of magnitude and duration (Diop et al., 2018; Cheung et al., 2016), impact the recruitment
794 of fish populations (Shoji et al., 2011; Mondal and Lee, 2025) and therefore the stocks which
795 leads to various trends in fishing pressure (Hilborn et al., 2022).

796 Projection models have been developed for various populations, communities or areas, embedding
797 the response of recruitment to these gradual changes in temperature, acidity and/or fishing
798 pressure (Sadykov et al., 2022; Brooks, 2024; Maunder and Thorson, 2019). They can further
799 incorporate life-history evolution (McKeon et al., 2024) and spatial structure (incorporating the
800 "tropicalization" of fishing areas, e.g., Cheung et al., 2013). From these inputs, the consequences
801 of the rate of environmental change on fish populations can be studied via *superimposition*
802 *diagrams*; they can provide crucial information on potential *b*-tipping points, delays in bifurcation,
803 and more generally the possibility of abrupt regime shifts in the abundance and distribution of fish
804 stocks. The *r-bifurcation diagram*, considering the speeds of these various trends on a continuum
805 (considered individually or jointly), yields important information on the effects of various global
806 change and fishing policy scenarios on long-term fish stock dynamics. It would inform on both
807 the dynamics during and after the trend, allowing predictions of what abundance levels and how
808 fast, fish stocks are expected to stabilise once/if CO_2 emissions are significantly reduced.

809 While we have focussed on the dynamics of density dependent population abundances under
810 (linear) environmental trends, we believe the approach and associated analytical tools, will
811 generalise to models of trait or other dynamics and a wide range of environmental change
812 scenarios. This should allow novel hypotheses to be developed and compared around constant *vs.*
813 changing environments, helping us to determine the importance of the existence and rates of
814 temporal environmental change on ecological and evolutionary dynamics.

815 **Acknowledgements:**

816 This research was funded by the Natural Environment Research Council (grant no.

817 NE/W006731/1) awarded to MSF, SMS, and CY.

818 **Statement of authorship:** CFDC, BP, SMS and MSF initiated the project. CFDC, BP and MSF
819 performed simulations. CFDC and CY developed the mathematical analyses. CFDC and MSF led
820 the writing of the manuscript. All authors contributed to the final version of the manuscript.

821 **Conflict of interest:** The authors declare no conflict of interests.

822 **References**

823 Abbott, K. C., Heggerud, C. M., Lai, Y. C., Morozov, A., Petrovskii, S., Cuddington, K., and
824 Hastings, A. (2024). When and why ecological systems respond to the rate rather than the
825 magnitude of environmental changes. *Biological Conservation*, 292.

826 Agrell, J., Erlinge, S., Nelson, J., Nilsson, C., and Persson, I. (1995). Delayed density-dependence
827 in a small-rodent population. *Proceedings of the Royal Society B: Biological Sciences*,
828 262(1363):65–70.

829 Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P. (2012). Tipping points in open systems:
830 Bifurcation, noise-induced and rate-dependent examples in the climate system. *Philosophical
831 Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*,
832 370(1962):1166–1184.

833 Baer, S. M., Erneux, T., and Rinzel, J. (1989). The Slow Passage through a Hopf Bifurcation:
834 Delay, Memory Effects, and Resonance. *SIAM Journal on Applied Mathematics*, 49(1):55–71.

835 Baker, R. E. and Röst, G. (2020). Global Dynamics of a Novel Delayed Logistic Equation Arising
836 from Cell Biology. *Journal of Nonlinear Science*, 30(1):397–418.

837 Barraquand, F., Louca, S., Abbott, K. C., Cobbold, C. A., Cordoleani, F., DeAngelis, D. L.,
838 Elderd, B. D., Fox, J. W., Greenwood, P., Hilker, F. M., Murray, D. L., Stieha, C. R., Taylor,
839 R. A., Vitense, K., Wolkowicz, G. S., and Tyson, R. C. (2017). Moving forward in circles:
840 challenges and opportunities in modelling population cycles. *Ecology Letters*,
841 20(8):1074–1092.

842 Boettiger, C. and Batt, R. (2020). Bifurcation or state tipping: assessing transition type in a model
843 trophic cascade. *Journal of Mathematical Biology*, 80(1-2):143–155.

844 Boettiger, C. and Hastings, A. (2012). Quantifying limits to detection of early warning for critical
845 transitions. *Journal of the Royal Society Interface*, 9(75):2527–2539.

846 Brauer and Castillo-Chavez (2013). *Mathematical Models in Population Biology and*
847 *Epidemiology*, volume 53.

848 Brooks, E. N. (2024). Pragmatic approaches to modeling recruitment in fisheries stock
849 assessment: A perspective. *Fisheries Research*, 270(November 2023):106896.

850 Burc, E., Girard-Tercieux, C., Metz, M., Cazaux, E., Baur, J., Koppik, M., Rêgo, A., Hart, A., and
851 Berger, D. (2025). Life-history adaptation under climate warming magnifies the agricultural
852 footprint of a cosmopolitan insect pest. *Nature Communications*.

853 Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., and Otto-Bliesner,
854 B. L. (2018). Pliocene and Eocene provide best analogs for near-future climates. *Proceedings*
855 *of the National Academy of Sciences of the United States of America*, 115(52):13288–13293.

856 Campbell, R. D., Nouvellet, P., Newman, C., MacDonald, D. W., and Rosell, F. (2012). The
857 influence of mean climate trends and climate variance on beaver survival and recruitment
858 dynamics. *Global Change Biology*, 18(9):2730–2742.

859 Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R., Brock, W. A., Cline, T., Coloso, J., Hodgson,

860 J. R., Kitchell, J. F., Seekell, D. A., Smith, L., and Weidel, B. (2011). Early Warnings of
861 Regime Shifts: A Whole-Ecosystem Experiment. *Science*, 332(6033):1079–1082.

862 Caswell, H. and Werner, P. A. (1978). Transient Behavior and Life History Analysis of Teasel
863 (*Dipsacus Sylvestris* Huds.). *Ecology*, 59(591):53–66.

864 Cheung, W. W., Watson, R., and Pauly, D. (2013). Signature of ocean warming in global fisheries
865 catch. *Nature*, 497(7449):365–368.

866 Cheung, W. W. L., Reygondeau, G., and Frölicher, T. L. (2016). Large benefits to marine fisheries
867 of meeting the 1.5°C global warming target. *Science*, 354(6319):1591–1594.

868 Chevin, L.-M., Cotto, O., and Ashander, J. (2017). Stochastic Evolutionary Demography under a
869 Fluctuating Optimum Phenotype. *The American Naturalist*, pages 000–000.

870 Cohen, J. M., Lajeunesse, M. J., and Rohr, J. R. (2018). A global synthesis of animal phenological
871 responses to climate change. *Nature Climate Change*, 8(3): 224–228.

872 Dakos, V., Carpenter, S. R., Brock, W. A., Ellison, A. M., Guttal, V., Ives, A. R., Kéfi, S., Livina,
873 V., Seekell, D. A., van Nes, E. H., and Scheffer, M. (2012). Methods for detecting early
874 warnings of critical transitions in time series illustrated using simulated ecological data. *PLoS
875 ONE*, 7(7).

876 Diop, B., Sanz, N., Duplan, Y. J. J., Guene, E. H. M., Blanchard, F., Pereau, J. C., and Doyen, L.
877 (2018). Maximum Economic Yield Fishery Management in the Face of Global Warming.
878 *Ecological Economics*, 154(June 2018):52–61.

879 Drake, J. M. and Griffen, B. D. (2010). Early warning signals of extinction in deteriorating
880 environments. *Nature*, 467(7314):456–459.

881 Elton, C. and Nicholson, M. (1942). The Ten-Year Cycle in Numbers of the Lynx in Canada. *The
882 Journal of Animal Ecology*, 11(2):215.

883 Francis, T. B., Abbott, K. C., Cuddington, K., Gellner, G., Hastings, A., Lai, Y. C., Morozov, A.,

884 Petrovskii, S., and Zeeman, M. L. (2021). Management implications of long transients in

885 ecological systems. *Nature Ecology and Evolution*, 5(3):285–294.

886 Gil, M. A., Baskett, M. L., Munch, S. B., and Hein, A. M. (2020). Fast behavioral feedbacks make

887 ecosystems sensitive to pace and not just magnitude of anthropogenic environmental change.

888 *Proceedings of the National Academy of Sciences of the United States of America*,

889 117(41):25580–25589.

890 Gilljam, D., Knape, J., Lindén, A., Mugabo, M., Sait, S. M., and Fowler, M. S. (2019). The colour

891 of environmental fluctuations associated with terrestrial animal population dynamics. *Global*

892 *Ecology and Biogeography*, 28(2):118–130.

893 Graham, I. M. and Lambin, X. (2002). The impact of weasel predation on cyclic field-vole

894 survival: The specialist predator hypothesis contradicted. *Journal of Animal Ecology*,

895 71(6):946–956.

896 Greenman, J. V. and Benton, T. G. (2003). The amplification of environmental noise in population

897 models: Causes and consequences. *American Naturalist*, 161(2):225–239.

898 Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., and Medina-Elizade, M. (2006). Global

899 temperature change. *Proceedings of the National Academy of Sciences of the United States of*

900 *America*, 103(39):14288–14293.

901 Hastings, A., Abbott, K. C., Cuddington, K., Francis, T., Gellner, G., Lai, Y. C., Morozov, A.,

902 Petrovskii, S., Scranton, K., and Zeeman, M. L. (2018). Transient phenomena in ecology.

903 *Science*, 361(6406).

904 Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., and Sutton, R. (2020).

905 Observed Emergence of the Climate Change Signal: From the Familiar to the Unknown.

906 *Geophysical Research Letters*, 47(6).

907 Hawkins, E. and Sutton, R. (2012). Time of emergence of climate signals. *Geophysical Research*
908 *Letters*, 39(1):1–6.

909 Highland, S. A. and Jones, J. A. (2014). Extinction debt in naturally contracting mountain
910 meadows in the Pacific Northwest, USA: Varying responses of plants and feeding guilds of
911 nocturnal moths. *Biodiversity and Conservation*, 23(10):2529–2544.

912 Hilborn, R., Buratti, C. C., Díaz Acuña, E., Hively, D., Kolding, J., Kurota, H., Baker, N., Mace,
913 P. M., de Moor, C. L., Muko, S., Osio, G. C., Parma, A. M., Quiroz, J. C., and Melnychuk,
914 M. C. (2022). Recent trends in abundance and fishing pressure of agency-assessed small
915 pelagic fish stocks. *Fish and Fisheries*, 23(6):1313–1331.

916 Hsu, S. B., Hubbell, S. P., and Waltman, P. (1978). Competing Predators. *SIAM Journal on*
917 *Applied Mathematics*, 35(4):617–625.

918 Ives, A. R. and Carpenter, S. R. (2007). Stability and diversity of ecosystems. *Science*,
919 317(5834):58–62.

920 Jenouvrier, S., Long, M. C., Coste, C. F. D., Holland, M., Gamelon, M., Yoccoz, N. G., and
921 Sæther, B.-e. E. (2022). Detecting climate signals in populations across life histories. *Global*
922 *Change Biology*, 28(7):2236–2258.

923 Johnson, C. A., Ren, R., and Buckley, L. B. (2023). Temperature Sensitivity of Fitness
924 Components across Life Cycles Drives Insect Responses to Climate Change. *The American*
925 *Naturalist*, 202(6):753–766.

926 Jørgensen, L. L., Bakke, G., and Hoel, A. H. (2020). Responding to global warming: New
927 fisheries management measures in the Arctic. *Progress in Oceanography*, 188(August):102423.

928 Kemp, D. B., Eichenseer, K., and Kiessling, W. (2015). Maximum rates of climate change are
929 systematically underestimated in the geological record. *Nature Communications*, 6.

930 Kiritani, K. (2013). Different effects of climate change on the population dynamics of insects.

931 Korpimäki, E., Oksanen, L., Oksanen, T., Klemola, T., Norrdahl, K., and Banks, P. B. (2005).
932 Vole cycles and predation in temperate and boreal zones of Europe. *Journal of Animal Ecology*,
933 74(6):1150–1159.

934 Krebs, C. J. (1995). Two paradigms of population regulation. *Wildlife Research*, 22(1):1–10.

935 Lai, Y.-C. and Tél, T. (2011). *Transient Chaos: Complex Dynamics on Finite Time Scales*
936 (*Applied Mathematical Sciences*).

937 Lawson, C. R., Vindenes, Y., Bailey, L., and van de Pol, M. (2015). Environmental variation and
938 population responses to global change. *Ecology Letters*, 18(7):724–736.

939 Le Treut, H. and Somerville, R. (2007). Historical Overview of Climate Change Science
940 Coordinating Lead Authors: Lead Authors. In *Climate Change 2007: The Physical Science*
941 *Basis. Contribution of Working Group I to the Fourth Assessment Report of the*
942 *Intergovernmental Panel on Climate Change*.

943 Lear, C. H., Anand, P., Blenkinsop, T., Foster, G. L., Gagen, M., Hoogakker, B., Larter, R. D.,
944 Lunt, D. J., McCave, I. N., McClymont, E., Pancost, R. D., Rickaby, R. E., Schultz, D. M.,
945 Summerhayes, C., Williams, C. J., and Zalasiewicz, J. (2020). Geological society of london
946 scientific statement: What the geological record tells us about our present and future climate.
947 *Journal of the Geological Society*, 178(1).

948 Lee, A. M., Sæther, B. E., and Engen, S. (2020). Spatial covariation of competing species in a
949 fluctuating environment. *Ecology*, 101(1):1–9.

950 Levin, S. A. (1976). Population Dynamic Models in Heterogeneous Environments. *Annual*
951 *Review of Ecology and Systematics*, 7(1):287–310.

952 Maunder, M. N. and Thorson, J. T. (2019). Modeling temporal variation in recruitment in fisheries
953 stock assessment: A review of theory and practice. *Fisheries Research*, 217(June 2018):71–86.

954 May, R. M. (1974). Biological Populations with Nonoverlapping Generations: Stable Points,
955 Stable Cycles, and Chaos. *Science*, 186(4164):645–647.

956 May, R. M. (1976). Simple mathematical models with very complicated dynamics. *Nature*,
957 261(5560):459–467.

958 McKeon, C. M., Buckley, Y. M., Moriarty, M., Lundy, M., and Kelly, R. (2024). Increased signal
959 of fishing pressure on community life-history traits at larger spatial scales. *Global Ecology and*
960 *Biogeography*, 33(5):1–17.

961 Mitani, N. and Mouri, A. (2017). Population cycles emerging through multiple interaction types.
962 *Royal Society Open Science*, 4(9).

963 Miyazaki, R. and Tchizawa, K. (2005). Bifurcation delay in a delay differential equation.
964 *Nonlinear Analysis, Theory, Methods and Applications*, 63(5-7):3–5.

965 Mondal, S. and Lee, M.-A. (2025). Impact of Global Warming on Fisheries. In *Food Security,*
966 *Nutrition and Sustainability Through Aquaculture Technologies*, pages 227–253. Springer
967 Nature Switzerland, Cham.

968 Morozov, A., Abbott, K., Cuddington, K., Francis, T., Gellner, G., Hastings, A., Lai, Y. C.,
969 Petrovskii, S., Scranton, K., and Zeeman, M. L. (2020). Long living transients: Enfant terrible
970 of ecological theory?: Reply to comments on “Long transients in ecology: Theory and
971 applications”. *Physics of Life Reviews*, 32:55–58.

972 Morozov, A. Y., Almutairi, D., Petrovskii, S. V., and Hastings, A. (2024). Regime shifts,
973 extinctions and long transients in models of population dynamics with density-dependent
974 dispersal. *Biological Conservation*, 290(November 2023):110419.

975 Morozov, A. Y., Banerjee, M., and Petrovskii, S. V. (2016). Long-term transients and complex
976 dynamics of a stage-structured population with time delay and the Allee effect. *Journal of*
977 *Theoretical Biology*, 396:116–124.

978 Myers, J. H. (2018). Population cycles: Generalities, exceptions and remaining mysteries.

979 *Proceedings of the Royal Society B: Biological Sciences*, 285(1875).

980 Nisbet, R. M. and Gurney, W. S. C. (1985). *Modelling fluctuating populations*, volume 4.

981 Olonscheck, D., Schurer, A. P., Lücke, L., and Hegerl, G. C. (2021). Large-scale emergence of
982 regional changes in year-to-year temperature variability by the end of the 21st century. *Nature
983 Communications*, 12(1):2–11.

984 Ovaskainen, O. and Hanski, I. (2002). Transient Dynamics in Metapopulation Response to
985 Perturbation. *Theoretical Population Biology*, 61(3):285–295.

986 Poggiale, J. C. (2020). Regime shifts at the origin of a long transient methodological development
987 for predictive ecology: Comment on “Long transients in ecology: Theory and applications” by
988 A. Morozov et al. *Physics of Life Reviews*, 32:50–52.

989 Ratikainen, I. I., Gill, J. A., Gunnarsson, T. G., Sutherland, W. J., and Kokko, H. (2008). When
990 density dependence is not instantaneous: Theoretical developments and management
991 implications. *Ecology Letters*, 11(2):184–198.

992 Ritchie, P. D., Alkhayou, H., Cox, P. M., and Wieczorek, S. (2023). Rate-induced tipping in
993 natural and human systems. *Earth System Dynamics*, 14(3):669–683.

994 Rogers, T. L., Johnson, B. J., and Munch, S. B. (2022). Chaos is not rare in natural ecosystems.
995 *Nature Ecology and Evolution*, 6(8):1105–1111.

996 Roughgarden, J. (1975). A Simple Model for Population Dynamics in Stochastic Environments.
997 *The American Naturalist*, 109(970):713–736.

998 Royama, T. (1992). *Analytical Population Dynamics*.

999 Rubin, J. E., Earn, D. J., Greenwood, P. E., Parsons, T. L., and Abbott, K. C. (2022). Irregular
1000 population cycles driven by environmental stochasticity and saddle crawlbys. *Oikos*, pages
1001 1–17.

1002 Ruokolainen, L., Lindén, A., Kaitala, V., and Fowler, M. S. (2009). Ecological and evolutionary
1003 dynamics under coloured environmental variation. *Trends in Ecology and Evolution*,
1004 24(10):555–563.

1005 Sadykov, A., Farnsworth, K., Sadykova, D., and Stenseth, N. C. (2022). The transfer function
1006 method reveals how age-structured populations respond to environmental fluctuations with
1007 serious implications for fisheries management. *Population Ecology*, (May 2021):1–15.

1008 Saether, B.-E., Coulson, T., Grøtan, V., Engen, S., Altwegg, R., Armitage, K. B., Barbraud, C.,
1009 Becker, P. H., Blumstein, D. T., Dobson, F. S., Festa-Bianchet, M., Gaillard, J.-M., Jenkins, A.,
1010 Jones, C., Nicoll, M. A. C., Norris, K., Oli, M. K., Ozgul, A., and Weimerskirch, H. (2013).
1011 How Life History Influences Population Dynamics in Fluctuating Environments. *The American
1012 Naturalist*, 182(6):743–759.

1013 Sæther, B. E., Tufto, J., Engen, S., Jerstad, K., Røstad, O. W., and Skatan, J. E. (2000). Population
1014 dynamical consequences of climate change for a small temperate songbird. *Science*,
1015 287(5454):854–856.

1016 Sage, R. F. (2020). Global change biology: A primer. *Global Change Biology*, 26(1):3–30.

1017 Scheffer, M., Straile, D., van Nes, E. H., and Hosper, H. (2001). Climatic warming causes regime
1018 shifts in lake food webs. *Limnology and Oceanography*, 46(7):1780–1783.

1019 Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. and Walker, B. (2001b). Catastrophic shifts in
1020 ecosystems. *Nature*, 413(6856):591–596.

1021 Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V. , Held, H., van
1022 Nes, E. H., Rietkerk, M. and Sugihara, G. (2009). Early-warning signals for critical transitions.
1023 *Nature*, 461(7260):53–59.

1024 Scheiner, S. M. (2013). The ecological literature, an idea-free distribution. *Ecology Letters*,
1025 16(12):1421–1423.

1026 Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams, R. J., Mayfield, M. M.,
1027 Chase, J. M., Chu, C., Harpole, W. S., Huth, A., HilleRisLambers, J., James, A. R., Kraft, N. J.,
1028 May, F., Muthukrishnan, R., Satterlee, S., Taubert, F., Wang, X., Wiegand, T., Yang, Q., and
1029 Abbott, K. C. (2020). Integrating the underlying structure of stochasticity into community
1030 ecology. *Ecology*, 101(2):1–17.

1031 Shoji, J., Toshito, S. I., Mizuno, K. I., Kamimura, Y., Hori, M., and Hirakawa, K. (2011). Possible
1032 effects of global warming on fish recruitment: Shifts in spawning season and latitudinal
1033 distribution can alter growth of fish early life stages through changes in daylength. *ICES*
1034 *Journal of Marine Science*, 68(6):1165–1169.

1035 Siteur, K., Eppinga, M. B., Doelman, A., Siero, E., and Rietkerk, M. (2016). Ecosystems off track:
1036 rate-induced critical transitions in ecological models. *Oikos*, 125(12):1689–1699.

1037 Song, H., Kemp, D. B., Tian, L., Chu, D., Song, H., and Dai, X. (2021). Thresholds of
1038 temperature change for mass extinctions. *Nature Communications*, 12(1).

1039 Su, J. (2001). The Phenomenon of Delayed Bifurcation and its Analyses. Number 1, pages
1040 203–214.

1041 Tabi, A., Garnier, A. and Pennekamp, F. (2020). Testing multiple drivers of the temperature-size
1042 rule with nonlinear temperature increase. *Functional Ecology*, 34:2503–2512.

1043 Tan, B. L. and Chia, T. T. (1996). Self-similarity and Fine Structures in the Linear-logistic Map.
1044 *Complex systems*, 10:321–344.

1045 Tsuchiya, T. and Yamagishi, D. (1997). The Complete Bifurcation Diagram for the Logistic Map.
1046 *Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences*, 52(6-7):513–516.

1047 Turchin, P. and Ellner, S. P. (2000). Living on the edge of chaos: Population dynamics of
1048 fennoscandian voles. *Ecology*, 81(11):3099–3116.

1049 Turchin, P., Taylor, A. D., and Reeve, J. D. (1999). Dynamical role of predators in population
1050 cycles of a forest insect: An experimental test. *Science*, 285(5430):1068–1071.

1051 Van De Pol, M., Vindenes, Y., Sæther, B. E., Engen, S., Ens, B. J., Oosterbeek, K., and Tinbergen,
1052 J. M. (2010). Effects of climate change and variability on population dynamics in a long-lived
1053 shorebird. *Ecology*, 91(4):1192–1204.

1054 van der Wiel, K. and Bintanja, R. (2021). Contribution of climatic changes in mean and
1055 variability to monthly temperature and precipitation extremes. *Communications Earth and*
1056 *Environment*, 2(1):1–11.

1057 Vanselow, A., Halekotte, L., and Feudel, U. (2022). Evolutionary rescue can prevent rate-induced
1058 tipping. *Theoretical Ecology*, 15(1):29–50.

1059 Vanselow, A., Wieczorek, S., and Feudel, U. (2019). When very slow is too fast - collapse of a
1060 predator-prey system. *Journal of Theoretical Biology*, 479:64–72.

1061 Vitousek, P. M. (1994). Beyond Global Warming: Ecology and Global Change. *Ecology*,
1062 75(7):1861–1876.

1063 Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M.,
1064 Hoegh-Guldberg, O., and Bairlein, F. (2002). Ecological responses to recent climate change.
1065 *Nature*, 416(6879):389–395.

1066 Wei, H. M., Li, X. Z., and Martcheva, M. (2008). An epidemic model of a vector-borne disease
1067 with direct transmission and time delay. *Journal of Mathematical Analysis and Applications*,
1068 342(2):895–908.

1069 Williams, J. W., Ordonez, A., and Svenning, J. C. (2021). A unifying framework for studying and
1070 managing climate-driven rates of ecological change. *Nature Ecology and Evolution*,
1071 5(1):17–26.

1072 Wrzosek, D. M. (1990). Limit cycles in predator-prey models. *Mathematical Biosciences*,
1073 98(1):1–12.

1074 Wu, X. P. and Wang, L. (2017). Zero-Hopf bifurcation analysis in delayed differential equations
1075 with two delays. *Journal of the Franklin Institute*, 354(3):1484–1513.

1076 Zarada, K. and Drake, J. M. (2017). Time to extinction in deteriorating environments. *Theoretical
1077 Ecology*, 10(1):65–71.

Box 1: Glossary

time-varying demographic parameter: demographic rate (e.g. survival) that varies with the environment and therefore over time. Its time series accounts for both the time-series of environmental cues and the response of the demographic rate to these cues.

Stationary environment: environmental framework where demographic rates vary over time, but their long-term statistical properties (e.g., mean, variance) are constant.

Environmental trend: (non-stationary) environmental framework where one (or more) demographic rate(s) increases or decreases consistently over time.

Environmental rate of change (r): the speed at which a given demographic rate changes over time.

Regime shift: a qualitative change in the dynamics of a population, or the dynamics and/or composition of a community.

Tipping point: critical threshold that, when crossed, leads to a sudden, quantitative and qualitative change in population dynamics. For a **b -tipping point**, this threshold corresponds to a certain, value of the focal demographic rate. For a **r -tipping point**, it corresponds to a certain value of a the environmental rate of change.

Bifurcation: a certain value of a demographic rate separating, in a constant environment, qualitatively different long-term (asymptotic) dynamics. The **bifurcation diagram** provides the asymptotic dynamics for a continuum of values of the demographic rate. For **discontinuous bifurcations**, there is no (positive) equilibrium point on one side of the bifurcation (e.g., fold or saddle-node bifurcations).

Equilibrium: in a constant environment, the state of a system where dynamics have become constant over time (e.g., constant abundances or generation cycles of constant period and amplitudes). If a small perturbation away from the equilibrium leads back to it, the equilibrium is deemed **stable** (i.e., an **attractor**). An equilibrium can correspond to a single abundance value (**point equilibrium**) or a series of values (**cycle**) that asymptotic abundances encounter with fixed period.

Chaotic range: range of values of the demographic rate where the asymptotic dynamics are chaotic (i.e., no stable attractor).

Moving equilibrium: abundance point, corresponding to an equilibrium in a constant environment, that changes over time due to environmentally driven changes in a demographic parameter (see eq.4). **Ghost attractor:** In the context of this study, a ghost attractor is, in a varying environment, a state of the system that would be an equilibrium (stable or unstable) if demographic rates were held constant. More generally, it is "a state that is not an equilibrium, but would be under slightly different conditions" (Hastings et al., 2018).

Transients: transient dynamics correspond to the trajectory of a system towards the asymptotic regime, following an instantaneous perturbation, or initiation of the population away from the asymptotic attractor. In some cases, called **long transients** these regimes can last for many generations and incur sudden changes in abundances occurring long after the perturbation. **Under-compensatory**, respectively **over-compensatory**, transients correspond to transient dynamics where the equilibrium is reached via monotonic – constantly increasing or decreasing – changes in abundance, respectively via (damped) oscillating abundances (abundances overcompensate).

Superimposition diagram: superimposition of the bifurcation diagram with the abundance dynamics considered in the alternative timescale of the demographic rate.

r -bifurcation diagram: Properties of population dynamics (e.g., bifurcation or post-trend transient) displayed for a continuum of values of the rate of environmental change.

1078 **List of Figures**

1079 1	Bifurcation diagram of the logistic map showing asymptotic abundances for a range of reproductive rates in a constant environment, λ (eq.1), with illustrative time-series plots. Blue/magenta sections correspond to the point equilibrium \hat{n} in its stable range (\hat{n} is an attractor): blue ($1 < \lambda < 2$) illustrates under-compensatory dynamics, i.e., the population approaches the attractor monotonically; magenta ($2 < \lambda < 3$) shows over-compensatory dynamics as the population approaches the attractor with damped oscillations. Green section corresponds to 2-generation cycles while black section shows cyclic (period >2) and chaotic dynamics: the point equilibrium, in grey, is now unstable, (\hat{n} is a repeller). For $\lambda > 3.54$, the asymptotic dynamics are mostly chaotic (e.g., for $\lambda = 3.8$) but there are still "periodic windows", e.g., $\lambda = 3.9605$ exhibits a 4-generation cycle (red).	52
1089 2	Time series of population abundances for the <i>slow</i> trend (a trend lasting $T_s = 7,000$ generations corresponding to $r_s \approx 4.2 \times 10^{-4}$). (a) Time series of abundances (blue); generation T at which the trends ends is marked by a black vertical line, generation of first oscillation $t_o(r_s)$ by a grey vertical line; top axis shows the corresponding value of the time-varying demographic parameter (λ_t , red). Lower panels zoom into (b) 100 and (c) 30 generations of the time series, starting 15 generations before $t_o(r_s) = 5074$	53
1095 3	<i>Superimposition diagram</i> (of environmentally driven population abundances and constant-environment bifurcation diagram) for the <i>slow</i> trend ($T_s = 7,000$; $r_s \approx 4.2 \times 10^{-4}$). Bifurcation diagram (black) and population abundance series as a function of alternative timescale λ_t (blue); in red, the <i>moving equilibrium</i> $\hat{n}(\lambda_t)$; the grey vertical line shows the parameter value of first oscillations, $\lambda_{t_0} = b(r)$. Insert shows a zoom into 100 generations of the time series starting 15 generations before the time of first oscillation $t_o(r_s) = 5074$	54
1101 4	The acceleration at which abundances change (a_t) varies with the rate of environmental change (r). The acceleration of population abundance, a_t (eq.5), are displayed in the alternative demographic timescale (λ_t) for a range of values of r . For each value of r (different coloured curves), the maximum acceleration $d(r)$ (eq.6) corresponds to each curve's peak.	55

1106	5	(a) Superimposition diagram for the <i>very slow</i> environmental trend ($T_{vs} = 10^8$, $r_{vs} \approx$ 1107 3×10^{-8}): bifurcation diagram (black) and abundance time series (blue) in the alternative 1108 timescale λ_t ; the moving equilibrium value (\hat{n}_t) is shown in red, and the time at first 1109 oscillation (the <i>b</i> -tipping point $b(r)$) in grey. (b) A zoomed portion of 90,000 generations 1110 of the abundance series starting 50,000 generations before the onset of first oscillation, 1111 $t_o(r_{vs}) \approx 3.001$. (c) abundance time series in chronological time for 80 generations before 1112 and after the end of the trend $t = T$	56
1113	6	Superimposition diagram for a <i>fast</i> environmental trend ($T_f = 225$, $r_f \approx 0.013$) combining 1114 the constant environment framework bifurcation diagram (black) and abundance time series 1115 (blue); the "moving equilibrium" value (\hat{n}_t) is shown in red, and the time at first oscillation 1116 (the <i>b</i> -tipping point $b(r)$) in grey.	57
1117	7	The <i>r-bifurcation diagram</i> highlights the existence of four qualitatively different population 1118 dynamic regimes as a function of the rate of environmental change (r). For <i>fast</i> trends, the 1119 <i>b</i> -tipping point (the value of the reproductive rate, λ_t , where oscillations in abundance first 1120 appear; blue points) occurs at the end of the environmental trend ($b(r) = \lambda_T$). For slower 1121 trends, the <i>b</i> -tipping point occurs before λ_T , and $b(r)$ approaches 3 as $r \rightarrow 0$. <i>Very slow</i> 1122 trends are distinguished from <i>slow</i> trends as there is no post-transient under very slow trends 1123 ($D(r) = 0$, red points, right vertical axis). An <i>r</i> -tipping point, r^* , separates <i>fast</i> and <i>very fast</i> 1124 trends.	58
1125	8	Summarising key dynamical features for four qualitatively different rates of environmental 1126 change, illustrated with superimposition diagrams: (a) <i>very slow</i> , (b) <i>slow</i> , (c) <i>fast</i> and (d) 1127 <i>very fast</i> environmental trends.	59
1128	9	Population dynamics under a noisy environmental trend. Superimposition diagrams (abun- 1129 dance time series in blue, bifurcation diagram in black) are shown for various values of the 1130 environmental variance σ_e^2 and autocorrelation $\rho(\epsilon)$ of the noise ϵ_t over a slow, linear trend 1131 in $\bar{\lambda}_t$ ($r = 0.003$; eq. 7). (a) corresponds to deterministic trend (no noise), (b) to weak white 1132 noise, (c) to weak red noise, (d) to intermediate white noise, (e) to intermediate red noise 1133 and (f) to strong white noise	60

1134	10	Predator-prey dynamics in continuous time (eq.8) where predator death rate (d_t) follows an environmental trend for a duration T . Rows correspond to: (a) <i>very slow</i> , (b) <i>slow</i> , (c) <i>fast</i> and (d) <i>very fast</i> rates of environmental change. Columns correspond to (I) abundance time series of prey (blue lines) and predators (red), time-series of the predator death rate (green dashed line, right-hand y-axis) and moving point-equilibria $\hat{n}_1(t)$ and $\hat{n}_2(t)$ (black) during and after the trend; (II) superimposition diagram (to be read from right to left): bifurcation diagrams (orange and cyan for predators and prey, respectively) and abundance time series (red and blue) and moving point-equilibria (black) on the alternative demographic timescale d_t ; and (III) phase diagrams of prey <i>vs</i> predator abundances during (blue) and after (grey) the trend; asymptotic cycle at d_T shown in black and moving equilibrium in green.	61
1144	11	cobweb diagrams of abundance trajectories for (a,b) constant environment, and (c-f) a <i>slow</i> trend ($r_s = 4.2 \times 10^{-4}$) at various values of λ_t	62
1146	12	Repelling boundaries: figure shows a representative portion of the trajectory of lag h_t (eq.9, blue points) as a function of time-varying reproductive rate λ_t for a trend of duration $T = 2 \times 10^4$ generations. In red, the same dynamics perturbed at t_p corresponding to $\lambda_{t_p} = 2.92$, such that $h_2(t_p) = 0$. In yellow, the lag equilibrium, \hat{h}_t (eq.18), and in black, the repelling boundaries (eq.17)	63
1151	13	Cascading effect: figure shows the nested abundance difference functions g_t (blue, eq.19) and h_t (red, eq.9) as well as the abundances n_t (orange, right hand axis), on a log scale and as a function of time-varying reproductive rate λ_t for an environmental trend $r \approx 1.5 \times 10^{-4}$ corresponding to $T = 2 \times 10^4$. The regime shift in g_t anticipates and leads to that of h_t which anticipates and leads to that of n_t , i.e. to the b-tipping point	64

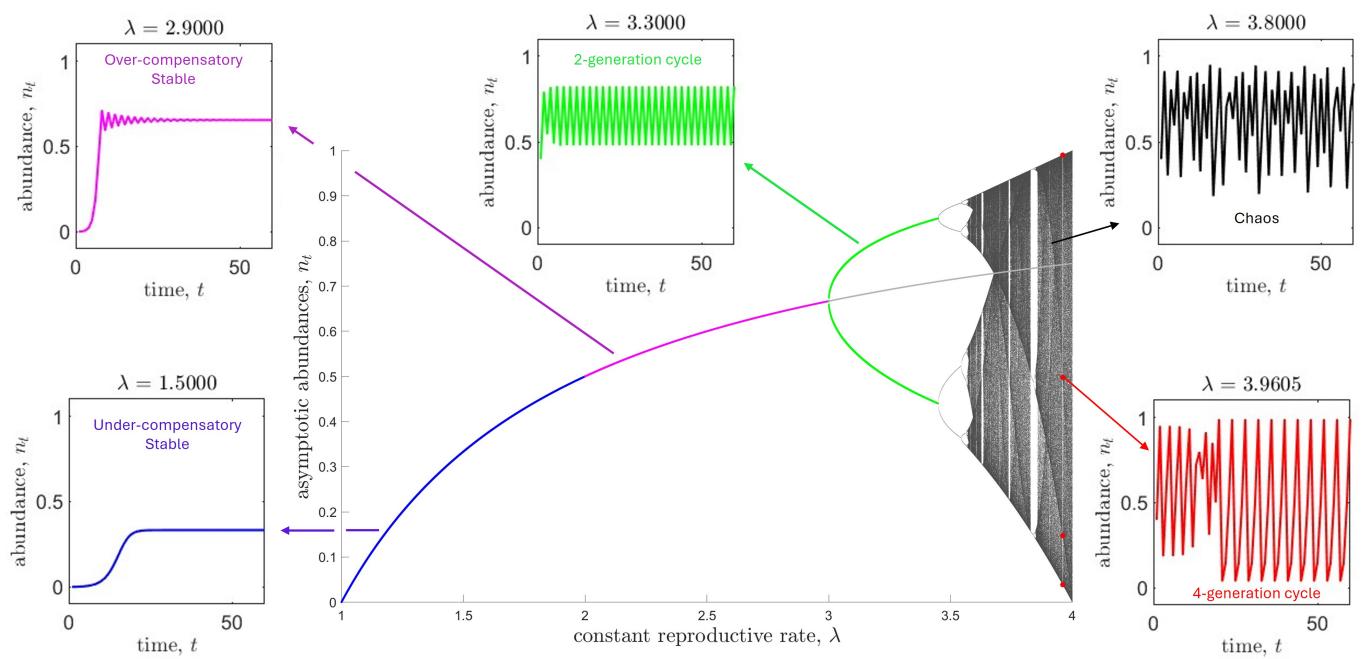


Figure 1

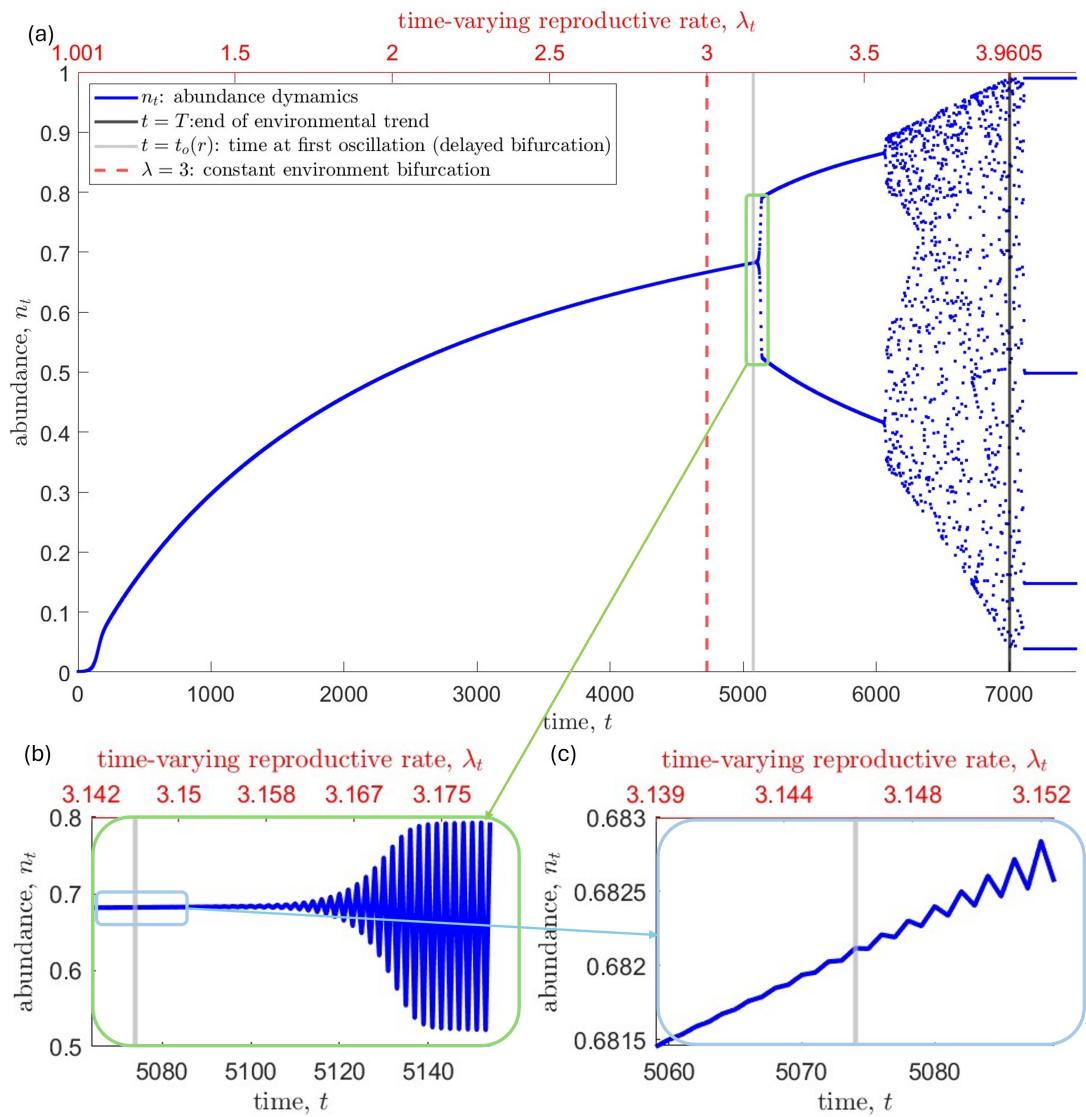


Figure 2

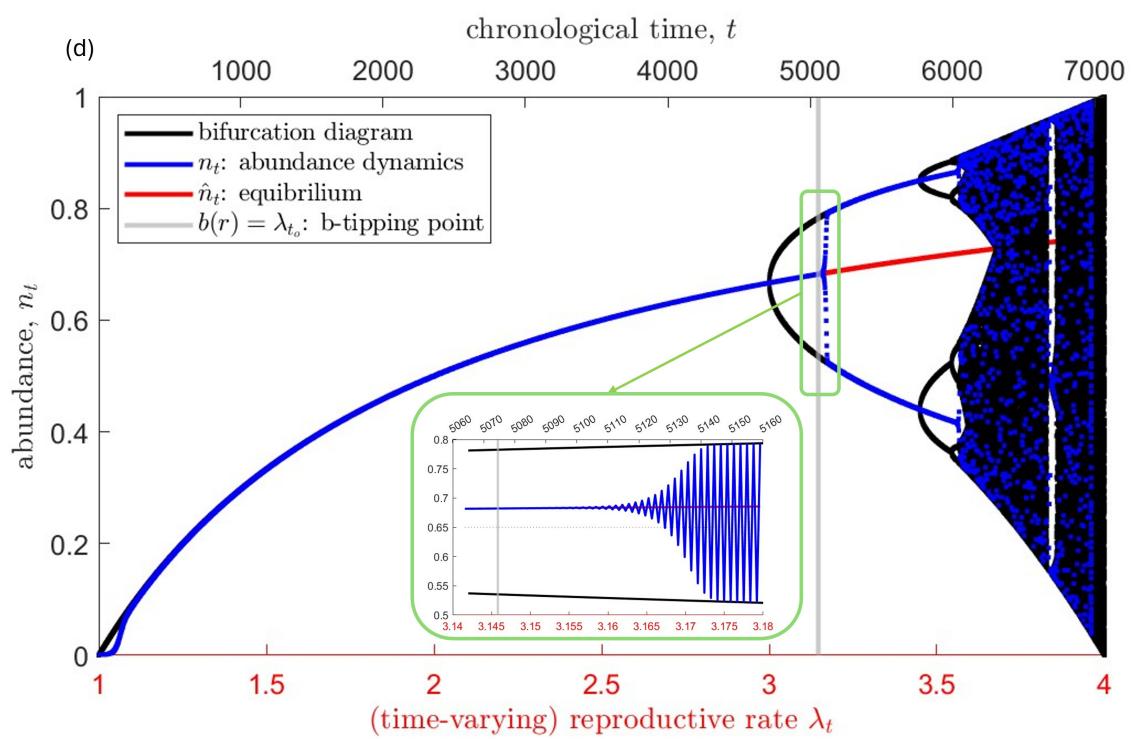


Figure 3

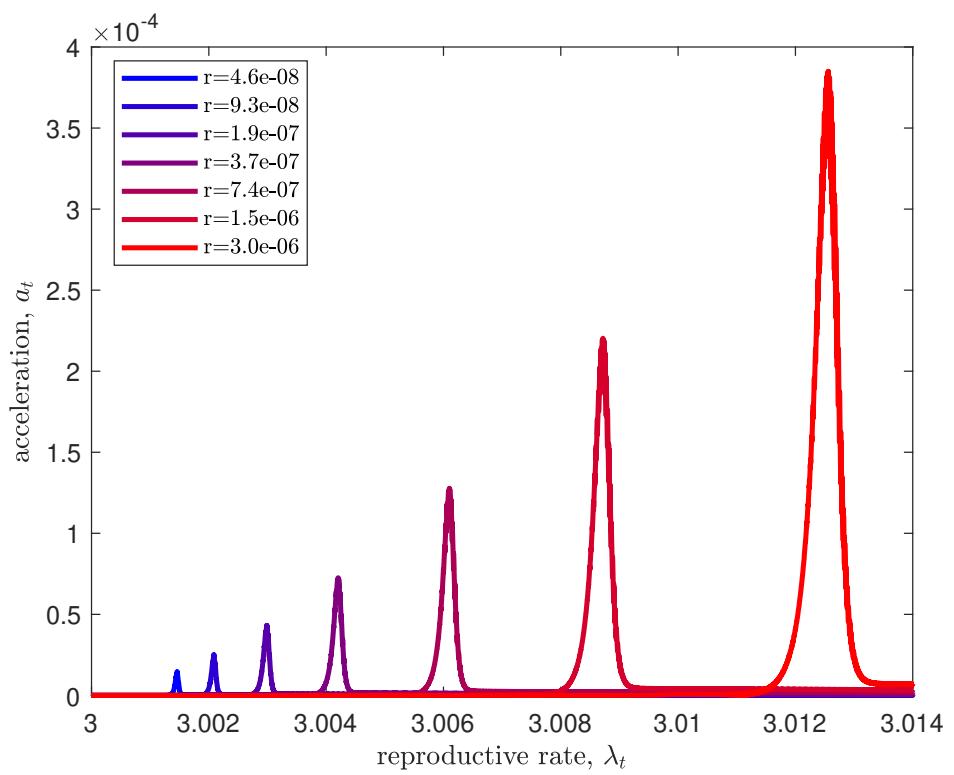


Figure 4

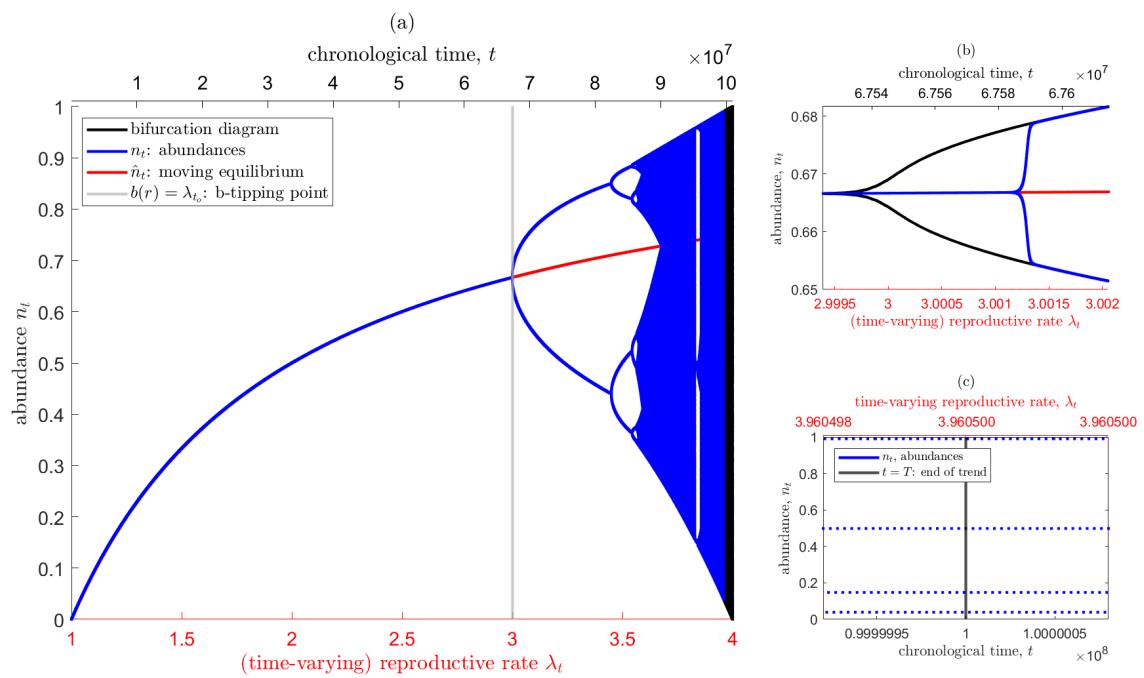


Figure 5

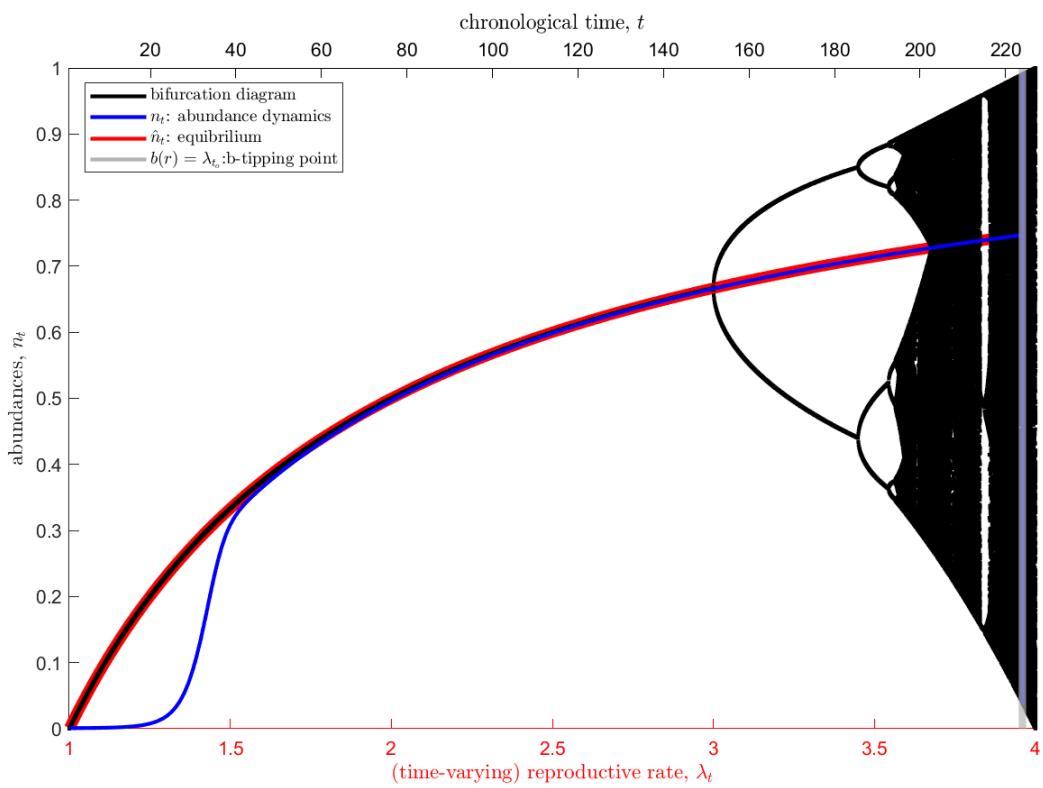


Figure 6

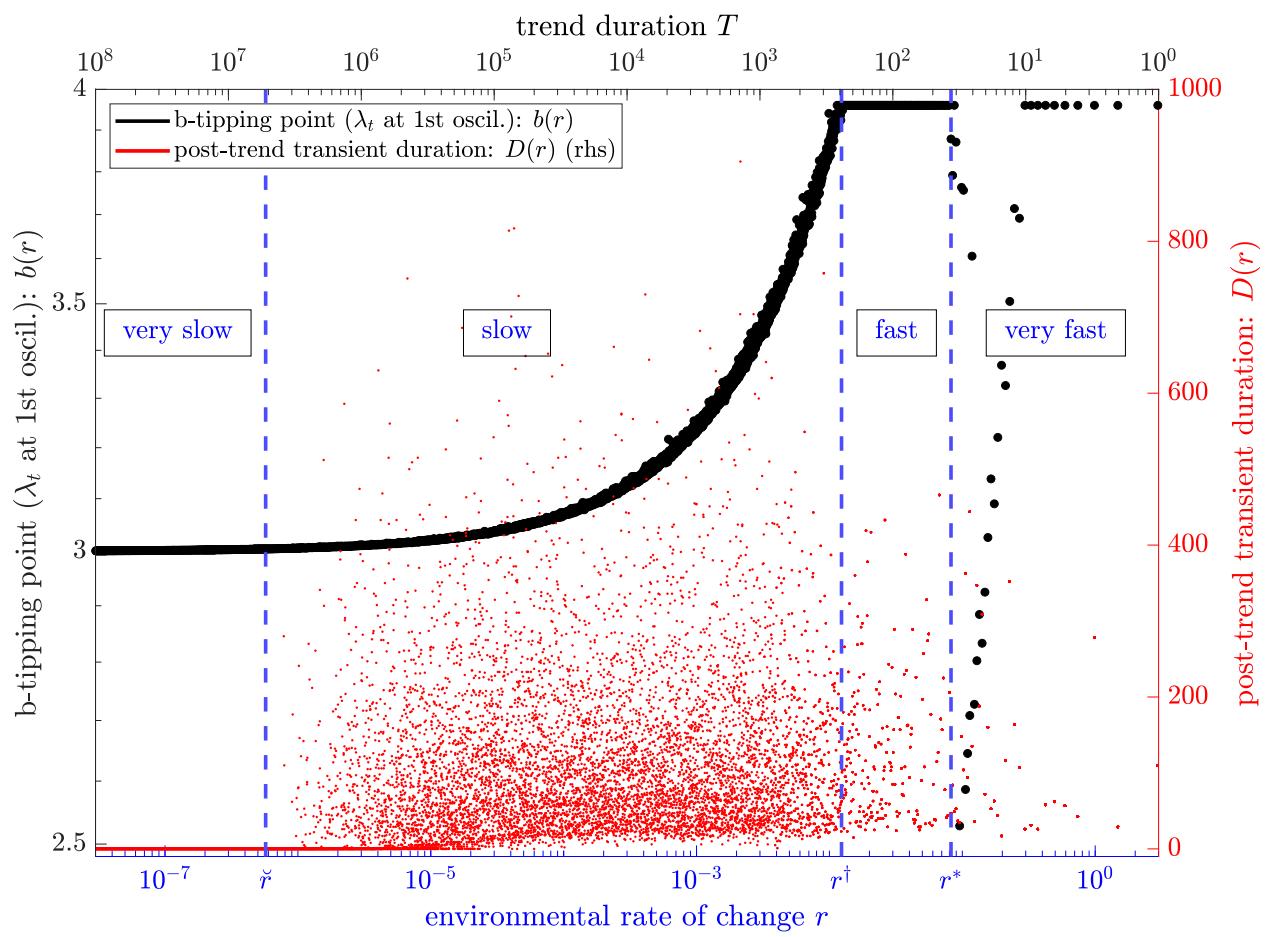


Figure 7

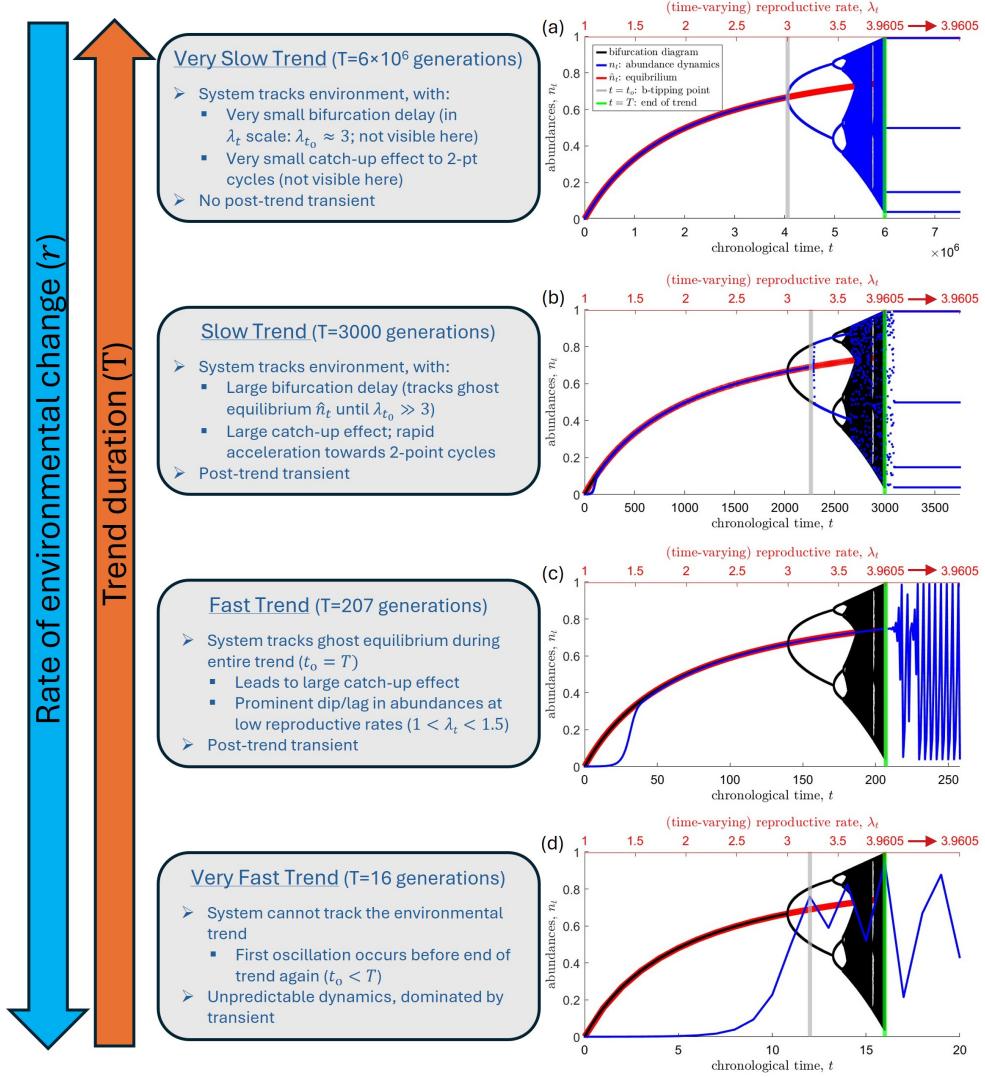


Figure 8

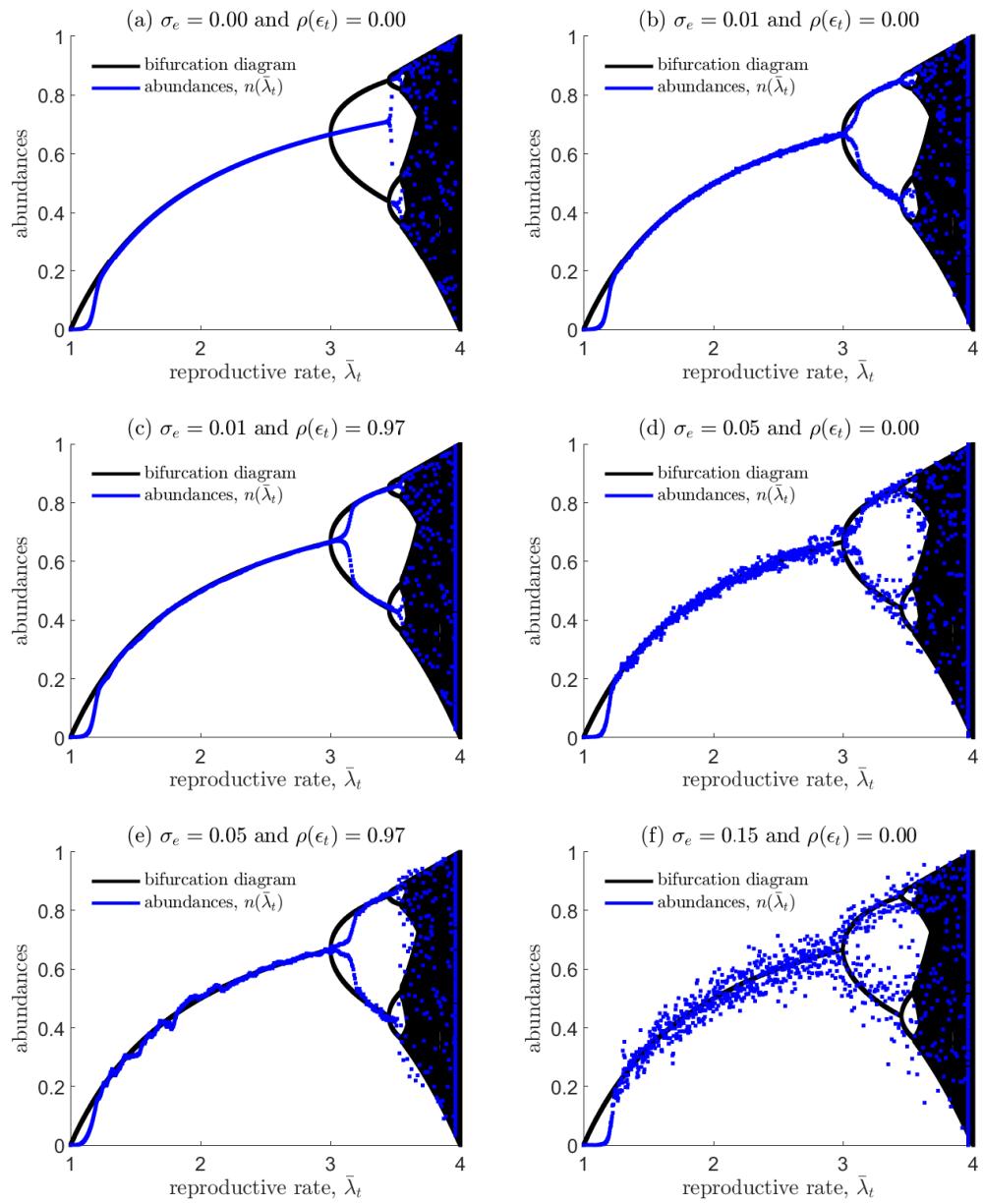


Figure 9

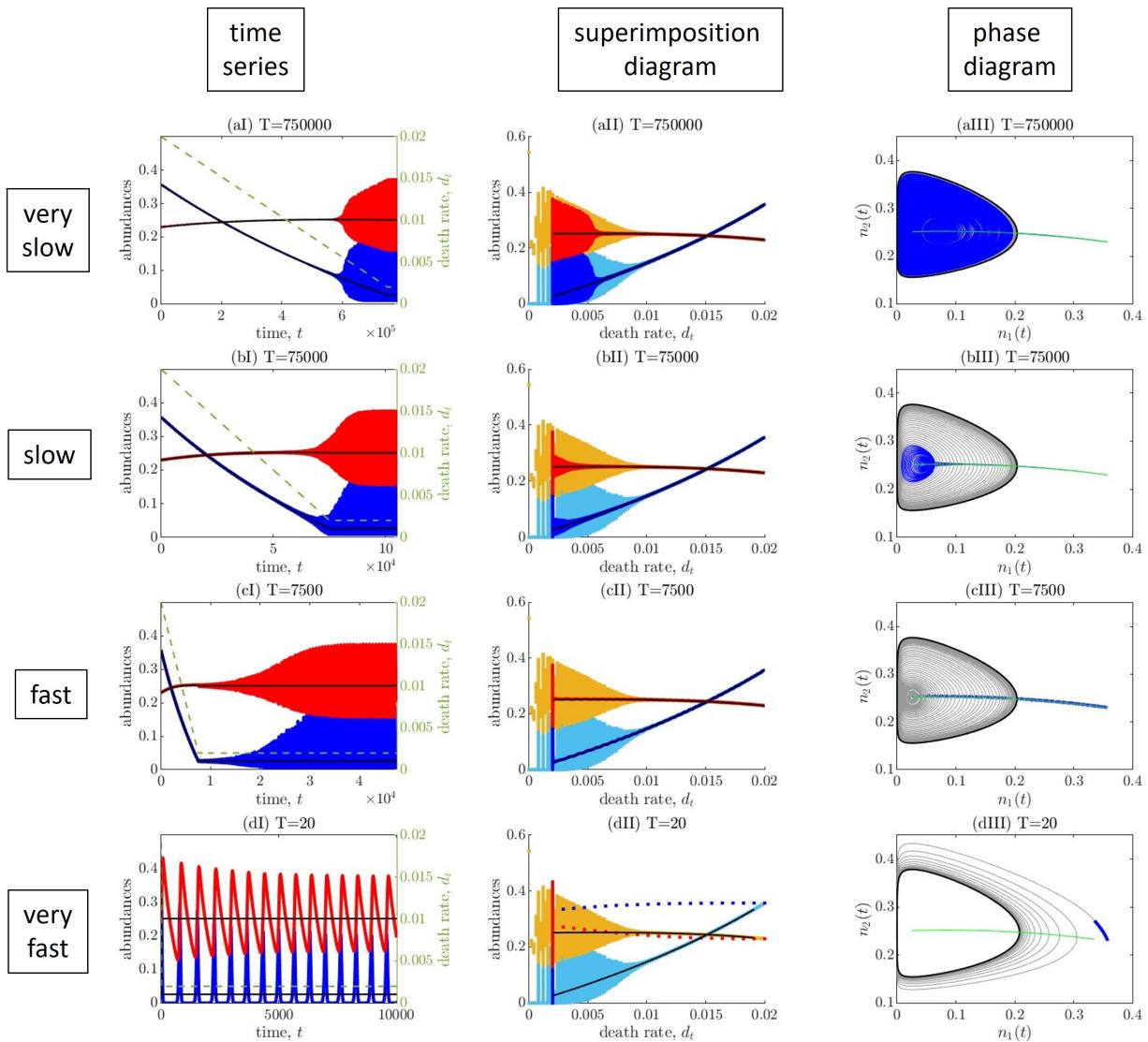


Figure 10

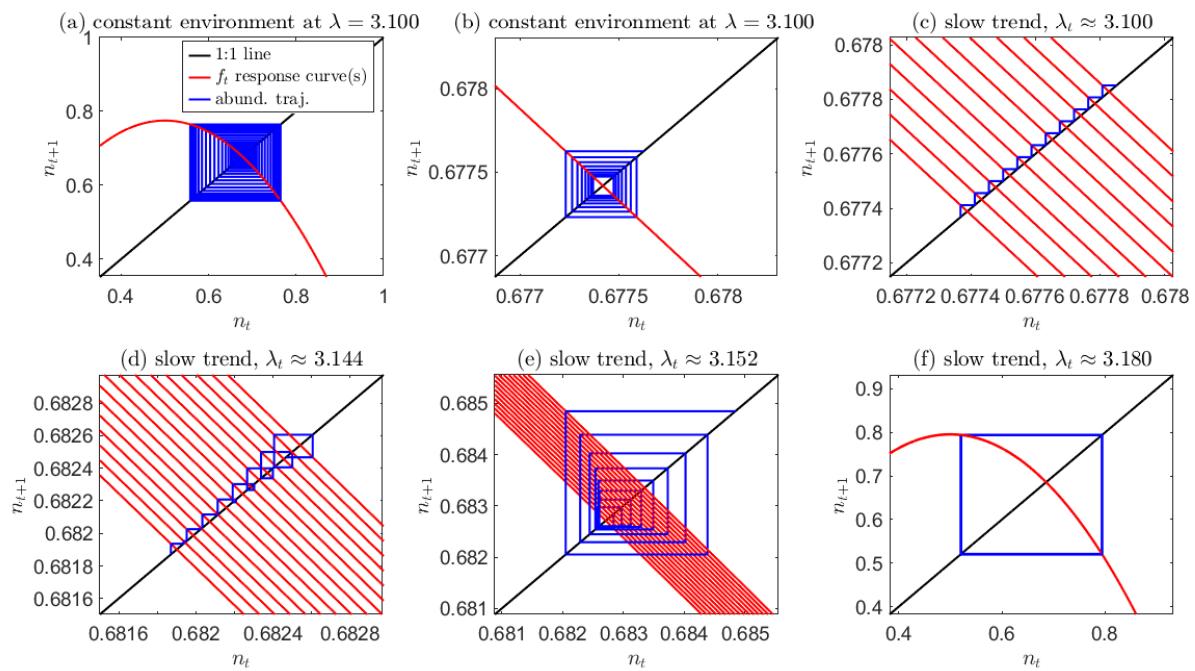


Figure 11

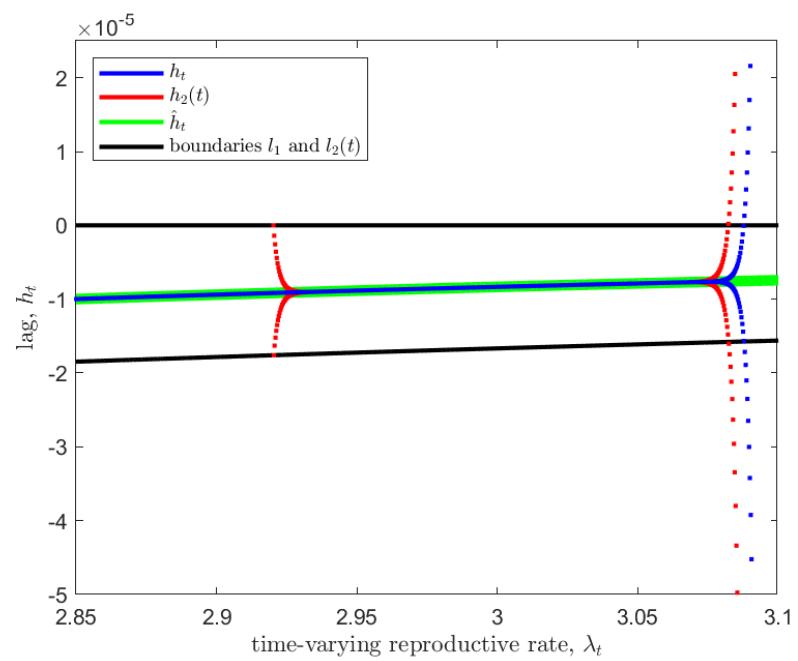


Figure 12

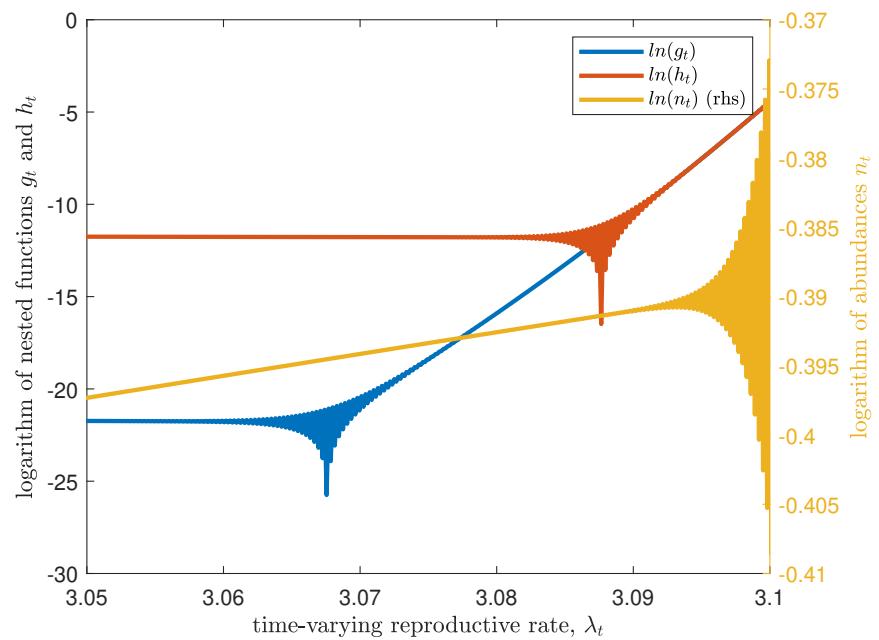


Figure 13

Appendix S1

1157	A1 Dynamics of the logistic map in constant environments	II
1158	A2 Bifurcation at $\lambda = 3$ and b-tipping point	VI
1159	A3 Auto-correlation of the noisy stationary logistic map	XII
1160	A4 A non-linear trend	XIV
1161	A5 The trendy logistic map with a decreasing environmental trend	XVI
1162	A6 Transient dynamics of the trendy logistic map	XVIII

1163 **A1 Dynamics of the logistic map in constant environments**

1164 In a constant environment, the asymptotic behaviour of a population following the logistic map
 1165 ($n_{t+1} = \lambda n_t (1 - n_t)$; eq. 1) is determined by the value of the parameter λ , the reproductive rate in
 1166 the absence of intraspecific competition. Qualitative differences in population dynamics can be

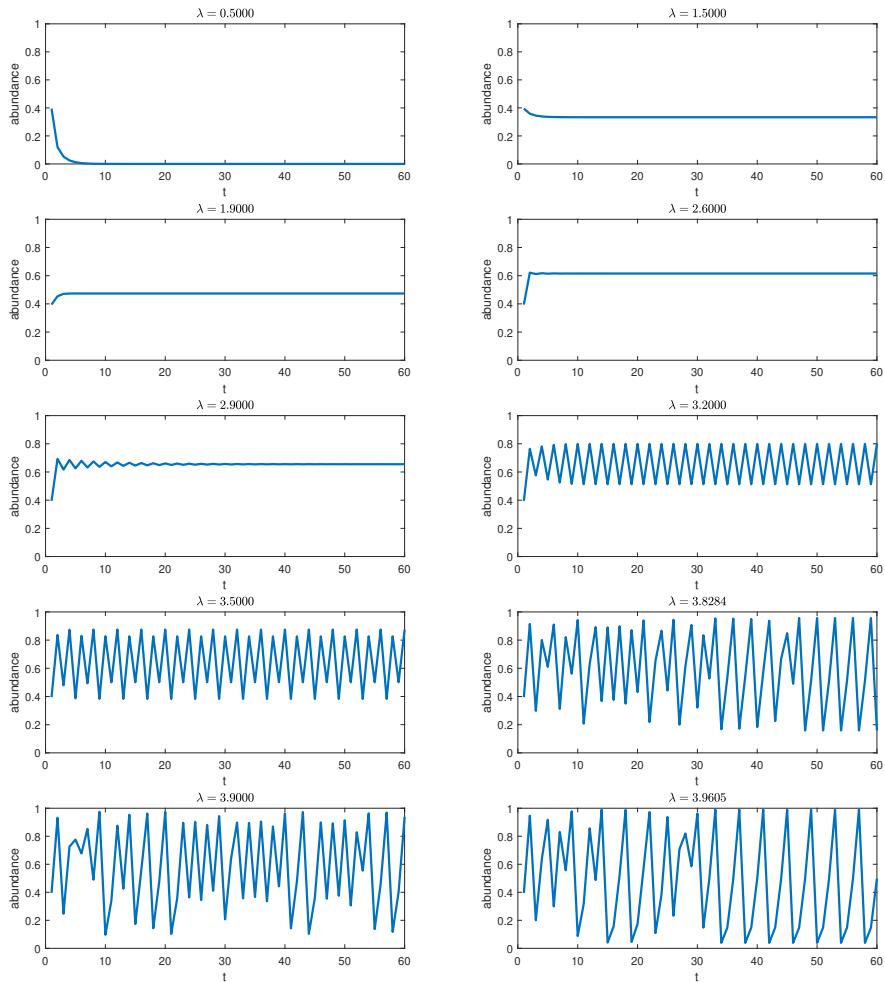


Figure S1: Transient and asymptotic dynamics of the logistic map (eq.1) for $n_0 = 0.395$ and various values of λ . For $\lambda < 1$, the abundance converges towards 0. For $1 < \lambda < 3$, abundances converge towards $\hat{n} = 1 - \frac{1}{\lambda}$, with damped (overcompensatory) oscillations for $\lambda > 2$ ($J(\hat{n}) < 0$) but no oscillations for $\lambda < 2$ ($J(\hat{n}) > 0$). The equilibrium is unstable for $\lambda > 3$ ($J(\hat{n}) < -1$), which is a period doubling bifurcation ($\lambda = 3.2$ generates a 2-generation asymptotic cycle), followed by others (for $\lambda = 3.5$ we have a 4-generation asymptotic cycle) until $\lambda \approx 3.54409$ which is the onset of chaos (e.g., for $\lambda = 3.9$). Above that, the behaviour will be chaotic for most values of λ , but there are still certain "islands of periodic stability" or "periodic windows" such as $\lambda = 3.828$ which exhibits a 3-generation asymptotic cycle and $\lambda = 3.9605 = \lambda_T$ which exhibits a 4-generation asymptotic cycle.

understood from the *Jacobian*, which corresponds, for unstructured models like the logistic map, to the derivative of the population growth function $J = \frac{df}{dn}$ following an arbitrarily small perturbation, evaluated at the non-trivial equilibrium: $J(\hat{n}) = 2 - \lambda$. As long as $-1 < J(\hat{n}) < 1$, the population will return to the equilibrium following a small perturbation, which maps onto the stable equilibrium region $1 < \lambda < 3$ in fig.1. However the trajectory to the equilibrium will differ qualitatively according to the sign of $J(\hat{n})$. When $1 < \lambda < 2$, $J(\hat{n}) > 0$, the stable equilibrium is approached monotonically (i.e., smoothly; under-compensation), while for $2 < \lambda < 3$, $J(\hat{n}) < 0$, the population trajectory shows damped oscillations (over-compensation). This distinction is crucial for transient regimes, as well as when studying environments that fluctuate around a fixed mean value (Nisbet and Gurney, 1985; Greenman and Benton, 2003). As λ approaches 3 from below, the 2-generation auto-correlation of the noisy (but stationary) version of the logistic map approaches -1 (see SMA3): the population displays quasi 2-generation cycles, that is, noisy oscillations between consecutive low- and high abundances that appear similar to a deterministic 2-generation cycle. The sign and the amplitude of the Jacobian therefore provides useful information for small deviations from the equilibrium and for certain equilibria, but is not generally sufficient to understand the road to the asymptotic behaviour. Fig.S1 shows the transient and asymptotic population dynamics for representative values of λ , for a given arbitrary initial population abundance, $n_0 = 0.395$.

Periods of the generation cycles of the logistic map

The bifurcation diagram (fig.1) provides valuable information about the existence and range of stable point equilibria, as well as the appearance of period-doubling bifurcations and the amplitude of asymptotic cycles or chaotic bounds. However, the exact onset of chaos and the "islands of periodic stability" that occur after that onset are less easy to spot on the bifurcation diagram (without zooming in on narrower parameter ranges). Instead, one can compute the Lyapunov exponent or directly compute the period of an asymptotic cycle (if it exists). For a range of λ values and for arbitrary initial condition $n_0 = 0.1$, we produce the abundance dynamics for

1193 the logistic map across 1,000 generations and compute the Lyapunov exponent of the abundance
 1194 time-series (in red on fig.S2, right-hand scale). The Lyapunov exponent is negative for periodic
 1195 cycles and positive for chaotic dynamics. To compute the period of the cycles, we simulate
 1196 dynamics across 40,000 generations and focus on the last 700 generations. We test whether
 1197 $\max_t (n(t+j) - n(t))^2 < \epsilon$, for $\epsilon = 10^{-5}$, for increasing values of j starting at 1. For each value of
 1198 the parameter λ , we allocate the first value of j for which the condition is respected as its "cycle
 1199 period". When, by $j = 100$, no cycle has been found, we allocate a "cycle period" of -1, which we
 1200 call chaos (but it can also correspond to a cycle of period > 100 generations, or a shorter cycle
 1201 period with an extremely long, *supertransient*). We display these "cycle periods" in blue on
 1202 fig.S2; where we only focus on periods between 1 and 7, and allocate "cycle period" 0 to periodic
 1203 cycles of period comprised between 8 and 100. This allows to identify the highest values of λ for
 1204 which one has an asymptotic cycle of period < 8 : it is a 4-generation range (highlighted with an
 1205 orange circle in fig.S2), comprising $\lambda_T = 3.9605$.

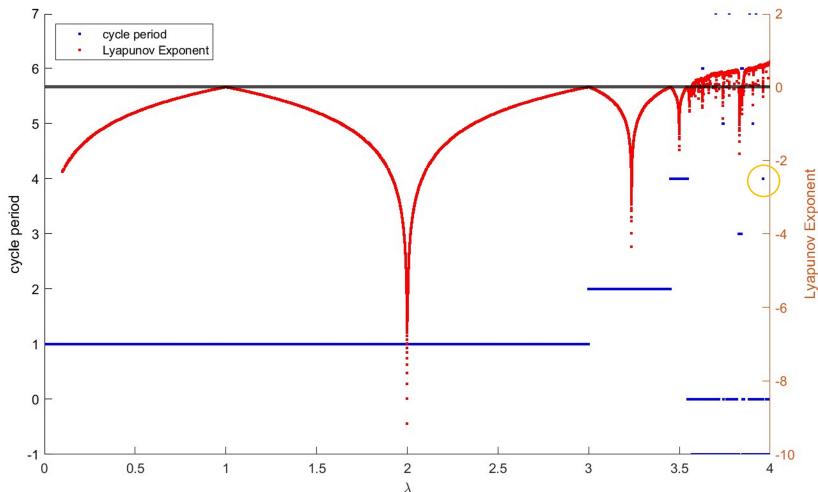


Figure S2: cycle period (blue) and Lyapunov Exponent (red, rhs) for the logistic map (eq.1). Period -1 indicates chaos (or cycles of period > 100) and period 0 indicate a cyclic behaviour with $7 < \text{period} < 100$.

1206 **Transient dynamics for a window of periodic stability: $\lambda = \lambda_T = 3.9605$**

1207 Focusing, in particular, on $\lambda = \lambda_T = 3.9605$, leading to an asymptotic 4-generation cycle for any
 1208 initial condition, we want to understand how the initial conditions (n_0) affect the transient towards
 1209 the 4-generation cycle and its duration. For $n_0 = \hat{n}(\lambda_0) \approx 0.001$, this corresponds to the
 1210 step-change, and the dynamics are displayed in fig.S6 (bottom row): the transient is roughly 80
 1211 generations (relatively long). Here we illustrate how sensitive the transient period is to initial
 1212 conditions by considering three further examples: an extremely short transient of 4-5 generations
 1213 when $n_0 = 0.002$, which corresponds to an initial condition for λ_t of $\lambda_0 = 1.002$, (fig.S4, top row);
 1214 the complete lack of any transient when $n_0 = 0.0387$ (which is the equilibrium for $\lambda_0 = 1.0403$,
 1215 and the lowest of the four abundances of the asymptotic cycle at λ_T , fig.S4, middle row); and
 1216 finally a very long transient of around 320 generations at $n_0 = 0.0377$ ($\lambda_0 = 1.0392$ fig.S4, bottom
 1217 row).

1218 We note that this model is so sensitive to initial conditions that the precise transient period can be
 1219 sensitive to the numerical precision of the software used to simulate the system. Extending this
 1220 analysis for a wider range of values of n_0 , for which we estimate the duration of the transient via
 1221 $\min(t, \max_t |n(t+4) - n(t)| < \epsilon)$, for $\epsilon = 0.0001$, we plot the output in fig.S3, which shows that

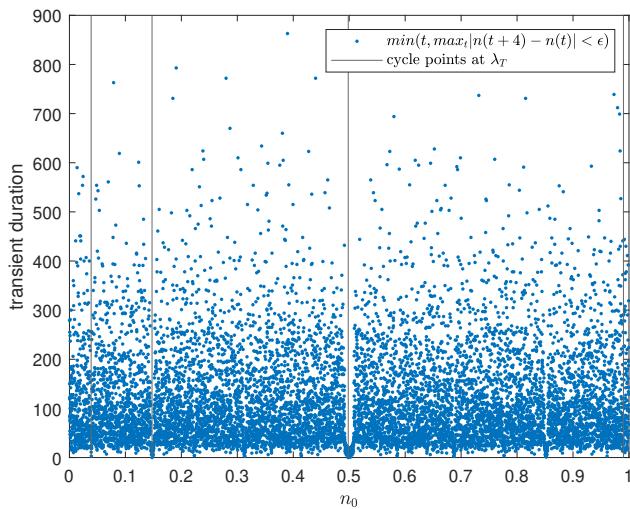


Figure S3: Transient duration for a step-change towards the logistic map of parameter $\lambda = \lambda_T = 3.9605$ (where the four points of the asymptotic cycle are represented as black vertical lines) for various initial values n_0 , calculated as $\min(t, \max_t |n(t+4) - n(t)| < \epsilon)$, for $\epsilon = 0.0001$.

1222 for the chosen asymptotic state corresponding to $\lambda = \lambda_T$, as a function of the choice of n_0 , one can
1223 encounter transients as long as 850 generations.

1224 **A2 Bifurcation at $\lambda = 3$ and b-tipping point**

1225 In the constant environmental framework, there is a period-doubling bifurcation at $\lambda = 3$ that
1226 segregates the fixed point, non-zero equilibrium regime ($1 < \lambda < 3$) and a 2-generation cycles
1227 regime ($\lambda > 3$); see fig.1. The $\lambda = 3$ case is a neutrally stable 2-point cycle, i.e., the steady-state
1228 cycle amplitude depends on n_0 . Contrary to a saddle node bifurcation – where on one side of the
1229 bifurcation there is no equilibrium point – $\lim_{r \rightarrow 0} b(r) = 3$ (which we denote $b(0)$ for simplicity)
1230 does not correspond to a discontinuity in the abundances over time. Equating the very slow trend
1231 framework with the constant environment framework, implies considering that as the rate of
1232 environmental change $r \rightarrow 0$, n_t corresponds to the asymptotic abundance of the bifurcation
1233 diagram. Fig.4, shows the "acceleration" of population change time-series,

1234 $a_t = ||n_{t+1} - n_t| - |n_t - n_{t-1}||$ in the λ_t time-scale for various rates of environmental change (r),.

1235 The acceleration peaks later ($b(r)$ increases with r) and higher as the rate of environmental
1236 change r increases. Fig.S5 displays the value of the delay in the bifurcation $b(r)$ (red, rhs) and
1237 $d(r) = \max_t(a_t)$, the peak in acceleration, , as a function of r ; a metric for the discontinuity
1238 generated in abundance time series. As $r \rightarrow 0$, $b(r) \rightarrow b(0) = 3$ and $d(r) \rightarrow 0$: there is no
1239 regime shift or discontinuity, for a paradoxical trend with speed $r = 0$. However, for any "real"
1240 positive trend, $r > 0$, there is a discontinuity as λ_t passes $b(r)$ – measured by

1241 $d(r) = \max(|n_{t+1} - n_t| - |n_t - n_{t-1}|)$ – that increases in magnitude as r increases (figs 4,S5 and

1242 S6). In other words, the trend turns a simple, continuous, bifurcation into a tipping point at

1243 $b(r) \quad \forall \quad 0 < r < t_r$. In summary, $b(r)$ is not a b-tipping point for a (paradoxical) trend of speed
1244 $r = 0$, but one for any real trend $r > 0$ (see SMA2).

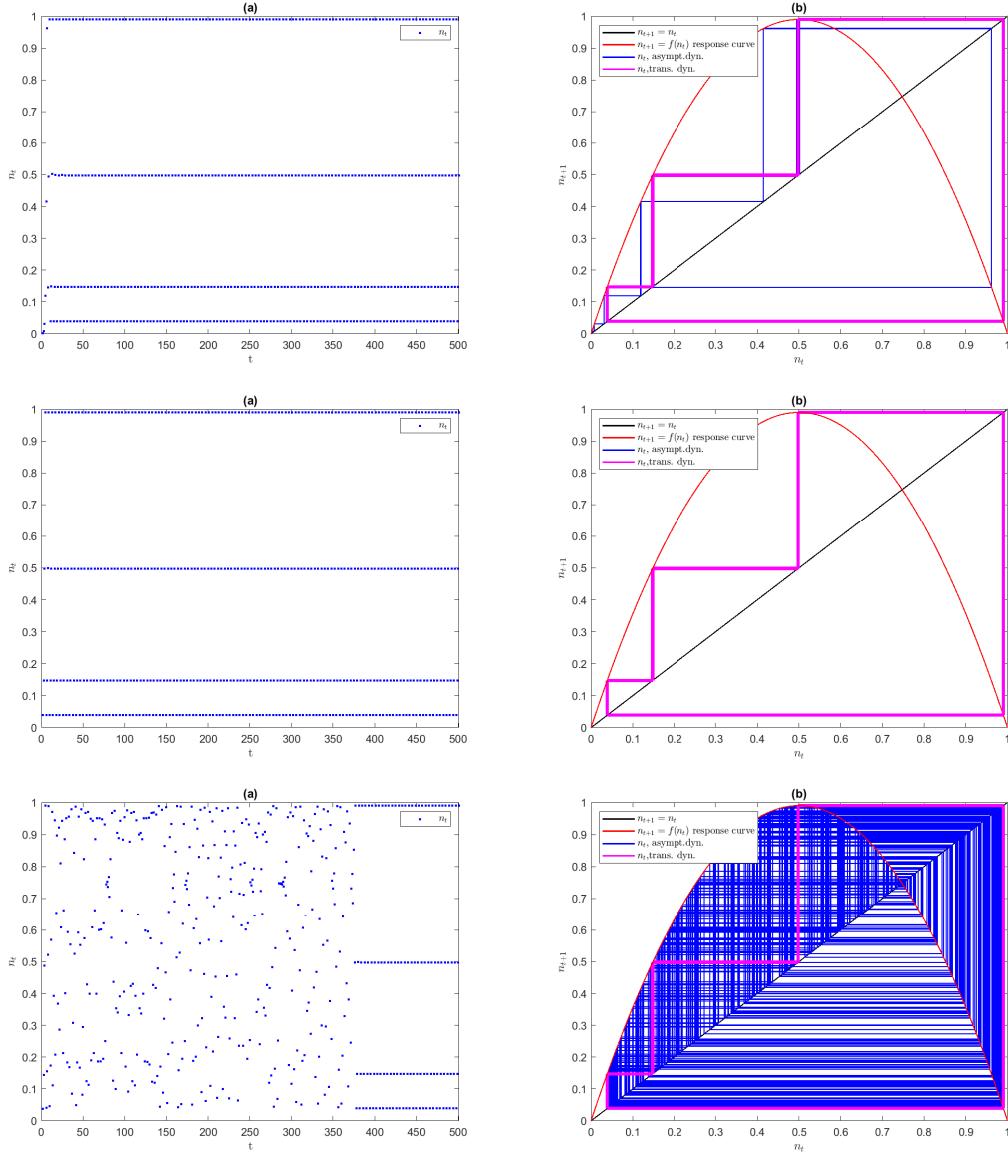


Figure S4: Sensitivity of transient period to initial conditions; trends dynamics of a step change ($T=1$) from λ_0 (and $n_0 = \hat{n}(\lambda_0)$) to $\lambda_T = 3.9605$, followed by 500 generations at the constant environment; (a) left panels: abundance n_t (blue) and environmental parameter λ_t (red, secondary axis); (b) right panels cobweb diagram: response curve (in red) and the abundance trajectory (in blue, transient, in pink, asymptotic). (top) $\lambda_0 = 1.002$: extremely short transient dynamics (4 generations), (middle) $\lambda_0 = 1.0403$ complete lack of transient dynamics; $\lambda_T = 3.9605$ (bottom) $\lambda_0 = 1.0392$ very long transient dynamics (320 generations).

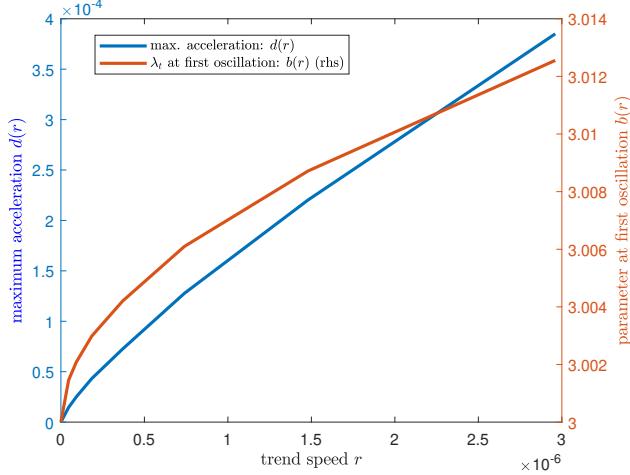


Figure S5: Maximum acceleration $d(r)$ (blue line, left hand vertical axis) and parameter value at first oscillation $b(r)$ (red line, right hand vertical axis) as functions of the rate of environmental change, r .

1245 **Delay in bifurcation and onset of Cycling**

1246 Figure S6 summarises the abundance time-series in chronological time (1st column, I) and in the
 1247 re-scaled λ_t time-scale (2nd column, II), for the *very slow* (1st row, *a*), *slow* (2nd row, *b*), *fast* (3rd
 1248 row, *c*) and *very fast* trend (4th row, *d*) studied in the main text. The 3rd column (III) displays
 1249 cobweb diagrams of the abundance trajectories in the vicinity of the b-tipping point of the *slow*
 1250 environmental trend, $\lambda_t = 3.146 = b(r_s)$, for these four different trend speeds. For the *slow* trend,
 1251 it corresponds to the appearance of the first oscillations (fig.S6bIII). For the *very slow* trend
 1252 (fig.S6aIII), the time period observed occurs long after the tipping point,
 1253 $b(r_{vs}) = 3.0009 \ll b(r_s)$: the population follows quasi-2-generation cycles very close to that
 1254 predicted by the constant environment for $\lambda = 3.144$. For the *fast* trend (fig.S6cIII) it occurs long
 1255 before, $b(r_s) \ll b(r_f)$: the abundances track the (ghost) "moving equilibrium" (and will do all the
 1256 way to $t = T$). The different regimes for the same value of the environmentally driven parameter
 1257 λ , for trends of different speeds, reflect the different regimes for various points along the trajectory
 1258 for one specific speed r as can be expected from eq. 10.

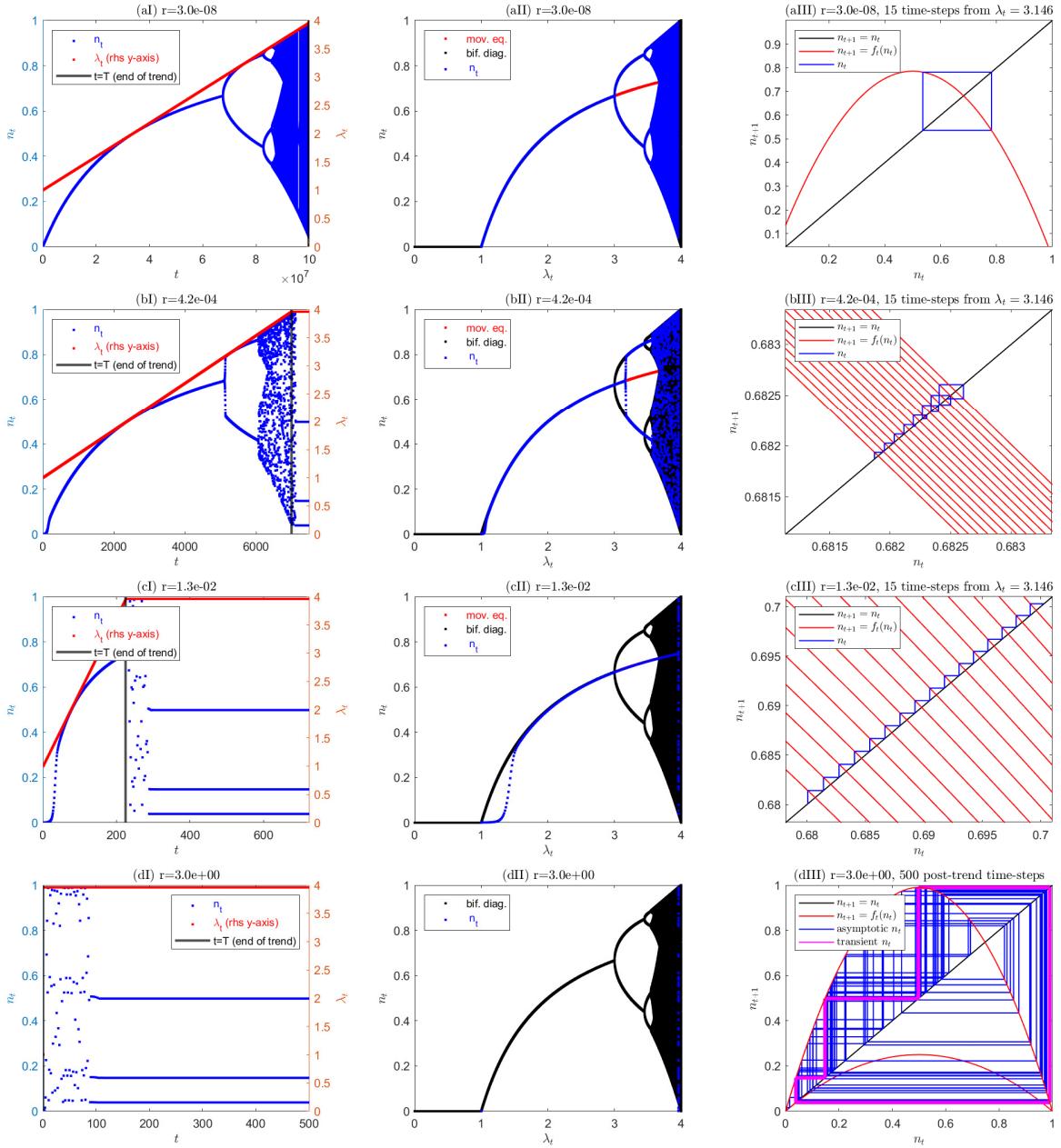


Figure S6: Summarising population dynamics under continuous environmental change corresponding to *very slow* (a, 1st row), *slow* (b, 2nd row), *fast* (c, 3rd row) and *very fast* (d, 4th row) environmental trends (r). (I, 1st column) time-series for abundances (blue) and reproductive rate λ_t (red, secondary axis); (II, 2nd column) superimposition of the abundance time-series (blue) as a function of λ_t overlaying the bifurcation diagram (black) with the moving equilibrium point in red; and (III) cobweb diagrams, with population response curves ($f_t(n_t)$) in red, 1:1 curve in black and population abundance trajectories in blue

1259 **Start of oscillation analysis and r-bifurcation diagrams**

1260 In the main text, we display the r -bifurcation diagram for the logistic map and a linear trend in λ_t
 1261 (fig.7), which shows $b(r)$, the value of λ_t at the first oscillation in abundances (and the duration of
 1262 the post-trend transient, $D(r)$). We can also perform the same analysis on the chronological
 1263 time-scale by considering $t_0(r)$, the generation of the first oscillation in abundances (fig.S7).

Figure S7 – a loglog plot so that we have $\ln(T)$ as linear function of $\ln(r)$ – shows that t_0 (in blue)

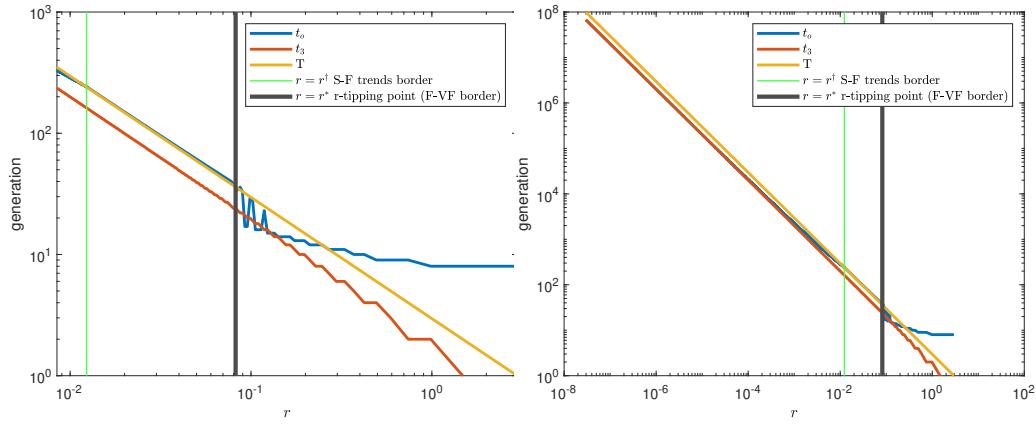


Figure S7: The generation of first oscillation t_0 (blue line), the generation t_3 at which $\lambda_{t_3} = 3$ (red line), and the number of generations of the trend T (orange line), for various values of r , on a loglog scale. The 2 figure panels differ only by the range of r displayed. Green and grey vertical lines illustrate borders between qualitatively different rates of environmental change.

1264
 1265 is a decreasing function of r , up until the r -tipping point r^* . The r -tipping-point (r^*) segregates
 1266 monotonic $t_0(r)$ for *fast* trends ($r < r^*$) and non-monotonic $t_0(r)$ for *very fast* trends ($r > r^*$). In
 1267 the monotonic range, r^\dagger segregates the range where $t_0 > T$ (*fast* trends, $r^\dagger < r < r^*$) and where
 1268 $t_3 < t_0 < T$ (*slow* and *very slow* trends, $r < r^\dagger$); where t_3 is such that $\lambda_{t_3} = 3$. As the rate of
 1269 environmental trends slows towards 0 ($r \rightarrow 0$), the generation of the first abundance oscillation
 1270 tends towards the constant framework bifurcation ($t_0(r) \rightarrow t_3$). The *very fast* trends range is
 1271 characterised by r values for which $t_0 < T$, that is, where the first oscillation occurs before the end
 1272 of the environmental trend; but fig.S7 also shows that we can have $t_0 < t_3$ in that range; that is,
 1273 oscillations before reaching the cycle range ($\lambda < 3$).

1274 Figure S7 illustrates that on the λ_t time-scale, we have $\lim_{r \rightarrow 0} b(r) - 3 = 0$, while on the
 1275 chronological time-scale $\lim_{r \rightarrow 0} t_0(r) - t_3(r) = +\infty$. It can be easier to understand why, by

1276 considering both the time at which the first decline in population size is observed, $t_o(r)$, and the
 1277 number of generations for which the abundance keeps increasing monotonically having passed the
 1278 constant environment bifurcation point, $\lambda_{t_3} = 3$, that is $t_o - t_3$, as per fig.S8. It helps to understand
 1279 why the slower the environmental trend, the longer (in number of generations) the population
 1280 increases monotonically after having passed $\lambda = 3$, and the (chronological) delay in oscillation
 1281 $(t_o(r) - t_3(r))$ tends towards ∞ as r tends towards 0. While the projection of this delay onto the
 1282 alternative time-scale λ_t , $b(r) - 3$, increases with the rate of the environmental trend r (fig.7), the
 1283 opposite is true on the chronological time-scale (blue on fig.S8). In other words, the slower the
 1284 environmental trend, the longer (in number of generations) the population increases monotonically
 1285 after having passed $\lambda = 3$, and the (chronological) delay in oscillation $(t_o(r) - t_3(r))$ tends
 1286 towards ∞ as r tends towards 0. However, this delay in the time of first oscillation $(t_o - t_3)$
 1287 decreases more slowly with r than $T - t_o$ (red on fig.S8): relative to the time spent in the trend past
 1288 t_3 , the proportion corresponding to monotonic increases $\frac{t_o - t_3}{(T - t_o) + (t_o - t_3)}$ increases with r and tends
 1289 towards 0 as r does. On fig.S8, the border separating the *slow* and *fast* trends (r^\dagger) corresponds to a
 1290 difference in slope of $\frac{\ln(t_o - t_3)}{\ln(r)}$, caused by the fact that, for *fast* trends, $t_o = T$, so this slope is
 1291 "forced" at -1 . It also corresponds to the point where $T - t_o$ becomes zero (for *fast* trends) and
 1292 cannot be computed on a log scale (red on fig.S8) Contrary to the *fast* trends, for *very fast* trends
 1293 we can have $t_o < T$, so that $T - t_o$ can be displayed for some values of r on the loglog plot (in red).

1294 Around the r -tipping point

1295 It is clear from the r -bifurcation diagram (fig.7) that there is regime shift at r^* , segregating a
 1296 smooth regime, for $r < r^*$, where $b(r)$ decreases monotonically (first as a plateau, then as a
 1297 strictly decreasing function) from $b(r^*) = \lambda_T$ to the limit $\lim_{r \rightarrow 0} b(r) = 3$. In fig.S9, we illustrate
 1298 this by providing the dynamics of the trendy logistic map for rates of environmental change r in
 1299 the vicinity of r^* .

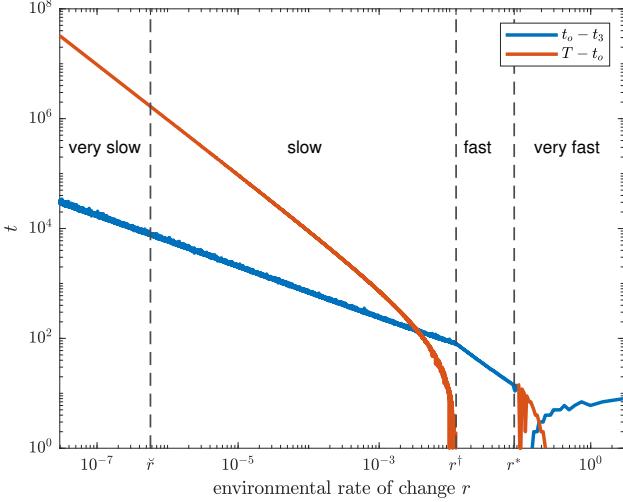


Figure S8: *r*-bifurcation diagrams illustrating quantitative characterisation of four qualitatively different rates of environmental change (*very slow*, *slow*, *fast* and *very fast*; *r* on the (chronological) delay in oscillations $t_0 - t_3$ and the (chronological) duration of the portion of the trend after the first oscillation $T - t_0$, on a log scale

1300 **Other period doubling bifurcations**

1301 For certain rates of environmental change *r*, the abundance time series can display a delay in the
 1302 second period doubling bifurcation (from 2- to 4-generation cycles; fig.S10): abundances keep
 1303 tracking the 2-generation cycle ghost equilibrium past the constant-environment bifurcation,
 1304 before abruptly shifting to quasi-4-generation cycles. However, despite the self-similarity of the
 1305 logistic map, it is possible for a given speed of environmental change (*r*) to encounter a b-tipping
 1306 point at one period-doubling bifurcation and not others (as for r_s , see fig.3).

1307 **A3 Auto-correlation of the noisy stationary logistic map**

1308 For the logistic map in a noisy (but stationary) environment, that is, for example, for

$$\begin{cases} n_{t+1} = \lambda_t n_t (1 - n_t) \\ \lambda_t = \max(0, \min(\bar{\lambda} + \epsilon_t, 4)) \\ \epsilon_t \sim \mathcal{N}(0, \sigma_e^2) \end{cases}, \quad (22)$$

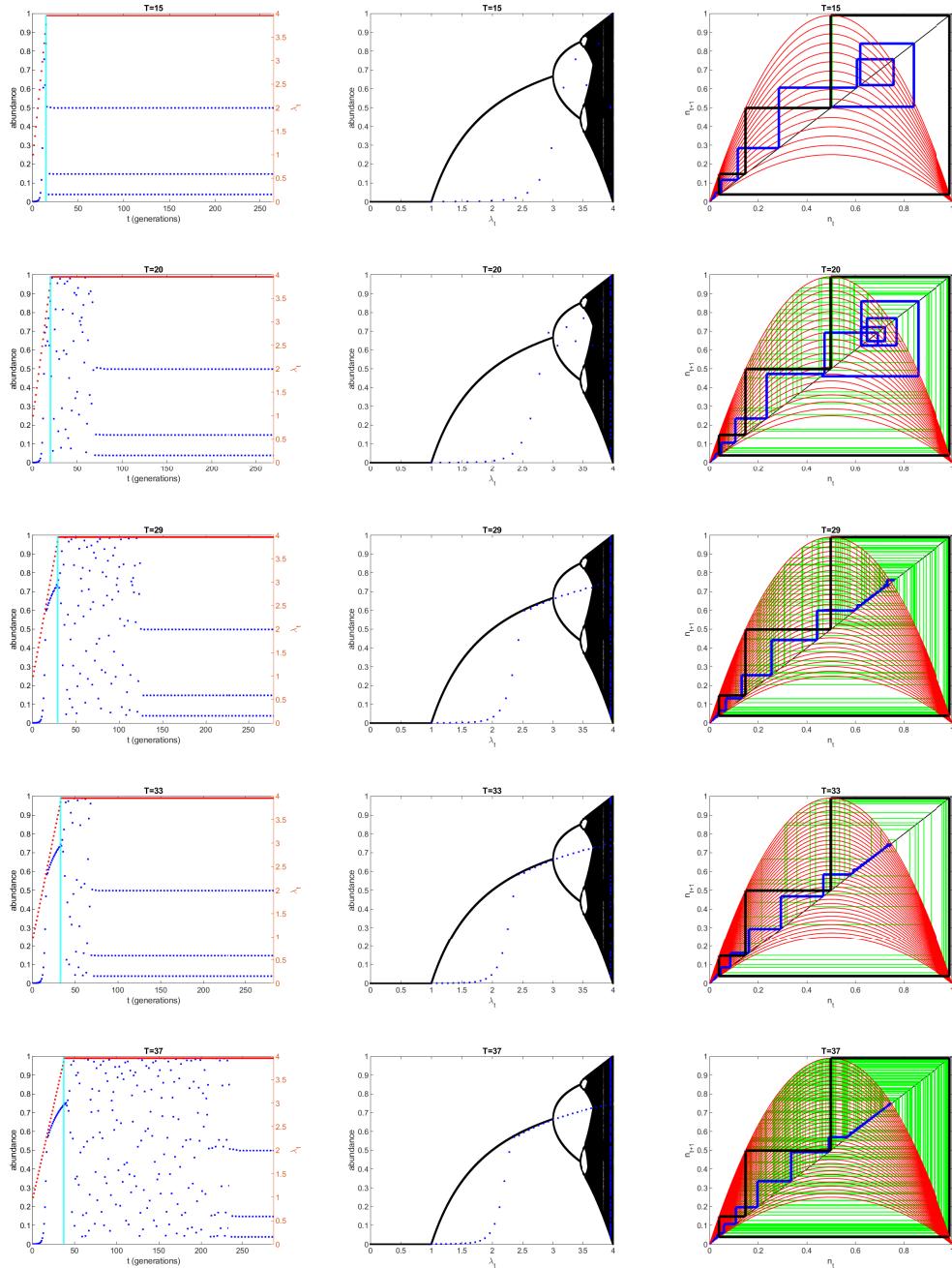


Figure S9: Summarising population dynamics under continuous environmental change for various values of T (rows), on both sides of the r-tipping point r^* , corresponding to $T = 34$. Plots of the abundances over time (left column), the superimposition of the abundance dynamics over the bifurcation diagram (centre column) and the cobweb diagram (right column), where response curves are in red, asymptotic dynamics in black, trend dynamics in blue and post-trend transient dynamics in green

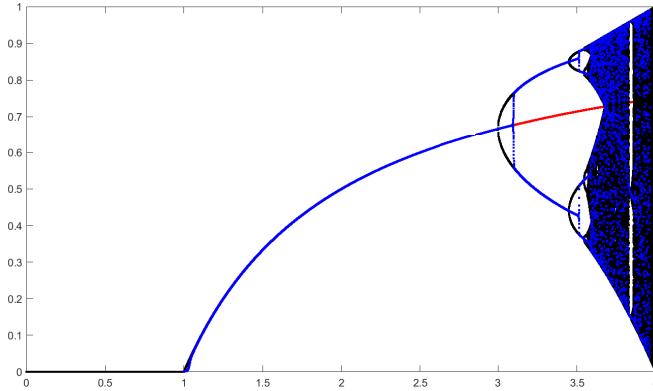


Figure S10: Population size n_t (in blue) given as a function of λ_t for a slow environmental trend ($r \approx 1.5 \times 10^{-4}$ corresponding to $T = 20,000$ generations), superimposed over a classical bifurcation diagram (black), starting at $\lambda_0 = 1.001$ and $n_0 = \hat{n}(\lambda_0)$ and followed by 500 generations at constant $\lambda_T = 3.9605$. The "moving equilibrium" \hat{n}_t is shown in red.

1309 we generate a single time-series for ϵ_t for a standard deviation of $\sigma_e = 0.1$, that we apply to
 1310 various values of $\bar{\lambda}$ and compute, for each, the corresponding n_t time series (with $n_1 = 0.1$), and
 1311 its one-generation auto-correlation $\rho(\bar{\lambda}) = \frac{\text{Cov}(n_{t+1}, n_t)}{\text{var}(n_t)}$ (fig.S11). As expected from the
 1312 deterministic constant environment framework analysis, the autocorrelation is at its lowest in the
 1313 range $3 < \lambda < 3.44949$ corresponding to 2-generation asymptotic cycles. However, $\rho(\bar{\lambda}) < -0.8$
 1314 for $\bar{\lambda} > 2.84$, so that we have quasi-2-generation cycles for $\bar{\lambda}$ in a range corresponding to a stable
 1315 fixed point equilibrium, corresponding to the overcompensatory transients leading to a stable
 1316 equilibrium attractor.

1317 **A4 A non-linear trend: with no oscillations and constant
 1318 distance to the moving/ghost equilibrium**

1319 For any trend, we never have $\hat{n}_{t+1} = \hat{n}_t = \hat{n}$ as this would imply $\lambda_t = \lambda_{t+1} = \lambda$ a constant
 1320 environmental parameter (eq.4). From eq.18, we see that similarly, for a linear trend, one can
 1321 never have $\hat{h}_{t+1} = \hat{h}_t = \hat{h}$. However this is possible for a non-linear trend, and that same equation
 1322 shows that the speed r_t required for the population abundances to remain at a constant distance to

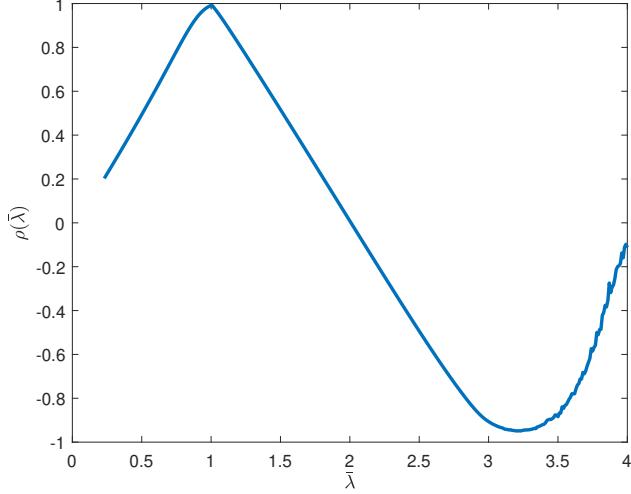


Figure S11: 2-generation auto-correlation $\rho(\bar{\lambda}) = \frac{\text{Cov}(n_{t+1}, n_t)}{\text{var}(n_t)}$ for the noisy stationary logistic map (eq.22). We apply a given $\epsilon_t \sim \mathcal{N}(0, \sigma_e^2)$ time series with $\sigma_e = 0.1$ to a range of mean parameter value $\bar{\lambda}$.

1323 the moving equilibrium, \hat{h} , has to increase with time. From eq.14, we can actually build a λ_t
 1324 time-series that does that, by replacing h_{t+1} and h_t by \hat{h} , we get $\hat{h} = (2 - \lambda_t)\hat{h} + \frac{\lambda_t - \lambda_{t+1}}{\lambda_{t+1}\lambda_t}$, which
 1325 leads to

$$\lambda_{t+1} = \left(\frac{1}{\lambda_t} + \hat{h}(\lambda_t - 1) \right)^{-1} \quad (23)$$

1326 For a given \hat{h} , this yields an associated time-series for λ_t that increases exponentially over time
 (see, for $\hat{h} = -0.001$, the parameter and abundance time series in fig.S12).

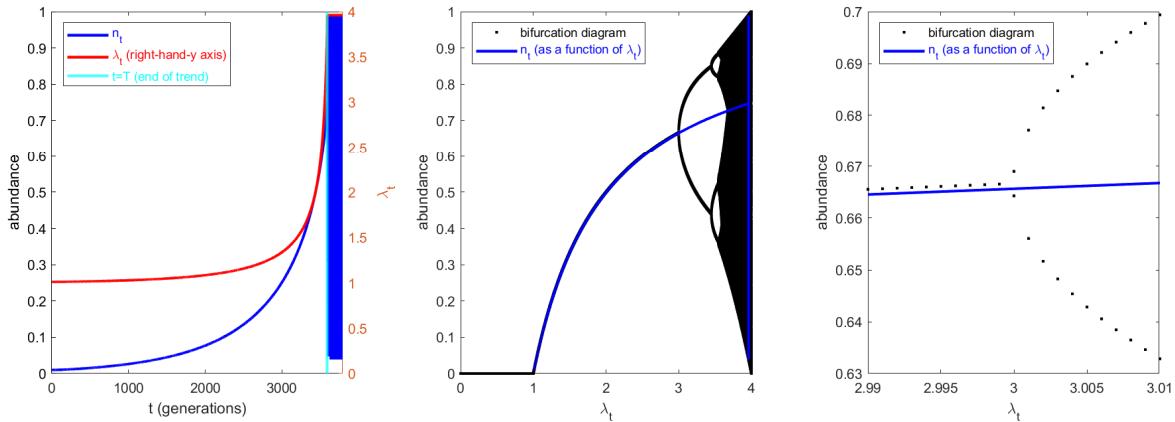


Figure S12: time-series (left), superimposition diagram (centre and right) for λ_t increasing exponentially as per eq.23, with constant distance to ghost attractor: $\hat{h} = -0.001$

1327

1328 **A5 The trendy logistic map with a decreasing environmental**
1329 **trend, $r < 0$**

1330 Here, we briefly consider a linear trend on the parameter λ of the logistic map (as per the main
1331 text) but with negative speeds. That is, the initial and final value of λ_t are reversed: we now have
1332 $\lambda_0 = 3.9605$ (4-point cycle) and $\lambda_T = 1.001$ (under-compensatory stable equilibrium attractor).
1333 Fig.S13 shows the abundance dynamics both in chronological time (on the left vertical axis) and
1334 on the λ_t timescale (on the right axis), for an initial value of $n_0 = 0.1476$, one of the 4 points of
1335 the asymptotic cycle corresponding to λ_0 . The result corresponds to what our study of $r > 0$ leads
1336 us to expect: the dynamics follow the bifurcation diagram for slow trends (the first three rows of
1337 the figure), but with a delay: the population encounters chaotic behaviour followed by
1338 pseudo-cycles of decreasing period but those occur later (that is, for smaller λ_t values) than the
1339 corresponding bifurcation point of the bifurcation diagram. This delay is most noticeable for the
1340 bifurcation from 2-generation cycles to a stable equilibrium around $\lambda = 3$: the corresponding end
1341 of the pseudo-cycles towards a monotonic decrease in abundances occurs at values of λ_t that
1342 decrease with the speed of the trend. Because the delay concerns a transition from cycles to a
1343 stable point here, it does not lead to a discontinuity, or b-tipping point, for the abundances. As in
1344 the main text, we also note that abundances track the ghost equilibrium corresponding to the
1345 stable equilibrium of constant environments but struggle to do so for low values of λ_t : the faster
1346 the trend the further from the ghost equilibrium the abundances are as the trend stops. Contrary to
1347 the $r > 0$ study, the final value of λ here, $\lambda_T = 1.001$ corresponds to a stable point. The transient
1348 post-trend dynamics are much simplified and consist of a monotonic decrease towards $\hat{n}_T \approx 0.001$.
1349 For the decreasing λ trend, the $\lambda = 3$ bifurcation is delayed but there is no rate of change that
1350 ensure that it is delayed until the end of the trend (no *fast* trends): the r -tipping point correspond
1351 to the transitions between *slow* trends (delayed bifurcation) and *very fast* trends (no bifurcation,
1352 transient dominates). As noted in the main text, the existence of *fast* trends is bifurcation
1353 dependent: it depends on the relative rates of change of the moving equilibrium and the

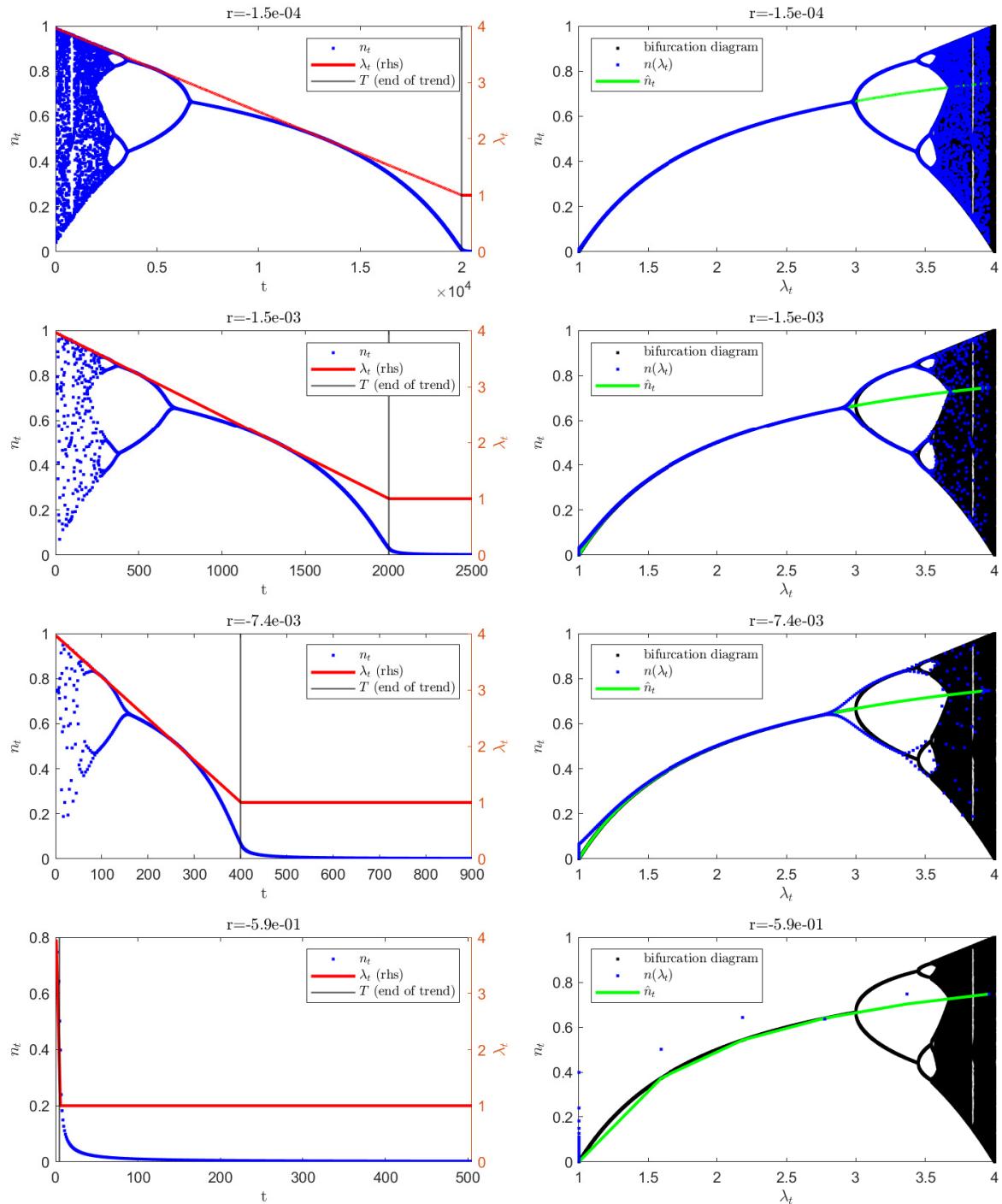


Figure S13: Abundance time-series, n_t (blue points) and λ_t time-series (red, secondary axis) on the left column and – on the right column – superimposition of the abundance time-series (blue points) as a function of λ_t with the bifurcation diagram (black points); for a representative range of values for the rate of environmental change $r < 0$ (different rows) and for $n_0 = 0.1476$

1354 environmental parameter. The difference between *slow* (rows 2 and 3 of fig.S13) and *very slow*
1355 (first row) are noticeable via the superimposition diagrams (second column): for the *very slow*
1356 trend, the abundances track the moving equilibrium closely enough so that there is no post-trend
1357 transient while this transient is noticeable for the *slow* trends (at $\lambda_t \approx 1$ on the panels on the
1358 second column and rows 2 and 3).

1359 **A6 Transient dynamics of the trendy logistic map**

1360 **Long Transient Sensitivity to number of steps for a *very fast* trend**

1361 Here, we consider what occurs when a sudden environmental change takes more than a single
1362 generation, i.e., two or three generations, thereby adding one or two "stepping stones" on the way
1363 to the asymptotic cycle. We have seen how sensitive the duration of the transient is to the initial
1364 condition of the step change, we therefore expect the same with regards to the number of
1365 stepping-stones, as these will directly affect n_T , the initial condition of the last step of the change,
1366 which will drive the transient dynamics. Indeed, as we see in the top row of fig.S14, for $T = 2$, the
1367 transient is very short (3 generations) while for $T = 3$, illustrated as the bottom row of fig.S14, the
1368 transient lasts for 230 generations.

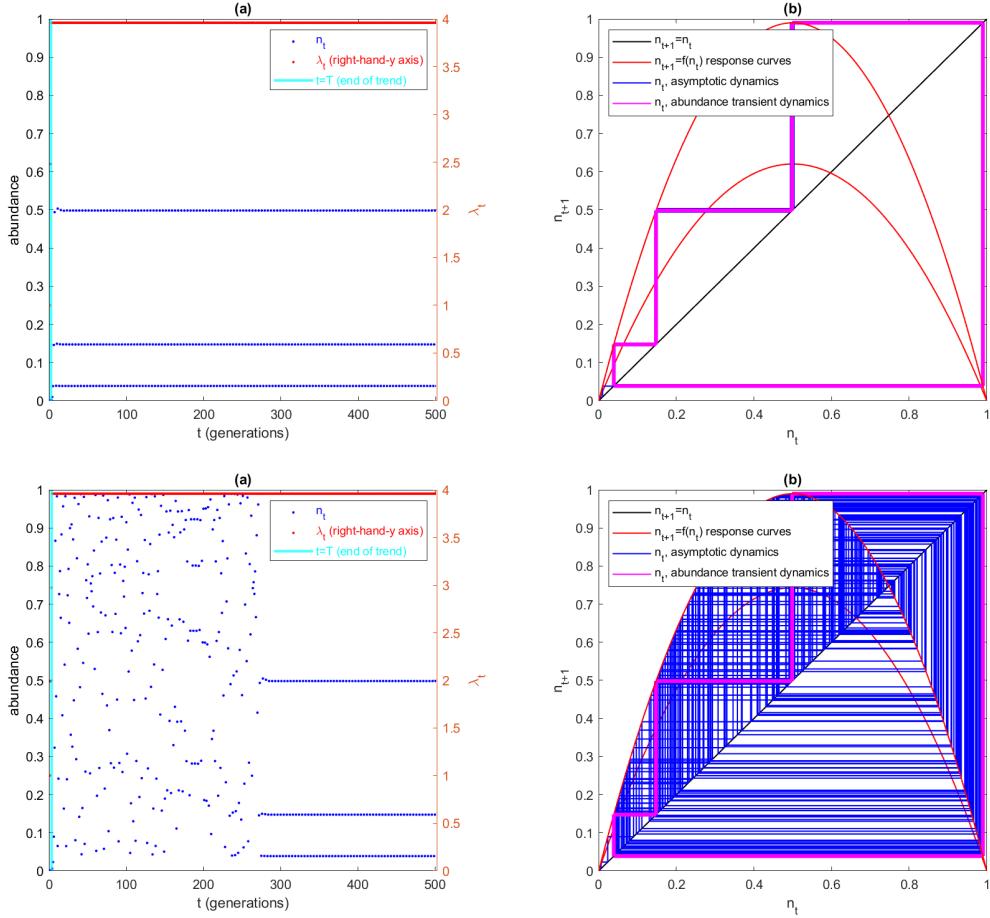


Figure S14: 2-Step ($r \approx 1.45$, $T = 2$, top) and 3-step ($r \approx 0.99$, $T = 3$ bottom) environmental change from $\lambda_0 = 1.001$ and $n_0 = \hat{n}(\lambda_0)$, to $\lambda_T = 3.9605$ followed by 500 generations at that constant environment (λ_T); (a) abundance n_t (blue) and environmental parameter λ_t (red, secondary axis); (b) cobweb diagram: response curves ($f(n_t)$, in red) and the abundance trajectory (n_t , transient phase shown in blue; asymptotic phase shown in magenta). The $n_t = f(n_t)$ line is shown in black.