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Abstract32

Natural populations experience variable environments. Anthropogenically driven33

environmental change, in particular, is expected to impose trends on key demographic34

parameters such as reproduction and survival. Theoretical studies of how such environmental35

changes affect populations have highlighted dynamical phenomena including36

bifurcation-related tipping points – typically identified by comparing different, but constant,37

environmental states – and long transients – that can arise after sudden environmental38

perturbations. However, real-world environmental trends are neither instantaneous nor slow39

enough to justify treating the environment as constant, motivating recent interest in r-tipping40

points – regime shifts induced by r, the rate of environmental change in demographic41

parameters. Most existing work examines this phenomenon in complex ecological models and42

for specific values of r. Here, we develop tools to help ecologists investigate how populations43

and communities respond to environmental trends across a continuum of r values. Using a44

simple density-dependent model, we identify four qualitatively distinct responses to a trend as45

a function of r – patterns that traditional methods fail to reveal – and we visualize them using46

an r-bifurcation diagram introduced here. We also describe and mathematically explain the47

emergence of abrupt regime shifts linked to delayed bifurcations, revealed by a novel48

superimposition diagram. These findings are robust across modelling frameworks and49

ecological contexts, providing new insights into interactions between short- and long-term50

environmental change processes.51
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1 Introduction52

The environment of natural populations varies over time and space, leading to changes in53

individual demographic parameters (reproduction, survival, dispersal, etc.) that, in turn, affect54

population abundances. These time-varying demographic parameters (the demographic rates55

varying with the environment, see glossary box 1) are often considered stationary (i.e., varying56

around a constant mean, see, e.g., Chevin et al., 2017; Saether et al., 2013; Lee et al., 2020). They57

may cycle regularly at different short-term, within-generation, timescales (e.g., diurnal, seasonal)58

and are subject to environmental stochasticity (random, short-term changes in the environment),59

but the mean demographic rate at the timescale of a relatively small number of generations is60

considered approximately constant (see, e.g., Nisbet and Gurney, 1985; Greenman and Benton,61

2003).62

Studies of the consequences of these environmental fluctuations on population dynamics have63

allowed ecologists to better understand the impacts of environmental stochasticity on population64

or community dynamics (Ruokolainen et al., 2009; Gilljam et al., 2019; Shoemaker et al., 2020;65

Ives and Carpenter, 2007). However, as a result of long-term climate change, the environment of66

natural populations is, in general, not stationary. Over timescales spanning multiple generations,67

the mean of many environmental signals that drive population dynamics follow a long-term trend,68

and therefore, do do environmentally-driven demographic parameters (Burke et al., 2018; Lear69

et al., 2020; Kemp et al., 2015; Song et al., 2021). These environmental trends can vary in both70

magnitude and rate of change.71

Despite their increasing importance, as we face unprecedented, anthropogenically driven, climate72

change affecting temperatures (Hansen et al., 2006), precipitation (Le Treut and Somerville,73

2007), and other key environmental drivers of populations (Gilljam et al., 2019; Cohen et al.,74

2018), we lack a comprehensive theoretical framework to examine how these environmental75

trends translate into quantitative and qualitative changes in population dynamics. This limits our76
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understanding of major global challenges, including the (in)variance of abundance fluctuations,77

future pest and disease outbreaks, threats from invasive species, and extinction risks. We require a78

new perspective on the general consequences of environmental trends on ecological populations,79

along with tools allowing us to better predict how focal populations or communities will fare80

during environmental trends, as a function of the realised rate of environmental change.81

Long term environmental trends are expected to be accompanied by an increase in the variability82

of climate-change drivers (van der Wiel and Bintanja, 2021; Olonscheck et al., 2021). For83

example, the mean temperature of most habitats is expected to increase, along with the84

fluctuations around this mean (Lawson et al., 2015). Consequently, ecologists are now exploring85

the combined effects of these two aspects of global change, changing mean and increasing86

variance of demographic rates, on population dynamics (e.g., Campbell et al., 2012; Lawson87

et al., 2015). However, most studies focus solely on the direction and long-term magnitude of88

changes in the mean of time-varying demographic parameters, in a ’step-change’ design that89

overlooks the rate at which these changes occur (see, e.g., Johnson et al., 2023; Burc et al., 2025;90

Van De Pol et al., 2010; Sæther et al., 2000; Kiritani, 2013). Using this "constant environment91

framework", compares population dynamics under two different, but constant, environmental92

regimes: a current and a projected future scenario. This framework neglects the population’s93

trajectory between the old and new state, overlooking the potentially long transitional period94

between the initial and final environmental conditions. This approach ignores the "environmental95

debt" – the delayed effect of an environmental trend on population abundances – and generalises96

the concept of extinction debt, the delay in extinction encountered in deteriorating environments97

(Zarada and Drake, 2017; Highland and Jones, 2014; Ovaskainen and Hanski, 2002; Drake and98

Griffen, 2010). For a population undergoing an environmental trend, the journey towards the99

post-trend state may be as important as the destination.100
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Density-dependent populations, tipping points and long transients Many dynamic101

population or community models incorporate some dependence of demographic rates on102

population abundances (Krebs, 1995; Elton and Nicholson, 1942; Royama, 1992). Density103

dependence can yield qualitatively distinct population dynamics in constant environments, such as104

stable point equilibria (including extinction), cycles and chaos, both in models and in natural105

populations (May, 1974, 1976; Brauer and Castillo-Chavez, 2013; Barraquand et al., 2017; Myers,106

2018; Mitani and Mougi, 2017; Rogers et al., 2022). The same species can exhibit qualitatively107

different dynamics in different environments; e.g., Microtus and Clethrionomys voles display108

quasi-stationary dynamics in the southern part of Fennoscandia and large amplitude quasi-cycles109

in the northern part (Korpimäki et al., 2005; Graham and Lambin, 2002; Turchin and Ellner,110

2000). The responses of density-dependent populations to (abiotic) environmental changes has111

prompted the recent development of the tipping-point and long-transient frameworks in population112

biology (Hastings et al., 2018; Morozov et al., 2020; Francis et al., 2021; Abbott et al., 2024).113

Bifurcation diagrams illustrate the long-term, steady-state (asymptotic) population dynamics as a114

function of certain environmentally-driven demographic parameters (Fig.1). At certain parameter115

values, called bifurcations, the asymptotic behaviour changes qualitatively. Assuming that a very116

slow environmental trend produces dynamics predicted by the constant environment framework,117

population abundances are expected to encounter a regime shift (a qualitative change of the118

dynamics, Hastings et al., 2018) as a parameter passes, very slowly, through a bifurcation point.119

For discontinuous (or critical) bifurcations, which correspond to abrupt changes in abundances120

where there is no (positive) equilibrium point on one side of the bifurcation (such as fold or121

saddle-node bifurcations, see, e.g., Boettiger and Batt, 2020), this leads to tipping points –122

sudden, quantitative changes in the dynamics (also called 𝑏-tipping points as they are related to123

bifurcations, Scheffer et al., 2001; Dakos et al., 2012; Boettiger and Hastings, 2012). A system124

may not recover from passing a tipping-point (even when returning to previous conditions,125

because of hysteresis, Scheffer et al., 2001b) and the approach to the bifurcation may exhibit a126
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critical slow down (increasingly slow recovery from perturbations, Scheffer et al., 2009).127

Continuous (e.g., period doubling) bifurcations, do not show drastic abundance changes, and are128

deemed more innocuous than their discontinuous counterparts, therefore have received less129

attention. For both types of bifurcations, however, we still largely ignore how slow an130

environmental trend must be to ensure the dynamics correspond to predictions from the constant131

environment framework, or how fast before this assumption breaks down (Vanselow et al., 2019).132

An alternative simplifying assumption is that the consequences of an environmental trend can be133

approximated by considering it instantaneous (a step-change), related to the study of long134

transients. A transient is the route a dynamical system takes following a perturbation to135

conditions, before reaching the long-term state of the system under the new conditions (Levin,136

1976). This transient phase can be relatively short. However, even in simple population models,137

the time required to reach the asymptotic state can be significantly longer than the species’138

generation time, e.g., 20-30 generations in the prey-predator model of Poggiale (2020), or up to139

"hundreds of generation times" in the age-structured single population model of Morozov et al.140

(2016). Transitional periods of up to 100 generations have been observed in empirical systems141

and interpreted as long transients (Hastings et al., 2018). The study of long transients therefore142

provides an alternative framework for investigating dynamical regime shifts.143

Morozov et al. (2016) showed that both the duration of the transient regime and the final144

asymptotic regime are hard to predict when multiple attractors exist. Understanding transient145

dynamics is further complicated by the possibility of regime shifts during the transient period146

(Carpenter et al., 2011; Boettiger and Hastings, 2012), which can be caused, e.g., by "crawl-bys"147

(when abundances pass close to an unstable, saddle, equilibrium Hastings et al., 2018; Rubin148

et al., 2022). The study of long transients has highlighted the risk of focusing only on the constant149

environment framework, showing that, while the asymptotic dynamics indicate that populations150

are safe from quasi-extinction, populations can fall below that threshold during the transient151

period (Morozov et al., 2020, 2024). A realistic trend is neither an instantaneous change, nor so152
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slow that the environment can be considered constant. Recent studies of the effect of the rate of153

change of the time-varying demographic parameter itself (Williams et al., 2021), have revealed154

that it can induce tipping points (𝑟-tipping points, Ashwin et al., 2012; Siteur et al., 2016).155

Rate of environmental change, 𝑟-tipping points and population dynamics The existence,156

relevance and mechanisms of 𝑟-tipping points in ecological systems show that, in many cases, the157

rates of environmental change are at least as important as the magnitude of the change (Abbott158

et al., 2024; Ritchie et al., 2023; Vanselow et al., 2022, and references therein). 𝑟-tipping points159

are related to the idea of environmental tracking (i.e., how closely a population’s abundance160

fluctuations follow environmental changes, Roughgarden, 1975), occurring when the environment161

changes too quickly for the population to track the environmental change (Abbott et al., 2024).162

E.g., rapid increases in fishing pressure in coral reef ecosystems are predicted to lead to system163

collapse, while slower increases of the same total magnitude result in persistence (Gil et al., 2020).164

The unprecedented rate of change of many anthropogenically driven environmental factors are165

expected to impact ecosystems more than the magnitude of the change (Vitousek, 1994; Sage,166

2020) and could (far) exceed the rate at which populations and communities can track these167

changes (Walther et al., 2002). These studies show that 𝑟-tipping points may exist in many systems168

with discontinuous bifurcations, raising the question of whether naturally observed regime shifts169

tend to be rate- or bifurcation-induced (Vanselow et al., 2019). They do not, however, consider the170

general effects of the rate of environmental change on population dynamics and, in particular, how171

this rate can affect populations as they pass by bifurcations, with the notable exception of the172

transcritical bifurcation (i.e., bifurcation to extinction Zarada and Drake, 2017). Extending the173

study of the consequences of the rate of environmental change (which we term 𝑟 here) beyond174

𝑟-tipping points and for any bifurcation, is, therefore, a key advance. This will allow ecologists to175

understand the range of 𝑟 for which the constant environment or transient dynamics framework(s)176

are valid and, more generally, how populations will behave across a range of environmental trends.177
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Here, we address these knowledge gaps, focusing on the validity of these two simplifying178

assumptions, by analysing the consequences of the speed of an environmental trend 𝑟 on179

population trajectories over time. We consider a continuum of r-values, and study the ways 𝑟180

affects the dynamics, such as 𝑟-tipping points, as well as more general effects of 𝑟 on population181

time-series, demonstrating that even continuous bifurcations can lead to 𝑏-tipping points. We182

provide a novel tool to study the effect of non-stationary environmental changes on population183

dynamics – the r-bifurcation diagram – depicting the value(s) of the time-varying demographic184

parameter(s) corresponding to regime shifts, as a function of the rate of environmental change (𝑟).185

We illustrate our analysis with a simple density-dependent model for an unstructured population186

that reproduces at discrete time intervals.187

We initially explore an environment that impacts demographic rates, with a simple, linearly188

increasing trend, comparing our findings with predictions from constant environment and189

transient dynamics frameworks. We show that qualitative shifts in population dynamics driven by190

an environmental trend are delayed compared to the corresponding constant environment191

framework and can lead to 𝑏-tipping points, especially for fast trends. We illustrate this with192

superimposition diagrams which allow us to compare the bifurcation diagram with the abundance193

time-series, in a re-scaled timescale directly related to demographic rates. We analyse the194

mechanisms underpinning these results and introduce a novel categorisation of four rates of195

environmental change, ranging from very slow to very fast, as a function of their effect on196

𝑏-tipping points and transient dynamics. We show that our main findings are general enough to197

apply in more complex ecological models, including those with stochastic fluctuations around the198

linear trend and in continuous-time, multi-species models.199
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2 A simple, deterministic density-dependent population model200

In a constant environment, the population projection equation of the logistic map is (May, 1976):201

𝑛𝑡+1 = 𝑓 (𝑛𝑡) = 𝜆𝑛𝑡 (1 − 𝑛𝑡) (1)

Here, 𝑛𝑡 is the population abundance (scaled by the carrying capacity) at generation 𝑡 and 𝜆 is the202

reproductive rate (i.e., the number of offspring produced by an adult before dying).203

Density-dependence arises through the (1 − 𝑛𝑡) term, representing the proportion of offspring that204

survive the juvenile period as a (decreasing) function of 𝑛𝑡 . We can predict the final, long-term205

(asymptotic) population densities (or attractor) that populations will approach from any206

non-trivial initial condition (𝑛0 > 0). When 𝜆 < 1, the population approaches a so-called trivial207

(extinction) equilibrium (i.e., 𝑛𝑡 → 0). For 1 < 𝜆 < 3, this is a stable point equilibrium:208

𝑛̂(𝜆) = 1 − 1
𝜆
. (2)

The bifurcation diagram (Figure 1) shows that for 𝜆 > 3, 𝑛̂(𝜆) is no longer stable (i.e., 𝑛̂ is a209

repeller, rather than an attractor; shown in grey). At 𝜆 = 3 (itself corresponding to a – neutrally –210

stable point equilibrium) a bifurcation occurs from a single-point equilibrium to a 2-generation211

cycle (i.e., the population fluctuates deterministically between two different abundances in212

alternate generations); this bifurcation is continuous (there is no discontinuity in the bifurcation213

diagram at 𝜆 = 3). Further increasing 𝜆 generates subsequent period-doubling bifurcations214

towards 4-, then 8-, then 16-generation cycles, etc., followed by the onset of chaos (at 𝜆 ≈ 3.54).215

The chaotic range (interspersed with "periodic windows"; Appendix S1: Section A1) lasts until216

the maximum reproductive rate of 𝜆 = 4.217

Predicting the consequences of environmental change from the constant environment framework,218

as is classically (and often implicitly) done in ecology, implies considering the asymptotic219

(long-term) abundance behaviour at two demographic parameter values (considered as two220
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distinct, constant environments). In other words, for a "slow" speed of environmental change, the221

abundances observed over time (𝑛𝑡) are expected to correspond to the asymptotic abundances of222

the bifurcation diagram (Fig.1) and to follow a relatively simple trajectory between the223

corresponding starting and final regimes. No 𝑏-tipping point is predicted to occur as bifurcations224

are continuous (see Appendix S1: Section A2).225

Transient dynamics of the logistic map226

A bifurcation diagram describes the asymptotic population dynamics, but ignores the transient227

phase leading to this final dynamical state. For example, the bifurcation diagram of figure 1 does228

not distinguish between the under- and over-compensatory transient approaches to the equilibrium229

attractor around 𝜆 = 2 (which we have therefore differentiated with blue and magenta colours).230

This distinction is crucial for transient regimes, as well as when studying environments that231

fluctuate around a fixed mean value (Nisbet and Gurney, 1985; Greenman and Benton, 2003). The232

sign and the amplitude of the derivative of the population growth function 𝑓 (eq.1) – i.e., the233

Jacobian, see Appendix S1: Section A1 – provides useful information for small deviations from234

the equilibrium and for certain equilibria, but is not generally sufficient to understand the road to235

the asymptotic behaviour. E.g., for very close initial population values (𝑛0), transients that236

approach the same asymptotic behaviour can take very different paths, with the transient period237

differing wildly in duration (Poggiale, 2020; Morozov et al., 2016; Hastings et al., 2018). This238

also holds for the logistic map: e.g., for 𝜆 = 3.9605, which corresponds to a 4-generation239

asymptotic cycle, the transient period can vary between 1 and 850 generations, depending on the240

value of 𝑛0 (see Appendix S1: Section A1).241

The Logistic map with an environmental trend242

Here, we consider a case where the reproductive rate changes consistently over time (𝜆𝑡 , eq.3a).

To reduce the number of parameters, we first consider a simple, linear, environmental trend

(eq.3b) – but relax this assumption in Appendix S1: Section A4, showing qualitatively similar
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results – via the following system of equations:



𝑛𝑡+1 = 𝜆𝑡𝑛𝑡 (1 − 𝑛𝑡) (3a)

𝜆𝑡 = 𝜆0 + 𝑟𝑡 for 0 ≤ 𝑡 ≤ 𝑇 and 𝜆𝑡 = 𝜆𝑇 for 𝑡 ≥ 𝑇 , (3b)

𝜆0 = 1.001 and 𝜆𝑇 = 3.9605 (3c)

𝑛0 = 𝑛̂(𝜆0) ≈ 0.001 (3d)

where 𝑇 is the duration of the environmental trend and 𝑟 the rate of environmental change (of the243

time-varying demographic parameter, here the reproductive rate). We initiate the population at a244

non-zero stable equilibrium (as 1 < 𝜆0 < 3). It then encounters a novel trend in the environment245

that "benefits" the population by increasing the reproductive rate: 𝜆𝑡 increases over time, i.e., the246

rate of environmental change 𝑟 > 0. We set the initial reproductive rate at 𝜆0 = 1.001 (eq.3c),247

which corresponds to 𝑛0 = 𝑛̂(1.001) ≈ 0.001 (eq.3d and eq.2). However, we note that our main248

conclusions hold when we start with higher 𝜆0 values and consider a "negative" environmental249

trend that reduces reproductive output over time (𝑟 < 0, Appendix S1: Section A5). We focus250

primarily on understanding how population abundance 𝑛𝑡 responds to the environmental trend,251

i.e., for 0 ≤ 𝑡 ≤ 𝑇 .252

However, we are also interested in how the environmental trend affects the post-trend dynamics,253

we, therefore, also consider the population dynamics after the environmental trend (𝑛𝑡 for 𝑡 ≥ 𝑇).254

For that part of the time-series, the environment is held constant at 𝜆𝑡≥𝑇 = 𝜆𝑇 , and the abundance255

time-series correspond to transient dynamics with initial condition 𝑛𝑇 (see Appendix S1: Section256

A1). To identify the time at which the population stabilises near the asymptotic dynamics, we257

want 𝜆𝑇 to correspond to an asymptotic cycle of short period, while still being close to the258

maximum reproductive rate, 𝜆 = 4, so that the trend goes though as wide a range of 𝜆 values259

(corresponding to non-extinct populations) as possible. Therefore, we end the environmental260

trend at generation 𝑇 , such that 𝜆𝑇 = 3.9605 (eq.3c), which produces an asymptotic 4-generation261

cycle (see Fig.1 and Appendix S1: Section A1). The environmental trend duration 𝑇 and its speed262
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𝑟 are related: from eq.3, we have 𝑟 = 𝜆𝑇−𝜆0
𝑇

≈ 2.96
𝑇

. We study the dynamics of this population for263

various rates of environmental rates of change (𝑟) in the following section, and go on to show that264

our key findings hold in more complex ecological frameworks.265

3 Population dynamics under an environmental trend266

3.1 A slow trend267

We initially consider a trend that lasts for 𝑇𝑠 = 7, 000 generations (i.e., 𝑟𝑠 ≈ 4.2 × 10−4). This268

allows us to illustrate key dynamical features before introducing other rates of environmental269

change below. This trend can be considered slow by contrast to the internal pace of change of the270

system, which can yield transients of up to ≈ 850 generations (see Appendix S1: Section A1) and271

asymptotic cycles of less than 4 generations for most of the range of 𝜆𝑡 (Fig.1).272

The time series of a population affected by this slow environmental trend (Figure 2a) initially273

appears to correspond to the constant environment bifurcation diagram (Fig.1): population274

abundances (blue) increase monotonically over time until they start oscillating (Figures 2b and275

2c). We denote the generation at which these oscillations start as276

𝑡𝑜 (𝑟) = 𝑚𝑖𝑛𝑡{𝑡, 𝑛𝑡+1 < 𝑛𝑡}

For this slow trend, we have 𝑡𝑜 (𝑟𝑠) = 5074 (Fig. 2c). These oscillations are initially 2-generation277

quasi-cycles with mean and amplitude increasing over time, followed by quasi-cycles of period 4278

and almost immediately by chaotic behaviour (at around 𝑡 = 6100, 𝜆𝑡 ≈ 3.55). Once the trend is279

over, at 𝑡 = 𝑇 , the abundances stabilise at the asymptotic 4-generation cycle associated with 𝜆𝑇 ,280

here, following a post-trend transient of around 25-30 generations (indicated by the initial281

fluctuations after the vertical black line in Fig.2a). Surprisingly, as the period doubling282

bifurcations of the constant environment framework are continuous and therefore expected to283
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correspond to smooth regime shifts for slow trends, we observe that the transition from284

monotonically increasing abundances to oscillations (Fig.2a) leads to an abrupt increase in cycle285

amplitude, that occurs over ∼ 60 generations starting at 𝑡𝑜 (Fig.2b), before the increase in286

amplitude slows pace.287

The superimposition diagram288

To compare abundance dynamics for various rates of environmental change (𝑟, and corresponding289

𝑇), we turn to an alternative timescale: 𝜆𝑡 . Instead of counting time as the succession of290

generations, this timescale counts it as increments in the demographic parameter affected by the291

environment. This transformation is valid for the period of environmental change, 0 < 𝑡 < 𝑇 ,292

where 𝜆𝑡 is a strictly monotonic function of 𝑡: each value of 𝜆𝑡 (top axis on Fig.2) corresponds to a293

unique value of 𝑡. We can study directly the abundance trajectories in this alternative timescale via294

function composition, an operation that creates a new function by applying one function to the295

result of another (i.e., nesting functions). The function composition of 𝑛𝑡 = 𝑛(𝑡) – in blue on Fig.2296

– and 𝑡 (𝜆𝑡) – the inverse of 𝜆𝑡 = 𝜆(𝑡), in red on Fig.2 – yields 𝑛(𝜆𝑡) = 𝑛(𝑡 (𝜆𝑡)) – in blue on Fig.3.297

This alternative timescale allows us to superimpose the abundance time-series onto the bifurcation298

diagram (in black on Fig.3).299

This superimposition diagram shows the abundances initially tracking the moving equilibrium 𝑛̂𝑡300

(in red on Fig.3, see glossary box 1):301

𝑛̂𝑡 = 𝑛̂(𝜆𝑡) = 1 − 1
𝜆𝑡

(4)

Emergence of a 𝑏-tipping point302

After passing the first period-doubling bifurcation of the constant environment framework, at303

𝜆 = 3, the population continues to grow monotonically and track the moving equilibrium (𝑛̂𝑡)304

despite it being in a range corresponding to unstable point-equilibria (2-generation cycle) in the305

constant environment. In that range, the moving equilibrium is a ghost attractor, a306
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non-equilibrium state that would be an (unstable) equilibrium in a constant environment.307

Abundances (𝑛𝑡) track the ghost attractor (𝑛̂𝑡) for some time, until a qualitative shift in dynamics308

occurs once the time-varying reproductive rate (𝜆𝑡) passes 𝑏(𝑟𝑠) = 𝜆𝑡𝑜 ≈ 3.146 (grey vertical line309

on Fig.2) when abundances start oscillating . The difference between this observed value and the310

constant-environment bifurcation (i.e., here, 𝑏(𝑟𝑠) − 3) constitutes a delay in the bifurcation. This311

phenomenon has been studied by mathematicians (e.g., Baer et al., 1989; Tsuchiya and Yamagishi,312

1997; Miyazaki and Tchizawa, 2005) but rarely in the context of environmental change, with the313

exception of the transcritical (extinction) bifurcation (at 𝜆 = 1, e.g., Zarada and Drake, 2017;314

Drake and Griffen, 2010). The subsequent abrupt and rapid increase in the amplitude of315

oscillations corresponds to the population abundances rapidly catching up with that of the316

2-generation cycles of the constant environment framework (here the quasi-2-generation-cycles317

are reached at 𝜆 ≈ 3.174, see Figures 2b and 3 (insert)), which constitute a new ghost equilibrium318

(of period 2).319

We can quantify the abruptness of this quantitative shift (the increasing amplitude of oscillations)320

by considering, first, the rate of change of the population abundances 𝑠𝑡 (the discrete time321

equivalent to the first derivative) and, second, the rate of change of this rate of change, the322

abundance acceleration 𝑎𝑡 (the second derivative):323


𝑠𝑡 = |𝑛𝑡+1 − 𝑛𝑡 |

𝑎𝑡 = |𝑠𝑡+1 − 𝑠𝑡 |
(5)

Figure 4 shows the acceleration time series (𝑎𝑡) for various rates of environmental change (𝑟,324

slower than the slow trend, i.e., 𝑟 < 𝑟𝑠). For each value of 𝑟, the acceleration is very small most of325

the time but for a peak (occurring shortly after 𝑏(𝑟)) where it reaches a maximum acceleration,326

that we denote 𝑑 (𝑟) (the peak value on Fig.4):327

𝑑 (𝑟) = max
𝑡

(𝑎𝑡) (6)
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This abrupt, qualitative and quantitative change, shifts the dynamical regime quickly from a328

monotonic increase in abundances to cycles of large amplitude: 𝑏(𝑟) is a 𝑏-tipping point (of size329

𝑑 (𝑟)).330

Both 𝑏(𝑟) and 𝑑 (𝑟) increase with the rate of environmental change (𝑟). The slower the trend, the331

closer the b-tipping point 𝑏(𝑟) is to 𝜆 = 3 and the maximum acceleration in abundances 𝑑 (𝑟) is to332

0 (see Fig.S5 of Appendix S1: Section A2; formally, lim𝑟→0 𝑏(𝑟) = 3 and lim𝑟→0 𝑑 (𝑟) = 0). As a333

consequence, 𝑏(𝑟) is not a 𝑏-tipping point for a (paradoxical) trend of speed 𝑟 = 0, but is one for334

any real trend (𝑟 > 0, see Appendix S1: Section A2). We focus here on this particular335

b-tipping-point, but note that the other period doubling bifurcations can also be delayed (see336

below and Appendix S1: Section A2). We provide a mechanistic and graphical explanation for337

this delay in bifurcation and related 𝑏-tipping point, via cobweb diagrams, in section 5.1, and a338

more detailed mathematical analysis of the abundance behaviour, via the concepts of repelling339

boundaries and cascading effects, in section 5.2.340

3.2 Slower and Faster trends341

We now consider a very slow (vs) environmental trend, where it takes 𝑇𝑣𝑠 = 1 × 108 generations to342

reach 𝜆𝑇 from 𝜆0 (i.e., 𝑟𝑣𝑠 ≈ 3 × 10−8). The corresponding superimposition diagram (Figure 5a)343

shows the realised abundance dynamics display closer alignment with the bifurcation diagram.344

However, the 𝑏-tipping point at 𝜆 = 𝑏(𝑟) exists for any non-zero trend (Fig.4), even a very slow345

one (Fig.5b, here, 𝑏(𝑟𝑣𝑠) = 3.0009). The delay in the bifurcation (𝑏(𝑟𝑣𝑠) − 3) causes a sudden346

acceleration in the dynamics and a rapid increase in cycle amplitudes (Fig.5b), even though the347

amplitude of the discontinuity is smaller (𝑑 (𝑟𝑣𝑠) < 𝑑 (𝑟𝑠), see Fig.4) and the delay shorter in the 𝜆𝑡348

timescale than for the slow trend (3 < 𝑏(𝑟𝑣𝑠) < 𝑏(𝑟𝑠)). Below, we show that, as the rate of349

environmental change 𝑟 decreases, the delay in bifurcation actually increases on the chronological350

timescale: 𝑡𝑜 (𝑟) − 𝑡3(𝑟), where 𝜆𝑡3 = 3, is a decreasing function of 𝑟. Therefore, the slower the351

trend, the more generations it takes for the first oscillation to occur, after passing 𝜆 = 3 (and352
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lim𝑟→0 𝑡𝑜 (𝑟) − 𝑡3(𝑟) = +∞).353

There are quantitative, but not qualitative differences in abundance dynamics between the slow354

and the very slow trends; e.g., changes in the 𝑏-tipping point, 𝑏(𝑟), in the generation of the onset355

of abundance oscillations, 𝑡𝑜 (𝑟), and in the maximum acceleration in the amplitude of356

oscillations, 𝑑 (𝑟). However, differences in the post-trend transient behaviour do justify357

distinguishing between slow and very slow environmental trends. Under the very slow358

environmental trend (𝑟 = 𝑟𝑣𝑠), the population abundance at the end of the trend (𝑛𝑇 ) is close359

enough to one of the four points of the 4-generation asymptotic cycle associated with360

𝜆𝑇 = 3.9605, that there is no observable transient (Fig.5c). Under the slow trend (𝑟 = 𝑟𝑠), a361

post-trend transient of 20-30 generations can be observed (Fig.2a). For the very slow trend, there362

is a short delay (in the demographic time-scale) for both the first and the second bifurcation (from363

2- to 4-generation cycles), while for the slow trend (Fig.3), the second delay is so long that pseudo364

4-generation cycles do not occur. Despite the self-similarity of the logistic map (Tan and Chia,365

1996), it is possible for a given rate of environmental change (𝑟) to encounter a 𝑏-tipping point at366

one period-doubling bifurcation and not others.367

The onset of cycling can be delayed further (on the demographic timescale, 𝜆𝑡), with faster368

environmental trends. For a fast environmental trend spanning 𝑇 𝑓 = 225 generations (𝑟 𝑓 ≈ 0.013),369

the population grows monotonically during the entire trend and only starts oscillating once the370

trend is over; i.e., 𝑏(𝑟 𝑓 ) = 𝜆𝑇 = 3.9605 (Figure 6). At the beginning of the trajectory (𝜆0 = 1.001,371

𝑛0 = 𝑛̂0 = 0.001), the abundances struggle to track the rapidly changing environment (compare372

blue and red lines around 𝜆𝑡 = 1 in Fig.6), but eventually recover, tracking the environment (i.e.,373

the moving/ghost equilibrium 𝑛̂𝑡) until the end of the trend (𝑡 = 𝑇). This lagged "dip" at the start374

of the abundance trajectory (1 < 𝜆𝑡 ≪ 2) occurs for all trends, but is barely noticeable on the375

abundance time series for the slow trend (Figs 2 and 3) and not at all for the very slow trend376

(Fig.5). We provide a mathematical analysis of this phenomenon in section 5.2 and summarise the377

key dynamical differences of the three characteristic rates of environmental considered so far via378
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plots of abundance dynamics in chronological time, superimposition diagrams (demographic379

timescale, 𝜆𝑡) and cobweb diagrams, in Appendix S1: Section A2.380

The speed of the environmental trend can be increased up to 𝑟𝑣 𝑓 ≈ 2.96, corresponding to 𝑇𝑣 𝑓 = 1381

generation. Here, the trend corresponds to an instantaneous (step-) change (see Fig.S6d in382

Appendix S1: Section A2). Contrary to slower trends, there is no initial monotonic increase in383

abundances; the dynamics consist exclusively of a post-trend transient which lasts around 80384

generations (from 𝑛0 = 0.001), before settling on the asymptotic 4-generation cycle. The duration385

and behaviour of the transient is very sensitive to the choice of initial condition (𝑛0) and constant386

environment parameter (𝜆𝑇 ) (see Appendix S1: Section A1). We refer to environmental trends387

that lead to dynamics that are dominated by transients, as very fast trends; we will see that, for our388

study, they consist of the step-change (𝑇 = 1) and trends made of a small number of generations389

(𝑇 < 34) .390

Because the transient of a step-change is very sensitive to the initial conditions, the duration and391

behaviour of the transient stemming from a trend of a few steps will be very sensitive to the392

number of steps taken to reach 𝜆𝑇 : for 𝑇 = 2, the transient drops to 3 generations, yet for 𝑇 = 3 it393

increases to 230 generations (see Appendix S1: Section A6). As a consequence, the generation of394

first oscillation 𝑡𝑜 and its corresponding value of time-varying reproductive rate, 𝑏(𝑟) = 𝜆𝑡𝑜 , are395

similarly unpredictable under very fast trends, which contrasts with the predictability of fast trends396

(where, e.g., 𝑏(𝑟 𝑓 ) = 𝜆𝑇 = 3.9605). To illustrate these points and better understand what is397

happening along this 𝑟-continuum, we introduce the r-bifurcation diagram.398

3.3 The r-bifurcation diagram399

We have considered four speeds of the environmental trend (𝑟 = 𝑟𝑠, 𝑟𝑣𝑠, 𝑟 𝑓 and 𝑟𝑣 𝑓 ) and the400

corresponding population dynamics. The metrics we developed, including the generation of the401

first abundance oscillation, 𝑡𝑜 (𝑟) and the associated value of the reproductive rate 𝑏(𝑟) = 𝜆𝑡𝑜 (the402

𝑏-tipping point), allow us to go further and compare abundance dynamics under a continuum of403
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environmental trends. Here we introduce another metric: the duration of the post-trend transient,404

𝐷 (𝑟) (Appendix S1: Section A1). Figure 7 introduces the r-bifurcation diagram which displays405

the 𝑏-tipping point 𝑏(𝑟) (blue points) and the duration of the post-trend transient 𝐷 (𝑟) (red points)406

as a continuous function of the rate of environmental change (𝑟). This diagram allows us to407

identify four qualitatively different rates of environmental change (𝑟) – of which the four specific408

speeds of the environmental trend we have studied (very slow, slow, fast and very fast) are409

archetypes– and to characterise their range. We will use the same names for the general ranges of410

𝑟 corresponding to qualitatively different dynamics than for their archetypes studied above: .411

The r-bifurcation diagram shows that the value of the time-varying demographic parameter (𝜆𝑡) at412

which oscillations start (the 𝑏-tipping point, 𝑏(𝑟)), tends towards 𝑏(0) = 3 as the speed of413

environmental change slows towards 𝑟 = 0 (Fig. 7). The r-bifurcation diagram further shows that414

𝑏(𝑟) initially increases with the speed of the environmental trend (𝑟) (very slow and slow415

environmental trends, Fig.4 and Fig. 7), but this initial increase plateaus at 𝑏(𝑟) = 𝜆𝑇 (the416

maximum possible value for 𝜆𝑡) for a value of 𝑟 = 𝑟† ≈ 0.0114 (corresponding to 𝑇 = 259417

generations), which allows us to distinguish between slow and fast trends; across a range of418

environmental change values 𝑟† < 𝑟 < 𝑟∗, all trends are characterised as fast: 𝑏(𝑟) = 𝜆𝑇 . Very fast419

trends occur above 𝑟∗ ⪆ 0.0870 (𝑇 ≤ 34 generations), including the step-change (𝑇 = 1): they420

correspond to cases where 𝑏(𝑟) (that differs from 𝜆𝑇 ) is a non-monotonic function of 𝑟. Figure 7421

shows the 𝑏-tipping point (𝑏(𝑟)) initially decreasing rapidly, after 𝑟∗, to 𝑏(𝑟) ≈ 2.5, before422

returning to 𝑏(𝑟) → 𝜆𝑇 = 3.9605. For such rapid environmental trends, transient dynamics drive423

the abundance patterns, and render the duration and behaviour of transients unpredictable, so that,424

for some values of 𝑟, the onset of oscillations can occur before the end of the environmental trend,425

i.e., 𝑏(𝑟) < 𝜆𝑇 or even before the constant-environment bifurcation, i.e., 𝑏(𝑟) < 3, (black dots in426

the very fast section of Fig.7).427

Contrary to the continuous transition between slow and fast trends, and partly caused by the428

choice of 𝜆𝑇 (noting we are restricted to 𝜆𝑇 < 4 for this simple model), the fast—very fast429
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transition, 𝑟∗, induces a regime shift: it is an 𝑟-tipping point. On the fast side of 𝑟∗, population430

abundances grow monotonically during the entire duration of the trend; on the very fast side, they431

can start oscillating earlier. The 𝑏(𝑟) metric does not segregate between very slow and slow432

trends, but 𝐷 (𝑡) – the duration of the post-trend transient – does: very slow trends correspond to433

𝑟 < 𝑟 ≈ 5.7 × 10−7, for which there is no post-trend transient: the environmental trend is slow434

enough, and therefore 𝑛𝑇 close enough to the asymptotic cycle, that the abundances converge435

immediately on the cycle as the environmental trend ends.436

We can perform the same analysis on the chronological timescale by considering the time at437

which the first population decline is observed, 𝑡𝑜 (𝑟). That is, the number of generations for which438

the abundance keeps increasing monotonically having passed the constant environment439

bifurcation point 𝜆𝑡3 = 3, i.e., 𝑡𝑜 − 𝑡3 (Fig.S8 in SMA2). The slower the environmental trend (𝑟),440

the more generations the population monotonically increases, after having passed 𝜆 = 3, and the441

(chronological) delay in oscillation (𝑡𝑜 (𝑟) − 𝑡3(𝑟)) tends towards ∞ as 𝑟 tends towards 0.442

In summary, by considering dynamics on chronological and demographic (𝜆𝑡) timescales, we have443

identified that, for a given (even simple, continuous) bifurcation (here, at 𝜆 = 3), environmental444

trends can generate 𝑏-tipping points and be categorised into four categories (see Figure 8):445

• Very slow trends show a delayed bifurcation/b-tipping point (corresponding, for the logistic446

map, to 3 < 𝑏(𝑟) ≪ 𝜆𝑇 ), but do not show post-trend transients at 𝜆𝑡≥𝑇 .447

• Slow trends also show a delay in the bifurcation, after which abundances start cycling, with448

transients at the end of the trend.449

• For fast trends, the bifurcation delay extends to the end of the trend. Before then,450

abundances follow the moving/ghost equilibrium (here, 𝑏(𝑟) = 𝜆𝑇 ; abundances grow451

monotonically until the end of the trend).452

• Very fast trends are dominated by transient dynamics (unpredictability related to initial453

conditions). The 𝑟∗ value separating the very fast and other regimes therefore constitutes an454
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𝑟-tipping point.455

We note that the fast trends case is demographic rate- and trend-specific; in some cases it may be456

impossible for the delay of a bifurcation to extend towards the end of the trend before entering the457

realm of very fast trends: the r-tipping point then separates slow and very fast trends.458

4 Extensions to other ecological scenarios459

Here we demonstrate the generality of our findings with two further examples illustrating common460

ecological scenarios; the addition of short-term stochastic variation around the long-term461

environmental trend, and a continuous-time consumer-resource interaction model under a462

long-term environmental trend that affects mortality rather than reproduction. These examples463

reinforce our general finding that environmental trends generate 𝑟-tipping points and delays in464

bifurcation leading to 𝑏-tipping points, emphasise that our findings are robust to fundamental465

differences in modelling frameworks, and reveal new insights based on the interaction of short-466

and long-term environmental change processes. Appendix S1: Section A5 also considers the467

logistic map under a decreasing environmental trend (𝑟 < 0).468

4.1 Noisy trend469

When demographic rates are simultaneously affected by long- and short-term environmental470

change, the environment is non-stationary and stochastic. We showed that a long-term471

environmental trend alone delays the reproductive rate (𝜆𝑡) at which a density dependent472

population’s abundance starts to cycle: as 𝑟 increases, so does 𝑏(𝑟). Previous work shows how473

(stationary) fluctuations can “excite” underlying over-compensatory, but stable-point, equilibrium474

behaviours (e.g., Nisbet and Gurney (1985), Greenman and Benton (2003)). For the logistic map,475

noise can generate sustained quasi-2-generation cycles at a mean environmental value for 𝜆 < 3476

(that we denote 𝑏(𝑛)), such that 𝑏(𝑛) < 3, with 𝑏(𝑛) decreasing as the variance of the noise 𝑛477

increases (Appendix S1: Section A3). In other words, the short-term noise shifts the bifurcation478
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𝑏(𝑛) to lower reproductive rates (𝜆𝑡), increasingly further into the ’stable’ region with higher noise479

variance. Short-term noise and long-term trends therefore have opposite effects on the onset of480

observed (quasi-) 2-generation cycles. The joint effects of short- and long-term environmental481

change on the dynamics of a population undergoing a noisy environmental trend, are related to the482

concept of "time of emergence" (e.g., Hawkins et al., 2020; Hawkins and Sutton, 2012), which483

measures the time at which a noisy (often climatic) metric emerges as trendy. The relationship484

between the time of emergence of a climatic metric and a population’s response to it have also485

been studied previously, in a density-independent framework from which bifurcations and tipping486

points are absent (Jenouvrier et al., 2022).487

Here, we consider a simple extension of equation (3):488



𝑛𝑡+1 = 𝜆𝑡𝑛𝑡 (1 − 𝑛𝑡)

𝜆𝑡 = 𝜆̄𝑡 + 𝜖𝑡 with 𝜖𝑡 ∼ N(0, 𝜎2
𝑒 ) and 𝜌(𝜖) = 𝐸

(
𝐶𝑜𝑣(𝜖𝑡+1,𝜖𝑡 )

𝜎2
𝑒

)
𝜆̄𝑡 = 𝜆̄0 + 𝑟𝑡 for 0 ≤ 𝑡 ≤ 𝑇,

𝜆̄0 = 1.001 and 𝜆̄𝑇 = 3.9605

, (7)

where the value of 𝜆𝑡 , is drawn at each generation, independently and at random from a normal489

distribution with expected value 𝜆̄𝑡 , variance 𝜎2
𝑒 and (one-generation, detrended) expected490

autocorrelation 𝜌(𝜖). For an environmental trend of 𝑟 = 0.003 corresponding to 𝑇 = 1000491

generations, we simulated stochastic time-series 𝜖𝑡 for various values of 𝜎2
𝑒 and 𝜌(𝜖) (Fig.9). For492

the deterministic model (Fig.9a), the population starts oscillating at the r-affected b-tipping point493

𝑏(𝑟) ≈ 3.4.494

For a noisy trend with low stochastic variance (𝜎𝑒 = 0.01, Fig.9b), the abundances show495

pseudo-2-generation cycles earlier than the trend-only case, so that we have a noise and rate496

induced "bifurcation", that we denote 𝑏(𝑟, 𝜎𝑒) such that 3 < 𝑏(0.003, 0.01) < 𝑏(0.003, 0) ≈ 3.4.497

This delay in the onset of 2-generation cycles is reduced compared to the deterministic case; yet498

because of the trend, the onset of underlying oscillations occurs at higher 𝜆𝑡 values than the499
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constant environment framework bifurcation at 𝜆 = 3. For noise with higher variance (𝜎𝑒 = 0.05,500

Fig.9d), the effect of the noise appears to match or cancel out that of the trend, and the501

pseudo-2-generation cycles start at 𝑏(0.003, 0.05) ≈ 3. For even larger environmental noise502

(𝜎𝑒 = 0.15, Fig.9f), the short-term noise dominates and 𝑏(0.003, 0.15) < 3. Positive503

autocorrelation in the short-term noise has a strong effect on the onset of oscillations, as it reduces504

the effects of the noise on the dynamics (Figures 9c and 9e).505

4.2 A predator-prey model in continuous time506

Here we consider a classic predator-prey system (Hsu et al., 1978; Wrzosek, 1990), where the507

population dynamics are defined by a system of differential equations, with intraspecific density508

dependence in the prey and a Type II functional response:509


𝑑𝑛1
𝑑𝑡

= 𝜆𝑛1(1 − 𝑛1) − 𝑛2
𝑎𝑛1

1+𝑎ℎ𝑛1

𝑑𝑛2
𝑑𝑡

= 𝑛2

(
𝑐

𝑎𝑛1
1+𝑎ℎ𝑛1

− 𝑑

) , (8)

where 𝑛1 and 𝑛2 are prey and predator abundances, 𝑎 is the attack rate (here 𝑎 = 0.4), 𝑐 = 0.2 is510

the conversion rate, ℎ = 3 the handling time, 𝜆 = 0.1 the maximum prey growth rate (in the511

absence of competition and predation). In this case, we set the density independent predator death512

rate (𝑑) as the time-varying demographic parameter, decreasing linearly from 𝑑0 = 0.02 to513

𝑑𝑇 = 0.002 over a duration of length 𝑇 , before settling at 𝑑𝑡≥𝑇 = 𝑑𝑇 .514

The constant-environment bifurcation diagram shows how the asymptotic predator-prey dynamics515

vary as a function of predator mortality (𝑑). It is displayed in the background of the516

superimposition diagrams (middle column, II, Fig. 10), in orange and light blue. For higher death517

rates 𝑑 > 𝑑𝑎 ≈ 0.01 (e.g., at 𝑑0), all (positive) trajectories converge towards a two-species stable518

equilibrium (𝑛̂1, 𝑛̂2). For lower death rates 𝑑 < 𝑑𝑎, this equilibrium point is unstable and the519

asymptotic trajectories are limit cycles in constant environments (e.g., at 𝑑𝑇 ). When predator520

mortality follows a very slow (declining) trend (𝑇 = 750, 000, 𝑟 = 𝑑𝑇−𝑑0
𝑇

= −2.410−8, top row of521
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Fig.10), prey abundances initially decrease and predator abundances increase slightly, with no or522

very small oscillations,before starting to oscillate strongly as predator mortality (in orange, right523

hand y-axis) passes a critical threshold 𝑏(𝑟) < 𝑑𝑎. The corresponding superimposition diagram524

(Fig.10aII, to be read from right to left as 𝑟 < 0), shows the system initially tracking the moving525

equilibrium (𝑛̂1(𝑡), 𝑛̂2(𝑡)) (in black).526

As with the single-species discrete time model, there is a delayed bifurcation (𝑑𝑎): abundances527

keep tracking the moving equilibrium, which acts as a ghost attractor, for predator death rates528

corresponding to an unstable point equilibrium in a constant environment, i.e., for 𝑑𝑡 < 𝑑𝑎.529

Eventually, a qualitative and quantitative regime shift occurs (i.e., a 𝑏-tipping point) and the530

population abundances oscillate with increasing amplitudes. The "catch-up" effect is noticeable:531

the increase in the magnitude of oscillations is much faster (in the alternative timescale 𝑑𝑡 of the532

superimposition diagram Fig.10aII) than that predicted by the constant environment framework533

(in orange and cyan). By the end of the environmental trend, the quasi-cycles have the same534

amplitude as the asymptotic cycle at 𝑑 = 𝑑𝑇 , as highlighted on the phase diagram (the continuous535

time equivalent to the cobweb plots) of Fig. 10aIII where the trend trajectories are in blue536

(post-trend trajectory in grey and moving equilibrium in yellow): there is no post-trend transient.537

The very slow trend contrasts quantitatively with the dynamics under a slow trend (𝑇 = 75, 000,538

second row of Fig.10) where the delay in bifurcation is larger and the quasi-cycles at the end of539

the trend are much smaller in amplitude that those of the constant environment framework. It540

takes another 10, 000 time-steps in the post-trend constant environment (𝑡 ≥ 𝑇) for the oscillations541

to reach the asymptotic behaviour (post-trend trajectory in grey). As with the single-species542

discrete time model, for a fast environmental trend (𝑇 = 7, 500; third row of Fig.10), abundances543

track the moving equilibrium during the entire duration of the trend. Significant oscillations (i.e.,544

of the same order of magnitude as the bifurcation diagram) only occur after the environmental545

trend has finished (𝑡 ≥ 𝑇), and a long transient is required for the abundances to reach the546

asymptotic cycle, which they do from inside that cycle (Fig.10cIII).547
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This contrasts qualitatively with the dynamics of a very fast trend (𝑇 = 20, lowest row of Fig.10)548

where the dynamics are driven by the post-trend transient (there is continuity between the trend549

(blue) and post-trend (grey) trajectories, Fig.10dIII) and the abundances cycle towards the550

asymptotic orbit from outside the attractor. This is a proof of the existence of an 𝑟−tipping point551

that segregates rates of environmental change where, on the fast side, abundances track the552

moving equilibrium and then cycle towards the asymptotic attractor with increasing amplitudes553

and, on the very fast side, abundances are driven by transient dynamics and cycle, from the start of554

the trend, with decreasing amplitudes towards the attractor.555

5 Mechanisms underlying the delay in bifurcation556

In this section, we turn back to the logistic map with trending reproductive rate (eq.3) and provide557

two approaches to understand mechanistically the observed population dynamics of section 3, and558

in particular the delay in bifurcations. The first approach is graphical and uses cobweb diagrams559

(section 5.1). The second approach is mathematical (section 5.2).560

5.1 Illustrating the delay in bifurcation with cobweb diagrams561

Under an environmental trend, the population dynamics emerge from the combination of two562

forces:563

(i) the transient dynamics pushing abundances 𝑛𝑡+1 towards the asymptotic behaviour determined564

by 𝜆𝑡 (i.e., the moving equilibrium 𝑛̂𝑡 for 1 < 𝜆 < 3), and565

(ii) the shift, over time, of that equilibrium attractor (𝑛̂𝑡 is a "moving" function of 𝑡 via 𝜆𝑡 , eq.4).566

Cobweb diagrams provide a useful way to investigate how these two forces interact to shape567

population dynamics. Fig.11a illustrates a "classic" constant environment framework, here for a568

2-point cycle, corresponding to 𝜆 = 3.1, reached from 𝑛0 = 𝑛̂(𝜆) = 0.6774. Fig.11b highlights the569

first 15 generations. The population response (growth) curve 𝑛𝑡+1 = 𝑓 (𝑛𝑡) (in red) and the black570
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1:1 line yield abundance trajectories (in blue). The response curve crosses the 1:1 curve at the571

equilibrium: 𝑛̂ = 1 − 1
𝜆
. This equilibrium is unstable (Fig.1): abundances cycle away towards the572

asymptotic 2-generation cycle. This trajectory corresponds to that of the slow environmental trend573

(Fig.2) if the trend stopped at 𝜆𝑡 = 3.1.574

Allowing the trend to continue at the slow pace (Fig.2), for 10 successive generations around575

3 < 𝜆𝑡 ≈ 3.10 < 𝑏(𝑟), results in Figure 11c. The temporally changing environment is reflected by576

multiple (red) population response curves. Abundances (blue) smoothly track the moving577

equilibrium (𝑛̂𝑡), located where the (red) response curves and the (black) 1:1 line intersect. As the578

time-varying demographic parameter increases further, the distance between response curves579

diminishes and abundances start to oscillate (at 𝜆𝑡 ≈ 𝑏(𝑟), Fig.11d). Eventually, they reach values580

associated with the 2-generation cycle (Figures 11e and 11f). Then, the environment (and581

response curve) still changes each generation, but this change is so small compared to the582

amplitude of the cycles, that it can be considered constant over multiple generations. The 15583

response curves (the 𝑓𝑡 of eq.3a), corresponding to the 15 successive values of 𝜆𝑡 , are almost584

indistinguishable and, consequently, so are the 15 quasi 2-generation abundance cycles (blue,585

Fig.11f).586

Before the time-varying demographic parameter has reached the 𝑏-tipping point (Fig.11c), the587

abundances track the moving equilibrium closely (with 𝑛̂𝑡−1 < 𝑛𝑡 < 𝑛̂𝑡) with a lag:588

ℎ𝑡 = 𝑛𝑡 − 𝑛̂𝑡 . (9)

This lag (ℎ𝑡) corresponds to the distance between the realised abundances (in blue) and the589

moving equilibrium (in red) of the superimposition diagram (Fig.3). On these cobweb diagrams,590

the lag reflects the distance on the 1:1 line between the abundances (blue) and the response curves591

(red). Holding 𝜆𝑡 constant (Fig.11b), shows abundances cycling away from the point equilibrium.592

From 𝑛𝑡1 < 𝑛̂𝑡1 , we would get ... < 𝑛𝑡1+2 < 𝑛𝑡1 < 𝑛̂𝑡1 < 𝑛𝑡1+1 < 𝑛𝑡1+3 < ... and the cycle increases in593
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amplitude until it reaches its asymptotic 2-generation cycle. In contrast, with an environmental594

trend, the lag is perpetuated because of the distance between the successive response curves, equal595

to596

𝑔(𝑟, 𝜆𝑡) = 𝑛̂𝑡+1 − 𝑛̂𝑡 =
𝑟

𝜆𝑡 (𝜆𝑡 + 𝑟) ≈ 𝑟

𝜆2
𝑡

, (10)

which corresponds to the speed of the moving equilibrium. From 𝑛̂𝑡1−1 < 𝑛𝑡1 < 𝑛̂𝑡1 , we therefore597

get 𝑛̂𝑡1 < 𝑛𝑡1+1. Then, as 𝑔(𝑟, 𝜆𝑡) > 𝑛𝑡1+1 − 𝑛̂𝑡 , we have 𝑛𝑡1+1 < 𝑛̂𝑡1+1, and so on: as long as the598

speed of the moving equilibrium, 𝑔(𝑟, 𝜆𝑡), is large enough, the population abundance tracks the599

moving equilibrium with a lag. For a given rate of environmental change 𝑟, the distance between600

successive abundance attractors, 𝑔(𝑟, 𝜆𝑡), diminishes over time, as 𝜆𝑡 increases (eq.10), so that at601

the onset of oscillations (𝑡𝑜, as 𝜆𝑡 passes the 𝑏-tipping point 𝑏(𝑟)), the lag is no longer perpetuated602

and the abundances start cycling (Figures 11d and 11e; see Appendix S1: Section A2).603

5.2 Mathematical analysis along the reproductive rate line604

The key to better understand the behaviour of abundances under an environmental trend is to605

consider the distance of the abundances 𝑛𝑡 to the “moving equilibrium” 𝑛̂𝑡 (eq.(4)), that is,606

ℎ𝑡 = 𝑛𝑡 − 𝑛̂𝑡 (eq.(9)), and to analyse its dynamics as a function of the Jacobian and the speed of607

change of the “moving equilibrium”. In the vicinity of 𝑛̂𝑡 , we can write, via first degree Taylor608

approximation,609

𝑛𝑡+1 − 𝑛̂𝑡 ≈ 𝐽 (𝑛̂𝑡) (𝑛𝑡 − 𝑛̂𝑡), (11)

where 𝐽 (𝑛̂𝑡) is the Jacobian of the projection function 𝑓 , 𝑛𝑡+1 = 𝑓 (𝑛𝑡) (eq.1), evaluated at 𝑛̂𝑡 . This610

implies, as ℎ𝑡+1 = 𝑛𝑡+1 − 𝑛̂𝑡 + (𝑛̂𝑡 − 𝑛̂𝑡+1), that for small ℎ𝑡 ,611

ℎ𝑡+1 ≈ 𝐽 (𝑛̂𝑡)ℎ𝑡 + (𝑛̂𝑡 − 𝑛̂𝑡+1). (12)
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In a uni-variate framework, such as the one we are considering here, the Jacobian is simply the612

derivative and for the logistic map, 𝑓 (𝑥) = 𝜆𝑡𝑥(1 − 𝑥), so that 𝐽 (𝑥) = 𝜆𝑡 (1 − 2𝑥) and613

𝐽 (𝑛̂𝑡) = 2 − 𝜆𝑡 , (13)

from eq.(4). Therefore for the logistic map under a trend (eq.3a), equation 12 becomes614

ℎ𝑡+1 ≈ (2 − 𝜆𝑡)ℎ𝑡 +
𝜆𝑡 − 𝜆𝑡+1
𝜆𝑡+1𝜆𝑡

, (14)

In Appendix S1: Section A4, we use equation (14) to exhibit non-linear trends where abundances615

remain at a constant distance from the "moving equilibrium". For a linear trend (eq.3b), equation616

(14) becomes617

ℎ𝑡+1 ≈ (2 − 𝜆𝑡)ℎ𝑡 −
𝑟

𝜆𝑡+1𝜆𝑡
≈ (2 − 𝜆𝑡)ℎ𝑡 −

𝑟

𝜆2
𝑡

, (15)

In all three of these equations (eqs (12),(14) and (15)), the first term corresponds to the Jacobian618

and the second term to the speed of change of the "moving equilibrium". Here we study the619

behaviour of 𝑛𝑡 , via that of ℎ𝑡 (eq.(15)) for various sections of the 𝜆𝑡 parameter line.620

For 1 ≤ 𝜆𝑡 ≤ 2, ℎ𝑡 goes from 0 to the vicinity of 0 via a dip621

The populations are initiated at 𝜆0 = 1.001 and 𝑛0 = 𝑛̂0, therefore we have ℎ0 = 0. At the next622

generation, we have, according to equation (15), ℎ1 ≈ −𝑟. At the following generation, ℎ2 ≈ −2𝑟 ,623

etc. The distance ℎ𝑡 , negative, decreases (in absolute value) initially, and all the more so that the624

trend is fast (that 𝑟 is high). It is complex to follow up the dynamics after that initial dip (ℎ𝑡 is not625

small enough for eq.(14) to be valid). However, as one reaches 𝑡2, such that 𝜆(𝑡2) = 2, from626

eq.(15), we get that:627

ℎ𝑡2+1 ≈ (2 − 𝜆𝑡2)ℎ𝑡2 −
𝑟

𝜆2
𝑡2

≈ −𝑟
4

(16)

At 𝜆𝑡 = 2, the distance ℎ𝑡 between the “moving equilibrium” and the actual abundance is628

independent from the trajectory so far (and therefore from the choice of 𝜆0). It is negative and629
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small (four times smaller than ℎ1); the slower the trend, the smaller that distance; i.e., any initial630

difference between the projected population size 𝑛𝑡 and the moving equilibrium 𝑛̂𝑡 quickly shrinks.631

For 2 ≤ 𝜆𝑡 ≤ 3, repelling boundaries with an overcompensatory attractor632

Going one time-step further, we get ℎ𝑡2+2 ≈ − 𝑟
4 (1 − 𝑟). The lag ℎ𝑡 remains negative but now633

decreases (in absolute value) monotonically. We can show, that for ℎ𝑡 for 2 < 𝜆𝑡 < 3 (see below),634

ℎ𝑡 is constrained by two repelling boundaries:635

− 𝑟

𝜆2
𝑡︸︷︷︸

𝑙2 (𝑡)

≤ ℎ𝑡 ≤ 0︸︷︷︸
𝑙1

. (17)

which constrains ℎ𝑡 inside a range of ever decreasing amplitude, so that in this range, for most636

values of 𝑟, we have a ghost equilibrium 𝑛𝑡 ≈ 𝑛̂𝑡 . In fact, we have, from eq.(17), 𝑛̂𝑡−1 ≤ 𝑛𝑡 ≤ 𝑛̂𝑡 , in637

which we recognise, the initial step of our cobweb diagram analysis. Figure 12, displays ℎ𝑡 for a638

slow trend (𝑟 ≈ 1.5 × 10−4) in blue, and the boundaries. We also display, in red, ℎ2(𝑡) for a639

trajectory that has been artificially disturbed: ℎ2(𝑡𝑝) = 0 (𝜆𝑡𝑝 = 2.92). After the perturbation,640

ℎ2(𝑡) is repelled by both boundaries.641

Nested functions642

We have denoted 𝑛̂𝑡 , the value of 𝑛𝑡 where 𝑛𝑡+1 = 𝑛𝑡 . Similarly, let us denote ℎ̂𝑡 , the value of ℎ𝑡 so643

that ℎ𝑡+1 = ℎ𝑡 . From eq.(15), we can approximate it as644

ℎ̂𝑡 ≈
−𝑟

𝜆2
𝑡 (𝜆𝑡 − 1)

, (18)

and, as per eq. (9), we can now consider the distance645

𝑔𝑡 = ℎ𝑡 − ℎ̂𝑡 (19)

With the same reasoning on 𝑔𝑡 as that on ℎ𝑡 , it can be shown that 𝑔𝑡 follows a narrow range in646
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2 < 𝜆𝑡 < 3 with one boundary being ℎ̂𝑡 , so that if at a first approximation 𝑛𝑡 ≈ 𝑛̂𝑡 , at a second647

approximation648

ℎ𝑡 ≈ ℎ̂𝑡 , (20)

that is 𝑛𝑡 ≈ 𝑛̂𝑡 − ℎ̂𝑡 . At a third approximation, we could be more precise and write649

𝑛𝑡 ≈ 𝑛̂𝑡 − ℎ̂𝑡 − 𝑔̂𝑡 , with 𝑔̂𝑡 the value of 𝑔𝑡 so that 𝑔𝑡+1 = 𝑔𝑡 , then consider 𝑖𝑡 = 𝑔𝑡 − 𝑔̂𝑡 , etc. At 𝑡3650

(such that 𝜆𝑡3 = 3), eq.(20) leads to651

ℎ𝑡3 ≈
−𝑟

𝜆2
𝑡 (𝜆𝑡 − 1)

=
−𝑟
18

For 3 ≤ 𝜆𝑡 < 4, cascading effects652

For 𝜆𝑡 > 3, the induction leading to the boundaries of eq.(17) does not hold any longer (see653

below). At a time 𝑡ℎ, which is an increasing function of 𝑟, ℎ𝑡 starts oscillating around ℎ̂. This654

leads, quickly, to a time 𝑡𝑜 > 𝑡ℎ where ℎ𝑡 is expelled outside the boundaries (see Figure 12), and655

therefore ℎ𝑡𝑜 ≥ 0, that is 𝑛𝑡𝑜 > 𝑛̂𝑡𝑜 which, from eq.(11) leads to 𝑛𝑡𝑜+1 − 𝑛̂𝑡0 < 0: at 𝑡𝑜, 𝑛𝑡 has started656

oscillating. Considering, the nested functions further, one has ... < 𝑡𝑖 < 𝑡𝑏 < 𝑡ℎ < 𝑡𝑜, where 𝑡𝑖657

(respectively 𝑡𝑔) corresponds to the generation at which 𝑖𝑡 (respectively 𝑔𝑡) starts oscillating. As 𝑖𝑡658

is expelled from its boundaries at 𝑡𝑔, 𝑔𝑡 starts oscillating before itself being expelled from its659

boundaries at 𝑡ℎ, and so on. This corresponds to a cascading effect, that we illustrate in Figure 13,660

which displays, for the same trend as Fig.12, and for a portion of the trajectory, 𝑔𝑡 , ℎ𝑡 and 𝑛𝑡 (on661

log scale to correct for their mean).662

Induction on Repelling Boundaries663

We have (eq.16), ℎ𝑡2 ≈ ℎ𝑡2+1 ≈ − 𝑟

𝜆2
𝑡2

, so that 𝑙2(𝑡2) ≤ ℎ𝑡2 ≤ 𝑙1. Consider now that for a given 𝑡, we664

have 𝑙2(𝑡) ≤ ℎ𝑡 ≤ 𝑙1. From the right side of that inequality, ℎ𝑡 ≤ 𝑙1, and from eq.15, we get the left665

side of the same equation at the next generation:666

ℎ𝑡+1 ≈ (2 − 𝜆𝑡)ℎ𝑡 −
𝑟

𝜆𝑡𝜆𝑡+1
≥ (2 − 𝜆𝑡)𝑙1 −

𝑟

𝜆𝑡𝜆𝑡+1
= − 𝑟

𝜆𝑡𝜆𝑡+1
= 𝑙2(𝑡 + 1)
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From the left side of that inequality, 𝑙2(𝑡) ≤ ℎ𝑡 , and from eq.(15), we get the right side of the same667

equation at the next generation: for 2 ≤ 𝜆𝑡 ≤ 3,668

ℎ𝑡+1 ≈ (2 − 𝜆𝑡)ℎ𝑡 −
𝑟

𝜆2
𝑡

≤ (2 − 𝜆𝑡)𝑙2(𝑡) −
𝑟

𝜆2
𝑡

≈ −(2 − 𝜆𝑡)
𝑟

𝜆2
𝑡

− 𝑟

𝜆2
𝑡

= − 𝑟

𝜆2
𝑡

(3 − 𝜆𝑡) ≤ 0

For all 𝑡, 2 < 𝜆𝑡 < 3 and (for a speed of environmental change 𝑟 that is not too fast, see below), we669

have670

𝑙2(𝑡) ≤ ℎ𝑡 ≤ 𝑙1, (17)

which constrains ℎ𝑡 inside a range of ever decreasing amplitude 𝑙1 − 𝑙2(𝑡) = 𝑟

𝜆2
𝑡

, so that indeed, at671

first sight, in this range, for most values of 𝑟, we have 𝑛𝑡 ≈ 𝑛̂𝑡 . Indeed, inequality 17 can also be672

written:673

𝑛̂𝑡−1 ≤ 𝑛𝑡 ≤ 𝑛̂𝑡 , (21)

in which we recognise the inequality resulting from the inspection of the cobweb diagram. From674

this, we can conclude that 𝑙1 and 𝑙2(𝑡) are repelling boundaries of the abundance trajectory for675

2 < 𝜆𝑡 < 3, as per Fig.12.The induction above is loose. Focusing on 𝑙1 = 0 and 𝑙2(𝑡) = − 𝑟
𝜆𝑡𝜆𝑡−1

, we676

get, from 𝑙2(𝑡) ≤ ℎ𝑡 ≤ 𝑙1 at the next generation ℎ𝑡+1 ≥ − 𝑟
𝜆𝑡𝜆𝑡+1

= 𝑙2(𝑡 + 1) from from eq.15. From677

the same equation, we also have ℎ𝑡+1 ≤ (𝜆𝑡 − 2) 𝑟
𝜆𝑡𝜆𝑡−1

− 𝑟
𝜆𝑡𝜆𝑡+1

. This expression is negative for678

most of the 2 ≤ 𝜆𝑡 ≤ 3 range. It becomes positive when (𝜆𝑡 − 2) 𝑟
𝜆𝑡𝜆𝑡−1

= 𝑟
𝜆𝑡𝜆𝑡+1

that is, when679

(𝜆𝑡 − 2) (𝜆𝑡 + 𝑟) = 𝜆𝑡 − 𝑟, which corresponds to 𝜆𝑡 =
3−𝑟

2 +
√︂
𝑟 +

(
3−𝑟

2

)2
which is very close to 3680

for most values of 𝑟.681

6 Discussion682

We have explored the dynamical consequences of the rate of change of an environmentally driven683

demographic parameter for density-dependent populations, in discrete- and continuous-time,684

under coupled short- and long-term environmental change and with a trophic interaction. We685

characterised four rates of long-term environmental change, corresponding to qualitatively and686
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quantitatively different combinations of dynamical behaviours across these different, but familiar687

ecological scenarios, and related our findings to recent developments in the study of regime shifts688

in ecological dynamics – long transients and tipping points.689

Long transients690

The dynamics of very fast trends were mainly influenced by transient dynamics. This qualitative691

regime appears for the highest rates of environmental change, where 𝑟 > 𝑟∗ (the r-tipping point),692

in the r-bifurcation diagram (fig. 7). Here, the population did not track the environment, but693

showed highly unpredictable transient duration and amplitude range (fig. 7 and fig.S3 of SMA1).694

The ecological behaviour of such (potentially) "long transients" has recently been described for695

various types of attractors, including showing how the transient can push the population below696

pseudo-extinction thresholds from abundant population sizes and/or on the way to an attractor697

corresponding to high abundances, affecting population resilience (e.g., Baker and Röst, 2020;698

Poggiale, 2020; Rubin et al., 2022; Morozov et al., 2016; Rubin et al., 2022; Morozov et al., 2020,699

2024).700

Most of the reproductive parameter values of the logistic map (1 < 𝜆 ≲ 3.57) lead to unique701

attractors (stable point or n-point cycling equilibrium points) which are approached by any initial702

population abundance (0 < 𝑛0 < 1); as such the abundance trajectories are not subject to the703

chaotic supertransients typical of spatio-temporal dynamical systems (Lai and Tél, 2011). We704

showed that certain rates of environmental change led to unpredictable abundance dynamics and705

transient durations, both during and after the environmental trend. However, one of our main706

findings is that this behaviour is limited to a specific range that corresponds to very fast707

environmental trends with respect to the natural speed of the system (fig.7), (i.e., the natural708

fluctuations of demographic rates, here the fertility rate 𝜆𝑡 , which is not expected to transition709

from its minimal value (𝜆𝑡 ≳ 1) to its maximum value (𝜆𝑡 ≲ 4) in a matter of a few generations,710

Vanselow et al., 2019). For very fast trends, the dynamics are driven by the transient, which is711

sensitive to initial conditions and therefore very hard to predict.712
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𝑟-tipping points, delays in bifurcation and 𝑏-tipping points713

When the environmental rate of change was slower than 𝑟∗, population abundances initially714

appeared to behave according to the constant environment framework; i.e., following the715

bifurcation diagram which, for the logistic map, predicts a monotonic increase in long-term716

abundances (𝑛̂, 𝜆 < 3) followed by oscillations (𝜆 > 3). In other words, the rate of environmental717

change was slow enough for the abundances to track the environment. This situates 𝑟∗ as a718

bifurcation on an r-bifurcation diagram, or 𝑟-tipping point, segregating two qualitatively different719

regimes (Ashwin et al., 2012; Siteur et al., 2016; Ritchie et al., 2023; Vanselow et al., 2022;720

Abbott et al., 2024). We showed, however, that the effect of 𝑟 on the dynamics goes beyond the721

𝑟-tipping point. On the slower side of 𝑟∗, abundances track the environment, in the shape of the722

moving equilibria corresponding to the attractors of the bifurcation diagram (Hastings et al.,723

2018). However, because of the environmental trend, the bifurcations are delayed: in the case of724

the logistic map with increasing reproductive rate (𝜆𝑡), the population abundances start oscillating725

at a higher 𝜆𝑡 than the bifurcation point in the constant environment.726

If the reproductive rate decreases over time (i.e., 𝑟 < 0), the bifurcation is again delayed, but in the727

opposite direction: the population stops oscillating at lower reproductive rates (𝜆𝑡 < 3; SMA5).728

During these bifurcation delays, the moving equilibrium tracked by the abundances does not729

correspond, in the constant environment framework, to a stable equilibrium; it is a ghost730

equilibrium. In ecology, delayed bifurctions have rarely been investigated, with the exception of731

extinction (transcritical) bifurcations (Zarada and Drake, 2017; Drake and Griffen, 2010).732

However, delayed bifurcations have been studied extensively in other non-ecological contexts (e.g.,733

Wu and Wang, 2017; Su, 2001; Wei et al., 2008; Baer et al., 1989; Miyazaki and Tchizawa, 2005).734

The bifurcation delay is accompanied by a catch-up effect: abundances quickly jump from the735

ghost equilibrium to the next equilibrium (corresponding to the 2-generation cycles, when736

considering the 𝜆 = 3 bifurcation at of the logistic map with increasing reproductive rate). This737

leads to an abrupt qualitative and quantitative change of regime for the abundances: a 𝑏-tipping738
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point; 𝑏-tipping points are generally associated with complex (discontinuous) bifurcations where,739

e.g., on one side of the bifurcation, there is no equilibrium (Boettiger and Batt, 2020; Scheffer740

et al., 2001; Dakos et al., 2012; Boettiger and Hastings, 2012).741

We showed that 𝑏-tipping points can also occur for the simpler (continuous), period-doubling742

bifurcations of the logistic map, where passing the bifurcation leads to an abrupt regime change.743

This implies that while the trend is slow enough for the abundances to track the environment, they744

can track different versions of the environment for the same value of the environmentally driven745

parameter, as a function of the environmental rate of change. That is, they track different moving746

equilibria/ghost attractors, and rapidly shift between them to generate 𝑏-tipping points.747

For the logistic map with increasing reproductive rate over time (𝑟 > 0), the abundances track the748

unstable (ghost) point equilibrium up to the first 𝑏-tipping point and the stable 2-generation cycle749

thereafter, with the change of regime occurring very rapidly. In summary, we defined very fast750

trends, for a given demographic rate and related bifurcation, as environmental trends leading to751

population dynamics dominated by transients. On the slower side of the 𝑟-tipping point, fast752

trends correspond to cases where no bifurcation occurs (despite the temporally-changing753

demographic rate passing the value of the constant-environment bifurcation). In slow trends, the754

bifurcation is also delayed, but this delay occurs before the end of the trend. Very slow trends are a755

special case of slow trends where the rate of environmental change is slow enough to avoid any756

post-trend transient.757

Risks of simplifying frameworks758

Overall, we showed that a population’s trajectory under an environmental trend is the result of two759

forces: the transient approach towards the asymptotic environmental attractor and the constant760

temporal shift of that attractor (it is "moving"). The population trajectory cannot, therefore, be761

understood by considering only the asymptotic abundances based on the bifurcation diagram, nor762

the transient dynamics approaching these asymptotic abundances. Focusing solely on the763
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asymptotic behaviour in two distinct, constant environments, as ecologists sometimes do to764

anticipate population responses to global change, reduces the validity of such studies to765

unrealistically slow trends. Focusing solely on the latter (transients), by considering an766

instantaneous change between the initial and the long-term value of the environment following the767

transient dynamics framework, is equally risky as it limits the validity range to unrealistically fast768

trends.769

We have shown here, that considering both, in the hope that a realistic trend will behave in an770

intermediate way between a very fast and a very slow trend, is not satisfactory either: it prevents771

us from observing the existence of an 𝑟-tipping point and the emergence of simple bifurcations as772

𝑏-tipping points. However, while simplifying assumptions are an unavoidable part of ecological773

modelling, the most important risk lies in not expressing them explicitly when interpreting results774

(Scheiner, 2013).775

A general perspective and a toolkit for ecologists776

We considered simple population models with linear trends in demographic rates, but note that the777

approach can easily be extended to non-linear trends (SMA4). Our approach does not correspond778

to a specific system or environmental trend but provides a general framework under which to779

study any population model under environmental change; including those implemented780

experimentally (generally, over relatively short timescales, e.g., Tabi et al., 2020). A researcher781

equipped with a population projection model and the functional responses of relevant782

demographic rates to environmental cues will be able, via the 𝑟-bifurcation diagram, to get a783

broader picture of the future population dynamics under different environmental trend scenarios,784

and identify 𝑟-tipping points. For a given scenario, the superimposition diagram will highlight the785

consequences of passing certain (even simple, continuous) bifurcations and the potential regime786

shifts, or 𝑏-tipping points, it may lead to. We hope these tools and this framework will allow more787

complete investigations into population or community resilience to the ongoing global changes of788

uncertain speeds.789
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For example, global change has important impacts on sea temperature and ocean acidification, in790

turn, affecting critical ecosystem services provided by fisheries (Jørgensen et al., 2020; Mondal791

and Lee, 2025). These long-term trends, for which the IPCC has proposed several scenarios in792

terms of magnitude and duration (Diop et al., 2018; Cheung et al., 2016), impact the recruitment793

of fish populations (Shoji et al., 2011; Mondal and Lee, 2025) and therefore the stocks which794

leads to various trends in fishing pressure (Hilborn et al., 2022).795

Projection models have been developed for various populations, communities or areas, embedding796

the response of recruitment to these gradual changes in temperature, acidity and/or fishing797

pressure (Sadykov et al., 2022; Brooks, 2024; Maunder and Thorson, 2019). They can further798

incorporate life-history evolution (McKeon et al., 2024) and spatial structure (incorporating the799

"tropicalization" of fishing areas, e.g., Cheung et al., 2013). From these inputs, the consequences800

of the rate of environmental change on fish populations can be studied via superimposition801

diagrams; they can provide crucial information on potential 𝑏-tipping points, delays in bifurcation,802

and more generally the possibility of abrupt regime shifts in the abundance and distribution of fish803

stocks. The r-bifurcation diagram, considering the speeds of these various trends on a continuum804

(considered individually or jointly), yields important information on the effects of various global805

change and fishing policy scenarios on long-term fish stock dynamics. It would inform on both806

the dynamics during and after the trend, allowing predictions of what abundance levels and how807

fast, fish stocks are expected to stabilise once/if 𝐶𝑂2 emissions are significantly reduced.808

While we have focussed on the dynamics of density dependent population abundances under809

(linear) environmental trends, we believe the approach and associated analytical tools, will810

generalise to models of trait or other dynamics and a wide range of environmental change811

scenarios. This should allow novel hypotheses to be developed and compared around constant vs.812

changing environments, helping us to determine the importance of the existence and rates of813

temporal environmental change on ecological and evolutionary dynamics.814
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Box 1: Glossary

time-varying demographic parameter: demographic rate (e.g. survival) that varies with the environment and therefore over time. Its

time series accounts for both the time-series of environmental cues and the response of the demographic rate to these cues.

Stationary environment: environmental framework where demographic rates vary over time, but their long-term statistical properties

(e.g., mean, variance) are constant.

Environmental trend: (non-stationary) environmental framework where one (or more) demographic rate(s) increases or decreases

consistently over time.

Environmental rate of change (𝑟): the speed at which a given demographic rate changes over time.

Regime shift: a qualitative change in the dynamics of a population, or the dynamics and/or composition of a community.

Tipping point: critical threshold that, when crossed, leads to a sudden, quantitative and qualitative change in population dynamics. For a

𝑏-tipping point, this threshold corresponds to a certain, value of the focal demographic rate. For a 𝑟-tipping point, it corresponds to a

certain value of a the environmental rate of change.

Bifurcation: a certain value of a demographic rate separating, in a constant environment, qualitatively different long-term (asymptotic)

dynamics. The bifurcation diagram provides the asymptotic dynamics for a continuum of values of the demographic rate. For

discontinuous bifurcations, there is no (positive) equilibrium point on one side of the bifurcation (e.g., fold or saddle-node bifurcations).

Equilibrium: in a constant environment, the state of a system where dynamics have become constant over time (e.g., constant abundances

or generation cycles of constant period and amplitudes). If a small perturbation away from the equilibrium leads back to it, the equilibrium

is deemed stable (i.e., an attractor). An equilibrium can correspond to a single abundance value (point equilibrium) or a series of

values (cycle) that asymptotic abundances encounter with fixed period.

Chaotic range: range of values of the demographic rate where the asymptotic dynamics are chaotic (i.e., no stable attractor).

Moving equilibrium: abundance point, corresponding to an equilibrium in a constant environment, that changes over time due to

environmentally driven changes in a demographic parameter (see eq.4). Ghost attractor: In the context of this study, a ghost attractor is,

in a varying environment, a state of the system that would be an equilibrium (stable or unstable) if demographic rates were held constant.

More generally, it is "a state that is not an equilibrium, but would be under slightly different conditions" (Hastings et al., 2018).

Transients: transient dynamics correspond to the trajectory of a system towards the asymptotic regime, following an instantaneous

perturbation, or initiation of the population away from the asymptotic attractor. In some cases, called long transients these regimes

can last for many generations and incur sudden changes in abundances occurring long after the perturbation. Under-compensatory,

respectively over-compensatory, transients correspond to transient dynamics where the equilibrium is reached via monotonic – constantly

increasing or decreasing – changes in abundance, respectively via (damped) oscillating abundances (abundances overcompensate).

Superimposition diagram: superimposition of the bifurcation diagram with the abundance dynamics considered in the alternative

timescale of the demographic rate.

r-bifurcation diagram: Properties of population dynamics (e.g., bifurcation or post-trend transient) displayed for a continuum of values

of the rate of environmental change.
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A1 Dynamics of the logistic map in constant environments1163

In a constant environment, the asymptotic behaviour of a population following the logistic map1164

(𝑛𝑡+1 = 𝜆𝑛𝑡 (1 − 𝑛𝑡); eq. 1) is determined by the value of the parameter 𝜆, the reproductive rate in1165

the absence of intraspecific competition. Qualitative differences in population dynamics can be1166
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Figure S1: Transient and asymptotic dynamics of the logistic map (eq.1) for 𝑛0 = 0.395 and various
values of 𝜆. For 𝜆 < 1, the abundance converges towards 0. For 1 < 𝜆 < 3, abundances converge
towards 𝑛̂ = 1 − 1

𝜆
, with damped (overcompensatory) oscillations for 𝜆 > 2 (𝐽 (𝑛̂) < 0) but no

oscillations for 𝜆 < 2 (𝐽 (𝑛̂) > 0). The equilibrium is unstable for 𝜆 > 3 (𝐽 (𝑛̂) < −1), which is a
period doubling bifurcation (𝜆 = 3.2 generates a 2-generation asymptotic cycle), followed by others
(for 𝜆 = 3.5 we have a 4-generation asymptotic cycle) until 𝜆 ≈ 3.54409 which is the onset of chaos
(e.g., for 𝜆 = 3.9). Above that, the behaviour will be chaotic for most values of 𝜆, but there are
still certain "islands of periodic stability" or "periodic windows" such as 𝜆 = 3.828 which exhibits
a 3-generation asymptotic cycle and 𝜆 = 3.9605 = 𝜆𝑇 which exhibits a 4-generation asymptotic
cycle.
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understood from the Jacobian, which corresponds, for unstructured models like the logistic map,1167

to the derivative of the population growth function 𝐽 =
𝑑𝑓

𝑑𝑛
following an arbitrarily small1168

perturbation, evaluated at the non-trivial equilibrium: 𝐽 (𝑛̂) = 2 − 𝜆. As long as −1 < 𝐽 (𝑛̂) < 1,1169

the population will return to the equilibrium following a small perturbation, which maps onto the1170

stable equilibrium region 1 < 𝜆 < 3 in fig.1. However the trajectory to the equilibrium will differ1171

qualitatively according to the sign of 𝐽 (𝑛̂). When 1 < 𝜆 < 2, 𝐽 (𝑛̂) > 0, the stable equilibrium is1172

approached monotonically (i.e., smoothly; under-compensation), while for 2 < 𝜆 < 3, 𝐽 (𝑛̂) < 0,1173

the population trajectory shows damped oscillations (over-compensation). This distinction is1174

crucial for transient regimes, as well as when studying environments that fluctuate around a fixed1175

mean value (Nisbet and Gurney, 1985; Greenman and Benton, 2003). As 𝜆 approaches 3 from1176

below, the 2-generation auto-correlation of the noisy (but stationary) version of the logistic map1177

approaches -1 (see SMA3): the population displays quasi 2-generation cycles, that is, noisy1178

oscillations between consecutive low- and high abundances that appear similar to a deterministic1179

2-generation cycle. The sign and the amplitude of the Jacobian therefore provides useful1180

information for small deviations from the equilibrium and for certain equilibria, but is not1181

generally sufficient to understand the road to the asymptotic behaviour. Fig.S1 shows the transient1182

and asymptotic population dynamics for representative values of 𝜆, for a given arbitrary initial1183

population abundance, 𝑛0 = 0.395.1184

Periods of the generation cycles of the logistic map1185

The bifurcation diagram (fig.1) provides valuable information about the existence and range of1186

stable point equilibria, as well as the appearance of period-doubling bifurcations and the1187

amplitude of asymptotic cycles or chaotic bounds. However, the exact onset of chaos and the1188

"islands of periodic stability" that occur after that onset are less easy to spot on the bifurcation1189

diagram (without zooming in on narrower parameter ranges). Instead, one can compute the1190

Lyapunov exponent or directly compute the period of an asymptotic cycle (if it exists). For a range1191

of 𝜆 values and for arbitrary initial condition 𝑛0 = 0.1, we produce the abundance dynamics for1192
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the logistic map across 1, 000 generations and compute the Lyapunov exponent of the abundance1193

time-series (in red on fig.S2, right-hand scale). The Lyapunov exponent is negative for periodic1194

cycles and positive for chaotic dynamics. To compute the period of the cycles, we simulate1195

dynamics across 40, 000 generations and focus on the last 700 generations. We test whether1196

𝑚𝑎𝑥𝑡 (𝑛(𝑡 + 𝑗) − 𝑛(𝑡))2 < 𝜖 , for 𝜖 = 10−5, for increasing values of 𝑗 starting at 1. For each value of1197

the parameter 𝜆, we allocate the first value of 𝑗 for which the condition is respected as its "cycle1198

period". When, by 𝑗 = 100, no cycle has been found, we allocate a "cycle period" of -1, which we1199

call chaos (but it can also correspond to a cycle of period > 100 generations, or a shorter cycle1200

period with an extremely long, supertransient). We display these "cycle periods" in blue on1201

fig.S2; where we only focus on periods between 1 and 7, and allocate "cycle period" 0 to periodic1202

cycles of period comprised between 8 and 100. This allows to identify the highest values of 𝜆 for1203

which one has an asymptotic cycle of period <8: it is a 4-generation range (highlighted with an1204

orange circle in fig.S2), comprising 𝜆𝑇 = 3.9605.1205

Figure S2: cycle period (blue) and Lyapunov Exponent (red, rhs) for the logistic map (eq.1). Period
-1 indicates chaos (or cycles of period>100) and period 0 indicate a cyclic behaviour with 7 <
period < 100.
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Transient dynamics for a window of periodic stability: 𝜆 = 𝜆𝑇 = 3.96051206

Focusing, in particular, on 𝜆 = 𝜆𝑇 = 3.9605, leading to an asymptotic 4-generation cycle for any1207

initial condition, we want to understand how the initial conditions (𝑛0) affect the transient towards1208

the 4-generation cycle and its duration. For 𝑛0 = 𝑛̂(𝜆0) ≈ 0.001, this corresponds to the1209

step-change, and the dynamics are displayed in fig.S6 (bottom row): the transient is roughly 801210

generations (relatively long). Here we illustrate how sensitive the transient period is to initial1211

conditions by considering three further examples: an extremely short transient of 4-5 generations1212

when 𝑛0 = 0.002, which corresponds to an initial condition for 𝜆𝑡 of 𝜆0 = 1.002, (fig.S4, top row);1213

the complete lack of any transient when 𝑛0 = 0.0387 (which is the equilibrium for 𝜆0 = 1.0403,1214

and the lowest of the four abundances of the asymptotic cycle at 𝜆𝑇 , fig.S4, middle row); and1215

finally a very long transient of around 320 generations at 𝑛0 = 0.0377 (𝜆0 = 1.0392 fig.S4, bottom1216

row).1217

We note that this model is so sensitive to initial conditions that the precise transient period can be1218

sensitive to the numerical precision of the software used to simulate the system. Extending this1219

analysis for a wider range of values of 𝑛0, for which we estimate the duration of the transient via1220

𝑚𝑖𝑛(𝑡, 𝑚𝑎𝑥𝑡 |𝑛(𝑡 + 4) − 𝑛(𝑡) | < 𝜖), for 𝜖 = 0.0001, we plot the output in fig.S3, which shows that1221
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Figure S3: Transient duration for a step-change towards the logistic map of parameter 𝜆 = 𝜆𝑇 =

3.9605 (where the four points of the asymptotic cycle are represented as black vertical lines) for
various initial values 𝑛0, calculated as 𝑚𝑖𝑛(𝑡, 𝑚𝑎𝑥𝑡 |𝑛(𝑡 + 4) − 𝑛(𝑡) | < 𝜖), for 𝜖 = 0.0001.
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for the chosen asymptotic state corresponding to 𝜆 = 𝜆𝑇 , as a function of the choice of 𝑛0, one can1222

encounter transients as long as 850 generations.1223

A2 Bifurcation at 𝜆 = 3 and b-tipping point1224

In the constant environmental framework, there is a period-doubling bifurcation at 𝜆 = 3 that1225

segregates the fixed point, non-zero equilibrium regime (1 < 𝜆 < 3) and a 2-generation cycles1226

regime (𝜆 > 3); see fig.1. The 𝜆 = 3 case is a neutrally stable 2-point cycle, i.e., the steady-state1227

cycle amplitude depends on 𝑛0. Contrary to a saddle node bifurcation – where on one side of the1228

bifurcation there is no equilibrium point – lim𝑟→0 𝑏(𝑟) = 3 (which we denote 𝑏(0) for simplicity)1229

does not correspond to a discontinuity in the abundances over time. Equating the very slow trend1230

framework with the constant environment framework, implies considering that as the rate of1231

environmental change 𝑟 → 0, 𝑛𝑡 corresponds to the asymptotic abundance of the bifurcation1232

diagram. Fig.4, shows the "acceleration" of population change time-series,1233

𝑎𝑡 = | |𝑛𝑡+1 − 𝑛𝑡 | − |𝑛𝑡 − 𝑛𝑡−1 | | in the 𝜆𝑡 time-scale for various rates of environmental change (𝑟),.1234

The acceleration peaks later (𝑏(𝑟) increases with 𝑟) and higher as the rate of environmental1235

change 𝑟 increases. Fig.S5 displays the value of the delay in the bifurcation 𝑏(𝑟) (red, rhs) and1236

𝑑 (𝑟) = 𝑚𝑎𝑥𝑡 (𝑎𝑡), the peak in acceleration, , as a function of 𝑟; a metric for the discontinuity1237

generated in abundance time series. As 𝑟 → 0, 𝑏(𝑟) → 𝑏(0) = 3 and 𝑑 (𝑟) → 0: there is no1238

regime shift or discontinuity, for a paradoxical trend with speed 𝑟 = 0. However, for any "real"1239

positive trend, 𝑟 > 0, there is a discontinuity as 𝜆𝑡 passes 𝑏(𝑟) – measured by1240

𝑑 (𝑟) = 𝑚𝑎𝑥( |𝑛𝑡+1 − 𝑛𝑡 | − |𝑛𝑡 − 𝑛𝑡−1 |) – that increases in magnitude as 𝑟 increases (figs 4,S5 and1241

S6). In other words, the trend turns a simple, continuous, bifurcation into a tipping point at1242

𝑏(𝑟) ∀ 0 < 𝑟 < 𝑡𝑟 . In summary, 𝑏(𝑟) is not a b-tipping point for a (paradoxical) trend of speed1243

𝑟 = 0, but one for any real trend 𝑟 > 0 (see SMA2).1244
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Figure S4: Sensitivity of transient period to initial conditions; trends dynamics of a step change
(T=1) from 𝜆0 (and 𝑛0 = 𝑛̂(𝜆0)) to 𝜆𝑇 = 3.9605, followed by 500 generations at the constant
environment; (a) left panels: abundance 𝑛𝑡 (blue) and environmental parameter 𝜆𝑡 (red, secondary
axis); (b) right panels cobweb diagram: response curve (in red) and the abundance trajectory (in
blue, transient, in pink, asymptotic). (top) 𝜆0 = 1.002: extremely short transient dynamics (4
generations) ,(middle) 𝜆0 = 1.0403 complete lack of transient dynamics; 𝜆𝑇 = 3.9605 (bottom)
𝜆0 = 1.0392 very long transient dynamics (320 generations).
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Figure S5: Maximum acceleration 𝑑 (𝑟) (blue line, left hand vertical axis) and parameter value at
first oscillation 𝑏(𝑟) (red line, right hand vertical axis) as functions of the rate of environmental
change, 𝑟.

Delay in bifurcation and onset of Cycling1245

Figure S6 summarises the abundance time-series in chronological time (1st column, I) and in the1246

re-scaled 𝜆𝑡 time-scale (2nd column, II), for the very slow (1st row, 𝑎), slow (2nd row, 𝑏), fast (3rd1247

row, 𝑐) and very fast trend (4th row, 𝑑) studied in the main text. The 3rd column (III) displays1248

cobweb diagrams of the abundance trajectories in the vicinity of the b-tipping point of the slow1249

environmental trend, 𝜆𝑡 = 3.146 = 𝑏(𝑟𝑠), for these four different trend speeds. For the slow trend,1250

it corresponds to the appearance of the first oscillations (fig.S6bIII). For the very slow trend1251

(fig.S6aIII), the time period observed occurs long after the tipping point,1252

𝑏(𝑟𝑣𝑠) = 3.0009 ≪ 𝑏(𝑟𝑠): the population follows quasi-2-generation cycles very close to that1253

predicted by the constant environment for 𝜆 = 3.144. For the fast trend (fig.S6cIII) it occurs long1254

before, 𝑏(𝑟𝑠) ≪ 𝑏(𝑟 𝑓 ): the abundances track the (ghost) "moving equilibrium" (and will do all the1255

way to 𝑡 = 𝑇). The different regimes for the same value of the environmentally driven parameter1256

𝜆, for trends of different speeds, reflect the different regimes for various points along the trajectory1257

for one specific speed 𝑟 as can be expected from eq. 10.1258
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Figure S6: Summarising population dynamics under continuous environmental change corre-
sponding to very slow (a, 1st row), slow (b, 2nd row), fast (c, 3rd row) and very fast (d, 4th row)
environmental trends (𝑟). (I, 1st column) time-series for abundances (blue) and reproductive rate
𝜆𝑡 (red, secondary axis); (II, 2nd column) superimposition of the abundance time-series (blue) as a
function of 𝜆𝑡 overlaying the bifurcation diagram (black) with the moving equilibrium point in red;
and (III) cobweb diagrams, with population response curves ( 𝑓 (𝑛𝑡)) in red, 1:1 curve in black and
population abundance trajectories in blue
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Start of oscillation analysis and r-bifurcation diagrams1259

In the main text, we display the 𝑟-bifurcation diagram for the logistic map and a linear trend in 𝜆𝑡1260

(fig.7), which shows 𝑏(𝑟), the value of 𝜆𝑡 at the first oscillation in abundances (and the duration of1261

the post-trend transient, 𝐷 (𝑟)). We can also perform the same analysis on the chronological1262

time-scale by considering 𝑡0(𝑟), the generation of the first oscillation in abundances (fig.S7 ).1263

Figure S7– a loglog plot so that we have 𝑙𝑛(𝑇) as linear function of 𝑙𝑛(𝑟) – shows that 𝑡𝑜 (in blue)
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Figure S7: The generation of first oscillation 𝑡𝑜 (blue line), the generation 𝑡3 at which 𝜆𝑡3 = 3 (red
line), and the number of generations of the trend 𝑇 (orange line), for various values of 𝑟, on a loglog
scale. The 2 figure panels differ only by the range of 𝑟 displayed. Green and grey vertical lines
illustrate borders between qualitatively different rates of environmental change.

1264

is a decreasing function of 𝑟, up until the 𝑟-tipping point 𝑟∗. The r-tipping-point (𝑟∗) segregates1265

monotonic 𝑡0(𝑟) for fast trends (𝑟 < 𝑟∗) and non-monotonic 𝑡0(𝑟) for very fast trends (𝑟 > 𝑟∗). In1266

the monotonic range, 𝑟† segregates the range where 𝑡0 > 𝑇 (fast trends, 𝑟† < 𝑟 < 𝑟∗) and where1267

𝑡3 < 𝑡0 < 𝑇 (slow and very slow trends, 𝑟 < 𝑟†); where 𝑡3 is such that 𝜆𝑡3 = 3. As the rate of1268

environmental trends slows towards 0 (𝑟 → 0), the generation of the first abundance oscillation1269

tends towards the constant framework bifurcation (𝑡𝑜 (𝑟) → 𝑡3). The very fast trends range is1270

characterised by 𝑟 values for which 𝑡0 < 𝑇 , that is, where the first oscillation occurs before the end1271

of the environmental trend; but fig.S7 also shows that we can have 𝑡0 < 𝑡3 in that range; that is,1272

oscillations before reaching the cycle range (𝜆 < 3).1273

Figure S7 illustrates that on the 𝜆𝑡 time-scale, we have lim𝑟→0 𝑏(𝑟) − 3 = 0, while on the1274

chronological time-scale lim𝑟→0 𝑡𝑜 (𝑟) − 𝑡3(𝑟) = +∞. It can be easier to understand why, by1275
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considering both the time at which the first decline in population size is observed, 𝑡𝑜 (𝑟), and the1276

number of generations for which the abundance keeps increasing monotonically having passed the1277

constant environment bifurcation point, 𝜆𝑡3 = 3, that is 𝑡𝑜 − 𝑡3, as per fig.S8. It helps to understand1278

why the slower the environmental trend, the longer (in number of generations) the population1279

increases monotonically after having passed 𝜆 = 3, and the (chronological) delay in oscillation1280

(𝑡𝑜 (𝑟) − 𝑡3(𝑟)) tends towards ∞ as 𝑟 tends towards 0. While the projection of this delay onto the1281

alternative time-scale 𝜆𝑡 , 𝑏(𝑟) − 3, increases with the rate of the environmental trend 𝑟 (fig.7), the1282

opposite is true on the chronological time-scale (blue on fig.S8). In other words, the slower the1283

environmental trend, the longer (in number of generations) the population increases monotonically1284

after having passed 𝜆 = 3, and the (chronological) delay in oscillation (𝑡𝑜 (𝑟) − 𝑡3(𝑟)) tends1285

towards ∞ as 𝑟 tends towards 0. However, this delay in the time of first oscillation (𝑡𝑜 − 𝑡3)1286

decreases more slowly with 𝑟 than 𝑇 − 𝑡𝑜 (red on fig.S8): relative to the time spent in the trend past1287

𝑡3, the proportion corresponding to monotonic increases 𝑡𝑜−𝑡3
(𝑇−𝑡𝑜)+(𝑡𝑜−𝑡3) increases with 𝑟 and tends1288

towards 0 as 𝑟 does. On fig.S8, the border separating the slow and fast trends (𝑟†) corresponds to a1289

difference in slope of 𝑙𝑛(𝑡𝑜−𝑡3)
𝑙𝑛(𝑟) , caused by the fact that, for fast trends, 𝑡𝑜 = 𝑇 , so this slope is1290

"forced" at −1. It also corresponds to the point where 𝑇 − 𝑡𝑜 becomes zero (for fast trends) and1291

cannot be computed on a log scale (red on fig.S8) Contrary to the fast trends, for very fast trends1292

we can have 𝑡𝑜 < 𝑇 , so that 𝑇 − 𝑡𝑜 can be displayed for some values of 𝑟 on the loglog plot (in red).1293

Around the 𝑟-tipping point1294

It is clear from the r-bifurcation diagram (fig.7) that there is regime shift at 𝑟∗, segregating a1295

smooth regime, for 𝑟 < 𝑟∗, where 𝑏(𝑟) decreases monotonically (first as a plateau, then as a1296

strictly decreasing function) from 𝑏(𝑟∗) = 𝜆𝑇 to the limit lim 𝑏(𝑟)𝑟→0 = 3. In fig.S9, we illustrate1297

this by providing the dynamics of the trendy logistic map for rates of environmental change 𝑟 in1298

the vicinity of 𝑟∗.1299
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very slow slow fast very fast

Figure S8: r-bifurcation diagrams illustrating quantitative characterisation of four qualitatively
different rates of environmental change (very slow, slow, fast and very fast; 𝑟 on the (chronological)
delay in oscillations 𝑡𝑜 − 𝑡3 and the (chronological) duration of the portion of the trend after the first
oscillation 𝑇 − 𝑡𝑜, on a log scale

Other period doubling bifurcations1300

For certain rates of environmental change 𝑟, the abundance time series can display a delay in the1301

second period doubling bifurcation (from 2- to 4-generation cycles; fig.S10): abundances keep1302

tracking the 2-generation cycle ghost equilibrium past the constant-environment bifurcation,1303

before abruptly shifting to quasi-4-generation cycles. However, despite the self-similarity of the1304

logistic map, it is possible for a given speed of environmental change (𝑟) to encounter a b-tipping1305

point at one period-doubling bifurcation and not others (as for 𝑟𝑠, see fig.3).1306

A3 Auto-correlation of the noisy stationary logistic map1307

For the logistic map in a noisy (but stationary) environment, that is, for example, for1308



𝑛𝑡+1 = 𝜆𝑡𝑛𝑡 (1 − 𝑛𝑡)

𝜆𝑡 = 𝑚𝑎𝑥(0, 𝑚𝑖𝑛(𝜆̄ + 𝜖𝑡 , 4))

𝜖𝑡 ∼ N(0, 𝜎2
𝑒 )

, (22)
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Figure S9: Summarising population dynamics under continuous environmental change for various
values of 𝑇 (rows), on both sides of the r-tipping point 𝑟∗, corresponding to 𝑇 = 34. Plots of
the abundances over time (left column), the superimposition of the abundance dynamics over
the bifurcation diagram (centre column) and the cobweb diagram (right column), where response
curves are in red, asymptotic dynamics in black, trend dynamics in blue and post-trend transient
dynamics in green XIII



Figure S10: Population size 𝑛𝑡 (in blue) given as a function of 𝜆𝑡 for a slow environmental
trend (𝑟 ≈ 1.5 × 10−4 corresponding to 𝑇 = 20, 000 generations), superimposed over a classical
bifurcation diagram (black), starting at 𝜆0 = 1.001 and 𝑛0 = 𝑛̂(𝜆0) and followed by 500 generations
at constant 𝜆𝑇 = 3.9605. The "moving equilibrium" 𝑛̂𝑡 is shown in red.

we generate a single time-series for 𝜖𝑡 for a standard deviation of 𝜎𝑒 = 0.1, that we apply to1309

various values of 𝜆̄ and compute, for each, the corresponding 𝑛𝑡 time series (with 𝑛1 = 0.1), and1310

its one-generation auto-correlation 𝜌(𝜆̄) = 𝐶𝑜𝑣(𝑛𝑡+1,𝑛𝑡 )
𝑣𝑎𝑟 (𝑛𝑡 ) (fig.S11). As expected from the1311

deterministic constant environment framework analysis, the autocorrelation is at its lowest in the1312

range 3 < 𝜆 < 3.44949 corresponding to 2-generation asymptotic cycles. However, 𝜌(𝜆̄) < −0.81313

for 𝜆̄ > 2.84, so that we have quasi-2-generation cycles for 𝜆̄ in a range corresponding to a stable1314

fixed point equilibrium, corresponding to the overcompensatory transients leading to a stable1315

equilibrium attractor.1316

A4 A non-linear trend: with no oscillations and constant1317

distance to the moving/ghost equilibrium1318

For any trend, we never have 𝑛̂𝑡+1 = 𝑛̂𝑡 = 𝑛̂ as this would imply 𝜆𝑡 = 𝜆𝑡+1 = 𝜆 a constant1319

environmental parameter (eq.4). From eq.18, we see that similarly, for a linear trend, one can1320

never have ℎ̂𝑡+1 = ℎ̂𝑡 = ℎ̂. However this is possible for a non-linear trend, and that same equation1321

shows that the speed 𝑟𝑡 required for the population abundances to remain at a constant distance to1322
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Figure S11: 2-generation auto-correlation 𝜌(𝜆̄) = 𝐶𝑜𝑣(𝑛𝑡+1,𝑛𝑡 )
𝑣𝑎𝑟 (𝑛𝑡 ) for the noisy stationary logistic map

(eq.22). We apply a given 𝜖𝑡 ∼ N(0, 𝜎2
𝑒 ) time series with 𝜎𝑒 = 0.1 to a range of mean parameter

value 𝜆̄.

the moving equilibrium, ℎ̂, has to increase with time. From eq.14, we can actually build a 𝜆𝑡1323

time-series that does that, by replacing ℎ𝑡+1 and ℎ𝑡 by ℎ̂, we get ℎ̂ = (2 − 𝜆𝑡) ℎ̂ + 𝜆𝑡−𝜆𝑡+1
𝜆𝑡+1𝜆𝑡

, which1324

leads to1325

𝜆𝑡+1 =

(
1
𝜆𝑡

+ ℎ̂(𝜆𝑡 − 1)
)−1

(23)

For a given ℎ̂, this yields an associated time-series for 𝜆𝑡 that increases exponentially over time1326

(see, for ℎ̂ = −0.001, the parameter and abundance time series in fig.S12).

Figure S12: time-series (left), superimposition diagram (centre and right) for 𝜆𝑡 increasing expo-
nentially as per eq.23, with constant distance to ghost attractor: ℎ̂ = −0.001

1327
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A5 The trendy logistic map with a decreasing environmental1328

trend, 𝑟 < 01329

Here, we briefly consider a linear trend on the parameter 𝜆 of the logistic map (as per the main1330

text) but with negative speeds. That is, the initial and final value of 𝜆𝑡 are reversed: we now have1331

𝜆0 = 3.9605 (4-point cycle) and 𝜆𝑇 = 1.001 (under-compensatory stable equilibrium attractor).1332

Fig.S13 shows the abundance dynamics both in chronological time (on the left vertical axis) and1333

on the 𝜆𝑡 timescale (on the right axis), for an initial value of 𝑛0 = 0.1476, one of the 4 points of1334

the asymptotic cycle corresponding to 𝜆0. The result corresponds to what our study of 𝑟 > 0 leads1335

us to expect: the dynamics follow the bifurcation diagram for slow trends (the first three rows of1336

the figure), but with a delay: the population encounters chaotic behaviour followed by1337

pseudo-cycles of decreasing period but those occur later (that is, for smaller 𝜆𝑡 values) than the1338

corresponding bifurcation point of the bifurcation diagram. This delay is most noticeable for the1339

bifurcation from 2-generation cycles to a stable equilibrium around 𝜆 = 3: the corresponding end1340

of the pseudo-cycles towards a monotonic decrease in abundances occurs at values of 𝜆𝑡 that1341

decrease with the speed of the trend. Because the delay concerns a transition from cycles to a1342

stable point here, it does not lead to a discontinuity, or b-tipping point, for the abundances. As in1343

the main text, we also note that abundances track the ghost equilibrium corresponding to the1344

stable equilibrium of constant environments but struggle to do so for low values of 𝜆𝑡 : the faster1345

the trend the further from the ghost equilibrium the abundances are as the trend stops. Contrary to1346

the 𝑟 > 0 study, the final value of 𝜆 here, 𝜆𝑇 = 1.001 corresponds to a stable point. The transient1347

post-trend dynamics are much simplified and consist of a monotonic decrease towards 𝑛̂𝑇 ≈ 0.001.1348

For the decreasing 𝜆 trend, the 𝜆 = 3 bifurcation is delayed but there is no rate of change that1349

ensure that it is delayed until the end of the trend (no fast trends): the 𝑟−tipping point correspond1350

to the transitions between slow trends (delayed bifurcation) and very fast trends (no bifurcation,1351

transient dominates). As noted in the main text, the existence of fast trends is bifurcation1352

dependent: it depends on the relative rates of change of the moving equilibrium and the1353
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Figure S13: Abundance time-series, 𝑛𝑡 (blue points) and 𝜆𝑡 time-series (red, secondary axis) on
the left column and – on the right column – superimposition of the abundance time-series (blue
points) as a function of 𝜆𝑡 with the bifurcation diagram (black points); for a representative range of
values for the rate of environmental change 𝑟 < 0 (different rows) and for 𝑛0 = 0.1476
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environmental parameter. The difference between slow (rows 2 and 3 of fig.S13) and very slow1354

(first row) are noticeable via the superimposition diagrams (second column): for the very slow1355

trend, the abundances track the moving equilibrium closely enough so that there is no post-trend1356

transient while this transient is noticeable for the slow trends (at 𝜆𝑡 ≈ 1 on the panels on the1357

second column and rows 2 and 3).1358

A6 Transient dynamics of the trendy logistic map1359

Long Transient Sensitivity to number of steps for a very fast trend1360

Here, we consider what occurs when a sudden environmental change takes more than a single1361

generation, i.e., two or three generations, thereby adding one or two "stepping stones" on the way1362

to the asymptotic cycle. We have seen how sensitive the duration of the transient is to the initial1363

condition of the step change, we therefore expect the same with regards to the number of1364

stepping-stones, as these will directly affect 𝑛𝑇 , the initial condition of the last step of the change,1365

which will drive the transient dynamics. Indeed, as we see in the top row of fig.S14, for 𝑇 = 2, the1366

transient is very short (3 generations) while for 𝑇 = 3, illustrated as the bottom row of fig.S14, the1367

transient lasts for 230 generations.1368
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Figure S14: 2-Step (𝑟 ≈ 1.45, 𝑇 = 2, top) and 3-step (𝑟 ≈ 0.99, 𝑇 = 3 bottom) environmental
change from𝜆0 = 1.001 and 𝑛0 = 𝑛̂(𝜆0), to𝜆𝑇 = 3.9605 followed by 500 generations at that constant
environment (𝜆𝑇 ); (a) abundance 𝑛𝑡 (blue) and environmental parameter 𝜆𝑡 (red, secondary axis);
(b) cobweb diagram: response curves ( 𝑓 (𝑛𝑡), in red) and the abundance trajectory (𝑛𝑡 , transient
phase shown in blue; asymptotic phase shown in magenta). The 𝑛𝑡 = 𝑓 (𝑛𝑡) line is shown in black.
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