

Wild fire salamanders (*Salamandra salamandra*) prefer natural housing conditions *ex-situ*

MANUELA SCHMIDT^{1*}, MAX MÜHLENHAUPT^{1*}, PHILIPP WAGNER², LAURA SCHULTE¹, SINA MEWS³, SYLVIA KAISER^{4,5}, LARS LEWEJOHANN^{6,7}, S. HELENE RICHTER^{4,5}, MARK-OLIVER RÖDEL⁸, HEIKO WERNING⁹, & BARBARA A. CASPERS^{1,4}

¹ Behavioural Ecology Department, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany

² Allwetterzoo Münster, Sentruper Straße 315, 48161 Münster, Germany & Zoo Augsburg, Brehmplatz 1, 86161 Augsburg

³ Department of Business Administration and Economics, Bielefeld University,
Universitätsstraße 25, 33615 Bielefeld, Germany

⁴ Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany

⁵ Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany

⁶ Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, Berlin 14163, Germany

⁷ German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin 10589, Germany

⁸ Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany

⁹ Citizen Conservation, Reichenberger Str. 88, 10999 Berlin, Germany

* these authors share the first authorship

Corresponding author: MAX MÜHLENHAUPT, ORCID-ID 0000-0003-0234-2533

e-mail: max.muehlenhaupt@uni-bielefeld.de

28 **Abstract.** The European fire salamander (*Salamandra salamandra*) is threatened by infection
29 with the chytrid fungus *Batrachochytrium salamandrivorans* (*Bsal*), which has caused
30 massive population declines in several European countries. One attempt to conserve the
31 genetic diversity of fire salamanders is to keep individuals of affected or vulnerable
32 populations in *ex-situ* assurance populations. However, literature knowledge about
33 appropriate husbandry conditions and behaviour in captivity is inconsistent. In this study, we
34 investigated the preference of wild-caught fire salamanders in a choice test with two different
35 husbandry setups: a natural setting and a minimalistic setting. The former provided parts of
36 the environment, with biotic materials, such as moss, soil and tree bark. The latter is mostly
37 used by specialized breeders, more artificial, but also easier to clean, with e.g. soft paper
38 towels as a substrate. Fire salamanders had the possibility to choose their preferred zone to
39 stay over a period of 60 days. We documented the individual hiding places and activity
40 patterns. Initially, especially female fire salamanders showed a preference for the more
41 natural zone and the majority of fire salamanders preferred the moss for hiding. However, as
42 the experiment progressed, there was a notable increase in the amount of time individuals
43 spent in the other zone, indicating the need for a diverse habitat when keeping fire
44 salamanders in captivity. Our results thus provide valuable information on *ex-situ* husbandry
45 of fire salamanders.

46 **Keywords.** Husbandry, *Bsal*, natural housing, functional housing, hidden Markov model,
47 Activity, Preference

48

49 **Introduction**

50 Amphibians are currently facing great extinction risk, with 40.7 % of all species classified as
51 threatened (HOULAHAN et al. 2000; IUCN SSC AMPHIBIAN SPECIALIST GROUP 2023;
52 LUEDTKE et al. 2023). Among others, Chytridiomycosis is the cause of a severe biodiversity
53 loss, including over 200 anuran species (SCHEELE et al. 2019; FISHER & GARNER 2020).
54 However, not only anurans, but also caudates are threatened by Chytridiomycosis. A
55 pathogen related to the ‘common’ chytrid fungi is *Batrachochytrium salamandrivorans*
56 MARTEL et al., 2013 (hereafter referred to as “*Bsal*”). This fungus has recently emerged in
57 Europe and causes massive extinction events, especially known in the European fire
58 salamander (*Salamandra salamandra* (LINNAEUS, 1758)); hereafter referred to as “fire
59 salamander” (MARTEL et al. 2013; LÖTTERS et al. 2020).

60 Fire salamanders predominantly occur in deciduous woodland with streams and ponds to
61 deposit their larvae (THIESMEIER 2004; BOGAERTS et al. 2021). They prefer cool temperatures
62 (3–12 °C) and high humidity (> 75 %) (BOGAERTS et al. 2021). These preferences are also
63 shared by the pathogen *Bsal* (MARTEL et al. 2013), which makes the fire salamander an
64 “ideal” host. Once a population is infected, *Bsal* causes a significant reduction of the
65 population size (LÖTTERS et al. 2020). The current (2023) IUCN species status of the fire
66 salamander is Vulnerable, with a decreasing population trend. Several measures have already
67 been assessed to prevent the introduction and spread of *Bsal*, such as informing the public
68 how to prevent the spread of the pathogen, or to keep the pathogen from spreading via host
69 removal, fencing and disinfection (IUCN SSC AMPHIBIAN SPECIALIST GROUP 2023). Yet,
70 there is still an increasing number of *Bsal* outbreaks in in-situ populations. One potential
71 approach to prevent fire salamanders from local extinction is to collect them from vulnerable
72 habitats and to keep them *ex-situ*. Eventually, individuals could then be released in a less
73 endangered region or to their region of origin, once this habitat is considered safe again
74 (THOMAS et al. 2019).

75 To ensure welfare of animals in *ex-situ* programmes, science-based evaluations of husbandry
76 regimes are needed. Housing amphibians and reptiles is common and often conducted with
77 large numbers of animals among hobbyists, traders, or zoos. Evidence-based husbandry
78 guidelines for these animals are, however, often not available (LINHOFF 2018). Most housing
79 conditions are based on what keepers observed as the original environment of the animal or
80 what “works well” according to breeders’ own experience, whereas measures based on
81 scientific evidence are rare (ARBUCKLE 2013). Fire salamanders have a long history of being
82 kept in captivity, both as pets and as laboratory animals for scientific research (SEIDEL &
83 GERHARDT 2016; BOGAERTS et al. 2021). However, housing conditions (e.g., provision and
84 type of substrate, hiding options or water containers) vary widely. One method is a
85 naturalistic approach, which mimics their natural habitat. Alternatively, a minimalistic
86 approach utilises a very simple setup (explained in more detail below). Both the natural as
87 well as the minimalistic approach meet the minimal requirements of fire salamanders, such as
88 the regulation of body temperature and hydration. In the following, we provide an overview
89 of the two different housing conditions.

90 The more natural approach is attempting to simulate the natural environment of fire
91 salamanders. Thus, the terraria are equipped with organic materials such as soil, dried (beech)
92 leaves, natural hiding places, and a water container to provide sources of hydration. Some

93 facilities, such as those at Bielefeld University, use moss to ensure suitable humidity inside
94 the terraria, as it can store moisture. However, the moss needs to be moistened regularly, and
95 it is important to check for growing mould. To avoid accumulations of bacteria, faeces must
96 be removed weekly, which could be challenging due to the dark soil and cleaning the boxes
97 may be time-consuming. Furthermore, the moss needs to be replaced from time to time (e.g.,
98 bi-annually). GERHARDT & SEIDEL (2019) established another successful and more artificial
99 housing approach for breeding fire salamanders, which, as they reported, resulted in high
100 longevity and high reproductive success of their animals. The salamanders are kept in opaque
101 plastic boxes, which are also used in the food industry and are easy to stack. The setup is
102 more convenient concerning workload for breeders. Dry newspaper is used as a substrate, as it
103 can be easily removed and changed. It is recommended that the newspaper be changed every
104 three to six weeks. Rocks are used as hiding places and the box is closed with a lid, or several
105 boxes are stacked on each other to reduce space. Light and air circulation are ensured with
106 holes on the sides of the boxes. Humidity is provided by a water container and a “wetbox”.
107 The wetbox is a small plastic box filled with moss, which can be accessed through a hole in
108 the lid that is small enough to maintain high humidity inside (GERHARDT & SEIDEL 2019).
109 This approach has the advantage that the bacterial and fungal growth is limited. It provides
110 different microhabitats, which are essential for a salamander’s survival and welfare. In
111 summary, cleaning the box is quicker and easier than in the natural housing system; however,
112 the substrate needs to be exchanged more often.

113 Appropriate husbandry conditions are crucial for an animal’s welfare, but unfortunately for
114 wild fire salamanders there is no clear evidence of what those animals need or prefer. Keepers
115 agree with basic conditions, i.e. “best practice guidelines”, to ensure the animal’s welfare.
116 However, virtually nothing is known about the conditions that are preferred by the animals
117 themselves and provide them with the possibility to live under suitable conditions. Due to the
118 increasing necessity of saving fire salamander populations and their genetic diversity, this
119 study investigated their housing preferences in captivity. We conducted a choice test, offering
120 individuals a choice between two distinct habitats. Over 60 days, we observed their space use
121 and activity within the experimental setup. Given the established effectiveness of
122 simultaneous choice tests in assessing animal preferences, we hypothesized that fire
123 salamanders demonstrate a preference for one housing condition over the other. A preference,
124 in turn, will give us insights into which housing conditions may increase animal welfare in
125 captivity.

126

127

Materials and methods

128

Study species

129 The fire salamander is distributed throughout central, western and southern Europe,
130 predominantly in deciduous, mixed forests with waterbodies for larval development, streams
131 and ponds nearby (THIESMEIER 2004). Adults are primarily terrestrial, but females deposit
132 fully developed larvae in streams or ponds where they remain until metamorphosis. The
133 adults are mostly nocturnal and exhibit a seasonal lifestyle that is highly dependent on
134 weather conditions, including humidity, temperature, and wind (THIESMEIER 2004).

135

136

Collection and transport

137 During the main activity periods of fire salamanders in central Europe (i.e., spring and
138 autumn), we captured 30 adult fire salamanders during rainy nights: in spring (9 April 2022,
139 n=4; 27 April 2022, n=11) and autumn (13 September 2022, n=15), from the Kottenforst near
140 Bonn, Germany. The sex of a fire salamander was determined based on the shape of the
141 cloaca and the body shape (THIESMEIER 2004). Before transportation, the animals were tested
142 in a standardized behavioural trial (i.e., tests for activity, exploration, boldness) in the field for
143 another experiment (MÜHLENHAUPT et al. 2025). Subsequently, the animals were placed in
144 individual transport boxes (35x20x15 cm). The transport boxes were filled with damp, dead
145 leaves, and some dead branches as shelter. To maintain proper humidity, tap water was
146 sprayed inside the boxes after collecting the animals and before transporting them to the
147 Behavioural Ecology Department at Bielefeld University, Germany, the morning after
148 collection.

149 Upon arrival, the fire salamanders were individually kept in a climatized room, each in a
150 separate husbandry plastic box that represented their “choice arenas” (Fig. 1). To allow them
151 to acclimate to the new environment, they spent the first night in a “neutral zone” without
152 access to the zones of interest (natural and artificial). A mesh separated this area from the
153 others, thereby allowing the animals to visually and olfactorily sense both presented habitat
154 types.

155

156

Experimental setup

157 To test which type of housing condition the wild-caught fire salamanders prefer, we designed
158 a simultaneous choice arena in which each individual could choose between two habitat types.
159 The experiment lasted for 60 days, during which the daily hiding position was monitored.
160 During this time, we video-taped the enclosures for 30 days to record activity and preference
161 of the fire salamanders in 7-day intervals. Due to time constraints, we were only able to do
162 recordings for 30 days. To cover the whole duration of the experiment, we recorded the setups
163 for seven days, followed by seven days of no recording.

164 The choice arena (60x40x27 cm) consisted of an opaque plastic box, which was separated
165 into three zones (Fig. 1 and Fig. S1 in Supplement A). The natural and artificial zones were
166 evenly divided by a wall to prevent the individual from reaching the other side directly;
167 instead, the individual had to pass a neutral zone to reach the other zone. To prevent the
168 salamanders from escaping, a lid covered the edges of the arena, leaving the centre open. The
169 neutral zone had no specific substrate and no hiding spots, only a dish with tap water and food
170 on occasion (Fig. 1).

171 One preference zone represented the “natural” type of housing, which consisted of one layer
172 of soil, a mixture of fresh moss and grass and one piece of bark for hiding. The moss on the
173 natural side was moistened every 4th day to keep it fresh and humid. The artificial zone was
174 equipped with six layers of kitchen paper as a substrate, which was lightly moistened with tap
175 water to stick to the ground at the start of the husbandry experiment. The artificial zone also
176 contained a brick and a wetbox as hiding opportunities. As wetbox, we used a plastic box
177 (10x10x6 cm) filled with moss (without soil). A hole allowed the fire salamander to enter and
178 leave the wetbox. The moss inside the wetbox was moistened once a month, as the closed box
179 itself ensured that the moss stayed humid for a long time. For one half of the choice arenas,
180 the natural zone was on the left side and *vice versa* for the other half.

181 To test for seasonal differences, we conducted the experiment with 15 individuals per season
182 (spring and autumn). The choice arenas were distributed in patches of four arenas inside a
183 climatised room. The room had a regulated temperature of 14 °C/8 °C in a 12:12 day/night
184 cycle. Four cameras (Camera Security DVR System by Elro; DVR74S) with night vision
185 were used to record the location and behaviour of the animals, with one camera recording four
186 arenas simultaneously. We used one arena, without a salamander, as a control to analyse
187 climate conditions (temperature and humidity) of the natural and the artificial zone as well as

188 the wetbox, respectively. This control arena was fully equipped, and dataloggers were
189 attached to the wall in each preference zone and checked regularly during the experimental
190 period. A third datalogger was attached to the lid inside the wetbox.

191 The recordings started in the morning after acclimation. After removing the mesh, the
192 individuals could move freely to all areas of the arena. Throughout the experiment, the
193 individuals were checked daily at around 10 am without handling them in order to observe
194 changes in the overall health status. During the check-ups, the daily hiding spots were noted.
195 Fresh tap water was provided *ad libitum* in a flat bowl. Food (i.e., pieces of annelids,
196 *Lumbricus terrestris* LINNAEUS, 1758) was provided every 8th day, and during the second half
197 of the experiment, every 16th day as the fire salamanders showed low interest in the food.
198 Leftovers of the annelids were removed the following day. Each zone was checked every day
199 and faeces were removed.

200 At the end of the experiment, the individuals were tested for *Bsal* before they were returned to
201 the location in the Kottenforst where they had been collected. All *Bsal*-tests were negative.

202

203 Video analysis

204 The videos were imported into the software BORIS (Behavioural Observation Research
205 Interactive Software, version 9.3.2) (FRIARD & GAMBA 2016) for video scoring. Before
206 starting the observations, an ethogram was created and coded for the software (see Table S1
207 in Supplement B). The video IDs only consisted of the date and channel ID (i.e., channel 1 =
208 camera 1) without any information on individual identity to prevent subjective observations.
209 The identity of the arena was represented by the given location (up-left, up-right, down-left
210 and down-right) and later assigned to the respective animal ID in Excel.

211 Behavioural sampling started the moment the mesh was removed. The first choice of the zone
212 of interest (natural or artificial) was noted. The recording of the inactivity and activity data
213 concluded when the individual disappeared in the first hiding spot and started again once the
214 individual reappeared. Activity was defined as the movement of the body centre, while
215 inactivity represented no movement of the body centre. The movement of the animals was
216 recorded for the entire arena, including the neutral zone. To ensure having the data for the
217 complete surface activity (i.e., the time one individual spent outside their hiding area)
218 available, another code for “out of sight” was added when the individual was outside their

219 hiding spots but not visible due to dead angles by the cameras. Activity data was also divided
220 into day (6 am to 6 pm, when the light was on) and night activity (6 pm to 6 am, when the
221 light was off) and it was noted in which zone (natural, neutral and artificial) the individual
222 was at a given time interval. To visualise different individual activity patterns throughout the
223 30 days of recording, we used 30-min intervals over the day to create actograms with Excel
224 (Version 2410). Actograms are used to visualise data periodically throughout a day to
225 investigate rhythmical activity patterns of animals (OIKE et al. 2019).

226

227 Statistical analysis

228 The statistical analyses were performed using R (R-version 4.4.1; R CORE TEAM 2023). Prior
229 to testing for differences in temperature and humidity in the respective zones within the
230 arenas (natural, artificial and wetbox), the data were checked for normality using the Shapiro-
231 Wilk-Test and visual plots (Histogram and Q-Q-Plot) (see Fig. S2 in Supplement A and Table
232 S2 in Supplement B). To test for differences in temperature and humidity conditions within
233 the zones, we conducted a Kruskal-Wallis-test and Dunn's test (R-package: FSA; OGLE et al.
234 2023) with Bonferroni adjustment to correct for multiple comparisons for the *post-hoc*
235 analysis.

236 As one indicator of preference, we compared the first choice after habituation using the exact
237 binomial test with the given probability of 0.5 for each habitat. To investigate the preference
238 for a specific zone, we compared the daily hiding spots of all individuals and the surface
239 activity (including activity, inactivity and out of sight) for all three zones.

240 To analyse the surface activity, we used the percentage of being outside (surper), calculated as
241 the surface activity (sur) divided by the daily recording time (rec) and multiplied by 100,
242 since the daily recording time differed between days due to the recording system (i.e., when
243 the recording for the first day started around 10 am and ended at midnight). The surface
244 activity and recording were both measured in seconds. To investigate differences in surface
245 activity, we fitted a linear mixed effect model with the R package lme4 (BATES et al. 2015)
246 and initially included the fixed effect of habitat type (i.e., preference zone) on the dependent
247 variable surface activity. As a random intercept, the individual's identity was added due to
248 multiple measures and to control for individual-specific variation. The model was fitted to the
249 data using a step-wise step-up procedure, evaluating the model using the Akaike Information
250 Criterion (AIC) for model comparison (AKAIKE 2011). Further fixed effects were included,

251 such as season, sex, day and their interactions with the variable of interest (habitat type),
252 when they improved the fit until the best minimal adequate model was found. The final model
253 was compared by using the ANOVA to a reduced model to explore the impact of single fixed
254 effects on the data. As the variable sex enhanced the model fit, but no sex could be identified
255 for three salamanders, these individuals were excluded from this dataset, resulting in a total of
256 $n = 27$. When the effects of the final model were significantly different compared to the
257 reduced one, we applied the pairwise Wilcoxon rank-sum (WRS) *post-hoc* test with the
258 Bonferroni correction to investigate differences within the group. To investigate the contrasts
259 among predictor interactions, we used the lsmeans-package (LENTH 2016) with a Bonferroni
260 adjustment to control for multiple comparisons. Finally, we used the daily hiding spots as an
261 indicator of a fire salamander's preferences by calculating the proportion of how often an
262 individual was found under either the moss or bark, the brick or inside the wetbox during the
263 day. We fitted a linear mixed effect model as described above, however, this time with the
264 proportion value as the dependent variable and the hiding place, sex, and season as fixed
265 effects of interest and the individual identity as the random intercept.

266 To investigate differences in activity in relation to individual and season-specific differences,
267 we fitted a hidden Markov model (HMM) with the individuals' activity in 30-min intervals
268 using the R package hmmTMB (MICHELOT 2025). The model comprises an observed process
269 corresponding to the data provided and an underlying serially-dependent, unobserved
270 ('hidden') sequence (the state process) to infer individual behavioural processes (ZUCCHINI et
271 al. 2017), such as foraging or movement (VAN BEEST et al. 2019; GOWAN et al. 2021; NAGEL
272 et al. 2021; SCHWARZ et al. 2021), but also processes on population and community level,
273 such as abundance or species co-existence, respectively (MCCLINTOCK et al. 2020). Here, we
274 fitted a two-state HMM with a zero-adjusted gamma distribution to the activity data of the fire
275 salamanders. The estimated state-dependent distributions indicate an inactive state (state 1,
276 when the individual is immobile) and an active state (state 2) (see Fig. S3 in Supplement A
277 and Table S3 and S4 in Supplement B). We used the decoded states of the fitted HMM to
278 examine the overall daily activity patterns of the animals for both seasons by determining the
279 percentage of time spent in state 2 as well as individual differences in activity over the
280 duration of the experiment.

281

282 **Results**

283

Climate conditions

284

285 Climate analysis revealed a difference in temperature and humidity between the zones of the
286 arena (Kruskal-Wallis-test: Temperature: $H(2) = 27.86$, $p < 0.001$; Humidity: $H(2) = 151.48$,
287 $p < 0.001$). For temperature, there was a difference of approximately 2.8 % between the
288 natural and artificial zones (natural: 13.17 ± 0.56 °C; artificial: 13.55 ± 0.43 °C; Dunn's Test:
289 $z = -4.38$, $p_{adj} < 0.001$) and 3.1 % between the wetbox and the artificial zone (wetbox: $13.13 \pm$
290 0.44 °C, Dunn's Test: $z = -4.72$, $p_{adj} < 0.001$). No difference was found in temperature
291 comparing the natural zone and the wetbox (Dunn's Test: $z = 0.42$, $p_{adj} = 1$).

292 The wetbox had the highest humidity with the mean value reaching nearly 100% ($99.18 \pm$
293 0.39%), being significantly different from the natural zone ($90.11 \pm 5.87\%$; Dunn's test: $z =$
294 7.00, $p_{adj} < 0.001$) and the artificial zone ($83.37 \pm 4.34\%$; Dunn's Test: $z = 12.28$, $p_{adj} <$
295 0.001). The natural and artificial zones differed on average by 7.8% (moss: $90.11 \pm 5.87\%$;
296 tissue: $83.36 \pm 4.34\%$, Dunn's Test: $z = -5.38$, $p_{adj} < 0.001$). For further descriptive data on
297 humidity and temperature differences, see Table S5 in Supplement B.

298

299

Preference: First choice

300 During the habituation period, six animals were able to climb over the fence and hid on one
301 side and thus were removed from the first choice analysis (resulting in $n = 24$). Fire
302 salamanders chose the natural zone significantly more often than the artificial zone (exact
303 binomial test: $p < 0.05$) with 18 individuals entering the natural zone first and six individuals
304 entering the artificial zone first.

305

306

Preference: Daily hiding

307 Fire salamanders hid significantly more often in the natural zone compared to the other zones
308 (0.91 ± 0.19 , LMM: t -value = 22.71, $p < 0.001$, Fig. 2, Table 1a). We found fire salamanders
309 in three of the various hiding opportunities, i.e. underneath the moss, underneath the brick,
310 and in the wetbox. Fire salamanders were found significantly more often underneath the moss
311 than in the wetbox or under the brick (WRS: $p_{adj} < 0.001$; < 0.001). All individuals were
312 found at least once hidden underneath the moss in the natural zone, while only three

313 individuals were found at least once under the brick. Individuals showed a tendency to hide
314 more often inside the wetbox compared to under the brick (0.08 ± 0.19 , LMM: t-value = 1.97,
315 $p = 0.052$, Table 1a); WRS: $p_{adj} < 0.05$).

316 Including sex or season did not improve the model fit. An interaction of sex and season did
317 not influence the proportion of daily hiding places of fire salamanders and was thus omitted
318 from further analysis. For further descriptive data on the daily hiding spot preferences, see
319 Table S6 in Supplement B.

320

321 Surface activity

322 There was a significant effect of habitat type on the surface activity of female fire
323 salamanders. Once outside, females spent on average more time in the natural zone (natural:
324 $7.56 \pm 10.08\%$, LMM: t-value = 2.8, $p = 0.005$), compared to the respective other options
325 (Fig. 3, Table 1b). Fire salamanders, regardless of sex, did not differ in their use of the
326 artificial and neutral zones (artificial: $2.93 \pm 4.87\%$; neutral: $2.89 \pm 5.32\%$, WRS: $p_{adj} = 0.67$).

327 There was a tendency that fire salamanders spent more time outside their hiding areas as the
328 experiment progressed (LMM: t-value = 1.755, $p = 0.08$, Fig. 3, Table 1b). We found a
329 significant interaction effect of sex and zone, with females spending on average more time on
330 the natural zone compared to the other zones (LMM: t-value = -3.845, $p < 0.001$). Males,
331 however, did not show any differences among zones (Fig. 3, Table 1b). While there was no
332 general seasonal effect on the surface activity, fire salamanders from the autumn group spent
333 more time on the natural zone (LMM: t-value = 4.071, p -value < 0.001) compared to all other
334 zones. No differences were observed between the zones during the spring period. For further
335 descriptive data on surface activity separated by season and sex, see Table S7 in Supplement
336 B.

337

338 Activity analysis

339 Overall, the activity pattern depicted by the actograms revealed that wild fire salamanders in
340 captivity remained mostly nocturnal; however, there were some exceptions and high
341 individual variation in activity patterns (see Figure 4 for two examples, the remaining data
342 can be found in Supplement A). In the provided example (Fig. 4), the autumn individual was

343 very active during the night over the whole course of the experiment, while the spring
344 individual showed regular daytime activity at the end of the experiment.

345 For the HMM analysis regarding activity, state 1 captures *inactive* behaviour, in which the
346 individual has a probability of zero activity of 99.8% (mean activity = 0.73 ± 0.56 minutes if
347 moving), and state 2 captures *active* behaviour, with a probability of zero activity of 5.1%
348 (mean activity = 4.75 ± 3.78 minutes if moving) within the 30-minutes' intervals. The
349 transition probabilities show that individuals stay in state 2 from one 30-min interval to the
350 next with a probability of 82.4%, corresponding to an expected duration of 2.8 hours before
351 switching to state 1; however, once in state 1, they can stay inactive for several hours or even
352 days, depending on the individual (see Fig. S3 supplement A and Table S4 supplement B).

353 Individuals were more active during autumn compared to spring, as indicated by our HMM
354 approach. We also investigated the circadian rhythm (Fig. 5) for spring and autumn,
355 respectively, and found a similar pattern for each season, again with a lower activity for the
356 spring group. In general, fire salamanders showed an increase in activity shortly after onset of
357 darkness (6 pm–7 pm), followed by a lower activity for 3 hours (7 pm–10 pm). After
358 approximately 10 pm, the fire salamanders showed increased movement activity before
359 reaching a peak of activity at 3 am in the morning (Fig. 5). The activity then decreased until
360 daytime (6 am), and as seen in the actograms, activity during the diurnal period was much
361 lower than during the nocturnal period, which is why these observations were mostly
362 attributed to the inactive state by the HMM approach (Fig. 5).

363

Table 1: Statistical results of the mixed linear model analysis (lmer), testing if the zone (natural (N), artificial (A), neutral (NE)), sex (female, male), day or season (spring, autumn) had an effect on the variable a) daily hiding spot (Moss/Bark (M), Wetbox (W), Brick) or b) surface activity. Number of observations and individuals' ID are given for each model, including the conditional and marginal R^2 . Coefficient estimates (β), confidence intervals (CI), the respective standard error (SE) and t - and p -value are provided for fixed effects. For random effects, the residual variance (σ^2) and the variance of the random intercept (τ_{00}) is given. Significant values are highlighted in bold.

a) Daily hiding	$N_{obs}=90$, $N_{ind}=30$	$R^2_{conditional} = NA$ $R^2_{marginal} = 0.877$			
Fixed effects	β	CI	SE	t -value	p -value
Intercept	<0.01	-0.05 – 0.06	0.03	0.10	0.922
Hiding spot [M]	0.91	0.83 – 0.99	0.04	22.71	<0.001
Hiding spot [W]	0.08	0.00 – 0.16	0.04	1.97	0.052
Random effects					
σ^2	0.02				
τ_{00} ID	<0.001				
<hr/>					
b) Surface activity	$N_{obs}=74$ 1, $N_{ind}=27$	$R^2_{conditional} =$ 0.156 $R^2_{marginal} = 0.220$			
Fixed effects	β	CI	SE	t -value	p -value
Intercept	1.22	-1.10 – 3.54	1.18	1.03	0.302
Zone [A]	1.02	-1.52 – 3.55	1.29	0.79	0.431
Zone [N]	3.64	1.10 – 6.17	1.29	2.8	0.005
Day	0.03	-0.00 – 0.06	0.016	1.76	0.080
Zone [A]:sex(male)	0.71	-1.62 – 3.04	1.19	0.60	0.548
Zone [N]:sex(male)	-4.56	-6.89 – -2.23	1.19	-3.845	<0.001
Zone [NE]:sex(male)	0.85	-1.48 – 3.18	1.19	0.716	0.474
Zone [A]:season(autumn)	-0.90	-3.38 – 1.58	1.26	-0.71	0.476
Zone [N]:season(autumn)	5.14	2.66 – 7.62	1.26	4.07	<0.001
Zone [NE]:season(autumn)	0.34	-2.14 – 2.82	1.26	0.27	0.786
Random effects					
σ^2	45.97				
τ_{00} ID	3.75				

367

Discussion

368 Letting the fire salamanders choose which habitat they favour gives insights into what the
369 animals prefer and possibly need. Concerning two successful housing types for captive
370 breeding of fire salamanders, with no known or identifiable welfare issues, it is difficult to
371 determine which one is preferred by wild fire salamanders. With our experiment, we aimed to
372 investigate the preference of wild-caught fire salamanders for either natural or artificial
373 housing conditions using a choice experiment.

374

375

Preference of conditions

376 Our results indicated that fire salamanders show a preference for the more natural zone, based
377 on their first choice, daily hiding and surface activity. The natural zone was equipped with
378 soil and moss, which resulted in different climatic conditions compared to the artificial zone.
379 Temperature and humidity are important for salamanders, as they affect body temperature and
380 water balance (CLOUDSLEY-THOMPSON & WARBURG 1997), which in turn can determine their
381 preference. This was, for instance, shown for the terrestrial salamander *Bolitoglossa ramosi*
382 (BRAME & WAKE, 1972; GALINDO et al. 2018). Differences in relative humidity and
383 temperature can also influence the behaviour of other salamanders (SPOTILA 1972) or other
384 ectotherms (e.g., DEZETTER et al. 2023).

385 Moss in the natural setting provided higher humidity and lower temperatures than in the
386 artificial part, e.g. due to evaporation (CHEN et al. 2019). Choosing the right substrate when
387 keeping fire salamanders is crucial to maintain appropriate humidity levels and should benefit
388 the animal's welfare. The natural zone and the wetbox had lower temperatures and higher
389 humidity compared to the artificial zone, supporting the assumption that the moss within the
390 arena affected the microclimate and thereby, at least partly influenced the preference of the
391 fire salamanders.

392 Data from the video analysis revealed that fire salamanders also spent time inside the water
393 dish, which was only present in the neutral zone. Spending time in the water dish might be
394 due to increased humidity needs of the salamanders and may explain the increased time they
395 spent in this habitat as the experiment progressed. One explanation is the need for hydration,
396 as this is an important factor for amphibians. There is evidence that salamanders are also able
397 to draw water from the soil (SPIGHT 1967; SPOTILA 1972). This might explain why the fire

398 salamanders preferred staying within the natural zones and in the wetbox, when the humidity
399 was high enough to reduce water loss, and used the additional water to restore moisture.

400 Another explanation for an increase in the use of the water dish in the course of this
401 experiment might be habituation to the predation-free space. Fire salamanders might have
402 learned that there was no predation risk while exploring the enclosure.

403 While sex alone was not a predictor of fire salamander surface activity, females spent more
404 time in the natural zone; males showed no preference. Differences in microhabitat preferences
405 between sexes within a species are found all across the animal kingdom (e.g., Birds: ARIDA &
406 BILDSTEIN 1997; Isopods: MERILAITA & JORMALAINEN 1997; Lizards: RECKNAGEL et al.
407 2023), including amphibians (e.g., BARTELT et al. 2005; ETEROVICK & FERREIRA 2008;
408 VALDEZ et al. 2016; ZHAO et al. 2023). One study found that male fire salamanders preferred
409 deeper leaf litter and stayed close to the larval deposition sites during the breeding season
410 (MANENTI et al. 2017), potentially to increase the chance to find mating partners. However, to
411 our knowledge there is no evidence yet on what females might prefer and what causes these
412 sex-specific differences in their behaviour. As already stated, enough hydration is crucial in
413 the lifecycle of a fire salamander. Especially in spring, females are most likely to be seen near
414 or inside waters for larval deposition (THIESMEIER 2004). Further, it could be hypothesised
415 that females need more hydration due to metabolic requirements for the development of
416 larvae in the uterus. However, whether there are other physiological indications that females
417 need more hydration than males, is not clear. Further data are needed to explore the effects of
418 season and sex on activity in captivity. Other factors could also be responsible for the
419 microhabitat selection, such as the structure or vicinity to the hiding spot.

420 Fire salamanders hid more often in the natural zone, more precisely underneath the moss and
421 soil layer, compared to under the brick in the artificial zone or the wetbox. Fire salamanders
422 usually hide in dark, cool and damp areas, such as within tree rootstocks, under dead wood or
423 in crevices (THIESMEIER 2004; BÖRDER et al. 2011; SIEGEL 2014). Such hiding spots are
424 usually difficult to access and thus provide protection against predators. The brick in this
425 experiment might have been too small to act as a shelter, which could explain why individuals
426 preferred to stay underneath the moss. Another potential factor causing the avoidance of the
427 brick may be the lower humidity level. Additionally, the wetbox was made of transparent
428 plastic. Although the only way to access the wetbox was through the hole in the lid, the
429 transparency increases light levels inside the hiding spot, which in turn, may not be favoured
430 by fire salamanders. Nevertheless, some individuals demonstrated a tendency to return to the

431 wetbox after having spent a period of time inside, with some returning for several days or
432 even weeks. Whether the light levels affect the choice of a hiding spot of fire salamanders is
433 not clear, but providing a less translucent wetbox might also increase the acceptance of the
434 hiding spot by fire salamanders.

435

436 Activity analysis

437 The hidden Markov model confirmed that fire salamanders, at least those in our study area,
438 are most active at night. They usually appear within the first hours after dusk, which indicates
439 that light is affecting the activity rhythm of fire salamanders (*personal observations*). In the
440 literature, it is stated that individuals usually start to appear at a light intensity of two lux or
441 lower (THIESMEIER 2004). Although the activity differed between the seasons, the overall
442 pattern is similar, with a small peak shortly after darkness and a second, even larger peak after
443 midnight. As fire salamanders are mainly sit-and-wait predators (BOGAERTS et al. 2021), it
444 might be possible that they have been outside during this time but not moving, waiting for
445 possible food to pass by. Thereby, they might have showed no activity after the first peak of
446 activity.

447 We detected individual differences in activity, with some individuals not being active at all
448 (mainly individuals tested in spring) and others showing high activity levels. The fire
449 salamanders for this study were collected during the activity peaks (spring: mid-April to mid-
450 May and autumn: September to mid-October). However, even during these periods, activity is
451 highly affected by external factors such as temperature, humidity and wind (THIESMEIER
452 2004) and likely also internal factors such as hunger or the need to find larval deposition sites
453 (although no female deposited larvae during this experiment). We witnessed an increased
454 activity in autumn, which can be explained by the migratory behaviour of fire salamanders
455 heading towards their hibernation sites or their need to find enough food before hibernation.
456 In contrast, activity in spring was comparatively low. In the Kottenforst (Bonn, Germany), the
457 origin of our animals, fire salamanders start leaving their shelters in early February, when the
458 climate is suitable (THIESMEIER 2004). Thus, the spring individuals might have already been
459 at the end of their spring activity peak. These seasonal differences were also mirrored by
460 differences in personality traits of these individuals (see MÜHLENHAUPT et al. 2025).

461

462 Reintroduction success of captive animals in the wild

463 Due to the threat of chytridiomycosis, action is needed to ensure the survival of amphibian
464 populations (SPITZEN-VAN DER SLUIJS et al. 2016). As it is already clear that *in-situ*
465 conservation is not sufficient to ensure the genetic diversity of fire salamander populations,
466 *ex-situ* programs are the most immediate and viable solution to preserve the fire salamander in
467 Europe (THOMAS et al. 2019). However, *ex-situ* conservation should only be practiced when
468 the benefits outweigh the risks (e.g., the impact of removing animals from the wild), the
469 breeding success and the likelihood of the successful release in the wild are ensured, thereby
470 ensuring to keep the genetic diversity (TAPLEY et al. 2017; ROUT et al. 2023). However,
471 according to the IUCN "Guidelines on the Use of *Ex situ* Management for Species
472 Conservation" "time gain" is also an important reason for *ex-situ* insurance populations. The
473 "Establishment of a diverse and sustainable ex situ rescue or insurance population may be
474 critical in preventing species extinction when wild population decline is steep and the chance
475 of sufficiently rapid reduction of primary threats is slim or uncertain or has been inadequately
476 successful to date. Examples include *ex-situ* populations in response to severe disease threat,
477 catastrophic events or continued habitat degradation." (IUCN 2023). This is consistent with
478 the predicament the fire salamander is currently facing.

479 Animals in captivity can exhibit different behaviours compared to wild ones due to the
480 different environment, selection pressures and the process of domestication (i.e., the process
481 by which animals change for human use, for example as pets or farm animals; TAPLEY et al.
482 2015; RUTLEDGE et al. 2023). The environment to which an individual is exposed to,
483 determines what kind of behaviour is displayed (WILSON et al. 2020). The substrate, for
484 example, can encourage additional natural behaviour such as burrowing (TAPLEY et al. 2014;
485 ZHANG et al. 2023). Similar observations were made with the fire salamanders from this
486 experiment, which were mostly hidden between the layers of soil and moss, while there was
487 no option to dig between layers on the artificial side. The freedom to express natural
488 behaviour is one major aspect to consider when keeping animals. This is even more important
489 when there is the intention to reintroduce individuals or their offspring into the wild again
490 (GRIFFITHS & PAVAJEAU 2008; MCPHEE & CARLSTEAD 2010).

491 Animals are able to adjust their behaviour to new conditions, including changes in their
492 environment due to captivity. These domestication processes can also occur in captive-held
493 amphibians (TAPLEY et al. 2015). For example, captive-bred amphibians show less predator

494 avoidance behaviour compared to the wild conspecifics (KAAIJEVELD-SMIT et al. 2006;
495 LINHOFF 2018). Despite the absence of empirical studies about the differences in behaviour of
496 captive and wild-caught fire salamanders, captive-bred fire salamanders display increased
497 activity levels in the presence of humans (personal observations). This might either be a result
498 of direct interactions with them (e.g., feeding by hand during the day) or simply the absence
499 of predators. In our experiment, we did not observe that individuals left their hiding spots
500 when someone entered the room. Depending on how long fire salamanders must be kept in
501 captivity due to *Bsal*, the housing conditions may encourage or restrict behaviour that does
502 not support survival in the wild. Even a few generations can allow animals to adapt to
503 captivity, which may affect their fitness and therefore have a negative impact on the
504 reintroduction success (SNYDER et al. 1996; ARAKI et al. 2007; CHRISTIE et al. 2012).
505 GRIFFITHS & PAVAJEAU (2008) reviewed different breeding and reintroduction programmes
506 and evaluated the reintroduction success of amphibian species in these programs. By
507 producing multiple generations and developing self-sustaining populations, 13 out of 21
508 species were ranked as highly successful. Although they have been quite optimistic with their
509 results, TAPLEY et al. (2015) point out that the reviewed programmes only included
510 amphibian populations that suffered from habitat loss in parts of their distribution, and
511 reintroduction may not be as straightforward for species coping with pathogens spreading
512 through their entire habitat. Especially concerning *Bsal*, it is not clear whether individuals of a
513 population can return to their original habitat and how long they need to be kept *ex-situ*,
514 particularly as newts can act as reservoirs of *Bsal* (BENINDE et al. 2021).
515 Mimicking the natural environment and thereby maintaining the potential to express natural
516 behaviour reduces the possibility that wild animals might adapt to captivity, and thereby
517 potentially increases the reintroduction success of fire salamanders. However, the costs for
518 maintenance are likely to be significantly higher due to materials and labour and should
519 therefore be outweighed by the benefits. However, as it is currently unknown how long
520 populations and their genetic diversity need to be preserved in the context of the *Bsal*-
521 pandemic, *ex-situ* conservation actions need to be thoroughly planned and housing adjusted,
522 including aspects of cost efficiency.

523

524

Conclusion and future research

525 The spread of Chytridiomycosis is a serious threat to fire salamander populations, and *in-situ*
526 conservation alone will not be able to prevent the loss of fire salamander populations and their
527 genetic diversity. Taking animals into captivity is the most immediate solution,
528 conservationists and scientists can apply (see THOMAS et al. 2019; PENNER et al. 2022).
529 However, ideas about appropriate husbandry of fire salamanders vary among keepers, and
530 certain details need to be evaluated, particularly with the background of a successful
531 reintroduction of individuals to the wild. This includes, among others, maintaining natural
532 behaviour to prevent maladaptive selection of behavioural traits (for example, enhancing
533 activity during daylight due to interactions with caretakers).

534 To conclude, the results of our study indicate that fire salamanders exhibited a clear
535 preference for natural housing with moss and soil as a substrate. However, they did not
536 demonstrate a clear avoidance of artificial habitats characterized by smooth and relatively dry
537 structures. A heterogeneous habitat, including natural and artificial zones, could be an
538 alternative way of keeping wild fire salamanders to encourage a variety of natural behaviours
539 and provide the necessary microhabitats with sufficient humidity to ensure their welfare.
540 However, more tests are needed to fully understand which factors lead to the observed
541 preference and how much internal (sex, life stage) and external (climate, light, season, time)
542 factors influence it. As humidity plays an important role, there should be further research on
543 whether the microclimate is responsible for the fire salamanders' habitat selection or the
544 similarity of the environment to the origin itself.

545

546 Acknowledgements

547 We would like to express our gratitude to the colleagues from the Behavioural Ecology
548 Department of Bielefeld University for their support and encouragement throughout the study
549 period, and for providing valuable suggestions and critique. Special thanks to BARBARA
550 FUCHS for providing the essential moss for the arenas and ISABEL DAMAS-MOREIRA for her
551 guidance in developing the study design. We would like to acknowledge the workshop at
552 Bielefeld University for their expertise in constructing the choice arenas. This research was
553 financially supported by the research grant of the Verband der Zoologischen Gärten e.V. This
554 study was conducted in accordance with the German animal experimentation laws. The
555 collection of wild fire salamanders from the Kottenforst near Bonn was authorised by the City
556 of Bonn and this research follows the legal and ethical requirements that have been approved

557 by the LAVE: Az 81-02.04. 2021.A437. After the experiment, all fire salamanders were
558 released unharmed at the site of capture.

559

560

References

561 AKAIKE, H. (2011): Akaike's Information Criterion. In: LOVRIC, M. (ed.): International Encyclopedia
562 of Statistical Science. – Berlin, Heidelberg, Springer: (25): 35–40.

563 ARAKI, H., COOPER, B. & BLOUIN, M. S. (2007): Genetic effects of captive breeding cause a rapid,
564 cumulative fitness decline in the wild. – *Science* (New York, N.Y.), **318** (5847): 100–103.

565 ARBUCKLE, K. (2013): Folklore Husbandry and a Philosophical Model for the Design of Captive
566 Management Regime. – *Herpetological Review* **44** (3): 448–452.

567 ARIDA, D. R. & BILDSTEIN, K. L. (1997): Sex-related differences in habitat selection in wintering
568 American kestrels, *Falco sparverius*. – *Animal behaviour*, **53** (6): 1305–1311.

569 BARTELT, P. E., PETERSON, C. R. & KLAVER, R. W. (2005): Sexual differences in the post-breeding
570 movements and habitats selected by Western toads (*Bufo boreas*) in southeastern Idaho. –
571 *Herpetologica*, **60**: 455–467.

572 BATES, D., MÄCHLER, M., BOLKER, B. & WALKER, S. (2015): Fitting Linear Mixed-Effects Models
573 Using *lme4*. – *Journal of Statistical Software*, **67** (1): 1–48.

574 BENINDE, J., KELTSCH, F., VEITH, M., HOCHKIRCH, A. & WAGNER, N. (2021): Connectivity of
575 Alpine newt populations (*Ichthyosaura alpestris*) exacerbates the risk of *Batrachochytrium*
576 *salamandrivorans* outbreaks in European fire salamanders (*Salamandra salamandra*). –
577 *Conservation Genetics*, **22** (4): 653–659.

578 BOGAERTS, S., LÖTTERS, S., SPITZEN-VAN DER SLUIJS, A., PREIBLER, K., CASPERS, B., OSWALD, P.,
579 MICHAELS, C., MEULEN, T. TER, REINHARDT, T., MARTEL, A., PASMANS, F., MARCIA, G.,
580 TAPLEY, B. & MARQUIS, O. (2021): EAZA Amphibian Taxon Advisory Group Best Practice
581 Guidelines (striped) fire salamander, *Salamandra salamandra (terrestris)*. – European Association
582 of Zoos and Aquariums, Amsterdam, The Netherlands.

583 BÖRDER, M., KARLSSON, A. & SINSCH, U. (2011): Bestandsdichte, Arealnutzung und Gefährdung
584 einer Feuersalamander-Population (*Salamandra salamandra*) im Stadtgebiet von Koblenz
585 (Rheinland-Pfalz). – *Zeitschrift für Herpetologie* 18: 99–116.

586 CHEN, S., YANG, Z., LIU, X., SUN, J., XU, C., XIONG, D., LIN, W., LI, Y., GUO, J. & YANG, Y.
587 (2019): Moss regulates soil evaporation leading to decoupling of soil and near-surface air
588 temperatures. – *Journal of Soils and Sediments*, **19** (7): 2903–2912.

589 CHRISTIE, M. R., MARINE, M. L., FRENCH, R. A. & BLOUIN, M. S. (2012): Genetic adaptation to
590 captivity can occur in a single generation. – *Proceedings of the National Academy of Sciences of*
591 *the United States of America*, **109** (1): 238–242.

592 CLOUDSLEY-THOMPSON, J. L. & WARBURG, M. R. (eds.) (1997): Ecophysiology of Amphibians
593 Inhabiting Xeric Environments. – Berlin, Heidelberg, Springer.

594 DEZETTER, M., LE GALLIARD, J.-F. & LOURDAIS, O. (2023): Behavioural hydroregulation protects
595 against acute effects of drought in a dry-skinned ectotherm. – *Oecologia*, **201** (2): 355–367.

596 ETEROVICK, P. C. & FERREIRA, A. D. M. (2008): Breeding Habitat and Microhabitat Choices by Male
597 and Female Frogs: Are There Differences Between Sexes and Seasons? – *Herpetologica*, **64** (4):
598 397–405.

599 FISHER, M. C. & GARNER, T. W. J. (2020): Chytrid fungi and global amphibian declines. – *Nature*
600 reviews. *Microbiology*, **18** (6): 332–343.

601 FRIARD, O. & GAMBA, M. (2016): BORIS: a free, versatile open-source event-logging software for
602 video/audio coding and live observations. – *Methods in Ecology and Evolution*, **7** (11): 1325–
603 1330.

604 GALINDO, C. A., CRUZ, E. X. & BERNAL, M. H. (2018): Evaluation of the combined temperature and
605 relative humidity preferences of the Colombian terrestrial salamander *Bolitoglossa ramosi*
606 (Amphibia: Plethodontidae). – *Canadian Journal of Zoology*, **96** (11): 1230–1235.

607 GERHARDT, P. & SEIDEL, U. (2019): Neue Wege in der Salamanderhaltung. – *Elaphe* **2019** (2): 32–39.

608 GOWAN, T. A., TRINGALI, M. D., HOSTETLER, J. A., MARTIN, J., WARD-GEIGER, L. I. & JOHNSON, J.
609 M. (2021): A hidden Markov model for estimating age-specific survival when age and size are
610 uncertain. – *Ecology*, **102** (8): e03426.

611 GRIFFITHS, R. A. & PAVAJEAU, L. (2008): Captive breeding, reintroduction, and the conservation of
612 amphibians. – *Conservation Biology*, **22** (4): 852–861.

613 HOULAHAN, J. E., FINDLAY, C. S., SCHMIDT, B. R., MEYER, A. H. & KUZMIN, S. L. (2000):
614 Quantitative evidence for global amphibian population declines. – *Nature*, **404** (6779): 752–755.

615 IUCN SSC AMPHIBIAN SPECIALIST GROUP (2023): The IUCN Red List of Threatened Species.
616 Version 2023-1. *Salamandra salamandra*. <https://www.iucnredlist.org>. Accessed 6 February 2024.

617 KAAIEVELD-SMIT, F. J. L., GRIFFITHS, R. A., MOORE, R. D. & BEEBEE, T. J. C. (2006): Captive
618 breeding and the fitness of reintroduced species: a test of the responses to predators in a threatened
619 amphibian. – *Journal of Applied Ecology*, **43** (2): 360–365.

620 LENTH, R. V. (2016): Least-Squares Means: The R Package *lsmeans*. – *Journal of Statistical Software*,
621 **69** (1).

622 LINHOFF, L. J. (2018): Linking Husbandry and Behavior to Enhance Amphibian Reintroduction
623 Success. (Ph.D. thesis)

624 LÖTTERS, S., WAGNER, N., ALBALADEJO, G., BÖNING, P., DALBECK, L., DÜSSEL, H., FELDMEIER, S.,
625 GUSCHAL, M., KIRST, K., OHLHOFF, D., PREISSLER, K., REINHARDT T., SCHLÜPMANN, M.,
626 SCHULE, U., SCHULZ, V., STEINFARTZ, S., TWIETMEYER, S., VEITH, M., VENCES, M. & WEGGE,
627 J. (2020): The amphibian pathogen *Batrachochytrium salamandrivorans* in the hotspot of its
628 European invasive range: past – present – future. – *Salamandra*, **56**: 173–188.

629 LUEDTKE, J. A., CHANSON, J., NEAM, K., HOBIN, L., MACIEL, A. O., CATENAZZI, A., BORZÉE, A.,
630 HAMIDY, A., AOWPHOL, A., JEAN, A., SOSA-BARTUANO, Á., FONG G, A., SILVA, A. DE,
631 FOUQUET, A., ANGULO, A., KIDOV, A. A., MUÑOZ SARAVIA, A., DIESMOS, A. C., TOMINAGA, A.,
632 SHRESTHA, B., GRATWICKE, B., TJATURADI, B., MARTÍNEZ RIVERA, C. C., VÁSQUEZ ALMAZÁN,
633 C. R., SEÑARIS, C., CHANDRAMOULI, S. R., STRÜSSMANN, C., CORTEZ FERNÁNDEZ, C. F., AZAT,
634 C., HOSKIN, C. J., HILTON-TAYLOR, C., WHYTE, D. L., GOWER, D. J., OLSON, D. H., CISNEROS-
635 HEREDIA, D. F., SANTANA, D. J., NAGOMBI, E., NAJAFI-MAJD, E., QUAH, E. S. H., BOLAÑOS, F.,
636 XIE, F., BRUSQUETTI, F., ÁLVAREZ, F. S., ANDREONE, F., GLAW, F., CASTAÑEDA, F. E., KRAUS,
637 F., PARRA-OLEA, G., CHAVES, G., MEDINA-RANGEL, G. F., GONZÁLEZ-DURÁN, G., ORTEGA-
638 ANDRADE, H. M., MACHADO, I. F., DAS, I., DIAS, I. R., URBINA-CARDONA, J. N., CRNOBRNJA-
639 ISAILOVIĆ, J., YANG, J.-H., JIANPING, J., WANGYAL, J. T., ROWLEY, J. J. L., MEASEY, J.,
640 VASUDEVAN, K., CHAN, K. O., GURURAJA, K. V., OVASKA, K., WARR, L. C., CANSECO-
641 MÁRQUEZ, L., TOLEDO, L. F., DÍAZ, L. M., KHAN, M. M. H., MEEGASKUMBURA, M., ACEVEDO,
642 M. E., NAPOLI, M. F., PONCE, M. A., VAIRA, M., LAMPO, M., YÁNEZ-MUÑOZ, M. H., SCHERZ,
643 M. D., RÖDEL, M.-O., MATSUI, M., FILDOR, M., KUSRINI, M. D., AHMED, M. F., RAIS, M.,
644 KOUAMÉ, N. G., GARCÍA, N., GONWOUO, N. L., BURROWES, P. A., IMBUN, P. Y., WAGNER, P.,
645 KOK, P. J. R., JOGLAR, R. L., AUGUSTE, R. J., BRANDÃO, R. A., IBÁÑEZ, R., MAY, R. V., HEDGES,
646 S. B., BIJU, S. D., GANESH, S. R., WREN, S., DAS, S., FLECHAS, S. V., ASHPOLE, S. L., ROBLETO-
647 HERNÁNDEZ, S. J., LOADER, S. P., INCHÁUSTEGUI, S. J., GARG, S., PHIMMACHAK, S., RICHARDS,
648 S. J., SLIMANI, T., OSBORNE-NAIKATINI, T., ABREU-JARDIM, T. P. F., CONDEZ, T. H.,
649 CARVALHO, T. R. DE, CUTAJAR, T. P., PIERSON, T. W., NGUYEN, T. Q., KAYA, U., YUAN, Z.,
650 LONG, B., LANGHAMMER, P. & STUART, S. N. (2023): Ongoing declines for the world's
651 amphibians in the face of emerging threats. – *Nature*, **622** (7982): 308–314.
652 MANENTI, R., CONTI, A. & PENNATI, R. (2017): Fire salamander (*Salamandra salamandra*) males'
653 activity during breeding season: effects of microhabitat features and body size. – *Acta
654 Herpetologica*, **12** (1): 29–36.
655 MARTEL, A., SPITZEN-VAN DER SLUIJS, A., BLOOI, M., BERT, W., DUCATELLE, R., FISHER, M. C.,
656 WOELTJES, A., BOSMAN, W., CHIERS, K., BOSSUYT, F. & PASMANS, F. (2013): *Batrachochytrium
657 salamandrivorans* sp. nov. causes lethal chytridiomycosis in amphibians. – *Proceedings of the
658 National Academy of Sciences of the United States of America*, **110** (38): 15325–15329.
659 MCCLINTOCK, B. T., LANGROCK, R., GIMENEZ, O., CAM, E., BORCHERS, D. L., GLENNIE, R.
660 & PATTERSON, T. A. (2020): Uncovering ecological state dynamics with Hidden Markov models.
661 – *Ecology Letters*, **23** (12): 1878–1903.
662 MCPHEE, M. E. & CARLSTEAD, K. (2010): The importance of maintaining natural behaviour in captive
663 mammals. In: Kleiman, D. G., Thompson, K. V., Kirk Baer, C. (ed): *Wild mammals in captivity: Principle and techniques for zoo management* 2nd edition. – Chicago, USA, The University of
664 Chicago Press: 303–313.
665

666 MERILAITA, S. & JORMALAINEN, V. (1997): Evolution of sex differences in microhabitat choice and
667 colour polymorphism in *Idotea baltica*. – Animal behaviour, **54** (4): 769–778.

668 MICHELOT, T. (2025): hmmTMB: Hidden Markov Models with Flexible Covariate Effects in R. –
669 Journal of Statistical Software, **114** (5): 1–45.

670 MÜHLENHAUPT, M., BOHNY, H., MOIRON, M., SCHMIDT, M., SCHULTE, L. & CASPERS, B. (2025): The
671 bright, the bold and the toxic: do coloration, personality, and toxicity represent an integrated
672 phenotype in fire salamanders? EcoEvoRxiv: <https://doi.org/10.32942/X24W8V>.

673 NAGEL, R., MEWS, S., ADAM, T., STAINFIELD, C., FOX-CLARKE, C., TOSCANI, C., LANGROCK, R.,
674 FORCADA, J. & HOFFMAN, J. I. (2021): Movement patterns and activity levels are shaped by the
675 neonatal environment in Antarctic fur seal pups. – Scientific Reports, **11** (1): 14323.

676 OGLE, D. H., DOLL, J. C., WHEELER, A. P. & DINNO, A. (2023): FSA: Simple Fisheries Stock
677 Assessment Methods. R package version 0.9.5. url: <https://cran.r-project.org/web/packages/FSA/index.html>

678 OIKE, H., OGAWA, Y. & OISHI, K. (2019): Simple and Quick Visualization of Periodical Data Using
679 Microsoft Excel. – methods and protocols, **2** (4): 81.

680 PENNER J., WERNING H., DUBBERKE V., PATANANT K., RÖDEL M.-O. & ENCKE B. (2022):
681 Machbarkeitsstudie zur Ex-situ-Erhaltungszucht des Feuersalamanders (*Salamandra salamandra*)
682 – das Beispiel Bayern. <https://citizen-conservation.org/wp-content/uploads/2024/02/Penner-J-et-al-2022-Machbarkeitsstudie-Ex-situ-Haltung-Feuersalamander-Bayern.pdf>

683 R CORE TEAM (2023): R: A Language and Environment for Statistical Computing. – Vienna, Austria,
684 R Foundation for Statistical Computing.

685 RECKNAGEL, H., HARVEY, W. T., LAYTON, M. & ELMER, K. R. (2023): Common lizard microhabitat
686 selection varies by sex, parity mode, and colouration. – BMC Ecology and Evolution, **23** (1): 23–
687 47.

688 ROUT, T. M., JACKSON, S. M., ADAM, D., DIGGINS, J., McDONALD-MADDEN, E., MITCHELL, N. J.
689 & WALSH, T. V. (2023): Decision analysis for the planning and assessment of ex situ
690 management: An application to the endangered mahogany glider. – Austral Ecology, **48** (4): 803–
691 821.

692 RUTLEDGE, K., McDANIEL, M., TENG, S., HALL, H., RAMROOP, T., SPROUT, E., HUNT, J.,
693 BOUDREAU, D. & COSTA, H. (2023): Domestication.
694 <https://education.nationalgeographic.org/resource/domestication/>. Accessed Febrary 18, 2024.

695 SCHEELE, B. C., PASMANS, F., SKERRATT, L. F., BERGER, L., AN MARTEL, BEUKEMA, W., ACEVEDO,
696 A. A., BURROWES, P. A., CARVALHO, T., CATENAZZI, A., LA RIVA, I. DE, FISHER, M. C.,
697 FLECHAS, S. V., FOSTER, C. N., FRÍAS-ÁLVAREZ, P., GARNER, T. W. J., GRATWICKE, B.,
698 GUAYASAMIN, J. M., HIRSCHFELD, M., KOLBY, J. E., KOSCH, T. A., LA MARCA, E.,
699 LINDENMAYER, D. B., LIPS, K. R., LONGO, A. V., MANEYRO, R., McDONALD, C. A.,
700 MENDELSON, J., PALACIOS-RODRIGUEZ, P., PARRA-OLEA, G., RICHARDS-ZAWACKI, C. L.,

703 RÖDEL, M.-O., ROVITO, S. M., SOTO-AZAT, C., TOLEDO, L. F., VOYLES, J., WELDON, C.,
704 WHITFIELD, S. M., WILKINSON, M., ZAMUDIO, K. R. & CANESSA, S. (2019): Amphibian fungal
705 panzootic causes catastrophic and ongoing loss of biodiversity. – *Science* (New York, N.Y.), **363**
706 (6434): 1459–1463.

707 SCHWARZ, J. F. L., MEWS, S., DERANGO, E. J., LANGROCK, R., PIEDRAHITA, P., PÁEZ-ROSAS, D.
708 & KRÜGER, O. (2021): Individuality counts: A new comprehensive approach to foraging strategies
709 of a tropical marine predator. – *Oecologia*, **195** (2): 313–325.

710 SEIDEL, U. & GERHARDT, P. (2016): Die Gattung *Salamandra*. – Edition Chimaira, Frankfurt/M 1: 1–
711 555.

712 SIEGEL, S. (ed.) (2014): Feuersalamander *Salamandra salamandra*. – Dresden, Sächsisches
713 Staatsministerium für Umwelt und Landwirtschaft (SMUL). 1: 1–24.

714 SNYDER, N. F., DERRICKSON, S. R., BEISSINGER, S. R., WILEY, J. W., SMITH, T. B., TOONE, W. D.
715 & MILLER, B. (1996): Limitations of Captive Breeding in Endangered Species Recovery. –
716 *Conservation Biology*, **10** (2): 338–348.

717 SPIGHT, T. M. (1967): The water economy of salamanders: Exchange of water with the soil. – *The
718 Biological Bulletin*, **132** (1): 126–132.

719 SPITZEN-VAN DER SLUIJS, A., AN MARTEL, ASSELBERGHS, J., BALES, E. K., BEUKEMA, W., BLETZ,
720 M. C., DALBECK, L., GOVERSE, E., KERRES, A., KINET, T., KIRST, K., LAUDELOUT, A., DA
721 MARIN FONTE, L. F., NÖLLERT, A., OHLHOFF, D., SABINO-PINTO, J., SCHMIDT, B. R.,
722 SPEYBROECK, J., SPIKMANS, F., STEINFARTZ, S., VEITH, M., VENCES, M., WAGNER, N.,
723 PASMANS, F. & LÖTTERS, S. (2016): Expanding Distribution of Lethal Amphibian Fungus
724 *Batrachochytrium salamandrivorans* in Europe. – *Emerging Infectious Diseases*, **22** (7): 1286–
725 1288.

726 SPOTILA, J. R. (1972): Role of Temperature and Water in the Ecology of Lungless Salamanders. –
727 *Ecological Monographs*, **42** (1): 95–125.

728 TAPLEY, B., BRADFIELD, K. S., MICHAELS, C. & BUNGARD, M. (2015): Amphibians and conservation
729 breeding programmes: do all threatened amphibians belong on the ark? – *Biodiversity and
730 Conservation*, **24** (11): 2625–2646.

731 TAPLEY, B., MICHAELS, C. J., JOHNSON, K. & FIELD, D. (2017): A global problem requires a global
732 multifaceted solution. – *Animal Conservation*, **20** (2): 122–123.

733 TAPLEY, B., ZOE, B., GRANT, S., KOTHER, G., FELTRER, Y., MASTERS, N., STRIKE, T., GILL, I.,
734 WILKINSON, M. & GOWER, D. J. (2014): Towards evidence-based husbandry for caecilian
735 amphibians: Substrate preference in *Geotrypetes seraphini* (Amphibia: Gymnophiona:
736 *Dermophiidae*). – *The Herpetological Bulletin* (129): 15–18.

737 THIESMEIER, B. (2004): Der Feuersalamander. – Bielefeld, Laurenti. 1–192.

738 THOMAS, V., WANG, Y., VAN ROOIJ, P., VERBRUGGHE, E., BALÁŽ, V., BOSCH, J., CUNNINGHAM, A.
739 A., FISHER, M. C., GARNER, T. W., GILBERT, M. J., GRASSELLI, E., KINET, T., LAUDELOUT, A.,

740 LÖTTERS, S., LOYAU, A., MIAUD, C., SALVIDIO, S., SCHMELLER, D. S., SCHMIDT, B. R., SPITZEN-
741 VAN DER SLUIJS, A., STEINFARTZ, S., VEITH, M., VENCES, M., WAGNER, N., CANESSA, S., AN
742 MARTEL & PASMANS, F. (2019): Mitigating *Batrachochytrium salamandrivorans* in Europe. –
743 *Amphibia-Reptilia*, **40** (3): 265–290.

744 VALDEZ, J., KLOP-TOKER, K., STOCKWELL, M. P., CLULOW, S., CLULOW, J. & MAHONY, M. J.
745 (2016): Microhabitat selection varies by sex and age class in the endangered green and golden bell
746 frog *Litoria aurea*. – *Australian Zoologist*, **38** (2): 223–234.

747 VAN BEEST, F. M., MEWS, S., ELKENKAMP, S., SCHUHMANN, P., TSOLAK, D., WOBBE, T.,
748 BARTOLINO, V., BASTARDIE, F., DIETZ, R., DORRIEN, C. v., GALATIUS, A., KARLSSON, O.,
749 McCONNELL, B., NABE-NIELSEN, J., OLSEN, M. T., TEILMANN, J. & LANGROCK, R. (2019):
750 Classifying grey seal behaviour in relation to environmental variability and commercial fishing
751 activity - a multivariate hidden Markov model. – *Scientific Reports*, **9** (1): 5642.

752 WILSON, M. W., RIDLON, A. D., GAYNOR, K. M., GAINES, S. D., STIER, A. C. & HALPERN, B. S.
753 (2020): Ecological impacts of human-induced animal behaviour change. – *Ecology Letters*, **23**
754 (10): 1522–1536.

755 ZHANG, P., YONGO, E., LIU, F., PAN, S., SUN, A., ZHOU, L., GUO, Z. & KE, C. (2023): Effects of
756 substrate on burrowing behavior, feeding physiology, and energy budget of undulated surf clam
757 *Paphia undulata*. – *Journal of Oceanology and Limnology*, **41** (5): 1795–1808.

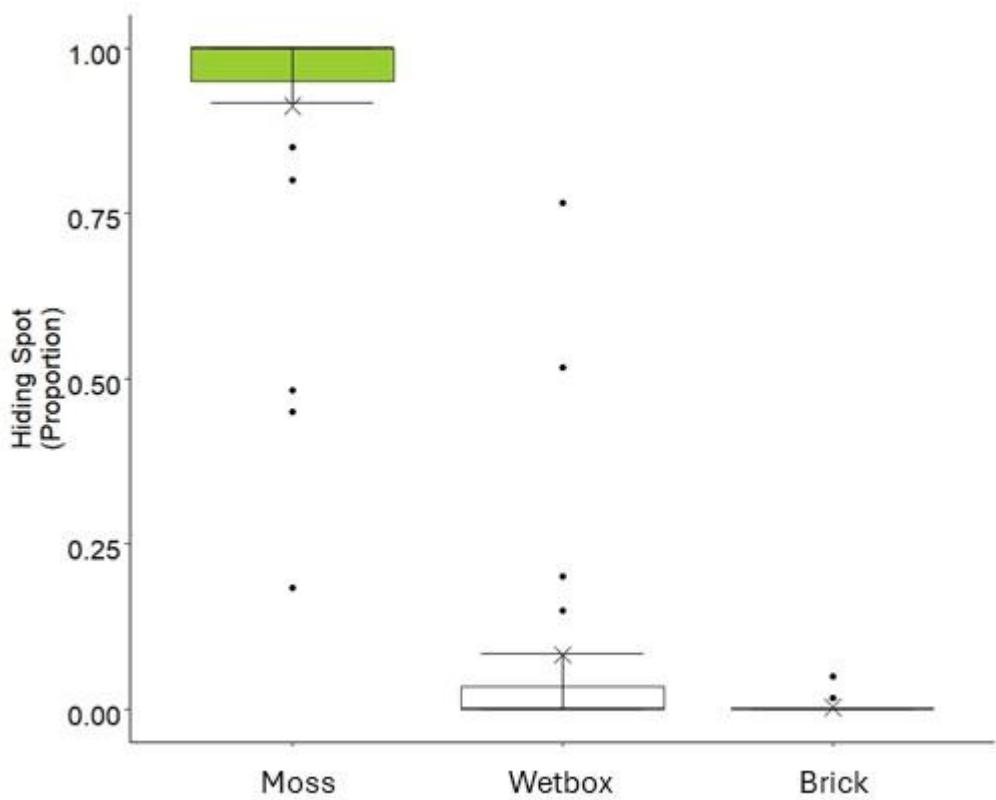
758 ZHAO, C., FENG, J., SUN, Z., ZHU, W., CHANG, J., FAN, W., JIANG, J., YUE, B. & ZHAO, T. (2023):
759 Intraspecific variation in microhabitat selection in reintroduced Chinese giant salamanders. –
760 *Current Zoology*, **69** (2): 121–127.

761 ZUCCHINI, W., MACDONALD, I. L. & LANGROCK, R. (2017): *Hidden Markov Models for Time Series.*
762 An introduction using R. –New York, USA. CRC Press Taylor & Francis Group.

763

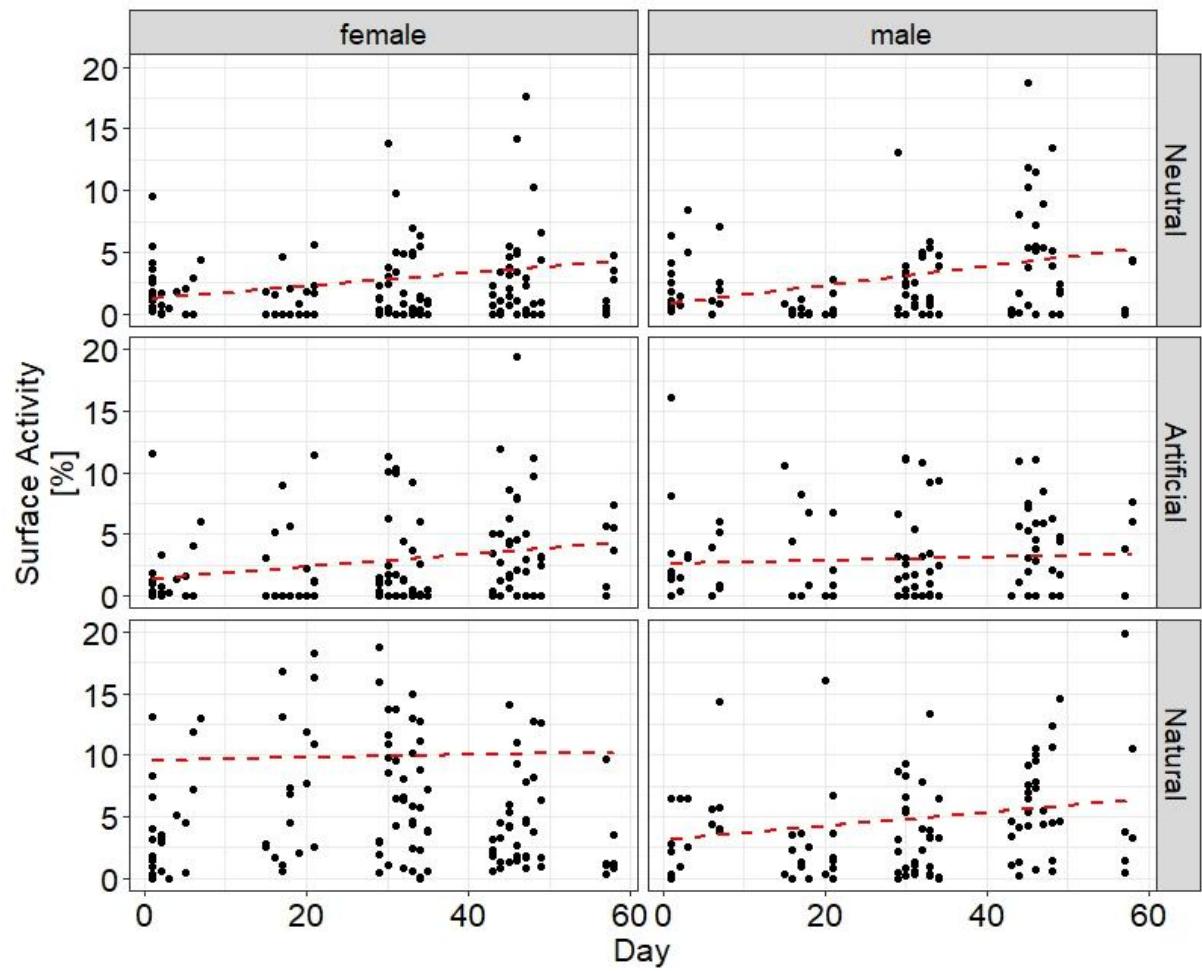
764 **Figures**

765


766

767

768 **Figure 1:** Full experimental set-up of the habitat choice arena for fire salamanders. The natural side
769 (top) consists of a layer of soil, moss and a piece of bark and is separated from the artificial side
770 (bottom) by an opaque barrier. The artificial side has six layers of paper towel, a brick, and a wetbox,
771 which is filled with moss. The neutral side connects the natural and artificial sides and provides a dish
772 of water (left).


773

774

775 **Figure 2:** Overall proportion of the daily hiding positions of fire salamanders (compare with Fig. 1),
 776 calculated over all 60 days for each individual. The x represents the respective mean values and the
 777 thick line the median. The boxes show the quantile range, the whiskers the minimum and maximum
 778 and dots are outliers. A linear mixed model and a followed paired Wilcoxon test were used to test
 779 differences between each hiding spot.

780

781

782 **Figure 3:** The percentage of surface activity (including “activity”, “inactivity” and “out of sight”) for
 783 each individual fire salamander ($n = 27$) per day, separated by sex and habitat zone over 60 days. The
 784 red, dashed line represents the linear trend over the experimental period.

785

786

787

788

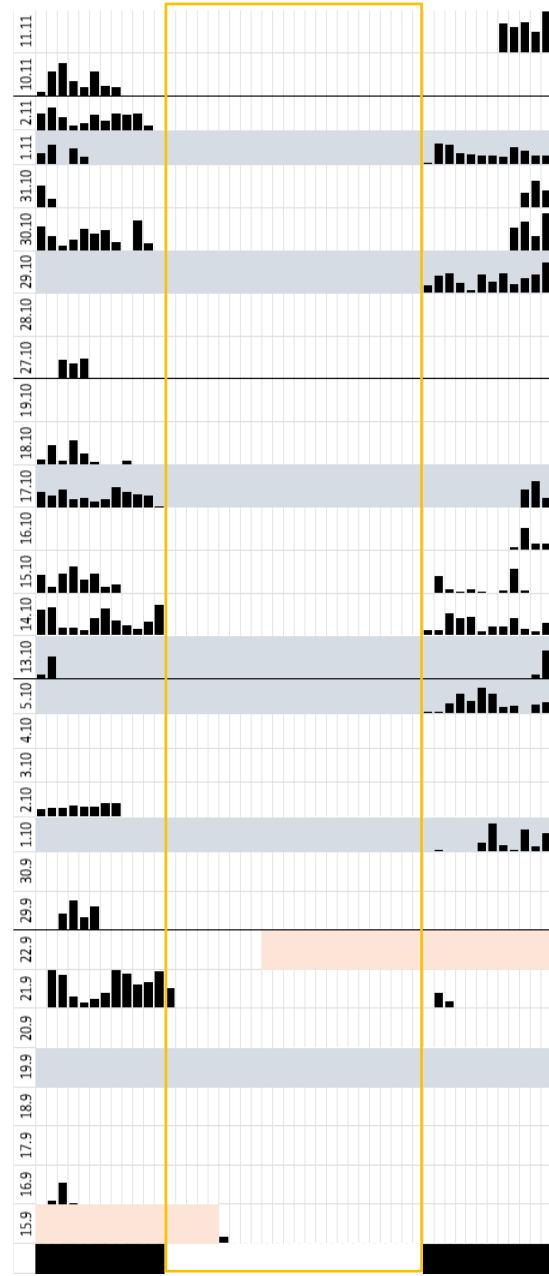
789

790

791

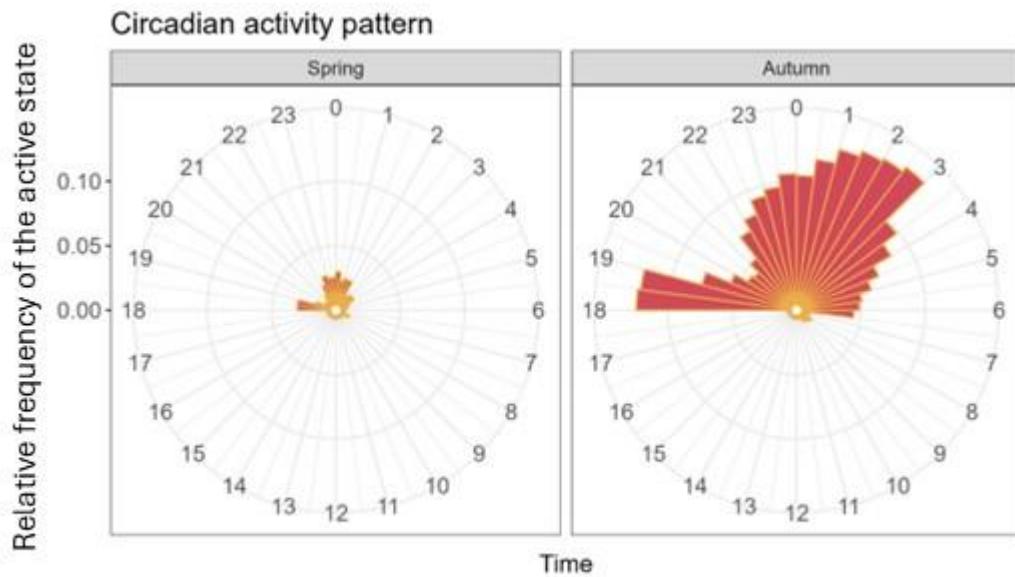
792

793


794

795

Season: Spring – ID: I001


Season: Autumn – ID: II028

796

797 **Figure 4:** Example actogram of two fire salamanders, one for each season (see supplement A for the
798 remaining data). The actogram visualises the rhythmic activity data of individual fire salamanders over
799 the days but only including the days of recording. The y-axis shows the time in days. The lower part of
800 the actogram shows the start of the data recording (starting with day 2) and the upper part shows the
801 last days of recording. Each week is separated by a black line. The day and night rhythm are displayed
802 on the x-axis ranging from: 0 am - 6 am black (night); 6 am – 6 pm white (day) and 6 pm to 0 am

803 black (night) in 30 minutes intervals. The orange rectangle covers the daytime. The black bars show
804 the activity of the respective individual within 30 minutes. The greater the bar, the higher the activity
805 in proportion to the other days. Grey rows indicate the days the moss habitat was moistened; the
806 melon-coloured cells indicate times at which no recordings have been made.

807
808 **Figure 5:** Overall diel pattern of fire salamander activity (state 2) in percentage, averaged over all
809 individuals and the whole recording period, separated into spring and autumn. The centre of the plot
810 shows 0% of activity and the outer circles 5% and 10% of activity, respectively.

811

Supplementary materials for:

**Wild fire salamanders (*Salamandra salamandra*) prefer natural housing
conditions *ex-situ***

MANUELA SCHMIDT^{1*}, MAX MÜHLENHAUPT^{1*}, PHILIPP WAGNER², LAURA SCHULTE¹, SINA MEWS³, SYLVIA KAISER^{4,5}, LARS LEWEJOHANN^{6,7}, S. HELENE RICHTER^{4,5}, MARK-OLIVER RÖDEL⁸, HEIKO WERNING⁹, & BARBARA A. CASPERS^{1,4}

¹ Behavioural Ecology Department, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany

² Allwetterzoo Münster, Sentruper Straße 315, 48161 Münster, Germany & Zoo Augsburg, Brehmplatz 1, 86161 Augsburg

³ Department of Business Administration and Economics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany

⁴ Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany

⁵ Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany

⁶ Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, Berlin 14163, Germany

⁷ German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin 10589, Germany

⁸ Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany

⁹ Citizen Conservation, Reichenberger Str. 88, 10999 Berlin, Germany

* these authors share first authorship

Corresponding author: **Max Mühlenhaupt** e-mail: **max.muehlenhaupt@uni-bielefeld.de**

Supplementary Materials A: Figures

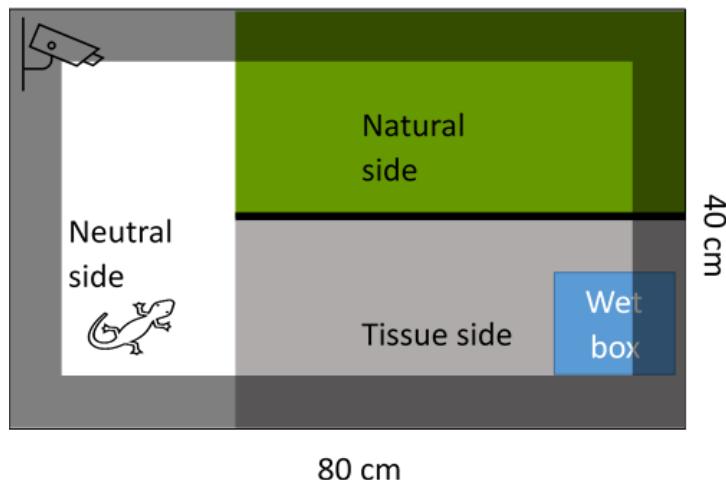


Figure S1: Experimental Setup of one choice arena. The arena is made out of grey, non-transparent plastic. The arena is evenly separated in the neutral habitat (white), the natural habitat (green) and the tissue habitat (grey). A wall out of plastic separates the natural side from the tissue side. Inside the tissue side is a wetbox (blue). An open lid (dark grey area) covers the borders of the arena to prevent the fire salamander from escaping. The animals start at the neutral habitat. The whole arena is getting recorded in a 7 day recording, 7 day break manner. After a one night habituation in the neutral zone, the salamander can move in each zone freely.

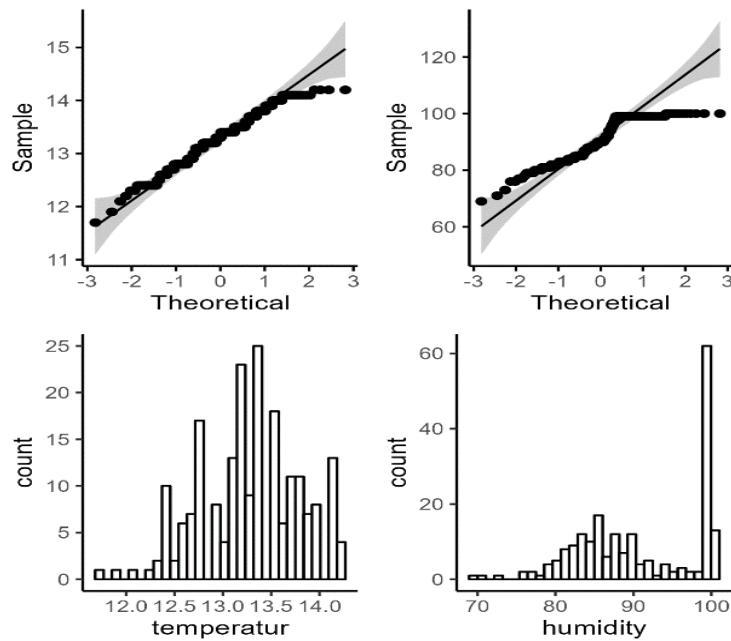


Figure S2: Visualisation of QQ Plots and Histogram for the climate analysis for temperature and humidity. Normality is given, when the black dots are in near proximity to the line for the QQ Plot and follow a Gaussian distribution in the Histogram. Shapiro Wilk test was used as reference and was < 0.05 , thus normality was not assumed.

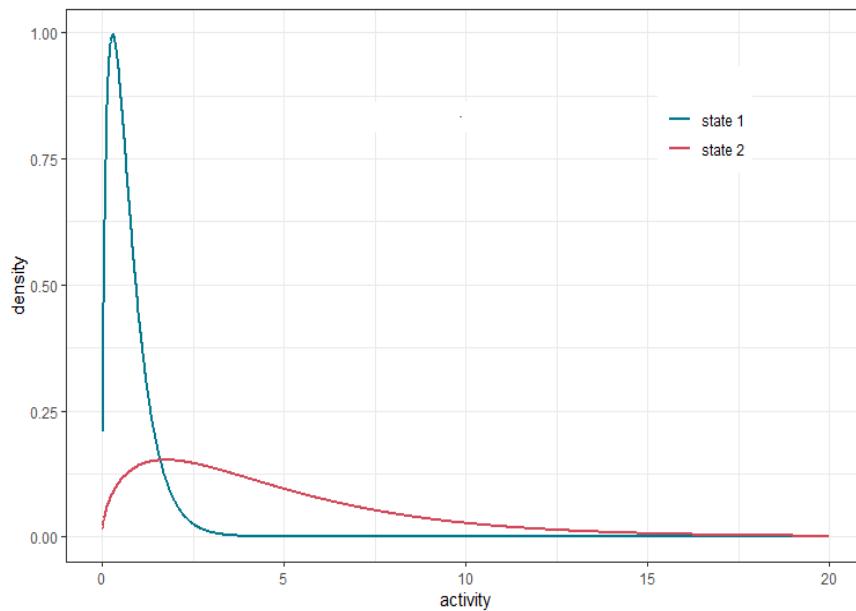
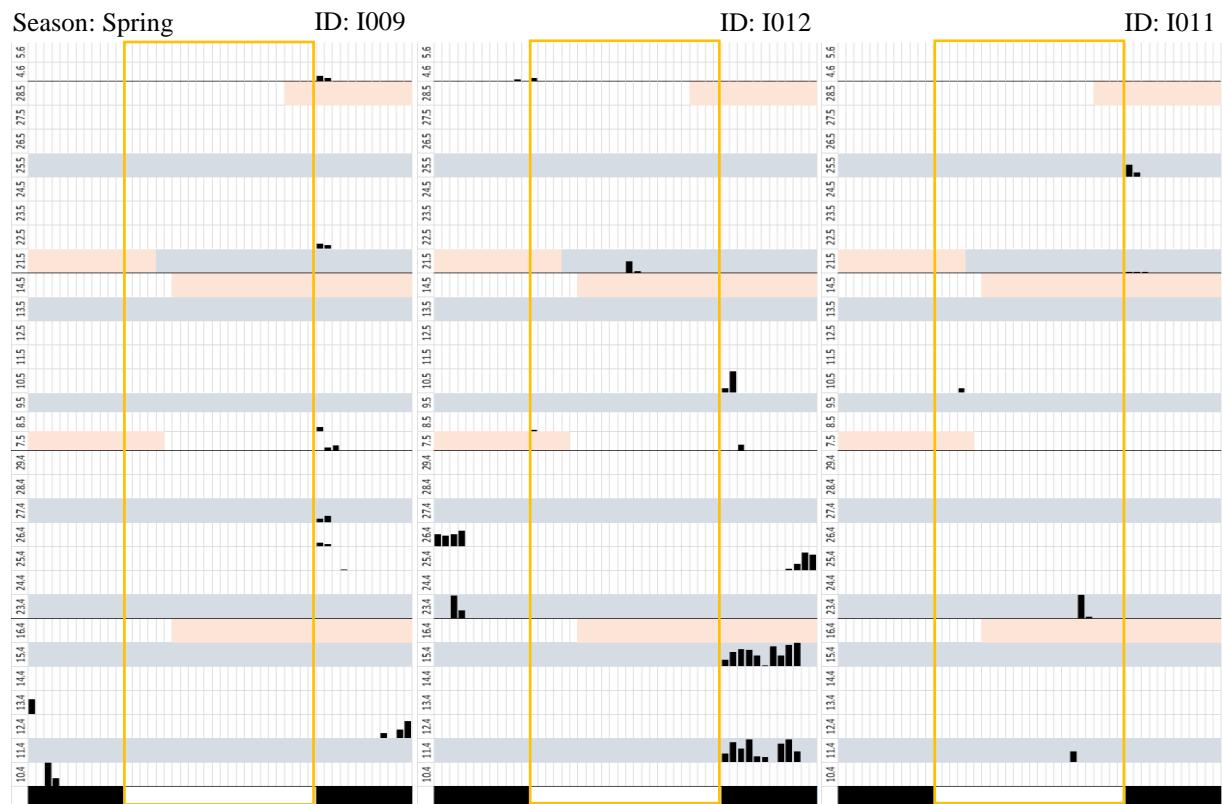
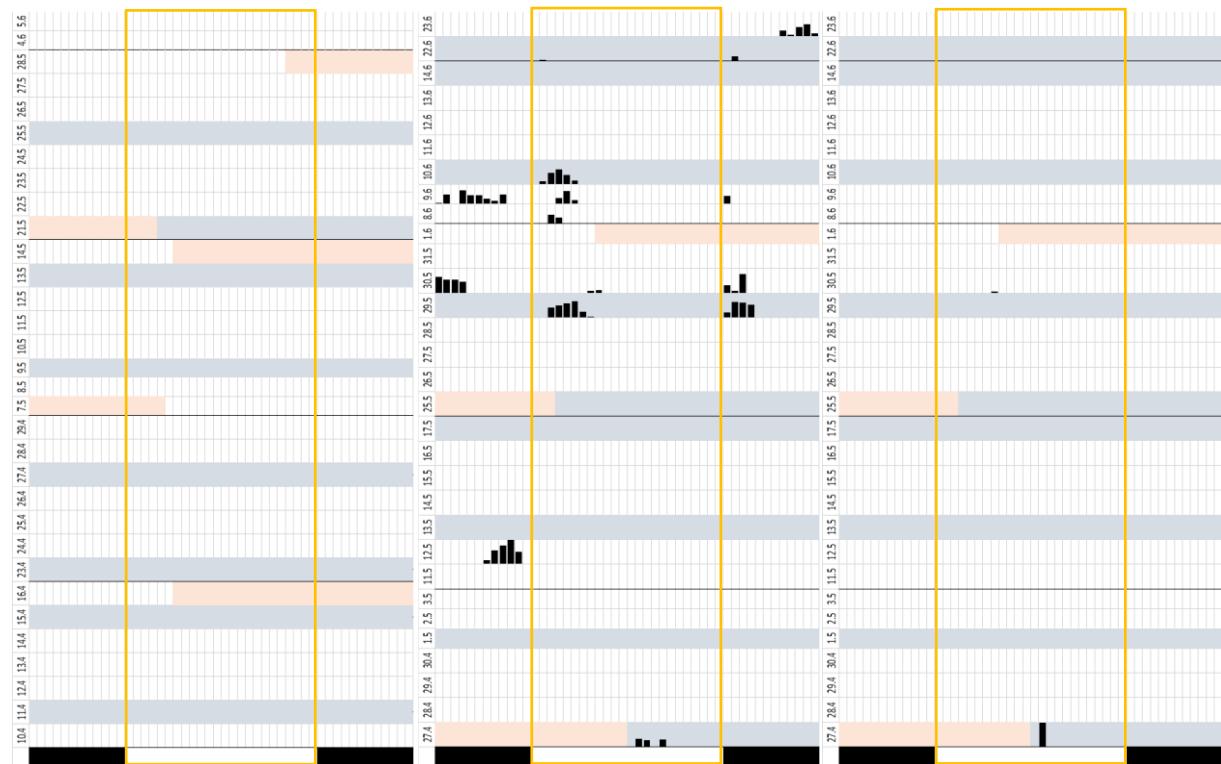



Figure S3: State-dependent gamma distributions of the fire salamanders' activity time within the 30-min intervals. State 1 corresponds to immobile/non-active behaviour (blue line) and state 2 to active behaviour (red line), when fire salamanders were moving. The probability of zero activity for state 1 is 0.998 and for state 2 0.051.

Actogram: Spring

To reduce repetition, the following paragraph contains a general description of the Actograms on page 42 – 47.

An actogram visualises the rhythmic activity data of individual fire salamanders over the days, but only including the days of recording (10.4. – 5.6.2022, n=4 (ID: I017, I009, I012, I0011); 27.4 – 23.06.2022, n=11) and autumn (15.9– 11.11.2022, n=15). The y-axis shows the time in days. The lower part of the actogram shows the start of the data recording (starting with day 2) and the upper part shows the last days of recording. Each week is separated by a black line. The day and night rhythm is displayed on the x-axis ranging from: 0 am - 6 am black; 6 am – 6 pm white and 6 pm to 0 am black in 30 minute intervals. The orange rectangle covers the daytime. The black bars show the activity of the respective individual within 30 minutes. The greater the bar, the higher the activity in proportion to the other days. Grey rows indicate the days the moss habitat was moistened; the melon-coloured cells indicate time at which no recordings have been made.

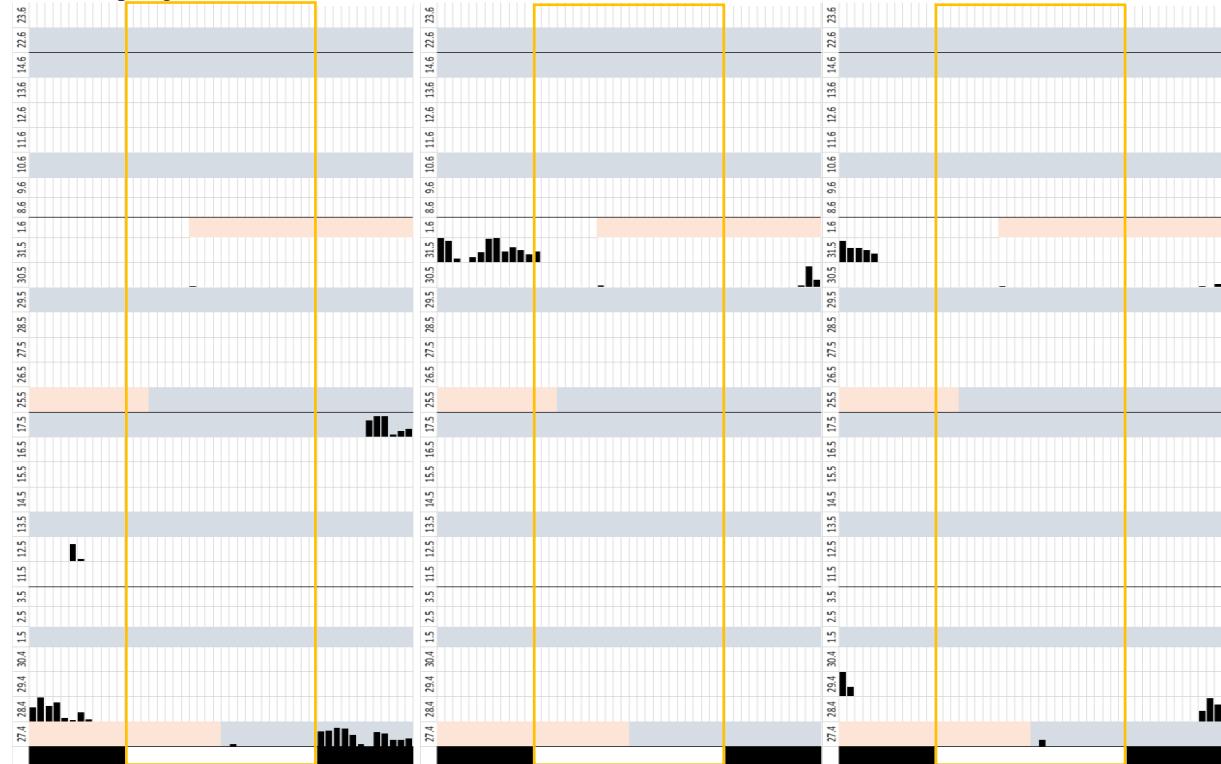


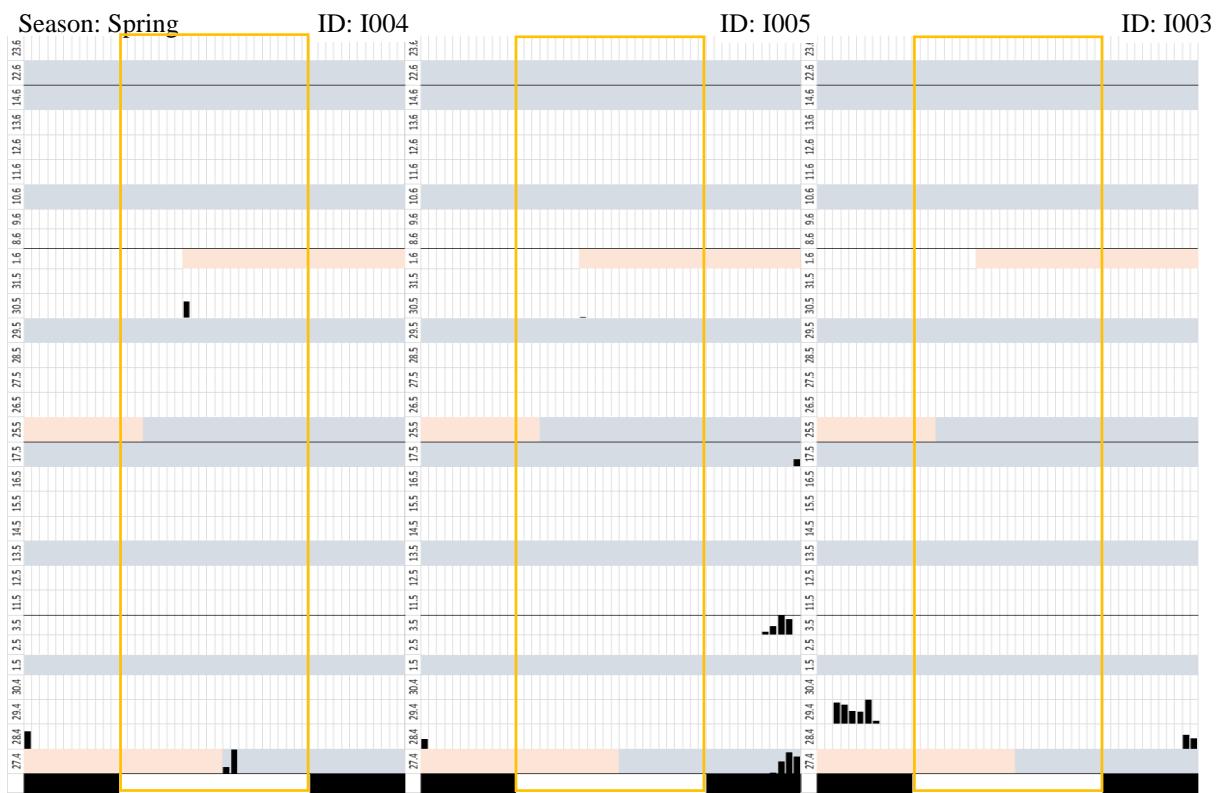
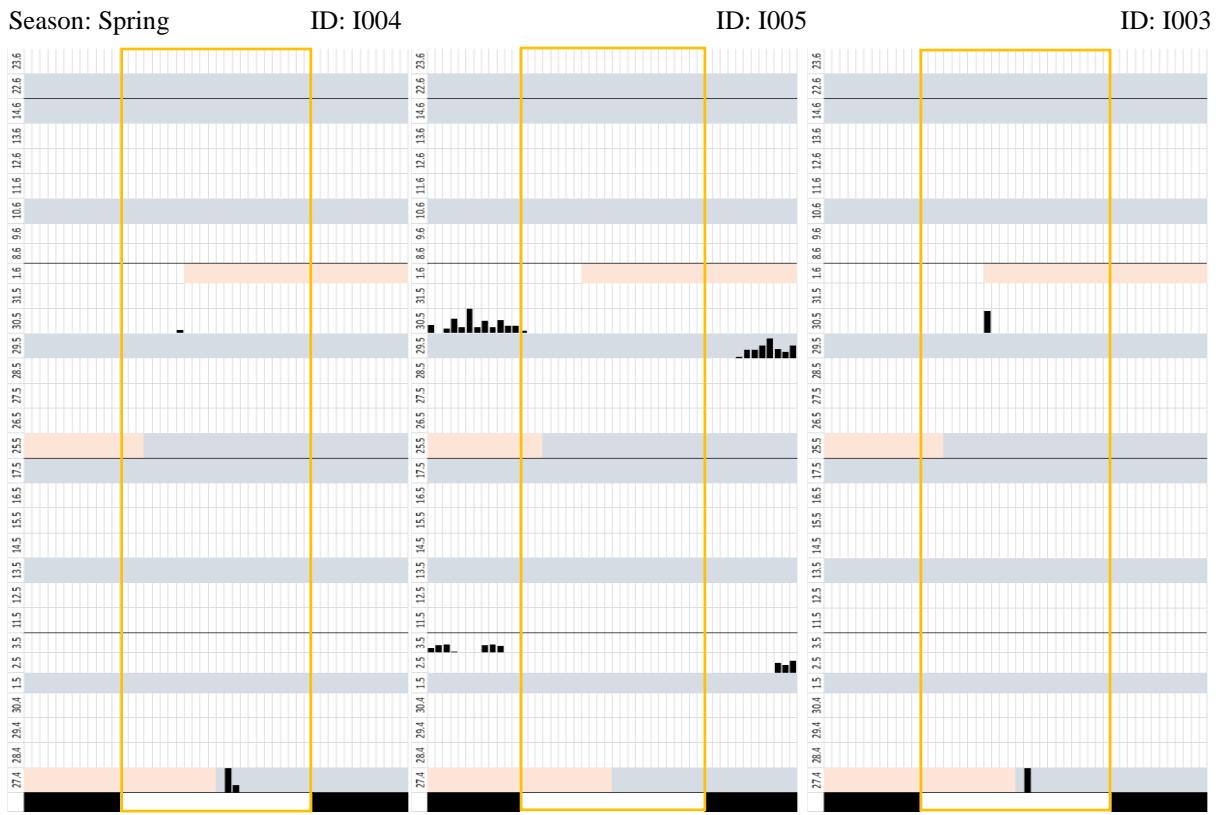
Season: Spring

ID: I017

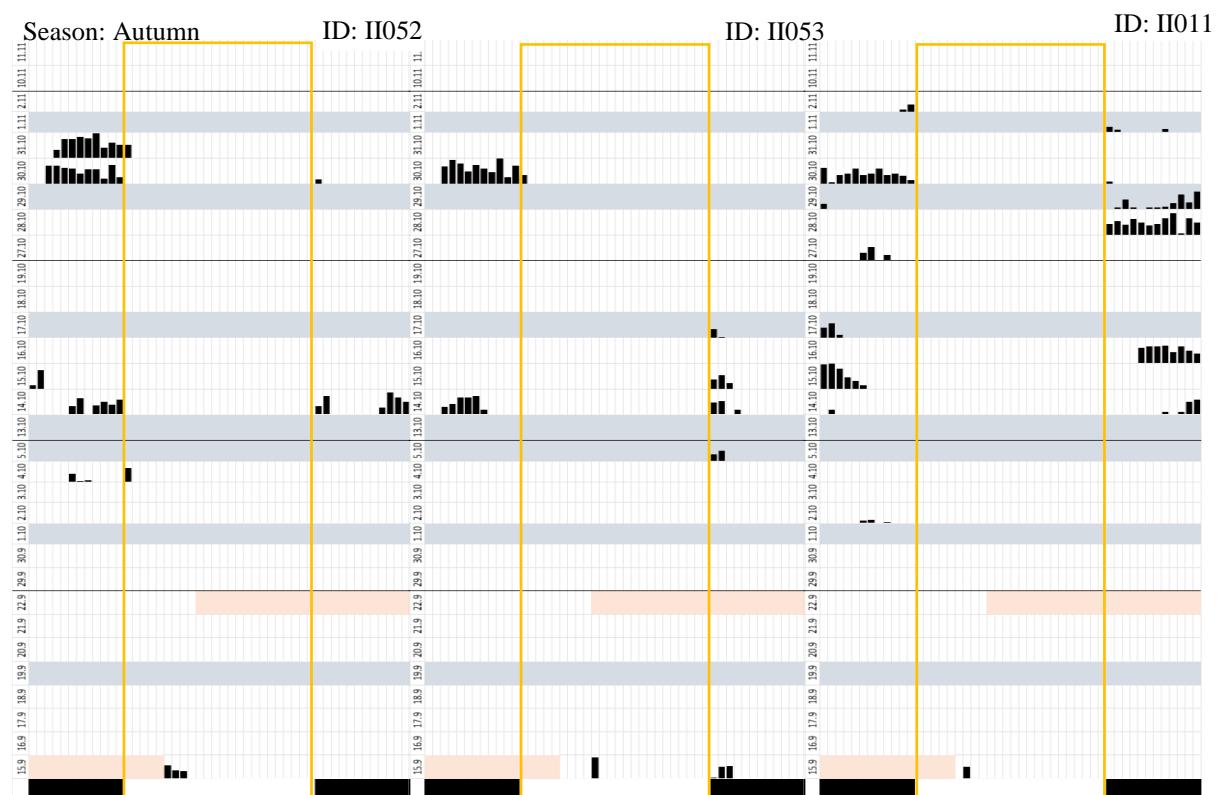
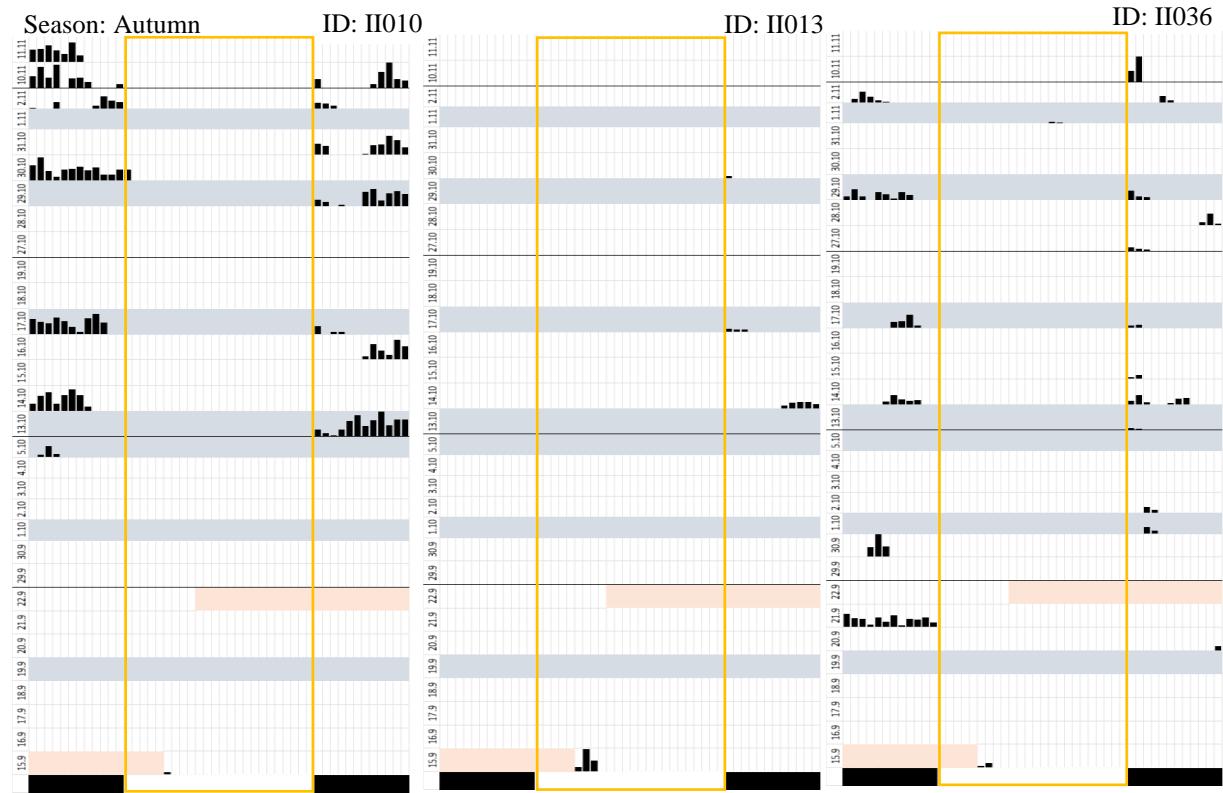
ID: I001

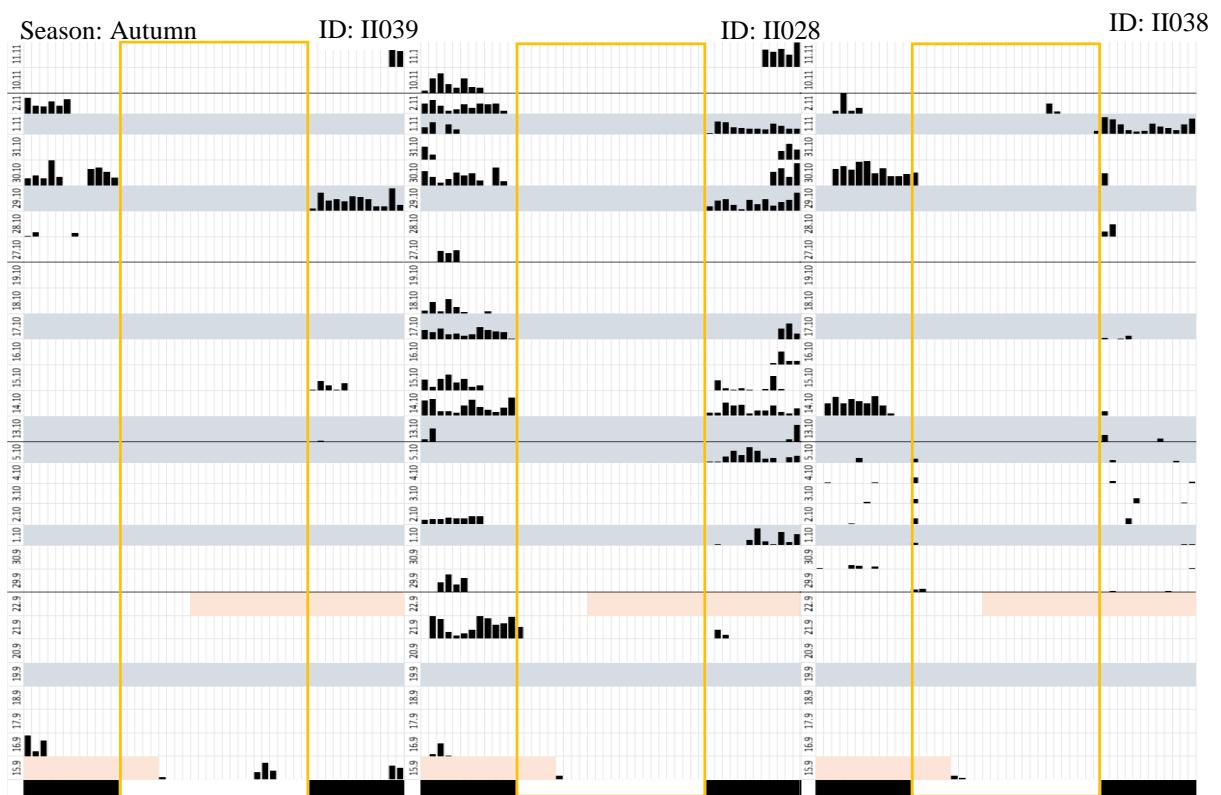
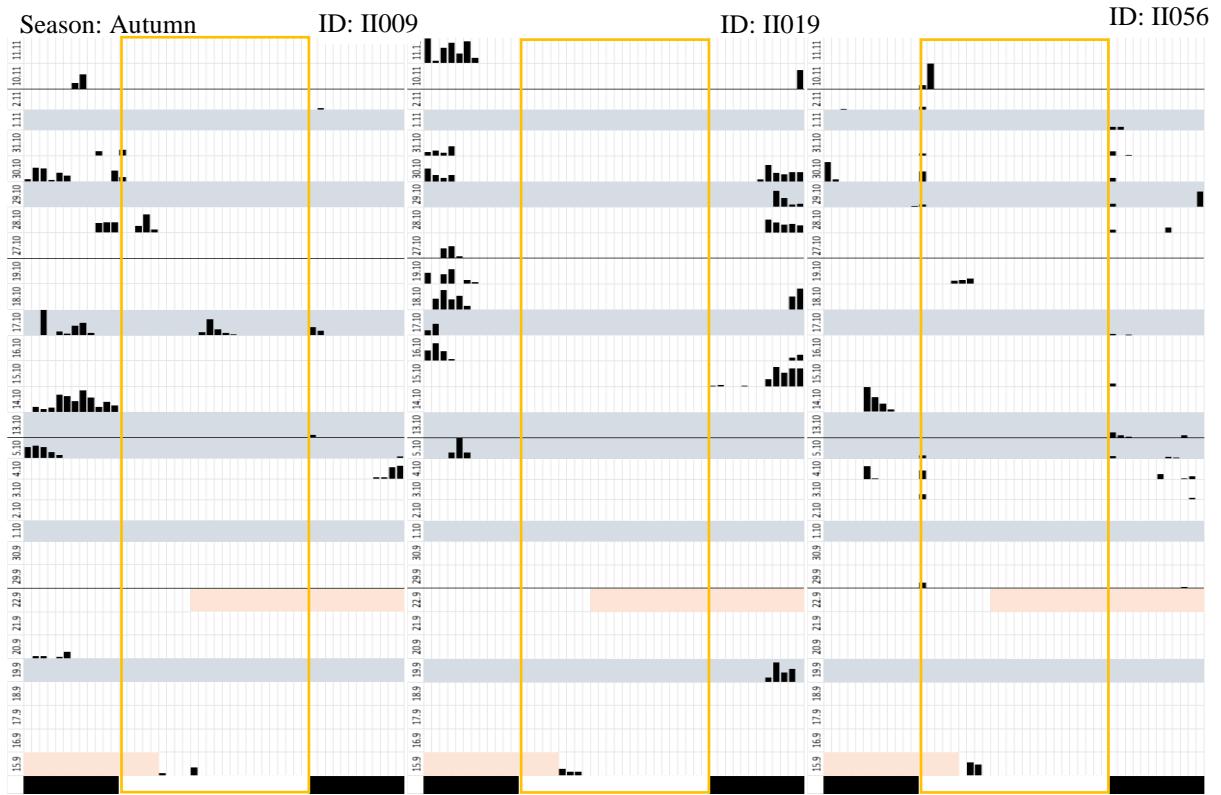
ID: I002

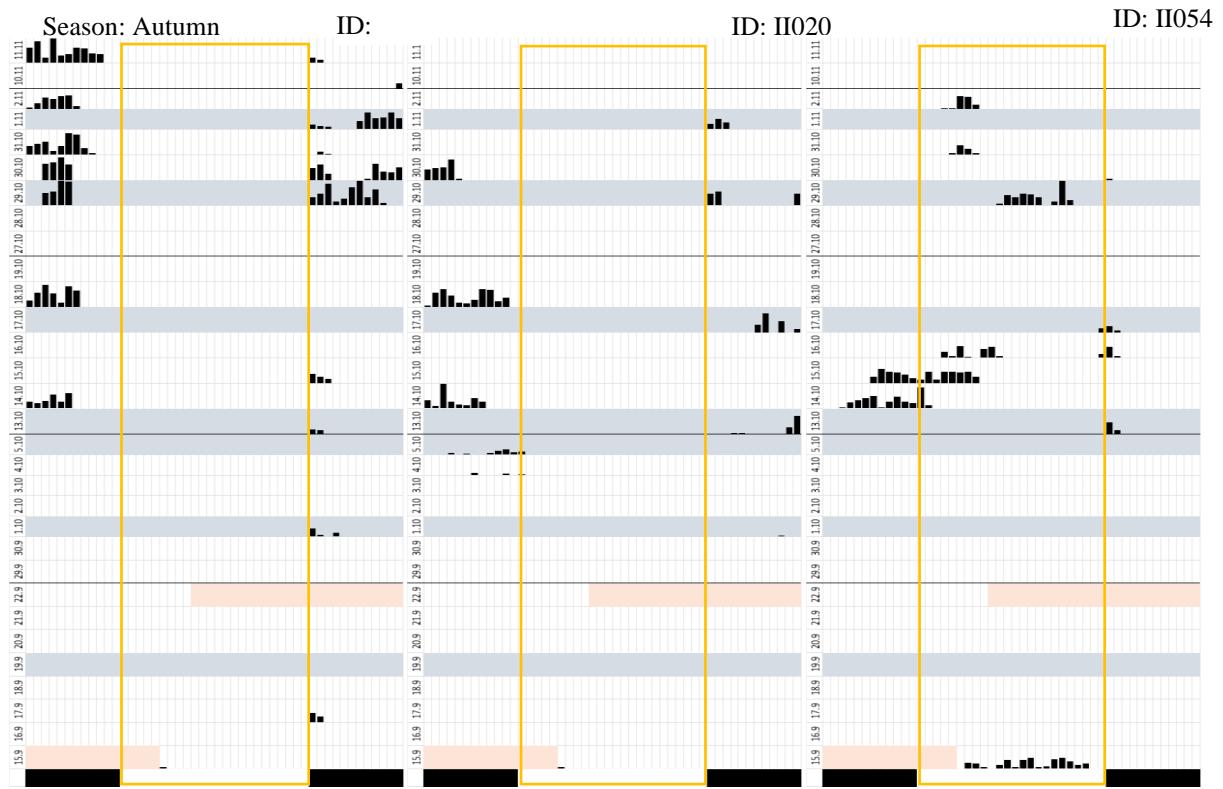




Season: Spring

ID: I004



ID: I005



ID: I003



Actogram: Autumn

Supplementary Materials B: Tables

Table S1: Ethogram of all behaviours with description coded for the video analysis in BORIS.

Behaviour type	Code	Description	
State event	Start of the observation		
State event	Night activity	Focal individual is active during the night	
State event	Night inactivity	Focal individual is inactive during the night	
State event	Night out of sight	Focal individual is outside but not visible during the night	
State event	Day activity	Focal individual is active during the day	
State event	Day inactivity	Focal individual is inactive during the day	
State event	Day Out of sight	Focal individual is outside but not visible during the day	
State event	Neutral zone activity	Focal individual is active in the neutral side	
State event	Neutral zone inactivity	Focal individual is inactive in the neutral side	
State event	Neutral zone out of sight	Focal individual is in the neutral side but not visible.	
State event	Moss side activity	Focal individual is active at the moss side	
State event	Moss inactivity	Focal individual is inactive at the moss side	
State event	Moss out of sight	Focal individual is in the moss side but not visible.	
State event	Tissue zone activity	Focal individual is active at the tissue side	
State event	Tissue inactivity	Focal individual is inactive at the tissue side	
State event	Tissue out of sight	Focal individual is in the tissue side but not visible.	
State event	Water dish	Focal individual spends time inside the water	Not used in analysis
State event	brick	Focal individual spends time on the brick	Not used in analysis
State event	wetbox	Focal individual spends time on the wetbox	Not used in analysis
State event	First choice	Time needed in video 1 after habituation to choose a hiding spot	Not used in analysis

Table S2: Test statistic of the Shapiro – Wilk – Test for the data sets temperature and humidity. If the p-value is < 0.05 , the hypothesis that the data is normally distributed, is rejected.

Data	W	p-value
Temperature	0.9773	0.001922
Humidity	0.889	2.877e-11

Table S3: Estimated state-dependent parameters, i.e. the mean, standard deviation (sd) and the probability of having 0 activity (z), of the zero-adjusted gamma distribution for the activity data. State 1 indicates inactivity and state 2 activity.

	State 1	State 2
Activity mean	0.726	4.754
Activity sd	0.557	3.783
Activity z	0.998	0.051

Table S4: Transition probability matrix between state 1, when fire salamanders were inactive, and state 2, when they were actively moving.

	State 1	State 2
State 1	0.995	0.005
State 2	0.176	0.824

Table S5: Descriptive data of temperature and humidity for both seasons summarised. Including the number of observations (n), the mean (\bar{x}), the standard deviation (sd) and the median.

Temperature	n	\bar{x}	sd	median
Natural	71	13.17	0.56	13.1
Artificial	71	13.55	0.43	13.5
Wetbox	66	13.13	0.44	13.2

Humidity	n	\bar{x}	sd	median
Natural	71	90.11	5.87	90
Artificial	71	83.37	4.34	83
Wetbox	66	99.18	0.39	99

Table S6: Descriptive data of the proportion of the daily hiding for both seasons and all individuals summarised. Including the number of observations (n), the mean (\bar{x}), the standard deviation (sd) and the median.

Daily Hiding	n	\bar{x}	sd	Median
natural	30	0.91	0.19	1
wetbox	30	0.08	0.19	0
brick	30	0	0.01	0

Table S7: Descriptive data of the percentage of surface activity for both seasons and sex individually. Including the number of observations (n), the mean (\bar{x}), the standard deviation (sd) and the median.

	n	\bar{x}	sd	Median
Natural				
Spring	70	3.86	7.38	2.15
Autumn	191	8.92	10.6	5.37
Artificial				
Spring	70	3.32	7.41	0.52
Autumn	191	2.78	3.53	1.35
Neutral				
Spring	70	2.47	5.94	0.9
Autumn	191	3.04	5.08	1.26
Sex				
Natural				
female	143	9.9	12.35	4.64
male	104	4.76	5.26	3.48
Artificial				
female	143	2.84	5.75	0.49
male	104	3	3.55	1.72
Neutral				
female	143	2.74	5.91	1.01
male	104	3.03	4.57	1.21