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Abstract

Understanding the impact of ongoing global change on plant communities requires long-term
quantitative reconstructions of past vegetation dynamics. Fossil pollen records offer one of the
most powerful tools to reconstruct past landscapes, yet for their accurate interpretation it is
important to take into account the differential pollen productivity of plant taxa. For southern
Europe, and particularly for the Iberian Peninsula, estimates of pollen productivity remain scarce,
limiting our ability to refine palaeoecological reconstructions.

Here we present the first relative pollen productivity estimates (RPPs) for 21 common taxa in
continental Spain. For that purpose, we used 1,113 modern pollen samples from own surveys and
the Eurasian Modern Pollen Database (EMPD2), and vegetation data from the Spanish Forestry
Map (MFE) and the Iberian and Macaronesian Vegetation Information System (SIVIM). RPPs
were derived by applying an optimisation algorithm with the REVEALS model (REgional
VEgetation Estimates from Large Sites). To test the reliability of our RPPs, we validated 8
arboreal taxa in 26 present-day coretops across Spain. We also compared the obtained RPPs with
different studies across Europe, using a bias-free comparison framework.

Our findings indicate that the dominant arboreal taxa (Pinus, evergreen and deciduous Quercus)
are high pollen producers, whereas temperate forest, shrub and herbaceous taxa generally yielded
medium to low estimates of pollen productivity. Validation of the most frequent taxa from
present-day coretops showed that REVEALS-based estimates perform better than raw pollen
counts when compared with present-day vegetation cover. Comparison between different studies
in Europe also showed that most of the Spanish RPPs are similar to those obtained in Europe,
although notable differences emerged for some taxa.

This study calculates, validates and compares the first RPPs in the Western Mediterranean,
highlighting the value of quantitative palaeoecological data for Holocene landscape
reconstructions. The findings of this paper would support that the Iberian Peninsula could have
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been home to a heterogeneous mosaic of open areas, conifers and broadleaf trees, offering new
frameworks to improve both palaeoecological reconstructions and contemporary forest
management strategies.

Keywords: RPPs, PPEs, REVEALS, Mediterranean basin, land cover, palaeoecology.
1. Introduction

Science for mitigation and adaptation to global change needs to quantify how much landscapes
changed under the pressure of climate variability and human agency. Acquiring a numerically
detailed understanding of changes in land use and vegetation cover through time is crucial to
establish reliable environmental models of the impacts of past climate change on plant
communities.

Likewise, land cover reconstructions are crucial elements for answering various ecological
questions and changes in land use (Fyfe et al., 2015; Pearce et al., 2023; Roberts et al., 2018;
Trondman et al., 2014; Woodbridge et al., 2019). A central challenge in palaeoecology is to
determine not only how vegetation cover varied in space and time, but also how these changes
interacted with the physical environment and disturbance regimes. This involves asking key
palaeoecological questions shaped by some of the long-standing debates over the historical
structure and dynamics of European landscapes. Some influential and controversial hypotheses
(e.g., Svenning, 2002; Vera, 2000) dispute the traditional view of densely forested wilderness.
Instead, they propose that large herbivores and disturbance regimes maintained extensive areas
of semi-open habitats across much of postglacial Europe. This debate continues today, supported
by robust palaeoecological data used to evaluate these hypotheses (Pearce et al., 2023). Recent
studies increasingly suggest that postglacial Europe had a mixed composition of both closed
forests and open areas (Carrion et al., 2010a; Nikulina et al., 2024; Pearce et al., 2025a),
highlighting that the drivers of vegetation openness extend beyond climatic and human influences
and emphasising the significant roles of large herbivores (Pearce et al., 2025b)

Accurate reconstruction of forest structure and baseline conditions for ecological restoration
largely depends on pollen-based land cover reconstructions, which are not only vital for
unravelling the long-term interplay between ecological and human processes, but also for
producing reliable regional and global climate models and biogeochemical cycles (Abrantes et
al., 2012; Cheddadi et al., 1998; Li et al., 2011; Liu et al., 2023). Integrating quantitative pollen
data with diachronic cartography and multi-proxy evidence is also crucial to reconstruct the
effects of past disturbances (Githumbi et al., 2022; Pirzamanbein et al., 2014, 2020; Zanon et al.,
2018)— including fire, human deforestation and herbivory — allowing us to quantify biomass
affected over time and the spatial extent of disturbance regimes and disentangle overlapping
effects of natural and anthropogenic drivers (Ellis, 2021; Morrison et al., 2021; Nikulina et al.,
2024; Pearce et al., 2025b).

In this regard, pollen records are the most widely used proxies for past vegetation reconstruction
(Andersen, 1970; Brostrém et al., 2008; Davis, 1963; Huntley, 1990; Sugita, 1994; VVon Post,
1918). Indeed, one of the main goals of pollen analysis is to reconstruct past plant abundances.
However, it has long been known that there is a lack of linearity between pollen presence and
abundance of the producing plant taxa (Andersen, 1970; Davis, 1963; Prentice and Parsons, 1983;
Sugita, 1994), resulting in some taxa being overrepresented in fossil pollen records due to their
high productivity and effective dispersal, while others may be underrepresented owing to low
productivity and limited dispersal capacity (Davis, 1963). This discrepancy can lead to biased
reconstructions of past vegetation and land cover (Prentice and Webb, 2009; Sugita, 1994). Thus,
rigorous estimation of the composition of past vegetation relies on our ability to better
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comprehend and quantify the relationships between fossil pollen assemblages and the
composition of the vegetation that produces them.

A first step in the quantitative reconstruction of Quaternary vegetation using fossil pollen records
requires calculating the pollen productivity estimates (PPEs), or relative pollen productivity
estimates (RPPs), for the taxa whose land cover we aim to reconstruct. Pollen productivity is often
defined as the number of pollen grains produced per unit relative abundance of a given taxon, and
is usually expressed as a dimensionless ratio relative to a reference taxon, since absolute pollen
production measurement is difficult to determine (Andersen, 1970). RPPs are one of the critical
parameters required to produce a reliable model of past vegetation abundance, as they enable
correction of under or over estimations of taxa abundance.

Relative pollen productivity estimates (hereafter referred to as RPPs) have been calculated for
many regions of northern and central Europe in the last decades (Abraham and Kozékova, 2012;
Baker et al., 2016; Brostrom et al., 2004; Bunting et al., 2005; Grindean et al., 2019; Hjelle, 1998;
Kunes et al., 2019; Mazier et al., 2008; Nielsen, 2004; Niemeyer et al., 2015; Poska et al., 2011;
Soepboer et al., 2007; Theuerkauf et al., 2013). RPPs have also been calculated in the eastern
Mediterranean (Ergin et al., 2024), as well as in North America (Calcote, 1995; Chaput and
Gajewski, 2018; Commerford et al., 2013), Africa (Duffin and Bunting, 2008; Tabares et al.,
2021), Asia (Han et al., 2017; He et al., 2016; Jiang et al., 2020) and Oceania (Mariani et al.,
2016, 2022). Despite the abundance of RPP studies for different taxa in mid or high European
latitudes, other regions of the world remain understudied. One example is the five Mediterranean-
climate regions (MCRs) of the world. Despite occupying less than 5% of the Earth’s surface, they
host about 48,250 known vascular plant species (Cowling et al., 1996) and yet, there are very few
RPPs existing in these areas (Ergin et al., 2024; Githumbi et al., 2022). The MCRs also represent
a critical biome for understanding long-term human-landscape relationships as the Mediterranean
Basin in particular represents a very long history of human occupation and therefore ecosystem
change, resilience or persistence, besides a particularly vulnerable scenario regarding current
global change and future warming (IPCC, 2023). The lack of RPPs for MCRs precludes any
quantitative land cover reconstruction from fossil records in these areas, although efforts have
been recently made to obtain new RPPs for some Mediterranean areas (Ergin et al., 2024;
Githumbi et al., 2022; Serge et al., 2023). The fact that all previous numerical approaches have
been conducted in mixed temperate forests or in subtropical areas implies that the complexity of
Mediterranean plant communities has rarely been considered in these attempts.

Some of the available RPPs for northern European taxa could potentially be of use in the
Mediterranean basin, but it is well-known that pollen productivity might be driven by a number
of geographical factors, plant taxonomy and climate constraints (Baker et al., 2016; Brostrom et
al., 2004, 2008). Often, RPPs for the same taxa may differ due to methodological issues at the
data resolution and landscape characterisation level, and from a number of methodological
assumptions (Liu et al., 2022). These inconsistencies challenge the transferability of RPPs beyond
their original context and, consequently, their application is often restricted to localised settings
(Liu et al., 2022). Essentially, having a robust estimate of pollen productivity for taxa of a
particular region implies considering all these factors and thus obtaining new RPPs.

In the present work, our objectives are: 1) to produce RPPs for 21 woody and herbaceous taxa
across the Spanish Territory of Iberia (STI, from now on), 2) to validate the obtained results using
present-day pollen samples from coretops within the region and 3) to compare our results with
those from other European RPP studies. STI holds one of the greatest ecosystem, habitat and plant
species diversities of Europe (Maestre et al., 2021; Médail and Quézel, 1999; Mutke et al., 2010)
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and comprises two biogeographical domains: the Mediterranean region, which accounts for about
70% of the STI, and the Eurosiberian region, located in the northernmost areas of the STI (~30%).
Our work is the first comprehensive study conducted in lberia to obtain relative pollen
productivity estimates, and it represents the first step towards the quantitative reconstruction of
past landscapes framework in the Western Mediterranean, and particularly in STI.

2. Material and methods
2.1 Study area

The study area covers the whole of continental Spain (504.782 km?) including the two
biogeographical regions, Eurosiberian and Mediterranean.

a) Mediterranean bioclimatic region

The Mediterranean region extends throughout most of the STI, covering all of the central and
eastern region except for the mountain and alpine areas. STI exhibits remarkable climatic
diversity, largely driven by its complex topography and geographic position. Mean annual
temperatures (MAT) range from approximately 8 °C in the interior plateaus and mountainous
regions to around 18 °C along the Mediterrancan coast (Fig.1). In alpine zones of the
Mediterranean, MAT often falls below 8 °C. Precipitation patterns are equally heterogeneous:
while the national mean annual precipitation (MAP) is around 500 mm, values vary widely—
from 1000-1500 mm in mountainous areas to as low as 200—600 mm in coastal and plateau
regions (Chazarra et al., 2018) (Fig. 1). This climatic variability underpins the country’s
exceptional ecological and floristic diversity, resulting in a variety of habitats and landscapes.

Temperature (°C)
<=8
8-12

B 12-14

B 14-16

B 16-18

| IR

Rainfall (mm)
<=300
300 - 500
500 - 700
700 - 1000

I 1000 - 1500

B > 1500

A u’%)o km ¢ Coretops ¢ Modern pollen rain samples

Figure 1. a) Mean annual temperature (MAT, °C) and b) mean annual precipitation (MAP, mm) in continental Spain
(Ninyerola et al., 2005). Black dots represent the locations of the surface samples used in this study; green squares
represent the coretops used for validation.

Mediterranean forest ecosystems cover two thirds of the total wooded region in the STI (Costa et
al., 1998). These woody communities are physiognomically diverse and vary from scrub to dense
mature forests, and from thorny, macchia-like temperate steppes to cold semi-deserts (Costa et
al., 1998; Gavilan et al., 2018). Mediterranean forests, structured along a marked altitudinal
gradient, are predominantly monospecific, although they are occasionally mixed with other
woody species. These are mainly evergreen sclerophyllous taxa, though sometimes deciduous
taxa are also present (Fig. 2).
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In coastal and lowland areas (0-400 m asl) macchia and garrigue-type shrublands, grasslands and
forests of different species of Pinus (P. halepensis Mill., P. pinaster Aiton, P. pinea L.) are
dominant. Some other pines can also be found in the Mediterranean foothills and mountain belts
(400-1200 m asl): P. sylvestris L. (Scots pine), P. nigra subsp. salzmanii (Dunal) Franco, P. nigra
subsp. nigra J.F. Arnold. (black pine) and those from lowland areas, along with the main oak taxa
of Mediterranean sclerophyllous forests, Quercus ilex L. and Q. suber L. (holm and cork oak
woodlands, Fig. 2). These forests appear often combined with Juniperus spp. communities (J.
thurifera L., J. phoenicea L., J. communis L., J. oxycedrus L., or J. sabina L.), which are quite
characteristic of the plateau-continental STI, including open areas that rarely form continuous
canopy forests. Oak, pine and juniper communities are all adapted to periods of aridity that may
vary from two to nine months of the year. Some woodlands in the Mediterranean mountains also
support deciduous taxa such as birch (Betula pendula Roth., B. alba L.) and ash (Fraxinus
excelsior Vahl., F. angustifolia L.), as well as some semi-deciduous oak species as Q. faginea
Lam., and Q. pyrenaica Willd. Relics of Abies pinsapo Boiss. are also found in the mountain
ranges of Southern Spain (Sierra de las Nieves and Grazalema).

Mountain vegetation (>1200 m asl) often presents continuous arboreal cover as, over the last
decades, forest recovery in previously managed montane regions has produced denser forest
communities. Yet, these montane-subalpine regions also host patchy plant communities where
forests blend with open ecosystems. Some species of juniper (J. phoenicea and J. thurifera) as
well as mountain and Scots pine (P. sylvestris, P. uncinata Ramond ex DC. in Lam. & DC.) are
present. This vegetation belt is also characterised by sparse scrub and grasses.

Cultivated olive trees (Olea europaea L.) are very extensive in the southern half of Spain (see
Fig. S1 in the Supplement), and often appear in the wild in shrubby habitat in the eastern half of
Spain. The olive tree is a key Mediterranean taxon that existed in Iberia before domestication,
represented since at least the Upper Pleistocene in continental records (i.e., Fernandez et al., 2007;
Gonzélez-Sampériz et al., 2020) and even the Early Pleistocene in the marine cores of Portugal
and Spain (Magri et al., 2017), but started to expand during the Early Holocene (Langgut et al.,
2019), with cultivation beginning during the late Middle Holocene and intensifying during the
last 4000 years(Carrion et al., 2010; Martin-Puertas et al., 2008).
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Figure 2. Main forest types in the Iberian Peninsula (MITECO, 2024). Black dots represent the locations of the surface
samples used; red squares represent the coretops used for validation.

b) Eurosiberian region

The Eurosiberian or Atlantic region lies in the northern area of the ST, including the Cantabrian
range and the Pyrenees. Climatic conditions are characterised by cold winters and mild summers,
with MAT ranging from 5°C in the mountainous areas to 14°C in the coastal areas (Fig. 1).
Drought periods are shorter with abundant and well-distributed rainfall throughout the year, with
MAP ranging from 1000mm to 2000mm.

Forest composition differs considerably from that of the Mediterranean region. In coastal areas
(0-300 m asl), vegetation has been severely affected by invasive alien species (“Non-native
species communities” group in Fig. 2), especially by Pinus radiata D. Don and Eucalyptus spp.
L'Hér., both of which were cultivated for reforestation and industrial timber production but are
now naturalised. Forests dominate in montane areas (300-1000 m asl in the Cantabrian range;
1000-1600 m asl in the Pyrenees). These forests are deciduous or semi-deciduous mixed
communities of oaks (Q. robur L., Q. petraea (Matt.) Liebl., Q. pyrenaica), beech (Fagus
sylvatica L.), birch (Betula alba, B. pendula), ash (Fraxinus angustifolia, F. excelsior), hazel
(Corylus avellana L.) and other mesic taxa (“Mixed broadleaf communities group in Fig. 2) that
rarely form monospecific communities (Sorbus aria (L.) Crantz, S. aucuparia L., Acer
monsspesulanum L., A. opalus Mill., A. campestre L., Tilia cordata Mill., T. platyphyllos Scop.,
Juglans nigra L., J. regia L., Castanea sativa Mill.). Atlantic mountains support conifers such
as Pinus sylvestris or P. uncinata (Fig. 2), or other conifers such as Abies alba Mill. (silver fir),
which often form mixed forests with beech in the Pyrenees (Fig. 2). Subalpine vegetation (1600-
2400 m asl) is characterised by sparse scrub and grasses, which are heavily grazed by livestock,
although conifers such as Scots and mountain pines can still be present, as well as the silver fir.
Mountain pine marks the alpine tree line (>2400 m asl), above which only grasslands and cushion
plant communities can resist the severe climatic stress found at these altitudes.
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2.2. Quantitative pollen-vegetation relationships
Brief overview of existing methods and why they are unsuitable for our study area

Pollen-vegetation models have expanded over the last decades from those based solely on
pollen/vegetation ratios (Davis, 1963), linear regressions and extended R-values (ERV) (Parsons
and Prentice, 1981; Prentice and Parsons, 1983; Sugita, 1994), to the Landscape Reconstruction
Algorithm (Sugita et al., 2010) and the most recent Bayesian models (Dawson et al., 2016; Garreta
etal., 2012; Liu et al., 2022; Veeken et al., 2022).

One of the first attempts to develop appropriate techniques that account for pollen productivity
and dispersal was made by Davis (1963): the R-value model. This model assumes that pollen
deposition rates are directly proportional to abundances, each taxon having a characteristic
constant of proportionality, i.e., an R-value (Prentice and Parsons, 1983). The R-value would
designate the ratio between pollen percentage and vegetation percentage for each taxon. Parsons
and Prentice (1981) developed the Extended R-value (ERV) method, introducing two submodels
(ERV-1 and 2) to overcome the statistical limitations of ratios, site-to-site variability, and the
effects of long-distance pollen transport. ERV-1 expressed the background component (non-local
pollen) as “a constant background pollen percentage for each taxon” while ERV-2 expressed it as
“a constant proportion of total forest volume (or whatever measure of abundance is being used)”.
A third submodel (ERV-3) assumes a constant absolute amount of background pollen deposition
for each taxon at all sites (Sugita, 1994), since the correlation between pollen and vegetation will
not improve further beyond a certain distance, introducing the concept of the Relevant Source
Area of Pollen (RSAP). As a modification to ERV-3 to address site-to-site taxon variability,
(Theuerkauf and Couwenberg, 2022) developed ERV-4, expressing the background component
as a result of the pollen productivity multiplied by the distance-weighted regional plant abundance
for each taxon. ERV-1 and 2 use pollen and vegetation percentages, whereas ERV-3 and 4 use
pollen percentages and plant abundance data expressed in absolute abundances.

Sugita (2007a, 2007b) proposed a new framework for vegetation reconstruction, the Landscape
Reconstruction Algorithm (LRA), consisting of two different steps: the REVEALS and LOVE
models. The REVEALS (REgional VEgetation Estimates from Large Sites) model is designed to
reconstruct regional vegetation composition over large spatial scales (typically >10° hectares) by
correcting for biases in pollen representation due to differences in pollen productivity and
dispersal. It uses pollen data from large lakes or multiple small sites to estimate the relative
abundance of plant taxa in the surrounding landscape. This approach accounts for differential
pollen production and transport, making it more robust than simple pollen percentage analyses.
LOVE (LOcal VEgetation Estimates), on the other hand, focuses on reconstructing vegetation at
smaller spatial scales (<10* hectares) integrating regional vegetation estimates from REVEALS
with local pollen data to separate local vegetation signals from regional background. This two-
step framework allows for a hierarchical understanding of vegetation patterns, from broad
regional trends to fine-scale local dynamics.

More recently, pollen-vegetation models have been parameterised by using Bayesian hierarchical
models, which have the primary goal of accounting for the uncertainty of pollen dispersal and
production (Dawson et al., 2016; Liu et al., 2022; Paciorek and McLachlan, 2009). These
Bayesian approaches, contrary to the ERV, REVEALS and LOVE models, simultaneously
estimate pollen productivity and dispersal by finding the parameter values that best explain the
sediment pollen data given the known vegetation cover, adapting better to spatial complexity and
making them more suitable for regions with diverse vegetation and topography. However,
Bayesian approaches to estimating pollen productivity and dispersal are challenging to apply in
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regions devoid of nearly-continuous sampling strategies (Dawson et al., 2016; Liu et al., 2022;
Trachsel et al., 2020). These models, as those from the ERV, typically assume relatively
homogeneous forest structure, consistent vegetation composition, and access to fine-scale,
spatially resolved vegetation data -conditions that are rarely met in complex landscapes like the
Iberian Peninsula-. In Iberia, vegetation is highly patchy and spans distinct bioclimatic zones, and
available data sources vary in resolution and taxonomic detail, making it difficult to replicate the
fine-scale separation between local and regional vegetation required by such models.
Additionally, the small size and topographic complexity of most Iberian lakes, along with the
presence of unique taxa with distinct dispersal traits, further complicate the direct application of
these Bayesian methods. In short, these particularities limit the transferability of the standard
Bayesian framework and highlight the need for regional recalibrations.

Our methodological approach to compute RPPs in the Iberian Peninsula

In this study, we have obtained RPPs relative to Poaceae by using a methodological algorithm
that finds optimal values (Fig. 3). Previous studies have already used iterative methods (Fang et
al., 2019) and global optimisation algorithms such as DEoptim (Mullen et al., 2011) to estimate
RPPs (Kunes et al., 2019; Theuerkauf and Couwenberg, 2018) or pollen deposition parameters
(Theuerkauf and Couwenberg, 2017). Our approach builds upon previous work developed by
Kunes et al. (2019) and using the ‘disqover’ R package (Theuerkauf et al., 2016).

We applied an algorithm that begins by generating initial candidate RPP values for each taxon,
which are then used to compute REVEALS estimates from pollen and vegetation data. The
distance between the REVEALS estimates and the observed vegetation is then calculated with a
loss function (eqg. 1). To identify the best-fitting RPP values, we iteratively adjusted them to
minimise the loss function, using the Generalised Simulated Annealing algorithm, as
implemented in the GenSA package in R (Xiang et al., 2013) (Fig. 3). GenSA has not been
previously used in RPPs computation, and it belongs to a class of stochastic global optimisation
techniques particularly well-suited for navigating complex, multidimensional parameter spaces
characterised by numerous local minima. Unlike traditional optimisation approaches that may
become trapped in suboptimal solutions, Generalised Simulated Annealing leverages probabilistic
transitions to explore the solution space more broadly and escape local optima. GenSA is
implemented with a C++ core, ensuring computational efficiency and scalability for large
ecological datasets.
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candidate RPPs usinl;ncandidate Figure 3. The optimisation loop to obtain RPPs. The

(0.1-50) RPPs algorithm starts with trial RPPs for each taxon (1).
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optimal RPPs observed vegetation with !
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adjust RPPs by

minimising
distance

GenSA identifies the optimal set of taxon-specific RPP values that minimises the discrepancy
between observed regional vegetation composition and vegetation proportions reconstructed by
the REVEALS model. The objective function minimised during optimisation is the weighted sum
of squared errors (WSSE) between modelled and observed vegetation proportions across all
regions. This approach aligns with the weighted least squares (WLS) regression (Carroll and
Ruppert, 1988), although we included a smoothing offset in the denominator to reduce the
influence of low-abundance taxa and to avoid division by zero:

L(a) _ oR m (Vi:r;wd_ Vif;bs)z
r=1 =1 Viorbs+1

1)
where:

e a: vector of RPP to be estimated
e R: number of analysed grids

e m: number of taxa

° Vifﬁ"d: vegetation proportion for taxon i in region r, reconstructed by REVEALS
o

Vif’rbs: = observed vegetation proportion of taxon i in region r.

Retrieving RPPs with the optimisation loop involved first setting the initial range of possible
pollen productivity values to 0.1-50 (Fig. 3), meaning that the optimisation function would search
for 500 possibilities before displaying the RPPs that gave the smallest distance between observed
and reconstructed vegetation proportions. Moreover, we set 500 iterations to ensure the decrease
between each run, and bootstrapped 100 resampled versions of all the sites, in order to obtain
error estimates. Since such a setup of the parameters requires high computational efforts (500x100
runs per taxon are needed to retrieve a single RPP), we compiled the optimisation function for a
better performance by using the ‘compiler’ package, included in base R (R Core Team, 2025).
We also parallelised the optimisation process using ‘foreach’ (Microsoft and Weston, 2009) and
‘doParallel’ (Microsoft and Weston, 2011) packages. Full code workflow is provided in the
Supplement.

Regarding pollen dispersal, this parameter is crucial for reconstructing past vegetation
abundances, although in practice it is not possible to reliably measure long-distance dispersal of
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airborne particles (Katul et al., 2005). While models for predicting airborne particle dispersion
are needed (Kuparinen et al., 2007), the correct model selection according to the studied area is
also key. In the present work, we use the Lagrangian Stochastic model (LSM) (Andersen, 1991,
Kuparinen et al., 2007) to calculate the dispersal and deposition factor, which allows better
simulations of pollen dispersal over short and long distances than the Gaussian Plume model
(GPM) (Jackson and Lyford, 1999), which fails to predict the magnitude of long-distance
dispersal (Kuparinen, 2006; Mariani et al., 2016; Theuerkauf et al., 2016).

In short, we have developed a framework that could be applied in other regions, in which we use
the inverted (Theuerkauf, 2025) or reverse REVEALS approach, i.e., we estimate REVEALS
before calculating RPPs, then validated the results using modern coretop samples and compared
them with other pollen productivity estimates from Europe (Fig. 4).

1. Data input

Vi q
Pollen data eE:tatlun
EMPD2 and own ata
samples MPFE and SIVIM

REVEALS J 2. Optimisation
with LSM loop

dispersal
REVEALSInR
(Theuerkauf et
al,, 2016)

GenSA

optimisation /

Surface
samples

Coretop
samples

4. Validation

5. Comparison

Validation on
present
coretops

.

Comparison
with other RPPs.

RPPs relative to Poaceae

Figure 4. Methodological workflow of this study. Pollen data (from surface and coretop samples) and vegetation data
were used (1) to calculate present-day REVEALS estimates. Using a Lagrangian stochastic dispersal model, the GenSA
optimisation algorithm was applied (2) to identify the optimal set of RPPs relative to Poaceae, minimising the difference
between observed and REVEALS-estimated vegetation proportions (3). The resulting RPPs were validated against
present-day coretops (4) and compared with values obtained in other studies (5), following the numerical pipeline
described in Abraham and Foftova (in prep.) and Sect. 2.3. “RPPs comparison across European studies”.

2.2.1 Pollen and vegetation data acquisition

The taxa chosen for RPPs computations include the most frequent arboreal types in both present-
day STI forests and palynological sequences (Carridn et al., 2022) to which we can attribute pollen
types: Abies Mill., Betula L., Corylus L., Fagus L., Pinus L., Olea L., deciduous and evergreen
Quercus L. Shrub and herbaceous taxa from frequently represented families and genera in STI
vegetation and fossil pollen records have also been included: Amaranthaceae/Chenopodiaceae
Juss., Artemisia L., Asteraceae. SF. Asteroideae Lindl., Brassicaceae Burnett, Asteraceae. SF.
Cichorioideae Chevall., Erica L., Genista-type (Genista L. and Ulex L.), Juniperus L., Plantago
L., Poaceae Juss., Ranunculaceae Juss., Rosaceae Juss. and Rumex L.
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Pollen data

Producing the necessary RPPs for STI requires analysis of a large number of sampling points of
both modern pollen and vegetation cover. Therefore, we divided the study area into 25 grids of
150x150 km? each (Fig. S2 in the Supplement). The percentage of pollen for the main taxa was
then retrieved for each grid, and compared with regional vegetation data.

We used modern pollen counts from the Eurasian Modern Pollen Database 2 (hereafter referred
to as EMPD2) (Davis et al., 2020). According to the EMPD2, the region of continental Spain has
the second highest number of samples, with 1,110 modern pollen samples taken from terrestrial
moss pollsters, soils or lake sediments.

We reviewed the sample context and excluded those originating from marine and estuarine
environments, resulting in the selection of 1,113 samples, of which 70 were obtained through our
own field surveys, conducted at various times over the past 30 years. Pollen productivity estimates
were then obtained by excluding 51 modern coretops from open areas that have been used as a
validation set (see Fig. 4 and Sect. 2.2.2. “Validation of RPPs”). Pollen fall speed was retrieved
from literature (Tables S1 and S2, Supplement) or calculated following Stoke’s law for spherical
particles and Falck’s assumption for ellipsoidal grains (Gregory, 1961) with the photographs
contained in reference collections (Reille, 1992, 1995).

Vegetation data

Present-day arboreal vegetation cover for the 150 x 150 km? grids was obtained through the most
recently published database of the Spanish Forestry Map (MFE) at a scale of 1:25000 (MITECO,
2024). MFE classifies the vegetation cover into plant communities for which detailed information
on the coverage of the 3 main woody, arboreal or shrub species is provided. We then estimated
the forest patch size by multiplying the percentage cover of each main species by the area of the
polygon in which it is located.

For shrub and herbaceous taxa we used the relevé-based database Information System on Iberian
and Macaronesian Vegetation (SIVIM) (Font et al., 2017). We used all the available plant
inventories from SIVIM, using a total of 149,646 surveys where we performed taxa harmonisation
according to pollen types (Tables S1 and S2, Supplement).

We derived information on crops and other land uses using the CORINE land cover (CLC)
database (European Environment Agency, 2019) so all vegetation types could be analysed,
especially in areas where human-modified landscapes are dominant. We spatially intersected CLC
polygons with MFE to classify each territory unit according to both land use type and forest cover
presence/absence. This dual classification differentiates between areas designated as forest by
CLC that indeed retain actual forest cover and those that have undergone deforestation. The
resulting landscape matrix was then combined with SIVIM data, which incorporates shrub and
herb taxa, to quantify the floristic composition across different landscape contexts and forest
cover conditions. Additionally, CLC provided critical information on Olea europaea crop
abundance, which is absent from MFE as olive typically represents agricultural rather than natural
forest systems.

2.2.2. Validation of RPPs

Validating REVEALS-based vegetation estimates using modern forest composition and raw
pollen data requires an independent dataset. Accordingly, we excluded 51 coretop samples from
the EMPD2 dataset when deriving RPPs (Fig. 4). This allowed us to reconstruct vegetation
proportions for those sites using our new RPPs, and compare them with actual forest cover. From
the 51 coretops validation dataset we chose 26 samples by excluding salt lakes, where the surface
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samples are often subject to aeolian erosion, and samples under closed canopy or from high
elevations where the pollen signal might be biased.

We validated RPPs on those 26 samples using the REVEALSinR function from the ‘disqover’
package (Theuerkauf et al., 2016) to account for the productivity and dispersal-deposition biases.
Data input requires: i) pollen counts at each lake site from which the coretop comes; ii) estimates
of pollen productivity and fall speed of pollen for all taxa; iii) standard errors of the RPPs; iv)
distance-weighting method, for which the LSM was selected; v) basin type (peatland or lake) and
diameter in meters for each and; vi) diameter of the reconstructed region in meters. REVEALS-
based estimates of the modern samples were then compared with rings of 15, 30, 45 and 100 km
of present tree cover around each sample. Only arboreal taxa were selected, since herb and shrub
taxa data are devoid of surface area information. Regional plant cover for validation was obtained
from the MFE, except for Olea (olive crops) which was calculated from the CORINE Land Cover
dataset.

Evaluation of the validation process was conducted using a multimetric approach based on four
error and bias metrics for each taxon: root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE) and normalised mean bias (NMB). RMSE and
MAE quantify absolute deviations, with RMSE emphasising larger errors, MAPE expresses
deviations relative to observed values, and NMB captures systematic over- or underestimation.
Each metric was calculated as the difference between raw pollen estimates and REVEALS-
derived values, standardised using z-scores, and averaged per taxon to produce a composite
improvement score—a dimensionless measure of validation performance.

Given the large volume of validation results, this paper focuses on the coretop validation at 45
km resolution, which showed the strongest performance according to the multimetric analysis.
The rest of the results regarding the validation can be found in the Supplement (Fig. S3-S5).

2.3. RPPs comparison across European studies

Comparing RPPs between studies has become a challenging task due to the large number of
existing studies all making partially different assumptions. Recently, Abraham and Foftova (in
prep.) introduced a numerical pipeline designed to address such a challenge, enabling more
reliable comparisons by correcting biases in original studies (e.g., use of incorrect dispersal
models) and resolving methodological discrepancies between studies (e.g., different reference
taxa).

We applied this pipeline to compare RPPs from published studies across Europe with our new
dataset (Fig. 3), implementing the following steps:

1. Debiasing RPPs for heavy pollen grain taxa: we corrected the RPP value for Abies
according to Theuerkauf (2025), as the original estimate was based on an inappropriate
dispersal model (Gaussian Plume Model).

2. Taxon ratio comparison: we calculated ratios between pairs of taxa in our dataset and
compared them to corresponding ratios in previous studies. A taxon pair from a previous
study was considered matching if its ratio differed by no more than a factor of 1.5 (i.e.,
within the range of 0.67 to 1.5) from the equivalent ratio in our dataset.

3. Selection criteria: the number of matching taxon pairs and the number of individual taxa
involved in those matches were used to identify studies suitable for further comparison.
In this study, RPPs from Erica and Genista-type were compared to RPPs of Ericaceae
and Fabaceae, respectively.

4. Removing effect of reference taxon: in our dataset, Poaceae was used as the reference
taxon and assigned a RPP value of 1. To standardise other studies, we used matching taxa
in common and averaged their differences to scale RPP values accordingly.
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5. Visualisation: for selected studies, we visualised the RPPs of comparable taxa using two
approaches:

Standard bar plots with axes ranging from 0 to the maximum RPP value.

b. Fold-change symmetric bar plots, where values <1 were plotted below the

horizontal axis as reciprocals (e.g., a RPP of 0.1 is shown as 1/10 below the axis),
and values >1 were plotted above. This approach allows for multiplicative

inverse of RPPs.

Previous RPP studies often include multiple sets of pollen samples, analysed using different
methods. For each original study conducted in Europe, we selected one representative set of RPP
values corresponding to a distinct set of pollen samples. Regarding the calculation methods (e.g.,
the ERV models), we followed choices outlined by Githumbi et al. (2022). However, the RPPs
themselves were sourced from Wieczorek and Herzschuh (2020), who provided the original,
unmodified estimates without recalculation. References of the studies used for comparison are
available in Table 1.

Table 1. List of studies included in the comparison. Full metadata of the references are available in Table S3 in the

Supplement.

Code Reference Country Region

A Bunting et al., 2005 England Calthorpe

B Bunting et al., 2005 England Wheatfen

C Résénen et al., 2007 Finland North

D Theuerkauf et al., 2013 Germany Northeast (i)

E Theuerkauf et al., 2013 Germany Northeast (ii)

F Twiddle et al. 2012 Scotland East

G Von Stedingk et al., 2008 Sweden West and central

H Baker et al., 2016 Poland Poland

I Andersen, 1970 Denmark South

J Hijelle, 1998 Norway Inland

K Matthias et al., 2012 Germany East

L Nielsen, 2004 Denmark Denmark

M Poska et al., 2011 Estonia Southeast

N Brostrom et al., 2004 Sweden South (i)

O Hijelle, 1998 Norway Coast
Abraham and Foitova (in

P prep.) Czech Republic West

Q Abraham et al., 2014 Czech Republic Czech Republic

R Theuerkauf et al., 2015 Germany Northeast

S Soepboer et al., 2007 Switzerland Swiss Plateau

T Sugita et al., 1999 Sweden South (ii)

U Mazier et al., 2008 Switzerland Jura Mountains
Mazier (unpubl.) in

\Y Githumbi et al. (2022) France South
Abraham and Kozékova,

w 2012 Czech Republic Central

X Hjelle and Sugita, 2012 Norway South
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Y Kunes et al., 2019 Republic/Slovakia White Carpathians
Z Grindean et al., 2019 Romania Southeast
3. Results

3.1. Pollen productivity estimates

The first RPPs relative to Poaceae in STI identify low, medium and high pollen producers (Fig.
5). Low pollen producers (lower than 0.48) are Asteraceae sf. Asteroideae, Brassicaceae, Genista-
type, Juniperus, Plantago, Rosaceae and Rumex; medium producers (0.49-1.42) are Betula,
Asteraceae sf. Cichorioideae, Corylus, Erica, Fagus and Ranunculaceae, while high producers
(>1.43) are Abies, Artemisia, Amaranthaceae, Olea, Pinus, evergreen and deciduous Quercus.

PPE  SD SE
1.00 0.00 0.00

1
— Poaceae m—— 293 0.67 0.06
:;f[: —. i 0.66 0.25 0.02
Corylus I 0.94 0.22 0.02
Deciduous Quercus L0 Oe2 OD
Arboreal Evergreen Quercus Sg; gfg ggf
Fagus ' : '
- 0 o b
Ofea | [, _ : : :
| Pinus | | : : —— 4.00 0.47 0.04
7 Amaranthaceae | [0, : [ 331 0.80 0.07
Artemisia | [T, T — 153 0.52 0.05
Shrub Brassicaceae | [ | 0.28 0.10 0.01
Erica i 1.18 0.38 0.03
Genista-type ’E’f | 042 0.52 0.05
L Rosa_ceae EI | 0.31 0.13 0.01
Asteraceae sf. Asteroideae | [ | 031 0.08 0.01
Asteraceae sf. Cichorioideae %l—l 1.06 0.50 0.05
Herb Plantago | 0.48 0.11 0.01
Ranunculaceae | [, == —— 145 077 0.07
| Rumex | [, ! 0.23 0.07 0.01
0

Figure 5. Relative pollen productivity estimates (RPPs) relative to Poaceae with standard deviation (SD) and standard
error (SE) for 21 characteristic taxa in continental Spain. Red bars refer to the SD. Blue dashed lines indicate the
cutoff values, based on percentiles, between low, medium and high pollen producers. Colours refer to the different
groups of taxa (Poaceae in grey, arboreal in green, shrubs in teal and herbs in yellow).

The calculated RPPs for continental Spain are publicly available at
https://doi.org/10.5281/zenodo.17927544 (Jungkeit-Milla et al., 2025).

3.2. Validation of RPPs on modern coretops

RPPs relative to Poaceae for 8 arboreal taxa (all arboreal taxa considered in this study except for
Abies because it is not present in the whole STI and therefore lacking in most coretop samples)
were applied to 26 coretops to test their robustness (Fig. 6).
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The REVEALS model attempts to correct the uneven pollen productivity across taxa, resulting in
an abundance reduction of overrepresented taxa and an increase for the underrepresented taxa
(Fig. 6). This correction is evident when comparing raw pollen percentages (Fig 6, left column)
with REVEALS-based vegetation estimates (Fig 6, right column). Pinus and both evergreen and
deciduous Quercus, which dominate Iberian tree communities, show a marked reduction in
estimated vegetation cover. The case of Pinus is especially illustrative: the adjusted estimates
align closely with the observed vegetation cover (Fig. 6), suggesting the model performs well in
accounting for its high pollen productivity. Another important example is Olea, for which
REVEALS estimates indicate a reduction in the extent of olive cultivation. Nonetheless, several
coretops were found to have no crops within a 45 km radius and we found that pollen from Olea
correlated better with olive crop coverage at 100 km distance (see Fig. S3, S4 and S4 in the
Supplement).
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Figure 6. Relationship between the mean tree cover at 45km in each coretop with untransformed pollen abundances
(left, in red) and with the REVEALS-based vegetation estimates (right, in blue) with standard errors. The grey diagonal
line represents the 1:1 reference line, indicating perfect correspondence between pollen/vegetation estimates and actual
tree cover. Coloured lines represent linear regressions with 95% confidence intervals (shaded areas). Points above the
reference line suggest pollen overrepresentation relative to actual tree cover, while points below indicate
underrepresentation.
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Figure 6. Continued.

On the contrary, temperate forest taxa such as Betula, Corylus and Fagus, having relatively low
RPPs (Fig. 5), tend to be underrepresented in pollen assemblages in Iberia. REVEALS corrects
for this bias, resulting in higher vegetation estimates for these taxa. Juniperus, moderately
underrepresented in raw pollen data likely due to low pollen productivity (Fig. 5), is partially
corrected by REVEALS, resulting in slightly higher estimates of vegetation cover. The
standardised composite improvement score of the multimetric analysis at 45 km revealed that
temperate forest taxa perform better with raw pollen counts than with the REVEALS-based
reconstructions when comparing with observed regional vegetation cover (Fig. 7). Nonetheless,
REVEALS estimates still provide more ecological sense in accounting for the observed
vegetation than pollen percentages for Betula at 15 km and 100 km (Fig. S3 and S5 in the
Supplement).
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Figure 7. Multimetric analysis comparing performance of REVEALS at 45 km for the selected arboreal taxa.

3.3. RPPs comparison across European studies

Comparison of RPPs demonstrated similar values, at least in one pair, in all or more than half of
the previously published values for the following taxa: Amaranthaceae, Artemisia, Asteraceae sf.
Asteroideae, Brassicaceae, Asteraceae sf. Cichorioideae, Corylus, Ericaceae (Erica), Fabaceae
(Genista-type), Fagus, Juniperus, Plantago, Poaceae, evergreen and deciduous Quercus,
Ranunculaceae and Rumex. In contrast, the remaining taxa — Abies, Betula, Pinus and Rosaceae -
, show agreement with only half or fewer of the European sites (Fig. 8a).

The eight studies with the highest number of matching taxa are from France, Switzerland, Czech
Republic-Slovakia, Romania, Norway, and Sweden. The remaining studies, which show lower
similarity between RPPs, come from Great Britain, Germany, Denmark, Poland, Estonia, and
Finland (Fig. 8b).
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Figure 8. Number of RPP studies across Europe per taxon (a) and number of comparable taxa per study across Europe
(b). Darker colours indicate species appearing in matching pairs of species. Each letter in (b) represents a different
studied region (see Table 1 for details of the country for each study). Dashed red line in (b) indicates the similarity
threshold.

For several taxa—Quercus (deciduous), Asteraceae sf. Asteroideae, Corylus, Ericaceae,
Plantago, Poaceae, and Pinus—the STI RPPs are near the midpoint of the observed range in
similar studies (Fig. 9). Notably, Poaceae and Pinus form two distinct clusters across studies; the
STI values are within the higher cluster (4 for Pinus, and 1 for Poaceae).

For the remaining taxa, STI RPPs are distributed towards the edges of the observed ranges (Fig.
9), though still close to some previously reported values. These include Amaranthaceae,
Artemisia, Asteraceae sf. Cichorioideae, Fabaceae, Fagus, Juniperus, Ranunculaceae, and
Rosaceae. In the case of Abies, our estimate is higher than from any other European studies, while
for Betula and Rumex, the values are lower.

Only two studies have derived RPPs for Brassicaceae, Fabaceae and evergreen Quercus, while
only the present study provides a RPP for Olea. Within this limited data, Quercus evergreen is
consistently represented as a high pollen producer, whereas Brassicaceae appears as a low pollen
producer (Fig. 9).

18



571

572
573
574
575
576
577

578

579
580
581
582
583
584
585
586

587

588
589
590
591
592
593
594
595
596
597
598
599
600
601

5 IS
/] 2 (%) 7]
& o o 2 N & &£
{\\’59 o & \&'@ £ @ o o ¥ s & £
& (5,3*0 & S (;;:? & c‘?og &Oa & N . (,\@Q & \béo §&F &@+
Y'P\ Y@ ?_(@ ?E} %E}' Q§b 0\69 P 4&\ sz}o Q'E)Q’ :\5(\ 0\6 Q\S\ Q\FD QQ{D QQ’O ((;\Q’ Q‘{é\ Q‘or’ Q'Q
z
7 9
5 A
w¥ V
3 * vsT 8 W
Yl % v
14 YUD al ID H v* *VHHEF |:|=I= EIDD o D=_,_E._‘§DEIIDD|:|
s H* [l x D st DD UDELN Ul[l
113 v T *Z
v n
115 — =
s
17 4
119
1711 -~
Y
X
Matching pairs within single study
Thisstudy 0 1 2 3 m4

Figure 9. Fold-change symmetric barplot of recalculated RPPs from the eight most similar studies. Adjustments
account for reference taxon differences and dispersal model correction for Abies. Values <1 plotted as reciprocals.
Each bar represents one of the eight most similar studies (letters S-Z), coming from Swiss Plateau (S), Southern
Sweden (T), Jura Mountains in Switzerland (U), Southern France (V), Central Bohemia in Czech Republic (W),
Southern Norway (X), White Carpathians (Y) and Southeastern Romania (Z). Asterisk (*) refers to the values of this
study. See Table 1 for more details of each study. See Fig. S6 in the Supplement for RPPs with confidence intervals.

4. Discussion

The results presented here are the first RPPs produced in Iberia. Our results show clear differences
in pollen productivity among the 21 taxa analysed. Among the low producers, herbaceous and
shrub taxa dominate, while the medium and high pollen producers include a mix of trees and
shrubs. Validation using coretops indicated that RPPs of the dominant taxa in present-day
landscapes are more accurately estimated than the less abundant ones. Comparison with
previously published European RPPs shows that our estimates align closely with 8 different
studies. Our discussion is thus framed around our three main objectives of estimating, evaluating
and comparing the Iberian RPPs under the prism of the methodological challenges we found.

Validation and potential implementation of the first Iberian pollen productivities

The validation presented in this study is the first carried out in heterogeneous environments of the
Western Mediterranean using vegetation survey data and disaggregated by taxa rather than by
total tree cover. Validation of RPPs in modern samples remains uncommon but has been
performed for all Europe (Serge et al., 2023), southern Sweden (Hellman et al., 2008), Australia
(Mariani et al., 2017, 2022) and various Asian regions (Jiang et al., 2020; Wan et al., 2022; Xu et
al., 2014). They generally found an excellent performance for large groups of taxa, although the
fit between the modelled estimates and the vegetation data was not always as good when single
taxa were considered (Hellman et al., 2008). Wan et al. (2022) presented the first evaluation of
RPPs in a tropical region, suggesting that the REVEALS model performs well especially when
applied at the landscape level rather than for individual species. In our dataset, we could not
validate REVEALS for herb and shrub taxa because MFE only includes arboreal taxa.
Nevertheless, our hypothesis is that some herb and shrub taxa would be overrepresented if we
apply REVEALS, as in Li et al. (2023) or in Marquer et al. (2020), since in lIberia these are low
pollen producers, as it happens with other trees as Betula, Corylus and Fagus.

19



602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

619
620
621
622
623
624
625
626
627

628
629
630
631
632
633
634
635
636

637
638
639
640
641
642
643
644
645
646
647
648
649

REVEALS generally performed well when reconstructing the coverage of arboreal taxa (Fig. 6),
although only 5 of the 8 taxa performed better with REVEALS than with pollen abundances,
according to the multimetric analysis performed at 45 km radius: Pinus, Juniperus, Olea,
deciduous and evergreen Quercus (Fig. 7). Juniperus showed improved performance as the
distance increased, specifically up to 45 km (see multimetric results at other distances in the
Supplement), likely because junipers occur in small copses or patchy forest stands, so the greater
the distance considered, the more individuals are found. In this work, we calculated the first
pollen productivity estimate for Olea. We found that Olea is a high pollen producer, which was
to be expected considering its high dispersal capability (Cafiellas-Bolta et al., 2009; Fernandez-
Rodriguez et al., 2014) and its presence in modern samples where the nearest olive trees are more
than 70 km away (Leunda et al., 2017). In our modern samples, most of the Olea pollen comes
from olive crops in southern Spain. The MFE inventory rarely includes the olive tree, since it does
not form forests or small groves naturally. These two examples underscore the need of accounting
for source area when interpreting pollen records, particularly for taxa frequently employed as
indicators of environmental change. The contrasting distribution patterns and dispersal capacities
of Juniperus and Olea demonstrate how spatial context and distance exert a substantial influence
on pollen representation.

The standard errors of the 8 validated taxa were consistently lower than their estimates, providing
a measure of precision in terms of reliability (Githumbi et al., 2022; Li et al., 2023). Nevertheless,
the quality of REVEALS outputs is ultimately constrained by the quality of input datasets (EMP2
and MFE). According to the theory, deviation of REVEALS estimates from observed vegetation
may suggest unreliable RPP values. We however believe that such deviation could be explained
by: (i) a poor performance of REVEALS for Betula, Corylus and Fagus, since they are not present
in all the STI due to environmental heterogeneity; and (ii) inaccuracies in the vegetation dataset,
especially for taxa that do not form large, continuous forests such as Juniperus, Betula or Corylus
(Wan et al., 2022).

In light of our results, we believe that implementing our RPPs to quantitatively reconstruct
vegetation cover from fossil pollen records could be promising for both arboreal and non-arboreal
taxa in Iberia. The relatively low SEs for trees in our validated coretops (especially for Pinus,
Olea and both evergreen and deciduous Quercus) indicate that they can be confidently used for
regional reconstructions of past vegetation. Even for some less optimally performing taxa, such
as the temperate forest species, these RPPs can serve as a baseline until region-specific estimates
become available. As for shrub and herb taxa, while direct validation was not possible, the
generally robust SEs we retrieved suggest that these values could be cautiously implemented in
reconstructions of open vegetation dynamics within Mediterranean landscapes.

The overrepresentation of trees in pollen records aligns with findings from other European studies
and with long-lasting intuitive expectations in the palaeoecological community. Notably
significant are the values among dominant tree species: Pinus (4.00), evergreen (2.31), and
deciduous (1.72) Quercus, suggesting a lower prevalence of pine communities in the past than
has been interpreted based on previous reconstructions that indicated a higher abundance of pines,
using both pollen data and/or wood charcoal and macrofossil analyses (Aranbarri et al., 2014,
2020; Carridn et al., 2004; Ezquerra et al., 2019; Mugica et al., 2001; Rubiales et al., 2010).
Conversely, some deciduous trees in Iberia, such as Betula (0.66) and Fagus (0.52), showed lower
productivity, potentially leading to being underrepresented in fossil pollen records. This
underestimation could affect our understanding of Pleistocene and Holocene temperate forest
dynamics unless RPPs are applied (Brostrom et al., 2005; Githumbi et al., 2022; Trondman et al.,
2015). For instance Corylus, with a RPP near 1, provides crucial information for linking it to, e.g.,
early postglacial vegetation expansions (Aranbarri et al., 2014; Gonzalez-Sampériz et al., 2006;
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Pearce et al., 2025b; Theuerkauf et al., 2014), and post-disturbance responses (Gil-Romera et al.,
2014; Leunda et al., 2020).

For herb and shrub taxa with particularly low RPPs, such as Rumex (0.23), Brassicaceae (0.28),
Juniperus (0.45) or Plantago (0.48), their roles in vegetation dynamics are expected to be
underestimated if only raw pollen counts are considered in fossil records. This is especially
critical for taxa associated with anthropogenic activities, such as Plantago or Rumex, whose
historical presence in the Mediterranean landscape may be stronger than traditionally inferred
without REVEALS estimates (Grindean et al., 2019; Kune$ et al., 2019; Mazier et al., 2008;
Soepboer et al., 2007).

Our RPPs demonstrate that raw pollen assemblages may bias reconstructions of Pleistocene and
Holocene vegetation by overemphasising high pollen producers such as conifers and some oaks
while downplaying the ecological importance of low-productivity taxa, including several
deciduous broadleaved trees and herbs. Future quantitative reconstructions of vegetation
dynamics in the STI hold the potential to substantially advance debates on the contentious idea of
past continuous forest canopies in Iberia (Gomes et al., 2020; Pérez-Obiol et al., 2011).
Incorporating revised pollen productivity estimates may reveal an even more fragmented forest
landscape in the Southwestern Mediterranean, characterised by a mix of broadleaf woodlands,
coniferous patches, temperate forests and open areas, as has been previously suggested (i.e., see
compilations and references there in Carrion et al., 2010a and Gonzalez-Sampériz et al., 2010).

Future implementations in Iberia expand the possibilities to reconstruct past disturbances. By
integrating RPPs into fossil pollen records, we can quantify vegetation composition over time and
estimate biomass dynamics affected by various disturbances. With reliable RPPs, it becomes
feasible to produce spatially explicit models showcasing the long-term effects of environmental
drivers across time and space, including anthropogenic or natural factors as well the long-term
interactions between disturbances and ecosystem recovery (Githumbi et al., 2022; Knight et al.,
2022; Theuerkauf and Couwenberg, 2017).

Pollen productivities across Europe

Dominant vegetation types of the STI - pines, evergreen and deciduous oaks - exhibited RPP
values successfully validated with independent top core samples. These taxa are identified as high
pollen producers, consistent with findings from previous studies, particularly after adjusting
original RPP values by the average scaling factor (see Sect. 2.3. “RPPs comparison across
European studies”). Specifically, Pinus showed a RPP of 4.0 (Fig. 9), which aligns reasonably
well with values reported from Central Czech Republic (4.5) and Southern Norway (4.8) (letters
W and X in Fig. 9, respectively). Evergreen Quercus exhibited a RPP of 2.31, comparable to 3.8
reported in Southern France (letter V, Fig. 9), and deciduous Quercus had a RPP of 1.72, which
closely matches the value of 2.0 from the White Carpathians (letter Y), in Czech Republic and
Slovakia.

We also observed that our RPPs for most taxa fall near the midpoint of the range observed in
other European studies, which is of interest since the STI has different environmental conditions
that could have influenced pollen productivity. High pollen producers include wind-pollinated
shrubs and herbs such as Amaranthaceae (3.31) and Artemisia (1.53), which yielded similar
values to those reported in the Central Czech Republic (3.1 and 2.0, respectively, letter W in Fig.
9). Medium pollen producers comprise shrubs and herbaceous taxa, including Erica (1.18),
comparable to the value from Southern France (1.5) (letter V), Asteraceae sf. Cichorioideae (1.06)
and Ranunculaceae (1.45), the latter two aligning with values of 1.0 and 1.3, respectively, reported
from the White Carpathians (letter Y in Fig. 9). Low pollen producers — primarily entomophilous
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herbs or shrubs — such as Rosaceae (0.31) and Genista-type/Fabaceae (0.42) correspond well with
previously reported values of 0.3 and 0.5 from Southeastern Romania (letter Z).

In contrast, other taxa did not clearly match values reported in earlier studies, either due to a
limited number of existing estimates or a wide variability in published data. For instance, RPP
values for Asteraceae sf. Asteroideae (0.31) and Brassicaceae (0.28) are among the first reported
or there are only a few previous estimates, making direct comparison difficult. For Corylus (0.94)
our result lies within the mid-range of previously published values, which vary considerably (Fig.
9). Nonetheless, these values appear consistent with biological expectations - entomophilous
herbs typically show lower pollen productivity than anemophilous trees — suggesting that the
estimates are reasonable despite limited comparative data. For some taxa, lberian RPPs follow a
different trend than elsewhere in Europe, especially for Abies or Betula. When values are rescaled
to remove the effect of the reference taxon, Abies emerged as a high pollen producer in STI (2.93).
Betula (0.66) also presents lower productivity than in other European studies (Fig. 9). As
discussed above, this underrepresentation of the temperate forest taxa may point to the need for
computation of specific RPPs for the Eurosiberian biogeographical region, which is where these
forest taxa are mainly found in STI.

RPPs for Olea (2.60) in this study are the first estimates in Europe. Both Olea and evergreen
Quercus are only present in southern Europe, and therefore new RPPs in the other Mediterranean
peninsulas are needed in future studies to unravel the palaeoecological history of these species
during the Holocene. It is of critical importance to better understand the history of key pollen
taxa, especially when they vary their functional role in ecosystem and become narrowly linked to
human presence, as it happens with Olea, offering new insights on anthropogenic triggers in the
past. Indeed, Plantago and Rumex, also key taxa related to human activities, were found to present
lower productivities in STI than in the eight most comparable studies from elsewhere in Europe.
We argue two main factor explaining lower productivity of these taxa in Spain: first,
Mediterranean climatic conditions may constrain the growth of these herbaceous taxa, thereby
reducing their reproductive performance (L6pez-Orozco et al., 2023).; and, second, traditional
Iberian land-use systems (e.g., extensive grazing, dehesa-like agro-silvo pastoral mosaics) tend to
maintain semi-open or wooded pastures rather than the continuously open, nutrient-rich
grasslands common in northern Europe (Connor et al., 2019).

Approach limitations

Reconstructing past vegetation in Iberia with REVEALS poses unique methodological constraints
owing to the region’s pronounced topographic and environmental heterogeneity. The lack of large
lake basins common in northern Europe often forces reliance on smaller sedimentary basins,
increasing uncertainty (Sugita, 2007a). A core assumption of REVEALS is spatially consistent
pollen—vegetation relationships, but Iberia’s uneven distribution of mixed temperate forest taxa
(Betula, Corylus, Fagus), restricted to the northern fringe, challenges this assumption. Averaging
RPPs across the STI may therefore underestimate productivity in optimal habitats.

Moreover, the surface pollen collection may have introduced spatial biases in two different ways:
1) overrepresentation of certain vegetation communities and 2) overrepresentation of certain taxa.
Both are connected to moss polsters being used as pollen traps as these are usually located in
humid and mountainous areas (Fig. 1), especially in the Mediterranean region, limiting the
representation of open vegetation landscapes from Iberia. In addition, moss polsters are
sometimes located under the tree canopy, especially in the Mediterranean region, perhaps
resulting in overrepresentation of those taxa. For instance, this could have been the case with
Abies (see Fig. S7 in the Supplement), where both species (A. pinsapo and A. alba) coexist with
the moss polsters in humid, cooler regions, potentially leading to higher estimates of pollen
productivity.
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Vegetation datasets also introduce uncertainty. The MFE maps well the dominant tree species but
underrepresents taxa forming scattered stands (J. oxycedrus, J. communis), beyond the scope of
forestry interest. The SIVIM database contains almost 150,000 phytosociological plant
inventories. The frequency of the taxa is estimated on a scale of 1 to 5, which we transformed
into percentages of abundances (equivalence table can be found in Table S4 in the Supplement).
Despite the non-continuous nature of the SIVIM data, RPPs for shrub and herb taxa yielded robust
and ecologically meaningful results, except for Genista-type, whose productivity estimate was
lower than the standard deviation. Regarding the main source of pollen data, the EMPD2, some
of the samples were incomplete or misclassified (e.g., some salt lakes were not specified as such;
some samples had inaccurate coordinates or lacked information about the sample type or the
sample context).

Finally, the choice of a loss function could influence RPP estimates. In our work, we chose a
weighted sum of squared errors (WSSE) method that calculates the optimal set of taxon-specific
RPP values that minimises the discrepancy between observed regional vegetation composition
and vegetation proportions reconstructed by REVEALS. This loss function addresses two main
challenges in pollen-vegetation modelling: heteroskedasticity and taxon-specific biases. Pollen-
vegetation relationships are inherently heteroskedastic, which means that the variance of the
residuals scales with vegetation abundance (Sugita et al., 2010). Dominant taxa typically exhibit
high pollen production, leading to smaller relative errors in their vegetation estimates, while rare
or underrepresented taxa often show disproportionate noise due to low pollen counts and localised
distributions (Brostrom et al., 2008). In order to partially account for these uncertainties, we
weight errors inversely, as the WSSE function ensures that deviations for rare taxa contribute
meaningfully to the optimisation, preventing their signals from being overshadowed by dominant
taxa. By doing this, we acknowledge that residual uncertainty remains higher for the less frequent
taxa.

5. Conclusions

We used reverse REVEALS to produce the first pollen productivity estimates (relative to
Poaceae) for the Spanish Territory of Iberia. Overall, we found that conifers (Pinus and Abies),
both evergreen and deciduous Quercus and Olea are high pollen producers in continental Spain.
Temperate forest arboreal taxa were identified as medium pollen producers, while shrub and herb
taxa generally yielded lower RPPs, except for anemophilous taxa like Amaranthaceae.

We also performed the first extensive validation of RPPs for arboreal taxa in southern Europe,
using 26 present-day coretops and forest inventory data. The most frequent arboreal taxa in
present-day landscapes performed better with REVEALS-based estimates than with raw pollen
counts. Additionally, we conducted a bias-free comparison of our RPPs with other European
datasets, finding similar values overall, except for temperate taxa and Abies. Future studies should
examine whether more accurate estimates could be achieved by producing separate RPP datasets
for the Eurosiberian and Mediterranean bioclimatic regions. Region-specific RPPs, tailored to
bioclimatic variability, could improve the accuracy of vegetation reconstructions and disturbance
assessments across the Iberian Peninsula.

Finally, these findings suggest that previous reconstructions of past vegetation dynamics in the
Iberian Peninsula may have overestimated the presence of pines and oaks, and therefore fossil
records from the Southwestern Mediterranean may require reinterpretation. Future research using
the new relative pollen productivity estimates for Iberian taxa to generate quantitative vegetation
reconstructions could indicate a more mosaic-like pattern of broadleaf woodlands, conifers,
temperate forests and open ecosystems, aligning with most recent findings.
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Code and data availability

All the code and the new RPP dataset for the Spanish Territory of Iberia are publicly available at
https://doi.org/10.5281/zen0d0.17927544 (Jungkeit-Milla et al., 2025). User may access to
download the code and to reproduce the figures in this manuscript, by using the available data in
Jungkeit-Milla et al. (2025). Data included are processed pollen counts and regional vegetation
proportions for continental Spain, present-day coretops, REVEALS estimates and rings used for
validation, and RPP values from different studies in Europe, in order to proceed with the
comparison.

Supplement

The supplement related to this article is available online at
https://saco.csic.es/s/9INJE9GwgL dzAJKQ
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