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Abstract: 17 

Understanding the impact of changing temperature on population densities is necessary to predict 18 

the likely impact of climate anomalies (e.g., marine heatwaves) or forecast distribution shifts 19 

under future climate scenarios.  Population densities are often analyzed using spatio-temporal 20 

models (STMs), which typically predict densities based on local habitat conditions while also 21 

estimating latent spatial and spatio-temporal variation.  Recent research extends STMs by also 22 

estimating density responses to habitat conditions at nearby locations using a “spatially 23 

distributed lag” (SDL) that averages habitat conditions in the vicinity of samples.  Here, we 24 

extend SDL by incorporating insights from diffusion-enhanced STMs to simultaneously estimate 25 

spatially distributed and time-lagged responses to nearby and past habitat conditions (a “spatio-26 

temporal distributed lag” STDL).  We then use summer bottom trawl survey data from the 27 

eastern Bering Sea (1982-2024) to measure whether spatial and/or temporal lags are 28 

parsimonious when predicting population density from temperature anomalies for six 29 

ecologically important fishes.  Results show that time-lagged responses are parsimonious, 30 

positive, and substantial (correlation of 0.20-0.83 per year) for five species, and that density 31 

responses to temperature anomalies also diffuse outward over time for four species at 30-53 32 

kilometers per year.  A self- and cross-test simulation experiment shows that model selection can 33 

identify the appropriate model and parameter estimates are approximately unbiased.  We 34 

therefore conclude that temperature carry-over effects arise in marine fishes and recommend that 35 

future studies include nonlocal and time-lagged responses when measuring density responses to 36 

habitat.   37 
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Data Availability Statement 42 

We use records of biomass and temperature samples from the eastern Bering Sea bottom trawl 43 

surveys, described by (Markowitz et al., 2022) and downloaded using release 0.0.3 of the 44 

surveyjoin package (Ward et al., 2025) with DOI https://doi.org/10.5281/zenodo.14984411.  All 45 

code required to reproduce the analysis are available publicly online at https://github.com/James-46 

Thorson-NOAA/spacetime-lag.  We will add a DOI using Zenodo upon acceptance.    47 
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Introduction 50 

The association between animal densities and environmental variation is complicated due 51 

to nonlocal and time-lagged ecological responses.  For example, migratory behaviors cause 52 

habitat conditions at one location to affect population densities at geographically distant sites, as 53 

shown by the association between local density and regional climate indices for both butterflies 54 

in California and fishes in the Bering Sea (Pardikes et al., 2015; Thorson, 2019).  Similarly, 55 

species interactions and age-structured dynamics result in time-lagged responses.  For example, 56 

global variation in plant growth is better explained by climate indices when incorporating time-57 

lagged responses (Wu et al., 2015) due to delayed responses of the soil community in tallgrass 58 

prairie ecosystems (Arnone III et al., 2008).   59 

Species distribution models (SDMs) are widely used in ecology (Elith & Leathwick, 60 

2009) to estimate habitat associations, attribute density changes to habitat changes, and forecast 61 

future distribution under climate scenarios (Thorson & Kristensen, 2024).  Missing covariates 62 

and ecological processes (e.g., animal movement) often cause model residuals for SDMs to be 63 

correlated in space or time, and this degrades predictive performance and statistical testing 64 

(Dormann et al., 2007).  Recent developments in spatio-temporal generalized linear mixed 65 

models (ST-GLMMs) allow analysts to control for (and condition predictions upon) spatial and 66 

spatio-temporal autocorrelation at high spatial resolution (Thorson & Kristensen, 2024).   67 

SDMs generally predict local densities based upon measured habitat at the same place 68 

and time and will therefore neglect the potential role of nonlocal or time-lagged responses.  In 69 

past instances when SDMs are designed to test the impact of past or nonlocal environmental 70 

conditions, nonlocal and lagged effects are often tested by comparing multiple covariates at 71 

different scales in a single model, by repeatedly fitting the model with different lagged 72 



 

 

covariates, and using model selection to identify a single spatial scale or time-lag for covariates 73 

(Wu et al., 2015; Núñez-Riboni et al., 2021; Lindmark et al., 2023).  Another option is to use 74 

SDMs to compute time-series representing range shifts, and then apply “temporal distributed 75 

lags” (TDL) to estimate the lagged effect of time-series covariates on range-shift indices (e.g., 76 

using the package dlnm; (Gasparrini et al., 2010)).  However, aggregating predictions from 77 

SDMs into an annual index reframes the analysis into a time-series framework, instead of 78 

estimating temporal lags directly within the spatially explicit SDM where spatially and 79 

temporally correlated residuals can be modelled (which dlnm is not designed to do).  80 

Alternatively, spatio-temporal variation in habitat covariates can be compressed to construct 81 

time-series indices representing habitat variation (e.g., using empirical orthogonal function 82 

analysis), and these indices can be included as covariates using a spatially varying response to 83 

test for nonlocal habitat responses (Thorson, 2019; Thorson et al., 2020).  However, this 84 

technique ignores information about the spatial proximity of habitat variation at other sites 85 

affecting local density and therefore cannot estimate the spatial- or time-scale over which nearby 86 

habitat affects local densities. 87 

To estimate the influence of nearby habitat on population density, recent ecological 88 

research has integrated “spatially distributed lags” (SDL) into species distribution models (Miller 89 

et al., 2025; Lindmark et al., 2026).  SDLs estimate a spatially smoothed transformation of a 90 

given covariate, and then use that transformed covariate to predict the response of a regression 91 

model (e.g., Armstrong, 2006).  Similarly, ecologists are developing “temporal distributed lags” 92 

(TDL) (Sollmann, 2024; Lalechère et al., 2025), and discussing the importance of both spatial 93 

and temporal lags in species distribution models (Essl et al., 2024).  In parallel, recent statistical 94 

research has efficiently approximated a diffusive process across space and time and used this to 95 



 

 

define the distribution for a spatio-temporal latent variable (Clarotto et al., 2024; Lindgren et al., 96 

2024).  However, we are not aware of any extension re-purposing this diffusive process to define 97 

a spatio-temporal distributed lag for application within a species distribution model.     98 

 To address this gap, we introduce a computationally efficient model to identify nonlocal 99 

and/or lagged responses to habitat variables by using a “spatio-temporal distributed lag” (STDL) 100 

within an SDM.  To ensure that results are applicable in a wide context, we also implement this 101 

while estimating spatial and spatio-temporal latent variables (e.g., using a ST-GLMM).  To do so, 102 

we first review recent developments in SDLs and then extend this to incorporate time-lagged 103 

responses using a diffusion-enhanced process.  We then demonstrate that time-lagged responses 104 

to temperature anomalies arise for five of six ecologically important fishes in the eastern Bering 105 

Sea, analyzed here from 1982–2024.  We conclude by recommending that studies explore using 106 

STDL to incorporate nonlocal and time-lagged responses to thermal habitat when testing for (or 107 

forecasting) climate linkages in population distribution.   108 

Methods 109 

Spatially distributed lags 110 

We start by defining a 𝐽 × 𝑇 covariate matrix 𝐗 where 𝑥𝑗𝑡 is the covariate measurement at time 111 

𝑡 ∈ {1,… , 𝑇} and location 𝐬𝑗  for 𝑗 ∈ {1,… , 𝐽} locations in two-dimensional space within domain 112 

𝐷.  We seek a spatio-temporal distributed lag operator ℎ that transforms covariate matrix 𝐗 to 113 

calculate a transformed 𝐽 × 𝑇 matrix 𝐙 = ℎ(𝐗).  We can then interpolate the covariate to 114 

calculate 𝑥𝑡
∗(𝐬∗) at a new location 𝐬∗ using a 𝐽 length interpolation vector 𝐚(𝐬∗) where 𝑥𝑡

∗(𝐬∗) =115 

𝐚(𝐬∗)𝑇𝐱𝑡.  This operator should have the following properties: 116 



 

 

1. Interpretable parameters:  We seek to estimate a parameter 𝜅𝑆 representing the spatial 117 

distance over which a covariate is smoothed in space (e.g., units of meters) and a separate 118 

parameter 𝜅𝑇 representing the time-lag over which the covariate is smoothed in time (e.g., 119 

units per-year), where the model collapses to no lag in either space or time (i.e., 𝐗 = 𝐙) given 120 

some value of those parameters.  We also discuss a parameter 𝜅𝑆𝑇 that controls how a 121 

location 𝑥𝑗1𝑡1 affects a different location 𝑥𝑗2𝑡2 at a later time 𝑡2 > 𝑡1 relative to the combined 122 

effects of 𝜅𝑆 and 𝜅𝑇 (although we do not test its behavior here to simplify the presentation); 123 

2. Conservation of mass: A covariate value 𝑥𝑗𝑡 at location 𝐬𝑗  and time 𝑡 is distributed across 124 

space and time by the STDL operator while leaving its total value (approximately) 125 

unchanged.  If we define the 𝐾 × 𝐽 interpolation matrix 𝐀 for 𝐾 evenly distributed spatial 126 

locations {𝐬1, 𝐬2, … , 𝐬𝑘} within domain 𝐷, and further define 𝐗∗ = 𝐀𝐗 and 𝐙∗ = 𝐀𝐙, then  127 

∑ ∑ 𝑥𝑘𝑡
∗𝐾

𝑘=1
𝑇
𝑡=1 ≈ ∑ ∑ 𝑧𝑘𝑡

∗𝐾
𝑘=1

𝑇
𝑡=1 ; 128 

3. Linear computation:  Using the STDL for a set of measurements 𝐙 = ℎ(𝐗), we seek to 129 

compute vec(𝐙) = 𝐃−1vec(𝐗) where vec(𝐗) stacks the columns of 𝐗 into a long vector with 130 

length 𝐽𝑇, and 𝐃 is a sparse 𝐽𝑇 × 𝐽𝑇 matrix representing the STDL which then depends upon 131 

𝜅𝑆 and 𝜅𝑇, such that the computation time to compute 𝐃−1vec(𝐗) increases linearly with the 132 

size of 𝐽𝑇.   133 

Lindmark et al. (2026) constructed a spatially distributed lag, 𝐳𝑡 = (𝐈 − 𝐏)
−1𝐱𝑡 using a 𝐽 × 𝐽 134 

spatial path matrix 𝐏 given measurements 𝐱𝑡 at the vertices of triangles that cover the spatial 135 

domain (a “finite element mesh” FEM).  Using this FEM, 𝐏 = −𝜅𝑠𝐂
−1𝐆 where 𝐂 is a diagonal 136 

𝐽 × 𝐽 matrix measuring the volume associated with each vertex, and 𝐆 is a sparse 𝐽 × 𝐽 matrix 137 

representing the “overlap” between each vertex (which is zero for vertices that do not share any 138 

triangle).  However, this spatially distributed lag did not account for time-lags and therefore 139 



 

 

could not assess the relative importance of temporal versus spatial lags.  We therefore seek to 140 

extend this recent research to also include time-lags.   141 

Extending to include time-lags 142 

We next incorporate time-lagged dynamics, where covariate measurements 𝐱𝑡 affect the STDL 143 

covariate 𝐳𝑡 in that same time but also in future times 𝐳𝑡+1, 𝐳𝑡+2, etc.  To do so, we construct a 144 

𝐽𝑇 × 𝐽𝑇 dimensional path matrix 𝐏joint from spatial, temporal, and spatio-temporal lags: 145 

𝐏joint = 𝜅𝑆
−2(𝐏⊗ 𝐈𝑇)⏟        
Space lag

+ 𝜅𝑇(𝐈𝑆⊗𝐋)⏟      
Time lag

+ 𝜅𝑆𝑇𝜅𝑆
−2(𝐏⊗ 𝐋)⏟          

Space−time lag

, (1) 

where 𝐋 is a 𝑇 × 𝑇 first-difference matrix (with a band of 1s immediately below the diagonal and 146 

a band of -1s along the diagonal), 𝐈𝑇 is a 𝑇 × 𝑇 identity matrix, 𝐈𝑆 is a 𝐽 × 𝐽 identity matrix, and 147 

−1 < 𝜅𝑆𝑇 < 0 controls the rate at which 𝑥𝑗𝑡 diffuses outward over time (with no diffusion when 148 

𝜅𝑆𝑇 = −1).  To simplify presentation in the following, however, we drop the space-time lag (i.e., 149 

fix 𝜅𝑆𝑇 = 0) and only estimate 𝜅𝑆 and 𝜅𝑇.  The STDL operator then calculates vec(𝐳) =150 

(𝐈 − 𝐏joint)
−1
vec(𝐱) and vec(𝐳) can be computed from 𝐈 − 𝐏joint using a sparse LU 151 

decomposition (Rue & Held, 2005) without directly constructing (𝐈 − 𝐏joint)
−1

.   152 

This expression results in a linear increase in mean-squared displacement (MSD) over 153 

time (i.e., the effect of a covariate 𝑥𝑗𝑡 propagates outwards spatially over time), and an 154 

exponential decay in the covariate effect over time.  Specifically, it results in a first-order 155 

autocorrelation time 𝜙: 156 

𝜙 =
𝜅𝑇

1 + 𝜅𝑇
, (2) 

and a mean-squared displacement (MSD) for the covariate: 157 



 

 

MSD = 4𝜅𝑆
−2(1 − 𝜙) =

4𝜅𝑆
−2

1 + 𝜅𝑇
, (3) 

which we will visualize in detail later.   158 

Carry-over effects for temperature anomalies in the eastern Bering Sea 159 

To demonstrate nonlocal and/or lagged responses to habitat variables, we fit a species 160 

distribution model to bottom trawl samples of fish biomass in the eastern Bering Sea. The trawl 161 

survey was conducted following a fixed-station design with 291 to 376 stations over a 162 

493,894.5 km2 spatial domain from 1982 to 2019 and 2021 to 2024 (Markowitz et al., 2022) 163 

and downloaded using the surveyjoin package (Ward et al., 2025).  We specifically fit a separate 164 

spatio-temporal generalized linear mixed model (ST-GLMM) to biomass 𝑦𝑖 using area swept 𝑤𝑖 165 

as an offset for each of six ecologically important species:  Pacific cod (Gadus macrocephalus), 166 

Alaska pollock (Gadus chalcogrammus), capelin (Mallotus villosus), herring (Clupea pallasii), 167 

arrowtooth flounder (Atheresthes stomias), and Pacific halibut (Hippoglossus stenolepis) 168 

(Thorson & Kristensen, 2024).  We specify a Tweedie distribution: 169 

𝑦𝑖~Tweedie(𝜇𝑖, 𝜙, 𝜓 ) (4) 

which involves estimating two dispersion parameters that control the mean-variance relationship 170 

Var(𝑦𝑖) = 𝜙𝜇𝑖
𝜓

.  The mean is then predicted from a log-linked linear predictor: 171 

log(𝜇𝑖) = 𝛽⏟
Intercept

+ 𝜔𝑗[𝑖]⏟
Spatial
term

+ 𝜖𝑗[𝑖],𝑡[𝑖]⏟  
Spatio−temporal

Term

+ 𝛾1𝑧𝑗[𝑖],𝑡[𝑖] + 𝛾1𝑧𝑗[𝑖],𝑡[𝑖]
2

⏟            
Quadratic effect of 

spatio−temporal distributed lag

for temperature

+ log(𝑤𝑖)⏟    
Area offset

 (5) 

We specify a Gaussian Markov random field (GMRF) for the spatial term: 172 

𝛚~GMRF(𝟎, 𝜏𝜔
2𝐐), (6) 



 

 

where 𝐐 is the sparse precision matrix constructed using the SPDE method (Lindgren et al., 173 

2011), and also specify a GMRF that follows a first-order autoregressive process for the spatio-174 

temporal term: 175 

𝛜𝑡~ {
GMRF(𝟎, (1 − 𝜌𝜖

2)𝜏𝜖
2𝐐) if 𝑡 = 1

GMRF(𝜌𝜖𝛜𝑡, 𝜏𝜖
2𝐐) if 𝑡 > 1

 . 
(7) 

This involves estimating the decorrelation rate 𝜅 that is shared between spatial and spatio-176 

temporal terms, the time-correlation 𝜌𝜖 for spatio-temporal residuals, and a separate pointwise 177 

variance for each term controlled by 𝜏𝜔
2  and 𝜏𝜖

2, respectively.  The SPDE method requires 178 

constructing a finite-element mesh (FEM) over the spatial domain, which we do using the 179 

fmesher package (Lindgren, 2023).  We use a FEM cutoff of 30 km, resulting in 𝐽 = 402 180 

vertices over 𝑇 = 45 years, such that 𝛚 and 𝛜𝑡 contain 18,492 random effects.   181 

Finally, we also estimate 𝜅𝑆 and 𝜅𝑇 for the STDL that converts seafloor temperature 182 

anomalies 𝑥𝑗𝑡 to effective covariate 𝑧𝑗𝑡, while then estimating a dome-shaped (quadratic) 183 

response to 𝑧𝑗𝑡.  We use in situ measurements of water temperature obtained from the bottom 184 

trawl survey to define the seafloor temperature 𝑥𝑗𝑡 for each vertex 𝑗 of the SPDE mesh at 185 

location 𝐬𝑗  in year 𝑡, using the nearest bottom trawl sample to 𝐬𝑗  in a given year.  Because the 186 

survey was not conducted in 2020, we estimated bottom temperature for that year by averaging 187 

observations from the two adjacent survey years, 2019 and 2021. To allow a time-lagged effect 188 

of past temperatures for the first year of sampling, we imputed the 1981 values using the mean of 189 

1982-1983.  We then convert the bottom temperature for a given location 𝑗 and year 𝑡 to a 190 

temperature anomaly by subtracting the mean value for that location across years.  This 191 

temperature anomaly shows a well-documented oscillation (Stabeno et al., 2019) between a 192 



 

 

warm stanza (2002 to 2005), a cold stanza (2006 to 2013), another warm stanza (2014 to 2021), 193 

with close-to-average conditions subsequently (Fig. 1).   194 

For each species, we fit four models formed from the 2 × 2 factorial design of including 195 

the space-lag by estimating 𝜅𝑆 (or instead fixing 𝜅𝑆 = 0) and/or including the time-lag by 196 

estimating 𝜅𝑇 (or instead fixing 𝜅𝑇 = 0).  For each model, we identify the maximum likelihood 197 

estimate of all fixed effects by applying the Laplace approximation to the joint likelihood of 198 

fixed and random effects (Skaug & Fournier, 2006), as implemented using the R (R Core Team, 199 

2023) package TMB (Kristensen et al., 2016).  TMB then calculates the gradient of the Laplace 200 

approximation with respect to fixed effects using automatic differentiation (Fournier et al., 201 

2012), which we then optimize in the R statistical environment.  TMB uses the Eigen package 202 

(Guennebaud et al., 2010) to efficiently apply the sparse LU decomposition when calculating the 203 

STDL, and we use the delta method to compute standard errors for 𝜙 (Eq. 2), MSD (Eq. 3), and 204 

RMSD = √MSD.   205 

We explore model results in several ways: 206 

1. Parsimony and parameter estimates:  For each species, we calculate the Akaike Information 207 

Criterion (AIC) (Akaike, 1974) and use it to identify the most parsimonious of the four 208 

models.  For all four models, we also extract the estimated spatial distributed lag (𝜅𝑆) and the 209 

temporal distributed lag (𝜅𝑇), and convert them to the equivalent mean-squared displacement 210 

MSD and the first-order autocorrelation 𝜙, respectively.  We then compare the 𝜙 and MSD 211 

across species and models. 212 

2. Visualized effect of temperature anomalies: For the selected model for each species, we also 213 

visualize the predicted effect of a hypothetical anomaly in local temperature as it propagates 214 



 

 

through space and time, based on the estimated values of 𝜅𝑆 and 𝜅𝑇.  This plot provides 215 

intuition about the spatial and temporal scale over which a temperature anomaly affects 216 

population density for that species. 217 

3. Effective seafloor temperature: Finally, for the selected model for each species, we also 218 

visualize the effective seafloor temperature 𝐙∗ after applying the STDL to the in situ 219 

measurements 𝐗 and then interpolating 𝐙 to the 25 km × 25 km grid.  This effective 220 

temperature then represents the net effective of animal movement and carryover effects that 221 

contribute to the estimated STDL.   222 

Both (2) and (3) involve predicting raw covariate 𝐗 and the STDL covariate 𝐙 at higher 223 

resolution.  To do so we construct a set of 𝐾 = 886 square 25 km × 25 km grid cells that cover 224 

the spatial domain of the bottom trawl survey, and then interpolate covariates 𝐗∗ = 𝐀𝐗 and 𝐙∗ =225 

𝐀𝐙 using the 𝐾 × 𝐽 interpolation matrix 𝐀.   226 

Simulation experiment 227 

To explore model performance, we conduct a self- and cross-test simulation experiment 228 

assessing parameter recovery and whether AIC correctly identifies the true model across 229 

different estimation scenarios.  To do so, we choose three species where model selection for real 230 

data selects either no STDL (Pacific cod), a temporal lag (Pacific halibut), or both spatial and 231 

temporal lags (capelin).  For each species, we simulate 100 replicated data sets from the AIC-232 

selected model (used as operating model), each of which condition upon the maximum 233 

likelihood estimates for fixed effects, simulating new realizations of the random effects, and then 234 

simulating new samples conditional upon both at the same location as real-world data.  For each 235 

of 100 data sets, we then fit the original four estimation models: no lags, spatial lag, time-lag, 236 



 

 

and both space and time lags (1200 model fits) and record the AIC and parameter estimates.  We 237 

then explore (1) how often AIC identifies the correct data-generating process, and (2) how the 238 

estimated parameters compare with the original values used in the simulation.   239 

Results 240 

The most parsimonious model (lowest marginal AIC) includes a carry-over effect of temperature 241 

for five of the six species (Table 1).  For these five species, the AIC-selected model has a 242 

temporal correlation 𝜙 from ranging from 0.20 (arrowtooth flounder) to 0.83 (Pacific herring).  243 

Similarly, the spatial lag is parsimonious for four of the six species and has a root-mean-squared 244 

displacement (RMSD) ranging from 30 km (arrowtooth flounder) to 53 km (capelin), relative to 245 

the √493,894.5 = 703 km distance across the spatial domain.  Models without the STDL run in 246 

3.2 to 11.2 minutes and adding the STDL increases runtime by 5-fold to 15-fold.  As expected, 247 

the selected model has a 95% confidence interval for 𝜙 and RMSD that does not overlap with 248 

zero when AIC favors a model with STDL, and the interval generally does overlap zero when the 249 

component is not selected by AIC (Fig. 2); for example Pacific cod where 𝜙 = 0.04 and is not 250 

selected as parsimonious.   251 

 To illustrate the predicted effect of the estimated spatial and time-lags, we illustrate how a 252 

hypothetical localized temperature anomaly propagates across space and over time (Fig. 3). 253 

Pacific cod (Fig. 3 top row) is the only species where AIC selects neither the time- or nor space-254 

lags.  For this species, the local temperature anomaly 𝐗𝑡
∗ has a mean-squared displacement of 255 

MSD = 911 km2, i.e., RMSD = √911 = 30 km.  This matches the scale used when discretizing 256 

the continuous covariate (i.e., 40 km cutoff in the finite-element mesh), such that the resolution 257 

of the finite element mesh provides a “lower bound” on the spatial resolution of the simulated 258 



 

 

local temperature anomaly 𝐗𝑡
∗.  The diffused covariate 𝐙𝑡

∗ then has the same total value and MSD 259 

in that year, and 𝐙𝑡+1
∗ = 0 in subsequent years (shown as dark blue in lag-1 and lag-2 columns) 260 

because there is no time-lagged dynamics (𝜅𝑇 = 0).  By contrast, Pacific halibut selects a time-261 

lag but no spatial lag (Fig. 3, bottom row), with 𝜙 = 0.31.  As a result, the covariate is smoothed 262 

across years, where the total effect in the first three years is 0.69, 0.22, and 0.07 (i.e., 
0.22

0.69
=263 

0.31), and the sum across all subsequent years is approximately 1 (i.e., the total effect of a 264 

temperature anomaly is preserved but smoothed across subsequent years).  However, the spatial 265 

lag is not selected, such that the spatial effect does not propagate outward over time (MSD =266 

978 km2 in all years).  As a third example, walleye pollock (Fig. 3, 2nd row) selects both a time 267 

and space lag, with estimated MSD = 1747 km2 and 𝜙 = 0.31  In this case, the effect of a 268 

temperature anomaly propagates outwards over time, i.e., MSD = 2621 km2 in the initial year 269 

and MSD = 4294 km2 in the following year.   270 

 The STDL estimates substantial differences in the effective temperature anomaly 𝐙∗ 271 

among species, and we use the transition from cold (2013) to warm (2017) conditions as an 272 

illustrative example (Fig. 4).  For Pacific cod, AIC selects the model without any space or time-273 

lag, and therefore effective temperature (Fig. 4 top row) is identical to the raw measurements 274 

(Fig. 1).  As an extreme contrast, the selected model for Pacific herring has strong spatial and 275 

time-lags (RMSD = 46 km and 𝜙 = 0.84), so effective temperature shows both less variation 276 

across space within a year and also a slower transition from below- (blue) to above-average (red) 277 

conditions starting in 2016 (Fig. 4, 4th row).  Using Pacific halibut as an example that includes 278 

time-lags but no spatial lag (𝜙 = 0.31), we see the same high-resolution spatial variation in 279 

effective temperature as for measurements (Fig. 1) and for Pacific cod (Fig. 1 top row), but the 280 

persistence of below-average effective temperature across the northern portion of the survey area 281 



 

 

even as temperature measurements are increasing in 2014.  We therefore see that STDL estimates 282 

the effective thermal environment, which can differ from raw measurements and among species.   283 

 Finally, the simulation experiment confirms that AIC can identify the combination of 284 

spatial and temporal distributed lags that are used to simulate data (Fig. 5).  In particular, the 285 

correct model is identified in >75% of simulation replicates for all three species.  Similarly, the 286 

estimates of spatio-temporal lags are approximately unbiased for those cases where they are 287 

simulated (Fig. 6).  We therefore conclude that these parameters are estimable given the sample 288 

sizes explored here.   289 

Discussion 290 

In this paper, we provide the first demonstration that both temporal and high-resolution spatial 291 

lags arise when using habitat variables (e.g., temperature anomalies) to predict population 292 

density.  The method involves estimating two additional, interpretable parameters (i.e., with units 293 

of distance and time), and the spatio-temporal distributed lag can revert to the conventional 294 

species distribution model (i.e., using measured covariates directly) as a nested submodel.  295 

Similarly, a simulation experiment suggests that model selection can identify the appropriate 296 

combination of spatial and temporal lags, and that estimates are approximately unbiased using 297 

the sample sizes explored here.  The estimated temporal lags are strongest for the two pelagic 298 

species (Pacific herring and capelin have 𝜙 = {0.83,0.70}), and either weak or absent for two 299 

seafloor-associated species (Pacific halibut and Pacific cod have 𝜙 = {0.31,0.04}).  The method 300 

also allows us to visualize the effective temperature anomaly for each fish population, which 301 

differs substantially among species.   302 



 

 

The link between spatio-temporal distributed lags (Eq. 1) and animal movement suggests 303 

many avenues for future extensions to this approach.  We did not explore estimating the spatio-304 

temporal interaction 𝜅𝑆𝑇 so that we could focus on two interpretable parameters.  However, 305 

estimating 𝜅𝑆𝑇 allows the STDL to estimate a separate RMSD in the first year relative to how 306 

much RMSD increases in subsequent years; 𝜅𝑆𝑇 = 0 (as assumed here) results in MSD increasing 307 

linearly with time, whereas 𝜅𝑆𝑇 = −1 results in MSD being equal for all years.  This parameter 308 

therefore allows a model to estimate the rate of spatio-temporal diffusion, at the cost of slower 309 

model fitting.  Similarly, the spatial diffusion rate 𝜅𝑆 might itself depend upon covariates 310 

(Lindgren et al., 2011), where temperature anomalies might have a more localized impact on 311 

nearshore than deep-water habitats.  Future studies could incorporate this novel type of covariate 312 

interaction during the construction of stiffness matrix 𝐆.   Finally, including advection would 313 

allow covariates at one location to affect population responses some distance away (e.g., 100 km 314 

eastward).  For an animal with predictable seasonal movement, this would allow winter 315 

covariates to affect summer densities at a geographically distant site.    316 

Oceans are experiencing extremely warm conditions (Hobday et al., 2016), and there are 317 

well-documented examples of marine heatwaves impacting ocean animals (Fossheim et al., 318 

2015; Szuwalski et al., 2023).  However, a global synthesis (Fredston et al., 2023) found no 319 

consistent change in region-wide seafloor-community biomass occurring synchronous with 320 

marine heatwaves.  We hypothesize that this mismatch arises because spatial and temporal lags 321 

can complicate studies seeking to attribute ecological responses to climate drivers.  In cases such 322 

as this, we hypothesize that the STDL allows analysts to attribute localized density responses to 323 

temperature anomalies, while automatically testing for lagged responses and identifying the 324 

appropriate scale linking temperature to population responses.  We therefore recommend greater 325 



 

 

use of STDL in studies attributing ecological dynamics to climate drivers, and the growing 326 

availability of global databases of biological monitoring (Maureaud et al., 2024) will facilitate 327 

these studies.   328 
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Table 1 – Summary of model results for the six species and four models formed from the 2 × 2 421 

cross of including a space lag (X in space column) or time lag (X in time-lag).  We specifically 422 

show the runtime in minutes (including optimization from uniformed starting values and 423 

standard-error calculations), the marginal AIC relative to the most parsimonious model (in bold 424 

for selected model), the first-order autocorrelation 𝜙 calculated from estimated time-lag 𝜅𝑇 (Eq. 425 

2), the mean-squared displacement MSD calculated from the space-lag 𝜅𝑆 (Eq. 3),  and the 426 

square-root of MSD (with units of km) 427 

Species  

(common name) 

space time Runtime 

(min) 
ΔAIC 𝜙 MSD 

(km2) 

RMSD 

(km) 

pacific cod   3.24 0 NA NA NA 

pacific cod X  3.85 2 NA 0 0 

pacific cod  X 4.87 1.5 0.04 NA NA 

pacific cod X X 17.35 3.5 0.04 0 0 

walleye pollock   3.42 2.55 NA NA NA 

walleye pollock X  4.28 3.28 NA 664 26 

walleye pollock  X 3.71 2.21 0.16 NA NA 

walleye pollock X X 15.37 0 0.31 1747 42 

capelin   3.31 21.88 NA NA NA 

capelin X  5.1 11.1 NA 5072 71 

capelin  X 3.56 10.3 0.52 NA NA 

capelin X X 29.73 0 0.7 2804 53 

pacific herring   8.19 10.26 NA NA NA 

pacific herring X  10.32 12.26 NA 0 0 

pacific herring  X 8.79 3.51 0.73 NA NA 

pacific herring X X 29.26 0 0.83 2135 46 

arrowtooth flounder   6.77 6.12 NA NA NA 

arrowtooth flounder X  8.63 2.87 NA 912 30 

arrowtooth flounder  X 9.84 3.14 0.18 NA NA 

arrowtooth flounder X X 32.26 0 0.2 911 30 

pacific halibut   11.15 9.58 NA NA NA 

pacific halibut X  4.62 11.58 NA 0 0 

pacific halibut  X 2.89 0 0.31 NA NA 

pacific halibut X X 11.87 2 0.31 0 0 
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Fig. 1 – Visualizing temperature anomalies 𝐗∗ (see panel 1981 for color legend) interpolated to 429 

the 40 × 40 km grid cells distributed across the eastern Bering Sea survey area (black outline) 430 

relative to land in Alaska (grey areas) from 1981 to 2024 (panels). 431 

 432 
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Fig. 2 – Visualizing estimated AIC weight (top row), the correlation among years (2nd row), and 435 

the root-mean-squared displacement (3rd row) for the spatio-temporal distributed lag for each of 436 

four models (x-axis; null: no lags; S: just spatial lag; T: just time-lag; ST: both space and time 437 

lags) for each of six species (columns) 438 

 439 
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Fig. 3 – Using the selected model for each species (row), visualizing the effect of a hypothetical, 441 

localized temperature anomaly measurement 𝐱𝑡
∗ interpolated to the 40 km × 40 km grid cells 442 

(left column), and how it translates to the effective temperature in the same year 𝐳𝑡
∗ (2nd column), 443 

one year later 𝐳𝑡+1
∗  (3rd column), or two years later 𝐳𝑡+2

∗  (4th column).  We specifically fix 𝑥𝑗𝑡 = 𝑐 444 

for the location 𝐬𝑗  in the middle of the spatial domain, with value 𝑐 fixed to ensure that 445 

∑ 𝑥𝑘𝑡
∗𝐾

𝑘=1 = 1, where k is the number of grid cells.  For each year, we calculate the total ∑ 𝑥𝑘𝑡
∗𝐾

𝑘=1  446 

or ∑ 𝑧𝑘𝑡
∗𝐾

𝑘=1  and the root-mean-squared displacement (listed above each panel).  We also show 447 

the edges of the set of triangles (grey lines) used to represent the finite-element mesh (using a 448 

cutoff of 40 km).   449 
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Fig. 4 – Visualizing the effective seafloor temperature anomaly 𝐳𝑡
∗ (in units ℃ relative to the 453 

average for 1982-2014) for each species (rows) in the five years that rapidly transition from cool 454 

(2013, left column) to warm conditions (2017, right column), and using a separate color legend 455 

for each species (within the left panel for each row); compare with Fig. 1 to see the effect of the 456 

spatio-temporal distributed lag.   457 
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Fig. 5 – Performance for marginal AIC to identify the correct model within a simulation 460 

experiment for three species.  For each species (columns), we show the four estimation models 461 

(x-axis; null: no lags; S: just spatial lag; T: just time-lag; ST: both space and time lags), and the 462 

proportion of 100 simulation replicates where each model was selected (y-axis). Color 463 

corresponds to whether the operating model matches the estimation model, where green matches 464 

(correct model is chosen) and orange is a mismatch (incorrect model chosen).  465 
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Fig. 6 – Performance of parameter estimation in the simulation experiment, showing the two 467 

parameters in the spatio-temporal distributed lag for capelin (panel A and B) and the temporal lag 468 

for Pacific halibut (panel C), as well as the derived calculation for root-mean-squared-469 

displacement in km (RMSD) (panel D) and correlation among years (autocorrelation) (panel E 470 

and F).  For each quantity, we show 100 estimates (dots) and the true value (red line; y-axis) for 471 

the two estimation models, where green indicates the operating model and orange indicates the 472 

alternative model that also estimates the same parameter (x-axis; S: just spatial lag; T: just time-473 

lag; ST: both space and time lags).  Estimates where RMSD < 1 are shown as crosses. 474 
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