

Temperature carryover effect revealed for marine fishes using spatio-temporal distributed lag models

4 Authors:

5 James T. Thorson¹, Sean C. Anderson^{2,3}, Max Lindmark⁴

⁷ ¹ Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center,
⁸ Seattle, Washington, USA

⁹ ² Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada

10 ³ School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC,
11 Canada

12 4 Swedish University of Agricultural Sciences, Department of Aquatic Resources, Sweden

13 * Corresponding author: James.Thorson@noaa.gov

14

15

16

17 Abstract:

18 Understanding the impact of changing temperature on population densities is necessary to predict
19 the likely impact of climate anomalies (e.g., marine heatwaves) or forecast distribution shifts
20 under future climate scenarios. Population densities are often analyzed using spatio-temporal
21 models (STMs), which typically predict densities based on local habitat conditions while also
22 estimating latent spatial and spatio-temporal variation. Recent research extends STMs by also
23 estimating density responses to habitat conditions at nearby locations using a “spatially
24 distributed lag” (SDL) that averages habitat conditions in the vicinity of samples. Here, we
25 extend SDL by incorporating insights from diffusion-enhanced STMs to simultaneously estimate
26 spatially distributed and time-lagged responses to nearby and past habitat conditions (a “spatio-
27 temporal distributed lag” STDL). We then use summer bottom trawl survey data from the
28 eastern Bering Sea (1982-2024) to measure whether spatial and/or temporal lags are
29 parsimonious when predicting population density from temperature anomalies for six
30 ecologically important fishes. Results show that time-lagged responses are parsimonious,
31 positive, and substantial (correlation of 0.20-0.83 per year) for five species, and that density
32 responses to temperature anomalies also diffuse outward over time for four species at 30-53
33 kilometers per year. A self- and cross-test simulation experiment shows that model selection can
34 identify the appropriate model and parameter estimates are approximately unbiased. We
35 therefore conclude that temperature carry-over effects arise in marine fishes and recommend that
36 future studies include nonlocal and time-lagged responses when measuring density responses to
37 habitat.

38

39 Keywords: Spatial distributed lag; spatio-temporal model; species distribution model; lagged
40 response; nonlocal response

41

42 **Data Availability Statement**

43 We use records of biomass and temperature samples from the eastern Bering Sea bottom trawl
44 surveys, described by (Markowitz *et al.*, 2022) and downloaded using release 0.0.3 of the
45 *surveyjoin* package (Ward *et al.*, 2025) with DOI <https://doi.org/10.5281/zenodo.14984411>. All
46 code required to reproduce the analysis are available publicly online at <https://github.com/James->
47 [Thorson-NOAA/spacetime-lag](https://github.com/James-Thorson-NOAA/spacetime-lag). We will add a DOI using Zenodo upon acceptance.

48

49

50 **Introduction**

51 The association between animal densities and environmental variation is complicated due
52 to nonlocal and time-lagged ecological responses. For example, migratory behaviors cause
53 habitat conditions at one location to affect population densities at geographically distant sites, as
54 shown by the association between local density and regional climate indices for both butterflies
55 in California and fishes in the Bering Sea (Pardikes *et al.*, 2015; Thorson, 2019). Similarly,
56 species interactions and age-structured dynamics result in time-lagged responses. For example,
57 global variation in plant growth is better explained by climate indices when incorporating time-
58 lagged responses (Wu *et al.*, 2015) due to delayed responses of the soil community in tallgrass
59 prairie ecosystems (Arnone III *et al.*, 2008).

60 Species distribution models (SDMs) are widely used in ecology (Elith & Leathwick,
61 2009) to estimate habitat associations, attribute density changes to habitat changes, and forecast
62 future distribution under climate scenarios (Thorson & Kristensen, 2024). Missing covariates
63 and ecological processes (e.g., animal movement) often cause model residuals for SDMs to be
64 correlated in space or time, and this degrades predictive performance and statistical testing
65 (Dormann *et al.*, 2007). Recent developments in spatio-temporal generalized linear mixed
66 models (ST-GLMMs) allow analysts to control for (and condition predictions upon) spatial and
67 spatio-temporal autocorrelation at high spatial resolution (Thorson & Kristensen, 2024).

68 SDMs generally predict local densities based upon measured habitat at the same place
69 and time and will therefore neglect the potential role of nonlocal or time-lagged responses. In
70 past instances when SDMs are designed to test the impact of past or nonlocal environmental
71 conditions, nonlocal and lagged effects are often tested by comparing multiple covariates at
72 different scales in a single model, by repeatedly fitting the model with different lagged

73 covariates, and using model selection to identify a single spatial scale or time-lag for covariates
74 (Wu *et al.*, 2015; Núñez-Riboni *et al.*, 2021; Lindmark *et al.*, 2023). Another option is to use
75 SDMs to compute time-series representing range shifts, and then apply “temporal distributed
76 lags” (TDL) to estimate the lagged effect of time-series covariates on range-shift indices (e.g.,
77 using the package *dlnm*; (Gasparrini *et al.*, 2010)). However, aggregating predictions from
78 SDMs into an annual index reframes the analysis into a time-series framework, instead of
79 estimating temporal lags directly within the spatially explicit SDM where spatially and
80 temporally correlated residuals can be modelled (which *dlnm* is not designed to do).

81 Alternatively, spatio-temporal variation in habitat covariates can be compressed to construct
82 time-series indices representing habitat variation (e.g., using empirical orthogonal function
83 analysis), and these indices can be included as covariates using a spatially varying response to
84 test for nonlocal habitat responses (Thorson, 2019; Thorson *et al.*, 2020). However, this
85 technique ignores information about the spatial proximity of habitat variation at other sites
86 affecting local density and therefore cannot estimate the spatial- or time-scale over which nearby
87 habitat affects local densities.

88 To estimate the influence of nearby habitat on population density, recent ecological
89 research has integrated “spatially distributed lags” (SDL) into species distribution models (Miller
90 *et al.*, 2025; Lindmark *et al.*, 2026). SDLs estimate a spatially smoothed transformation of a
91 given covariate, and then use that transformed covariate to predict the response of a regression
92 model (e.g., Armstrong, 2006). Similarly, ecologists are developing “temporal distributed lags”
93 (TDL) (Sollmann, 2024; Lalechère *et al.*, 2025), and discussing the importance of both spatial
94 and temporal lags in species distribution models (Essl *et al.*, 2024). In parallel, recent statistical
95 research has efficiently approximated a diffusive process across space and time and used this to

96 define the distribution for a spatio-temporal latent variable (Clarotto *et al.*, 2024; Lindgren *et al.*,
97 2024). However, we are not aware of any extension re-purposing this diffusive process to define
98 a spatio-temporal distributed lag for application within a species distribution model.

99 To address this gap, we introduce a computationally efficient model to identify nonlocal
100 and/or lagged responses to habitat variables by using a “spatio-temporal distributed lag” (STDL)
101 within an SDM. To ensure that results are applicable in a wide context, we also implement this
102 while estimating spatial and spatio-temporal latent variables (e.g., using a ST-GLMM). To do so,
103 we first review recent developments in SDLs and then extend this to incorporate time-lagged
104 responses using a diffusion-enhanced process. We then demonstrate that time-lagged responses
105 to temperature anomalies arise for five of six ecologically important fishes in the eastern Bering
106 Sea, analyzed here from 1982–2024. We conclude by recommending that studies explore using
107 STDL to incorporate nonlocal and time-lagged responses to thermal habitat when testing for (or
108 forecasting) climate linkages in population distribution.

109 **Methods**

110 **Spatially distributed lags**

111 We start by defining a $J \times T$ covariate matrix \mathbf{X} where x_{jt} is the covariate measurement at time
112 $t \in \{1, \dots, T\}$ and location \mathbf{s}_j for $j \in \{1, \dots, J\}$ locations in two-dimensional space within domain
113 D . We seek a spatio-temporal distributed lag operator h that transforms covariate matrix \mathbf{X} to
114 calculate a transformed $J \times T$ matrix $\mathbf{Z} = h(\mathbf{X})$. We can then interpolate the covariate to
115 calculate $x_t^*(\mathbf{s}^*)$ at a new location \mathbf{s}^* using a J length interpolation vector $\mathbf{a}(\mathbf{s}^*)$ where $x_t^*(\mathbf{s}^*) =$
116 $\mathbf{a}(\mathbf{s}^*)^T \mathbf{x}_t$. This operator should have the following properties:

117 1. *Interpretable parameters*: We seek to estimate a parameter κ_S representing the spatial
 118 distance over which a covariate is smoothed in space (e.g., units of meters) and a separate
 119 parameter κ_T representing the time-lag over which the covariate is smoothed in time (e.g.,
 120 units per-year), where the model collapses to no lag in either space or time (i.e., $\mathbf{X} = \mathbf{Z}$) given
 121 some value of those parameters. We also discuss a parameter κ_{ST} that controls how a
 122 location $x_{j_1 t_1}$ affects a different location $x_{j_2 t_2}$ at a later time $t_2 > t_1$ relative to the combined
 123 effects of κ_S and κ_T (although we do not test its behavior here to simplify the presentation);
 124 2. *Conservation of mass*: A covariate value x_{jt} at location \mathbf{s}_j and time t is distributed across
 125 space and time by the STDL operator while leaving its total value (approximately)
 126 unchanged. If we define the $K \times J$ interpolation matrix \mathbf{A} for K evenly distributed spatial
 127 locations $\{\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_k\}$ within domain D , and further define $\mathbf{X}^* = \mathbf{AX}$ and $\mathbf{Z}^* = \mathbf{AZ}$, then
 128 $\sum_{t=1}^T \sum_{k=1}^K x_{kt}^* \approx \sum_{t=1}^T \sum_{k=1}^K z_{kt}^*$;
 129 3. *Linear computation*: Using the STDL for a set of measurements $\mathbf{Z} = h(\mathbf{X})$, we seek to
 130 compute $\text{vec}(\mathbf{Z}) = \mathbf{D}^{-1} \text{vec}(\mathbf{X})$ where $\text{vec}(\mathbf{X})$ stacks the columns of \mathbf{X} into a long vector with
 131 length JT , and \mathbf{D} is a sparse $JT \times JT$ matrix representing the STDL which then depends upon
 132 κ_S and κ_T , such that the computation time to compute $\mathbf{D}^{-1} \text{vec}(\mathbf{X})$ increases linearly with the
 133 size of JT .

134 Lindmark et al. (2026) constructed a spatially distributed lag, $\mathbf{z}_t = (\mathbf{I} - \mathbf{P})^{-1} \mathbf{x}_t$ using a $J \times J$
 135 spatial path matrix \mathbf{P} given measurements \mathbf{x}_t at the vertices of triangles that cover the spatial
 136 domain (a “finite element mesh” FEM). Using this FEM, $\mathbf{P} = -\kappa_s \mathbf{C}^{-1} \mathbf{G}$ where \mathbf{C} is a diagonal
 137 $J \times J$ matrix measuring the volume associated with each vertex, and \mathbf{G} is a sparse $J \times J$ matrix
 138 representing the “overlap” between each vertex (which is zero for vertices that do not share any
 139 triangle). However, this spatially distributed lag did not account for time-lags and therefore

140 could not assess the relative importance of temporal versus spatial lags. We therefore seek to
141 extend this recent research to also include time-lags.

142 **Extending to include time-lags**

143 We next incorporate time-lagged dynamics, where covariate measurements \mathbf{x}_t affect the STDL
144 covariate \mathbf{z}_t in that same time but also in future times \mathbf{z}_{t+1} , \mathbf{z}_{t+2} , etc. To do so, we construct a
145 $JT \times JT$ dimensional path matrix $\mathbf{P}_{\text{joint}}$ from spatial, temporal, and spatio-temporal lags:

$$\mathbf{P}_{\text{joint}} = \underbrace{\kappa_S^{-2}(\mathbf{P} \otimes \mathbf{I}_T)}_{\text{Space lag}} + \underbrace{\kappa_T(\mathbf{I}_S \otimes \mathbf{L})}_{\text{Time lag}} + \underbrace{\kappa_{ST}\kappa_S^{-2}(\mathbf{P} \otimes \mathbf{L})}_{\text{Space-time lag}}, \quad (1)$$

146 where \mathbf{L} is a $T \times T$ first-difference matrix (with a band of 1s immediately below the diagonal and
147 a band of -1s along the diagonal), \mathbf{I}_T is a $T \times T$ identity matrix, \mathbf{I}_S is a $J \times J$ identity matrix, and
148 $-1 < \kappa_{ST} < 0$ controls the rate at which x_{jt} diffuses outward over time (with no diffusion when
149 $\kappa_{ST} = -1$). To simplify presentation in the following, however, we drop the space-time lag (i.e.,
150 fix $\kappa_{ST} = 0$) and only estimate κ_S and κ_T . The STDL operator then calculates $\text{vec}(\mathbf{z}) =$
151 $(\mathbf{I} - \mathbf{P}_{\text{joint}})^{-1} \text{vec}(\mathbf{x})$ and $\text{vec}(\mathbf{z})$ can be computed from $\mathbf{I} - \mathbf{P}_{\text{joint}}$ using a sparse LU
152 decomposition (Rue & Held, 2005) without directly constructing $(\mathbf{I} - \mathbf{P}_{\text{joint}})^{-1}$.

153 This expression results in a linear increase in mean-squared displacement (MSD) over
154 time (i.e., the effect of a covariate x_{jt} propagates outwards spatially over time), and an
155 exponential decay in the covariate effect over time. Specifically, it results in a first-order
156 autocorrelation time ϕ :

$$\phi = \frac{\kappa_T}{1 + \kappa_T}, \quad (2)$$

157 and a mean-squared displacement (MSD) for the covariate:

$$MSD = 4\kappa_S^{-2}(1 - \phi) = \frac{4\kappa_S^{-2}}{1 + \kappa_T}, \quad (3)$$

158 which we will visualize in detail later.

159 **Carry-over effects for temperature anomalies in the eastern Bering Sea**

160 To demonstrate nonlocal and/or lagged responses to habitat variables, we fit a species
 161 distribution model to bottom trawl samples of fish biomass in the eastern Bering Sea. The trawl
 162 survey was conducted following a fixed-station design with 291 to 376 stations over a
 163 493,894.5 km² spatial domain from 1982 to 2019 and 2021 to 2024 (Markowitz *et al.*, 2022)
 164 and downloaded using the *surveyjoin* package (Ward *et al.*, 2025). We specifically fit a separate
 165 spatio-temporal generalized linear mixed model (ST-GLMM) to biomass y_i using area swept w_i
 166 as an offset for each of six ecologically important species: Pacific cod (*Gadus macrocephalus*),
 167 Alaska pollock (*Gadus chalcogrammus*), capelin (*Mallotus villosus*), herring (*Clupea pallasii*),
 168 arrowtooth flounder (*Atheresthes stomias*), and Pacific halibut (*Hippoglossus stenolepis*)
 169 (Thorson & Kristensen, 2024). We specify a Tweedie distribution:

$$y_i \sim \text{Tweedie}(\mu_i, \phi, \psi) \quad (4)$$

170 which involves estimating two dispersion parameters that control the mean-variance relationship
 171 $\text{Var}(y_i) = \phi\mu_i^\psi$. The mean is then predicted from a log-linked linear predictor:

$$\log(\mu_i) = \underbrace{\beta}_{\text{Intercept}} + \underbrace{\omega_{j[i]}}_{\text{Spatial term}} + \underbrace{\epsilon_{j[i],t[i]}}_{\text{Spatio-temporal Term}} + \underbrace{\gamma_1 z_{j[i],t[i]} + \gamma_1 z_{j[i],t[i]}^2}_{\substack{\text{Quadratic effect of} \\ \text{spatio-temporal distributed lag} \\ \text{for temperature}}} + \underbrace{\log(w_i)}_{\text{Area offset}} \quad (5)$$

172 We specify a Gaussian Markov random field (GMRF) for the spatial term:

$$\boldsymbol{\omega} \sim \text{GMRF}(\mathbf{0}, \tau_\omega^2 \mathbf{Q}), \quad (6)$$

173 where \mathbf{Q} is the sparse precision matrix constructed using the SPDE method (Lindgren *et al.*,
174 2011), and also specify a GMRF that follows a first-order autoregressive process for the spatio-
175 temporal term:

$$\boldsymbol{\epsilon}_t \sim \begin{cases} \text{GMRF}(\mathbf{0}, (1 - \rho_\epsilon^2)\tau_\epsilon^2 \mathbf{Q}) & \text{if } t = 1 \\ \text{GMRF}(\rho_\epsilon \boldsymbol{\epsilon}_t, \tau_\epsilon^2 \mathbf{Q}) & \text{if } t > 1 \end{cases}. \quad (7)$$

176 This involves estimating the decorrelation rate κ that is shared between spatial and spatio-
177 temporal terms, the time-correlation ρ_ϵ for spatio-temporal residuals, and a separate pointwise
178 variance for each term controlled by τ_ω^2 and τ_ϵ^2 , respectively. The SPDE method requires
179 constructing a finite-element mesh (FEM) over the spatial domain, which we do using the
180 *fmesher* package (Lindgren, 2023). We use a FEM cutoff of 30 km, resulting in $J = 402$
181 vertices over $T = 45$ years, such that $\boldsymbol{\omega}$ and $\boldsymbol{\epsilon}_t$ contain 18,492 random effects.

182 Finally, we also estimate κ_S and κ_T for the STDL that converts seafloor temperature
183 anomalies x_{jt} to effective covariate z_{jt} , while then estimating a dome-shaped (quadratic)
184 response to z_{jt} . We use *in situ* measurements of water temperature obtained from the bottom
185 trawl survey to define the seafloor temperature x_{jt} for each vertex j of the SPDE mesh at
186 location \mathbf{s}_j in year t , using the nearest bottom trawl sample to \mathbf{s}_j in a given year. Because the
187 survey was not conducted in 2020, we estimated bottom temperature for that year by averaging
188 observations from the two adjacent survey years, 2019 and 2021. To allow a time-lagged effect
189 of past temperatures for the first year of sampling, we imputed the 1981 values using the mean of
190 1982-1983. We then convert the bottom temperature for a given location j and year t to a
191 temperature anomaly by subtracting the mean value for that location across years. This
192 temperature anomaly shows a well-documented oscillation (Stabeno *et al.*, 2019) between a

193 warm stanza (2002 to 2005), a cold stanza (2006 to 2013), another warm stanza (2014 to 2021),
194 with close-to-average conditions subsequently (Fig. 1).

195 For each species, we fit four models formed from the 2×2 factorial design of including
196 the space-lag by estimating κ_S (or instead fixing $\kappa_S = 0$) and/or including the time-lag by
197 estimating κ_T (or instead fixing $\kappa_T = 0$). For each model, we identify the maximum likelihood
198 estimate of all fixed effects by applying the Laplace approximation to the joint likelihood of
199 fixed and random effects (Skaug & Fournier, 2006), as implemented using the R (R Core Team,
200 2023) package *TMB* (Kristensen *et al.*, 2016). *TMB* then calculates the gradient of the Laplace
201 approximation with respect to fixed effects using automatic differentiation (Fournier *et al.*,
202 2012), which we then optimize in the R statistical environment. *TMB* uses the Eigen package
203 (Guennebaud *et al.*, 2010) to efficiently apply the sparse LU decomposition when calculating the
204 STDL, and we use the delta method to compute standard errors for ϕ (Eq. 2), MSD (Eq. 3), and
205 RMSD = $\sqrt{\text{MSD}}$.

206 We explore model results in several ways:

- 207 1. *Parsimony and parameter estimates*: For each species, we calculate the Akaike Information
208 Criterion (AIC) (Akaike, 1974) and use it to identify the most parsimonious of the four
209 models. For all four models, we also extract the estimated spatial distributed lag (κ_S) and the
210 temporal distributed lag (κ_T), and convert them to the equivalent mean-squared displacement
211 MSD and the first-order autocorrelation ϕ , respectively. We then compare the ϕ and MSD
212 across species and models.
- 213 2. *Visualized effect of temperature anomalies*: For the selected model for each species, we also
214 visualize the predicted effect of a hypothetical anomaly in local temperature as it propagates

215 through space and time, based on the estimated values of κ_S and κ_T . This plot provides
216 intuition about the spatial and temporal scale over which a temperature anomaly affects
217 population density for that species.

218 3. *Effective seafloor temperature*: Finally, for the selected model for each species, we also
219 visualize the effective seafloor temperature \mathbf{Z}^* after applying the STDL to the *in situ*
220 measurements \mathbf{X} and then interpolating \mathbf{Z} to the $25 \text{ km} \times 25 \text{ km}$ grid. This effective
221 temperature then represents the net effective of animal movement and carryover effects that
222 contribute to the estimated STDL.

223 Both (2) and (3) involve predicting raw covariate \mathbf{X} and the STDL covariate \mathbf{Z} at higher
224 resolution. To do so we construct a set of $K = 886$ square $25 \text{ km} \times 25 \text{ km}$ grid cells that cover
225 the spatial domain of the bottom trawl survey, and then interpolate covariates $\mathbf{X}^* = \mathbf{AX}$ and $\mathbf{Z}^* =$
226 \mathbf{AZ} using the $K \times J$ interpolation matrix \mathbf{A} .

227 **Simulation experiment**

228 To explore model performance, we conduct a self- and cross-test simulation experiment
229 assessing parameter recovery and whether AIC correctly identifies the true model across
230 different estimation scenarios. To do so, we choose three species where model selection for real
231 data selects either no STDL (Pacific cod), a temporal lag (Pacific halibut), or both spatial and
232 temporal lags (capelin). For each species, we simulate 100 replicated data sets from the AIC-
233 selected model (used as operating model), each of which condition upon the maximum
234 likelihood estimates for fixed effects, simulating new realizations of the random effects, and then
235 simulating new samples conditional upon both at the same location as real-world data. For each
236 of 100 data sets, we then fit the original four estimation models: no lags, spatial lag, time-lag,

237 and both space and time lags (1200 model fits) and record the AIC and parameter estimates. We
238 then explore (1) how often AIC identifies the correct data-generating process, and (2) how the
239 estimated parameters compare with the original values used in the simulation.

240 **Results**

241 The most parsimonious model (lowest marginal AIC) includes a carry-over effect of temperature
242 for five of the six species (Table 1). For these five species, the AIC-selected model has a
243 temporal correlation ϕ from ranging from 0.20 (arrowtooth flounder) to 0.83 (Pacific herring).
244 Similarly, the spatial lag is parsimonious for four of the six species and has a root-mean-squared
245 displacement (RMSD) ranging from 30 km (arrowtooth flounder) to 53 km (capelin), relative to
246 the $\sqrt{493,894.5} = 703$ km distance across the spatial domain. Models without the STDL run in
247 3.2 to 11.2 minutes and adding the STDL increases runtime by 5-fold to 15-fold. As expected,
248 the selected model has a 95% confidence interval for ϕ and RMSD that does not overlap with
249 zero when AIC favors a model with STDL, and the interval generally does overlap zero when the
250 component is not selected by AIC (Fig. 2); for example Pacific cod where $\phi = 0.04$ and is not
251 selected as parsimonious.

252 To illustrate the predicted effect of the estimated spatial and time-lags, we illustrate how a
253 hypothetical localized temperature anomaly propagates across space and over time (Fig. 3).
254 Pacific cod (Fig. 3 top row) is the only species where AIC selects neither the time- or nor space-
255 lags. For this species, the local temperature anomaly \mathbf{X}_t^* has a mean-squared displacement of
256 $MSD = 911 \text{ km}^2$, i.e., $RMSD = \sqrt{911} = 30 \text{ km}$. This matches the scale used when discretizing
257 the continuous covariate (i.e., 40 km cutoff in the finite-element mesh), such that the resolution
258 of the finite element mesh provides a “lower bound” on the spatial resolution of the simulated

259 local temperature anomaly \mathbf{X}_t^* . The diffused covariate \mathbf{Z}_t^* then has the same total value and MSD
260 in that year, and $\mathbf{Z}_{t+1}^* = 0$ in subsequent years (shown as dark blue in lag-1 and lag-2 columns)
261 because there is no time-lagged dynamics ($\kappa_T = 0$). By contrast, Pacific halibut selects a time-
262 lag but no spatial lag (Fig. 3, bottom row), with $\phi = 0.31$. As a result, the covariate is smoothed
263 across years, where the total effect in the first three years is 0.69, 0.22, and 0.07 (i.e., $\frac{0.22}{0.69} =$
264 0.31), and the sum across all subsequent years is approximately 1 (i.e., the total effect of a
265 temperature anomaly is preserved but smoothed across subsequent years). However, the spatial
266 lag is not selected, such that the spatial effect does not propagate outward over time (MSD =
267 978 km^2 in all years). As a third example, walleye pollock (Fig. 3, 2nd row) selects both a time
268 and space lag, with estimated $\text{MSD} = 1747 \text{ km}^2$ and $\phi = 0.31$. In this case, the effect of a
269 temperature anomaly propagates outwards over time, i.e., $\text{MSD} = 2621 \text{ km}^2$ in the initial year
270 and $\text{MSD} = 4294 \text{ km}^2$ in the following year.

271 The STDL estimates substantial differences in the effective temperature anomaly \mathbf{Z}^*
272 among species, and we use the transition from cold (2013) to warm (2017) conditions as an
273 illustrative example (Fig. 4). For Pacific cod, AIC selects the model without any space or time-
274 lag, and therefore effective temperature (Fig. 4 top row) is identical to the raw measurements
275 (Fig. 1). As an extreme contrast, the selected model for Pacific herring has strong spatial and
276 time-lags ($\text{RMSD} = 46 \text{ km}$ and $\phi = 0.84$), so effective temperature shows both less variation
277 across space within a year and also a slower transition from below- (blue) to above-average (red)
278 conditions starting in 2016 (Fig. 4, 4th row). Using Pacific halibut as an example that includes
279 time-lags but no spatial lag ($\phi = 0.31$), we see the same high-resolution spatial variation in
280 effective temperature as for measurements (Fig. 1) and for Pacific cod (Fig. 1 top row), but the
281 persistence of below-average effective temperature across the northern portion of the survey area

282 even as temperature measurements are increasing in 2014. We therefore see that STDL estimates
283 the effective thermal environment, which can differ from raw measurements and among species.

284 Finally, the simulation experiment confirms that AIC can identify the combination of
285 spatial and temporal distributed lags that are used to simulate data (Fig. 5). In particular, the
286 correct model is identified in >75% of simulation replicates for all three species. Similarly, the
287 estimates of spatio-temporal lags are approximately unbiased for those cases where they are
288 simulated (Fig. 6). We therefore conclude that these parameters are estimable given the sample
289 sizes explored here.

290 **Discussion**

291 In this paper, we provide the first demonstration that both temporal and high-resolution spatial
292 lags arise when using habitat variables (e.g., temperature anomalies) to predict population
293 density. The method involves estimating two additional, interpretable parameters (i.e., with units
294 of distance and time), and the spatio-temporal distributed lag can revert to the conventional
295 species distribution model (i.e., using measured covariates directly) as a nested submodel.
296 Similarly, a simulation experiment suggests that model selection can identify the appropriate
297 combination of spatial and temporal lags, and that estimates are approximately unbiased using
298 the sample sizes explored here. The estimated temporal lags are strongest for the two pelagic
299 species (Pacific herring and capelin have $\phi = \{0.83, 0.70\}$), and either weak or absent for two
300 seafloor-associated species (Pacific halibut and Pacific cod have $\phi = \{0.31, 0.04\}$). The method
301 also allows us to visualize the effective temperature anomaly for each fish population, which
302 differs substantially among species.

303 The link between spatio-temporal distributed lags (Eq. 1) and animal movement suggests
304 many avenues for future extensions to this approach. We did not explore estimating the spatio-
305 temporal interaction κ_{ST} so that we could focus on two interpretable parameters. However,
306 estimating κ_{ST} allows the STDL to estimate a separate RMSD in the first year relative to how
307 much RMSD increases in subsequent years; $\kappa_{ST} = 0$ (as assumed here) results in MSD increasing
308 linearly with time, whereas $\kappa_{ST} = -1$ results in MSD being equal for all years. This parameter
309 therefore allows a model to estimate the rate of spatio-temporal diffusion, at the cost of slower
310 model fitting. Similarly, the spatial diffusion rate κ_S might itself depend upon covariates
311 (Lindgren *et al.*, 2011), where temperature anomalies might have a more localized impact on
312 nearshore than deep-water habitats. Future studies could incorporate this novel type of covariate
313 interaction during the construction of stiffness matrix **G**. Finally, including advection would
314 allow covariates at one location to affect population responses some distance away (e.g., 100 km
315 eastward). For an animal with predictable seasonal movement, this would allow winter
316 covariates to affect summer densities at a geographically distant site.

317 Oceans are experiencing extremely warm conditions (Hobday *et al.*, 2016), and there are
318 well-documented examples of marine heatwaves impacting ocean animals (Fossheim *et al.*,
319 2015; Szwalski *et al.*, 2023). However, a global synthesis (Fredston *et al.*, 2023) found no
320 consistent change in region-wide seafloor-community biomass occurring synchronous with
321 marine heatwaves. We hypothesize that this mismatch arises because spatial and temporal lags
322 can complicate studies seeking to attribute ecological responses to climate drivers. In cases such
323 as this, we hypothesize that the STDL allows analysts to attribute localized density responses to
324 temperature anomalies, while automatically testing for lagged responses and identifying the
325 appropriate scale linking temperature to population responses. We therefore recommend greater

326 use of STDL in studies attributing ecological dynamics to climate drivers, and the growing
327 availability of global databases of biological monitoring (Maureaud *et al.*, 2024) will facilitate
328 these studies.

329 **Acknowledgements**

330 We thank Jon Reum, Maurice Goodman, and Paul Van Dam Bates for helpful comments on an
331 earlier draft.

332 **References**

333 Akaike H (1974) New look at statistical-model identification. *IEEE Transactions on Automatic
334 Control*, **AC19**, 716–723.

335 Armstrong B (2006) Models for the Relationship between Ambient Temperature and Daily
336 Mortality. *Epidemiology*, **17**, 624–631.

337 Arnone III JA, Verburg PSJ, Johnson DW et al. (2008) Prolonged suppression of ecosystem
338 carbon dioxide uptake after an anomalously warm year. *Nature*, **455**, 383–386.

339 Clarotto L, Allard D, Romary T, Desassis N (2024) The SPDE approach for spatio-temporal
340 datasets with advection and diffusion. *Spatial Statistics*, **62**, 100847.

341 Dormann C, McPherson J, Araújo M et al. (2007) Methods to account for spatial autocorrelation
342 in the analysis of species distributional data: a review. *Ecography*, **30**, 609–628.

343 Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction
344 across space and time. *Annual review of ecology, evolution, and systematics*, **40**, 677–
345 697.

346 Essl F, García-Rodríguez A, Lenzner B et al. (2024) Potential sources of time lags in calibrating
347 species distribution models. *Journal of Biogeography*, **51**, 89–102.

348 Fossheim M, Primicerio R, Johannessen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015)

349 Recent warming leads to a rapid borealization of fish communities in the Arctic. *Nature*

350 *Climate Change*, **5**, 673–677.

351 Fournier DA, Skaug HJ, Ancheta J et al. (2012) AD Model Builder: using automatic

352 differentiation for statistical inference of highly parameterized complex nonlinear

353 models. *Optimization Methods and Software*, **27**, 1–17.

354 Fredston AL, Cheung WW, Frölicher TL et al. (2023) Marine heatwaves are not a dominant

355 driver of change in demersal fishes. *Nature*, **621**, 324–329.

356 Gasparrini A, Armstrong B, Kenward MG (2010) Distributed lag non-linear models. *Statistics in*

357 *Medicine*, **29**, 2224–2234.

358 Guennebaud G, Jacob B, others (2010) Eigen v3.

359 Hobday AJ, Alexander LV, Perkins SE et al. (2016) A hierarchical approach to defining marine

360 heatwaves. *Progress in Oceanography*, **141**, 227–238.

361 Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM (2016) TMB: Automatic differentiation

362 and Laplace approximation. *Journal of Statistical Software*, **70**, 1–21.

363 Lalechère E, Marrec R, Lenoir J (2025) A Non-Equilibrium Species Distribution Model Reveals

364 Unprecedented Depth of Time Lag Responses to Past Environmental Change

365 Trajectories. *Ecology Letters*, **28**, e70040.

366 Lindgren F (2023) fmesher: Triangle Meshes and Related Geometry Tools.

367 Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian

368 Markov random fields: the stochastic partial differential equation approach. *Journal of*

369 *the Royal Statistical Society: Series B (Statistical Methodology)*, **73**, 423–498.

370 Lindgren F, Bakka H, Bolin D, Krainski E, Rue H (2024) A diffusion-based spatio-temporal
371 extension of Gaussian Matérn fields. *Statistics and Operations Research Transactions*
372 (*SORT*), **48**, 3–66.

373 Lindmark M, Anderson SC, Gogina M, Casini M (2023) Evaluating drivers of spatiotemporal
374 variability in individual condition of a bottom-associated marine fish, Atlantic cod
375 (*Gadus morhua*). *ICES Journal of Marine Science*, **80**, 1539–1550.

376 Lindmark M, Anderson SC, Thorson JT (2026) Estimating scale-dependent covariate responses
377 using two-dimensional diffusion derived from the stochastic partial differential equation
378 method. *Methods in Ecology and Evolution*, **17**, 207–218.

379 Markowitz EH, Dawson EJ, Charriere NE, Prohaska BK, Rohan SK, Stevenson DE, Britt LL
380 (2022) Results of the 2021 eastern and northern Bering Sea continental shelf bottom
381 trawl survey of groundfish and invertebrate fauna.

382 Maureaud AA, Palacios-Abrantes J, Kitchel Z et al. (2024) FISHGLOB_data: an integrated
383 dataset of fish biodiversity sampled with scientific bottom-trawl surveys. *Scientific Data*,
384 **11**, 24.

385 Miller DL, Newman K, Cornulier T (2025) Adding structure to generalized additive models, with
386 applications in ecology.

387 Núñez-Riboni I, Akimova A, Sell AF (2021) Effect of data spatial scale on the performance of
388 fish habitat models. *Fish and Fisheries*, **22**, 955–973.

389 Pardikes NA, Shapiro AM, Dyer LA, Forister ML (2015) Global weather and local butterflies:
390 variable responses to a large-scale climate pattern along an elevational gradient. *Ecology*,
391 **96**, 2891–2901.

392 R Core Team (2023) *R: A Language and Environment for Statistical Computing*. R Foundation
393 for Statistical Computing, Vienna, Austria.

394 Rue H, Held L (2005) *Gaussian Markov random fields: theory and applications*, 1st edition edn.
395 CRC Press, 280 pp.

396 Skaug H, Fournier D (2006) Automatic approximation of the marginal likelihood in non-
397 Gaussian hierarchical models. *Computational Statistics & Data Analysis*, **51**, 699–709.

398 Sollmann R (2024) Estimating the temporal scale of lagged responses in species abundance and
399 occurrence. *Ecosphere*, **15**, e4704.

400 Stabeno PJ, Bell SW, Bond NA, Kimmel DG, Mordy CW, Sullivan ME (2019) Distributed
401 Biological Observatory Region 1: Physics, chemistry and plankton in the northern Bering
402 Sea. *Deep Sea Research Part II: Topical Studies in Oceanography*, **162**, 8–21.

403 Szuwalski CS, Aydin K, Fedewa EJ, Garber-Yonts B, Litzow MA (2023) The collapse of eastern
404 Bering Sea snow crab. *Science*, **382**, 306–310.

405 Thorson JT (2019) Measuring the impact of oceanographic indices on species distribution shifts:
406 The spatially varying effect of cold-pool extent in the eastern Bering Sea. *Limnology and*
407 *Oceanography*, **64**, 2632–2645.

408 Thorson J, Kristensen K (2024) *Spatio-Temporal Models for Ecologists*, 1st edition edn.
409 Chapman and Hall/CRC, Boca Raton, FL, 276 pp.

410 Thorson JT, Ciannelli L, Litzow MA (2020) Defining indices of ecosystem variability using
411 biological samples of fish communities: A generalization of empirical orthogonal
412 functions. *Progress in Oceanography*, **181**, 102244.

413 Ward EJ, English PA, Rooper CN et al. (2025) 'surveyjoin': A Standardized Database of
414 Fisheries Bottom Trawl Surveys in the Northeast Pacific Ocean. 2025.03.14.643022.

415 Wu D, Zhao X, Liang S, Zhou T, Huang K, Tang B, Zhao W (2015) Time-lag effects of global
416 vegetation responses to climate change. *Global Change Biology*, **21**, 3520–3531.

417

418

419

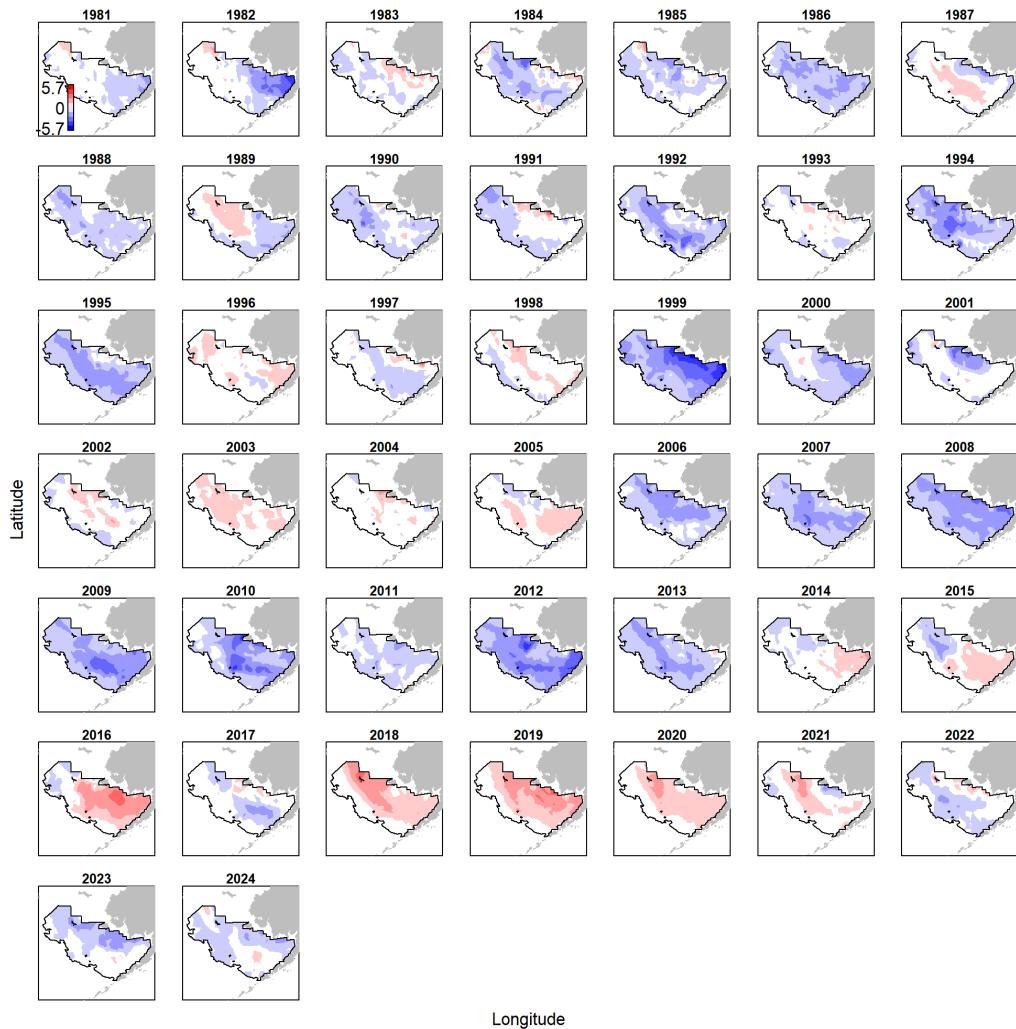
420

421 Table 1 – Summary of model results for the six species and four models formed from the 2×2
 422 cross of including a space lag (X in space column) or time lag (X in time-lag). We specifically
 423 show the runtime in minutes (including optimization from uniformed starting values and
 424 standard-error calculations), the marginal AIC relative to the most parsimonious model (in bold
 425 for selected model), the first-order autocorrelation ϕ calculated from estimated time-lag κ_T (Eq.
 426 2), the mean-squared displacement MSD calculated from the space-lag κ_S (Eq. 3), and the
 427 square-root of MSD (with units of km)

Species (common name)	space	time	Runtime (min)	ΔAIC	ϕ	MSD (km ²)	RMSD (km)
pacific cod			3.24	0	NA	NA	NA
pacific cod	X		3.85	2	NA	0	0
pacific cod		X	4.87	1.5	0.04	NA	NA
pacific cod	X	X	17.35	3.5	0.04	0	0
walleye pollock			3.42	2.55	NA	NA	NA
walleye pollock	X		4.28	3.28	NA	664	26
walleye pollock		X	3.71	2.21	0.16	NA	NA
walleye pollock	X	X	15.37	0	0.31	1747	42
capelin			3.31	21.88	NA	NA	NA
capelin	X		5.1	11.1	NA	5072	71
capelin		X	3.56	10.3	0.52	NA	NA
capelin	X	X	29.73	0	0.7	2804	53
pacific herring			8.19	10.26	NA	NA	NA
pacific herring	X		10.32	12.26	NA	0	0
pacific herring		X	8.79	3.51	0.73	NA	NA
pacific herring	X	X	29.26	0	0.83	2135	46
arrowtooth flounder			6.77	6.12	NA	NA	NA
arrowtooth flounder	X		8.63	2.87	NA	912	30
arrowtooth flounder		X	9.84	3.14	0.18	NA	NA
arrowtooth flounder	X	X	32.26	0	0.2	911	30
pacific halibut			11.15	9.58	NA	NA	NA
pacific halibut	X		4.62	11.58	NA	0	0
pacific halibut		X	2.89	0	0.31	NA	NA
pacific halibut	X	X	11.87	2	0.31	0	0

428

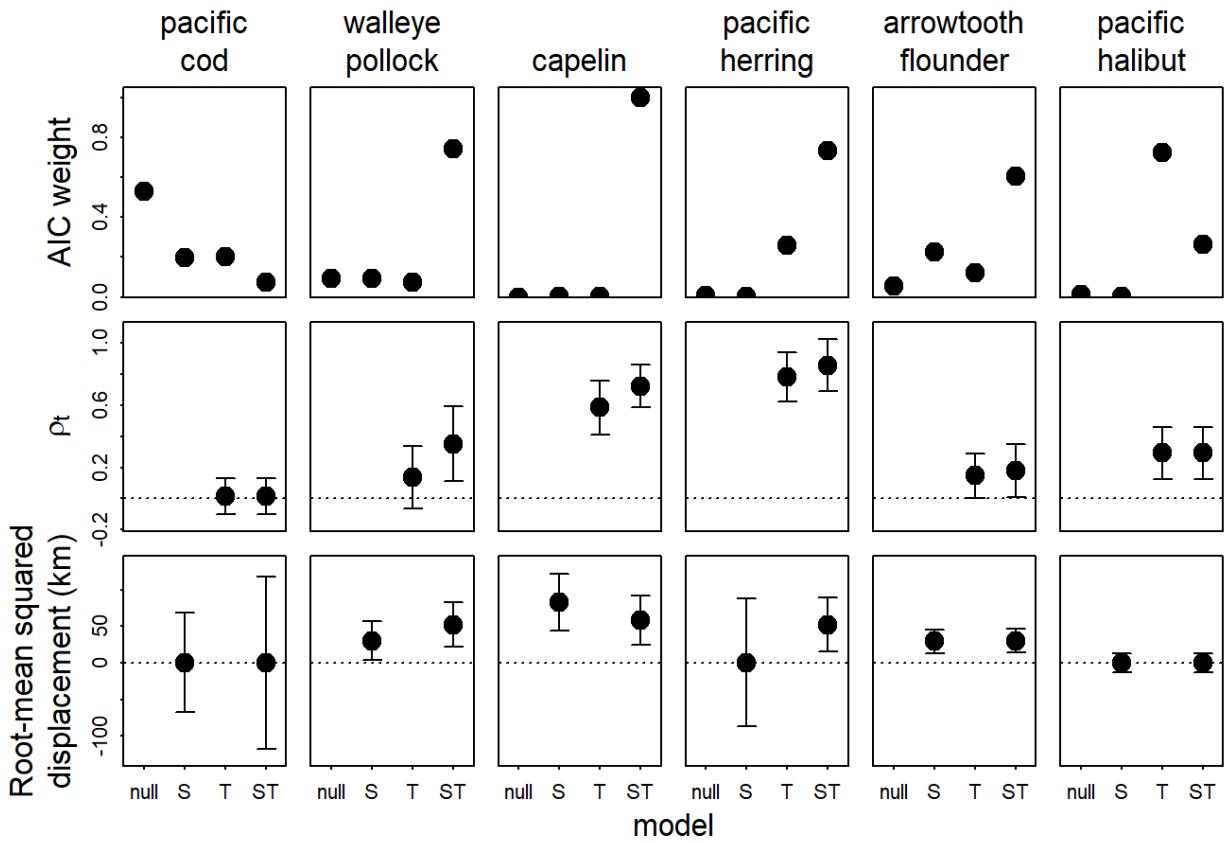
429 Fig. 1 – Visualizing temperature anomalies X^* (see panel 1981 for color legend) interpolated to
430 the 40×40 km grid cells distributed across the eastern Bering Sea survey area (black outline)
431 relative to land in Alaska (grey areas) from 1981 to 2024 (panels).



433

434

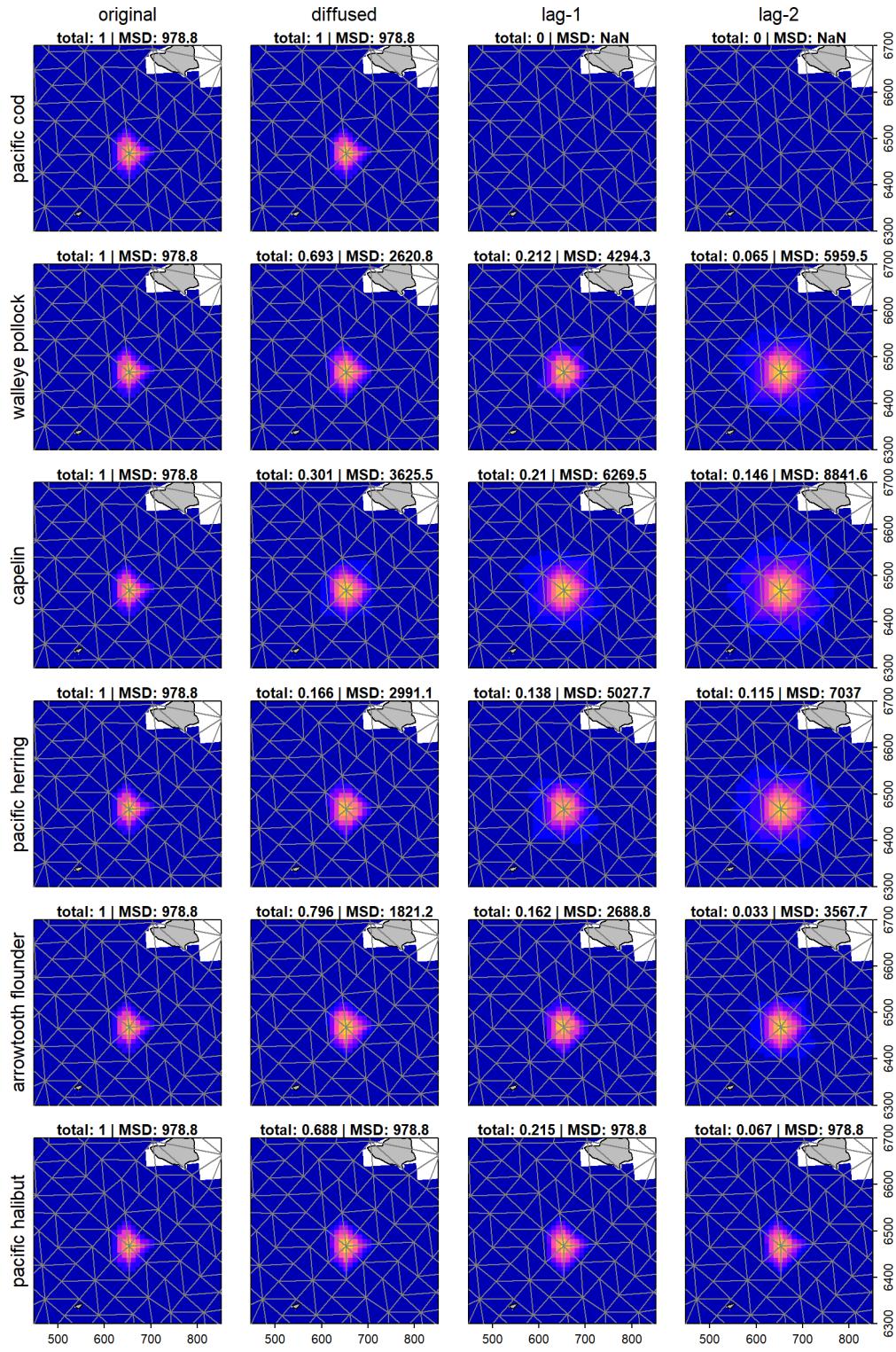
435 Fig. 2 – Visualizing estimated AIC weight (top row), the correlation among years (2nd row), and
436 the root-mean-squared displacement (3rd row) for the spatio-temporal distributed lag for each of
437 four models (x-axis; null: no lags; S: just spatial lag; T: just time-lag; ST: both space and time
438 lags) for each of six species (columns)



439

440

441 Fig. 3 – Using the selected model for each species (row), visualizing the effect of a hypothetical,
442 localized temperature anomaly measurement \mathbf{x}_t^* interpolated to the $40 \text{ km} \times 40 \text{ km}$ grid cells
443 (left column), and how it translates to the effective temperature in the same year \mathbf{z}_t^* (2nd column),
444 one year later \mathbf{z}_{t+1}^* (3rd column), or two years later \mathbf{z}_{t+2}^* (4th column). We specifically fix $x_{jt} = c$
445 for the location \mathbf{s}_j in the middle of the spatial domain, with value c fixed to ensure that
446 $\sum_{k=1}^K x_{kt}^* = 1$, where k is the number of grid cells. For each year, we calculate the total $\sum_{k=1}^K x_{kt}^*$
447 or $\sum_{k=1}^K z_{kt}^*$ and the root-mean-squared displacement (listed above each panel). We also show
448 the edges of the set of triangles (grey lines) used to represent the finite-element mesh (using a
449 cutoff of 40 km).

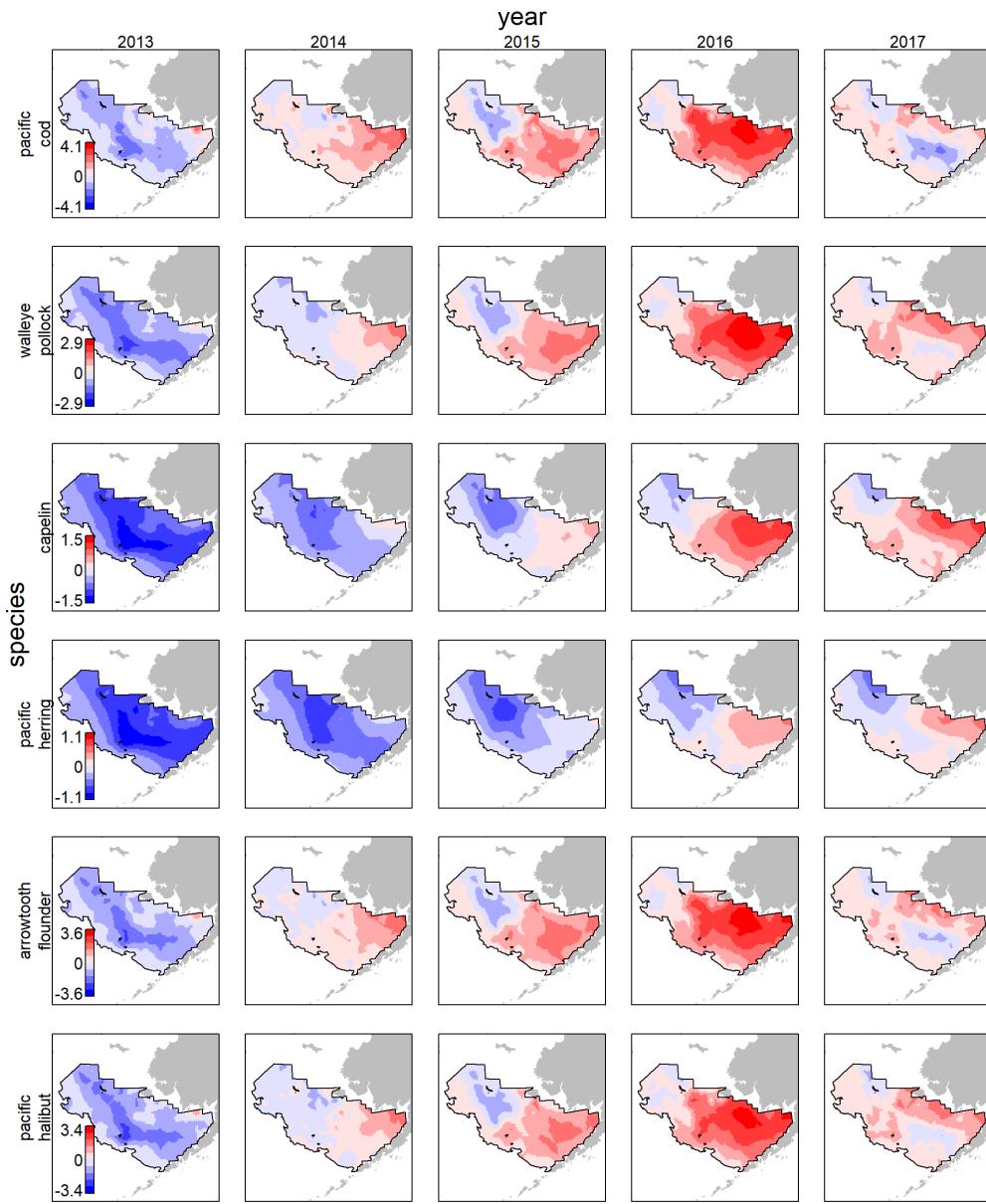


450

451

452

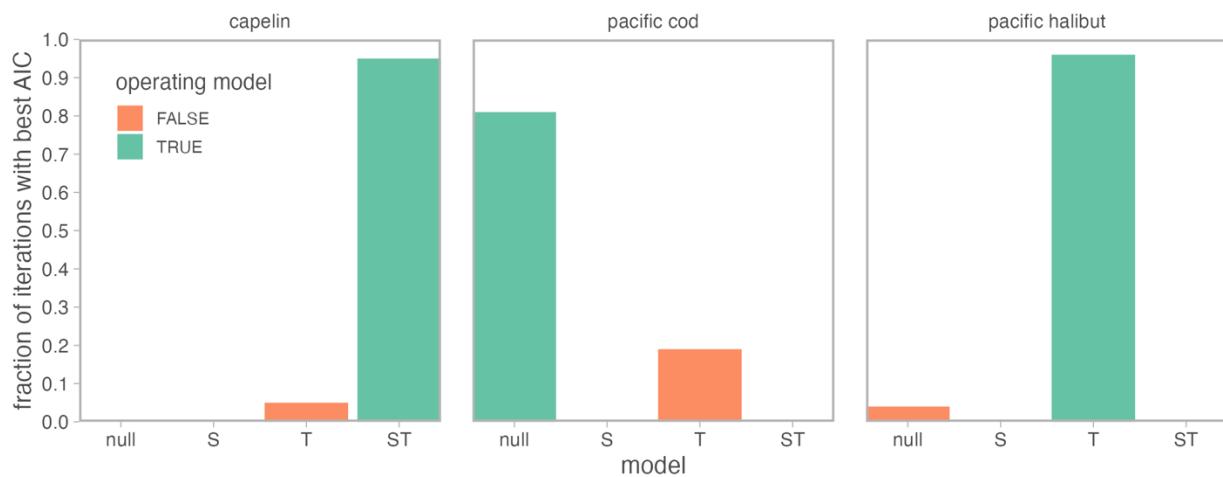
453 Fig. 4 – Visualizing the effective seafloor temperature anomaly \mathbf{z}_t^* (in units $^{\circ}\text{C}$ relative to the
454 average for 1982-2014) for each species (rows) in the five years that rapidly transition from cool
455 (2013, left column) to warm conditions (2017, right column), and using a separate color legend
456 for each species (within the left panel for each row); compare with Fig. 1 to see the effect of the
457 spatio-temporal distributed lag.



458

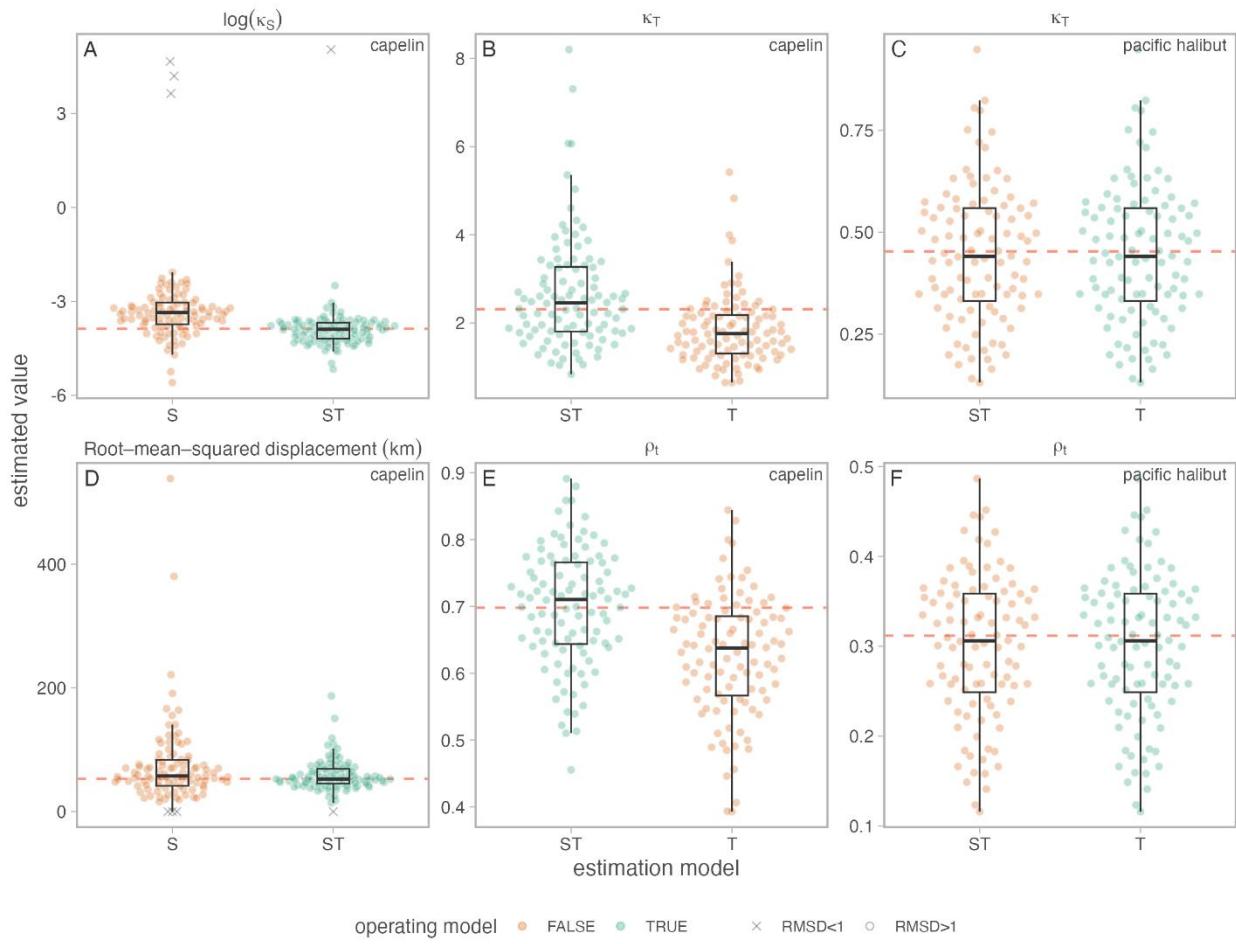
459

460 Fig. 5 – Performance for marginal AIC to identify the correct model within a simulation
461 experiment for three species. For each species (columns), we show the four estimation models
462 (x-axis; null: no lags; S: just spatial lag; T: just time-lag; ST: both space and time lags), and the
463 proportion of 100 simulation replicates where each model was selected (y-axis). Color
464 corresponds to whether the operating model matches the estimation model, where green matches
465 (correct model is chosen) and orange is a mismatch (incorrect model chosen).



466

467 Fig. 6 – Performance of parameter estimation in the simulation experiment, showing the two
 468 parameters in the spatio-temporal distributed lag for capelin (panel A and B) and the temporal lag
 469 for Pacific halibut (panel C), as well as the derived calculation for root-mean-squared-
 470 displacement in km (RMSD) (panel D) and correlation among years (autocorrelation) (panel E
 471 and F). For each quantity, we show 100 estimates (dots) and the true value (red line; y-axis) for
 472 the two estimation models, where green indicates the operating model and orange indicates the
 473 alternative model that also estimates the same parameter (x-axis; S: just spatial lag; T: just time-
 474 lag; ST: both space and time lags). Estimates where $\text{RMSD} < 1$ are shown as crosses.



475

476