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Abstract:

Understanding the impact of changing temperature on population densities is necessary to predict
the likely impact of climate anomalies (e.g., marine heatwaves) or forecast distribution shifts
under future climate scenarios. Population densities are often analyzed using spatio-temporal
models (STMs), which typically predict densities based on local habitat conditions while also
estimating latent spatial and spatio-temporal variation. Recent research extends STMs by also
estimating density responses to habitat conditions at nearby locations using a “spatially
distributed lag” (SDL) that averages habitat conditions in the vicinity of samples. Here, we
extend SDL by incorporating insights from diffusion-enhanced STMs to simultaneously estimate
spatially distributed and time-lagged responses to nearby and past habitat conditions (a “spatio-
temporal distributed lag” STDL). We then use summer bottom trawl survey data from the
eastern Bering Sea (1982-2024) to measure whether spatial and/or temporal lags are
parsimonious when predicting population density from temperature anomalies for six
ecologically important fishes. Results show that time-lagged responses are parsimonious,
positive, and substantial (correlation of 0.20-0.83 per year) for five species, and that density
responses to temperature anomalies also diffuse outward over time for four species at 30-53
kilometers per year. A self- and cross-test simulation experiment shows that model selection can
identify the appropriate model and parameter estimates are approximately unbiased. We
therefore conclude that temperature carry-over effects arise in marine fishes and recommend that
future studies include nonlocal and time-lagged responses when measuring density responses to

habitat.
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Data Availability Statement
We use records of biomass and temperature samples from the eastern Bering Sea bottom trawl
surveys, described by (Markowitz ef al., 2022) and downloaded using release 0.0.3 of the

surveyjoin package (Ward et al., 2025) with DOI https://doi.org/10.5281/zenodo.14984411. All

code required to reproduce the analysis are available publicly online at https://github.com/James-

Thorson-NOAA/spacetime-lag. We will add a DOI using Zenodo upon acceptance.
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Introduction

The association between animal densities and environmental variation is complicated due
to nonlocal and time-lagged ecological responses. For example, migratory behaviors cause
habitat conditions at one location to affect population densities at geographically distant sites, as
shown by the association between local density and regional climate indices for both butterflies
in California and fishes in the Bering Sea (Pardikes ef al., 2015; Thorson, 2019). Similarly,
species interactions and age-structured dynamics result in time-lagged responses. For example,
global variation in plant growth is better explained by climate indices when incorporating time-
lagged responses (Wu et al., 2015) due to delayed responses of the soil community in tallgrass

prairie ecosystems (Arnone Il et al., 2008).

Species distribution models (SDMs) are widely used in ecology (Elith & Leathwick,
2009) to estimate habitat associations, attribute density changes to habitat changes, and forecast
future distribution under climate scenarios (Thorson & Kristensen, 2024). Missing covariates
and ecological processes (e.g., animal movement) often cause model residuals for SDMs to be
correlated in space or time, and this degrades predictive performance and statistical testing
(Dormann et al., 2007). Recent developments in spatio-temporal generalized linear mixed
models (ST-GLMMs) allow analysts to control for (and condition predictions upon) spatial and

spatio-temporal autocorrelation at high spatial resolution (Thorson & Kristensen, 2024).

SDMs generally predict local densities based upon measured habitat at the same place
and time and will therefore neglect the potential role of nonlocal or time-lagged responses. In
past instances when SDMs are designed to test the impact of past or nonlocal environmental
conditions, nonlocal and lagged effects are often tested by comparing multiple covariates at

different scales in a single model, by repeatedly fitting the model with different lagged
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covariates, and using model selection to identify a single spatial scale or time-lag for covariates
(Wu et al., 2015; Nufiez-Riboni et al., 2021; Lindmark ez al., 2023). Another option is to use
SDMs to compute time-series representing range shifts, and then apply “temporal distributed
lags” (TDL) to estimate the lagged effect of time-series covariates on range-shift indices (e.g.,
using the package dinm, (Gasparrini et al., 2010)). However, aggregating predictions from
SDMs into an annual index reframes the analysis into a time-series framework, instead of
estimating temporal lags directly within the spatially explicit SDM where spatially and
temporally correlated residuals can be modelled (which dinm is not designed to do).
Alternatively, spatio-temporal variation in habitat covariates can be compressed to construct
time-series indices representing habitat variation (e.g., using empirical orthogonal function
analysis), and these indices can be included as covariates using a spatially varying response to
test for nonlocal habitat responses (Thorson, 2019; Thorson ef al., 2020). However, this
technique ignores information about the spatial proximity of habitat variation at other sites
affecting local density and therefore cannot estimate the spatial- or time-scale over which nearby

habitat affects local densities.

To estimate the influence of nearby habitat on population density, recent ecological
research has integrated “spatially distributed lags” (SDL) into species distribution models (Miller
et al., 2025; Lindmark et al., 2026). SDLs estimate a spatially smoothed transformation of a
given covariate, and then use that transformed covariate to predict the response of a regression
model (e.g., Armstrong, 2006). Similarly, ecologists are developing “temporal distributed lags”
(TDL) (Sollmann, 2024; Lalechere et al., 2025), and discussing the importance of both spatial
and temporal lags in species distribution models (Essl et al., 2024). In parallel, recent statistical

research has efficiently approximated a diffusive process across space and time and used this to
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define the distribution for a spatio-temporal latent variable (Clarotto et al., 2024; Lindgren et al.,
2024). However, we are not aware of any extension re-purposing this diffusive process to define

a spatio-temporal distributed lag for application within a species distribution model.

To address this gap, we introduce a computationally efficient model to identify nonlocal
and/or lagged responses to habitat variables by using a “spatio-temporal distributed lag” (STDL)
within an SDM. To ensure that results are applicable in a wide context, we also implement this
while estimating spatial and spatio-temporal latent variables (e.g., using a ST-GLMM). To do so,
we first review recent developments in SDLs and then extend this to incorporate time-lagged
responses using a diffusion-enhanced process. We then demonstrate that time-lagged responses
to temperature anomalies arise for five of six ecologically important fishes in the eastern Bering
Sea, analyzed here from 1982-2024. We conclude by recommending that studies explore using
STDL to incorporate nonlocal and time-lagged responses to thermal habitat when testing for (or

forecasting) climate linkages in population distribution.
Methods

Spatially distributed lags

We start by defining a /| X T covariate matrix X where x;, is the covariate measurement at time
t € {1,...,T} and location s; for j € {1, ..., /} locations in two-dimensional space within domain
D. We seek a spatio-temporal distributed lag operator h that transforms covariate matrix X to
calculate a transformed J X T matrix Z = h(X). We can then interpolate the covariate to
calculate x;(s*) at a new location s* using a J length interpolation vector a(s*) where x;(s*) =

a(s*)Tx,. This operator should have the following properties:
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1. Interpretable parameters: We seek to estimate a parameter kg representing the spatial
distance over which a covariate is smoothed in space (e.g., units of meters) and a separate
parameter k; representing the time-lag over which the covariate is smoothed in time (e.g.,
units per-year), where the model collapses to no lag in either space or time (i.e., X = Z) given
some value of those parameters. We also discuss a parameter kg that controls how a
location x; . affects a different location x; ., at a later time t, > ¢ relative to the combined
effects of kg and k; (although we do not test its behavior here to simplify the presentation);

2. Conservation of mass: A covariate value x;; at location s; and time ¢ is distributed across
space and time by the STDL operator while leaving its total value (approximately)
unchanged. If we define the K X ] interpolation matrix A for K evenly distributed spatial
locations {s, Sy, ..., S} within domain D, and further define X* = AX and Z* = AZ, then

t=1 Xk=1 Xir = Y=t Xie1 Ziets

3. Linear computation: Using the STDL for a set of measurements Z = h(X), we seek to
compute vec(Z) = D™ vec(X) where vec(X) stacks the columns of X into a long vector with
length JT, and D is a sparse JT X JT matrix representing the STDL which then depends upon
kg and kr, such that the computation time to compute D™ 1vec(X) increases linearly with the

size of JT.

Lindmark et al. (2026) constructed a spatially distributed lag, z, = (I — P)"!x; usinga J X J
spatial path matrix P given measurements X, at the vertices of triangles that cover the spatial
domain (a “finite element mesh” FEM). Using this FEM, P = —k,C~1G where C is a diagonal
J X ] matrix measuring the volume associated with each vertex, and G is a sparse | X | matrix
representing the “overlap” between each vertex (which is zero for vertices that do not share any

triangle). However, this spatially distributed lag did not account for time-lags and therefore
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could not assess the relative importance of temporal versus spatial lags. We therefore seek to

extend this recent research to also include time-lags.
Extending to include time-lags

We next incorporate time-lagged dynamics, where covariate measurements X, affect the STDL
covariate z; in that same time but also in future times Z;,, Z; 42, €tc. To do so, we construct a

JT X JT dimensional path matrix Pjs;, from spatial, temporal, and spatio-temporal lags:

Pjoint = ks “(P ® Ir) + kr(Is @ L) + kerkes *(P @ L), (1)

Space lag Time lag Space—time lag

where Lis a T X T first-difference matrix (with a band of 1s immediately below the diagonal and
a band of -1s along the diagonal), I is a T X T identity matrix, I is a J X J identity matrix, and
—1 < kgr < 0 controls the rate at which x;; diffuses outward over time (with no diffusion when
kst = —1). To simplify presentation in the following, however, we drop the space-time lag (i.e.,
fix kgr = 0) and only estimate kg and k. The STDL operator then calculates vec(z) =

(l — Pjoint)_lvec(x) and vec(z) can be computed from I — Pjyi,¢ using a sparse LU

decomposition (Rue & Held, 2005) without directly constructing (I - Pjoint)_l.

This expression results in a linear increase in mean-squared displacement (MSD) over
time (i.e., the effect of a covariate x;; propagates outwards spatially over time), and an
exponential decay in the covariate effect over time. Specifically, it results in a first-order

autocorrelation time ¢:

¢ = ) )

and a mean-squared displacement (MSD) for the covariate:
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4xg?

MSD = 4k5%(1— ¢) = Th
T

, 3)
which we will visualize in detail later.
Carry-over effects for temperature anomalies in the eastern Bering Sea

To demonstrate nonlocal and/or lagged responses to habitat variables, we fit a species
distribution model to bottom trawl samples of fish biomass in the eastern Bering Sea. The trawl
survey was conducted following a fixed-station design with 291 to 376 stations over a
493,894.5 km? spatial domain from 1982 to 2019 and 2021 to 2024 (Markowitz et al., 2022)
and downloaded using the surveyjoin package (Ward et al., 2025). We specifically fit a separate
spatio-temporal generalized linear mixed model (ST-GLMM) to biomass y; using area swept w;
as an offset for each of six ecologically important species: Pacific cod (Gadus macrocephalus),
Alaska pollock (Gadus chalcogrammus), capelin (Mallotus villosus), herring (Clupea pallasii),
arrowtooth flounder (Atheresthes stomias), and Pacific halibut (Hippoglossus stenolepis)

(Thorson & Kristensen, 2024). We specify a Tweedie distribution:

yi~Tweedie(u;, ¢,9 ) 4

which involves estimating two dispersion parameters that control the mean-variance relationship

Var(y;) = qb,uzp. The mean is then predicted from a log-linked linear predictor:

— 2
loglw)= B+ wjg +  Euegg + ViZen T YVigegg  + log(w)  (S)
(] ) & _ ~————
Intercept  Spatial Spatio—temporal Quadratic effect of Area offset
term Term spatio—temporal distributed lag

for temperature

We specify a Gaussian Markov random field (GMRF) for the spatial term:

®w~GMRF(0,72Q), (6)



173  where Q is the sparse precision matrix constructed using the SPDE method (Lindgren et al.,
174  2011), and also specify a GMREF that follows a first-order autoregressive process for the spatio-

175  temporal term:

N {GMRF(O, (1—p2)r2Q) ift=1 (7)
t GMRF(p.€,, 72Q) ift>1"

176  This involves estimating the decorrelation rate k that is shared between spatial and spatio-
177  temporal terms, the time-correlation p, for spatio-temporal residuals, and a separate pointwise
178  variance for each term controlled by 72 and 72, respectively. The SPDE method requires

179  constructing a finite-element mesh (FEM) over the spatial domain, which we do using the
180  fmesher package (Lindgren, 2023). We use a FEM cutoff of 30 km, resulting in /] = 402

181  vertices over T = 45 years, such that w and €, contain 18,492 random effects.

182 Finally, we also estimate kg and k for the STDL that converts seafloor temperature

183  anomalies xj; to effective covariate z;;, while then estimating a dome-shaped (quadratic)

184  response to zj;. We use in situ measurements of water temperature obtained from the bottom

185  trawl survey to define the seafloor temperature x;, for each vertex j of the SPDE mesh at

186  location s; in year t, using the nearest bottom trawl sample to s; in a given year. Because the
187  survey was not conducted in 2020, we estimated bottom temperature for that year by averaging
188  observations from the two adjacent survey years, 2019 and 2021. To allow a time-lagged effect
189  of past temperatures for the first year of sampling, we imputed the 1981 values using the mean of
190  1982-1983. We then convert the bottom temperature for a given location j and year ¢ to a

191  temperature anomaly by subtracting the mean value for that location across years. This

192  temperature anomaly shows a well-documented oscillation (Stabeno ef al., 2019) between a
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warm stanza (2002 to 2005), a cold stanza (2006 to 2013), another warm stanza (2014 to 2021),

with close-to-average conditions subsequently (Fig. 1).

For each species, we fit four models formed from the 2 X 2 factorial design of including
the space-lag by estimating ks (or instead fixing kg = 0) and/or including the time-lag by
estimating kr (or instead fixing k+ = 0). For each model, we identify the maximum likelihood
estimate of all fixed effects by applying the Laplace approximation to the joint likelihood of
fixed and random effects (Skaug & Fournier, 2006), as implemented using the R (R Core Team,
2023) package TMB (Kristensen ef al., 2016). TMB then calculates the gradient of the Laplace
approximation with respect to fixed effects using automatic differentiation (Fournier ef al.,
2012), which we then optimize in the R statistical environment. TMB uses the Eigen package
(Guennebaud et al., 2010) to efficiently apply the sparse LU decomposition when calculating the

STDL, and we use the delta method to compute standard errors for ¢ (Eq. 2), MSD (Eq. 3), and

RMSD = vMSD.

We explore model results in several ways:

1. Parsimony and parameter estimates: For each species, we calculate the Akaike Information
Criterion (AIC) (Akaike, 1974) and use it to identify the most parsimonious of the four
models. For all four models, we also extract the estimated spatial distributed lag (k) and the
temporal distributed lag (k7), and convert them to the equivalent mean-squared displacement
MSD and the first-order autocorrelation ¢, respectively. We then compare the ¢ and MSD
across species and models.

2. Visualized effect of temperature anomalies: For the selected model for each species, we also

visualize the predicted effect of a hypothetical anomaly in local temperature as it propagates
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through space and time, based on the estimated values of kg and k. This plot provides
intuition about the spatial and temporal scale over which a temperature anomaly affects
population density for that species.

3. Effective seafloor temperature: Finally, for the selected model for each species, we also
visualize the effective seafloor temperature Z* after applying the STDL to the in situ
measurements X and then interpolating Z to the 25 km X 25 km grid. This effective
temperature then represents the net effective of animal movement and carryover effects that

contribute to the estimated STDL.

Both (2) and (3) involve predicting raw covariate X and the STDL covariate Z at higher
resolution. To do so we construct a set of K = 886 square 25 km X 25 km grid cells that cover
the spatial domain of the bottom trawl survey, and then interpolate covariates X* = AX and Z* =

AZ using the K X ] interpolation matrix A.

Simulation experiment

To explore model performance, we conduct a self- and cross-test simulation experiment
assessing parameter recovery and whether AIC correctly identifies the true model across
different estimation scenarios. To do so, we choose three species where model selection for real
data selects either no STDL (Pacific cod), a temporal lag (Pacific halibut), or both spatial and
temporal lags (capelin). For each species, we simulate 100 replicated data sets from the AIC-
selected model (used as operating model), each of which condition upon the maximum
likelihood estimates for fixed effects, simulating new realizations of the random effects, and then
simulating new samples conditional upon both at the same location as real-world data. For each

of 100 data sets, we then fit the original four estimation models: no lags, spatial lag, time-lag,
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and both space and time lags (1200 model fits) and record the AIC and parameter estimates. We
then explore (1) how often AIC identifies the correct data-generating process, and (2) how the

estimated parameters compare with the original values used in the simulation.
Results

The most parsimonious model (lowest marginal AIC) includes a carry-over effect of temperature
for five of the six species (Table 1). For these five species, the AIC-selected model has a
temporal correlation ¢ from ranging from 0.20 (arrowtooth flounder) to 0.83 (Pacific herring).
Similarly, the spatial lag is parsimonious for four of the six species and has a root-mean-squared

displacement (RMSD) ranging from 30 km (arrowtooth flounder) to 53 km (capelin), relative to

the \/m = 703 km distance across the spatial domain. Models without the STDL run in
3.2 to 11.2 minutes and adding the STDL increases runtime by 5-fold to 15-fold. As expected,
the selected model has a 95% confidence interval for ¢p and RMSD that does not overlap with
zero when AIC favors a model with STDL, and the interval generally does overlap zero when the
component is not selected by AIC (Fig. 2); for example Pacific cod where ¢p = 0.04 and is not

selected as parsimonious.

To illustrate the predicted effect of the estimated spatial and time-lags, we illustrate how a
hypothetical localized temperature anomaly propagates across space and over time (Fig. 3).
Pacific cod (Fig. 3 top row) is the only species where AIC selects neither the time- or nor space-
lags. For this species, the local temperature anomaly X; has a mean-squared displacement of
MSD = 911 km?, i.e., RMSD = +/911 = 30 km. This matches the scale used when discretizing
the continuous covariate (i.e., 40 km cutoff in the finite-element mesh), such that the resolution

of the finite element mesh provides a “lower bound” on the spatial resolution of the simulated
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local temperature anomaly X;. The diffused covariate Z; then has the same total value and MSD
in that year, and Z;,; = 0 in subsequent years (shown as dark blue in lag-1 and lag-2 columns)
because there is no time-lagged dynamics (kr = 0). By contrast, Pacific halibut selects a time-

lag but no spatial lag (Fig. 3, bottom row), with ¢ = 0.31. As a result, the covariate is smoothed

022

across years, where the total effect in the first three years is 0.69, 0.22, and 0.07 (i.e., oes

0.31), and the sum across all subsequent years is approximately 1 (i.e., the total effect of a
temperature anomaly is preserved but smoothed across subsequent years). However, the spatial
lag is not selected, such that the spatial effect does not propagate outward over time (MSD =
978 km? in all years). As a third example, walleye pollock (Fig. 3, 2™ row) selects both a time
and space lag, with estimated MSD = 1747 km? and ¢ = 0.31 In this case, the effect of a
temperature anomaly propagates outwards over time, i.e., MSD = 2621 km? in the initial year

and MSD = 4294 km? in the following year.

The STDL estimates substantial differences in the effective temperature anomaly Z*
among species, and we use the transition from cold (2013) to warm (2017) conditions as an
illustrative example (Fig. 4). For Pacific cod, AIC selects the model without any space or time-
lag, and therefore effective temperature (Fig. 4 top row) is identical to the raw measurements
(Fig. 1). As an extreme contrast, the selected model for Pacific herring has strong spatial and
time-lags (RMSD = 46 km and ¢ = 0.84), so effective temperature shows both less variation
across space within a year and also a slower transition from below- (blue) to above-average (red)
conditions starting in 2016 (Fig. 4, 4" row). Using Pacific halibut as an example that includes
time-lags but no spatial lag (¢p = 0.31), we see the same high-resolution spatial variation in
effective temperature as for measurements (Fig. 1) and for Pacific cod (Fig. 1 top row), but the

persistence of below-average effective temperature across the northern portion of the survey area
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even as temperature measurements are increasing in 2014. We therefore see that STDL estimates

the effective thermal environment, which can differ from raw measurements and among species.

Finally, the simulation experiment confirms that AIC can identify the combination of
spatial and temporal distributed lags that are used to simulate data (Fig. 5). In particular, the
correct model is identified in >75% of simulation replicates for all three species. Similarly, the
estimates of spatio-temporal lags are approximately unbiased for those cases where they are
simulated (Fig. 6). We therefore conclude that these parameters are estimable given the sample

sizes explored here.

Discussion

In this paper, we provide the first demonstration that both temporal and high-resolution spatial
lags arise when using habitat variables (e.g., temperature anomalies) to predict population
density. The method involves estimating two additional, interpretable parameters (i.e., with units
of distance and time), and the spatio-temporal distributed lag can revert to the conventional
species distribution model (i.e., using measured covariates directly) as a nested submodel.
Similarly, a simulation experiment suggests that model selection can identify the appropriate
combination of spatial and temporal lags, and that estimates are approximately unbiased using
the sample sizes explored here. The estimated temporal lags are strongest for the two pelagic
species (Pacific herring and capelin have ¢ = {0.83,0.70}), and either weak or absent for two
seafloor-associated species (Pacific halibut and Pacific cod have ¢ = {0.31,0.04}). The method
also allows us to visualize the effective temperature anomaly for each fish population, which

differs substantially among species.
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The link between spatio-temporal distributed lags (Eq. 1) and animal movement suggests
many avenues for future extensions to this approach. We did not explore estimating the spatio-
temporal interaction ks so that we could focus on two interpretable parameters. However,
estimating kg allows the STDL to estimate a separate RMSD in the first year relative to how
much RMSD increases in subsequent years; kg = 0 (as assumed here) results in MSD increasing
linearly with time, whereas kg = —1 results in MSD being equal for all years. This parameter
therefore allows a model to estimate the rate of spatio-temporal diffusion, at the cost of slower
model fitting. Similarly, the spatial diffusion rate ks might itself depend upon covariates
(Lindgren ef al., 2011), where temperature anomalies might have a more localized impact on
nearshore than deep-water habitats. Future studies could incorporate this novel type of covariate
interaction during the construction of stiffness matrix G. Finally, including advection would
allow covariates at one location to affect population responses some distance away (e.g., 100 km
eastward). For an animal with predictable seasonal movement, this would allow winter

covariates to affect summer densities at a geographically distant site.

Oceans are experiencing extremely warm conditions (Hobday ef al., 2016), and there are
well-documented examples of marine heatwaves impacting ocean animals (Fossheim ef al.,
2015; Szuwalski et al., 2023). However, a global synthesis (Fredston et al., 2023) found no
consistent change in region-wide seafloor-community biomass occurring synchronous with
marine heatwaves. We hypothesize that this mismatch arises because spatial and temporal lags
can complicate studies seeking to attribute ecological responses to climate drivers. In cases such
as this, we hypothesize that the STDL allows analysts to attribute localized density responses to
temperature anomalies, while automatically testing for lagged responses and identifying the

appropriate scale linking temperature to population responses. We therefore recommend greater
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use of STDL in studies attributing ecological dynamics to climate drivers, and the growing
availability of global databases of biological monitoring (Maureaud et al., 2024) will facilitate

these studies.
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Table 1 — Summary of model results for the six species and four models formed from the 2 X 2

cross of including a space lag (X in space column) or time lag (X in time-lag). We specifically

show the runtime in minutes (including optimization from uniformed starting values and

standard-error calculations), the marginal AIC relative to the most parsimonious model (in bold

for selected model), the first-order autocorrelation ¢ calculated from estimated time-lag kr (Eq.

2), the mean-squared displacement MSD calculated from the space-lag kg (Eq. 3), and the

square-root of MSD (with units of km)

Species space time Runtime  AAIC ¢ MSD RMSD
(common name) (min) (km?) (km)
pacific cod 3.24 0 NA NA NA
pacific cod X 3.85 2 NA 0 0
pacific cod X 4.87 1.5 0.04 NA NA
pacific cod X X 17.35 3.5 0.04 0 0
walleye pollock 3.42 2.55 NA NA NA
walleye pollock X 4.28 3.28 NA 664 26
walleye pollock X 3.71 2.21 0.16 NA NA
walleye pollock X X 15.37 0 0.31 1747 42
capelin 3.31 21.88 NA NA NA
capelin X 5.1 11.1 NA 5072 71
capelin X 3.56 10.3 0.52 NA NA
capelin X X 29.73 0 0.7 2804 53
pacific herring 8.19 10.26 NA NA NA
pacific herring X 10.32 12.26 NA 0 0
pacific herring X 8.79 3.51 0.73 NA NA
pacific herring X X 29.26 0 0.83 2135 46
arrowtooth flounder 6.77 6.12 NA NA NA
arrowtooth flounder X 8.63 2.87 NA 912 30
arrowtooth flounder X 9.84 3.14 0.18 NA NA
arrowtooth flounder X X 32.26 0 0.2 911 30
pacific halibut 11.15 9.58 NA NA NA
pacific halibut X 4.62 11.58 NA 0 0
pacific halibut X 2.89 0 0.31 NA NA
pacific halibut X X 11.87 2 0.31 0 0




429  Fig. 1 — Visualizing temperature anomalies X* (see panel 1981 for color legend) interpolated to
430 the 40 X 40 km grid cells distributed across the eastern Bering Sea survey area (black outline)

431  relative to land in Alaska (grey areas) from 1981 to 2024 (panels).
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Fig. 2 — Visualizing estimated AIC weight (top row), the correlation among years (2™ row), and

the root-mean-squared displacement (3™ row) for the spatio-temporal distributed lag for each of

four models (x-axis; null: no lags; S: just spatial lag; T: just time-lag; ST: both space and time

lags) for each of six species (columns)
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Fig. 3 — Using the selected model for each species (row), visualizing the effect of a hypothetical,
localized temperature anomaly measurement X; interpolated to the 40 km X 40 km grid cells

(left column), and how it translates to the effective temperature in the same year z; (2™ column),
one year later z;, ; (3™ column), or two years later z;, , (4™ column). We specifically fix Xjs = C

for the location s; in the middle of the spatial domain, with value c fixed to ensure that

YK _1xie = 1, where k is the number of grid cells. For each year, we calculate the total Y X_, xj,
or YX_, z;, and the root-mean-squared displacement (listed above each panel). We also show

the edges of the set of triangles (grey lines) used to represent the finite-element mesh (using a

cutoff of 40 km).
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Fig. 4 — Visualizing the effective seafloor temperature anomaly z; (in units °C relative to the
average for 1982-2014) for each species (rows) in the five years that rapidly transition from cool
(2013, left column) to warm conditions (2017, right column), and using a separate color legend
for each species (within the left panel for each row); compare with Fig. 1 to see the effect of the

spatio-temporal distributed lag.
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Fig. 5 — Performance for marginal AIC to identify the correct model within a simulation

experiment for three species. For each species (columns), we show the four estimation models

(x-axis; null: no lags; S: just spatial lag; T: just time-lag; ST: both space and time lags), and the

proportion of 100 simulation replicates where each model was selected (y-axis). Color

corresponds to whether the operating model matches the estimation model, where green matches

(correct model is chosen) and orange is a mismatch (incorrect model chosen).
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Fig. 6 — Performance of parameter estimation in the simulation experiment, showing the two
parameters in the spatio-temporal distributed lag for capelin (panel A and B) and the temporal lag
for Pacific halibut (panel C), as well as the derived calculation for root-mean-squared-
displacement in km (RMSD) (panel D) and correlation among years (autocorrelation) (panel E
and F). For each quantity, we show 100 estimates (dots) and the true value (red line; y-axis) for
the two estimation models, where green indicates the operating model and orange indicates the
alternative model that also estimates the same parameter (x-axis; S: just spatial lag; T: just time-
lag; ST: both space and time lags). Estimates where RMSD < 1 are shown as crosses.
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