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Abstract: 40 

1. Ecologists are adapting structural causal modelling for spatial, phylogenetic, and time-series 41 

analysis.  However, ecological extensions of path analysis and structural equation models 42 

(SEM) typically assume that interactions (“path coefficients”) are stationary, linear, and 43 

additive, while ecological and evolutionary dynamics are often nonstationary, nonlinear, and 44 

include statistical interactions.   45 

2. Here, we combine moderated SEM (estimating path coefficients as model variables) with 46 

dynamic SEM (estimating both simultaneous and lagged interactions among variables), 47 

develop a new “path-lag-slope” notation to specify this combination, and demonstrate it 48 

using a simulation experiment and three ecological case studies.   49 

3. The simulation experiment confirms that an autocorrelated “random-slope” model can 50 

estimate the nonstationary impact of one variable on another, but that the random slope is 51 

shrunk towards a constant value as data become less informative.  The first case study then 52 

demonstrates nonstationarity by estimating an autoregressive slope linking a regional climate 53 

index to local ocean temperature near Vancouver Island.  The second demonstrates 54 

nonlinearity by approximating Lotka-Volterra dynamics for two predator-prey systems, 55 

which closely match estimates of interactions and carrying capacity from traditional 56 

ordinary-differential equation methods.  The third demonstrates statistical interactions by 57 

using monthly plankton samples (1962-1994) to show that resource-consumer-predator 58 

interactions in Lake Washington have a dome-shaped response to temperature.   59 

4. We envision several uses in causal analysis: (1) testing whether path coefficients are 60 

nonstationary; (2) estimating nonlinear responses given missing data; and (3) linking 61 

ecological parameters to hypothesized drivers in applied modelling.   62 
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Introduction 67 

 Ecologists are showing an increasing interest in causal analysis (Arif & MacNeil, 2022; 68 

Byrnes & Dee, 2025; Grace, 2024; Larsen et al., 2019).  Ecological applications of causal 69 

analysis have typically used path analysis (PA) or structural equation models (SEM) to identify 70 

direct and indirect consequences of hypothetical policy or environmental changes.  These models 71 

require hypothesizing linear structural relationships among a set of variables (e.g., 𝐴 causes 𝐵 72 

and 𝐵 causes 𝐶), where the strength of relationships is then estimated from the covariance of 73 

samples.  The fitted model can be used to identify how a policy changing one variable results in 74 

direct and indirect effects on other model variables (in the previous example, for example, a 75 

change in 𝐵 would affect 𝐶 but not 𝐴, despite all variables being correlated).   76 

 In particular, ecologists are adapting SEM and PA for ecological contexts such phylogenetic, 77 

spatial, and time-series analysis.  For example, evolutionary ecologists are using phylogenetic 78 

structural equation models (PSEM) or path analysis (PPA) to identify evolutionary relationships 79 

among species traits (Thorson et al., 2023; von Hardenberg & Gonzalez-Voyer, 2013).  Similarly, 80 

community ecologists are developing spatial extensions of SEM to estimate species interactions 81 

that underlie observed covariance in densities among species across sites (Papadogeorgou et al., 82 

2023; Thorson et al., 2025).  Finally, population ecologists are extending prior developments in 83 

multivariate autoregressive (MAR) models (Ives et al., 2003; Wootton & Emmerson, 2005) to 84 

develop dynamic structural equation models (DSEM), which estimates both simultaneous and 85 

lagged interactions using ecological time-series (Thorson et al., 2024), based on similar models 86 

in psychology (Asparouhov et al., 2018).  87 

 Despite this growing interests, SEM and PA typically require assuming that ecological 88 

relationships are stationary, linear, and additive.  These assumptions conflict with the general 89 



recognition that many parameters of ecological models vary across time, space, and phylogenies 90 

(Ives, 2022; Rollinson et al., 2021), that ecological relationships (e.g., metabolic response to 91 

temperature) are nonlinear (Munch et al., 2018), and that species interactions might be context-92 

dependent such that regression models should include statistical interactions (Hixon & Carr, 93 

1997).  Existing extensions of SEM and PA can account for nonstationarity, nonlinearity, and 94 

statistical interactions in some special cases.  For example, when causal relationships are 95 

unidirectional and data are free of missing values, ecologists can use generalized additive models 96 

within “piecewise SEM” (Lefcheck, 2016) to estimate nonlinear linkages.  Similarly, SEM (and 97 

its spatial, temporal, and phylogenetic extensions) can incorporate latent variables to identify 98 

some forms of nonstationarity (i.e., random covariation in average densities among sites).  99 

Alternatively, SEM can be extended to incorporate “moderated” interactions, e.g., where the 100 

effect of covariate 𝑋 on response 𝑌 depends upon a moderating variable 𝑊 (i.e., 𝔼(𝑌) = 𝛽𝑋𝑋 +101 

𝛽𝑋𝑊𝑋𝑊).  The moderated variable 𝑊 might be observed (such that 𝑋𝑊 is included as covariate 102 

to represent the statistical interaction of 𝑋 and 𝑊) or unobserved (such that 𝛽𝑋𝑊𝑊 is treated as a 103 

random-slope for covariate 𝑋).  In either case, a “moderated-SEM” (MSEM) can be applied to 104 

correct for the statistical interaction or nonstationary slope parameter.  However, MSEM was not 105 

discussed in recent ecological reviews for causal modelling (Arif & MacNeil, 2022; Byrnes & 106 

Dee, 2025; Grace, 2024; Larsen et al., 2019), and has seen limited use in ecological modelling 107 

(although see Papadogeorgou et al., 2023) 108 

 In this study, we demonstrate how SEM can be extended to estimate nonstationary 109 

parameters, nonlinear relationships, and statistical interactions.  We specifically combine DSEM 110 

(which handles missing data as well as simultaneous and lagged relationships among variables) 111 

with MSEM (which estimates nonstationarity, nonlinearity, and statistical interactions).  We also 112 



introduce a novel “path-lag-slope” notation for specifying moderated DSEM (“MDSEM”) 113 

available within the R-package dsem version 2.0.0.  Finally, we demonstrate the model and 114 

software using three varied examples.  We specifically address (1) nonstationarity using a 115 

varying-slopes model for the relationship between temperature and regional climate; (2) 116 

nonlinearity using a SEM implementation of species interactions using the Lotka-Volterra 117 

equations; and (3) and statistical interactions using a resource-consumer-predator model 118 

involving species interactions that have a dome-shaped response to temperature.   119 

Methods 120 

We seek to extend dynamic structural equation models to include nonstationarity, nonlinearity, 121 

and statistical interactions.  To do so, we adapt moderated SEM (MSEM) for use in the Gaussian 122 

Markov random field (GMRF) that is used when estimating dynamic SEM (DSEM).  We start by 123 

reviewing this GMRF implementation of DSEM. 124 

 DSEM describes the relationship among 𝑗 ∈ {1,2, … 𝐽} variables over 𝑡 ∈ {1,2, … 𝑇} time-125 

intervals, assembled in a matrix 𝐗 with dimension 𝑇 × 𝐽 containing values 𝑥𝑡𝑗 for each time and 126 

variable.  It is then fitted using a 𝑇 × 𝐽 matrix 𝐘 containing measurements 𝑦𝑡𝑗 (where 𝑦𝑡𝑗 might 127 

also include missing values that are specified as NA).  We define operator vec(𝐗) as stacking the 128 

columns of 𝐗 into a single vector with length 𝑇𝐽, and 𝐱𝑡 as the 𝐽 length row-vector containing 𝑥𝑡𝑗 129 

for all variables in time 𝑡.  DSEM also specifies that variables have unmodeled sources of 130 

variation which result in exogenous variation 𝐄 with dimension 𝑇 × 𝐽, where vec(𝐄) again stacks 131 

columns into a single vector, and 𝛜𝑡 is the error in year 𝑡.  DSEM then defines a vector-132 

autoregressive process for 𝐱𝑡: 133 

𝐱𝑡 = 𝐁0𝐱𝑡⏟
Simultaneous

+ 𝐁1𝐱𝑡−1⏟    
Lag−1

+ 𝐁2𝐱𝑡−2⏟    
Lag−2

+ …⏟
Higher−order

+ 𝛜𝑡 134 



where 𝐁0 are simultaneous interactions among variables, 𝐁1 and 𝐁2 are lag-1 and lag-2 135 

interactions, and the model can include any arbitrary lag up to 𝑇 − 1.  This vector-autoregressive 136 

notation is then rewritten as a joint simultaneous equation model (SEM), while assembling the 137 

lag matrices (𝐁0, 𝐁1, 𝐁2, … ) in a joint path matrix 𝐏joint with dimensions 𝑇𝐽 × 𝑇𝐽: 138 

vec(𝐗) = 𝐏jointvec(𝐗) + vec(𝐄) 

vec(𝐄)~MVN(𝟎, 𝐕joint) 

(1) 

where vec(𝐄) has variance 𝐕joint with dimension 𝑇𝐽 × 𝑇𝐽.  Algebra then shows that: 139 

vec(𝐗)~GMRF(𝟎,𝐐) 

𝐐 = (𝐈 − 𝐏joint
T )𝐕joint

−1 (𝐈 − 𝐏joint) 

(2) 

where the probability density for this GMRF can be efficiently evaluated to estimate values for 140 

𝐏joint.   141 

 To allow users to specify what combination of simultaneous and lagged effects are estimated 142 

(i.e., the non-zero elements of lag-matrices lag matrices 𝐁0, 𝐁1, 𝐁2, …), DSEM introduces a 143 

“path-and-lag” notation.  For example, for 𝐽 = 2 variables 𝐱𝑡 = (𝐴𝑡, 𝐵𝑡) over 𝑇 = 3 times we 144 

might specify that changing 𝐴𝑡 by Δ causes a lagged change of 𝛾Δ in 𝐵𝑡+1, represented in path-145 

and-lag notation as 𝐴 → 𝐵, 1, 𝛽.  Each one-headed arrow in path-and-lag notation then defines a 146 

path coefficient 𝛾𝑘 that links two variables as represented by 𝐽 × 𝐽 indicator matrix 𝐏𝑘, and is 147 

also associated with a lag-matrix 𝐋𝑔[𝑘] where 𝑔[𝑘] is the specified lag for path coefficient 𝑘.  In 148 

our example with 𝐾 = 1 path coefficient with a lag-1 effect 𝑔[1] = 1, this results in: 149 

𝐋𝑔[1] = [
0 0 0
1 0 0
0 1 0

], 
(3) 

and indicator matrix: 150 



𝐏1 = [
0 0
1 0

], (4) 

The joint path matrix is then assembled by summing the contribution of all 𝐾 path coefficients:  151 

𝐏joint =∑𝛾𝑘(𝐋𝑔[𝑘]⊗𝐏𝑘)

𝐾

𝑘=1

 

(5) 

where 𝐏 is a 𝐾 × 𝐽 × 𝐽 array containing all indicator matrices 𝐏𝑘, and 𝐋𝑔[𝑘]⊗𝐏𝑘 is the 152 

Kronecker product that results in a 𝑇𝐽 × 𝑇𝐽 matrix to match the size of 𝐏joint.  In our example, 153 

this results in a joint-path matrix:  154 

𝐏joint =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝛾1 0 0 0 0 0
0 𝛾1 0 0 0 0]

 
 
 
 
 

 

(6) 

where parameter 𝛾1 is now duplicated across times.  155 

Moderated variables 156 

Moderated path analysis (Klein & Moosbrugger, 2000) extends the simultaneous equation to 157 

include quadratic terms, 𝐗 = 𝐏jointvec(𝐗) + vec(𝐗)
T𝐍jointvec(𝐗), where 𝐍 is an asymmetric 158 

𝑇𝐽 × 𝑇𝐽 matrix that contains quadratic effects.  This then allows quadratic relationships among 159 

variables, e.g., 𝐵 = 𝛾𝐴 + 𝜈𝐴2, where 𝛾 is the linear in matrix 𝐏 and 𝜈 is the quadratic effect of 𝐴 160 

on 𝐵 in 𝐍.  We specify a moderated structural equation model that has a similar property but 161 

using methods that can be written as a GMRF, as we next show.  In particular, we introduce 162 

“path-lag-slope” notation, where e.g., 𝐴 → 𝐵, 0, 𝐶 allows a variable 𝐶 to replace a stationary 163 

parameter when representing the slope linking 𝐴 to 𝐵.   164 

 Specifically, we replace a stationary parameter 𝛾𝑘 with a specified model variable 𝐱𝑗 that can 165 

then vary over time.  This can be written as: 166 



𝐏joint =∑(𝐋𝑔[𝑘]𝐙𝑘) ⊗ 𝐏𝑘

𝐾

𝑘=1

 

(7) 

where: 167 

𝐙𝑘 = {
𝛾𝑘𝐈 if path is stationary with value 𝛾𝑘

diag(𝐱𝑗[𝑘]) if path is nonstationary with value 𝐱𝑗[𝑘]
 

(8) 

and where diag(𝐱𝑗[𝑘]) constructs a 𝑇 × 𝑇 diagonal matrix from vector 𝐱𝑗[𝑘] for the variable 𝑗[𝑘] 168 

that replaces path coefficient 𝑘, such that 𝐋𝑔[𝑘]𝐙𝑘 then applies a lag operator 𝐋𝑔[𝑘] such that 169 

𝑥𝑡1𝑗[𝑘] is the impact of 𝑥𝑡1𝑗1  on 𝑥𝑡2𝑗2 where 𝑡2 ≥ 𝑡1.  We propose two interpretations for this 170 

expanded specification for DSEM (see Fig. 1 for examples): 171 

1. Random slopes:  The variable 𝐱𝑗[𝑘] that is used instead of path coefficient 𝑘 could be 172 

interpreted as a random slope (Gelman & Hill, 2007).  For example, we might have a model 173 

with 𝐽 = 3 variables, 𝐱𝑡 = (𝐴𝑡, 𝐵𝑡, 𝛽𝑡), where 𝛽𝑡 is effect of 𝐴𝑡 on 𝐵𝑡, 𝐵𝑡 = 𝜇𝐵 + 𝛽𝑡𝐴𝑡 + 𝜖𝑡, 174 

and written as 𝐴 → 𝐵, 0, 𝑏𝑒𝑡𝑎 in arrow-lag-slope notation (see Fig. 1B).   175 

2. Product of two variables in a graphical model:  The joint path matrix 𝐏joint defines a 176 

graphical model, where many edges (arrows representing causal effects) can collide in a 177 

single node (vertex representing a response variable), and this collision corresponds to 178 

adding together the contribution of these multiple predictor-variables to predict a single 179 

response-variable.  However, using “moderator” variable 𝐱𝑗[𝑘] to represent the impact of 180 

predictor 𝐱𝑘1 on response 𝐱𝑘2 defines a new operator in the graph, where we instead take the 181 

product of two variables 𝐱𝑘1 and 𝐱𝑗[𝑘] when estimating their impact on 𝐱𝑘2.  This interaction 182 

can be viewed as a “composite variable”, which we visualize as a diamond to distinguish it 183 

from measured (“manifest”) variables as squares or unobserved (“latent”) variables as circles 184 

(see Fig. 1C). For example, we might specify 𝐶𝑡 = 𝛽𝐴𝐴𝑡 + 𝛽𝐴𝐵𝐴𝑡𝐵𝑡 + 𝜖𝑡 by specifying four 185 



variables 𝐱𝑡 = (𝐴𝑡, 𝐵𝑡, 𝐴𝐵𝑡, 𝐶𝑡), and using arrow-lag-slope notation to specify 𝐴 → 𝐴𝐵, 0, 𝐵.  186 

The resulting model can be viewed as a time-series version of a multi-level probabilistic 187 

graphical model (Koller & Friedman, 2009).   188 

These different interpretations arise even when one or more variables has missing values.   189 

 For example, we might want to estimate the impact of temperature 𝑇 on other variables.  190 

However, species densities might initially increase and then eventually decrease with increases in 191 

temperature (a “dome-shaped temperature response”).  This can be approximated as a quadratic 192 

effect 𝑌 = 𝛽𝑇𝑇 + 𝛽𝑇2𝑇
2, and we can construct the temperature-squared term as the product of 193 

temperature and itself (𝑇 → 𝑇, 0, 𝑇 in path-lag-slope notation).  𝑇2 is then a latent variable, 194 

which is calculated from estimated (imputed) values of 𝑇.  Alternatively, we can use a third-order 195 

Taylor-series (Maclaurin) approximation: 196 

𝑒𝐴 ≈∑
𝐴𝑖

𝑖!

3

𝑖=0

 

(9) 

and using a power-series for covariate 𝐴 to approximate an exponential function (Fig. 1D), with 197 

error bounded by 𝑒|𝐴|
𝐴4

4!
.   198 

 Defining the path matrix 𝐏joint using a moderated dynamic structural equation model 199 

(MDSEM) allows us to approximate interactions, exponential, and polynomial effects while also 200 

interpolating missing data, estimating direct and indirect effects, and constraining model 201 

covariance using domain knowledge.  The MDSEM is available in the R package dsem (Thorson 202 

et al., 2024) version 2.0.0, which uses package TMB (Kristensen et al., 2016) to calculate the 203 

Laplace approximation (Skaug & Fournier, 2006) when calculating the marginal likelihood of 204 

parameters while integrating across random effects, and the Eigen package to efficiently 205 

calculate sparse-matrix computations (Guennebaud et al., 2010).  We then optimize the marginal 206 



likelihood in the R statistical environment (R Core Team, 2023), and use a generalization of the 207 

delta method (Kass & Steffey, 1989) to calculate standard errors for parameters and derived 208 

quantities.   209 

Simulation experiment: Autocorrelated random-slopes model 210 

We first confirm that MDSEM can accurately recover a model variable 𝐱𝑗[𝑘] that is treated as a 211 

varying slope representing the impact of one variable on another.  To do so, we simulation data a 212 

“random slopes” time-series model: 213 

𝐴𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝐴
2) 

𝐵𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝛽𝑡𝐴𝑡, 𝜎𝐵
2) 

𝛽𝑡 = 0.5 (sin (2𝜋
𝑡 − 1

𝑇 − 1
) + 1) 

(10) 

where 𝐱𝑡 = (𝐴𝑡, 𝐵𝑡, 𝛽𝑡) is the set of 𝐽 = 3 variables over 𝑇 = 51 times, and slope 𝛽𝑡 fluctuates 214 

𝛽1 = 1 to 𝛽25 = 0 and back to 𝛽51 = 1.  We then fit MDSEM observing  𝐲𝑡 = (𝐴𝑡, 𝐵𝑡, NA) and 215 

specifying a first-order autoregressive process on the slope variable.  We contrast this with a 216 

conventional DSEM fitting the 𝐽 = 2 observed variables and assuming that slope 𝛽 is stationary 217 

over time.  We specify 𝜎𝐴 = 1 and explore three scenarios that have different magnitudes of error 218 

in the response, 𝜎𝐵 = {0.2, 0.5, 1.0}.  For each scenario, we simulate 500 simulation replicates, 219 

and record the estimated 𝛽̂𝑡 (for the MDSEM) or 𝛽̂ for the (DSEM), and compare these with the 220 

known true value.   221 

Case 1:  Random slopes linking regional and local habitat 222 

We next demonstrate using MDSEM as a varying slope model using real-world data.  To do so, 223 

we analyze the relationship between sea surface temperatures at Departure Bay (Vancouver 224 

Island, British Columbia, Canada) and a regional climate index (the Pacific Decadal Oscillation, 225 



PDO), using annual measurements in January from 1914-2017 (see Table S1 for code).  We seek 226 

to estimate how the relationship has changed during 100 years of climate change: 227 

𝑋𝑡~{
Normal(𝜇𝑋 , 𝜎𝑋

2) if 𝑡 = 1914

Normal(𝜌𝑋(𝑋𝑡−1 − 𝜇𝑋) + 𝜇𝑋 , 𝜎𝑋
2) if 𝑡 > 1914

 

𝛽𝑡~{
Normal(𝜇𝛽 , 𝜎𝛽

2) if 𝑡 = 1914

Normal(𝜌𝛽(𝛽𝑡−1 − 𝜇𝛽) + 𝜇𝛽 , 𝜎𝛽
2) if 𝑡 > 1914

 

𝑌𝑡~{
Normal(𝜇𝑌, 𝜎𝑌

2) if 𝑡 = 1914

Normal(𝜌𝑌(𝑌𝑡−1 − 𝜇𝑌) + 𝛽𝑡(𝑋𝑡 − 𝜇𝑋) + 𝜇𝑌, 𝜎𝑌
2) if 𝑡 > 1914

 

(11) 

where we estimate the conditional variance and first-order autocorrelation for each of 𝐽 = 3 228 

variables, where PDO 𝑋𝑡 and local temperature 𝑌𝑡 are both observed and 𝛽𝑡 is a latent variable 229 

representing the time-varying slope.   230 

Case 2:  Lotka-Volterra predator-prey dynamics 231 

We next demonstrate using MDSEM to approximate a mechanistic model that involves a 232 

nonlinear relationship among variables.  To do so, we demonstrate it using the Lotka-Volterra 233 

model, which remains one of the most widely-taught descriptions for predator-prey dynamics.  It 234 

defines an ordinary differential equation for the abundance of prey 𝑋𝑡 and predators 𝑌𝑡: 235 

𝑑

𝑑𝑡
𝑋𝑡 = 𝛼𝑋𝑡 − 𝛽𝑋𝑡𝑌𝑡 

𝑑

𝑑𝑡
𝑌𝑡 = 𝛾𝑋𝑡𝑌𝑡 − 𝛿𝑌𝑡 

(12) 

where 𝛼 is the per-capita growth rate for prey, 𝛽 is the prey mortality per predator-prey 236 

encounter, 𝛾 is the predator growth rate per encounter, and 𝛿 is the predator mortality rate in the 237 

absence of encounters.  We first reformulate in terms of log-abundance: 238 

𝑑

𝑑𝑡
loge(𝑋𝑡) =

1

𝑋𝑡

𝑑

𝑑𝑡
𝑋𝑡 = 𝛼 − 𝛽𝑌𝑡 

(13) 



𝑑

𝑑𝑡
loge(𝑌𝑡) =

1

𝑌𝑡

𝑑

𝑑𝑡
𝑌𝑡 = 𝛾𝑋𝑡 − 𝛿 

and then use the 3rd-order Taylor series approximation to the exponential function, 𝑋̃𝑡 =239 

∑
log(𝑋𝑡)

𝑖

𝑖!

3
𝑖=0  and 𝑌̃𝑡 = ∑

log(𝑌𝑡)
𝑖

𝑖!

3
𝑖=0 .  Finally, we use a first-order forwards-Euler approximation to 240 

the ODE, and add process errors representing unmeasured variation in productivity for the prey 241 

(𝜖𝑡,1) or predator (𝜖𝑡,2): 242 

log(𝑋𝑡+1) = log(𝑋𝑡) + 𝛼 − 𝛽𝑌̃𝑡 + 𝜖𝑡,1 

log(𝑌𝑡+1) = log(𝑌𝑡) + 𝛾𝑋̃𝑡 − 𝛿 + 𝜖𝑡,2 

(14) 

where this approximation can be fitted using MDSEM.  We then compare MDSEM estimates 243 

𝜃DSEM = (𝛼̂DSEM, 𝛽̂DSEM, 𝛿DSEM, 𝛾DSEM) with the maximum-likelihood estimate 𝜃ODE resulting 244 

from a 3rd-order Runge-Kutta ODE solver implemented using RTMB (Kristensen, 2024).   245 

 We specifically compare 𝜃DSEM and 𝜃ODE using two examples: 246 

1. Hare-Lynx in pelt records from Hudson Bay:  We use records of pelts for Canada Lynx and 247 

their prey snowshoe hare from Hudson Bay 1900-1920, extracted from Gotelli (2008 Fig. 248 

6.16) and originating elsewhere (Elton & Nicholson, 1942; MacLulich, 1937); 249 

2. Didinium-Paramesium microcosm experiment:  We use records of Paramesium aurelia and 250 

Didinium nasutum in a microcosm experiment at 0.5 Cerophyll concentration measured 251 

every 12 hours over 35 days, i.e., 𝑇 = 71 (Veilleux, 1979 Fig. 11a), as previously digitized 252 

(Jost & Ellner, 2000 Fig. 1).   253 

In each case, we randomly drop 10% of measurements to demonstrate the ability to impute 254 

missing values jointly with estimating parameters.   255 

Case 3:  Temperature-dependent resource-consumer-predator dynamics 256 



Finally, we demonstrate using MDSEM to estimate how covariates can moderate variation in 257 

slopes over time including polynomial effects.  To do so, we estimate a quadratic impact of 258 

temperature on species interactions, using monthly measurements of Temperature (𝑊𝑡 in 259 

Celcius), Cryptomonas (resource, 𝐶𝑡 in log-abundance), Daphnia (consumer, 𝐷𝑡 in log-260 

abundance), and Leptodora (predator, 𝐿𝑡 in log-abundance) in Lake Washington from 1962-261 

1994, 𝑇 = 396 (Hampton et al., 2006).  We specifically focus on dynamics for Daphnia, and 262 

estimate a quadratic impact of temperature on Cryptomonas and Daphnia abundance: 263 

𝑊𝑡 = 𝜌𝑊𝑊𝑡−1 + 𝜖W,𝑡 

𝐶𝑡 = 𝜇𝐶 + 𝜌𝐶(𝐶𝑡−1 − 𝜇𝐶) + 𝛼𝐶𝑊𝑡 + 𝛽𝐶𝑊𝑡
2 + 𝜖C,𝑡 

𝐷𝑡 = 𝜇𝐷 + 𝜌𝐷(𝐷𝑡−1 − 𝜇𝐷) + 𝛼𝐷𝑊𝑡 + 𝛽𝐷𝑊𝑡
2 + 𝛾𝑡(𝐶𝑡 − 𝜇𝐶) + 𝛿𝑡(𝐿𝑡−1 − 𝜇𝐿) + 𝜖D,𝑡 

𝐿𝑡 = 𝜇𝐿 + 𝜌𝐿(𝐿𝑡−1 − 𝜇𝐿) + 𝜖C,𝑡 

(15) 

We also estimate a simultaneous impact of Cryptomonas on Daphnia that varies over time 264 

following a quadratic temperature response: 265 

𝛾𝑡 = 𝜇𝛾 + 𝜌𝛾(𝛾𝑡−1 − 𝜇𝛾) + 𝛼𝛾𝑊𝑡 + 𝛽𝛾𝑊𝑡
2 + 𝜖𝛾,𝑡 (16) 

and a one-month lagged impact of Leptodora on Daphnia that also varies over time following a 266 

quadratic temperatures response: 267 

𝛿𝑡 = 𝜇𝛿 + 𝜌𝛿(𝛿𝑡−1 − 𝜇𝛿) + 𝛼𝛿𝑊𝑡 + 𝛽𝛿𝑊𝑡
2 + 𝜖𝛿,𝑡 (16) 

We then use a two-sided Wald test to identify which of the eight temperature parameters are 268 

statistically significant (𝑝 < 0.05).   269 

Results 270 

Simulation experiment: Autocorrelated random-slopes model 271 

The simulation experiment confirms that MDSEM can accurately estimate autocorrelated 272 

variation for a slope parameter measuring the impact of one variable on another (Fig. 2).  273 



However, as error in the response variable increases (from left to right panel of Fig. 2): (1) the 274 

random-slope estimate shrinks towards the average slope value across time (i.e., red line shrinks 275 

towards blue line), and (2) the simulation interval (shaded area) increases in width.  Therefore, 276 

the ability of MDSEM to estimate a path coefficient as a latent variable depends upon the quality 277 

of available data.   278 

Case 1: Random slopes linking regional and local habitat 279 

We first confirm that a time-varying slope can be estimated using a latent variable (e.g., 280 

following an autoregressive process) as the slope parameter.  In the random-slopes model 281 

predicting sea surface temperature at Departure Bay from the Pacific Decadal Oscillation (Fig. 282 

2), the model estimates stronger autocorrelation for the varying slope (0.87) than PDO (0.49) or 283 

the conditional errors in temperature (0.11).  Inspecting the estimated slope, we see the weakest 284 

association from 1915-1925, and a relatively stable slope from 1940-2017 (Fig. 3 3rd row).  As 285 

expected, estimating a stationary slope (0.37) is nearly the midpoint of the estimated values when 286 

allowing the slope to be nonstationary.   287 

Case 2: Lotka-Volterra predator-prey dynamics   288 

We next confirm that we can use latent-moderated interactions to approximate a nonlinear (e.g., 289 

exponential) function with the widely used Lotka-Volterra model for predator-prey dynamics.  290 

Comparing interaction estimates from the MDSEM with a state-space solution to the ODE (Fig. 291 

4), we see that the two largely agree in sign and magnitude.  Differences become more 292 

pronounced for larger (> 0.5) estimated interactions, but the estimated carrying capacity is close 293 

(and within confidence intervals) for both implementations.  Similarly, both models interpolate 294 

missing values similarly (Fig. 5), and in a manner that is consistent with the oscillatory dynamics 295 

of the system.     296 



Case 3:  Temperature-dependent resource-consumer-predator dynamics 297 

Finally, we confirm that we can use latent-moderated interactions to include polynomial 298 

covariate effects, specifically specifying a quadratic temperature response on both intercepts 299 

(average density) and slopes (interactions) in a resource-consumer-predator model.  Inspecting 300 

the resulting graph (Fig. 6), we see that linear and quadratic temperature effects are significant 301 

for the consumer (Daphnia) density, as well as the impact of the resource (Cryptomonas) on the 302 

consumer, whereas the other temperature responses are not statistically significant.  Examining 303 

the estimated temperature-response curve (Fig. 7), the two significant effects both have a positive 304 

and dome-shaped response, where densities and interactions are highest at 12-14 degrees Celcius 305 

(Fig. 7B and 7C).  By contrast, the other two temperature-response curves (Fig. 7A and 7C) have 306 

a confidence interval that could include a constant value over a large portion of the range of 307 

temperatures.   308 

Discussion 309 

 In this paper, we demonstrated how a moderated dynamic structural equation model 310 

(MDSEM) can extend causal analysis to include nonstationarity, nonlinearity, and statistical 311 

interactions, while also interpolating missing values, specifying latent variables, and estimating 312 

both simultaneous and lagged relationships among variables.  We used a simulation experiment 313 

to confirm that sinusoidal variation in a slope linking two variables can be estimated as a 314 

autoregressive latent variable, and that the estimated slope is shrunk towards a constant value as 315 

data become less informative.  We then demonstrated nonstationarity using a time-varying 316 

relationship between local and regional climate, nonlinearity using Lotka-Volterra dynamics, and 317 

statistical interactions by estimating temperature-dependent interactions in a resource-consumer-318 

predator system.  The method is available in an R-package dsem (starting with release 2.0.0), and 319 



we next discuss how this MDSEM might be useful for a range of theoretical and applied 320 

questions throughout ecology.   321 

 SEM (and its spatial, phylogenetic, and time-series extensions) are useful for applied 322 

ecologists because they address several drawbacks of conventional linear regression (e.g., 323 

generalized linear models and analysis of variance).  In particular, SEM addresses the problem of 324 

collinearity (Dormann et al., 2013) by using domain knowledge to inform predictions given 325 

novel combinations of predictors, and also accounts for missing values for both predictor and 326 

response variables by specifying a joint distribution for both.  Despite these advantages, 327 

phylogenetic, spatial, and time-series applications of SEM have previously lacked any capability 328 

to estimate nonlinearity, nonstationarity, and statistical interactions, which are also of general 329 

interest in ecology.  By addressing these challenges, moderated SEM seems suitable for the wide 330 

range of uses discussed in recent ecological reviews (Arif & MacNeil, 2022; Byrnes & Dee, 331 

2025; Grace, 2024; Larsen et al., 2019).  In particular, DSEM has previously required assuming 332 

that path coefficients (i.e., simultaneous and lagged interactions among variables) are constant 333 

over time.  After developing a DSEM based on scientific knowledge, we recommend that 334 

analysts sequentially test the model when replacing each path coefficient with a model variable 335 

(e.g., which follows an autoregressive process), and use model selection to evaluate the strength 336 

of evidence that the path coefficient is stationary or varies over time.  337 

 In addition to a growing interest in causal analysis using SEM and PA, ecologists use 338 

custom-built hierarchical models (i.e., integrated-population or stock-assessment models [IPMs]) 339 

to predict the likely effect of hypothetical policy changes (Kéry & Schaub, 2021).  IPMs are a 340 

powerful tool for applied ecologists because they allow analysts to incorporate nonlinear and 341 

state-space features that are specifically suited to their study system.  However, IPMs are often 342 



specified using Bayesian hierarchical modelling, which then requires specifying a directed 343 

acyclic graph (DAG) for linkages among system components (i.e., avoiding cyclic dependencies 344 

among system variables).  By contrast, SEM (including DSEM and MDSEM) can estimate these 345 

cyclic dependencies (𝐴 → 𝐵 → 𝐶 → 𝐴) while simultaneously imputing missing variables.  346 

Additionally, the “arrow-lag-slope” notation developed here continues to provide a high-level 347 

interface for specifying system linkages using MDSEM. We believe that a simple and expressive 348 

interface is necessary for broad adoption of any statistical tool for ecologists, similar to how the 349 

`formula` interface for linear models (Wilkinson & Rogers, 1973) has led to broad adoption 350 

among ecologists of linear mixed and generalized additive models.  Ultimately, we envision 351 

embedding MDSEM as an interface to specify linkages among process errors and/or covariates 352 

for use within IPMs (Champagnat et al., 2025).   353 

 Finally, we showed how the output of MDSEM can be plotted to summarize context-354 

dependent and nonstationary relationships (e.g., Fig 2, 6, and S1).  However, analysts will also 355 

want to compute the total effect of an exogenous (policy) change in system variables.  In 356 

conventional DSEM, the total effect is computed from the 𝐏joint, which is assumed to be 357 

stationary over time.  Specifically, an analyst might envision a policy that changes the states 𝐗 to 358 

𝐗 + 𝐃, where change-matrix 𝐃 could represent a pulse experiment (i.e., non-zero values in only 359 

a single time) or press experiment (i.e., non-zero values continuing indefinitely).  This change 360 

causes in a first-order effect 𝐏jointvec(𝐃), which in turn causes a second-order effect 361 

𝐏joint
2 vec(𝐃)𝑇, and where the total effects is then (𝐈 − 𝐏joint)

−1
vec(𝐃).  By contrast, MDSEM 362 

allows 𝐏joint to vary due to other latent or endogenous variables.  Computing the total effect 363 

therefore involves a first-order effect, 𝐏1vec(𝐃) where 𝐏1 = 𝐏joint.  However, the second-order 364 

effect requires updated path matrix 𝐏2, calculated by updating 𝐏joint given the previous first-365 



order effects (Eq. 5A-5B), where the second-order effect is 𝐏2𝐏1vec(𝐃).  By extension, the total 366 

effect is the sum across all such partial effects, vec(𝐃)𝑇(∑ ∏ 𝐏𝑘′
𝑘
𝑘′=1

∞
𝑘=1 ).  We therefore 367 

acknowledge that interpreting the total effect is more complicated in moderated SEM than in 368 

conventional cases.   369 
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  488 



Fig. 1 – Graphical models illustrating potential uses for latent-moderated dynamic structural 489 
equation models (MDSEM), where measured (“manifest”) variables are boxes, unmeasured 490 
(“latent”) variables are circles, varying slopes (“latent-moderated paths”) are diamonds, and 491 
arrows point from predictor to response variable while listing either a Greek symbol 492 
(representing an estimated parameter) or a Arabic numeral (representing a value that is fixed a 493 
priori), and also showing the resulting equations below each panel.  We contrast the simple case 494 
of a regression model with two independent predictors (panel A), a regression with a statistical 495 
interaction (panel B), a regression with a randomly varying slope (panel C), and a 3rd-order 496 
Taylor series approximation to the exponential function (panel D).   497 

  498 



Fig. 2 – Results from a simulation experiment involving a random slope model, 𝐴𝑡 = 𝛽𝑡𝐵𝑡 + 𝜖𝑡 499 
where slope 𝛽𝑡 (y-axis) follows a sinusoidal pattern (black line) over 50 times (x-axis), and we 500 
vary the standard deviation of process errors 𝜖𝑡 from low (𝜎𝐵 = 0.2, left panel) to medium (𝜎𝐵 =501 
0.5, middle panel) or high (𝜎𝐵 = 1, right panel) levels, while estimating either a first-order 502 
autoregressive process for the slope (red line and shading) or a constant slope (blue line and 503 
shading), where the lines show the mean across 500 simulation replicates, and the shading shows 504 
the 10% and 90% simulation interval for each model.   505 

 506 

  507 



Fig. 2 – Graphical model and parameter estimates for case study #1, where the Pacific Decadal 508 
Oscillation (𝑃𝑡) is used to predict sea surface temperature at Departure Bay (𝑇𝑡) with a slope (𝛽𝑡) 509 
that varies as a first-order autoregressive process over time (see Fig. 1 for details about graphical 510 
notation).  511 

  512 



Fig. 3 – Observed values (circles), estimated values (lines), and 95% confidence intervals 513 

(shaded area) for case study #1, showing the Pacific Decadal Oscillation (PDO; top panel), 514 

Temperature (2nd panel), and estimated slope (3rd panel), contrasted with the slope estimated by 515 

an alternative model when assuming that it is stationary over time (4th panel), and using a shared 516 

y-axis scale for the slope estimates (3rd and 4th panels).   517 

 518 

 519 

 520 



  521 



Fig. 4 – Estimated interaction parameters (𝛼, 𝛽, 𝛾, 𝛿, dots) and 95% confidence intervals 522 

(whiskers) for case study #2 involving Lotka-Volterra dynamics, as well as the predicted carrying 523 

capacity for the prey 𝐾𝑥 =
𝛼

𝑏𝑒𝑡𝑎
 and predator 𝐾𝑦 =

𝛾

𝛿
, estimated using the latent-moderated 524 

dynamic structural equation model with a Taylor-series approximation to a nonlinear 525 

(exponential) function (red) or a state-space ODE model (blue), for each of two case studies 526 

involving Hare-Lynx dynamics in Hudson Bay (top panel), or a Paramesium-Didinium 527 

microcosm experiment (bottom panel) 528 

 529 

  530 



Fig. 5 -- Observed values (circles), estimated values (lines), and 95% confidence intervals 531 
(shaded area) for case study #2 involving Lotka-Volterra dynamics, contrasting estimates using 532 
the latent-moderated dynamic structural equation model (red) or the state-space ODE model 533 
(blue).  Note that the MDSEM assumes that measurements are provided without error and hence 534 
only shows confidence intervals for the 10% of observations that were randomly selected and 535 
dropped prior to fitting the model.   536 

  537 



Fig. 6 – Graphical model and parameter estimates for case study #3 involving temperature-538 
dependent resource-consumer-predator interactions (see Fig. 1 for details about graphical 539 
notation), showing Temperature 𝑇𝑡 and its polynomial expansion as latent variable 𝑇𝑡

2, resource 540 
Chryptomonas 𝐶𝑡, consumer Dapnia 𝐷𝑡, and predator Leptodora 𝐿𝑡, and showing the time-541 
varying impact of resource on consumers 𝛾𝑡 or predators on consumers 𝛿𝑡. We also distinguish 542 
linkages (arrows) that are statistically significant (black arrows) or not (grey arrows).   543 

 544 
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Fig. 7 – Estimated quadratic temperature-response curves (lines) and 95% confidence intervals 546 

(shaded area), showing the temperature impact on resource (top-left), consumers (top-right), the 547 

impact of resource on consumers (bottom-left), and the impact of predators on consumers 548 

(bottom-right) 549 

 550 
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Table S1:  Illustrating the code used to fit case study #1, including the arrow-lag-slope notation 552 
(left column), defining a time-series object including all variables (right column top), and the call 553 
to package dsem to fit the model (right column bottom).   554 

Case 1:  Varying slopes  

# Model 

sem = " 

  PDO -> Temp, 0, slope 

  slope -> slope, 1, ar_slope 

  PDO -> PDO, 1, ar_PDO 

  Temp -> Temp, 1, ar_Temp 

" 

# Data 

tsdata = ts(data.frame( 

  Temp = Combo[,2], 

  PDO = Combo[,3], 

  slope = NA 

), start = 1914 ) 

 

# Fit 

fit = dsem( 

  tsdata = tsdata, 

  sem = sem, 

  estimate_mu = c(“Temp”,”PDO”,”slope”) 

) 

 555 
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Table S2:  Illustrating the code used to fit case study #2 (see Table S1 caption for more details).   557 

Case 2:  Lotka-Volterra  

# Model 

sem = " 

  # Main interactions 

  logX -> logX, 1, NA, 1 

  ones -> logX, 0, alpha 

  Y -> logX, 1, beta, -0.1 

 

  # Form X \approx exp(logX) 

  ones -> X, 0, NA, 1 

  logX -> logX1, 0, NA, 1 

  logX1 -> X, 0, NA, 1 

  logX1 -> logX2, 0, logX 

  logX2 -> X, 0, NA, 0.5 

  logX2 -> logX3, 0, logX 

  logX3 -> X, 0, NA, 0.166 

 

  # Variances 

  X <-> X, 0, NA, 0.001 

  logX <-> logX, 0, sd_logX 

  logX1 <-> logX1, 0, NA, 0.001 

  logX2 <-> logX2, 0, NA, 0.001 

  logX3 <-> logX3, 0, NA, 0.001 

 

  # Main interactions 

  logY -> logY, 1, NA, 1 

  X -> logY, 1, gamma 

  ones -> logY, 0, delta, -0.1 

 

  # Form Y \approx exp(logY) 

  ones -> Y, 0, NA, 1 

  logY -> logY1, 0, NA, 1 

  logY1 -> Y, 0, NA, 1 

  logY1 -> logY2, 0, logY 

  logY2 -> Y, 0, NA, 0.5 

  logY2 -> logY3, 0, logY 

  logY3 -> Y, 0, NA, 0.166 

 

  # Variances 

  Y <-> Y, 0, NA, 0.001 

  logY <-> logY, 0, sd_logY 

  logY1 <-> logY1, 0, NA, 0.001 

  logY2 <-> logY2, 0, NA, 0.001 

  logY3 <-> logY3, 0, NA, 0.001 

 

# Data 

Z = cbind( 

  logX = log(dat$X),  

  logY = log(dat$Y), 

  X = NA,  

  Y = NA, 

  logX1 = NA,  

  logY1 = NA, 

  logX2 = NA,  

  logY2 = NA, 

  logX3 = NA,  

  logY3 = NA, 

  ones = 1 

) 

 

# Fit 

fit = dsem( 

  tsdata = ts(Z), 

  sem = sem, 

  estimate_mu = vector(),  

) 



  # Dummy constant 

  ones <-> ones, 0, NA, 0.001 

  ones -> ones, 1, NA, 1 

" 

 558 
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Table S3:  Illustrating the code used to fit case study #3 (see Table S1 caption for more details).   561 

Case 3:  Temperature-dependent resource-consumer-predator 

# Model 

sem = " 

  # Temperature effect on resource density 

  Temp -> Cryptomonas, 0, T_to_C 

  Temp2 -> Cryptomonas, 0, T2_to_C 

 

  # Temperature effect on consumer density 

  Temp -> Daphnia, 0, T_D 

  Temp2 -> Daphnia, 0, T2_D 

 

  # Impacts on consumer 

  Cryptomonas -> Daphnia, 0, alpha  #  C_D 

  Leptodora -> Daphnia, 1, beta   # alpha 

 

  # Density dependence 

  Cryptomonas -> Cryptomonas, 1, ar_C 

  Daphnia -> Daphnia, 1, ar_D 

  Leptodora -> Leptodora, 1, ar_L 

 

  # Form Temp^2 

  Temp -> Temp2, 0, Temp 

  Temp2 <-> Temp2, 0, NA, 0.001 

 

  # Temperature on resource-consumer slope 

  alpha <-> alpha, 0, NA, 0.001 

  Temp -> alpha, 0, T_alpha 

  Temp2 -> alpha, 0, T2_alpha 

 

  # Temperature on predator-consumer slope 

  beta <-> beta, 0, NA, 0.001 

  Temp -> beta, 0, T_beta 

  Temp2 -> beta, 0, T2_beta 

" 

# Data 

Z = ts(cbind( 

  dat$Temp, 

  dat$Daphnia, 

  dat$Leptodora, 

  dat$Cryptomonas,     

  alpha = NA,  

  Temp2 = NA,  

  beta = NA                   

), start = 1962, freq = 12) 

 

# Fit 

fit = dsem( 

  tsdata = Z, 

  sem = sem, 

  estimate_mu = c( 

    "Daphnia", 

    "Leptodora", 

    "Cryptomonas", 

    "alpha", 

    "beta" 

  ) 

) 

 562 
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Table S4:  Estimated path coefficients for the Departure Bay case study involving a varying-564 
slope model linking the Pacific Decadal Oscillation (PDO) to temperatures at a lighthouse near 565 
Departure Bay, listing the model path (first column), time lag (2nd column), parameter name (3rd 566 
column), maximum-likelihood estimate and asymptotic standard error (4th and 5th columns), and 567 
the z-value and p-value from a two-sided Wald test (6th and 7th columns), where columns 4-7 are 568 
NA for parameters that are either fixed, or which vary over time (i.e., the parameter Name 569 
matches a model variable, such as the 1st row).   570 

Path Lag Name Estimate Std_Error z_value p_value 

PDO -> Temp 0 slope NA NA NA NA 
slope -> slope 1 ar_slope 0.869 0.142 6.105 0 
PDO -> PDO 1 ar_PDO 0.487 0.088 5.529 0 
Temp -> Temp 1 ar_Temp 0.112 0.099 1.133 0.257 
Temp <-> Temp 0 V[Temp] 0.637 0.055 11.618 0 
PDO <-> PDO 0 V[PDO] 0.967 0.067 14.339 0 
slope <-> slope 0 V[slope] 0.119 0.082 1.453 0.146 

 571 
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Table S5:  Estimated path coefficients for the Lynx-Hare case study involving Lotka-Volterra 573 
predator-prey dynamics (see Table S4 caption for details) 574 

Path Lag Name Estimate Std_Error z_value p_value 

logX -> logX 1 NA 1 NA NA NA 
ones -> logX 0 alpha 0.39 0.079 4.925 0 
Y -> logX 1 beta -0.32 0.05 -6.382 0 
ones -> X 0 NA 1 NA NA NA 
logX -> logX1 0 NA 1 NA NA NA 
logX1 -> X 0 NA 1 NA NA NA 
logX1 -> logX2 0 logX NA NA NA NA 
logX2 -> X 0 NA 0.5 NA NA NA 
logX2 -> logX3 0 logX NA NA NA NA 
logX3 -> X 0 NA 0.166 NA NA NA 
X <-> X 0 NA 0.001 NA NA NA 
logX <-> logX 0 sd_logX 0.225 0.037 6.025 0 
logX1 <-> logX1 0 NA 0.001 NA NA NA 
logX2 <-> logX2 0 NA 0.001 NA NA NA 
logX3 <-> logX3 0 NA 0.001 NA NA NA 
logY -> logY 1 NA 1 NA NA NA 
X -> logY 1 gamma 0.639 0.105 6.075 0 
ones -> logY 0 delta -0.765 0.142 -5.372 0 
ones -> Y 0 NA 1 NA NA NA 
logY -> logY1 0 NA 1 NA NA NA 
logY1 -> Y 0 NA 1 NA NA NA 
logY1 -> logY2 0 logY NA NA NA NA 
logY2 -> Y 0 NA 0.5 NA NA NA 
logY2 -> logY3 0 logY NA NA NA NA 
logY3 -> Y 0 NA 0.166 NA NA NA 
Y <-> Y 0 NA 0.001 NA NA NA 
logY <-> logY 0 sd_logY 0.352 0.06 5.908 0 
logY1 <-> logY1 0 NA 0.001 NA NA NA 
logY2 <-> logY2 0 NA 0.001 NA NA NA 
logY3 <-> logY3 0 NA 0.001 NA NA NA 
ones <-> ones 0 NA 0.001 NA NA NA 
ones -> ones 1 NA 1 NA NA NA 
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Table S6:  Estimated path coefficients for the Didinium-Paramesium case study involving Lotka-576 
Volterra predator-prey dynamics (see Table S4 caption for details) 577 

Path Lag Name Estimate Std_Error z_value p_value 

logX -> logX 1 NA 1 NA NA NA 
ones -> logX 0 alpha 0.523 0.105 5.001 0 
Y -> logX 1 beta -0.44 0.078 -5.611 0 
ones -> X 0 NA 1 NA NA NA 
logX -> logX1 0 NA 1 NA NA NA 
logX1 -> X 0 NA 1 NA NA NA 
logX1 -> logX2 0 logX NA NA NA NA 
logX2 -> X 0 NA 0.5 NA NA NA 
logX2 -> logX3 0 logX NA NA NA NA 
logX3 -> X 0 NA 0.166 NA NA NA 
X <-> X 0 NA 0.001 NA NA NA 
logX <-> logX 0 sd_logX 0.429 0.038 11.143 0 
logX1 <-> logX1 0 NA 0.001 NA NA NA 
logX2 <-> logX2 0 NA 0.001 NA NA NA 
logX3 <-> logX3 0 NA 0.001 NA NA NA 
logY -> logY 1 NA 1 NA NA NA 
X -> logY 1 gamma 0.302 0.058 5.238 0 
ones -> logY 0 delta -0.361 0.083 -4.351 0 
ones -> Y 0 NA 1 NA NA NA 
logY -> logY1 0 NA 1 NA NA NA 
logY1 -> Y 0 NA 1 NA NA NA 
logY1 -> logY2 0 logY NA NA NA NA 
logY2 -> Y 0 NA 0.5 NA NA NA 
logY2 -> logY3 0 logY NA NA NA NA 
logY3 -> Y 0 NA 0.166 NA NA NA 
Y <-> Y 0 NA 0.001 NA NA NA 
logY <-> logY 0 sd_logY 0.406 0.036 11.15 0 
logY1 <-> logY1 0 NA 0.001 NA NA NA 
logY2 <-> logY2 0 NA 0.001 NA NA NA 
logY3 <-> logY3 0 NA 0.001 NA NA NA 
ones <-> ones 0 NA 0.001 NA NA NA 
ones -> ones 1 NA 1 NA NA NA 
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Table S7:  Estimated path coefficients for the Lake Washington case study involving 580 
temperature-dependent resource-consumer-predator dynamics (see Table S4 caption for details) 581 

Path Lag Name Estimate Std_Error z_value p_value 

Temp -> Cryptomonas 0 T_to_C -0.001 0.024 -0.06 0.952 
Temp2 -> Cryptomonas 0 T2_to_C -0.003 0.006 -0.498 0.618 
Temp -> Daphnia 0 T_D 0.385 0.074 5.196 0 
Temp2 -> Daphnia 0 T2_D -0.036 0.015 -2.378 0.017 
Leptodora -> Daphnia 1 beta NA NA NA NA 
Cryptomonas -> Daphnia 0 alpha NA NA NA NA 
Cryptomonas -> 
Cryptomonas 1 ar_C 0.758 0.038 19.716 0 
Daphnia -> Daphnia 1 ar_D 0.577 0.036 16.144 0 
Leptodora -> Leptodora 1 ar_L 0.348 0.077 4.533 0 
Temp -> Temp2 0 Temp NA NA NA NA 
Temp2 <-> Temp2 0 NA 0.001 NA NA NA 
alpha <-> alpha 0 NA 0.001 NA NA NA 
Temp -> alpha 0 T_alpha 0.169 0.044 3.848 0 
Temp2 -> alpha 0 T2_alpha -0.037 0.009 -4.171 0 
beta <-> beta 0 NA 0.001 NA NA NA 
Temp -> beta 0 T_beta 0.003 0.037 0.094 0.925 
Temp2 -> beta 0 T2_beta 0.013 0.007 1.809 0.07 
Temp <-> Temp 0 V[Temp] 3.825 0.137 27.932 0 
Daphnia <-> Daphnia 0 V[Daphnia] 1.218 0.07 17.472 0 
Leptodora <-> Leptodora 0 V[Leptodora] 1.373 0.069 19.904 0 
Cryptomonas <-> 
Cryptomonas 0 V[Cryptomonas] 0.953 0.041 23.043 0 
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Fig. S1 -- Graphical model for case study #2 involving Lotka-Volterra predator-prey dynamics 583 

(see Fig. 1 for details about graphical notation), log-abundance for prey 𝑙𝑛𝑥𝑡 and predator 𝑙𝑛𝑦𝑡, 584 

the Taylor-series approximation for abundance 𝑥̃𝑡 and 𝑦̃𝑡, a vector 𝑜𝑛𝑒𝑠 representing a model 585 

intercept, and the four estimated interaction parameters (𝛼, 𝛽, 𝛾, 𝛿). 586 

 587 

 588 
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Fig. S2 – Observed values (circles), estimated values (lines), and 95% confidence intervals 590 

(shaded area) for case study #3. 591 
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