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Abstract:

Ecologists are adapting structural causal modelling for spatial, phylogenetic, and time-series
analysis. However, ecological extensions of path analysis and structural equation models
(SEM) typically assume that interactions (“path coefficients”) are stationary, linear, and
additive, while ecological and evolutionary dynamics are often nonstationary, nonlinear, and
include statistical interactions.

Here, we combine moderated SEM (estimating path coefficients as model variables) with
dynamic SEM (estimating both simultaneous and lagged interactions among variables),
develop a new “path-lag-slope” notation to specify this combination, and demonstrate it
using a simulation experiment and three ecological case studies.

The simulation experiment confirms that an autocorrelated “random-slope” model can
estimate the nonstationary impact of one variable on another, but that the random slope is
shrunk towards a constant value as data become less informative. The first case study then
demonstrates nonstationarity by estimating an autoregressive slope linking a regional climate
index to local ocean temperature near Vancouver Island. The second demonstrates
nonlinearity by approximating Lotka-Volterra dynamics for two predator-prey systems,
which closely match estimates of interactions and carrying capacity from traditional
ordinary-differential equation methods. The third demonstrates statistical interactions by
using monthly plankton samples (1962-1994) to show that resource-consumer-predator
interactions in Lake Washington have a dome-shaped response to temperature.

We envision several uses in causal analysis: (1) testing whether path coefficients are
nonstationary; (2) estimating nonlinear responses given missing data; and (3) linking

ecological parameters to hypothesized drivers in applied modelling.
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Introduction

Ecologists are showing an increasing interest in causal analysis (Arif & MacNeil, 2022;
Byrnes & Dee, 2025; Grace, 2024; Larsen et al., 2019). Ecological applications of causal
analysis have typically used path analysis (PA) or structural equation models (SEM) to identify
direct and indirect consequences of hypothetical policy or environmental changes. These models
require hypothesizing linear structural relationships among a set of variables (e.g., A causes B
and B causes C), where the strength of relationships is then estimated from the covariance of
samples. The fitted model can be used to identify how a policy changing one variable results in
direct and indirect effects on other model variables (in the previous example, for example, a
change in B would affect C but not A, despite all variables being correlated).

In particular, ecologists are adapting SEM and PA for ecological contexts such phylogenetic,
spatial, and time-series analysis. For example, evolutionary ecologists are using phylogenetic
structural equation models (PSEM) or path analysis (PPA) to identify evolutionary relationships
among species traits (Thorson et al., 2023; von Hardenberg & Gonzalez-Voyer, 2013). Similarly,
community ecologists are developing spatial extensions of SEM to estimate species interactions
that underlie observed covariance in densities among species across sites (Papadogeorgou et al.,
2023; Thorson et al., 2025). Finally, population ecologists are extending prior developments in
multivariate autoregressive (MAR) models (Ives et al., 2003; Wootton & Emmerson, 2005) to
develop dynamic structural equation models (DSEM), which estimates both simultaneous and
lagged interactions using ecological time-series (Thorson et al., 2024), based on similar models
in psychology (Asparouhov et al., 2018).

Despite this growing interests, SEM and PA typically require assuming that ecological

relationships are stationary, linear, and additive. These assumptions conflict with the general
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recognition that many parameters of ecological models vary across time, space, and phylogenies
(Ives, 2022; Rollinson et al., 2021), that ecological relationships (e.g., metabolic response to
temperature) are nonlinear (Munch et al., 2018), and that species interactions might be context-
dependent such that regression models should include statistical interactions (Hixon & Carr,
1997). Existing extensions of SEM and PA can account for nonstationarity, nonlinearity, and
statistical interactions in some special cases. For example, when causal relationships are
unidirectional and data are free of missing values, ecologists can use generalized additive models
within “piecewise SEM” (Lefcheck, 2016) to estimate nonlinear linkages. Similarly, SEM (and
its spatial, temporal, and phylogenetic extensions) can incorporate latent variables to identify
some forms of nonstationarity (i.e., random covariation in average densities among sites).
Alternatively, SEM can be extended to incorporate “moderated” interactions, e.g., where the
effect of covariate X on response Y depends upon a moderating variable W (i.e., E(Y) = BxX +
BxwXW). The moderated variable W might be observed (such that XW is included as covariate
to represent the statistical interaction of X and W) or unobserved (such that Sy, W is treated as a
random-slope for covariate X). In either case, a “moderated-SEM” (MSEM) can be applied to
correct for the statistical interaction or nonstationary slope parameter. However, MSEM was not
discussed in recent ecological reviews for causal modelling (Arif & MacNeil, 2022; Byrnes &
Dee, 2025; Grace, 2024; Larsen et al., 2019), and has seen limited use in ecological modelling
(although see Papadogeorgou et al., 2023)

In this study, we demonstrate how SEM can be extended to estimate nonstationary
parameters, nonlinear relationships, and statistical interactions. We specifically combine DSEM
(which handles missing data as well as simultaneous and lagged relationships among variables)

with MSEM (which estimates nonstationarity, nonlinearity, and statistical interactions). We also
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introduce a novel “path-lag-slope” notation for specifying moderated DSEM (“MDSEM”)
available within the R-package dsem version 2.0.0. Finally, we demonstrate the model and
software using three varied examples. We specifically address (1) nonstationarity using a
varying-slopes model for the relationship between temperature and regional climate; (2)
nonlinearity using a SEM implementation of species interactions using the Lotka-Volterra
equations; and (3) and statistical interactions using a resource-consumer-predator model
involving species interactions that have a dome-shaped response to temperature.

Methods

We seek to extend dynamic structural equation models to include nonstationarity, nonlinearity,
and statistical interactions. To do so, we adapt moderated SEM (MSEM) for use in the Gaussian
Markov random field (GMREF) that is used when estimating dynamic SEM (DSEM). We start by
reviewing this GMRF implementation of DSEM.

DSEM describes the relationship among j € {1,2, .../} variables over t € {1,2, ... T} time-
intervals, assembled in a matrix X with dimension T' X J containing values x;; for each time and
variable. It is then fitted using a T X ] matrix Y containing measurements y;; (where y;; might
also include missing values that are specified as NA). We define operator vec(X) as stacking the
columns of X into a single vector with length T/, and X, as the J length row-vector containing x;;
for all variables in time t. DSEM also specifies that variables have unmodeled sources of
variation which result in exogenous variation E with dimension T X J, where vec(E) again stacks
columns into a single vector, and €, is the error in year t. DSEM then defines a vector-
autoregressive process for X;:

Xt = Boxt + let—l + Bzxt_z + + Et

— . “
Simultaneous Lag—1 Lag-2 Higher—order
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where B, are simultaneous interactions among variables, B; and B, are lag-1 and lag-2
interactions, and the model can include any arbitrary lag up to T — 1. This vector-autoregressive
notation is then rewritten as a joint simultaneous equation model (SEM), while assembling the
lag matrices (By, By, By, ...) in a joint path matrix Pjoi,c with dimensions T X T/:
vec(X) = Pjgincvec(X) + vec(E) (D
vec(E)~MVN(0, Vigine)
where vec(E) has variance Vj,in, with dimension TJ X T/. Algebra then shows that:
vec(X)~GMRF(0,Q) (2)
Q= (l - Pjrgint)ngilnt(l - Pjoint)
where the probability density for this GMRF can be efficiently evaluated to estimate values for
Pjoint-

To allow users to specify what combination of simultaneous and lagged effects are estimated
(i.e., the non-zero elements of lag-matrices lag matrices By, B, B,, ...), DSEM introduces a
“path-and-lag” notation. For example, for /] = 2 variables x; = (4;, By) over T = 3 times we
might specify that changing A; by A causes a lagged change of yA in B;, 1, represented in path-
and-lag notation as A — B, 1, . Each one-headed arrow in path-and-lag notation then defines a
path coefficient y, that links two variables as represented by J X J indicator matrix P;, and is
also associated with a lag-matrix Lg,; where g[k] is the specified lag for path coefficient k. In
our example with K = 1 path coefficient with a lag-1 effect g[1] = 1, this results in:

00 0 3)
Lg[]_] =11 0 0 5

01 0

and indicator matrix:



0 0
P, = [1 o) 4)
151  The joint path matrix is then assembled by summing the contribution of all K path coefficients:

K (5)
Pjoint = z Yie(Lgpig @ Py)
=1

152 where Pis a K X J X ] array containing all indicator matrices Py, and Ly @ Py is the
153  Kronecker product that results in a ] X TJ matrix to match the size of Pjginc. In our example,

154  this results in a joint-path matrix:

(6)

Pjoint =

S O O OO

T 1
o oo oo
coocooo
coocooo
coocooo
coocooo

<
Juy

155  where parameter y, is now duplicated across times.

156  Moderated variables

157  Moderated path analysis (Klein & Moosbrugger, 2000) extends the simultaneous equation to
158  include quadratic terms, X = Py vec(X) + vec(X)TNjointvec(X), where N is an asymmetric
159  TJ X T] matrix that contains quadratic effects. This then allows quadratic relationships among
160  variables, e.g., B = yA + vA?%, where y is the linear in matrix P and v is the quadratic effect of A
161 on B in N. We specify a moderated structural equation model that has a similar property but
162  using methods that can be written as a GMREF, as we next show. In particular, we introduce

163  “path-lag-slope” notation, where e.g., A — B, 0, C allows a variable C to replace a stationary
164  parameter when representing the slope linking A to B.

165 Specifically, we replace a stationary parameter y; with a specified model variable x; that can

166  then vary over time. This can be written as:
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K (7)
Pioint = Z(Lg[k]zk) X Py
k=1
where:
Vil if path is stationary with value y, (8)
k= diag(xj[k]) if path is nonstationary with value x;;

and where diag(xj[k]) constructs a T X T diagonal matrix from vector X;) for the variable j[k]

that replaces path coefficient k, such that Ly[x1Z then applies a lag operator Lgx) such that

X¢, jik] 18 the impact of x; ; on x.,; where t, = t;. We propose two interpretations for this

expanded specification for DSEM (see Fig. 1 for examples):

1. Random slopes: The variable Xy that is used instead of path coefficient k could be
interpreted as a random slope (Gelman & Hill, 2007). For example, we might have a model
with | = 3 variables, X; = (4, B;, Bt), where [; is effect of A; on By, By = ug + f:A; + €,
and written as A — B, 0, beta in arrow-lag-slope notation (see Fig. 1B).

2. Product of two variables in a graphical model: The joint path matrix Pjs;y defines a
graphical model, where many edges (arrows representing causal effects) can collide in a
single node (vertex representing a response variable), and this collision corresponds to
adding together the contribution of these multiple predictor-variables to predict a single
response-variable. However, using “moderator” variable X;p; to represent the impact of
predictor X, on response Xy, defines a new operator in the graph, where we instead take the
product of two variables X, and X;[;,; when estimating their impact on X;,. This interaction
can be viewed as a “composite variable”, which we visualize as a diamond to distinguish it
from measured (“manifest”) variables as squares or unobserved (“latent”) variables as circles

(see Fig. 1C). For example, we might specity C; = [4A4; + BapAi Bt + € by specifying four



186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

variables X; = (A4;, B, ABg, C¢), and using arrow-lag-slope notation to specify A - AB, 0, B.
The resulting model can be viewed as a time-series version of a multi-level probabilistic
graphical model (Koller & Friedman, 2009).

These different interpretations arise even when one or more variables has missing values.

For example, we might want to estimate the impact of temperature T on other variables.
However, species densities might initially increase and then eventually decrease with increases in
temperature (a “dome-shaped temperature response”). This can be approximated as a quadratic
effect Y = B;T + Br2T?, and we can construct the temperature-squared term as the product of
temperature and itself (T — T, 0, T in path-lag-slope notation). T? is then a latent variable,
which is calculated from estimated (imputed) values of T. Alternatively, we can use a third-order
Taylor-series (Maclaurin) approximation:

3 A 9)
i=0 it
and using a power-series for covariate A to approximate an exponential function (Fig. 1D), with
error bounded by e!4! '%.

Defining the path matrix Pje;n, using a moderated dynamic structural equation model
(MDSEM) allows us to approximate interactions, exponential, and polynomial effects while also
interpolating missing data, estimating direct and indirect effects, and constraining model
covariance using domain knowledge. The MDSEM is available in the R package dsem (Thorson
et al., 2024) version 2.0.0, which uses package TMB (Kristensen et al., 2016) to calculate the
Laplace approximation (Skaug & Fournier, 2006) when calculating the marginal likelihood of
parameters while integrating across random effects, and the Eigen package to efficiently

calculate sparse-matrix computations (Guennebaud et al., 2010). We then optimize the marginal



207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

likelihood in the R statistical environment (R Core Team, 2023), and use a generalization of the
delta method (Kass & Steftey, 1989) to calculate standard errors for parameters and derived
quantities.
Simulation experiment: Autocorrelated random-slopes model
We first confirm that MDSEM can accurately recover a model variable Xy that is treated as a
varying slope representing the impact of one variable on another. To do so, we simulation data a
“random slopes” time-series model:

A~Normal(0,c%?) (10)

B,~Normal(B.A, 65)

B =0.5 (sin (Zn;: 11) + 1)

where X = (A, By, Be) 1s the set of ] = 3 variables over T = 51 times, and slope f; fluctuates

p1 = 1to f,5 = 0 and back to f5; = 1. We then fit MDSEM observing y, = (4, B;, NA) and
specifying a first-order autoregressive process on the slope variable. We contrast this with a
conventional DSEM fitting the /] = 2 observed variables and assuming that slope f is stationary
over time. We specify g, = 1 and explore three scenarios that have different magnitudes of error
in the response, gz = {0.2,0.5,1.0}. For each scenario, we simulate 500 simulation replicates,
and record the estimated S, (for the MDSEM) or £ for the (DSEM), and compare these with the
known true value.

Case 1: Random slopes linking regional and local habitat

We next demonstrate using MDSEM as a varying slope model using real-world data. To do so,
we analyze the relationship between sea surface temperatures at Departure Bay (Vancouver

Island, British Columbia, Canada) and a regional climate index (the Pacific Decadal Oscillation,
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PDO), using annual measurements in January from 1914-2017 (see Table S1 for code). We seek

to estimate how the relationship has changed during 100 years of climate change:

Normal(uy, 0) ift = 1914 (11)
E |Normal(py (X, — py) + py, 02) ift > 1914

{ Normal(ug, gf) ift = 1914
g Normal(pﬁ(ﬁt_l — ,u/;) + ,u/;,aﬁ) ift >1914

Normal(uy, 6) ift =1914
© | Normal(py (Y;_y — py) + Be(Xe — pix) + py, o) ift > 1914

where we estimate the conditional variance and first-order autocorrelation for each of | = 3
variables, where PDO X, and local temperature Y; are both observed and f; is a latent variable
representing the time-varying slope.

Case 2: Lotka-Volterra predator-prey dynamics

We next demonstrate using MDSEM to approximate a mechanistic model that involves a
nonlinear relationship among variables. To do so, we demonstrate it using the Lotka-Volterra
model, which remains one of the most widely-taught descriptions for predator-prey dynamics. It

defines an ordinary differential equation for the abundance of prey X; and predators Y;:

d
axt = aXt - ﬁXth (12)

d
%Yt =yX:Y, — oY,
where a is the per-capita growth rate for prey, [ is the prey mortality per predator-prey

encounter, y is the predator growth rate per encounter, and § is the predator mortality rate in the

absence of encounters. We first reformulate in terms of log-abundance:

ilo (X)—iiX =a — BY, (13)
dt Be t_Xtdt t = t
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dl (Y)—ldY—X 0
dtoge t _Ytdt t = YA

and then use the 3™-order Taylor series approximation to the exponential function, X, =

log(Xp)* 5 log(v)! L. o
2 o 08X and v, =%, loglte), Finally, we use a first-order forwards-Euler approximation to
i! i!

the ODE, and add process errors representing unmeasured variation in productivity for the prey
(€¢,1) or predator (€;,):
log(X;11) = log(X,) + a — BY; + €1 (14)
log(Ye11) = log(Yy) +yX, — 6 + €t,2

where this approximation can be fitted using MDSEM. We then compare MDSEM estimates

Opsem = (@psems Posems Opsems Posem) With the maximum-likelihood estimate Bgpg resulting

from a 3™-order Runge-Kutta ODE solver implemented using RTMB (Kristensen, 2024).

We specifically compare Opsgy and Ogpg using two examples:

1. Hare-Lynx in pelt records from Hudson Bay: We use records of pelts for Canada Lynx and
their prey snowshoe hare from Hudson Bay 1900-1920, extracted from Gotelli (2008 Fig.
6.16) and originating elsewhere (Elton & Nicholson, 1942; MacLulich, 1937);

2. Didinium-Paramesium microcosm experiment. We use records of Paramesium aurelia and
Didinium nasutum in a microcosm experiment at 0.5 Cerophyll concentration measured
every 12 hours over 35 days, i.e., T = 71 (Veilleux, 1979 Fig. 11a), as previously digitized
(Jost & Ellner, 2000 Fig. 1).

In each case, we randomly drop 10% of measurements to demonstrate the ability to impute

missing values jointly with estimating parameters.

Case 3: Temperature-dependent resource-consumer-predator dynamics



257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

Finally, we demonstrate using MDSEM to estimate how covariates can moderate variation in
slopes over time including polynomial effects. To do so, we estimate a quadratic impact of
temperature on species interactions, using monthly measurements of Temperature (W; in
Celcius), Cryptomonas (resource, C; in log-abundance), Daphnia (consumer, D; in log-
abundance), and Leptodora (predator, L; in log-abundance) in Lake Washington from 1962-
1994, T = 396 (Hampton et al., 2006). We specifically focus on dynamics for Daphnia, and
estimate a quadratic impact of temperature on Cryptomonas and Daphnia abundance:
Wi = pwWe_1 + €wy (15)
Ce = pic + pc(Cemy — fie) + acWe + BWE + €ce
Dy = up + pp(De—y — tip) + apWy + BpWE + v (Ce — pie) + 8¢(Le—y — ) + €yt
Ly =pp +pr(Le—y — ) +€ce

We also estimate a simultaneous impact of Cryptomonas on Daphnia that varies over time
following a quadratic temperature response:

Ve =ty + oy (Veor — 1) + @, We + B, W7 + €, (16)
and a one-month lagged impact of Leptodora on Daphnia that also varies over time following a
quadratic temperatures response:

8¢ = ps + ps(Oe-1 — ts) + asWe + BsWE + €5, (16)
We then use a two-sided Wald test to identify which of the eight temperature parameters are
statistically significant (p < 0.05).
Results
Simulation experiment: Autocorrelated random-slopes model
The simulation experiment confirms that MDSEM can accurately estimate autocorrelated

variation for a slope parameter measuring the impact of one variable on another (Fig. 2).
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However, as error in the response variable increases (from left to right panel of Fig. 2): (1) the
random-slope estimate shrinks towards the average slope value across time (i.e., red line shrinks
towards blue line), and (2) the simulation interval (shaded area) increases in width. Therefore,
the ability of MDSEM to estimate a path coefficient as a latent variable depends upon the quality
of available data.

Case 1. Random slopes linking regional and local habitat

We first confirm that a time-varying slope can be estimated using a latent variable (e.g.,
following an autoregressive process) as the slope parameter. In the random-slopes model
predicting sea surface temperature at Departure Bay from the Pacific Decadal Oscillation (Fig.
2), the model estimates stronger autocorrelation for the varying slope (0.87) than PDO (0.49) or
the conditional errors in temperature (0.11). Inspecting the estimated slope, we see the weakest
association from 1915-1925, and a relatively stable slope from 1940-2017 (Fig. 3 3" row). As
expected, estimating a stationary slope (0.37) is nearly the midpoint of the estimated values when
allowing the slope to be nonstationary.

Case 2: Lotka-Volterra predator-prey dynamics

We next confirm that we can use latent-moderated interactions to approximate a nonlinear (e.g.,
exponential) function with the widely used Lotka-Volterra model for predator-prey dynamics.
Comparing interaction estimates from the MDSEM with a state-space solution to the ODE (Fig.
4), we see that the two largely agree in sign and magnitude. Differences become more
pronounced for larger (> 0.5) estimated interactions, but the estimated carrying capacity is close
(and within confidence intervals) for both implementations. Similarly, both models interpolate
missing values similarly (Fig. 5), and in a manner that is consistent with the oscillatory dynamics

of the system.
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Case 3: Temperature-dependent resource-consumer-predator dynamics
Finally, we confirm that we can use latent-moderated interactions to include polynomial
covariate effects, specifically specifying a quadratic temperature response on both intercepts
(average density) and slopes (interactions) in a resource-consumer-predator model. Inspecting
the resulting graph (Fig. 6), we see that linear and quadratic temperature effects are significant
for the consumer (Daphnia) density, as well as the impact of the resource (Cryptomonas) on the
consumer, whereas the other temperature responses are not statistically significant. Examining
the estimated temperature-response curve (Fig. 7), the two significant effects both have a positive
and dome-shaped response, where densities and interactions are highest at 12-14 degrees Celcius
(Fig. 7B and 7C). By contrast, the other two temperature-response curves (Fig. 7A and 7C) have
a confidence interval that could include a constant value over a large portion of the range of
temperatures.
Discussion

In this paper, we demonstrated how a moderated dynamic structural equation model
(MDSEM) can extend causal analysis to include nonstationarity, nonlinearity, and statistical
interactions, while also interpolating missing values, specifying latent variables, and estimating
both simultaneous and lagged relationships among variables. We used a simulation experiment
to confirm that sinusoidal variation in a slope linking two variables can be estimated as a
autoregressive latent variable, and that the estimated slope is shrunk towards a constant value as
data become less informative. We then demonstrated nonstationarity using a time-varying
relationship between local and regional climate, nonlinearity using Lotka-Volterra dynamics, and
statistical interactions by estimating temperature-dependent interactions in a resource-consumer-

predator system. The method is available in an R-package dsem (starting with release 2.0.0), and
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we next discuss how this MDSEM might be useful for a range of theoretical and applied
questions throughout ecology.

SEM (and its spatial, phylogenetic, and time-series extensions) are useful for applied
ecologists because they address several drawbacks of conventional linear regression (e.g.,
generalized linear models and analysis of variance). In particular, SEM addresses the problem of
collinearity (Dormann et al., 2013) by using domain knowledge to inform predictions given
novel combinations of predictors, and also accounts for missing values for both predictor and
response variables by specifying a joint distribution for both. Despite these advantages,
phylogenetic, spatial, and time-series applications of SEM have previously lacked any capability
to estimate nonlinearity, nonstationarity, and statistical interactions, which are also of general
interest in ecology. By addressing these challenges, moderated SEM seems suitable for the wide
range of uses discussed in recent ecological reviews (Arif & MacNeil, 2022; Byrnes & Dee,
2025; Grace, 2024; Larsen et al., 2019). In particular, DSEM has previously required assuming
that path coefficients (i.e., simultaneous and lagged interactions among variables) are constant
over time. After developing a DSEM based on scientific knowledge, we recommend that
analysts sequentially test the model when replacing each path coefficient with a model variable
(e.g., which follows an autoregressive process), and use model selection to evaluate the strength
of evidence that the path coefficient is stationary or varies over time.

In addition to a growing interest in causal analysis using SEM and PA, ecologists use
custom-built hierarchical models (i.e., integrated-population or stock-assessment models [[PMs])
to predict the likely effect of hypothetical policy changes (Kéry & Schaub, 2021). IPMs are a
powerful tool for applied ecologists because they allow analysts to incorporate nonlinear and

state-space features that are specifically suited to their study system. However, IPMs are often
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specified using Bayesian hierarchical modelling, which then requires specifying a directed
acyclic graph (DAG) for linkages among system components (i.e., avoiding cyclic dependencies
among system variables). By contrast, SEM (including DSEM and MDSEM) can estimate these
cyclic dependencies (A = B — C — A) while simultaneously imputing missing variables.
Additionally, the “arrow-lag-slope” notation developed here continues to provide a high-level
interface for specifying system linkages using MDSEM. We believe that a simple and expressive
interface is necessary for broad adoption of any statistical tool for ecologists, similar to how the
‘formula’ interface for linear models (Wilkinson & Rogers, 1973) has led to broad adoption
among ecologists of linear mixed and generalized additive models. Ultimately, we envision
embedding MDSEM as an interface to specify linkages among process errors and/or covariates
for use within IPMs (Champagnat et al., 2025).

Finally, we showed how the output of MDSEM can be plotted to summarize context-
dependent and nonstationary relationships (e.g., Fig 2, 6, and S1). However, analysts will also
want to compute the total effect of an exogenous (policy) change in system variables. In

conventional DSEM, the total effect is computed from the Pjin¢, which is assumed to be

stationary over time. Specifically, an analyst might envision a policy that changes the states X to
X + D, where change-matrix D could represent a pulse experiment (i.e., non-zero values in only
a single time) or press experiment (i.e., non-zero values continuing indefinitely). This change

causes in a first-order effect Pjointvec(D), which in turn causes a second-order effect

szointvec(D)T, and where the total effects is then (I — Pjoint)_lvec(D). By contrast, MDSEM

allows Py to vary due to other latent or endogenous variables. Computing the total effect

therefore involves a first-order effect, P;vec(D) where P; = Pj,inc. However, the second-order

effect requires updated path matrix P,, calculated by updating Pj,;n, given the previous first-
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order effects (Eq. 5A-5B), where the second-order effect is P,P;vec(D). By extension, the total

effect is the sum across all such partial effects, vec(D)T (X5, ]_[ﬁ,:l P,,). We therefore

acknowledge that interpreting the total effect is more complicated in moderated SEM than in

conventional cases.
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489  Fig. 1 — Graphical models illustrating potential uses for latent-moderated dynamic structural
490 equation models (MDSEM), where measured (“manifest”) variables are boxes, unmeasured
491  (“latent”) variables are circles, varying slopes (“latent-moderated paths™) are diamonds, and
492  arrows point from predictor to response variable while listing either a Greek symbol

493  (representing an estimated parameter) or a Arabic numeral (representing a value that is fixed a
494  priori), and also showing the resulting equations below each panel. We contrast the simple case
495  of a regression model with two independent predictors (panel A), a regression with a statistical
496 interaction (panel B), a regression with a randomly varying slope (panel C), and a 3™-order

497  Taylor series approximation to the exponential function (panel D).

(A) Additive (B) Interaction
At Bt At \ Bt
Ba Pe Ba @
\ / Bas
CT CT
Ct = BaAt + PeBt + & Ct = BaAr + PasABt + &
(C) Varying slope (D) Approximated exponential
1

N
A o A (A2

<
)
©

1 17
v
B, 1 —1—> B,
Ct = BtAt + & Bt = B@At + &

498



499  Fig. 2 — Results from a simulation experiment involving a random slope model, A; = ;B + €;
500  where slope f3; (y-axis) follows a sinusoidal pattern (black line) over 50 times (x-axis), and we
501  vary the standard deviation of process errors €; from low (o5 = 0.2, left panel) to medium (o =
502 0.5, middle panel) or high (o5 = 1, right panel) levels, while estimating either a first-order

503  autoregressive process for the slope (red line and shading) or a constant slope (blue line and

504  shading), where the lines show the mean across 500 simulation replicates, and the shading shows
505  the 10% and 90% simulation interval for each model.
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508 Fig. 2 — Graphical model and parameter estimates for case study #1, where the Pacific Decadal
509  Oscillation (P;) is used to predict sea surface temperature at Departure Bay (T;) with a slope (£5;)
510 that varies as a first-order autoregressive process over time (see Fig. 1 for details about graphical
511  notation).
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513  Fig. 3 — Observed values (circles), estimated values (lines), and 95% confidence intervals

514  (shaded area) for case study #1, showing the Pacific Decadal Oscillation (PDO; top panel),

515  Temperature (2" panel), and estimated slope (3™ panel), contrasted with the slope estimated by
516  an alternative model when assuming that it is stationary over time (4" panel), and using a shared

517  y-axis scale for the slope estimates (3™ and 4™ panels).
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522  Fig. 4 — Estimated interaction parameters (, 5,7, §, dots) and 95% confidence intervals

523  (whiskers) for case study #2 involving Lotka-Volterra dynamics, as well as the predicted carrying

Y

5 estimated using the latent-moderated

524  capacity for the prey K, = ﬁ and predator K,, =

525  dynamic structural equation model with a Taylor-series approximation to a nonlinear
526  (exponential) function (red) or a state-space ODE model (blue), for each of two case studies
527  involving Hare-Lynx dynamics in Hudson Bay (top panel), or a Paramesium-Didinium

528  microcosm experiment (bottom panel)
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531  Fig. 5 -- Observed values (circles), estimated values (lines), and 95% confidence intervals

532  (shaded area) for case study #2 involving Lotka-Volterra dynamics, contrasting estimates using
533 the latent-moderated dynamic structural equation model (red) or the state-space ODE model
534  (blue). Note that the MDSEM assumes that measurements are provided without error and hence
535  only shows confidence intervals for the 10% of observations that were randomly selected and
536  dropped prior to fitting the model.
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545

Fig. 6 — Graphical model and parameter estimates for case study #3 involving temperature-
dependent resource-consumer-predator interactions (see Fig. 1 for details about graphical
notation), showing Temperature T, and its polynomial expansion as latent variable T2, resource
Chryptomonas C;, consumer Dapnia D;, and predator Leptodora L, and showing the time-
varying impact of resource on consumers y; or predators on consumers 8;. We also distinguish
linkages (arrows) that are statistically significant (black arrows) or not (grey arrows).
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546  Fig. 7 — Estimated quadratic temperature-response curves (lines) and 95% confidence intervals
547  (shaded area), showing the temperature impact on resource (top-left), consumers (top-right), the
548  impact of resource on consumers (bottom-left), and the impact of predators on consumers

549  (bottom-right)
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552  Table S1: Illustrating the code used to fit case study #1, including the arrow-lag-slope notation
553  (left column), defining a time-series object including all variables (right column top), and the call
554  to package dsem to fit the model (right column bottom).

Case 1: Varying slopes

# Model # Data
sem =" tsdata = ts(data.frame(
PDO -> Temp, 0, slope Temp = Combo[,2],
slope > slope, 1, ar_slope PDO = Combo[,3],
PDO -> PDO, 1, ar PDO slope = NA
Temp -> Temp, 1, ar Temp ), start =1914)
# Fit
fit = dsem(
tsdata = tsdata,
sem = sem,
estimate_mu = c¢(“Temp”,”PDO”,”’slope”)
)

555

556



557

Table S2: Illustrating the code used to fit case study #2 (see Table S1 caption for more details).

Case 2: Lotka-Volterra

# Model

sem ="
# Main interactions
logX ->logX, 1, NA, 1
ones -> logX, 0, alpha
Y ->logX, 1, beta, -0.1

# Form X \approx exp(logX)
ones -> X, 0, NA, 1

logX ->logX1, 0, NA, 1
logX1 > X, 0, NA, 1

logX1 ->logX2, 0, logX
logX2 -> X, 0, NA, 0.5
logX2 ->1ogX3, 0, logX
logX3 > X, 0, NA, 0.166

# Variances

X <->1X,0,NA, 0.001

logX <->logX, 0, sd_logX
logX1 <->logX1, 0, NA, 0.001
logX2 <->logX2, 0, NA, 0.001
logX3 <->logX3, 0, NA, 0.001

# Main interactions

logY ->logY, 1, NA, 1

X ->logy, 1, gamma
ones -> logy, 0, delta, -0.1

# Form Y \approx exp(logY)
ones ->Y, 0, NA, 1

logY ->logY1, 0, NA, 1
logY1 ->Y, 0, NA, 1

logY1 ->logY2, 0, logY
logY2 ->Y, 0, NA, 0.5
logY2 ->logY3, 0, logY
logY3 ->Y, 0, NA, 0.166

# Variances

Y <->Y, 0, NA, 0.001

logY <->logY, 0, sd_logY
logY1 <->1logY1, 0, NA, 0.001
logY2 <->1logY2, 0, NA, 0.001
logY3 <->1logY3, 0, NA, 0.001

# Data

Z = cbind(
logX = log(dat$X),
logY = log(dat$Y),
X =NA,
Y =NA,
logX1 =NA,
logY1 =NA,
logX2 = NA,
logY2 =NA,
logX3 =NA,
logY3 =NA,
ones = 1

)

# Fit

fit = dsem(
tsdata = ts(Z),
sem = sem,
estimate_mu = vector(),

)




# Dummy constant
ones <-> ones, 0, NA, 0.001
ones ->ones, 1, NA, 1

"
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Table S3: Illustrating the code used to fit case study #3 (see Table S1 caption for more details).

Case 3: Temperature-dependent resource-consumer-predator

# Model
sem ="

# Temperature effect on resource density
Temp -> Cryptomonas, 0, T to C
Temp2 -> Cryptomonas, 0, T2 to C

# Temperature effect on consumer density
Temp -> Daphnia, 0, T D
Temp?2 -> Daphnia, 0, T2 D

# Impacts on consumer
Cryptomonas -> Daphnia, 0, alpha # C D
Leptodora -> Daphnia, 1, beta # alpha

# Density dependence

Cryptomonas -> Cryptomonas, 1, ar C
Daphnia -> Daphnia, 1, ar D
Leptodora -> Leptodora, 1, ar L

# Form Temp”2
Temp -> Temp2, 0, Temp
Temp2 <-> Temp2, 0, NA, 0.001

# Temperature on resource-consumer slope
alpha <->alpha, 0, NA, 0.001

Temp -> alpha, 0, T alpha

Temp2 -> alpha, 0, T2 alpha

# Temperature on predator-consumer slope
beta <-> beta, 0, NA, 0.001

Temp -> beta, 0, T beta

Temp?2 -> beta, 0, T2 beta

# Data

Z = ts(cbind(
dat$Temp,
dat$Daphnia,
dat$Leptodora,
dat$Cryptomonas,
alpha = NA,
Temp2 = NA,
beta = NA

), start = 1962, freq = 12)

# Fit
fit = dsem(
tsdata=7Z,
sem = sem,
estimate _mu = ¢(
"Daphnia",
"Leptodora",
"Cryptomonas",
"alpha",
"beta"
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Table S4: Estimated path coefficients for the Departure Bay case study involving a varying-
slope model linking the Pacific Decadal Oscillation (PDO) to temperatures at a lighthouse near

Departure Bay, listing the model path (first column), time lag (2" column), parameter name (3™

column), maximum-likelihood estimate and asymptotic standard error (4™ and 5 columns), and
the z-value and p-value from a two-sided Wald test (6™ and 7" columns), where columns 4-7 are

NA for parameters that are either fixed, or which vary over time (i.e., the parameter Name

matches a model variable, such as the 1% row).

Path Lag Name Estimate Std_Error z_value p_value
PDO ->Temp 0 slope NA NA NA NA
slope -> slope 1 ar_slope 0.869 0.142 6.105 0

PDO ->PDO 1 ar_PDO 0.487 0.088 5.529 0

Temp -> Temp 1 ar_Temp 0.112 0.099 1.133 0.257
Temp <->Temp 0 V[Temp] 0.637 0.055 11.618 0

PDO <->PDO 0 V[PDO] 0.967 0.067 14.339 0

slope <-> slope 0 V[slope] 0.119 0.082 1.453 0.146




573  Table S5: Estimated path coefficients for the Lynx-Hare case study involving Lotka-Volterra
574  predator-prey dynamics (see Table S4 caption for details)

Path Lag Name Estimate Std_Error z_value p_value
logX -> logX 1 NA 1 NA NA NA
ones -> logX 0 alpha 0.39 0.079 4,925 0
Y -> logX 1 beta -0.32 0.05 -6.382 0
ones -> X 0 NA 1 NA NA NA
logX -> logX1 0 NA 1 NA NA NA
logX1->X 0 NA 1 NA NA NA
logX1 -> logXx2 0 logX NA NA NA NA
logX2 -> X 0 NA 0.5 NA NA NA
logX2 -> logX3 0 logX NA NA NA NA
logX3 -> X 0 NA 0.166 NA NA NA
X<->X 0 NA 0.001 NA NA NA
logX <-> logX 0 sd_logX 0.225 0.037 6.025 0
logX1 <-> logX1 0 NA 0.001 NA NA NA
logX2 <-> logX2 0 NA 0.001 NA NA NA
logX3 <-> logX3 0 NA 0.001 NA NA NA
logY -> logY 1 NA 1 NA NA NA
X->logY 1 gamma 0.639 0.105 6.075 0
ones -> logY 0 delta -0.765 0.142 -5.372 0
ones->Y 0 NA 1 NA NA NA
logY -> logY1 0 NA 1 NA NA NA
logYl->Y 0 NA 1 NA NA NA
logY1-> logY2 0 logY NA NA NA NA
logy2->Y 0 NA 0.5 NA NA NA
logY2 -> logY3 0 logY NA NA NA NA
logY3->Y 0 NA 0.166 NA NA NA
Y<->Y 0 NA 0.001 NA NA NA
logY <-> logY 0 sd_logY 0.352 0.06 5.908 0
logY1 <-> logY1 0 NA 0.001 NA NA NA
logY2 <-> logY2 0 NA 0.001 NA NA NA
logY3 <-> logY3 0 NA 0.001 NA NA NA
ones <->ones 0 NA 0.001 NA NA NA
ones ->ones 1 NA 1 NA NA NA
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576  Table S6: Estimated path coefficients for the Didinium-Paramesium case study involving Lotka-
577  Volterra predator-prey dynamics (see Table S4 caption for details)

Path Lag Name Estimate Std_Error z_value p_value
logX -> logX 1 NA 1 NA NA NA
ones -> logX 0 alpha 0.523 0.105 5.001 0
Y -> logX 1 beta -0.44 0.078 5611 0
ones -> X 0 NA 1 NA NA NA
logX -> logX1 0 NA 1 NA NA NA
logX1->X 0 NA 1 NA NA NA
logX1 -> logXx2 0 logX NA NA NA NA
logX2 -> X 0 NA 0.5 NA NA NA
logX2 -> logX3 0 logX NA NA NA NA
logX3 -> X 0 NA 0.166 NA NA NA
X<->X 0 NA 0.001 NA NA NA
logX <-> logX 0 sd_logX 0.429 0.038 11.143 0
logX1 <-> logX1 0 NA 0.001 NA NA NA
logX2 <-> logX2 0 NA 0.001 NA NA NA
logX3 <-> logX3 0 NA 0.001 NA NA NA
logY -> logY 1 NA 1 NA NA NA
X->logY 1 gamma 0.302 0.058 5.238 0
ones -> logY 0 delta -0.361 0.083 4351 O
ones->Y 0 NA 1 NA NA NA
logY -> logY1 0 NA 1 NA NA NA
logYl->Y 0 NA 1 NA NA NA
logY1-> logY2 0 logY NA NA NA NA
logy2->Y 0 NA 0.5 NA NA NA
logY2 -> logY3 0 logY NA NA NA NA
logY3->Y 0 NA 0.166 NA NA NA
Y<->Y 0 NA 0.001 NA NA NA
logY <-> logY 0 sd_logY 0.406 0.036 11.15 0
logY1 <-> logY1 0 NA 0.001 NA NA NA
logY2 <-> logY2 0 NA 0.001 NA NA NA
logY3 <-> logY3 0 NA 0.001 NA NA NA
ones <->ones 0 NA 0.001 NA NA NA
ones ->ones 1 NA 1 NA NA NA
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Table S7: Estimated path coefficients for the Lake Washington case study involving
temperature-dependent resource-consumer-predator dynamics (see Table S4 caption for details)

Path Lag Name Estimate Std_Error z_value p_value
Temp -> Cryptomonas 0 T_to_C -0.001 0.024 -0.06 0.952
Temp2 -> Cryptomonas 0 T2_to_C -0.003 0.006 -0.498 0.618
Temp -> Daphnia 0 D 0.385 0.074 5.196 0
Temp2 -> Daphnia 0 T2_D -0.036 0.015 -2.378 0.017
Leptodora -> Daphnia 1 beta NA NA NA NA
Cryptomonas -> Daphnia 0 alpha NA NA NA NA
Cryptomonas ->

Cryptomonas 1 ar_C 0.758 0.038 19.716 0
Daphnia -> Daphnia 1 ar_D 0.577 0.036 16.144 0
Leptodora -> Leptodora 1 ar_L 0.348 0.077 4.533 0
Temp -> Temp2 0 Temp NA NA NA NA
Temp2 <->Temp2 0 NA 0.001 NA NA NA
alpha <-> alpha 0 NA 0.001 NA NA NA
Temp ->alpha 0 T_alpha 0.169 0.044 3.848 0
Temp2 -> alpha 0 T2_alpha -0.037 0.009 4171 0
beta <-> beta 0 NA 0.001 NA NA NA
Temp -> beta 0 T_beta 0.003 0.037 0.094 0.925
Temp2 -> beta 0 T2_beta 0.013 0.007 1.809 0.07
Temp <->Temp 0 V[Temp] 3.825 0.137 27932 0
Daphnia <-> Daphnia 0 V[Daphnia] 1.218 0.07 17472 0
Leptodora <-> Leptodora 0 V[Leptodora] 1.373 0.069 19904 0
Cryptomonas <->

Cryptomonas 0 V[Cryptomonas] 0.953 0.041 23.043 0
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Fig. S1 -- Graphical model for case study #2 involving Lotka-Volterra predator-prey dynamics
(see Fig. 1 for details about graphical notation), log-abundance for prey Inx; and predator Iny;,
the Taylor-series approximation for abundance X; and ¥;, a vector ones representing a model

intercept, and the four estimated interaction parameters (, 5,7, 6).




590  Fig. S2 — Observed values (circles), estimated values (lines), and 95% confidence intervals

591  (shaded area) for case study #3.
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