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Abstract

Understanding the causal effects of genetic mutations is essential for explaining fitness variation,
forecasting evolutionary trajectories and assessing extinction risk, yet remains a fundamental
challenge, particularly in natural populations. While amino acid substitutions can alter protein
structure and function, mutations affecting gene regulation can also have significant fitness
consequences. In this Opinion Piece, we argue that epigenetic mechanisms, given their central role in
gene regulation, likely modulate the deleteriousness of mutations. Drawing on evidence from humans
and model organisms, we identify three ways in which epigenetic mechanisms might interact with
deleterious mutations. Specifically, we hypothesize that epigenetic regulation may (i) be disrupted by
deleterious mutations in non-coding regions and epigenetic regulator genes; (ii) buffer the expression
of deleterious mutations; and (iii) contribute to the repair and purging of deleterious mutations.
Advances in next- and third-generation sequencing and bioinformatics now allow these hypotheses to
be empirically tested in wild populations. As many species face ongoing population declines,
unravelling how epigenetic mechanisms influence the functional effects of mutations is vital for
understanding fitness variation, guiding evolutionary predictions and informing conservation

strategies.
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§1. Introduction

Quantifying the functional effects of genetic mutations (Box 1) poses a major challenge across medical
science, agriculture, evolutionary biology and conservation [1-47]. A mutation can affect a phenotype
by changing the amino acid sequence (i.e. a coding mutation, see the Glossary for descriptions of the
terms highlighted in bold), resulting in altered or non-functional proteins, or by affecting the
transcription or translation of a gene, resulting in the disruption of gene regulation (i.e. a non-coding
mutation) [3,5]. The functional effects of a given mutation further depend on the extent to which it

interacts with other genomic features [67].

De novo mutations can be neutral, deleterious or advantageous, and their spread within a population
depends on population genetic forces such as selection and drift [77]. The distribution of fitness effects
of mutations is influenced by multiple factors including dominance, epistatic interactions, the
environmental context and adaptation [87]. Deleterious mutations (Box 1) reduce fitness when
expressed and contribute to an individual’s mutation load. Experimental studies of model organisms,
where mutations are induced (chemically or through ionizing radiation) or allowed to accumulate (by
propagating inbred or bottlenecked lines under minimal selection for many generations) have
demonstrated that deleterious mutations can reduce fitness by affecting physiological performance
[97, morphology [107] and the expression of sexual traits [11,127]. Their fitness effects vary from
being lethal to having weaker, context-dependent effects later in life, with corresponding variation in
the strength of selection acting upon them. A detailed mechanistic understanding of the phenotypic

effects of deleterious mutations therefore requires the integration of genomic and fitness data.

More than sixty years ago, Jacob and Monod argued that a perfectly good enzyme could be deleterious
if it were synthesized under the wrong conditions [137]. Their work was among the first to emphasise
how coding and non-coding mutations could be quantitatively different, with the latter affecting how
and when enzymes are transcribed [147]. Expressing the correct genes at the right time and at the
appropriate dosage is essential for quantitative traits involved in development [ 157, morphology [16]
and behaviour [177]. Hence, non-coding mutations and other factors that disrupt the fine-tuning of
gene regulation could disproportionately affect quantitative traits linked to growth, survival and

reproduction [14].

Epigenetic mechanisms (Box 2; Figure 1) influence gene expression without altering the underlying
nucleotide sequence [187, making them key players in the fine-tuning of gene regulation [197.
Examples of epigenetic mechanisms include DNA methylation, histone modifications and other
marks that alter chromatin accessibility [187. Epigenetic regulation primarily operates at the

transcriptional level, determining whether a gene is transcribed into mRNA and the amount of mRNA
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produced. Epigenetic mechanisms can also influence other levels of gene regulation including
translation, where mRNA is translated into protein, and post-translation, where protein activity,
stability and localization are fine-tuned 20,217, for example through the expression of RNA-binding

proteins [227].

However, the link between epigenetic mechanisms and transcription is complex. Open chromatin
generally facilitates gene transcription [237, yet some transcription factors can bind to the DNA and
Initiate transcription in regions with compact chromatin [247]. Additionally, the relationship between
DNA methylation and gene transcription depends on the location of the methylation mark. Although
evidence from vertebrates indicates that CpG methylation close to transcription start sites generally
suppresses transcription [25], the transcriptional effects of DNA methylation in other genomic
regions such as gene bodies are less clear [267]. By contrast, DNA methylation in invertebrates
regulates gene expression predominantly by acting on gene bodies instead of promoters [27-297. The
tfunction of epigenetic marks therefore varies according to their genomic targets and the species in

question [267].

Epigenetic mechanisms are influenced by both genetic and environmental factors. Genetic variation
often underpins epigenetic variation [ 30,317, with specific epigenetic regulator genes playing crucial
roles in establishing and maintaining epigenetic marks [32,337]. Environmental stressors such as
malnutrition, especially when experienced during early life stages, can also alter epigenetic patterns
[347, although individual differences in the sensitivity of epigenetic mechanisms to environmental
stimuli may themselves be genetically determined [357. Given this inherent link between genetic and
epigenetic variation, epigenetic mechanisms could potentially mediate the phenotypic effects of
deleterious mutations, a possibility that should be tested to better understand their evolutionary

significance.

We hypothesize that epigenetic mechanisms, owing to their central function in regulating gene
expression [18,36], may mediate the phenotypic effects of deleterious mutations. Indirect evidence
for such a link comes from studies of inbreeding, which increases genome-wide homozygosity and
thereby unmasks recessive deleterious alleles. For instance, in the plant Scabiosa columbaria, the
disappearance of inbreeding depression following chemical removal of DNA methylation, a key
epigenetic mark [377], suggests that DNA methylation can, to some extent, contribute to the
manifestation of maladaptive phenotypes. This finding prompted speculation about the involvement
of epigenetic mechanisms in inbreeding depression [38,397. However, to our knowledge, no studies
have directly investigated the mechanistic pathways by which DNA methylation and other epigenetic
mechanisms influence the expression of deleterious mutations at the level of the nucleotide using next-

generation sequencing data.
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In this Opinion Piece, we outline three hypotheses linking epigenetic mechanisms to deleterious
mutations, drawing on empirical evidence from model organisms ranging from yeast to humans, as
well as limited but emerging data from wild animal populations (Figure 2). In §2, we hypothesize that
genetic mutations may induce maladaptive epigenetic patterns, leading to adverse alterations in gene
expression and reduced fitness. In §3, we postulate that epigenetic modifications may bufter the
expression of deleterious mutations by modulating gene activity in response to internal and external
cues. In §4, we explore how epigenetic mechanisms may influence the prevalence of deleterious
mutations in natural populations through their roles in DNA repair and recombination. In §5, we
argue that understanding the interaction between genetic and epigenetic variation is essential for
advancing evolutionary theory and for informing biological conservation. Finally, in §6, we briefly
outline methodological approaches and highlight empirical strategies for investigating how genetic
and epigenetic variation jointly influence fitness and evolution, which is critical for conservation

science.

§2. Hypothesis 1: deleterious mutations may disrupt epigenetic regulation

Epigenetic patterns are established and maintained by epigenetic modifier genes [407, while genetic
variation across the genome can also influence epigenetic marks [31,41,427]. Consequently, genetic
mutations may in certain cases disrupt epigenetic regulation. Specifically, we hypothesize that
deleterious mutations can give rise to maladaptive epigenetic patterns and reduce fitness, particularly
when they: (a) affect key epigenetic regulator genes; (b) involve C > T transitions; (c) influence
epigenetic marks in trans across the genome; (d) are located in micro ribonucleic acid (miRNA) genes;

and/or (e) interfere with alternative splicing, as detailed below.

(a) Mutations in epigenetic modifier genes

Epigenetic modifier genes are essential for establishing epigenetic marks, maintaining genome
stability and regulating global epigenetic changes. These genes are involved in processes such as the
maintenance of genome-wide methylation (DNMT1), the control of de novo methylation (DNMT3),
active demethylation (7ET genes) and transcriptional regulation (SETDBI). Mutations in these
genes therefore have the potential to induce global epigenetic changes with severe fitness

consequences (Figure 3a), a prediction supported by multiple empirical studies.

Research on humans and mice has established that specific mutations or classes of mutations in
epigenetic modifier genes lead to altered epigenetic states implicated in cancer and other diseases
[4387]. For example, knockdown of DNMT1 can result in genome-wide hypomethylation [447] while
mutations in DNMT34 can cause hypomethylation [457] and genomic instability [467. Similarly,
mutations in TET genes can disrupt normal DNA demethylation processes [47—517 while a deletion

in SETDBI has been shown to alter DNA methylation and upregulate the expression of zinc-finger
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genes, disrupting cellular homeostasis [527. These disrupted epigenetic patterns arising from genetic
mutations are characteristic of many cancers [44,47—527, immune diseases 537 and metabolic

disorders [547, and they sometimes lead to embryonic lethality [557.

Rnockout studies in teleost fish and insects further emphasise the importance of DNMT for survival
and reproduction. In insects, CRISPR/Cas9 induced knockdown of DNMT genes or their paralogs
can cause embryonic lethality [567, reduced longevity and sterility [577]. However, the fitness effects
of mutations depend on which genes are affected and their functional importance, which can vary
across species. For example, a mutation in DNMT'3aa (a DNMT homolog) disrupts gametogenesis in
tilapia, whereas a mutation in DNM7T3ab does not impair gonadal development [587. Similarly,
knockout of DNMT3a in zebrafish does not substantially reduce survival but does alter thermal

plasticity [597.

Based on this evidence, we argue that naturally occurring deleterious mutations in epigenetic modifier
genes could influence a wide range of quantitative traits in natural populations. Although this
hypothesis remains untested, the evolutionarily conserved roles of epigenetic regulators across diverse
species [40,607] suggests that mutations in these genes have the potential to reduce fitness without
necessarily causing lethality or sterility, instead disrupting gene expression networks involved in
development, reproduction, ageing or other key life-history traits. Notably, naturally occurring
variation in the expression of DNMT and TET genes has been documented both among and within
populations of wild house sparrows across a range expansion [617], which may reflect phenotypic
plasticity or genetic differences associated with the colonisation of new habitats. Such variation could
provide a foundation for future studies aiming to link epigenetic modifier gene expression to fitness

outcomes in the wild.

(b) C > T transitions

In vertebrates, DNA methylation predominantly occurs at cytosine residues, notably at CpG sites
within gene promoter regions, where it typically represses gene transcription in somatic cells [627].
However, methylated cytosines are chemically unstable due to increased electron density, making
them prone to spontaneous deamination [637. This process results in C > T transitions that convert
methylated cytosines into unmethylated thymines [64,65]. When an unmethylated cytosine
undergoes deamination, it becomes uracil, which is readily recognised as abnormal and efficiently
repaired. By contrast, the deamination of methylated cytosine yields thymine, a natural DNA base
that is not recognised as abnormal and therefore often escapes repair [667]. This process gives rise to
mutation hotspots at methylated cytosines. Such methylation associated C > T mutations effectively
erase methylation marks and, when located in promoter regions, can trigger aberrant gene activation
[67]. Conversely, increased CpG content in promoter regions may be adaptive, as CpG sites enable

DNA methylation to regulate gene expression, facilitating phenotypic plasticity in response to
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environmental cues 68,697, a phenomenon that could contribute towards an individual’s “epigenetic
potential” [697]. We therefore hypothesize that C > T mutations in vertebrate promoter regions may

reduce fitness by impairing the capacity of CpG methylation to regulate gene expression (Figure 3b).

In line with this hypothesis, the majority of single nucleotide polymorphisms (SNPs) at CpG sites in
humans are associated with methylation diftferences [ 707, with the largest eftects observed for C > T
transitions, which are known to contribute disproportionately to cancer formation [677]. The loss of
DNA methylation has also been shown to promote tumorigenesis via the transcriptional activation of
mutated genes that have the potential to cause cancer (i.e. oncogenes), stressing the importance of
DNA methylation in the silencing of deleterious alleles [717]. Moreover, promotor regions with high
densities of CpG sites are frequently found in housekeeping genes [727], which are essential for cellular
processes across multiple tissues and developmental stages [737]. This emphasises the functional
importance of promotor CpG sites for maintaining organismal integrity and suggests that mutations

at these loci are likely to have negative fitness consequences.

Further evidence from wild systems supports this view. For example, CpG site density, which is
affected by various factors including C > T mutations, has been linked to longevity [69,74,757. It has
been suggested that, when CpG density is high, a change in methylation at a single site has a smaller
effect, so overall gene regulation remains more stable [767]. This epigenetic stability may confer
greater resistance to age-related DNA methylation changes [767]. Studies of wild animals indeed show
that species with lower CpG site densities in the promotor regions of several genes have shorter
lifespans compared to those with higher densities [74,75,777]. Although these studies did not directly
examine C > T mutations or investigate intraspecific variation in CpG site density, they imply that
the loss of CpG sites may entail fitness costs. Thus, C > T transitions at CpG sites are expected to

contribute toward maladaptive epigenetic patterns, phenotypic dysregulation and reduced fitness.

(¢) Trans-acting hotspots

Regions of the genome that influence quantitative variation in DNA methylation at CpG sites are
referred to as methylation quantitative trait loci (meQTLs). A single meQTL can sometimes affect the
epigenetic state of multiple CpG sites, either in close proximity to the locus (a ¢zs-meQ7TL) or at distant
genomic locations (a frans-meQTL)[787. When a trans-meQTL affects numerous CpG sites across the
genome, forming a “trans-acting hotspot”, genetic variation at this locus can modulate the expression
of multiple genes. Consequently, mutations at frans-acting hotspots, which can be located in coding
or non-coding regions of the genome, are expected to have substantial fitness consequences (Figure

3¢).

Numerous meQTLs have been identified in humans and other model organisms (e.g. [79-817). By

linking these meQTLs to GWAS hits, researchers have uncovered #rans-meQTL hotspots associated
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with diseases including cardiovascular conditions [79,827] and COVID-19 severity [797, as well as
with complex traits such as lifespan [817]. While the molecular mechanism(s) underlying trans-
meQTLs remain largely unknown, current evidence suggests that loci harbouring ¢rans-meQTL likely
affect transcription-regulating genes in ¢is [80,827]. These genes, in turn, influence DNA methylation

at distal CpG sites in trans, thereby modulating gene regulation across the genome [80,827.

T'rans-acting hotspots have also been identified in wild animals, including great tits [317] and
stickleback [837. In these studies, individual genetic variants have been associated with the
methylation state of tens to hundreds of distal CpG sites. Furthermore, particularly striking
pleiotropic trans-acting hotspots were identified in domesticated chickens, with five genetic loci
collectively explaining methylation variation at over 1,300 distal CpG sites [427]. However, future
research is needed to determine whether these hotspots are enriched for genes related to
transcriptional regulation, whether they are associated with broad-scale changes in gene expression,
and to what extent genetic variation at ¢rans-acting hotspots contributes to fitness variation in wild

populations.

(d) Mutations in miRNA genes

Micro-RNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate
gene expression by inducing the translational silencing or transcript decay of target mRNAs [847].
MiRNA genes are transcribed by RNA polymerase I, and the resulting miRNA complexes bind to
complementary sequences, typically located in the 3’ untranslated region (3" UTR) of the target
mRNAs [847. A critical component of this interaction is the “seed region”, a short sequence of 2—7
nucleotides in the 5" UTR that recognises and binds to the complementary target mRNA sequence
[847]. MiRNAs are important in epigenetic control 857, while their own expression is also
epigenetically regulated [867. Consequently, we hypothesise that deleterious mutations in miRNA
genes, particularly within the seed region or the 3" UTR, may impair miRNA-mRNA binding, disrupt
post-transcriptional gene regulation [87] and reduce fitness (Figure 3d), as previously discussed by

Arumugam et al. [887].

Research from model systems has shown that mutations within miRNA genes, mRNA target sites
and miRNA-binding sites can disrupt transcriptional or post-transcriptional gene regulation as well
as miRNA maturation (reviewed in [89,907). For example, mutations in the regulatory regions of
miRNAs can alter their transcription, leading to aberrant mRNA expression patterns [907]. Similarly,
mutations in miRNA sequences or their target sites in mRNAs can interfere with the production of
mature miRNAs and/or miRNA expression [917]. Such MiRNA-mediated transcriptional
dysregulation has been linked to disease susceptibility, developmental abnormalities (927 and

impaired behaviour (937, and is therefore likely to carry fitness costs.
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Despite these insights, miRNA research in wild species faces two major challenges: reliably identifying
bona fide miRNAs [947] and detecting polymorphisms in miRNA loci [957]. Although methods to
detect miRNAs are generally well-established [967, the lack of curated miRNA databases complicates
the identification and validation of miRNAs in natural populations of non-model species. Nevertheless,
the field is rapidly advancing, with expanding miRNA databases facilitating improved annotations
across many taxa [94,97,987. While some miRNA genes are highly conserved across species (94,997,
indicating they play essential roles in core biological processes, others appear to be lineage-specific
and might signify recent adaptation [ 1007]. SNPs have already been detected in the miRNA genes of
several domesticated [95,101,1027] and zoo animals [947, indicating appreciable interspecific
variability. Such SNPs, particularly in conserved miRNA genes, are expected to alter miRNA
expression and/or the expression of their target genes, although no studies to our knowledge have

tested for their effects on fitness.

(e) Splicing mutations

The process of alternative splicing allows a single precursor messenger RNA to produce multiple
distinct mature mRNA transcripts by varying exon composition from a single precursor messenger
RNA, thereby producing different protein isoforms from the same gene [103,1047]. This process is
regulated by various epigenetic mechanisms including DNA methylation, histone modifications,
chromatin conformation and long non-coding RNAs (IncRNAs) [see for overviews 105,106]. For
example, IncRNAs [577] and histone modifications [108—1117] can influence transcript length and
modulate the activity of RNA-binding proteins involved in splicing by recruiting, interacting with or
blocking them. There is a complex interplay between epigenetic factors and alternative splicing, as
epigenetic regulators can themselves be modulated by alternative splicing [1127]. Given that aberrant
splicing is a hallmark of many diseases [113,1147], we hypothesize that mutations disrupting the
epigenetic regulation of alternative splicing are likely to have negative effects on fitness (Figure 3e).
Specifically, research in mice has shown that methylation-dependent alternative splicing is regulated
by the HPI gene [1157]. Due to the importance of this gene in alternative splicing regulation, genetic
mutations in HPI are expected to disrupt methylation-dependent splicing patterns. Similarly, Hu
genes regulate alternative splicing by modulating local histone modification patterns surrounding
alternative exons [1167]. Numerous other known and as yet undiscovered genes are likely to

contribute to the interaction between epigenetic regulation and alternative splicing [1157.

We are not aware of any empirical studies linking genetic mutations to alternative splicing patterns
that influence fitness in natural populations. However, differential isoforms of a gene involved in
pheomelanin synthesis have been linked to differences in plumage colouration between two species of
pheasant [1177]. Given that plumage colouration is important for crypsis, social signalling and sexual
selection [1187, this finding supports the argument that alternative splicing could potentially give

rise to variation in fitness-relevant traits. Furthermore, splicing patterns have been shown to vary
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among wild house mice sampled along a latitudinal gradient [1197 and between seasonal morphs of
African butterflies [1207. These findings suggest that alternative splicing may contribute to local
adaptation and highlight its potentially important yet underexplored role in generating phenotypic

diversity in natural populations.

§3. Hypothesis 2: epigenetic mechanisms may buffer the expression of deleterious
mutations

Epigenetic mechanisms can respond to internal and environmental cues [1217, acting as dynamic
regulators of gene expression. If epigenetic modifications can adjust gene activity to optimize fitness
in changing contexts [1227, it is plausible that they may also modulate gene expression in response
to the presence of maladaptive genetic variants. We hypothesize that epigenetic mechanisms may
buffer the expression of deleterious mutations through one or more of the following processes: (a)
compensatory modulation of gene expression patterns; (b) silencing of deleterious gene expression;

and/or (c) alternative splicing.

(a) Compensatory modulation of gene expression patterns

When a mutation causes a loss of functional gene expression (i.e. aloss of function (LOF) mutation),
its phenotypic effects may be counteracted by the activity of other genes, a phenomenon termed
genetic compensation [1237]. Such compensatory transcriptional responses may involve the
upregulation of paralogous genes, which share sequence similarities and can overlap in expression
pattern and function [e.g. 124—127, changes in the expression of genes within the same regulatory
or cellular network as the mutated gene [123,1287, or changes in allele-specific expression through
the downregulation of deleterious alleles and/or the upregulation of ancestral alleles, although
empirical evidence for the latter is currently lacking. We hypothesise that genetic mutations resulting
in the loss of gene expression or the production of abnormal mRNAs may trigger epigenetic
modifications at compensatory genes (Figure 4a). These modifications could increase the accessibility
of transcription factors that upregulate compensatory genes, thereby mitigating the deleterious effects
of the mutation [1237. In vertebrates, such epigenetic changes are likely to occur at promoter sites,
where CpG demethylation generally facilitates transcription [297. In invertebrates, they may instead

occur within gene bodies, where DNA methylation plays a key role in transcriptional regulation [287].

In support of this hypothesis, laboratory studies of fruit flies have shown that gene expression changes
induced by inbreeding are associated with alleviated inbreeding depression [129,1307, suggesting
that deleterious mutations may trigger compensatory transcriptional responses. Similar
compensatory gene expression has also been observed in nematodes [1317]. Evidence from other
systems indicates that such responses may be triggered by mRNA degradation, a post-transcriptional
process that prevents the translation of faulty transcripts and limits the accumulation of dysfunctional

proteins [1327. In mice and zebrafish, the degradation of mutant mRNAs has been shown to initiate

10
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the upregulation of paralogous genes, representing a form of genetic compensation [1383,1347]. This
response is often accompanied by increased chromatin accessibility and/or histone modifications at
the paralogous loci [188,1347]. Together, these findings suggest that epigenetically mediated
compensatory gene expression can occur in animals in response to genetic mutations, although its

fitness consequences and prevalence in wild populations remain unclear.

(b) Silencing of deleterious gene expression

Coding mutations can result in the production of maladaptive protein isoforms, depending on how
they affect amino acid sequences, protein structure and stability [1357]. By contrast, non-coding
mutations can cause ectopic gene expression, that is, expression in inappropriate tissues,
developmental stages or seasonal contexts. Developmental and seasonal events such as migration and
reproduction require coordinated physiological, morphological and behavioural changes that are
orchestrated by tightly regulated gene expression programmes [136,137]. Consequently,
misexpression in terms of timing, location or magnitude could potentially impact development,
reproduction and survival [188,1397. Epigenetic mechanisms are known to play a central role in the
spatiotemporal expression of gene regulation, particularly during developmental and seasonal
transitions [140—-146] and are increasingly being recognised as important in ecological contexts such
as hibernation, migration and reproduction [147—1517. Based on this, we speculate that epigenetic
mechanisms might help to silence deleterious gene expression and reduce maladaptive gene activity.
Such silencing could plausibly occur via (i) pre- and/or (ii) post-transcriptional regulation, as

described below.

(1) Mutations can only affect fitness if they are expressed or affect expression levels. Gene expression
at the pre-transcriptional stage is regulated by targeted epigenetic modifications, such as increased
DNA methylation or histone marks at promoter regions in vertebrates. These modifications reduce
chromatin accessibility, thereby inhibiting transcription and limiting maladaptive gene expression
[86,152—-1587. We hypothesize that epigenetic mechanisms could potentially suppress the
transcription of deleterious coding mutations, which might alleviate the associated fitness costs
(Figure 4b.i). However, this remains a theoretical possibility and there is currently no empirical

evidence for the epigenetic silencing of deleterious mutations.

(ii) Alternatively, deleterious mutations might be silenced post-transcriptionally. Regulation at this
stage can occur via non-coding RNAs (e.g. small interfering RNAs (siRNAs), antisense RNAs
(asRNAs), miRNAs and IncRNAs), which can destabilize, cleave or hybridize with mRNA transcripts,
preventing translation and blocking the production of maladaptive gene products [1537. We
hypothesize that ncRNAs could silence the expression of deleterious mutations through these post-
transcriptional mechanisms (Figure 4b.ii). In humans, miRNAs have been used to silence mutated

genes responsible for neurodegenerative diseases, resulting in improved neuropathological and

11
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behavioural phenotypes [1247. This suggests that post-transcriptional regulation can buffer the
phenotypic effects of deleterious mutations in clinical contexts and raises the possibility that similar
mechanisms might have evolved to modulate the expression of deleterious mutations in wild animals.

However, empirical support for such buffering effects in natural populations is currently lacking.

(c) Alternative splicing

As discussed in §2.e, alternative splicing enables a single precursor mRNA to be processed into
multiple mRNA isoforms post-transcriptionally, a process known to be influenced by various
epigenetic mechanisms. Consequently, rather than silencing an entire mutated gene, we hypothesise
that epigenetic modifications might instead promote alternative splicing patterns that exclude or
compensate for the affected regions (Figure 4c). If such epigenetic changes facilitate the splicing of
mutated exons in a way that yields viable, functional and non-degrading isoforms, they could partially

or fully restore gene functions that would otherwise be compromised by deleterious mutations.

Evidence from model organisms supports the idea that alternative splicing can functionally
compensate for the effects of deleterious mutations through isoform diversification. For example,
frameshift mutations in human tumour suppressor genes such as T'P53 can be partially bypassed by
exon skipping or cryptic splice site usage, resulting in truncated yet partially functional protein
isoforms that retain tumour suppressive activity [160]. Similarly, mutations in genes such as DY'SF
and TT'N, which are linked to muscle disorders, can be mitigated by alternative splicing events that
generate isoforms that compensate for lost protein function [1617]. Furthermore, the fruit fly study
described above (§3a) found that alleviated inbreeding depression was associated with the
upregulation of genes involved in alternative splicing [129,1307]. Although these studies did not
directly investigate the epigenetic regulation of alternative splicing, they highlight the possible yet

largely unexplored role of epigenetic mechanisms in facilitating beneficial splicing outcomes.

§4. Hypothesis 3: Epigenetic mechanisms may mediate the repair and purging of
deleterious mutations

Whereas hypotheses 1 and 2 explore how epigenetic regulation may mediate the fitness effects of
deleterious mutations, it is also conceivable that epigenetic mechanisms could help organisms to avoid
these costs altogether, effectively acting as “protectors”. This could theoretically occur via (a) the
targeted identification and repair of deleterious mutations; and/or (b) the selective elimination

(purging) of cells or lineages carrying such mutations.

(a) DNA repair
Mutations arise from errors during DNA replication or exposure to environmental mutagens such as
UV radiation or chemicals, which can lead to chemical groups becoming attached to DNA bases [1627].

Most mutations are corrected by DNA repair mechanisms that prevent their propagation within an

12
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organism (via mitosis) or their transmission to the next generation (via meiosis). These repair systems
function by excising and replacing damaged bases or by directly reversing chemical changes to DNA
bases (e.g. removing the chemical groups). One key mechanism, DNA mismatch repair, corrects mis-
paired nucleotides and small insertions/deletions, mainly during the S and G2 phases of the cell cycle
when DNA is replicated and subsequently scanned for errors [1637. In humans, this repair mechanism
is initiated by a specific form of DNA methylation: the addition of trimethyl (three methyl groups;
me3) to lysine 36 (K36) on histone H3 (see Box 2) to form the histone modification H3K36me3. The
hMSHS6 protein has a histone reader domain that recognises and binds to H3K36me3, which helps to
localise the mismatch repair complex to chromatin, allowing the DNA to be scanned for mismatches
[e.g. 164,165 . If an error is found, downstream repair proteins such as DNA polymerase are recruited
to restore the correct sequence. The functional importance of H3K36me3 is reflected by its enrichment

in expressed exons [ 1667 and its widespread presence in actively transcribed genes [166—-1717.

Although the epigenetic regulation of DNA mismatch repair has been well characterised in humans,
very little is known about whether similar mechanisms operate in non-human animals. However, the
histone reader domains fused to hMSHS6, which are critical for recognising H3K36me$ and initiating
mismatch repair, appear to be conserved across most deuterostomes (e.g. vertebrates) as well as
lophotrochozoans, arthropods and cnideria [1727. This conservation suggests that epigenetic
mechanisms may play an important role in limiting the accumulation of deleterious mutations in many
organisms by reducing the number of mutations that escape repair (Figure 3a). However, this remains

a largely untested hypothesis that calls for further empirical investigation.

Given that epigenetically mediated DNA repair is advantageous because it prevents the accumulation
of deleterious mutations, genetic mutations that disrupt this mechanism are likely to be highly
deleterious. In humans, mutations that impair the methylation-dependent interaction between
hMSH6 and H3K36me3 have been shown to compromise DNA mismatch repair and lead to the
development of paediatric gliomas [17387. Similarly, mutations in mismatch repair genes (e.g. AMLH1,
hMSH2 and hPMS2), as well as hypermethylation of their promoter regions, can disrupt the function
and expression of these genes, resulting in defective repair and increased mutation rates, which have
been linked to various forms of cancer in humans [174,1757. These findings imply that mutations
affecting components of this epigenetically regulated DNA repair pathway could have severe fitness

consequences by allowing deleterious mutations to accumulate unchecked.

(b) Purging

If DNA repair mechanisms fail and deleterious mutations become incorporated into the genome, they
may still be removed from the population through purging. This process is thought to be facilitated
in part by meiotic recombination, the exchange of DNA segments between homologous

chromosomes during gametogenesis. By reshuftling genetic material, recombination creates novel
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combinations in gametes and ultimately in offspring. This genetic mixing can help prevent the
accumulation of deleterious mutations through two distinct mechanisms [see 176—1817. First,
recombination breaks down linkage disequilibrium between deleterious and beneficial mutations
[1827, generating new haplotypes on which selection can act independently. Over time, this allows
beneficial mutations to increase in frequency while facilitating the selective removal of deleterious
ones [177]. Second, recombination can concentrate multiple deleterious mutations on the same
chromosomal segment, creating a “high-load” haplotype that can be more efficiently eliminated by
natural selection [177,1837. Together, these mechanisms illustrate how recombination enhances the
efficacy of selection, promoting the removal of harmful mutations while preserving beneficial genetic

varilation.

Importantly, growing evidence suggests that epigenetic modifications and meiotic recombination may
be tightly interconnected [ 184—1867. In mammals, recombination frequently occurs at recombination
hotspots, where the zinc finger protein PR domain-containing 9 (PRDMO9) promotes recombination
by binding to specific motifs [1877]. However, many taxa including birds, canids and some fish, lack
the PRDMS9 binding site [185,188—1917]. Despite this, they still exhibit considerable variation in both
the rate and genomic distribution of recombination events across individuals and populations
[185,188—1917. In these species, recombination hotspots instead tend to coincide with gene
regulatory elements such as CpG islands, transcription start sites and gene promoter regions, which
are typically characterised by low levels of DNA methylation and open chromatin enriched for
H3sK4me3 [184—-187,189,190,1927]. We therefore hypothesize that epigenetic mechanisms may alter
the accessibility of DNA to the recombination machinery by manipulating chromatin accessibility
[1857]. If this holds true, altered epigenetic states might affect the rate at which novel haplotypes are

generated and, by extension, the efficiency with which deleterious mutations can be purged.

Moreover, if a mutation in an epigenetic modifier gene leads to global epigenetic changes (see §2.1),
this might also affect meiotic recombination. Such a mutation might, for example, increase chromatin
accessibility in recombination cold spots or decrease it in recombination hotspots. This effect could be
especially pronounced in species lacking the PRDM9 binding site, where recombination targeting
relies more heavily on chromatin features. A broad restructuring of recombination activity might not
only disrupt purging but could also interfere with meiotic fidelity, with important implications for
tertility [for an overview see 177]. Consequently, it seems plausible that mutations which globally

alter recombination patterns via epigenetic changes may exert deleterious effects.

§5. What are the implications of the hypothesised mechanisms?
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A deeper knowledge of how epigenetic mechanisms influence the phenotypic effects of mutations is
essential for understanding fitness variation. Although bioinformatic predictions and genome-wide
association studies (GWAS) can identify putatively functional mutations, their actual fitness effects
may depend heavily on the epigenetic context. For instance, if deleterious mutations induce epigenetic
changes with pleiotropic and/or genome-wide consequences (§2), their effects on fitness could be
substantial. In such cases, failing to account for epigenetic variation may lead to their true effects on
fitness being underestimated. Conversely, if epigenetic mechanisms act to buffer or silence deleterious
mutations (§3), phenotypic traits may be more robust than expected to the presence of harmful
mutations. Here, overlooking epigenetic mechanisms could lead to the fitness effects of mutations

being overestimated.

Beyond individual fitness, the interplay between genetic mutations (specifically those that occur in the
germline) and epigenetic mechanisms may shape evolutionary outcomes by influencing the extent to
which mutations are subject to purifying selection or genetic drift. For example, if deleterious
mutations are epigenetically silenced, they may evade purging by natural selection and persist at
higher than expected frequencies in natural populations. Over evolutionary timescales, this could shift
the focus of natural selection: rather than acting directly on a genetic mutation, selection may instead
favour epigenetic mechanisms that control its expression. This logic mirrors the Baldwin effect
[1938,1947, in which selection favours plasticity rather than acting on traits directly. More broadly,
the evolutionary fate of mutations depends largely on their selection coefficients. If these coeflicients
are substantially altered by epigenetic factors, then understanding this dependency becomes crucial
for predicting evolutionary dynamics. Without incorporating epigenetic influences, models of

mutation load, adaptation and long-term genome evolution may remain incomplete.

If epigenetic mechanisms truly influence fitness, understanding their mediating role could also be
important for biological conservation. Conservation genetics has traditionally prioritised preserving
genetic diversity and minimising inbreeding to maximise population fitness [195,196]. However, if
epigenetic variation also contributes to individual fitness, population persistence and evolutionary
potential, then maintaining epigenetic diversity should likewise become a conservation priority. This
is particularly relevant for small, vulnerable populations, where strong genetic drift can drive
deleterious mutations to high frequency 1977, increasing the risk of mutational meltdown [1987. In
such cases, epigenetic buffering may help alleviate the effects of harmful mutations, whereas high

mutation loads could disrupt epigenetic regulation and further compromise population viability.

Because epimutations arise more frequently than genetic mutations [199,2007], epigenetic diversity
may change more rapidly across generations, potentially enhancing phenotypic plasticity.
Understanding these dynamics is essential before epigenetic variation can be integrated into
conservation practice. This will require a clearer picture of the fitness effects of epigenetic variants
and, ideally, the identification of specific epigenetic marks with substantial phenotypic eftects.

Conservation strategies could then extend to monitoring epigenetic diversity across space and time,
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with efforts to promote beneficial marks and minimise harmful ones. Existing approaches such as
promoting gene flow or implementing genetic rescue, might be adapted for this purpose. Nonetheless,
the potential for adaptive epigenetic responses remains largely hypothetical and demands rigorous
empirical investigation. Moreover, the mediating role of epigenetic mechanisms might depend on the
environmental conditions and whether these conditions are changing and if so, at what speed and at
which level of predictability. We expect that the environmental context helps determine the relative
contributions of the genome and the environment in explaining fitness variation, and hence the
possibility for epigenetic mediation to significantly contribute to fitness. However, while
environmental changes can induce epigenetic changes [e.g. 201-2037, the majority of epigenetic
variation is explained by genetic variation [e.g. 31,83,2047]. Thus, we see relatively little opportunity

for such plasticity of epigenetic mediation.

§6. Disentangling the interplay between epigenetic mechanisms and deleterious
mutations

Building on the conceptual framework outlined in §2—§4, we now turn to empirical strategies for
investigating whether epigenetic mechanisms could function as exacerbators (§2), buffers (§3) or
protectors (§4) in natural populations. While the preceding sections established the theoretical basis
for these roles, several key questions remain unresolved. For example, are certain epigenetic
mechanisms more prevalent than others and does this depend on the gene or mutation in question?
Do multiple mechanisms co-occur, and if so, are their effects additive, synergistic or antagonistic?
What is the threshold of mutational effect size required to trigger an epigenetic buffering response
without resulting in lethality? Furthermore, to what extent do these dynamics depend on genomic
architecture, population history or ecological context? Addressing these questions will require
empirical studies of wild animal systems (Figure 2) embedded within their natural ecological and
evolutionary settings. Integrating multi-omics approaches with data on phenotypic and life-history
traits in these systems holds great promise for deepening our understanding of how genetic and

epigenetic variation jointly shape fitness.

Fortunately, recent advances in sequencing technologies, bioinformatics and the expansion of genomic
resources [205—2087 are making studies of this kind increasingly feasible. High quality reference
genomes and whole genome resequencing data are becoming widely available for non-model species,
driven by declining sequencing costs [2097] and improved protocols for analysing low quality samples
[210,2117. These resources facilitate the construction of linkage maps, offering detailed insights into
recombination landscapes, including the locations of recombination hotspots and coldspots.
Concurrently, expanding databases of regulatory elements (e.g. miRNAs [97,98,2127) are improving
the annotation of genes involved in regulatory processes, while comparative analyses of model
organisms can facilitate the identification orthologous genes in related taxa [2137. In parallel,

simulation models are increasingly powerful tools for predicting the long-term evolutionary
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trajectories of deleterious mutations [2147] and exploring the epigenetic modulation of their

expression [215,2167].

Alongside these developments, a suite of bioinformatic tools now allows the prediction of deleterious
mutations from whole genome resequencing data. Tools such as GERP [2177] evaluate evolutionary
constraint to identify potentially harmful mutations, operating on the assumption that variants in
highly conserved genomic regions are more likely to disrupt essential biological functions and reduce
fitness. Other tools such as SnpEft [2187, VEP [2197] and SIFT [220] predict the functional
consequences of coding variants by determining the likely effects of amino acid changes on protein
structure and function. These tools can identify specific mutation types including LOF mutations and
other predicted “high impact” mutations, which can be aggregated to estimate genomic mutation
loads at the individual, population or species levels. While recent studies have begun to test for
associations between genomic mutation loads and fitness [214,221-2237, more research is needed to
determine the phenotypic consequences of predicted deleterious mutations, evaluate their utility as

indicators of population viability [224], and explore their interactions with epigenetic mechanisms.

Moving beyond correlative evidence requires the integration of data across multiple layers of
biological organisation. Transcriptomic and proteomic approaches are invaluable in this regard. RNA
sequencing (RNA-seq) [2257 enables the precise quantification of gene expression changes driven by
epigenetic mechanisms, while long-read sequencing technologies (e.g. PacBio, Oxford Nanopore)
improve the detection of alternative splicing variants and allele-specific transcripts [225,226].
Proteomic approaches such as mass spectrometry and cryo-electron microscopy further allow for the
quantification of protein abundance, post-translational modifications and interaction networks [2277].
Integrating these multi-omics approaches with machine-learning could help to unravel the causal
biological pathways linking mutations to phenotypic and fitness outcomes via molecular

Intermediates.

Crucially, connecting molecular mechanisms to fitness outcomes requires robust, high-quality fitness
proxies. However, fitness itself is complex and can be realised in diverse ways. For example,
individuals vary in how they allocate resources to reproduction and survival across their lifetimes,
reflecting different life-history strategies [2287. Capturing this complexity requires comprehensive
datasets spanning morphological, physiological and behavioural traits. Because these traits vary in
their heritability [2297, exposure to selection [2307] and sensitivity to environmental conditions
[2317], their potential for epigenetic modulation may vary accordingly. Longitudinal studies that
gather molecular and phenotypic data across environmental gradients will be especially valuable for
disentangling how the hypothesised mechanisms influence phenotypic and fitness variation, both

within individual lifespans and across generations.

Researchers studying wild animal systems can already begin testing our hypotheses using correlative

approaches, provided that genomic, epigenomic, transcriptomic and/or fitness data are available. For
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example, by combining predicted deleterious mutations with epigenetic data, one could investigate
whether mutations in specific genes (such as epigenetic modifiers, §2a or miRNA genes §2d) are
associated with distinct epigenetic patterns and consequently, fitness differences. When SNP and
RNA sequencing data are both available, it should also be possible to test whether predicted
deleterious exonic mutations in genes with paralogs are associated with the upregulation of the
corresponding paralog by comparing gene expression patterns among individuals with and without
the mutation (§3a). Additionally, the theoretical mechanism of deleterious gene silencing (§3b) could
be investigated empirically by determining whether genes carrying predicted deleterious mutations
show higher CpG methylation in their promoters than genes carrying neutral or no mutations.
Furthermore, naturally occurring variation in population density [2327 offers a testbed for
investigating whether epigenetic mechanisms can buffer the effects of deleterious mutations under

stressful, more competitive conditions [2337].

In situ manipulations and laboratory-based studies provide opportunities to investigate causal
relationships between genetic and epigenetic variation under controlled or semi-controlled conditions.
In situ experimental manipulations such as cross-fostering can disentangle genetic and environmental
contributions to epigenetic variation. This approach has already been applied in wild birds such as the
great tit [817] (Figure 2) as well as in laboratory mice [2347]. Additionally, mutation accumulation
or induction experiments, long used in model organisms like fruit flies [2357] and more recently
extended to house mice [107, could be adapted to non-model species to test whether artificially
elevated mutation loads elicit compensatory epigenetic and transcriptomic responses. More targeted
genome editing tools such as CRISPR/Cas9 [2367 have also been applied in wild species, for instance
to pinpoint causal evolutionarily relevant loci in sticklebacks (2877 and could be used to understand

whether the introduction of genetic mutations can induce epigenetic responses.

Laboratory experiments manipulating molecular states (e.g. methylation, chromatin accessibility) and
directly measuring organismal performance could further interrogate causal relationships between
epigenetic variation and fitness. For example, the global distribution of epigenetic marks could be
manipulated by administering methylation inhibitors or methyl donors, respectively, as demonstrated
in zebrafish [2387, ducks (2397 and Japanese quail 2407, allowing fitness comparisons both within-
and among-individuals. Likewise, artificial selection on genetic features (i.e. genomic selection [2417)
has already been performed in great tits [2427] and could be adapted to create selection lines that differ
in the presence of e.g. putatively buffering epigenetic marks. Releasing individuals from these lines
into the wild (1507 and measuring fitness proxies would then allow tests of whether associations
between genetic mutations and epigenetic patterns arise because certain epigenetic marks confer a
fitness advantage (section (§3). While ethical and logistical considerations may limit the applicability
of some experimental or interventionist approaches, these examples highlight their potential
applicability to uncover mechanistic insights into the interplay between genetic and epigenetic

variation and its fitness consequences.
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§7. Summary

While the precise functional effects of many genetic mutations remain elusive, they are likely
intricately linked to the epigenome in ways that are only beginning to be understood. In this Opinion
Piece, we hypothesised several mechanisms through which epigenetic mechanisms may interact with
genetic mutations to influence phenotypic variation and fitness outcomes. We emphasize that
empirical testing of these mechanisms has become increasingly feasible in wild systems owing to
methodological advances, accelerating data availability and powerful bioinformatic tools. Ultimately,
a comprehensive understanding of how genetic and epigenetic factors interact is essential for
uncovering the determinants of individual fitness, predicting long-term evolutionary dynamics and

informing conservation strategies.

19



655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

Box 1: Genetic mutations

The effect of a genetic mutation depends on its genomic context and, when located within a coding
region, on its impact on the resulting amino acid sequence. In this Opinion Piece, we use the term
genetic mutation specifically to refer to single nucleotide polymorphisms (SNPs). Although other
classes of mutations such as structural variants, indels, copy number variations, translocations and
inversions are also known to influence genome function, comparatively little is known about how they

interact with the epigenome.

Mutations in coding regions (exons) can either be synonymous if they do not alter the amino acid
sequence, or non-synonymous if they do. Mutations in non-coding regions such as introns,
untranslated regions and intergenic DNA, can influence gene regulation by affecting promoters,
enhancers and other regulatory elements. In this Opinion Piece, we indicate whether a hypothesis

applies to coding or non-coding mutations; if not specified, the hypothesis is assumed to apply to both.

Mutations can also be classified according to their timing and mode of transmission. Somatic
mutations arise in body (somatic) cells after fertilisation and are not transmitted to offspring [2437.
These mutations can influence an individual’s health and survival by contributing to cancers,
degenerative diseases and ageing. By contrast, meiotic mutations, also known as germline mutations,
occur in cells that undergo meiosis to form gametes, and are therefore heritable [24:37. Occurring
before or during meiosis, germline mutations are a major source of inherited genetic variation shaping
both disease susceptibility and evolutionary change. Unless otherwise specified, references to

mutations in this Opinion Piece include both somatic and meiotic mutations.

A mutation is considered deleterious if it reduces fitness, either by causing embryonic or premature
death (i.e. lethal mutations) or by decreasing survival or reproductive success later in life. Such effects
likely arise due to impairments of fitness-relevant traits such as cognition, metabolic rate, parasite
resistance, sexual trait expression, sperm quality and other biological functions [223,244—2487]. The
severity of these effects may also depend on environmental stressors such as food limitation and
competition. Throughout this Opinion Piece, we use the term deleterious mutation broadly to include
both mutations that lead to premature death before an individual reaches sexual maturity and
sublethal mutations that reduce fitness in adulthood, recognising that their effect sizes, and

consequently the strength of selection against them, can vary.

20



688
689
690
691
692
693
694
695
696
697
698
699

700
701
702
703
T04
705
706
707
708
709
710
711

712

Box 2: Epigenetic mechanisms

Epigenetic mechanisms are biochemical modifications that alter gene expression without changing
the underlying nucleotide sequence. These modifications can influence interactions between histones
and DNA, thereby modulating gene accessibility. In eukaryotic cells, DNA is wrapped around histone
proteins to form nucleosomes, the basic units of chromatin (Figure 1) [2497. Each nucleosome consists
of eight histones: two copies each of H2A, H2B, H3 and H4 [2507. The extent to which DNA is tightly
or loosely packed around these histones determines the accessibility of genes to RNA polymerase and
other transcription factors [2517 and thus controls transcriptional activity. When DNA is tightly
packed around histones, forming heterochromatin, transcription is generally repressed. Conversely,
loosely packed DNA, known as euchromatin, typically permits gene expression (Figure 1). However,
heterochromatin is not always associated with transcriptional repression, depending on factors such

as the developmental state of an organism and the chromosomal location [2527].

Histones possess amino acid tails that extend from their core and play a central role in epigenetic
regulation [2537. Although these tails do not contain DNA, they serve as targets for various chemical
modifications including methylation, acetylation, phosphorylation and ubiquitination. These
modifications collectively regulate DNA accessibility, gene expression, DNA repair and chromatin
structure [36,152,154—1587. They can occur at different amino acid residues within the tails; for
example, the demethylation of lysine 9 (K4) in the tail of histone H3 to form H3K9me2 alters
chromatin accessibility and transcriptional activity [2547. In addition to histone modifications,
epigenetic changes can also occur directly on DNA, such as methylation in promoter regions, which
generally blocks transcription factor binding and represses gene expression in vertebrates [627.
Notably, DNA methylation patterns vary among taxa: while DNA methylation most frequently occurs
at CpG dinucleotides in vertebrates, non CpG methylation has been observed in several fish and insect

species, and methylation does not always repress transcription [27].
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Figure 1. Schematic representation of several epigenetic mechanisms. DNA is wrapped
around histone proteins to form nucleosomes, the basic building blocks of chromatin. The
tails of histones, extending from the nucleosome core, contain amino acids that are targets of
various epigenetic modifications, such as methylation and acetylation. These modifications
influence DNA accessibility (how tightly or loosely the DNA is packed) and consequently
processes such as DNA repair. The DNA itself can also be modified, most commonly through

the methylation of cytosine nucleotides.
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Figure 2. Examples of wild vertebrate species in which one or two aspects of the interplay
between genetic variation, epigenetic variation and/or fitness have been empirically
investigated, but never all three simultaneously. Studies include: (a) In black grouse, sexual trait
expression is mediated by inbreeding-dependent CpG site methylation changes at key candidate genes
[2557; (b) Inbreeding and epigenetic diversity are positively correlated in Kenyan [2567] but not in
Australian house sparrows [2577; (¢) In white-footed mice sampled along a range expansion gradient,
genetic and epigenetic diversity are uncorrelated [2587; (d) In killifish, interactions between parasites
and inbreeding have been found to influence DNA methylation [2597; (e) In a comparative study of
60 amniote species including the green sea turtle, the CpG content of several gene promoters was
found to be positively associated with lifespan [747. (f) A similar positive association between
promotor CpG content and lifespan was found across 131 mammals, including the killer whale [757;
(g) In a study of eight vertebrates including the orangutan, increased CpG density in gene promoters
was found to correlate with gene expression levels [2607); (h) In the great tit, genetic effects explain
a substantial proportion of the variation in DNA methylation, with #rans-acting QTLs having been
identified [317; (i) Comparable findings have been reported in the three-spined stickleback, where

genetic effects contribute significantly towards variation in DNA methylation and #rans-acting QTLs

have been mapped [837.
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The image wused in panel (c¢) was reproduced from Charles Homler available at

https://animalia.bio/white-footed-mouse/ 1000, licensed under CC BY-SA 4.0. The image used in

panel (d) was reproduced from S. Hellner available at

https://www.fishbase.se/summary/RKryptolebias-hermaphroditus, licenced under CC BY-NC 4.0.

The image wused in panel (i) was reproduced from WikiMedia available at

https://upload.wikimedia.org/wikipedia/commons/3/387/Gasterosteus_aculeatus - Epinoche -

Three-spined_stickleback.]pg, licenced under CC BY-SA-2.0. All other photos are courtesy of Oliver

Rriiger and used with permission.
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Figure 3. Schematic representation of hypothesis one, subdivided into five sub-
hypotheses (1a—e; §2a—§2.e). Each sub-hypothesis represents a distinct way in which a
deleterious mutation may reduce fitness via interactions with epigenetic mechanisms (middle
column) compared with genotypes lacking the deleterious mutation (left column). Brief verbal

explanations can be found in the right column.
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Figure 4. Schematic representation of hypothesis two, subdivided into five sub-
hypotheses (2a—c; §3a—§3c). Epigenetic mechanisms may buffer against the deleterious
effects of'a mutation (middle column), leading to equally fit or marginally less fit phenotypes

compared to genotypes without the deleterious mutation (left column). Brief verbal

explanations can be found in the right column.
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Glossary

Alternative splicing: The process by which different combinations of exons are selectively included
or excluded from a single precursor messenger RNA to form multiple mature messenger RNA
isoforms that encode distinct protein variants from the same gene [103,104].

C > T transition or C > T mutation: A point mutation where a cytosine mutates into a thymine
nucleotide.

CpG site: A DNA sequence consisting of a cytosine (C) followed by a guanine (G), separated by a
phosphate group (p). CpG sites are often enriched in promoter regions and are typically unmethylated,
facilitating transcription factor binding.

Cross-fostering: An experimental method in which offspring are raised by foster rather than
biological parents to disentangle genetic and environmental influences on phenotypes. Cross-fostering
can be partial, where only some offspring in a brood or litter are exchanged, or full, where entire
broods or litters are swapped.

Chromatin accessibility: Chromatin refers to the packaging of DNA around histones. The tightness
of this packaging determines how accessible the chromatin is to DNA-binding proteins such as
transcription factors. Chromatin accessibility is a dynamic property of DNA that is influenced by
epigenetic modifications that alter the structure of chromatin [2617].

Coding mutation: A mutation located in a coding region of the gene, such as an exon. Depending on
the specific nucleotide change, it can alter the amino acid sequence of the resulting protein, potentially
affecting its structure and function.

CpG site density: The number of CpG dinucleotides within a given stretch of DNA [2627]. Regions
of high CpG density, known as CpG islands, can be 300 — 3,000 bp long depending on genomic location
[263] and species 264,265, and are often found in gene promoters, where they play key roles in
regulating gene expression [2627]. By contrast, CpG shores are lower density regions that flank CpG
islands. CpG site density can be influenced by multiple factors including DNA methylation, selective
pressures, chromatin structure, recombination rate and GC content [262,266,267 .

DNA methylation: An epigenetic modification involving the addition of a methyl group to a DNA
nucleotide. In vertebrates, DNA methylation in promoter regions generally inhibits transcription
factor binding and represses gene expression [152,2687], whereas DNA methylation within gene
bodies can activate gene expression in insects [267]. Methylation at other genomic regions, such as
enhancers and insulators, may also be functionally important, although these effects are less well
understood [267].

DNMTT: The DNA-methyltransferase 1 gene is responsible for maintaining DNA patterns by
methylating DNA daughter strands during replication, thereby preserving genome-wide methylation
[2697].

DNMT3 DNA-methyltransferase 3 genes (DNMTAS3a and DNMTASb) are responsible for de novo

DNA methylation and the establishment of new methylation patterns during early development. This
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process provides the mechanistic foundation for cellular differentiation and enables epigenetic
modifications [40].

Genetic drift: Random changes in allele frequencies that occur in finite populations due to chance.
Epigenetic mark: A specific type of epigenetic mechanism that includes the physical modification of
DNA or histones, such as DNA methylation or histone acetylation.

Epigenetic mechanisms: Biochemical modifications that alter gene expression without changing the
underlying nucleotide sequence [187. They include DNA methylation, non-coding RNAs and
chromatin modifications.

Gene expression programme: The dynamic, tissue-specific and context-dependent regulation of
gene activity across an individual’s life history. It involves the coordinated up- and down-regulation
of individual genes and gene networks to support development, physiological function and responses
to environmental cues.

Gene regulation: The control of gene expression, which governs when, where (i.e. in which tissue)
and to what extent gene is expressed [270].

Genetic compensation: Changes in RNA or protein levels of one or more genes, often paralogues,
that functionally compensate for the loss of function of another gene, thereby buffering against the
phenotypic effects of that loss [1237].

Genome editing: The alteration of genetic material by inserting, replacing, modifying or deleting a
DNA sequence.

Genomic mutation load: The cumulative burden of predicted deleterious mutations in an individual,
typically including both homozygous and heterozygous mutations.

Histone modifications: Epigenetic marks involving chemical modifications to the tails of histone
proteins [271,2727]. These modifications influence how tightly DNA is wound around the histones.
When histone-DNA interactions result in a tightly packed chromatin structure (heterochromatin),
the transcriptional machinery cannot access the DNA, leading to gene silencing. Conversely, looser
chromatin (euchromatin) facilitates gene expression.

Inbreeding: The mating of individuals that are closely related through common ancestry.
Inbreeding depression: The reduced fitness of offspring born to closely related parents.

Linkage map: A genetic map showing the relative positions of genetic markers along a chromosome
based on how frequently they are inherited together. Distances are measured in centimorgans (cM), a
unit that reflects how often recombination occurs between them during meiosis.

Long non-coding RNA (IncRNA): RNA molecules longer than 100 nucleotides that do not encode
proteins but play key roles in regulating gene expression. They are involved in chromatin
remodelling, the modulation of histone and DNA methylation and acetylation, and regulation at both
the pre- and post-transcriptional and translational levels.

Loss of function (LOF) mutation: A genetic mutation that reduces or abolishes the activity of a
protein. This can result from the introduction of a premature stop-codon (nonsense mutation), or

insertions / deletions (indels) that disrupt the transcript’s reading frame or cause exon loss.
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Meiotic recombination: The exchange of genetic material between homologous chromosomes
during meiosis that generates new combinations of alleles.

Mutation load: The reduction in fitness due to the accumulation of deleterious mutations.

Micro ribonucleic acid (miRNA): Small non-coding RNAs that post-transcriptionally regulate gene
expression by binding to target mRNA molecules, leading to translation repression or mRNA
degradation [877].

Mutation accumulation experiments: Experiments in which multiple replicate lines of an organism
are propagated for multiple generations under relaxed selection, often through repeated population
bottlenecks. This allows mutations to accumulate at random and their fitness effects to be assessed.
Mutation induction experiments: Experiments in which organisms are exposed to mutagens, such
as lonising radiation or chemicals, to artificially increase mutation rates. This enables testing of the
effects of increasing mutation loads on fitness.

Non-coding mutation: A mutation occurring in a non-coding region of the genome, including
intergenic and intronic regions, untranslated regions (UTRs), promoters and distal regulatory
elements.

Non-coding RNA: RNA molecules that do not encode proteins but play roles in regulating gene
expression at the post-transcriptional level. They include microRNAs (miRNAs), small interfering
RNAs (siRNAs), long non-coding RNAs (IncRNAs), transfer RNAs (tRNAs) and ribosomal RNAs
(rRNAs).

Non-synonymous mutation: A point mutation in an exon that alters the amino acid sequence of a
protein, such as a missense mutation.

Paralogous genes (paralogs): Homologous genes that arise from the duplication of an ancestral gene
within the same genome.

Promoter: A DNA sequence upstream of a gene’s transcription start site (T'SS) that serves as a
binding site for transcription factors and other proteins to initiate transcription.

Purging: The process by which natural selection removes deleterious mutations from a population,
reducing their frequency.

Recombination landscapes: Variation in recombination rates along chromosomes [2737 which is
influenced by factors such as chromosome size, proximity to centromeres or telomeres, and sex.
SETDBI: The SET Domain Bifurcated Histone Lysine Methyltransferase 1 gene encodes a histone
methyltransferase that regulates histone methylation, gene silencing and transcriptional repression
[2747].

Untranslated region (UTR): A genetic sequence located at the 5" or 3’ end of a gene that flanks the
coding region but is not translated into a protein. While they do not code for amino acids, UTRs
influence mRNA stability, localization and translation efficiency.

TET genes: Ten-eleven-translocation genes encode enzymes that mediate DNA demethylation by

oxidating 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) [327].
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