

1 **The interplay between epigenetic mechanisms and deleterious mutations: implications for**
2 **fitness, evolution and conservation**

3 Chen, R. S.¹*, Sepers, B.¹*, van Oers, K.^{2,3}, Hoffman, J. I.^{1,4,5,6}

4

5 ¹ Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501
6 Bielefeld, Germany

7 ² Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen,
8 Netherlands

9 ³ Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen,
10 Netherlands

11 ⁴ Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, 33615 Bielefeld,
12 Germany

13 ⁵ British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK

14 ⁶ Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and
15 University of Münster, Bielefeld, Germany

16

17 * these authors contributed equally

18

19 ORCID IDs:

20 R.S.C: 0000-0002-9364-3771

21 B.S: 0000-0002-5723-5455

22 K.v.O.: 0000-0001-6984-906X

23 J.I.H.: 0000-0001-5895-8949

24

25 Keywords: deleterious mutations, mutation load, genetic load, fitness, epigenetics, epigenetic
26 mechanisms, DNA methylation, gene expression.

27

28 **Abstract**

29 Understanding the causal effects of genetic mutations is essential for explaining fitness variation,
30 forecasting evolutionary trajectories and assessing extinction risk, yet remains a fundamental
31 challenge, particularly in natural populations. While amino acid substitutions can alter protein
32 structure and function, mutations affecting gene regulation can also have significant fitness
33 consequences. In this Opinion Piece, we argue that epigenetic mechanisms, given their central role in
34 gene regulation, likely modulate the deleteriousness of mutations. Drawing on evidence from humans
35 and model organisms, we identify three ways in which epigenetic mechanisms might interact with
36 deleterious mutations. Specifically, we hypothesize that epigenetic regulation may (i) be disrupted by
37 deleterious mutations in non-coding regions and epigenetic regulator genes; (ii) buffer the expression
38 of deleterious mutations; and (iii) contribute to the repair and purging of deleterious mutations.
39 Advances in next- and third-generation sequencing and bioinformatics now allow these hypotheses to
40 be empirically tested in wild populations. As many species face ongoing population declines,
41 unravelling how epigenetic mechanisms influence the functional effects of mutations is vital for
42 understanding fitness variation, guiding evolutionary predictions and informing conservation
43 strategies.

44

45 **§1. Introduction**

46

47 Quantifying the functional effects of genetic mutations (Box 1) poses a major challenge across medical
48 science, agriculture, evolutionary biology and conservation [1–4]. A mutation can affect a phenotype
49 by changing the amino acid sequence (i.e. a **coding mutation**, see the Glossary for descriptions of the
50 terms highlighted in bold), resulting in altered or non-functional proteins, or by affecting the
51 transcription or translation of a gene, resulting in the disruption of gene regulation (i.e. a **non-coding**
52 **mutation**) [3,5]. The functional effects of a given mutation further depend on the extent to which it
53 interacts with other genomic features [6].

54

55 *De novo* mutations can be neutral, deleterious or advantageous, and their spread within a population
56 depends on population genetic forces such as selection and drift [7]. The distribution of fitness effects
57 of mutations is influenced by multiple factors including dominance, epistatic interactions, the
58 environmental context and adaptation [8]. Deleterious mutations (Box 1) reduce fitness when
59 expressed and contribute to an individual's **mutation load**. Experimental studies of model organisms,
60 where mutations are induced (chemically or through ionizing radiation) or allowed to accumulate (by
61 propagating inbred or bottlenecked lines under minimal selection for many generations) have
62 demonstrated that deleterious mutations can reduce fitness by affecting physiological performance
63 [9], morphology [10] and the expression of sexual traits [11,12]. Their fitness effects vary from
64 being lethal to having weaker, context-dependent effects later in life, with corresponding variation in
65 the strength of selection acting upon them. A detailed mechanistic understanding of the phenotypic
66 effects of deleterious mutations therefore requires the integration of genomic and fitness data.

67

68 More than sixty years ago, Jacob and Monod argued that a perfectly good enzyme could be deleterious
69 if it were synthesized under the wrong conditions [13]. Their work was among the first to emphasise
70 how coding and non-coding mutations could be quantitatively different, with the latter affecting how
71 and when enzymes are transcribed [14]. Expressing the correct genes at the right time and at the
72 appropriate dosage is essential for quantitative traits involved in development [15], morphology [16]
73 and behaviour [17]. Hence, non-coding mutations and other factors that disrupt the fine-tuning of
74 gene regulation could disproportionately affect quantitative traits linked to growth, survival and
75 reproduction [14].

76

77 **Epigenetic mechanisms** (Box 2; Figure 1) influence gene expression without altering the underlying
78 nucleotide sequence [18], making them key players in the fine-tuning of **gene regulation** [19].
79 Examples of epigenetic mechanisms include **DNA methylation**, **histone modifications** and other
80 marks that alter **chromatin accessibility** [18]. Epigenetic regulation primarily operates at the
81 transcriptional level, determining whether a gene is transcribed into mRNA and the amount of mRNA

82 produced. Epigenetic mechanisms can also influence other levels of gene regulation including
83 translation, where mRNA is translated into protein, and post-translation, where protein activity,
84 stability and localization are fine-tuned [20,21], for example through the expression of RNA-binding
85 proteins [22].

86

87 However, the link between epigenetic mechanisms and transcription is complex. Open chromatin
88 generally facilitates gene transcription [23], yet some transcription factors can bind to the DNA and
89 initiate transcription in regions with compact chromatin [24]. Additionally, the relationship between
90 DNA methylation and gene transcription depends on the location of the methylation mark. Although
91 evidence from vertebrates indicates that CpG methylation close to transcription start sites generally
92 suppresses transcription [25], the transcriptional effects of DNA methylation in other genomic
93 regions such as gene bodies are less clear [26]. By contrast, DNA methylation in invertebrates
94 regulates gene expression predominantly by acting on gene bodies instead of promoters [27–29]. The
95 function of epigenetic marks therefore varies according to their genomic targets and the species in
96 question [26].

97

98 Epigenetic mechanisms are influenced by both genetic and environmental factors. Genetic variation
99 often underpins epigenetic variation [30,31], with specific epigenetic regulator genes playing crucial
100 roles in establishing and maintaining **epigenetic marks** [32,33]. Environmental stressors such as
101 malnutrition, especially when experienced during early life stages, can also alter epigenetic patterns
102 [34], although individual differences in the sensitivity of epigenetic mechanisms to environmental
103 stimuli may themselves be genetically determined [35]. Given this inherent link between genetic and
104 epigenetic variation, epigenetic mechanisms could potentially mediate the phenotypic effects of
105 deleterious mutations, a possibility that should be tested to better understand their evolutionary
106 significance.

107

108 We hypothesize that epigenetic mechanisms, owing to their central function in regulating gene
109 expression [18,36], may mediate the phenotypic effects of deleterious mutations. Indirect evidence
110 for such a link comes from studies of **inbreeding**, which increases genome-wide homozygosity and
111 thereby unmasks recessive deleterious alleles. For instance, in the plant *Scabiosa columbaria*, the
112 disappearance of **inbreeding depression** following chemical removal of DNA methylation, a key
113 epigenetic mark [37], suggests that DNA methylation can, to some extent, contribute to the
114 manifestation of maladaptive phenotypes. This finding prompted speculation about the involvement
115 of epigenetic mechanisms in inbreeding depression [38,39]. However, to our knowledge, no studies
116 have directly investigated the mechanistic pathways by which DNA methylation and other epigenetic
117 mechanisms influence the expression of deleterious mutations at the level of the nucleotide using next-
118 generation sequencing data.

119

120 In this Opinion Piece, we outline three hypotheses linking epigenetic mechanisms to deleterious
121 mutations, drawing on empirical evidence from model organisms ranging from yeast to humans, as
122 well as limited but emerging data from wild animal populations (Figure 2). In §2, we hypothesize that
123 genetic mutations may induce maladaptive epigenetic patterns, leading to adverse alterations in gene
124 expression and reduced fitness. In §3, we postulate that epigenetic modifications may buffer the
125 expression of deleterious mutations by modulating gene activity in response to internal and external
126 cues. In §4, we explore how epigenetic mechanisms may influence the prevalence of deleterious
127 mutations in natural populations through their roles in DNA repair and recombination. In §5, we
128 argue that understanding the interaction between genetic and epigenetic variation is essential for
129 advancing evolutionary theory and for informing biological conservation. Finally, in §6, we briefly
130 outline methodological approaches and highlight empirical strategies for investigating how genetic
131 and epigenetic variation jointly influence fitness and evolution, which is critical for conservation
132 science.

133

134 **§2. Hypothesis 1: deleterious mutations may disrupt epigenetic regulation**

135 Epigenetic patterns are established and maintained by epigenetic modifier genes [40], while genetic
136 variation across the genome can also influence epigenetic marks [31,41,42]. Consequently, genetic
137 mutations may in certain cases disrupt epigenetic regulation. Specifically, we hypothesize that
138 deleterious mutations can give rise to maladaptive epigenetic patterns and reduce fitness, particularly
139 when they: (a) affect key epigenetic regulator genes; (b) involve C > T transitions; (c) influence
140 epigenetic marks in *trans* across the genome; (d) are located in micro ribonucleic acid (miRNA) genes;
141 and/or (e) interfere with alternative splicing, as detailed below.

142

143 **(a) Mutations in epigenetic modifier genes**

144 Epigenetic modifier genes are essential for establishing epigenetic marks, maintaining genome
145 stability and regulating global epigenetic changes. These genes are involved in processes such as the
146 maintenance of genome-wide methylation (***DNMT1***), the control of *de novo* methylation (***DNMT3***),
147 active demethylation (***TET* genes**) and transcriptional regulation (***SETDB1***). Mutations in these
148 genes therefore have the potential to induce global epigenetic changes with severe fitness
149 consequences (Figure 3a), a prediction supported by multiple empirical studies.

150

151 Research on humans and mice has established that specific mutations or classes of mutations in
152 epigenetic modifier genes lead to altered epigenetic states implicated in cancer and other diseases
153 [43]. For example, knockdown of *DNMT1* can result in genome-wide hypomethylation [44] while
154 mutations in *DNMT3A* can cause hypomethylation [45] and genomic instability [46]. Similarly,
155 mutations in *TET* genes can disrupt normal DNA demethylation processes [47–51] while a deletion
156 in *SETDB1* has been shown to alter DNA methylation and upregulate the expression of zinc-finger

157 genes, disrupting cellular homeostasis [52]. These disrupted epigenetic patterns arising from genetic
158 mutations are characteristic of many cancers [44,47–52], immune diseases [53] and metabolic
159 disorders [54], and they sometimes lead to embryonic lethality [55].

160

161 Knockout studies in teleost fish and insects further emphasise the importance of *DNMT* for survival
162 and reproduction. In insects, CRISPR/Cas9 induced knockdown of *DNMT* genes or their paralogs
163 can cause embryonic lethality [56], reduced longevity and sterility [57]. However, the fitness effects
164 of mutations depend on which genes are affected and their functional importance, which can vary
165 across species. For example, a mutation in *DNMT3aa* (a *DNMT* homolog) disrupts gametogenesis in
166 tilapia, whereas a mutation in *DNMT3ab* does not impair gonadal development [58]. Similarly,
167 knockout of *DNMT3a* in zebrafish does not substantially reduce survival but does alter thermal
168 plasticity [59].

169

170 Based on this evidence, we argue that naturally occurring deleterious mutations in epigenetic modifier
171 genes could influence a wide range of quantitative traits in natural populations. Although this
172 hypothesis remains untested, the evolutionarily conserved roles of epigenetic regulators across diverse
173 species [40,60] suggests that mutations in these genes have the potential to reduce fitness without
174 necessarily causing lethality or sterility, instead disrupting gene expression networks involved in
175 development, reproduction, ageing or other key life-history traits. Notably, naturally occurring
176 variation in the expression of *DNMT* and *TET* genes has been documented both among and within
177 populations of wild house sparrows across a range expansion [61], which may reflect phenotypic
178 plasticity or genetic differences associated with the colonisation of new habitats. Such variation could
179 provide a foundation for future studies aiming to link epigenetic modifier gene expression to fitness
180 outcomes in the wild.

181

182 **(b) C > T transitions**

183 In vertebrates, DNA methylation predominantly occurs at cytosine residues, notably at **CpG sites**
184 within gene **promoter** regions, where it typically represses gene transcription in somatic cells [62].
185 However, methylated cytosines are chemically unstable due to increased electron density, making
186 them prone to spontaneous deamination [63]. This process results in **C > T transitions** that convert
187 methylated cytosines into unmethylated thymines [64,65]. When an unmethylated cytosine
188 undergoes deamination, it becomes uracil, which is readily recognised as abnormal and efficiently
189 repaired. By contrast, the deamination of methylated cytosine yields thymine, a natural DNA base
190 that is not recognised as abnormal and therefore often escapes repair [66]. This process gives rise to
191 mutation hotspots at methylated cytosines. Such methylation associated C > T mutations effectively
192 erase methylation marks and, when located in promoter regions, can trigger aberrant gene activation
193 [67]. Conversely, increased CpG content in promoter regions may be adaptive, as CpG sites enable
194 DNA methylation to regulate gene expression, facilitating phenotypic plasticity in response to

195 environmental cues [68,69], a phenomenon that could contribute towards an individual's "epigenetic
196 potential" [69]. We therefore hypothesize that C > T mutations in vertebrate promoter regions may
197 reduce fitness by impairing the capacity of CpG methylation to regulate gene expression (Figure 3b).

198

199 In line with this hypothesis, the majority of single nucleotide polymorphisms (SNPs) at CpG sites in
200 humans are associated with methylation differences [70], with the largest effects observed for C > T
201 transitions, which are known to contribute disproportionately to cancer formation [67]. The loss of
202 DNA methylation has also been shown to promote tumorigenesis via the transcriptional activation of
203 mutated genes that have the potential to cause cancer (i.e. oncogenes), stressing the importance of
204 DNA methylation in the silencing of deleterious alleles [71]. Moreover, promotor regions with high
205 densities of CpG sites are frequently found in housekeeping genes [72], which are essential for cellular
206 processes across multiple tissues and developmental stages [73]. This emphasises the functional
207 importance of promotor CpG sites for maintaining organismal integrity and suggests that mutations
208 at these loci are likely to have negative fitness consequences.

209

210 Further evidence from wild systems supports this view. For example, **CpG site density**, which is
211 affected by various factors including C > T mutations, has been linked to longevity [69,74,75]. It has
212 been suggested that, when CpG density is high, a change in methylation at a single site has a smaller
213 effect, so overall gene regulation remains more stable [76]. This epigenetic stability may confer
214 greater resistance to age-related DNA methylation changes [76]. Studies of wild animals indeed show
215 that species with lower CpG site densities in the promotor regions of several genes have shorter
216 lifespans compared to those with higher densities [74,75,77]. Although these studies did not directly
217 examine C > T mutations or investigate intraspecific variation in CpG site density, they imply that
218 the loss of CpG sites may entail fitness costs. Thus, C > T transitions at CpG sites are expected to
219 contribute toward maladaptive epigenetic patterns, phenotypic dysregulation and reduced fitness.

220

221 (c) **Trans-acting hotspots**

222 Regions of the genome that influence quantitative variation in DNA methylation at CpG sites are
223 referred to as methylation quantitative trait loci (meQTLs). A single meQTL can sometimes affect the
224 epigenetic state of multiple CpG sites, either in close proximity to the locus (a *cis*-meQTL) or at distant
225 genomic locations (a *trans*-meQTL)[78]. When a *trans*-meQTL affects numerous CpG sites across the
226 genome, forming a "trans-acting hotspot", genetic variation at this locus can modulate the expression
227 of multiple genes. Consequently, mutations at *trans*-acting hotspots, which can be located in coding
228 or non-coding regions of the genome, are expected to have substantial fitness consequences (Figure
229 3c).

230

231 Numerous meQTLs have been identified in humans and other model organisms (e.g. [79–81]). By
232 linking these meQTLs to GWAS hits, researchers have uncovered *trans*-meQTL hotspots associated

233 with diseases including cardiovascular conditions [79,82] and COVID-19 severity [79], as well as
234 with complex traits such as lifespan [81]. While the molecular mechanism(s) underlying *trans*-
235 meQTLs remain largely unknown, current evidence suggests that loci harbouring *trans*-meQTL likely
236 affect transcription-regulating genes in *cis* [80,82]. These genes, in turn, influence DNA methylation
237 at distal CpG sites in *trans*, thereby modulating gene regulation across the genome [80,82].
238

239 *Trans*-acting hotspots have also been identified in wild animals, including great tits [31] and
240 stickleback [83]. In these studies, individual genetic variants have been associated with the
241 methylation state of tens to hundreds of distal CpG sites. Furthermore, particularly striking
242 pleiotropic *trans*-acting hotspots were identified in domesticated chickens, with five genetic loci
243 collectively explaining methylation variation at over 1,300 distal CpG sites [42]. However, future
244 research is needed to determine whether these hotspots are enriched for genes related to
245 transcriptional regulation, whether they are associated with broad-scale changes in gene expression,
246 and to what extent genetic variation at *trans*-acting hotspots contributes to fitness variation in wild
247 populations.

248

249 **(d) Mutations in miRNA genes**

250 Micro-RNAs (**miRNAs**) are small **non-coding RNA** molecules that post-transcriptionally regulate
251 gene expression by inducing the translational silencing or transcript decay of target mRNAs [84].
252 MiRNA genes are transcribed by RNA polymerase II, and the resulting miRNA complexes bind to
253 complementary sequences, typically located in the 3' **untranslated region** (3' UTR) of the target
254 mRNAs [84]. A critical component of this interaction is the “seed region”, a short sequence of 2–7
255 nucleotides in the 5' UTR that recognises and binds to the complementary target mRNA sequence
256 [84]. MiRNAs are important in epigenetic control [85], while their own expression is also
257 epigenetically regulated [86]. Consequently, we hypothesise that deleterious mutations in miRNA
258 genes, particularly within the seed region or the 3' UTR, may impair miRNA–mRNA binding, disrupt
259 post-transcriptional gene regulation [87] and reduce fitness (Figure 3d), as previously discussed by
260 Arumugam *et al.* [88].
261

262 Research from model systems has shown that mutations within miRNA genes, mRNA target sites
263 and miRNA-binding sites can disrupt transcriptional or post-transcriptional gene regulation as well
264 as miRNA maturation (reviewed in [89,90]). For example, mutations in the regulatory regions of
265 miRNAs can alter their transcription, leading to aberrant mRNA expression patterns [90]. Similarly,
266 mutations in miRNA sequences or their target sites in mRNAs can interfere with the production of
267 mature miRNAs and/or miRNA expression [91]. Such MiRNA-mediated transcriptional
268 dysregulation has been linked to disease susceptibility, developmental abnormalities [92] and
269 impaired behaviour [93], and is therefore likely to carry fitness costs.
270

271 Despite these insights, miRNA research in wild species faces two major challenges: reliably identifying
272 *bona fide* miRNAs [94] and detecting polymorphisms in miRNA loci [95]. Although methods to
273 detect miRNAs are generally well-established [96], the lack of curated miRNA databases complicates
274 the identification and validation of miRNAs in natural populations of non-model species. Nevertheless,
275 the field is rapidly advancing, with expanding miRNA databases facilitating improved annotations
276 across many taxa [94,97,98]. While some miRNA genes are highly conserved across species [94,99],
277 indicating they play essential roles in core biological processes, others appear to be lineage-specific
278 and might signify recent adaptation [100]. SNPs have already been detected in the miRNA genes of
279 several domesticated [95,101,102] and zoo animals [94], indicating appreciable interspecific
280 variability. Such SNPs, particularly in conserved miRNA genes, are expected to alter miRNA
281 expression and/or the expression of their target genes, although no studies to our knowledge have
282 tested for their effects on fitness.

283

284 (e) Splicing mutations

285 The process of **alternative splicing** allows a single precursor messenger RNA to produce multiple
286 distinct mature mRNA transcripts by varying exon composition from a single precursor messenger
287 RNA, thereby producing different protein isoforms from the same gene [103,104]. This process is
288 regulated by various epigenetic mechanisms including DNA methylation, histone modifications,
289 chromatin conformation and **long non-coding RNAs** (lncRNAs) [see for overviews 105,106]. For
290 example, lncRNAs [57] and histone modifications [108–111] can influence transcript length and
291 modulate the activity of RNA-binding proteins involved in splicing by recruiting, interacting with or
292 blocking them. There is a complex interplay between epigenetic factors and alternative splicing, as
293 epigenetic regulators can themselves be modulated by alternative splicing [112]. Given that aberrant
294 splicing is a hallmark of many diseases [113,114], we hypothesize that mutations disrupting the
295 epigenetic regulation of alternative splicing are likely to have negative effects on fitness (Figure 3e).
296 Specifically, research in mice has shown that methylation-dependent alternative splicing is regulated
297 by the *HP1* gene [115]. Due to the importance of this gene in alternative splicing regulation, genetic
298 mutations in *HP1* are expected to disrupt methylation-dependent splicing patterns. Similarly, *Hu*
299 genes regulate alternative splicing by modulating local histone modification patterns surrounding
300 alternative exons [116]. Numerous other known and as yet undiscovered genes are likely to
301 contribute to the interaction between epigenetic regulation and alternative splicing [115].

302

303 We are not aware of any empirical studies linking genetic mutations to alternative splicing patterns
304 that influence fitness in natural populations. However, differential isoforms of a gene involved in
305 pheomelanin synthesis have been linked to differences in plumage colouration between two species of
306 pheasant [117]. Given that plumage colouration is important for crypsis, social signalling and sexual
307 selection [118], this finding supports the argument that alternative splicing could potentially give
308 rise to variation in fitness-relevant traits. Furthermore, splicing patterns have been shown to vary

309 among wild house mice sampled along a latitudinal gradient [119] and between seasonal morphs of
310 African butterflies [120]. These findings suggest that alternative splicing may contribute to local
311 adaptation and highlight its potentially important yet underexplored role in generating phenotypic
312 diversity in natural populations.

313

314 **§3. Hypothesis 2: epigenetic mechanisms may buffer the expression of deleterious**
315 **mutations**

316 Epigenetic mechanisms can respond to internal and environmental cues [121], acting as dynamic
317 regulators of gene expression. If epigenetic modifications can adjust gene activity to optimize fitness
318 in changing contexts [122], it is plausible that they may also modulate gene expression in response
319 to the presence of maladaptive genetic variants. We hypothesize that epigenetic mechanisms may
320 buffer the expression of deleterious mutations through one or more of the following processes: (a)
321 compensatory modulation of gene expression patterns; (b) silencing of deleterious gene expression;
322 and/or (c) alternative splicing.

323

324 **(a) Compensatory modulation of gene expression patterns**

325 When a mutation causes a loss of functional gene expression (i.e. a **loss of function (LOF) mutation**),
326 its phenotypic effects may be counteracted by the activity of other genes, a phenomenon termed
327 **genetic compensation** [123]. Such compensatory transcriptional responses may involve the
328 upregulation of **paralogous genes**, which share sequence similarities and can overlap in expression
329 pattern and function [e.g. 124–127], changes in the expression of genes within the same regulatory
330 or cellular network as the mutated gene [123,128], or changes in allele-specific expression through
331 the downregulation of deleterious alleles and/or the upregulation of ancestral alleles, although
332 empirical evidence for the latter is currently lacking. We hypothesize that genetic mutations resulting
333 in the loss of gene expression or the production of abnormal mRNAs may trigger epigenetic
334 modifications at compensatory genes (Figure 4a). These modifications could increase the accessibility
335 of transcription factors that upregulate compensatory genes, thereby mitigating the deleterious effects
336 of the mutation [123]. In vertebrates, such epigenetic changes are likely to occur at promoter sites,
337 where CpG demethylation generally facilitates transcription [29]. In invertebrates, they may instead
338 occur within gene bodies, where DNA methylation plays a key role in transcriptional regulation [28].

339

340 In support of this hypothesis, laboratory studies of fruit flies have shown that gene expression changes
341 induced by inbreeding are associated with alleviated inbreeding depression [129,130], suggesting
342 that deleterious mutations may trigger compensatory transcriptional responses. Similar
343 compensatory gene expression has also been observed in nematodes [131]. Evidence from other
344 systems indicates that such responses may be triggered by mRNA degradation, a post-transcriptional
345 process that prevents the translation of faulty transcripts and limits the accumulation of dysfunctional
346 proteins [132]. In mice and zebrafish, the degradation of mutant mRNAs has been shown to initiate

347 the upregulation of paralogous genes, representing a form of genetic compensation [133,134]. This
348 response is often accompanied by increased chromatin accessibility and/or histone modifications at
349 the paralogous loci [133,134]. Together, these findings suggest that epigenetically mediated
350 compensatory gene expression can occur in animals in response to genetic mutations, although its
351 fitness consequences and prevalence in wild populations remain unclear.

352

353 **(b) Silencing of deleterious gene expression**

354 Coding mutations can result in the production of maladaptive protein isoforms, depending on how
355 they affect amino acid sequences, protein structure and stability [135]. By contrast, non-coding
356 mutations can cause ectopic gene expression, that is, expression in inappropriate tissues,
357 developmental stages or seasonal contexts. Developmental and seasonal events such as migration and
358 reproduction require coordinated physiological, morphological and behavioural changes that are
359 orchestrated by tightly regulated **gene expression programmes** [136,137]. Consequently,
360 misexpression in terms of timing, location or magnitude could potentially impact development,
361 reproduction and survival [138,139]. Epigenetic mechanisms are known to play a central role in the
362 spatiotemporal expression of gene regulation, particularly during developmental and seasonal
363 transitions [140–146] and are increasingly being recognised as important in ecological contexts such
364 as hibernation, migration and reproduction [147–151]. Based on this, we speculate that epigenetic
365 mechanisms might help to silence deleterious gene expression and reduce maladaptive gene activity.
366 Such silencing could plausibly occur via (i) pre- and/or (ii) post-transcriptional regulation, as
367 described below.

368

369 (i) Mutations can only affect fitness if they are expressed or affect expression levels. Gene expression
370 at the pre-transcriptional stage is regulated by targeted epigenetic modifications, such as increased
371 DNA methylation or histone marks at promoter regions in vertebrates. These modifications reduce
372 chromatin accessibility, thereby inhibiting transcription and limiting maladaptive gene expression
373 [36,152–158]. We hypothesize that epigenetic mechanisms could potentially suppress the
374 transcription of deleterious coding mutations, which might alleviate the associated fitness costs
375 (Figure 4b.i). However, this remains a theoretical possibility and there is currently no empirical
376 evidence for the epigenetic silencing of deleterious mutations.

377

378 (ii) Alternatively, deleterious mutations might be silenced post-transcriptionally. Regulation at this
379 stage can occur via non-coding RNAs (e.g. small interfering RNAs (siRNAs), antisense RNAs
380 (asRNAs), miRNAs and lncRNAs), which can destabilize, cleave or hybridize with mRNA transcripts,
381 preventing translation and blocking the production of maladaptive gene products [153]. We
382 hypothesize that ncRNAs could silence the expression of deleterious mutations through these post-
383 transcriptional mechanisms (Figure 4b.ii). In humans, miRNAs have been used to silence mutated
384 genes responsible for neurodegenerative diseases, resulting in improved neuropathological and

385 behavioural phenotypes [124]. This suggests that post-transcriptional regulation can buffer the
386 phenotypic effects of deleterious mutations in clinical contexts and raises the possibility that similar
387 mechanisms might have evolved to modulate the expression of deleterious mutations in wild animals.
388 However, empirical support for such buffering effects in natural populations is currently lacking.

389

390 **(c) Alternative splicing**

391 As discussed in §2.e, alternative splicing enables a single precursor mRNA to be processed into
392 multiple mRNA isoforms post-transcriptionally, a process known to be influenced by various
393 epigenetic mechanisms. Consequently, rather than silencing an entire mutated gene, we hypothesise
394 that epigenetic modifications might instead promote alternative splicing patterns that exclude or
395 compensate for the affected regions (Figure 4c). If such epigenetic changes facilitate the splicing of
396 mutated exons in a way that yields viable, functional and non-degrading isoforms, they could partially
397 or fully restore gene functions that would otherwise be compromised by deleterious mutations.

398

399 Evidence from model organisms supports the idea that alternative splicing can functionally
400 compensate for the effects of deleterious mutations through isoform diversification. For example,
401 frameshift mutations in human tumour suppressor genes such as *TP53* can be partially bypassed by
402 exon skipping or cryptic splice site usage, resulting in truncated yet partially functional protein
403 isoforms that retain tumour suppressive activity [160]. Similarly, mutations in genes such as *DYSF*
404 and *TTN*, which are linked to muscle disorders, can be mitigated by alternative splicing events that
405 generate isoforms that compensate for lost protein function [161]. Furthermore, the fruit fly study
406 described above (§3a) found that alleviated inbreeding depression was associated with the
407 upregulation of genes involved in alternative splicing [129,130]. Although these studies did not
408 directly investigate the epigenetic regulation of alternative splicing, they highlight the possible yet
409 largely unexplored role of epigenetic mechanisms in facilitating beneficial splicing outcomes.

410

411 **§4. Hypothesis 3: Epigenetic mechanisms may mediate the repair and purging of** 412 **deleterious mutations**

413 Whereas hypotheses 1 and 2 explore how epigenetic regulation may mediate the fitness effects of
414 deleterious mutations, it is also conceivable that epigenetic mechanisms could help organisms to avoid
415 these costs altogether, effectively acting as “protectors”. This could theoretically occur via (a) the
416 targeted identification and repair of deleterious mutations; and/or (b) the selective elimination
417 (purging) of cells or lineages carrying such mutations.

418

419 **(a) DNA repair**

420 Mutations arise from errors during DNA replication or exposure to environmental mutagens such as
421 UV radiation or chemicals, which can lead to chemical groups becoming attached to DNA bases [162].
422 Most mutations are corrected by DNA repair mechanisms that prevent their propagation within an

423 organism (via mitosis) or their transmission to the next generation (via meiosis). These repair systems
424 function by excising and replacing damaged bases or by directly reversing chemical changes to DNA
425 bases (e.g. removing the chemical groups). One key mechanism, DNA mismatch repair, corrects mis-
426 paired nucleotides and small insertions/deletions, mainly during the S and G2 phases of the cell cycle
427 when DNA is replicated and subsequently scanned for errors [163]. In humans, this repair mechanism
428 is initiated by a specific form of DNA methylation: the addition of trimethyl (three methyl groups;
429 me3) to lysine 36 (K36) on histone H3 (see Box 2) to form the histone modification H3K36me3. The
430 hMSH6 protein has a histone reader domain that recognises and binds to H3K36me3, which helps to
431 localise the mismatch repair complex to chromatin, allowing the DNA to be scanned for mismatches
432 [e.g. 164,165]. If an error is found, downstream repair proteins such as DNA polymerase are recruited
433 to restore the correct sequence. The functional importance of H3K36me3 is reflected by its enrichment
434 in expressed exons [166] and its widespread presence in actively transcribed genes [166–171].
435

436 Although the epigenetic regulation of DNA mismatch repair has been well characterised in humans,
437 very little is known about whether similar mechanisms operate in non-human animals. However, the
438 histone reader domains fused to hMSH6, which are critical for recognising H3K36me3 and initiating
439 mismatch repair, appear to be conserved across most deuterostomes (e.g. vertebrates) as well as
440 lophotrochozoans, arthropods and cnideria [172]. This conservation suggests that epigenetic
441 mechanisms may play an important role in limiting the accumulation of deleterious mutations in many
442 organisms by reducing the number of mutations that escape repair (Figure 3a). However, this remains
443 a largely untested hypothesis that calls for further empirical investigation.
444

445 Given that epigenetically mediated DNA repair is advantageous because it prevents the accumulation
446 of deleterious mutations, genetic mutations that disrupt this mechanism are likely to be highly
447 deleterious. In humans, mutations that impair the methylation-dependent interaction between
448 hMSH6 and H3K36me3 have been shown to compromise DNA mismatch repair and lead to the
449 development of paediatric gliomas [173]. Similarly, mutations in mismatch repair genes (e.g. *hMLH1*,
450 *hMSH2* and *hPMS2*), as well as hypermethylation of their promoter regions, can disrupt the function
451 and expression of these genes, resulting in defective repair and increased mutation rates, which have
452 been linked to various forms of cancer in humans [174,175]. These findings imply that mutations
453 affecting components of this epigenetically regulated DNA repair pathway could have severe fitness
454 consequences by allowing deleterious mutations to accumulate unchecked.
455

456 **(b) Purging**

457 If DNA repair mechanisms fail and deleterious mutations become incorporated into the genome, they
458 may still be removed from the population through **purging**. This process is thought to be facilitated
459 in part by **meiotic recombination**, the exchange of DNA segments between homologous
460 chromosomes during gametogenesis. By reshuffling genetic material, recombination creates novel

461 combinations in gametes and ultimately in offspring. This genetic mixing can help prevent the
462 accumulation of deleterious mutations through two distinct mechanisms [see 176–181]. First,
463 recombination breaks down linkage disequilibrium between deleterious and beneficial mutations
464 [182], generating new haplotypes on which selection can act independently. Over time, this allows
465 beneficial mutations to increase in frequency while facilitating the selective removal of deleterious
466 ones [177]. Second, recombination can concentrate multiple deleterious mutations on the same
467 chromosomal segment, creating a “high-load” haplotype that can be more efficiently eliminated by
468 natural selection [177,183]. Together, these mechanisms illustrate how recombination enhances the
469 efficacy of selection, promoting the removal of harmful mutations while preserving beneficial genetic
470 variation.

471

472 Importantly, growing evidence suggests that epigenetic modifications and meiotic recombination may
473 be tightly interconnected [184–186]. In mammals, recombination frequently occurs at recombination
474 hotspots, where the zinc finger protein PR domain-containing 9 (PRDM9) promotes recombination
475 by binding to specific motifs [187]. However, many taxa including birds, canids and some fish, lack
476 the PRDM9 binding site [185,188–191]. Despite this, they still exhibit considerable variation in both
477 the rate and genomic distribution of recombination events across individuals and populations
478 [185,188–191]. In these species, recombination hotspots instead tend to coincide with gene
479 regulatory elements such as CpG islands, transcription start sites and gene promoter regions, which
480 are typically characterised by low levels of DNA methylation and open chromatin enriched for
481 H3K4me3 [184–187,189,190,192]. We therefore hypothesize that epigenetic mechanisms may alter
482 the accessibility of DNA to the recombination machinery by manipulating chromatin accessibility
483 [185]. If this holds true, altered epigenetic states might affect the rate at which novel haplotypes are
484 generated and, by extension, the efficiency with which deleterious mutations can be purged.

485

486 Moreover, if a mutation in an epigenetic modifier gene leads to global epigenetic changes (see §2.1),
487 this might also affect meiotic recombination. Such a mutation might, for example, increase chromatin
488 accessibility in recombination cold spots or decrease it in recombination hotspots. This effect could be
489 especially pronounced in species lacking the PRDM9 binding site, where recombination targeting
490 relies more heavily on chromatin features. A broad restructuring of recombination activity might not
491 only disrupt purging but could also interfere with meiotic fidelity, with important implications for
492 fertility [for an overview see 177]. Consequently, it seems plausible that mutations which globally
493 alter recombination patterns via epigenetic changes may exert deleterious effects.

494

495 **§5. What are the implications of the hypothesised mechanisms?**

496 A deeper knowledge of how epigenetic mechanisms influence the phenotypic effects of mutations is
497 essential for understanding fitness variation. Although bioinformatic predictions and genome-wide
498 association studies (GWAS) can identify putatively functional mutations, their actual fitness effects
499 may depend heavily on the epigenetic context. For instance, if deleterious mutations induce epigenetic
500 changes with pleiotropic and/or genome-wide consequences (§2), their effects on fitness could be
501 substantial. In such cases, failing to account for epigenetic variation may lead to their true effects on
502 fitness being underestimated. Conversely, if epigenetic mechanisms act to buffer or silence deleterious
503 mutations (§3), phenotypic traits may be more robust than expected to the presence of harmful
504 mutations. Here, overlooking epigenetic mechanisms could lead to the fitness effects of mutations
505 being overestimated.

506 Beyond individual fitness, the interplay between genetic mutations (specifically those that occur in the
507 germline) and epigenetic mechanisms may shape evolutionary outcomes by influencing the extent to
508 which mutations are subject to purifying selection or **genetic drift**. For example, if deleterious
509 mutations are epigenetically silenced, they may evade purging by natural selection and persist at
510 higher than expected frequencies in natural populations. Over evolutionary timescales, this could shift
511 the focus of natural selection: rather than acting directly on a genetic mutation, selection may instead
512 favour epigenetic mechanisms that control its expression. This logic mirrors the Baldwin effect
513 [193,194], in which selection favours plasticity rather than acting on traits directly. More broadly,
514 the evolutionary fate of mutations depends largely on their selection coefficients. If these coefficients
515 are substantially altered by epigenetic factors, then understanding this dependency becomes crucial
516 for predicting evolutionary dynamics. Without incorporating epigenetic influences, models of
517 mutation load, adaptation and long-term genome evolution may remain incomplete.

518 If epigenetic mechanisms truly influence fitness, understanding their mediating role could also be
519 important for biological conservation. Conservation genetics has traditionally prioritised preserving
520 genetic diversity and minimising inbreeding to maximise population fitness [195,196]. However, if
521 epigenetic variation also contributes to individual fitness, population persistence and evolutionary
522 potential, then maintaining epigenetic diversity should likewise become a conservation priority. This
523 is particularly relevant for small, vulnerable populations, where strong genetic drift can drive
524 deleterious mutations to high frequency [197], increasing the risk of mutational meltdown [198]. In
525 such cases, epigenetic buffering may help alleviate the effects of harmful mutations, whereas high
526 mutation loads could disrupt epigenetic regulation and further compromise population viability.

527 Because epimutations arise more frequently than genetic mutations [199,200], epigenetic diversity
528 may change more rapidly across generations, potentially enhancing phenotypic plasticity.
529 Understanding these dynamics is essential before epigenetic variation can be integrated into
530 conservation practice. This will require a clearer picture of the fitness effects of epigenetic variants
531 and, ideally, the identification of specific epigenetic marks with substantial phenotypic effects.
532 Conservation strategies could then extend to monitoring epigenetic diversity across space and time,

533 with efforts to promote beneficial marks and minimise harmful ones. Existing approaches such as
534 promoting gene flow or implementing genetic rescue, might be adapted for this purpose. Nonetheless,
535 the potential for adaptive epigenetic responses remains largely hypothetical and demands rigorous
536 empirical investigation. Moreover, the mediating role of epigenetic mechanisms might depend on the
537 environmental conditions and whether these conditions are changing and if so, at what speed and at
538 which level of predictability. We expect that the environmental context helps determine the relative
539 contributions of the genome and the environment in explaining fitness variation, and hence the
540 possibility for epigenetic mediation to significantly contribute to fitness. However, while
541 environmental changes can induce epigenetic changes [e.g. 201–203], the majority of epigenetic
542 variation is explained by genetic variation [e.g. 31,83,204]. Thus, we see relatively little opportunity
543 for such plasticity of epigenetic mediation.

544

545 **§6. Disentangling the interplay between epigenetic mechanisms and deleterious 546 mutations**

547 Building on the conceptual framework outlined in §2–§4, we now turn to empirical strategies for
548 investigating whether epigenetic mechanisms could function as exacerbators (§2), buffers (§3) or
549 protectors (§4) in natural populations. While the preceding sections established the theoretical basis
550 for these roles, several key questions remain unresolved. For example, are certain epigenetic
551 mechanisms more prevalent than others and does this depend on the gene or mutation in question?
552 Do multiple mechanisms co-occur, and if so, are their effects additive, synergistic or antagonistic?
553 What is the threshold of mutational effect size required to trigger an epigenetic buffering response
554 without resulting in lethality? Furthermore, to what extent do these dynamics depend on genomic
555 architecture, population history or ecological context? Addressing these questions will require
556 empirical studies of wild animal systems (Figure 2) embedded within their natural ecological and
557 evolutionary settings. Integrating multi-omics approaches with data on phenotypic and life-history
558 traits in these systems holds great promise for deepening our understanding of how genetic and
559 epigenetic variation jointly shape fitness.

560 Fortunately, recent advances in sequencing technologies, bioinformatics and the expansion of genomic
561 resources [205–208] are making studies of this kind increasingly feasible. High quality reference
562 genomes and whole genome resequencing data are becoming widely available for non-model species,
563 driven by declining sequencing costs [209] and improved protocols for analysing low quality samples
564 [210,211]. These resources facilitate the construction of **linkage maps**, offering detailed insights into
565 **recombination landscapes**, including the locations of recombination hotspots and coldspots.
566 Concurrently, expanding databases of regulatory elements (e.g. miRNAs [97,98,212]) are improving
567 the annotation of genes involved in regulatory processes, while comparative analyses of model
568 organisms can facilitate the identification of orthologous genes in related taxa [213]. In parallel,
569 simulation models are increasingly powerful tools for predicting the long-term evolutionary

570 trajectories of deleterious mutations [214] and exploring the epigenetic modulation of their
571 expression [215,216].

572 Alongside these developments, a suite of bioinformatic tools now allows the prediction of deleterious
573 mutations from whole genome resequencing data. Tools such as GERP [217] evaluate evolutionary
574 constraint to identify potentially harmful mutations, operating on the assumption that variants in
575 highly conserved genomic regions are more likely to disrupt essential biological functions and reduce
576 fitness. Other tools such as SnpEff [218], VEP [219] and SIFT [220] predict the functional
577 consequences of coding variants by determining the likely effects of amino acid changes on protein
578 structure and function. These tools can identify specific mutation types including LOF mutations and
579 other predicted “high impact” mutations, which can be aggregated to estimate **genomic mutation**
580 **loads** at the individual, population or species levels. While recent studies have begun to test for
581 associations between genomic mutation loads and fitness [214,221–223], more research is needed to
582 determine the phenotypic consequences of predicted deleterious mutations, evaluate their utility as
583 indicators of population viability [224], and explore their interactions with epigenetic mechanisms.

584 Moving beyond correlative evidence requires the integration of data across multiple layers of
585 biological organisation. Transcriptomic and proteomic approaches are invaluable in this regard. RNA
586 sequencing (RNA-seq) [225] enables the precise quantification of gene expression changes driven by
587 epigenetic mechanisms, while long-read sequencing technologies (e.g. PacBio, Oxford Nanopore)
588 improve the detection of alternative splicing variants and allele-specific transcripts [225,226].
589 Proteomic approaches such as mass spectrometry and cryo-electron microscopy further allow for the
590 quantification of protein abundance, post-translational modifications and interaction networks [227].
591 Integrating these multi-omics approaches with machine-learning could help to unravel the causal
592 biological pathways linking mutations to phenotypic and fitness outcomes via molecular
593 intermediates.

594 Crucially, connecting molecular mechanisms to fitness outcomes requires robust, high-quality fitness
595 proxies. However, fitness itself is complex and can be realised in diverse ways. For example,
596 individuals vary in how they allocate resources to reproduction and survival across their lifetimes,
597 reflecting different life-history strategies [228]. Capturing this complexity requires comprehensive
598 datasets spanning morphological, physiological and behavioural traits. Because these traits vary in
599 their heritability [229], exposure to selection [230] and sensitivity to environmental conditions
600 [231], their potential for epigenetic modulation may vary accordingly. Longitudinal studies that
601 gather molecular and phenotypic data across environmental gradients will be especially valuable for
602 disentangling how the hypothesised mechanisms influence phenotypic and fitness variation, both
603 within individual lifespans and across generations.

604 Researchers studying wild animal systems can already begin testing our hypotheses using correlative
605 approaches, provided that genomic, epigenomic, transcriptomic and/or fitness data are available. For

606 example, by combining predicted deleterious mutations with epigenetic data, one could investigate
607 whether mutations in specific genes (such as epigenetic modifiers, §2a or miRNA genes §2d) are
608 associated with distinct epigenetic patterns and consequently, fitness differences. When SNP and
609 RNA sequencing data are both available, it should also be possible to test whether predicted
610 deleterious exonic mutations in genes with paralogs are associated with the upregulation of the
611 corresponding paralog by comparing gene expression patterns among individuals with and without
612 the mutation (§3a). Additionally, the theoretical mechanism of deleterious gene silencing (§3b) could
613 be investigated empirically by determining whether genes carrying predicted deleterious mutations
614 show higher CpG methylation in their promoters than genes carrying neutral or no mutations.
615 Furthermore, naturally occurring variation in population density [232] offers a testbed for
616 investigating whether epigenetic mechanisms can buffer the effects of deleterious mutations under
617 stressful, more competitive conditions [233].

618 *In situ* manipulations and laboratory-based studies provide opportunities to investigate causal
619 relationships between genetic and epigenetic variation under controlled or semi-controlled conditions.
620 *In situ* experimental manipulations such as **cross-fostering** can disentangle genetic and environmental
621 contributions to epigenetic variation. This approach has already been applied in wild birds such as the
622 great tit [31] (Figure 2) as well as in laboratory mice [234]. Additionally, **mutation accumulation**
623 **or induction experiments**, long used in model organisms like fruit flies [235] and more recently
624 extended to house mice [10], could be adapted to non-model species to test whether artificially
625 elevated mutation loads elicit compensatory epigenetic and transcriptomic responses. More targeted
626 **genome editing** tools such as CRISPR/Cas9 [236] have also been applied in wild species, for instance
627 to pinpoint causally relevant loci in sticklebacks [237] and could be used to understand
628 whether the introduction of genetic mutations can induce epigenetic responses.

629 Laboratory experiments manipulating molecular states (e.g. methylation, chromatin accessibility) and
630 directly measuring organismal performance could further interrogate causal relationships between
631 epigenetic variation and fitness. For example, the global distribution of epigenetic marks could be
632 manipulated by administering methylation inhibitors or methyl donors, respectively, as demonstrated
633 in zebrafish [238], ducks [239] and Japanese quail [240], allowing fitness comparisons both within-
634 and among-individuals. Likewise, artificial selection on genetic features (i.e. genomic selection [241])
635 has already been performed in great tits [242] and could be adapted to create selection lines that differ
636 in the presence of e.g. putatively buffering epigenetic marks. Releasing individuals from these lines
637 into the wild [150] and measuring fitness proxies would then allow tests of whether associations
638 between genetic mutations and epigenetic patterns arise because certain epigenetic marks confer a
639 fitness advantage (section (§3). While ethical and logistical considerations may limit the applicability
640 of some experimental or interventionist approaches, these examples highlight their potential
641 applicability to uncover mechanistic insights into the interplay between genetic and epigenetic
642 variation and its fitness consequences.

643

644 **§7. Summary**

645 While the precise functional effects of many genetic mutations remain elusive, they are likely
646 intricately linked to the epigenome in ways that are only beginning to be understood. In this Opinion
647 Piece, we hypothesised several mechanisms through which epigenetic mechanisms may interact with
648 genetic mutations to influence phenotypic variation and fitness outcomes. We emphasize that
649 empirical testing of these mechanisms has become increasingly feasible in wild systems owing to
650 methodological advances, accelerating data availability and powerful bioinformatic tools. Ultimately,
651 a comprehensive understanding of how genetic and epigenetic factors interact is essential for
652 uncovering the determinants of individual fitness, predicting long-term evolutionary dynamics and
653 informing conservation strategies.

654

655 **Box 1: Genetic mutations**

656 The effect of a genetic mutation depends on its genomic context and, when located within a coding
657 region, on its impact on the resulting amino acid sequence. In this Opinion Piece, we use the term
658 *genetic mutation* specifically to refer to single nucleotide polymorphisms (SNPs). Although other
659 classes of mutations such as structural variants, indels, copy number variations, translocations and
660 inversions are also known to influence genome function, comparatively little is known about how they
661 interact with the epigenome.

662

663 Mutations in coding regions (exons) can either be synonymous if they do not alter the amino acid
664 sequence, or non-synonymous if they do. Mutations in non-coding regions such as introns,
665 untranslated regions and intergenic DNA, can influence gene regulation by affecting promoters,
666 enhancers and other regulatory elements. In this Opinion Piece, we indicate whether a hypothesis
667 applies to coding or non-coding mutations; if not specified, the hypothesis is assumed to apply to both.
668

669 Mutations can also be classified according to their timing and mode of transmission. Somatic
670 mutations arise in body (somatic) cells after fertilisation and are not transmitted to offspring [243].
671 These mutations can influence an individual's health and survival by contributing to cancers,
672 degenerative diseases and ageing. By contrast, meiotic mutations, also known as germline mutations,
673 occur in cells that undergo meiosis to form gametes, and are therefore heritable [243]. Occurring
674 before or during meiosis, germline mutations are a major source of inherited genetic variation shaping
675 both disease susceptibility and evolutionary change. Unless otherwise specified, references to
676 mutations in this Opinion Piece include both somatic and meiotic mutations.

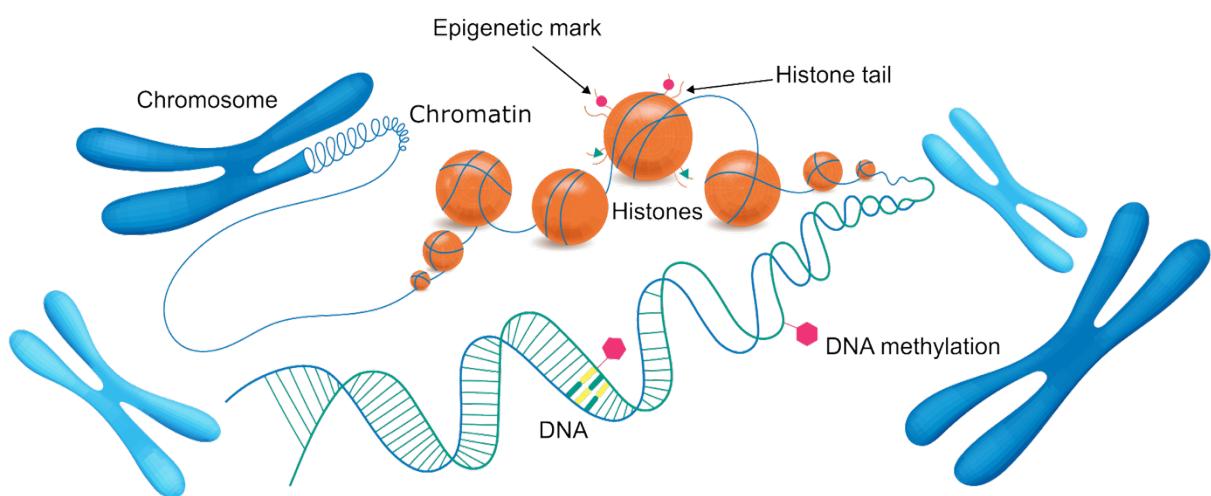
677

678 A mutation is considered deleterious if it reduces fitness, either by causing embryonic or premature
679 death (i.e. lethal mutations) or by decreasing survival or reproductive success later in life. Such effects
680 likely arise due to impairments of fitness-relevant traits such as cognition, metabolic rate, parasite
681 resistance, sexual trait expression, sperm quality and other biological functions [223,244–248]. The
682 severity of these effects may also depend on environmental stressors such as food limitation and
683 competition. Throughout this Opinion Piece, we use the term *deleterious mutation* broadly to include
684 both mutations that lead to premature death before an individual reaches sexual maturity and
685 sublethal mutations that reduce fitness in adulthood, recognising that their effect sizes, and
686 consequently the strength of selection against them, can vary.

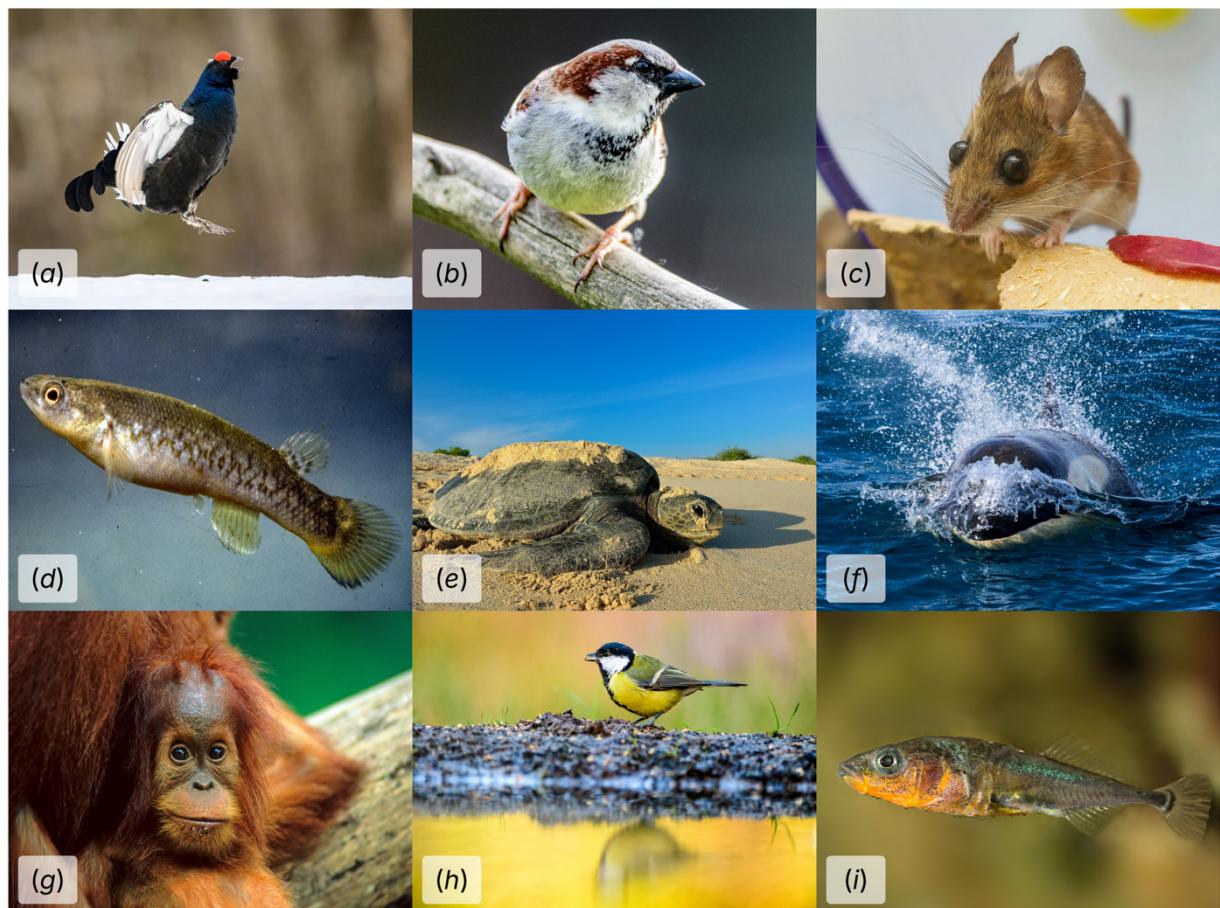
687

688 **Box 2: Epigenetic mechanisms**

689 Epigenetic mechanisms are biochemical modifications that alter gene expression without changing
690 the underlying nucleotide sequence. These modifications can influence interactions between histones
691 and DNA, thereby modulating gene accessibility. In eukaryotic cells, DNA is wrapped around histone
692 proteins to form nucleosomes, the basic units of chromatin (Figure 1) [249]. Each nucleosome consists
693 of eight histones: two copies each of H2A, H2B, H3 and H4 [250]. The extent to which DNA is tightly
694 or loosely packed around these histones determines the accessibility of genes to RNA polymerase and
695 other transcription factors [251] and thus controls transcriptional activity. When DNA is tightly
696 packed around histones, forming heterochromatin, transcription is generally repressed. Conversely,
697 loosely packed DNA, known as euchromatin, typically permits gene expression (Figure 1). However,
698 heterochromatin is not always associated with transcriptional repression, depending on factors such
699 as the developmental state of an organism and the chromosomal location [252].


700 Histones possess amino acid tails that extend from their core and play a central role in epigenetic
701 regulation [253]. Although these tails do not contain DNA, they serve as targets for various chemical
702 modifications including methylation, acetylation, phosphorylation and ubiquitination. These
703 modifications collectively regulate DNA accessibility, gene expression, DNA repair and chromatin
704 structure [36,152,154–158]. They can occur at different amino acid residues within the tails; for
705 example, the demethylation of lysine 9 (K4) in the tail of histone H3 to form H3K9me2 alters
706 chromatin accessibility and transcriptional activity [254]. In addition to histone modifications,
707 epigenetic changes can also occur directly on DNA, such as methylation in promoter regions, which
708 generally blocks transcription factor binding and represses gene expression in vertebrates [62].
709 Notably, DNA methylation patterns vary among taxa: while DNA methylation most frequently occurs
710 at CpG dinucleotides in vertebrates, non CpG methylation has been observed in several fish and insect
711 species, and methylation does not always repress transcription [27].

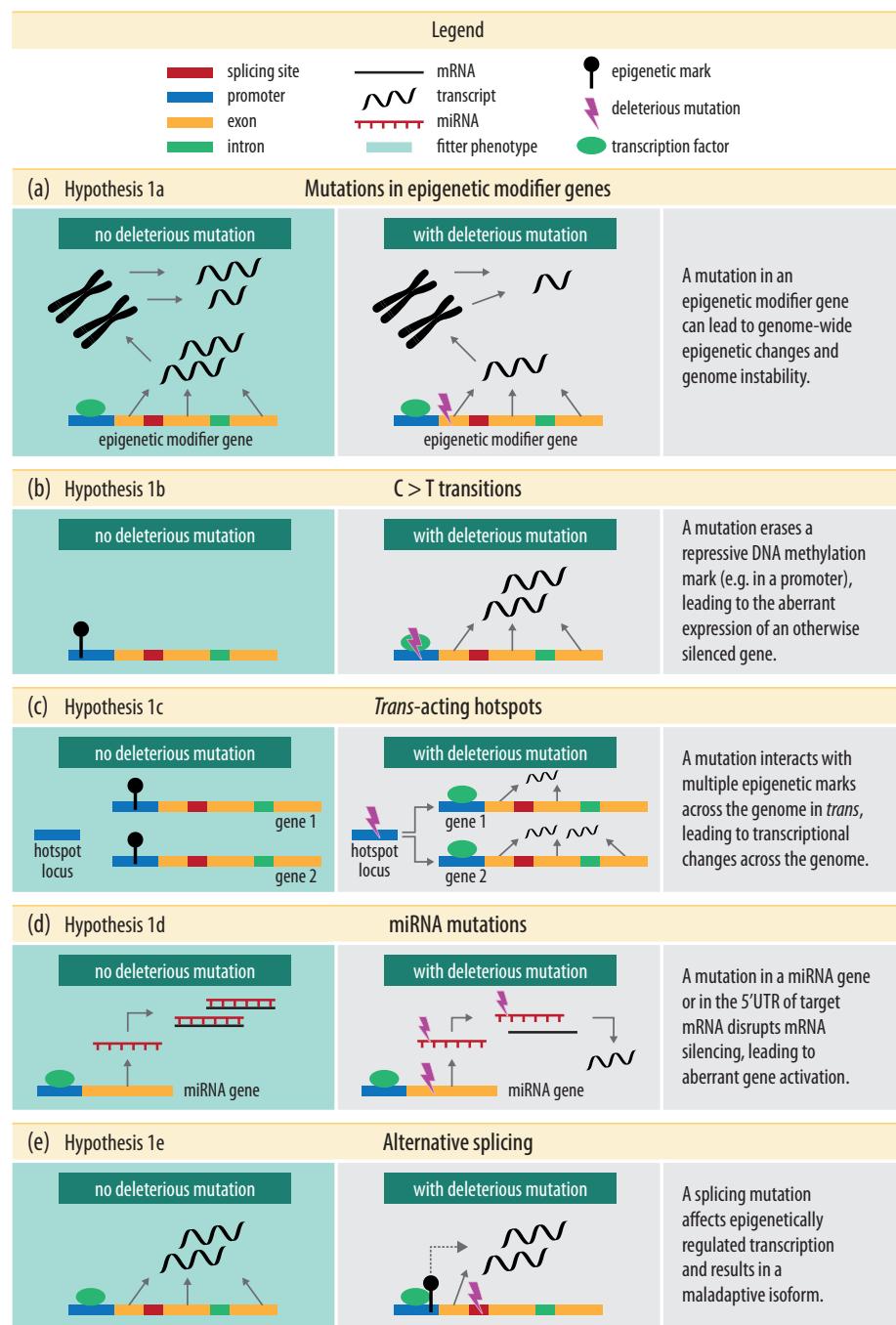
712


713 **Figure 1. Schematic representation of several epigenetic mechanisms.** DNA is wrapped
714 around histone proteins to form nucleosomes, the basic building blocks of chromatin. The
715 tails of histones, extending from the nucleosome core, contain amino acids that are targets of
716 various epigenetic modifications, such as methylation and acetylation. These modifications
717 influence DNA accessibility (how tightly or loosely the DNA is packed) and consequently
718 processes such as DNA repair. The DNA itself can also be modified, most commonly through
719 the methylation of cytosine nucleotides.

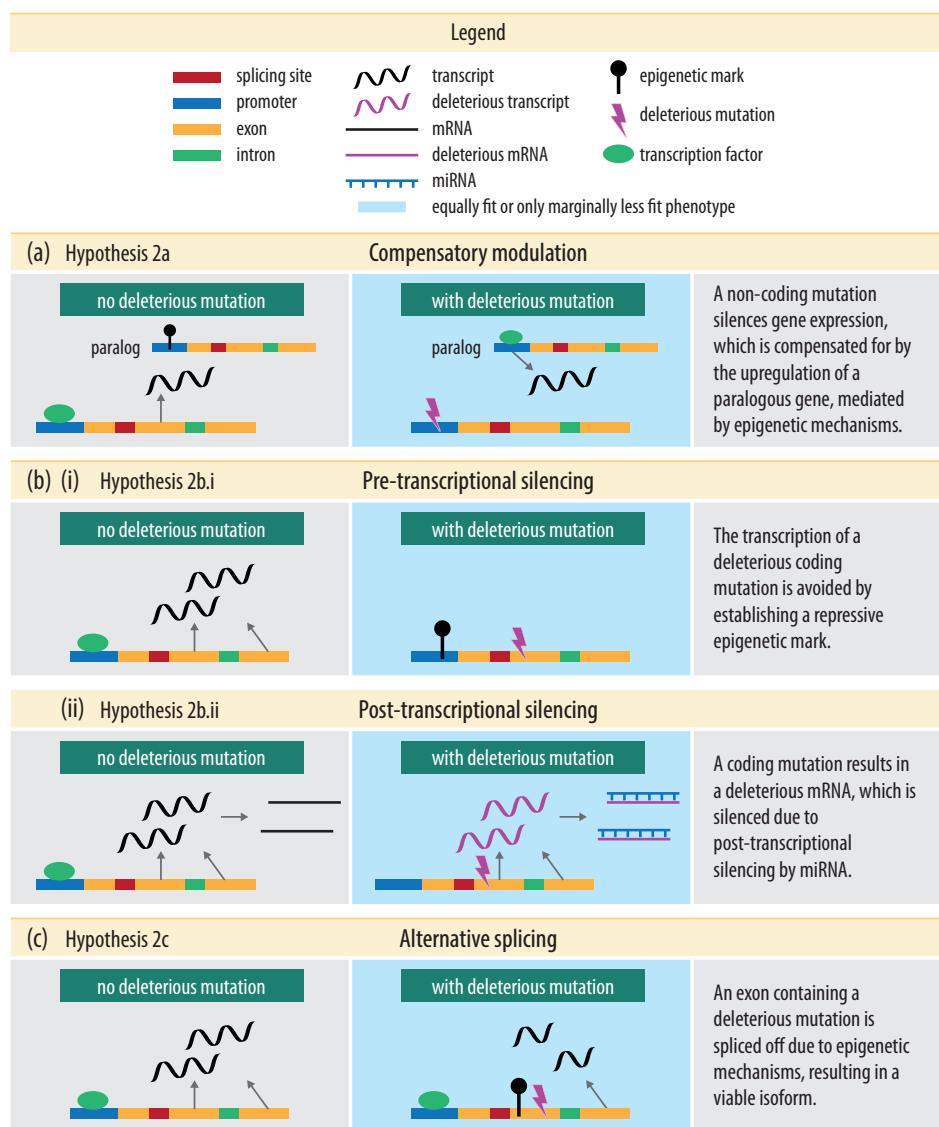
720

721

722 **Figure 2. Examples of wild vertebrate species in which one or two aspects of the interplay**
723 **between genetic variation, epigenetic variation and/or fitness have been empirically**
724 **investigated, but never all three simultaneously.** Studies include: (a) In black grouse, sexual trait
725 expression is mediated by inbreeding-dependent CpG site methylation changes at key candidate genes
726 [255]; (b) Inbreeding and epigenetic diversity are positively correlated in Kenyan [256] but not in
727 Australian house sparrows [257]; (c) In white-footed mice sampled along a range expansion gradient,
728 genetic and epigenetic diversity are uncorrelated [258]; (d) In killifish, interactions between parasites
729 and inbreeding have been found to influence DNA methylation [259]; (e) In a comparative study of
730 60 amniote species including the green sea turtle, the CpG content of several gene promoters was
731 found to be positively associated with lifespan [74]. (f) A similar positive association between
732 promotor CpG content and lifespan was found across 131 mammals, including the killer whale [75];
733 (g) In a study of eight vertebrates including the orangutan, increased CpG density in gene promoters
734 was found to correlate with gene expression levels [260]; (h) In the great tit, genetic effects explain
735 a substantial proportion of the variation in DNA methylation, with *trans*-acting QTLs having been
736 identified [31]; (i) Comparable findings have been reported in the three-spined stickleback, where
737 genetic effects contribute significantly towards variation in DNA methylation and *trans*-acting QTLs
738 have been mapped [83].



739 The image used in panel (c) was reproduced from Charles Homler available at
740 <https://animalia.bio/white-footed-mouse/1000>, licensed under CC BY-SA 4.0. The image used in
741 panel (d) was reproduced from S. Hellner available at
742 <https://www.fishbase.se/summary/Kryptolebias-hermaphroditus>, licenced under CC BY-NC 4.0.
743 The image used in panel (i) was reproduced from WikiMedia available at
744 https://upload.wikimedia.org/wikipedia/commons/3/37/Gasterosteus_aculeatus - Epinoche - Three-spined_stickleback.jpg, licenced under CC BY-SA-2.0. All other photos are courtesy of Oliver
745 Krüger and used with permission.
746


747 **Figure 3. Schematic representation of hypothesis one, subdivided into five sub-**
 748 **hypotheses (1a–e; §2a–§2.e).** Each sub-hypothesis represents a distinct way in which a
 749 deleterious mutation may reduce fitness via interactions with epigenetic mechanisms (middle
 750 column) compared with genotypes lacking the deleterious mutation (left column). Brief verbal
 751 explanations can be found in the right column.

752

753

754 **Figure 4. Schematic representation of hypothesis two, subdivided into five sub-**
 755 **hypotheses (2a–c; §3a–§3c).** Epigenetic mechanisms may buffer against the deleterious
 756 effects of a mutation (middle column), leading to equally fit or marginally less fit phenotypes
 757 compared to genotypes without the deleterious mutation (left column). Brief verbal
 758 explanations can be found in the right column.

759

760 **Glossary**

761 **Alternative splicing:** The process by which different combinations of exons are selectively included
762 or excluded from a single precursor messenger RNA to form multiple mature messenger RNA
763 isoforms that encode distinct protein variants from the same gene [103,104].

764 **C > T transition or C > T mutation:** A point mutation where a cytosine mutates into a thymine
765 nucleotide.

766 **CpG site:** A DNA sequence consisting of a cytosine (C) followed by a guanine (G), separated by a
767 phosphate group (p). CpG sites are often enriched in promoter regions and are typically unmethylated,
768 facilitating transcription factor binding.

769 **Cross-fostering:** An experimental method in which offspring are raised by foster rather than
770 biological parents to disentangle genetic and environmental influences on phenotypes. Cross-fostering
771 can be partial, where only some offspring in a brood or litter are exchanged, or full, where entire
772 broods or litters are swapped.

773 **Chromatin accessibility:** Chromatin refers to the packaging of DNA around histones. The tightness
774 of this packaging determines how accessible the chromatin is to DNA-binding proteins such as
775 transcription factors. Chromatin accessibility is a dynamic property of DNA that is influenced by
776 epigenetic modifications that alter the structure of chromatin [261].

777 **Coding mutation:** A mutation located in a coding region of the gene, such as an exon. Depending on
778 the specific nucleotide change, it can alter the amino acid sequence of the resulting protein, potentially
779 affecting its structure and function.

780 **CpG site density:** The number of CpG dinucleotides within a given stretch of DNA [262]. Regions
781 of high CpG density, known as CpG islands, can be 300 – 3,000 bp long depending on genomic location
782 [263] and species [264,265], and are often found in gene promoters, where they play key roles in
783 regulating gene expression [262]. By contrast, CpG shores are lower density regions that flank CpG
784 islands. CpG site density can be influenced by multiple factors including DNA methylation, selective
785 pressures, chromatin structure, recombination rate and GC content [262,266,267].

786 **DNA methylation:** An epigenetic modification involving the addition of a methyl group to a DNA
787 nucleotide. In vertebrates, DNA methylation in promoter regions generally inhibits transcription
788 factor binding and represses gene expression [152,268], whereas DNA methylation within gene
789 bodies can activate gene expression in insects [26]. Methylation at other genomic regions, such as
790 enhancers and insulators, may also be functionally important, although these effects are less well
791 understood [26].

792 **DNMT1:** The *DNA-methyltransferase 1* gene is responsible for maintaining DNA patterns by
793 methylating DNA daughter strands during replication, thereby preserving genome-wide methylation
794 [269].

795 **DNMT3:** *DNA-methyltransferase 3* genes (DNMTA3a and DNMTA3b) are responsible for *de novo*
796 DNA methylation and the establishment of new methylation patterns during early development. This

797 process provides the mechanistic foundation for cellular differentiation and enables epigenetic
798 modifications [40].

799 **Genetic drift:** Random changes in allele frequencies that occur in finite populations due to chance.

800 **Epigenetic mark:** A specific type of epigenetic mechanism that includes the physical modification of
801 DNA or histones, such as DNA methylation or histone acetylation.

802 **Epigenetic mechanisms:** Biochemical modifications that alter gene expression without changing the
803 underlying nucleotide sequence [18]. They include DNA methylation, non-coding RNAs and
804 chromatin modifications.

805 **Gene expression programme:** The dynamic, tissue-specific and context-dependent regulation of
806 gene activity across an individual's life history. It involves the coordinated up- and down-regulation
807 of individual genes and gene networks to support development, physiological function and responses
808 to environmental cues.

809 **Gene regulation:** The control of gene expression, which governs when, where (i.e. in which tissue)
810 and to what extent gene is expressed [270].

811 **Genetic compensation:** Changes in RNA or protein levels of one or more genes, often paralogues,
812 that functionally compensate for the loss of function of another gene, thereby buffering against the
813 phenotypic effects of that loss [123].

814 **Genome editing:** The alteration of genetic material by inserting, replacing, modifying or deleting a
815 DNA sequence.

816 **Genomic mutation load:** The cumulative burden of predicted deleterious mutations in an individual,
817 typically including both homozygous and heterozygous mutations.

818 **Histone modifications:** Epigenetic marks involving chemical modifications to the tails of histone
819 proteins [271,272]. These modifications influence how tightly DNA is wound around the histones.
820 When histone-DNA interactions result in a tightly packed chromatin structure (heterochromatin),
821 the transcriptional machinery cannot access the DNA, leading to gene silencing. Conversely, looser
822 chromatin (euchromatin) facilitates gene expression.

823 **Inbreeding:** The mating of individuals that are closely related through common ancestry.

824 **Inbreeding depression:** The reduced fitness of offspring born to closely related parents.

825 **Linkage map:** A genetic map showing the relative positions of genetic markers along a chromosome
826 based on how frequently they are inherited together. Distances are measured in centimorgans (cM), a
827 unit that reflects how often recombination occurs between them during meiosis.

828 **Long non-coding RNA (lncRNA):** RNA molecules longer than 100 nucleotides that do not encode
829 proteins but play key roles in regulating gene expression. They are involved in chromatin
830 remodelling, the modulation of histone and DNA methylation and acetylation, and regulation at both
831 the pre- and post-transcriptional and translational levels.

832 **Loss of function (LOF) mutation:** A genetic mutation that reduces or abolishes the activity of a
833 protein. This can result from the introduction of a premature stop-codon (nonsense mutation), or
834 insertions / deletions (indels) that disrupt the transcript's reading frame or cause exon loss.

835 **Meiotic recombination:** The exchange of genetic material between homologous chromosomes
836 during meiosis that generates new combinations of alleles.

837 **Mutation load:** The reduction in fitness due to the accumulation of deleterious mutations.

838 **Micro ribonucleic acid (miRNA):** Small non-coding RNAs that post-transcriptionally regulate gene
839 expression by binding to target mRNA molecules, leading to translation repression or mRNA
840 degradation [87].

841 **Mutation accumulation experiments:** Experiments in which multiple replicate lines of an organism
842 are propagated for multiple generations under relaxed selection, often through repeated population
843 bottlenecks. This allows mutations to accumulate at random and their fitness effects to be assessed.

844 **Mutation induction experiments:** Experiments in which organisms are exposed to mutagens, such
845 as ionising radiation or chemicals, to artificially increase mutation rates. This enables testing of the
846 effects of increasing mutation loads on fitness.

847 **Non-coding mutation:** A mutation occurring in a non-coding region of the genome, including
848 intergenic and intronic regions, untranslated regions (UTRs), promoters and distal regulatory
849 elements.

850 **Non-coding RNA:** RNA molecules that do not encode proteins but play roles in regulating gene
851 expression at the post-transcriptional level. They include microRNAs (miRNAs), small interfering
852 RNAs (siRNAs), long non-coding RNAs (lncRNAs), transfer RNAs (tRNAs) and ribosomal RNAs
853 (rRNAs).

854 **Non-synonymous mutation:** A point mutation in an exon that alters the amino acid sequence of a
855 protein, such as a missense mutation.

856 **Paralogous genes (paralogs):** Homologous genes that arise from the duplication of an ancestral gene
857 within the same genome.

858 **Promoter:** A DNA sequence upstream of a gene's transcription start site (TSS) that serves as a
859 binding site for transcription factors and other proteins to initiate transcription.

860 **Purging:** The process by which natural selection removes deleterious mutations from a population,
861 reducing their frequency.

862 **Recombination landscapes:** Variation in recombination rates along chromosomes [273] which is
863 influenced by factors such as chromosome size, proximity to centromeres or telomeres, and sex.

864 **SETDB1:** The *SET Domain Bifurcated Histone Lysine Methyltransferase 1* gene encodes a histone
865 methyltransferase that regulates histone methylation, gene silencing and transcriptional repression
866 [274].

867 **Untranslated region (UTR):** A genetic sequence located at the 5' or 3' end of a gene that flanks the
868 coding region but is not translated into a protein. While they do not code for amino acids, UTRs
869 influence mRNA stability, localization and translation efficiency.

870 **TET genes:** *Ten-eleven-translocation* genes encode enzymes that mediate DNA demethylation by
871 oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) [32].

873 **Funding**

874 This work was supported by a Deutsche Forschungsgemeinschaft (DFG) standard grant awarded to
875 J.I.H. (HO 5122/14-1, project number 454606304) and a Humboldt Research Fellowship for postdocs
876 and experienced researchers awarded to B.S. and hosted by J.I.H. This work was also supported by
877 the Deutsche Forschungsgemeinschaft (DFG) Sonderforschungsbereiche (SFB) TRR 212 (NC3) -
878 Project Numbers 316099922 and 396774617.

879

880 **Author contributions**

881 Conceptualization, R.S.C, B.S. and J.I.H; investigation, R.S.C and B.S.; visualisation, R.S.C. and B.S.;
882 writing – original draft, R.S.C., B.S. and J.I.H; writing – review & editing, all authors; funding
883 acquisition, B.S., K.O. and J.I.H.; supervision, J.I.H. and K.O.

884

885 **Acknowledgements**

886 We would like to thank Toni Gossman, David L. J. Vendrami, Beril Yildiz and Judith Risse for
887 providing us with feedback on a previous version of this manuscript.

888

889 **Declaration of interest**

890 The authors declare no competing interests.

891

892 **References**

- 893 1. Gheyas AA, Boschiero C, Eory L, Ralph H, Kuo R, Woolliams JA, Burt DW. 2015
894 Functional classification of 15 million SNPs detected from diverse chicken populations.
895 *DNA Research* **22**, 205–217. (doi:10.1093/dnares/dsv005)
- 896 2. Shastry BS. 2009 SNPs: Impact on Gene Function and Phenotype. In *Single Nucleotide*
897 *Polymorphisms* (ed AA Komar), pp. 3–22. Totowa, NJ: Humana Press. (doi:10.1007/978-
898 1-60327-411-1_1)
- 899 3. Tak YG, Farnham PJ. 2015 Making sense of GWAS: using epigenomics and genome
900 engineering to understand the functional relevance of SNPs in non-coding regions of
901 the human genome. *Epigenetics & Chromatin* **8**, 57. (doi:10.1186/s13072-015-0050-4)
- 902 4. Hoelzel AR, Bruford MW, Fleischer RC. 2019 Conservation of adaptive potential and
903 functional diversity. *Conserv Genet* **20**, 1–5. (doi:10.1007/s10592-019-01151-x)
- 904 5. Zhang R, Deng P, Jacobson D, Li JB. 2017 Evolutionary analysis reveals regulatory and
905 functional landscape of coding and non-coding RNA editing. *PLoS Genet* **13**, e1006563.
906 (doi:10.1371/journal.pgen.1006563)
- 907 6. Yang M, Ali O, Bjørås M, Wang J. 2023 Identifying functional regulatory mutation
908 blocks by integrating genome sequencing and transcriptome data. *iScience* **26**, 107266.
909 (doi:10.1016/j.isci.2023.107266)

910 7. Loewe L, Hill WG. 2010 The population genetics of mutations: good, bad and
911 indifferent. *Phil. Trans. R. Soc. B* **365**, 1153–1167. (doi:10.1098/rstb.2009.0317)

912 8. Bao K, Melde RH, Sharp NP. 2022 Are mutations usually deleterious? A perspective on
913 the fitness effects of mutation accumulation. *Evol Ecol* **36**, 753–766.
914 (doi:10.1007/s10682-022-10187-4)

915 9. Huey RB. 2003 Mutation Accumulation, Performance, Fitness. *Integrative and*
916 *Comparative Biology* **43**, 387–395. (doi:10.1093/icb/43.3.387)

917 10. Chebib J, Jonas A, López-Cortegano E, Künzel S, Tautz D, Keightley PD. 2024 An
918 estimate of fitness reduction from mutation accumulation in a mammal allows
919 assessment of the consequences of relaxed selection. *PLoS Biol* **22**, e3002795.
920 (doi:10.1371/journal.pbio.3002795)

921 11. Herdegen M, Radwan J. 2015 Effect of induced mutations on sexually selected traits in
922 the guppy, *Poecilia reticulata*. *Animal Behaviour* **110**, 105–111.
923 (doi:10.1016/j.anbehav.2015.09.013)

924 12. Almbro M, Simmons LW. 2014 Sexual selection can remove an experimentally induced
925 mutation load: brief communication. *Evolution* **68**, 295–300. (doi:10.1111/evo.12238)

926 13. Jacob F, Monod J. 1961 On the Regulation of Gene Activity. *Cold Spring Harbor Symposia*
927 *on Quantitative Biology* **26**, 193–211. (doi:10.1101/SQB.1961.026.01.024)

928 14. Wray GA. 2007 The evolutionary significance of cis-regulatory mutations. *Nat Rev*
929 *Genet* **8**, 206–216. (doi:10.1038/nrg2063)

930 15. Reik W. 2007 Stability and flexibility of epigenetic gene regulation in mammalian
931 development. *Nature* **447**, 425–432. (doi:10.1038/nature05918)

932 16. Carroll SB. 2008 Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic
933 Theory of Morphological Evolution. *Cell* **134**, 25–36. (doi:10.1016/j.cell.2008.06.030)

934 17. Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. 2024 Noncoding RNAs: Emerging
935 regulators of behavioral complexity. *WIREs RNA* **15**, e1847. (doi:10.1002/wrna.1847)

936 18. Richards EJ. 2006 Inherited epigenetic variation — revisiting soft inheritance. *Nature*
937 *Reviews Genetics* **7**, 395–401. (doi:10.1038/nrg1834)

938 19. Mohtat D, Susztak K. 2010 Fine Tuning Gene Expression: The Epigenome. *Seminars in*
939 *Nephrology* **30**, 468–476. (doi:10.1016/j.semephrol.2010.07.004)

940 20. Kong J, Lasko P. 2012 Translational control in cellular and developmental processes.
941 *Nat Rev Genet* **13**, 383–394. (doi:10.1038/nrg3184)

942 21. Mata J, Marguerat S, Bähler J. 2005 Post-transcriptional control of gene expression: a
943 genome-wide perspective. *Trends in Biochemical Sciences* **30**, 506–514.
944 (doi:10.1016/j.tibs.2005.07.005)

945 22. Holoch D, Moazed D. 2015 RNA-mediated epigenetic regulation of gene expression.
946 *Nat Rev Genet* **16**, 71–84. (doi:10.1038/nrg3863)

947 23. Ishihara S, Sasagawa Y, Kameda T, Yamashita H, Umeda M, Kotomura N, Abe M,
948 Shimono Y, Nikaido I. 2021 Local states of chromatin compaction at transcription start
949 sites control transcription levels. *Nucleic Acids Research* **49**, 8007–8023.
950 (doi:10.1093/nar/gkab587)

951 24. Mansisidor AR, Risca VI. 2022 Chromatin accessibility: methods, mechanisms, and
952 biological insights. *Nucleus* **13**, 238–278. (doi:10.1080/19491034.2022.2143106)

953 25. Lindner M, Verhagen I, Viitaniemi HM, Laine VN, Visser ME, Husby A, van Oers K.
954 2021 Temporal changes in DNA methylation and RNA expression in a small song bird:
955 within- and between-tissue comparisons. *BMC Genomics* **22**, 36. (doi:10.1186/s12864-
956 020-07329-9)

957 26. Jones PA. 2012 Functions of DNA methylation: islands, start sites, gene bodies and
958 beyond. *Nat Rev Genet* **13**, 484–492. (doi:10.1038/nrg3230)

959 27. Field LM, Lyko F, Mandrioli M, Prantera G. 2004 DNA methylation in insects. *Insect
960 Molecular Biology* **13**, 109–115. (doi:10.1111/j.0962-1075.2004.00470.x)

961 28. Glastad KM, Hunt BG, Yi SV, Goodisman MAD. 2011 DNA methylation in insects: on
962 the brink of the epigenomic era. *Insect Molecular Biology* **20**, 553–565.
963 (doi:10.1111/j.1365-2583.2011.01092.x)

964 29. Keller TE, Han P, Yi SV. 2016 Evolutionary Transition of Promoter and Gene Body
965 DNA Methylation across Invertebrate–Vertebrate Boundary. *Mol Biol Evol* **33**, 1019–
966 1028. (doi:10.1093/molbev/msv345)

967 30. Sepers B, van den Heuvel K, Lindner M, Viitaniemi H, Husby A, van Oers K. 2019 Avian
968 ecological epigenetics: pitfalls and promises. *Journal of Ornithology* **160**, 1183–1203.
969 (doi:10.1007/s10336-019-01684-5)

970 31. Sepers B, Chen RS, Memelink M, Verhoeven KJF, Van Oers K. 2023 Variation in DNA
971 Methylation in Avian Nestlings Is Largely Determined by Genetic Effects. *Molecular
972 Biology and Evolution* **40**, msad086. (doi:10.1093/molbev/msad086)

973 32. Wu X, Zhang Y. 2017 TET-mediated active DNA demethylation: mechanism, function
974 and beyond. *Nat Rev Genet* **18**, 517–534. (doi:10.1038/nrg.2017.33)

975 33. Okano M, Bell DW, Haber DA, Li E. 1999 DNA methyltransferases Dnmt3a and
976 Dnmt3b are essential for de novo methylation and mammalian development. *Cell* **99**,
977 247–257.

978 34. Barnett Burns S, Almeida D, Turecki G. 2018 The Epigenetics of Early Life Adversity:
979 Current Limitations and Possible Solutions. In *Progress in Molecular Biology and
980 Translational Science*, pp. 343–425. Elsevier. (doi:10.1016/bs.pmbts.2018.01.008)

981 35. Romero-Mujalli D, Fuchs LIR, Haase M, Hildebrandt J-P, Weissing FJ, Revilla TA.
982 2024 Emergence of phenotypic plasticity through epigenetic mechanisms. *Evolution
983 Letters* **8**, 561–574. (doi:10.1093/evlett/qrae012)

984 36. Gibney ER, Nolan CM. 2010 Epigenetics and gene expression. *Heredity* **105**, 4–13.
985 (doi:10.1038/hdy.2010.54)

986 37. Vergeer P, Wagemaker N (C. AM), Ouborg NJ. 2012 Evidence for an epigenetic role in
987 inbreeding depression. *Biology Letters* **8**, 798–801. (doi:10.1098/rsbl.2012.0494)

988 38. Cheptou P-O, Donohue K. 2013 Epigenetics as a new avenue for the role of inbreeding
989 depression in evolutionary ecology. *Heredity* **110**, 205–206. (doi:10.1038/hdy.2012.66)

990 39. Biémont C, Vieira C. 2014 Could interallelic interactions be a key to the epigenetic
991 aspects of fitness-trait inbreeding depression? *Heredity* **112**, 219–220.
992 (doi:10.1038/hdy.2013.80)

993 40. Lyko F. 2018 The DNA methyltransferase family: a versatile toolkit for epigenetic
994 regulation. *Nat Rev Genet* **19**, 81–92. (doi:10.1038/nrg.2017.80)

995 41. Gibbs JR *et al.* 2010 Abundant Quantitative Trait Loci Exist for DNA Methylation and
996 Gene Expression in Human Brain. *PLOS Genetics* **6**, e1000952.
997 (doi:10.1371/journal.pgen.1000952)

998 42. Höglund A, Henriksen R, Fogelholm J, Churcher AM, Guerrero-Bosagna CM,
999 Martinez-Barrio A, Johnsson M, Jensen P, Wright D. 2020 The methylation landscape
1000 and its role in domestication and gene regulation in the chicken. *Nature Ecology and
1001 Evolution* (doi:10.1038/s41559-020-01310-1)

1002 43. Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P. 2013 Mutations
1003 in regulators of the epigenome and their connections to global chromatin patterns in
1004 cancer. *Nat Rev Genet* **14**, 765–780. (doi:10.1038/nrg3554)

1005 44. Besselink N, Keijer J, Vermeulen C, Boymans S, De Ridder J, Van Hoeck A, Cuppen E,
1006 Kuijk E. 2023 The genome-wide mutational consequences of DNA hypomethylation. *Sci
1007 Rep* **13**, 6874. (doi:10.1038/s41598-023-33932-3)

1008 45. Yang L *et al.* 2016 DNMT3A Loss Drives Enhancer Hypomethylation in FLT3-ITD-
1009 Associated Leukemias. *Cancer Cell* **29**, 922–934. (doi:10.1016/j.ccr.2016.05.003)

1010 46. Banaszak LG *et al.* 2018 Abnormal RNA splicing and genomic instability after induction
1011 of DNMT3A mutations by CRISPR/Cas9 gene editing. *Blood Cells, Molecules, and
1012 Diseases* **69**, 10–22. (doi:10.1016/j.bcmd.2017.12.002)

1013 47. López-Moyado IF, Tsagaratou A, Yuita H, Seo H, Delatte B, Heinz S, Benner C, Rao A.
1014 2019 Paradoxical association of TET loss of function with genome-wide DNA
1015 hypomethylation. *Proc. Natl. Acad. Sci. U.S.A.* **116**, 16933–16942.
1016 (doi:10.1073/pnas.1903059116)

1017 48. Necula LG, Mambet C, Albulescu R, Diaconu CC. 2015 Epigenetics in Gastric
1018 Carcinogenesis: Tet Genes as Important Players. *Journal of Immunoassay and
1019 Immunochemistry* **36**, 445–455. (doi:10.1080/15321819.2015.1017402)

1020 49. Pronier E, Delhommeau F. 2012 Role of TET2 Mutations in Myeloproliferative
1021 Neoplasms. *Curr Hematol Malig Rep* **7**, 57–64. (doi:10.1007/s11899-011-0108-8)

1022 50. Tulstrup M *et al.* 2021 TET2 mutations are associated with hypermethylation at key
1023 regulatory enhancers in normal and malignant hematopoiesis. *Nat Commun* **12**, 6061.
1024 (doi:10.1038/s41467-021-26093-2)

1025 51. Xu Q, Wang C, Zhou J-X, Xu Z-M, Gao J, Sui P, Walsh CP, Ji H, Xu G-L. 2022 Loss
1026 of TET reprograms Wnt signaling through impaired demethylation to promote lung
1027 cancer development. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2107599119.
1028 (doi:10.1073/pnas.2107599119)

1029 52. Kang Y-K, Eom J, Min B, Park JS. 2024 SETDB1 deletion causes DNA demethylation
1030 and upregulation of multiple zinc-finger genes. *Mol Biol Rep* **51**, 778.
1031 (doi:10.1007/s11033-024-09703-2)

1032 53. Tsioopoulos NJ, Bailey DW, Chiou LF, Wissink FJ, Tsagaratou A. 2021 TET-Mediated
1033 Epigenetic Regulation in Immune Cell Development and Disease. *Front. Cell Dev. Biol.*
1034 **8**, 623948. (doi:10.3389/fcell.2020.623948)

1035 54. Wu L, Wang X, Wang L, Li S, Chen Q. 2025 DNA methylation and demethylation in
1036 adipocyte biology: roles of DNMT and TET proteins in metabolic disorders. *Front.*
1037 *Endocrinol.* **16**, 1591152. (doi:10.3389/fendo.2025.1591152)

1038 55. Li E, Bestor TH, Jaenisch R. 1992 Targeted mutation of the DNA methyltransferase
1039 gene results in embryonic lethality. *Cell* **69**, 915–926. (doi:10.1016/0092-
1040 8674(92)90611-F)

1041 56. Arsala D, Wu X, Yi SV, Lynch JA. 2022 Dnmt1a is essential for gene body methylation
1042 and the regulation of the zygotic genome in a wasp. *PLoS Genet* **18**, e1010181.
1043 (doi:10.1371/journal.pgen.1010181)

1044 57. Ivasyk I, Olivos-Cisneros L, Valdés-Rodríguez S, Droual M, Jang H, Schmitz RJ,
1045 Kronauer DJC. 2023 DNMT1 mutant ants develop normally but have disrupted
1046 oogenesis. *Nat Commun* **14**, 2201. (doi:10.1038/s41467-023-37945-4)

1047 58. Wang F, Qin Z, Li Z, Yang S, Gao T, Sun L, Wang D. 2021 Dnmt3aa but Not Dnmt3ab
1048 Is Required for Maintenance of Gametogenesis in Nile Tilapia (*Oreochromis niloticus*).
1049 *IJMS* **22**, 10170. (doi:10.3390/ijms221810170)

1050 59. Loughland I, Little A, Seebacher F. 2021 DNA methyltransferase 3a mediates
1051 developmental thermal plasticity. *BMC Biol* **19**, 11. (doi:10.1186/s12915-020-00942-w)

1052 60. Akahori H, Guindon S, Yoshizaki S, Muto Y. 2015 Molecular Evolution of the TET
1053 Gene Family in Mammals. *IJMS* **16**, 28472–28485. (doi:10.3390/ijms161226110)

1054 61. Martin LB *et al.* 2025 Temperature predictability and introduction history affect the
1055 expression of genes regulating DNA methylation in a globally distributed songbird.
1056 (doi:10.22541/au.173957596.66798010/v1)

1057 62. Attwood JT, Yung RL, Richardson BC. 2002 DNA methylation and the regulation of
1058 gene transcription. *CMLS, Cell. Mol. Life Sci.* **59**, 241–257. (doi:10.1007/s00018-002-
1059 8420-z)

1060 63. Lutsenko E, Bhagwat AS. 1999 Principal causes of hot spots for cytosine to thymine
1061 mutations at sites of cytosine methylation in growing cells. *Mutation Research/Reviews*
1062 in *Mutation Research* **437**, 11–20. (doi:10.1016/S1383-5742(99)00065-4)

1063 64. Cooper DN, Mort M, Stenson PD, Ball EV, Chuzhanova NA. 2010 Methylation-
1064 mediated deamination of 5-methylcytosine appears to give rise to mutations causing

1065 human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides.
1066 *Human genomics* **4**, 1–5.

1067 65. Holliday R, Grigg GW. 1993 DNA methylation and mutation. *Mutation*
1068 *Research/Fundamental and Molecular Mechanisms of Mutagenesis* **285**, 61–67.
1069 (doi:10.1016/0027-5107(93)90052-H)

1070 66. Duncan BK, Miller JH. 1980 Mutagenic deamination of cytosine residues in DNA.
1071 *Nature* **287**, 560–561. (doi:10.1038/287560a0)

1072 67. Zhou D, Li Z, Yu D, Wan L, Zhu Y, Lai M, Zhang D. 2015 Polymorphisms involving
1073 gain or loss of CpG sites are significantly enriched in trait-associated SNPs. *Oncotarget*
1074 **6**, 39995–40004. (doi:10.18632/oncotarget.5650)

1075 68. Sheldon EL, Martin LB, Schrey AW. 2025 Integrating plasticity into conservation
1076 practice: Harnessing genetic estimates of epigenetic potential to study phenotypic
1077 plasticity in wild populations. *Journal of Applied Ecology* **62**, 783–789. (doi:10.1111/1365-
1078 2664.70019)

1079 69. Kilvitis HJ, Hanson H, Schrey AW, Martin LB. 2017 Epigenetic Potential as a
1080 Mechanism of Phenotypic Plasticity in Vertebrate Range Expansions. *Integrative and*
1081 *Comparative Biology* **57**, 385–395. (doi:10.1093/icb/icx082)

1082 70. Zhi D, Aslibekyan S, Irvin MR, Claas SA, Borecki IB, Ordovas JM, Absher DM, Arnett
1083 DK. 2013 SNPs located at CpG sites modulate genome-epigenome interaction.
1084 *Epigenetics* **8**, 802–806. (doi:10.4161/epi.25501)

1085 71. Van Tongelen A, Loriot A, De Smet C. 2017 Oncogenic roles of DNA hypomethylation
1086 through the activation of cancer-germline genes. *Cancer Letters* **396**, 130–137.
1087 (doi:10.1016/j.canlet.2017.03.029)

1088 72. Ponger L, Duret L, Mouchiroud D. 2001 Determinants of CpG Islands: Expression in
1089 Early Embryo and Isochore Structure. *Genome Res.* **11**, 1854–1860.
1090 (doi:10.1101/gr.174501)

1091 73. Joshi CJ, Ke W, Drangowska-Way A, O'Rourke EJ, Lewis NE. 2022 What are
1092 housekeeping genes? *PLoS Comput Biol* **18**, e1010295.
1093 (doi:10.1371/journal.pcbi.1010295)

1094 74. Sheldon EL, Schrey AW, Lauer ME, Martin LB. 2023 Epigenetic potential: Promoter
1095 CpG content positively covaries with lifespan and is dependent on gene function among
1096 vertebrates. *Journal of Heredity* **114**, 207–218. (doi:10.1093/jhered/esad006)

1097 75. McLain AT, Faulk C. 2018 The evolution of CpG density and lifespan in conserved
1098 primate and mammalian promoters. *Aging* **10**, 561–572. (doi:10.18632/aging.101413)

1099 76. Bertucci EM, Parrott BB. 2020 Is CpG Density the Link between Epigenetic Aging and
1100 Lifespan? *Trends in Genetics* **36**, 725–727. (doi:10.1016/j.tig.2020.06.003)

1101 77. Mayne B, Berry O, Davies C, Farley J, Jarman S. 2019 A genomic predictor of lifespan
1102 in vertebrates. *Sci Rep* **9**, 17866. (doi:10.1038/s41598-019-54447-w)

1103 78. Villicaña S, Bell JT. 2021 Genetic impacts on DNA methylation: research findings and
1104 future perspectives. *Genome Biol* **22**, 127. (doi:10.1186/s13059-021-02347-6)

1105 79. Ma J *et al.* 2022 Elucidating the genetic architecture of DNA methylation to identify
1106 promising molecular mechanisms of disease. *Sci Rep* **12**, 19564. (doi:10.1038/s41598-
1107 022-24100-0)

1108 80. Lemire M *et al.* 2015 Long-range epigenetic regulation is conferred by genetic variation
1109 located at thousands of independent loci. *Nat Commun* **6**, 6326.
1110 (doi:10.1038/ncomms7326)

1111 81. Mozhui K, Kim H, Villani F, Haghani A, Sen S, Horvath S. 2023 Pleiotropic influence of
1112 DNA methylation QTLs on physiological and ageing traits. *Epigenetics* **18**, 2252631.
1113 (doi:10.1080/15592294.2023.2252631)

1114 82. Huan T *et al.* 2019 Genome-wide identification of DNA methylation QTLs in whole
1115 blood highlights pathways for cardiovascular disease. *Nat Commun* **10**, 4267.
1116 (doi:10.1038/s41467-019-12228-z)

1117 83. Hu J, Wuitchik SJS, Barry TN, Jamniczky HA, Rogers SM, Barrett RDH. 2021
1118 Heritability of DNA methylation in threespine stickleback (*Gasterosteus aculeatus*).
1119 *Genetics* **217**, iyab001. (doi:10.1093/genetics/iyab001)

1120 84. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. 2014 Mechanisms of
1121 miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific
1122 Upregulation. *International Journal of Genomics* **2014**, 1–15. (doi:10.1155/2014/970607)

1123 85. Wei J-W, Huang K, Yang C, Kang C-S. 2017 Non-coding RNAs as regulators in
1124 epigenetics. *Oncology Reports* **37**, 3–9. (doi:10.3892/or.2016.5236)

1125 86. Morales S, Monzo M, Navarro A. 2017 Epigenetic regulation mechanisms of microRNA
1126 expression. *Biomolecular Concepts* **8**, 203–212. (doi:10.1515/bmc-2017-0024)

1127 87. He L, Hannon GJ. 2004 MicroRNAs: small RNAs with a big role in gene regulation.
1128 *Nat Rev Genet* **5**, 522–531. (doi:10.1038/nrg1379)

1129 88. Arumugam T, Adimulam T, Gokul A, Ramsuran V. 2024 Variation within the non-
1130 coding genome influences genetic and epigenetic regulation of the human leukocyte
1131 antigen genes. *Front. Immunol.* **15**, 1422834. (doi:10.3389/fimmu.2024.1422834)

1132 89. Kawahara Y. 2014 Human diseases caused by germline and somatic abnormalities in
1133 microRNA and microRNA-related genes. *Congenital Anomalies* **54**, 12–21.
1134 (doi:10.1111/cga.12043)

1135 90. Cammaerts S, Strazisar M, De Rijk P, Del Favero J. 2015 Genetic variants in microRNA
1136 genes: impact on microRNA expression, function, and disease. *Frontiers in genetics* **6**, 186.

1137 91. Landi D, Gemignani F, Landi S. 2012 Role of variations within microRNA-binding sites
1138 in cancer. *Mutagenesis* **27**, 205–210. (doi:10.1093/mutage/ger055)

1139 92. Georges M, Coppieters W, Charlier C. 2007 Polymorphic miRNA-mediated gene
1140 regulation: contribution to phenotypic variation and disease. *Current Opinion in Genetics
& Development* **17**, 166–176. (doi:10.1016/j.gde.2007.04.005)

1142 93. Bitetti A *et al.* 2018 MicroRNA degradation by a conserved target RNA regulates animal
1143 behavior. *Nat Struct Mol Biol* **25**, 244–251. (doi:10.1038/s41594-018-0032-x)

1144 94. Fehlmann T *et al.* 2019 The sncRNA Zoo: a repository for circulating small noncoding
1145 RNAs in animals. *Nucleic Acids Research* **47**, 4431–4441. (doi:10.1093/nar/gkz227)

1146 95. Pawlina-Tyszko K, Semik-Gurgul E, Gurgul A, Oczkowicz M, Szmatoła T, Bugno-
1147 Poniewierska M. 2021 Application of the targeted sequencing approach reveals the
1148 single nucleotide polymorphism (SNP) repertoire in microRNA genes in the pig
1149 genome. *Sci Rep* **11**, 9848. (doi:10.1038/s41598-021-89363-5)

1150 96. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. 2013 MicroRNA: Function, Detection,
1151 and Bioanalysis. *Chem. Rev.* **113**, 6207–6233. (doi:10.1021/cr300362f)

1152 97. Cao W *et al.* 2025 miRNAsNP-v4: a comprehensive database for miRNA-related SNPs
1153 across 17 species. *Nucleic Acids Research* **53**, D1066–D1074. (doi:10.1093/nar/gkae888)

1154 98. Desvignes T, Bardou P, Montfort J, Sydes J, Guyomar C, George S, Postlethwait JH,
1155 Bobe J. 2022 FishmiRNA: An Evolutionarily Supported MicroRNA Annotation and
1156 Expression Database for Ray-Finned Fishes. *Molecular Biology and Evolution* **39**,
1157 msac004. (doi:10.1093/molbev/msac004)

1158 99. Gallego A *et al.* 2016 Functional Implications of Human-Specific Changes in Great Ape
1159 microRNAs. *PLoS ONE* **11**, e0154194. (doi:10.1371/journal.pone.0154194)

1160 100. Penso-Dolfin L, Moxon S, Haerty W, Di Palma F. 2018 The evolutionary dynamics of
1161 microRNAs in domestic mammals. *Sci Rep* **8**, 17050. (doi:10.1038/s41598-018-34243-8)

1162 101. Zorc M, Obsteter J, Dovc P, Kunej T. 2015 Genetic Variability of MicroRNA Genes in
1163 15 Animal Species. *J. Genomics* **3**, 51–56. (doi:10.7150/jgen.11246)

1164 102. Hao D, Wang X, Yang Y, Chen H, Thomsen B, Holm L-E. 2023 MicroRNA sequence
1165 variation can impact interactions with target mRNA in cattle. *Gene* **868**, 147373.
1166 (doi:10.1016/j.gene.2023.147373)

1167 103. Tuck AC, Tollervey D. 2011 RNA in pieces. *Trends in Genetics* **27**, 422–432.
1168 (doi:10.1016/j.tig.2011.06.001)

1169 104. Elkon R, Ugalde AP, Agami R. 2013 Alternative cleavage and polyadenylation: extent,
1170 regulation and function. *Nat Rev Genet* **14**, 496–506. (doi:10.1038/nrg3482)

1171 105. Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. 2011 Epigenetics in Alternative
1172 Pre-mRNA Splicing. *Cell* **144**, 16–26. (doi:10.1016/j.cell.2010.11.056)

1173 106. Zhu L-Y, Zhu Y-R, Dai D-J, Wang X, Jin H-C. 2018 Epigenetic regulation of alternative
1174 splicing. *Am J Cancer Res* **8**, 2346–2358.

1175 107. Malakar P, Shukla S, Mondal M, Kar RK, Siddiqui JA. 2024 The nexus of long
1176 noncoding RNAs, splicing factors, alternative splicing and their modulations. *RNA
1177 Biology* **21**, 16–35. (doi:10.1080/15476286.2023.2286099)

1178 108. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. 2010
1179 Regulation of Alternative Splicing by Histone Modifications. *Science* **327**, 996–1000.
1180 (doi:10.1126/science.1184208)

1181 109. Saint-André V, Batsché E, Rachez C, Muchardt C. 2011 Histone H3 lysine 9
1182 trimethylation and HP1 γ favor inclusion of alternative exons. *Nat Struct Mol Biol* **18**,
1183 337–344. (doi:10.1038/nsmb.1995)

1184 110. Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA. 2012 Psip1/Ledgf
1185 p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the
1186 Regulation of Alternative Splicing. *PLOS Genetics* **8**, e1002717.
1187 (doi:10.1371/journal.pgen.1002717)

1188 111. Bentley DL. 2014 Coupling mRNA processing with transcription in time and space. *Nat
1189 Rev Genet* **15**, 163–175. (doi:10.1038/nrg3662)

1190 112. Zhang J, Zhang Y-Z, Jiang J, Duan C-G. 2020 The Crosstalk Between Epigenetic
1191 Mechanisms and Alternative RNA Processing Regulation. *Front. Genet.* **11**, 998.
1192 (doi:10.3389/fgene.2020.00998)

1193 113. Raponi M, Baralle D. 2010 Alternative splicing: good and bad effects of translationally
1194 silent substitutions. *The FEBS Journal* **277**, 836–840. (doi:10.1111/j.1742-
1195 4658.2009.07519.x)

1196 114. Venables JP. 2004 Aberrant and Alternative Splicing in Cancer. *Cancer Research* **64**,
1197 7647–7654. (doi:10.1158/0008-5472.CAN-04-1910)

1198 115. Yearim A *et al.* 2015 HP1 Is Involved in Regulating the Global Impact of DNA
1199 Methylation on Alternative Splicing. *Cell Reports* **10**, 1122–1134.
1200 (doi:10.1016/j.celrep.2015.01.038)

1201 116. Zhou H-L, Hinman MN, Barron VA, Geng C, Zhou G, Luo G, Siegel RE, Lou H. 2011
1202 Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation
1203 in an RNA-dependent manner. *Proc. Natl. Acad. Sci. U.S.A.* **108**.
1204 (doi:10.1073/pnas.1103344108)

1205 117. Gao G *et al.* 2018 Comparative genomics and transcriptomics of *Chrysolophus* provide
1206 insights into the evolution of complex plumage coloration. *GigaScience* **7**, giy113.
1207 (doi:10.1093/gigascience/giy113)

1208 118. Riegner M. 2007 Bird coloration, volume 2: Function and evolution.

1209 119. Manahan DN, Nachman MW. 2024 Alternative splicing and environmental adaptation
1210 in wild house mice. *Heredity* **132**, 133–141. (doi:10.1038/s41437-023-00663-0)

1211 120. Steward RA, De Jong MA, Oostra V, Wheat CW. 2022 Alternative splicing in seasonal
1212 plasticity and the potential for adaptation to environmental change. *Nat Commun* **13**,
1213 755. (doi:10.1038/s41467-022-28306-8)

1214 121. Bogan SN, Yi SV. 2024 Potential Role of DNA Methylation as a Driver of Plastic
1215 Responses to the Environment Across Cells, Organisms, and Populations. *Genome
1216 Biology and Evolution* **16**, evae022. (doi:10.1093/gbe/evae022)

1217 122. Jaenisch R, Bird A. 2003 Epigenetic regulation of gene expression: how the genome
1218 integrates intrinsic and environmental signals. *Nat Genet* **33**, 245–254.
1219 (doi:10.1038/ng1089)

1220 123. El-Brolosy MA, Stainier DYR. 2017 Genetic compensation: A phenomenon in search of
1221 mechanisms. *PLoS Genet* **13**, e1006780. (doi:10.1371/journal.pgen.1006780)

1222 124. Kafri R, Bar-Even A, Pilpel Y. 2005 Transcription control reprogramming in genetic
1223 backup circuits. *Nat Genet* **37**, 295–299. (doi:10.1038/ng1523)

1224 125. Wong SL, Roth FP. 2005 Transcriptional Compensation for Gene Loss Plays a Minor
1225 Role in Maintaining Genetic Robustness in *Saccharomyces cerevisiae*. *Genetics* **171**, 829–
1226 833. (doi:10.1534/genetics.105.046060)

1227 126. Freudenberg JM *et al.* 2012 Acute depletion of Tet1-dependent 5-
1228 hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of
1229 embryonic stem cell identity. *Nucleic Acids Research* **40**, 3364–3377.
1230 (doi:10.1093/nar/gkr1253)

1231 127. Rossi A, Kontarakis Z, Gerri C, Nolte H, Höelper S, Krüger M, Stainier DYR. 2015
1232 Genetic compensation induced by deleterious mutations but not gene knockdowns.
1233 *Nature* **524**, 230–233. (doi:10.1038/nature14580)

1234 128. Barabási A-L, Oltvai ZN. 2004 Network biology: understanding the cell's functional
1235 organization. *Nat Rev Genet* **5**, 101–113. (doi:10.1038/nrg1272)

1236 129. García C, Ávila V, Quesada H, Caballero A. 2012 Gene-Expression Changes Caused by
1237 Inbreeding Protect Against Inbreeding Depression in *Drosophila*. *Genetics* **192**, 161–172.
1238 (doi:10.1534/genetics.112.142687)

1239 130. García C, Ávila V, Quesada H, Caballero A. 2013 Are transcriptional responses to
1240 inbreeding a functional response to alleviate inbreeding depression? *Fly* **7**, 8–12.
1241 (doi:10.4161/fly.22559)

1242 131. Raj A, Rifkin SA, Andersen E, van Oudenaarden A. 2010 Variability in gene expression
1243 underlies incomplete penetrance. *Nature* **463**, 913–918. (doi:10.1038/nature08781)

1244 132. Garneau NL, Wilusz J, Wilusz CJ. 2007 The highways and byways of mRNA decay. *Nat
1245 Rev Mol Cell Biol* **8**, 113–126. (doi:10.1038/nrm2104)

1246 133. Ma Z *et al.* 2019 PTC-bearing mRNA elicits a genetic compensation response via Upf3a
1247 and COMPASS components. *Nature* **568**, 259–263. (doi:10.1038/s41586-019-1057-y)

1248 134. El-Brolosy MA *et al.* 2019 Genetic compensation triggered by mutant mRNA
1249 degradation. *Nature* **568**, 193–197. (doi:10.1038/s41586-019-1064-z)

1250 135. Miosge LA *et al.* 2015 Comparison of predicted and actual consequences of missense
1251 mutations. *Proc. Natl. Acad. Sci. U.S.A.* **112**. (doi:10.1073/pnas.1511585112)

1252 136. Stevenson TJ. 2018 Epigenetic Regulation of Biological Rhythms: An Evolutionary
1253 Ancient Molecular Timer. *Trends in Genetics* **34**, 90–100. (doi:10.1016/j.tig.2017.11.003)

1254 137. Wingfield JC. 2005 Flexibility in annual cycles of birds: implications for endocrine
1255 control mechanisms. *J. Ornithol.* **146**, 291–304. (doi:10.1007/s10336-005-0002-z)

1256 138. Slusarski DC, Motzny CK, Holmgren R. 1995 Mutations That Alter the Timing and
1257 Pattern of Cubitus Interruptus Gene Expression in *Drosophila Melanogaster*. *Genetics*
1258 **139**, 229–240.

1259 139. Spoelstra K, Wikelski M, Daan S, Loudon ASI, Hau M. 2016 Natural selection against
1260 a circadian clock gene mutation in mice. *Proceedings of the National Academy of Sciences*
1261 **113**, 686–691. (doi:10.1073/pnas.1516442113)

1262 140. Pegoraro M, Bafna A, Davies NJ, Shuker DM, Tauber E. 2016 DNA methylation
1263 changes induced by long and short photoperiods in *Nasonia*. *Genome Res.* **26**, 203–210.
1264 (doi:10.1101/gr.196204.115)

1265 141. Sasaki H, Matsui Y. 2008 Epigenetic events in mammalian germ-cell development:
1266 reprogramming and beyond. *Nat Rev Genet* **9**, 129–140. (doi:10.1038/nrg2295)

1267 142. Christensen BC *et al.* 2009 Aging and Environmental Exposures Alter Tissue-Specific
1268 DNA Methylation Dependent upon CpG Island Context. *PLOS Genetics* **5**, e1000602.
1269 (doi:10.1371/journal.pgen.1000602)

1270 143. Hoivik EA, Bjanesoy TE, Mai O, Okamoto S, Minokoshi Y, Shima Y, Morohashi K,
1271 Boehm U, Bakke M. 2011 DNA Methylation of Intronic Enhancers Directs Tissue-
1272 Specific Expression of Steroidogenic Factor 1/Adrenal 4 Binding Protein (SF-
1273 1/Ad4BP). *Endocrinology* **152**, 2100–2112. (doi:10.1210/en.2010-1305)

1274 144. Stevenson TJ, Prendergast BJ. 2013 Reversible DNA methylation regulates seasonal
1275 photoperiodic time measurement. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 16651–16656.
1276 (doi:10.1073/pnas.1310643110)

1277 145. Lynch EWJ, Coyle CS, Stevenson TJ. 2017 Photoperiodic and ovarian steroid regulation
1278 of histone deacetylase 1, 2, and 3 in Siberian hamster (*Phodopus sungorus*) reproductive
1279 tissues. *Gen. Comp. Endocrinol.* **246**, 194–199. (doi:10.1016/j.ygcn.2016.12.008)

1280 146. Stevenson TJ. 2017 Circannual and circadian rhythms of hypothalamic DNA
1281 methyltransferase and histone deacetylase expression in male Siberian hamsters
1282 (*Phodopus sungorus*). *Gen. Comp. Endocrinol.* **243**, 130–137.
1283 (doi:10.1016/j.ygcn.2016.11.011)

1284 147. Alvarado S, Mak T, Liu S, Storey KB, Szyf M. 2015 Dynamic changes in global and
1285 gene-specific DNA methylation during hibernation in adult thirteen-lined ground
1286 squirrels, *Ictidomys tridecemlineatus*. *Journal of Experimental Biology* **218**, 1787–1795.
1287 (doi:10.1242/jeb.116046)

1288 148. Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KMH,
1289 Thorgaard GH, May B, Nichols KM. 2016 Migration-related phenotypic divergence is
1290 associated with epigenetic modifications in rainbow trout. *Molecular Ecology* **25**, 1785–
1291 1800. (doi:10.1111/mec.13231)

1292 149. Lindner M, Laine VN, Verhagen I, Viitaniemi HM, Visser ME, van Oers K, Husby A.
1293 2021 Rapid changes in DNA methylation associated with the initiation of reproduction
1294 in a small songbird. *Molecular Ecology* **30**, 3645–3659. (doi:10.1111/mec.15803)

1295 150. Lindner M, Verhagen I, Mateman AC, van Oers K, Laine VN, Visser ME. 2024 Genetic
1296 and epigenetic differentiation in response to genomic selection for avian lay date.
1297 *Evolutionary Applications* **17**, e13703. (doi:10.1111/eva.13703)

1298 151. Sepers B, Verhoeven KJF, van Oers K. 2024 Early developmental carry-over effects on
1299 exploratory behaviour and DNA methylation in wild great tits (*Parus major*).
1300 *Evolutionary Applications* **17**, e13664. (doi:10.1111/eva.13664)

1301 152. Bird A. 2002 DNA methylation patterns and epigenetic memory. *Genes & development*
1302 **16**, 6–21.

1303 153. Weinberg MS, Morris KV. 2016 Transcriptional gene silencing in humans. *Nucleic Acids
1304 Res* **44**, 6505–6517. (doi:10.1093/nar/gkw139)

1305 154. Martin C, Zhang Y. 2005 The diverse functions of histone lysine methylation. *Nat Rev
1306 Mol Cell Biol* **6**, 838–849. (doi:10.1038/nrm1761)

1307 155. Goldberg AD, Allis CD, Bernstein E. 2007 Epigenetics: A Landscape Takes Shape. *Cell*
1308 **128**, 635–638. (doi:10.1016/j.cell.2007.02.006)

1309 156. Vaissière T, Sawan C, Herceg Z. 2008 Epigenetic interplay between histone
1310 modifications and DNA methylation in gene silencing. *Mutation Research/Reviews in
1311 Mutation Research* **659**, 40–48. (doi:10.1016/j.mrrev.2008.02.004)

1312 157. Moore LD, Le T, Fan G. 2013 DNA Methylation and Its Basic Function.
1313 *Neuropsychopharmacology* **38**, 23–38. (doi:10.1038/npp.2012.112)

1314 158. Klemm SL, Shipony Z, Greenleaf WJ. 2019 Chromatin accessibility and the regulatory
1315 epigenome. *Nat Rev Genet* **20**, 207–220. (doi:10.1038/s41576-018-0089-8)

1316 159. Keiser MS, Kordasiewicz HB, McBride JL. 2016 Gene suppression strategies for
1317 dominantly inherited neurodegenerative diseases: lessons from Huntington's disease
1318 and spinocerebellar ataxia. *Human Molecular Genetics* **25**, R53–R64.
1319 (doi:10.1093/hmg/ddv442)

1320 160. Haferkamp B, Zhang H, Kissinger S, Wang X, Lin Y, Schultz M, Xiang J. 2013 Bax Δ 2
1321 Family Alternative Splicing Salvages Bax Microsatellite-Frameshift Mutations. *Genes
1322 & Cancer* **4**, 501–512. (doi:10.1177/1947601913515906)

1323 161. Morisaki H, Morisaki T, Newby LK, Holmes EW. 1993 Alternative splicing: a
1324 mechanism for phenotypic rescue of a common inherited defect. *J. Clin. Invest.* **91**, 2275–
1325 2280. (doi:10.1172/JCI116455)

1326 162. Brown TA. 2002 Mutation, repair and recombination. In *Genomes. 2nd edition*, Wiley-
1327 Liss.

1328 163. Schroering AG, Edelbrock MA, Richards TJ, Williams KJ. 2007 The cell cycle and DNA
1329 mismatch repair. *Experimental Cell Research* **313**, 292–304.
1330 (doi:10.1016/j.yexcr.2006.10.018)

1331 164. Laguri C, Duband-Goulet I, Friedrich N, Axt M, Belin P, Callebaut I, Gilquin B, Zinn-
1332 Justin S, Couprie J. 2008 Human Mismatch Repair Protein MSH6 Contains a PWPP

1333 Domain That Targets Double Stranded DNA. *Biochemistry* **47**, 6199–6207.
1334 (doi:10.1021/bi7024639)

1335 165. Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li G-M. 2013 The Histone Mark
1336 H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with
1337 MutS α . *Cell* **153**, 590–600. (doi:10.1016/j.cell.2013.03.025)

1338 166. Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J. 2009 Differential
1339 chromatin marking of introns and expressed exons by H3K36me3. *Nat Genet* **41**, 376–
1340 381. (doi:10.1038/ng.322)

1341 167. Supek F, Lehner B. 2015 Differential DNA mismatch repair underlies mutation rate
1342 variation across the human genome. *Nature* **521**, 81–84. (doi:10.1038/nature14173)

1343 168. Supek F, Lehner B. 2017 Clustered Mutation Signatures Reveal that Error-Prone DNA
1344 Repair Targets Mutations to Active Genes. *Cell* **170**, 534–547.e23.
1345 (doi:10.1016/j.cell.2017.07.003)

1346 169. Frigola J, Sabarinathan R, Mularoni L, Muiños F, Gonzalez-Perez A, López-Bigas N.
1347 2017 Reduced mutation rate in exons due to differential mismatch repair. *Nat Genet* **49**,
1348 1684–1692. (doi:10.1038/ng.3991)

1349 170. Huang Y, Gu L, Li G-M. 2018 H3K36me3-mediated mismatch repair preferentially
1350 protects actively transcribed genes from mutation. *Journal of Biological Chemistry* **293**,
1351 7811–7823. (doi:10.1074/jbc.RA118.002839)

1352 171. Fang H, Zhu X, Yang H, Oh J, Barbour JA, Wong JWH. 2021 Deficiency of replication-
1353 independent DNA mismatch repair drives a 5-methylcytosine deamination mutational
1354 signature in cancer. *Science Advances* **7**, eabg4398. (doi:10.1126/sciadv.abg4398)

1355 172. Monroe JG *et al.* 2024 Convergent evolution of epigenome recruited DNA repair across
1356 the Tree of Life. , 2024.10.15.618488. (doi:10.1101/2024.10.15.618488)

1357 173. Fang J, Huang Y, Mao G, Yang S, Rennert G, Gu L, Li H, Li G-M. 2018 Cancer-driving
1358 H3G34V/R/D mutations block H3K36 methylation and H3K36me3–MutS α
1359 interaction. *Proc. Natl. Acad. Sci. U.S.A.* **115**, 9598–9603.
1360 (doi:10.1073/pnas.1806355115)

1361 174. Wheeler JMD. 2000 DNA mismatch repair genes and colorectal cancer. *Gut* **47**, 148–
1362 153. (doi:10.1136/gut.47.1.148)

1363 175. Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, De La Chapelle A, Peltomäki
1364 P, Mecklin J-P, Järvinen HJ. 1999 Cancer risk in mutation carriers of DNA-mismatch-
1365 repair genes. *Int. J. Cancer* **81**, 214–218. (doi:10.1002/(SICI)1097-
1366 0215(19990412)81:2%3C214::AID-IJC8%3E3.0.CO;2-L)

1367 176. Kouyos RD, Silander OK, Bonhoeffer S. 2007 Epistasis between deleterious mutations
1368 and the evolution of recombination. *Trends in Ecology & Evolution* **22**, 308–315.
1369 (doi:10.1016/j.tree.2007.02.014)

1370 177. Alves I, Houle AA, Hussin JG, Awadalla P. 2017 The impact of recombination on human
1371 mutation load and disease. *Philosophical Transactions of the Royal Society B: Biological
1372 Sciences* **372**, 20160465. (doi:10.1098/rstb.2016.0465)

1373 178. Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017 Variation in
1374 recombination frequency and distribution across eukaryotes: patterns and processes.
1375 *Philosophical Transactions of the Royal Society B: Biological Sciences* **372**, 20160455.
1376 (doi:10.1098/rstb.2016.0455)

1377 179. Muller HJ. 1964 The relation of recombination to mutational advance. *Mutation*
1378 *Research/Fundamental and Molecular Mechanisms of Mutagenesis* **1**, 2–9.
1379 (doi:10.1016/0027-5107(64)90047-8)

1380 180. Felsenstein J. 1974 The evolutionary advantage of recombination. *Genetics* **78**, 737–756.
1381 (doi:10.1093/genetics/78.2.737)

1382 181. Kondrashov AS. 1988 Deleterious mutations and the evolution of sexual reproduction.
1383 *Nature* **336**, 435–440. (doi:10.1038/336435a0)

1384 182. Hartfield M, Otto SP. 2011 Recombination and hitchhiking of deleterious alleles:
1385 recombination and the undesirable hitchhiker. *Evolution* **65**, 2421–2434.
1386 (doi:10.1111/j.1558-5646.2011.01311.x)

1387 183. Hussin JG, Hodgkinson A, Idaghdour Y, Grenier J-C, Goulet J-P, Gbeha E, Hip-Ki E,
1388 Awadalla P. 2015 Recombination affects accumulation of damaging and disease-
1389 associated mutations in human populations. *Nat Genet* **47**, 400–404.
1390 (doi:10.1038/ng.3216)

1391 184. Auton A *et al.* 2013 Genetic Recombination Is Targeted towards Gene Promoter
1392 Regions in Dogs. *PLoS Genet* **9**, e1003984. (doi:10.1371/journal.pgen.1003984)

1393 185. Singhal S *et al.* 2015 Stable recombination hotspots in birds. *Science* **350**, 928–932.
1394 (doi:10.1126/science.aad0843)

1395 186. Shanfelter AF, Archambeault SL, White MA. 2019 Divergent Fine-Scale Recombination
1396 Landscapes between a Freshwater and Marine Population of Threespine Stickleback
1397 Fish. *Genome Biology and Evolution* **11**, 1552–1572. (doi:10.1093/gbe/evz090)

1398 187. Baker Z, Schumer M, Haba Y, Bashkirova L, Holland C, Rosenthal GG, Przeworski M.
1399 2017 Repeated losses of PRDM9-directed recombination despite the conservation of
1400 PRDM9 across vertebrates. *eLife* **6**, e24133. (doi:10.7554/eLife.24133)

1401 188. van Oers K, Santure AW, De Cauwer I, van Bers NE, Crooijmans RP, Sheldon BC,
1402 Visser ME, Slate J, Groenen MA. 2014 Replicated high-density genetic maps of two
1403 great tit populations reveal fine-scale genomic departures from sex-equal recombination
1404 rates. *Heredity* **112**, 307–316. (doi:10.1038/hdy.2013.107)

1405 189. Kawakami T, Mugal CF, Suh A, Nater A, Burri R, Smeds L, Ellegren H. 2017 Whole-
1406 genome patterns of linkage disequilibrium across flycatcher populations clarify the
1407 causes and consequences of fine-scale recombination rate variation in birds. *Molecular*
1408 *Ecology* **26**, 4158–4172. (doi:10.1111/mec.14197)

1409 190. Bascón-Cardozo K, Bours A, Manthey G, Durieux G, Dutheil JY, Pruischer P,
1410 Odenthal-Hesse L, Liedvogel M. 2024 Fine-Scale Map Reveals Highly Variable
1411 Recombination Rates Associated with Genomic Features in the Eurasian Blackcap.
1412 *Genome Biology and Evolution* **16**, evad233. (doi:10.1093/gbe/evad233)

1413 191. McAuley JB *et al.* 2024 The Genetic Architecture of Recombination Rates is Polygenic
1414 and Differs Between the Sexes in Wild House Sparrows (*Passer domesticus*). *Molecular*
1415 *Biology and Evolution* **41**, msae179. (doi:10.1093/molbev/msae179)

1416 192. Axelsson E, Webster MT, Ratnakumar A, Consortium TL, Ponting CP, Lindblad-Toh
1417 K. 2012 Death of PRDM9 coincides with stabilization of the recombination landscape in
1418 the dog genome. *Genome Res.* **22**, 51–63. (doi:10.1101/gr.124123.111)

1419 193. Simpson GG. 1953 The baldwin effect. *Evolution* **7**, 110–117.

1420 194. Crispo E. 2007 The Baldwin effect and genetic assimilation: revisiting two mechanisms
1421 of evolutionary change mediated by phenotypic plasticity. *Evolution: International Journal*
1422 *of Organic Evolution* **61**, 2469–2479.

1423 195. Meuwissen THE, Sonesson AK, Gebregiorgis G, Woolliams JA. 2020 Management of
1424 Genetic Diversity in the Era of Genomics. *Front. Genet.* **11**, 880.
1425 (doi:10.3389/fgene.2020.00880)

1426 196. Grueber CE, Hogg CJ, Ivy JA, Belov K. 2015 Impacts of early viability selection on
1427 management of inbreeding and genetic diversity in conservation. *Molecular Ecology* **24**,
1428 1645–1653. (doi:10.1111/mec.13141)

1429 197. Whitlock MC. 2000 Fixation of new alleles and the extinction of small populations: drift
1430 load, beneficial alleles, and sexual selection. *Evolution* **54**, 1855–1861.
1431 (doi:10.1111/j.0014-3820.2000.tb01232.x)

1432 198. Lynch M, Gabriel W. 1990 Mutation load and the survival of small populations.
1433 *Evolution* **44**, 1725–1737. (doi:10.1111/j.1558-5646.1990.tb05244.x)

1434 199. Van Der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, Jansen RC, Schmitz
1435 RJ, Colomé-Tatché M, Johannes F. 2015 Rate, spectrum, and evolutionary dynamics of
1436 spontaneous epimutations. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 6676–6681.
1437 (doi:10.1073/pnas.1424254112)

1438 200. Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG,
1439 Weigel D, Lynch M. 2010 The Rate and Molecular Spectrum of Spontaneous Mutations
1440 in *Arabidopsis thaliana*. *Science* **327**, 92–94. (doi:10.1126/science.1180677)

1441 201. McNew S, Boquete M, Espinoza-Ulloa S, Andres J, Wagemaker C, Knutie S, Richards
1442 C, Clayton D. 2021 Epigenetic effects of parasites and pesticides on captive and wild
1443 nestling birds. *Ecology and Evolution* (doi:10.1002/ece3.7606)

1444 202. Sepers B, Erven JAM, Gaweihns F, Laine VN, van Oers K. 2021 Epigenetics and Early
1445 Life Stress: Experimental Brood Size Affects DNA Methylation in Great Tits (*Parus*
1446 *major*). *Front. Ecol. Evol.* **9**. (doi:10.3389/fevo.2021.609061)

1447 203. von Holdt BM, Kartzinel RY, van Oers K, Verhoeven KJF, Ouyang JQ. 2023 Changes
1448 in the rearing environment cause reorganization of molecular networks associated with
1449 DNA methylation. *Journal of Animal Ecology* **92**, 648–664. (doi:10.1111/1365-
1450 2656.13878)

1451 204. Czamara D *et al.* 2021 Combined effects of genotype and childhood adversity shape
1452 variability of DNA methylation across age. *Transl Psychiatry* **11**, 88.
1453 (doi:10.1038/s41398-020-01147-z)

1454 205. Larsen PA, Matocq MD. 2019 Emerging genomic applications in mammalian ecology,
1455 evolution, and conservation. *Journal of Mammalogy* **100**, 786–801.
1456 (doi:10.1093/jmammal/gyy184)

1457 206. Satam H *et al.* 2023 Next-Generation Sequencing Technology: Current Trends and
1458 Advancements. *Biology* **12**, 997. (doi:10.3390/biology12070997)

1459 207. Lathe WC, Williams JM, Mangan ME, Karolchik D. 2008 Genomic Data Resources:
1460 Challenges and Promises. *Nature Education* **1**, 2.

1461 208. Goodwin S, McPherson JD, McCombie WR. 2016 Coming of age: ten years of next-
1462 generation sequencing technologies. *Nat Rev Genet* **17**, 333–351.
1463 (doi:10.1038/nrg.2016.49)

1464 209. Muir P *et al.* 2016 The real cost of sequencing: scaling computation to keep pace with
1465 data generation. *Genome Biol* **17**, 53. (doi:10.1186/s13059-016-0917-0)

1466 210. Natesh M, Taylor RW, Truelove NK, Hadly EA, Palumbi SR, Petrov DA,
1467 Ramakrishnan U. 2019 Empowering conservation practice with efficient and economical
1468 genotyping from poor quality samples. *Methods Ecol Evol* **10**, 853–859.
1469 (doi:10.1111/2041-210X.13173)

1470 211. Carroll EL, Bruford MW, DeWoody JA, Leroy G, Strand A, Waits L, Wang J. 2018
1471 Genetic and genomic monitoring with minimally invasive sampling methods.
1472 *Evolutionary Applications* **11**, 1094–1119. (doi:10.1111/eva.12600)

1473 212. Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019 miRBase: from microRNA sequences
1474 to function. *Nucleic Acids Research* **47**, D155–D162. (doi:10.1093/nar/gky1141)

1475 213. Smith ML, Hahn MW. 2021 New Approaches for Inferring Phylogenies in the Presence
1476 of Paralogs. *Trends in Genetics* **37**, 174–187. (doi:10.1016/j.tig.2020.08.012)

1477 214. Hoffman JI *et al.* 2024 Genomic and fitness consequences of a near-extinction event in
1478 the northern elephant seal. *Nat Ecol Evol* (doi:10.1038/s41559-024-02533-2)

1479 215. Huang Y, Lee YCG. 2024 Blessing or curse: how the epigenetic resolution of host-
1480 transposable element conflicts shapes their evolutionary dynamics. *Proc. R. Soc. B.* **291**,
1481 20232775. (doi:10.1098/rspb.2023.2775)

1482 216. Lökvist C, Howard M. 2021 Using computational modelling to reveal mechanisms of
1483 epigenetic Polycomb control. *Biochemical Society Transactions* **49**, 71–77.
1484 (doi:10.1042/BST20190955)

1485 217. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010 Identifying
1486 a High Fraction of the Human Genome to be under Selective Constraint Using
1487 GERP++. *PLoS Comput Biol* **6**, e1001025. (doi:10.1371/journal.pcbi.1001025)

1488 218. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden
1489 DM. 2012 A program for annotating and predicting the effects of single nucleotide
1490 polymorphisms, SnpEff. *Fly* **6**, 80–92. (doi:10.4161/fly.19695)

1491 219. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flieck P,
1492 Cunningham F. 2016 The Ensembl Variant Effect Predictor. *Genome Biol* **17**, 122.
1493 (doi:10.1186/s13059-016-0974-4)

1494 220. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. 2016 SIFT missense predictions for
1495 genomes. *Nat Protoc* **11**, 1–9. (doi:10.1038/nprot.2015.123)

1496 221. Hasselgren M, Dussex N, Von Seth J, Angerbjörn A, Dalén L, Norén K. 2024 Strongly
1497 deleterious mutations influence reproductive output and longevity in an endangered
1498 population. *Nat Commun* **15**, 8378. (doi:10.1038/s41467-024-52741-4)

1499 222. Chen RS, Soulsbury CD, Van Oers K, Hoffman JI. 2025 Early-Life Viability Selection
1500 Targets deleterious mutations in Exons. (doi:10.2139/ssrn.5371154)

1501 223. Chen RS, Soulsbury CD, Hench K, Van Oers K, Hoffman JI. 2025 Predicted deleterious
1502 mutations reveal the genetic architecture of male reproductive success in a lekking bird.
1503 *Nat Ecol Evol* **9**, 1924–1937. (doi:10.1038/s41559-025-02802-8)

1504 224. Kardos M, Keller LF, Funk WC. 2024 What Can Genome Sequence Data Reveal About
1505 Population Viability? *Molecular Ecology*, e17608. (doi:10.1111/mec.17608)

1506 225. Ozsolak F, Milos PM. 2011 RNA sequencing: advances, challenges and opportunities.
1507 *Nat Rev Genet* **12**, 87–98. (doi:10.1038/nrg2934)

1508 226. Naftaly AS, Pau S, White MA. 2021 Long-read RNA sequencing reveals widespread
1509 sex-specific alternative splicing in threespine stickleback fish. *Genome Res.* **31**, 1486–
1510 1497. (doi:10.1101/gr.274282.120)

1511 227. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. 2017 Proteomics: Technologies
1512 and Their Applications. *J Chromatogr Sci* **55**, 182–196. (doi:10.1093/chromsci/bmw167)

1513 228. Stearns SC. 1998 *The evolution of life histories*. Oxford university press.

1514 229. Mousseau TA, Roff DA. 1987 Natural selection and the heritability of fitness
1515 components. *Heredity* **59**, 181–197. (doi:10.1038/hdy.1987.113)

1516 230. Lapiendra O, Schoener TW, Leal M, Losos JB, Kolbe JJ. 2018 Predator-driven natural
1517 selection on risk-taking behavior in anole lizards. *Science* **360**, 1017–1020.
1518 (doi:10.1126/science.aap9289)

1519 231. Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P. 2013 Environmental
1520 stressors alter relationships between physiology and behaviour. *Trends in Ecology &*
1521 *Evolution* **28**, 651–658. (doi:10.1016/j.tree.2013.05.005)

1522 232. Meise K, Von Engelhardt N, Forcada J, Hoffman JI. 2016 Offspring Hormones Reflect
1523 the Maternal Prenatal Social Environment: Potential for Foetal Programming? *PLoS*
1524 *ONE* **11**, e0145352. (doi:10.1371/journal.pone.0145352)

1525 233. Yun L, Agrawal AF. 2014 Variation in the strength of inbreeding depression across
1526 environments: Effects of stress and density dependence: inbreeding depression, density-
1527 dependence, and stress. *Evolution* **68**, 3599–3606. (doi:10.1111/evo.12527)

1528 234. Hager R, Cheverud JM, Wolf JB. 2009 Change in maternal environment induced by
1529 cross-fostering alters genetic and epigenetic effects on complex traits in mice. *Proc. R.
1530 Soc. B.* **276**, 2949–2954. (doi:10.1098/rspb.2009.0515)

1531 235. Mallet MA, Bouchard JM, Kimber CM, Chippindale AK. 2011 Experimental mutation-
1532 accumulation on the X chromosome of *Drosophila melanogaster* reveals stronger
1533 selection on males than females. *BMC Evol Biol* **11**, 156. (doi:10.1186/1471-2148-11-
1534 156)

1535 236. Varshney GK, Burgess SM. 2025 CRISPR-based functional genomics tools in vertebrate
1536 models. *Exp Mol Med* **57**, 1355–1372. (doi:10.1038/s12276-025-01514-0)

1537 237. Wucherpennig JI, Miller CT, Kingsley DM. 2019 Efficient CRISPR-Cas9 editing of
1538 major evolutionary loci in sticklebacks. *Evol Ecol Res* **20**, 107–132.

1539 238. Ribas L, Vanezis K, Imués MA, Piferrer F. 2017 Treatment with a DNA
1540 methyltransferase inhibitor feminizes zebrafish and induces long-term expression
1541 changes in the gonads. *Epigenetics & Chromatin* **10**, 59. (doi:10.1186/s13072-017-0168-
1542 7)

1543 239. Sécula A *et al.* 2022 Maternal dietary methionine restriction alters the expression of
1544 energy metabolism genes in the duckling liver. *BMC Genomics* **23**, 407.
1545 (doi:10.1186/s12864-022-08634-1)

1546 240. Boulton K *et al.* 2021 Parental methyl-enhanced diet and in ovo corticosterone affect first
1547 generation Japanese quail (*Coturnix japonica*) development, behaviour and stress
1548 response. *Sci Rep* **11**, 21092. (doi:10.1038/s41598-021-99812-w)

1549 241. Meuwissen T, Hayes B, Goddard M. 2016 Genomic selection: A paradigm shift in animal
1550 breeding. *Anim Fron* **6**, 6–14. (doi:10.2527/af.2016-0002)

1551 242. Gienapp P, Calus MPL, Laine VN, Visser ME. 2019 Genomic selection on breeding time
1552 in a wild bird population. *Evolution Letters* **3**, 142–151. (doi:10.1002/evl3.103)

1553 243. Griffiths AJ, Wessler SR, Lewontin RC, Carroll SB. 2008 *Introduction to genetic analysis*.
1554 Macmillan.

1555 244. Bolund E, Martin K, Kempenaers B, Forstmeier W. 2010 Inbreeding depression of
1556 sexually selected traits and attractiveness in the zebra finch. *Animal Behaviour* **79**, 947–
1557 955. (doi:10.1016/j.anbehav.2010.01.014)

1558 245. Hinkson KM, Poo S. 2020 Inbreeding depression in sperm quality in a critically
1559 endangered amphibian. *Zoo Biology* **39**, 197–204. (doi:10.1002/zoo.21538)

1560 246. Reid JM, Arcese P, Keller LF. 2003 Inbreeding depresses immune response in song
1561 sparrows (*Melospiza melodia*): direct and inter-generational effects. *Proc. R. Soc. Lond.
1562 B* **270**, 2151–2157. (doi:10.1098/rspb.2003.2480)

1563 247. Ketola T, Kotiaho JS. 2012 Inbreeding depression in the effects of body mass on energy
1564 use. *Biological Journal of the Linnean Society* **105**, 309–317. (doi:10.1111/j.1095-
1565 8312.2011.01790.x)

1566 248. Gavriilidi I, Van Linden L. 2024 Inbreeding and cognition in wild populations: a
1567 relationship that remains unnoticed. *Oikos* **2024**, e10674. (doi:10.1111/oik.10674)

1568 249. Mariño-Ramírez L, Kann MG, Shoemaker BA, Landsman D. 2005 Histone structure
1569 and nucleosome stability. *Expert Review of Proteomics* **2**, 719–729.
1570 (doi:10.1586/14789450.2.5.719)

1571 250. Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. 2002 Solvent Mediated
1572 Interactions in the Structure of the Nucleosome Core Particle at 1.9 Å Resolution.
1573 *Journal of Molecular Biology* **319**, 1097–1113. (doi:10.1016/S0022-2836(02)00386-8)

1574 251. Champagne FA. 2013 Epigenetics and developmental plasticity across species.
1575 *Developmental Psychobiology* **55**, 33–41. (doi:10.1002/dev.21036)

1576 252. Bell O, Burton A, Dean C, Gasser SM, Torres-Padilla M-E. 2023 Heterochromatin
1577 definition and function. *Nat Rev Mol Cell Biol* **24**, 691–694. (doi:10.1038/s41580-023-
1578 00599-7)

1579 253. Peterson CL, Laniel M-A. 2004 Histones and histone modifications. *Current Biology* **14**,
1580 R546–R551. (doi:10.1016/j.cub.2004.07.007)

1581 254. Mansisidor AR, Risca VI. 2022 Chromatin accessibility: methods, mechanisms, and
1582 biological insights. *Nucleus* **13**, 238–278. (doi:10.1080/19491034.2022.2143106)

1583 255. Soulsbury CD, Lipponen A, Wood K, Mein CA, Hoffman JI, Lebigre C. 2018 Age- and
1584 quality-dependent DNA methylation correlate with melanin-based coloration in a wild
1585 bird. *Ecol Evol* **8**, 6547–6557. (doi:10.1002/ece3.4132)

1586 256. Sheldon EL, Schrey A, Andrew SC, Ragsdale A, Griffith SC. 2018 Epigenetic and genetic
1587 variation among three separate introductions of the house sparrow (*Passer domesticus*)
1588 into Australia. *R. Soc. open sci.* **5**, 172185. (doi:10.1098/rsos.172185)

1589 257. Liebl AL, Schrey AW, Richards CL, Martin LB. 2013 Patterns of DNA Methylation
1590 Throughout a Range Expansion of an Introduced Songbird. *Integrative and Comparative
1591 Biology* **53**, 351–358. (doi:10.1093/icb/ict007)

1592 258. Rubi TL, Prado JRD, Knowles LL, Dantzer B. 2023 Patterns of Genetic And Epigenetic
1593 Diversity Across A Range Expansion in The White-Footed Mouse (*Peromyscus*
1594 *Leucopus*). *Integrative Organismal Biology* **5**, obad038. (doi:10.1093/iob/obad038)

1595 259. Berbel-Filho WM, Garcia De Leaniz C, Morán P, Cable J, Lima SMQ, Consuegra S.
1596 2019 Local parasite pressures and host genotype modulate epigenetic diversity in a
1597 mixed-mating fish. *Ecology and Evolution* **9**, 8736–8748. (doi:10.1002/ece3.5426)

1598 260. Yang H, Li D, Cheng C. 2014 Relating gene expression evolution with CpG content
1599 changes. *BMC Genomics* **15**, 693. (doi:10.1186/1471-2164-15-693)

1600 261. McGinty RK, Tan S. 2015 Nucleosome Structure and Function. *Chem. Rev.* **115**, 2255–
1601 2273. (doi:10.1021/cr500373h)

1602 262. Deaton AM, Bird A. 2011 CpG islands and the regulation of transcription. *Genes Dev.*
1603 **25**, 1010–1022. (doi:10.1101/gad.2037511)

1604 263. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. 2003 Predicting aberrant CpG
1605 island methylation. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 12253–12258.
1606 (doi:10.1073/pnas.2037852100)

1607 264. Han L, Zhao Z. 2008 Comparative Analysis of CpG Islands in Four Fish Genomes.
1608 *Comparative and Functional Genomics* **2008**, 1–6. (doi:10.1155/2008/565631)

1609 265. Han L, Su B, Li W-H, Zhao Z. 2008 CpG island density and its correlations with
1610 genomic features in mammalian genomes. *Genome Biol* **9**, R79. (doi:10.1186/gb-2008-9-
1611 5-r79)

1612 266. Bird AP. 1980 DNA methylation and the frequency of CpG in animal DNA. *Nucl Acids
1613 Res* **8**, 1499–1504. (doi:10.1093/nar/8.7.1499)

1614 267. Han L, Su B, Li W-H, Zhao Z. 2008 CpG island density and its correlations with
1615 genomic features in mammalian genomes. *Genome Biol* **9**, R79. (doi:10.1186/gb-2008-9-
1616 5-r79)

1617 268. Korochkin LI. 2006 What is epigenetics. *Russ J Genet* **42**, 958–965.
1618 (doi:10.1134/S102279540609002X)

1619 269. Mohan KN. 2022 DNMT1: catalytic and non-catalytic roles in different biological
1620 processes. *Epigenomics* **14**, 629–643. (doi:10.2217/epi-2022-0035)

1621 270. Reeve EC. 2014 *Encyclopedia of genetics*. Routledge.

1622 271. Jaenisch R, Bird A. 2003 Epigenetic regulation of gene expression: how the genome
1623 integrates intrinsic and environmental signals. *Nature Genetics* **33**, 245–254.
1624 (doi:10.1038/ng1089)

1625 272. Wilson CB, Merkenschlager M. 2006 Chromatin structure and gene regulation in T cell
1626 development and function. *Current Opinion in Immunology* **18**, 143–151.
1627 (doi:10.1016/j.coi.2006.01.013)

1628 273. Arnheim N, Calabrese P, Nordborg M. 2003 Hot and cold spots of recombination in the
1629 human genome: the reason we should find them and how this can be achieved. *Am J Hum
1630 Genet* **73**, 5–16. (doi:10.1086/376419)

1631 274. Zhao Z, Feng L, Peng X, Ma T, Tong R, Zhong L. 2022 Role of histone
1632 methyltransferase SETDB1 in regulation of tumourigenesis and immune response.
1633 *Front. Pharmacol.* **13**, 1073713. (doi:10.3389/fphar.2022.1073713)

1634