

1 **Bridging Science and Policy: A Global Review of Socio-ecological Indicators Guiding**
2 **Biodiversity Action**

3 **Authors:** Cristian A. Cruz-Rodríguez^{1,2}, J. Nicolás Urbina-Cardona³, Maria C. Londono-
4 Murcia⁴, Timothée Poisot^{1,2}.

5 ¹ Université de Montréal, Département de sciences biologiques, Complexe des sciences 1375
6 Ave. Thérèse-Lavoie-Roux, Montréal, Québec, Canada.

7 ² Quebec Centre for Biodiversity Science, Biology, 1205 Dr Penfield Ave, Montreal, Québec,
8 Canada.

9 ³ Facultad de Estudios Ambientales y Rurales, Departamento de Ecología y Territorio,
10 Pontificia Universidad Javeriana, Bogotá D.C., Colombia.

11 ⁴ Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, D. C.,
12 Colombia

13 **Correspondence author:** Cristian A. Cruz-Rodríguez; 8405 Avenue de L'Épée, Montréal,
14 Québec, Canada; cruzrodriguezchristian@gmail.com

15 **ABSTRACT**

16 1. Biodiversity continues to decline despite a proliferation of indicators intended to inform
17 conservation policy. We asked which socio-ecological indicators are actually reaching
18 decision-makers, how they are used, and where critical gaps persist.

19 2. Following a scoping-review protocol and PRISMA workflow, we screened 906 documents
20 in Web of Science and Scopus and analyzed 43 studies that explicitly linked indicators,
21 biodiversity targets and policy processes.

22 3. Most indicators (54%) rely on landscape-level data, primarily using land-cover proxies as
23 biodiversity surrogates. Ecosystem-level scale dominates over population-species studies,
24 while genetic studies were not identified. Remote sensing (n=23) and economic variables
25 (n=25) were frequently integrated, though evidence for their comparative policy uptake
26 remains limited. The Millennium Ecosystem Assessment dominates as the most conceptual
27 framework used (n=18 of 43 studies), whereas Post-2020 Global Biodiversity (n=1 of 43
28 studies) remains largely confined to theoretical discourse rather than practical application.
29 Local scales predominated (53% of studies), with subnational applications adding another
30 23%, creating potential mismatches with national biodiversity targets. Local Communities'
31 participation was more evident in the Global South, making up 21.2%, emphasizing
32 community-driven engagement. In the Global North, participation mainly involved
33 academics and civil servants as experts (15.7%), reflecting a more formal, technical
34 approach.

35 4. We conclude that accelerating the uptake of socio-ecological indicators requires: (i)
36 improved long-term socio-ecological time series and monitoring systems to address
37 widespread data limitations; (ii) expanding beyond land-cover proxies to span scales from

38 genetic to ecosystem-based metrics; (iii) developing multi-scale integration approaches that
39 bridge local applications with national biodiversity targets; and (iv) institutionalizing
40 stakeholder engagement in indicator development, particularly incorporating local and
41 Indigenous knowledge systems. To enable the next step—from documenting indicator
42 availability to assessing the effectiveness of decision-making processes—future syntheses
43 should also systematically capture the conditions of use (decision arena, institutional
44 mandates, accountability, capacity, and incentives), the depth and timing of participation
45 across the indicator cycle, and transparent effectiveness criteria (e.g., salience, credibility,
46 legitimacy, and equity) that allow influence on real decisions and downstream outcomes to
47 be traced rather than inferred. Closing these gaps would shift indicators from predominantly
48 academic exercises toward actionable policy instruments that genuinely inform biodiversity
49 decisions.

50 **RESUMEN**

- 51 1. La biodiversidad sigue disminuyendo a pesar de la proliferación de indicadores destinados
52 a informar las políticas de conservación. Nos preguntamos qué indicadores socioecológicos
53 llegan realmente a los responsables de la toma de decisiones, cómo se utilizan y dónde
54 persisten los vacíos críticos.
- 55 2. Siguiendo el protocolo de revisión sistemática y el flujo de trabajo PRISMA, examinamos
56 906 documentos en Web of Science y Scopus y analizamos 43 estudios que vinculaban
57 explícitamente los indicadores, los objetivos de biodiversidad y los procesos políticos.
- 58 3. La mayoría de los indicadores (54 %) se basan en datos a nivel de paisaje, utilizando
59 principalmente proxies de cobertura del suelo como sustitutos de la biodiversidad. La escala
60 a nivel de ecosistema predomina sobre los estudios de poblaciones/especies, mientras que

61 no se identificaron estudios genéticos. La teledetección (n = 23) y las variables económicas
62 (n = 25) se integraron con frecuencia, aunque las pruebas de su adopción comparativa en
63 las políticas siguen siendo limitadas. La Evaluación de los Ecosistemas del Milenio
64 predomina como el marco conceptual más utilizado (n=18 de 43 estudios), mientras que la
65 Marco Global de Biodiversidad Post-2020 (n=1 de 43 estudios) sigue limitándose en gran
66 medida al discurso teórico, en lugar de a la aplicación práctica. Las escalas locales
67 predominaron (53 % de los estudios), con aplicaciones subnacionales que suman otro 23%,
68 lo que crea posibles desajustes con los objetivos nacionales de biodiversidad. La
69 participación de las comunidades locales fue más evidente en el Sur Global, con un 21,2
70 %, lo que pone de relieve el compromiso impulsado por la comunidad. En el Norte Global,
71 la participación estuvo principalmente compuesta por académicos y funcionarios públicos
72 como expertos (15,7 %), lo que refleja un enfoque más formal y técnico.

73 4. Concluimos que para acelerar la adopción de indicadores socioecológicos es necesario: (i)
74 mejorar las series temporales socioecológicas a largo plazo y los sistemas de seguimiento
75 para hacer frente a las limitaciones generalizadas de los datos; (ii) ir más allá de los
76 indicadores sustitutivos de la cobertura del suelo para abarcar escalas que vayan desde
77 métricas genéticas hasta métricas basadas en los ecosistemas; (iii) desarrollar enfoques de
78 integración multiescala que conecten las aplicaciones locales con los objetivos nacionales
79 de biodiversidad; y (iv) institucionalizar la participación de las partes interesadas en el
80 desarrollo de indicadores, incorporando en particular los sistemas de conocimiento locales
81 e indígenas. Para dar el siguiente paso, que consiste en pasar de documentar la
82 disponibilidad de los indicadores a evaluar la eficacia de los procesos de toma de
83 decisiones, las síntesis futuras también deberían recoger sistemáticamente las condiciones

84 de uso (ámbito de decisión, mandatos institucionales, rendición de cuentas, capacidad e
85 incentivos), la profundidad y el momento de la participación a lo largo del ciclo de los
86 indicadores, y criterios de eficacia transparentes (por ejemplo, relevancia, credibilidad,
87 legitimidad y equidad) que permitan rastrear, en lugar de inferir, la influencia en las
88 decisiones reales y los resultados posteriores. Cerrar estos vacíos permitiría que los
89 indicadores pasaran de ser ejercicios predominantemente académicos a convertirse en
90 instrumentos políticos viables que realmente sirvan de base para las decisiones sobre
91 biodiversidad.

92 **KEYWORDS:** conservation, co-production, global biodiversity framework, governance,
93 multi-scale, sustainability, policy-making.

94 1. INTRODUCTION

95 The rapid decline of biodiversity, as one of the broader planetary crises, highlights the
96 growing threat to the planet's capacity to sustain life-support systems. Despite decades of
97 consensus and international political efforts, biodiversity continues to decline(Burgass et al.,
98 2021a). Current species extinction rates are estimated to be 10 to 100 times higher than natural
99 background levels, indicating a profound global loss of biodiversity (De Vos et al., 2015). At
100 the same time, global trends have shown an average reduction of about 70% in vertebrate
101 populations (WWF, 2024). International agreements such as the Kunming–Montreal Global
102 Biodiversity Framework (GBF; [CBD/COP/DEC/15/4](#), [CBD/COP/DEC/15/5](#)) aim at creating
103 pressure and legal pathways, thereby strengthening obligations to halt biodiversity loss (Ekardt
104 et al., 2023). However, significant implementation gaps remain, and questions about the
105 effectiveness of these agreements persist.

106 Biodiversity governance refers to the institutions, structures, and processes that determine
107 how and by whom decisions affecting biodiversity are made (Schwerdtner Máñez et al., 2025;
108 N. J. Bennett & Satterfield, 2018). Traditionally, governments have played the central role in
109 conservation decision-making, even as new actors and mechanisms become increasingly
110 significant. In this environment, governments at different levels participate in a wide range of
111 decision-making activities, from international negotiations to national policies and local
112 community projects (Young, 2002). Their participation also impacts the definition and use of
113 policy instruments, which are structured activities aimed at achieving long-term environmental
114 goals (Schwerdtner Máñez et al., 2025).

115 Assessing the impact of policies and progress toward international, national, and local
116 actions depends on having key resources: representative tools that reflect the current status and
117 trends (Jetz et al., 2019). Indicators have emerged as a structured framework to serve this
118 purpose. They guide data collection and analysis, ensuring measurements are reliable,
119 reproducible, and accurate, while also providing vital information that supports various levels
120 of action—whether international, national, or regional (Canedoli et al., 2024). The concept of
121 using indicators to measure sustainability has gained significant popularity, as numerous
122 governments, NGOs, and academic groups invest considerable resources into developing and
123 testing these indicators (Bell & Morse, 2008). An example of that is the global indicators of
124 change, such as the suite of GEO-BON-endorsed biodiversity indicators (Pereira et al., 2015),
125 realm-specific indicators, like the marine biodiversity indicators (Teixeira et al., 2016) or
126 specific indicators that represent the Well-being among Indigenous Peoples (IWIP) (Cruz et al.,
127 2020). The challenge is to identify which indicators are effective in achieving the goals at
128 multiple scales.

129 An increasing body of research also emphasizes that maintaining biodiversity depends on
130 ecological knowledge that integrates insights from the social sciences and humanities. (Díaz et
131 al., 2018). These disciplines offer valuable perspectives through social analysis tools and
132 theories that help reveal how human values, institutions, and behaviours influence conservation
133 outcomes. (Pascual et al., 2021; Mace, 2014). Recent scholarship also highlights the need to
134 incorporate principles of social justice within conservation planning (Montgomery et al., 2024).
135 Additionally, consider that understanding the world is much broader than the typical
136 perspectives found in the global North, Western, and Eurocentric contexts (Santos, 2016). This
137 involves recognizing approaches developed in other countries, such as those considered part of
138 the Global South (Ocampo-Ariza et al., 2023), as well as acknowledging the central role of local
139 communities and Indigenous knowledge in enhancing legitimacy, ownership, and long-term
140 success (McAllister et al., 2025). This integration is essential for promoting inclusive decision-
141 making and creating policies that effectively balance environmental sustainability with human
142 well-being. (Cumming, 2023).

143 The Social-ecological systems (SES) frameworks provide a valuable insight for tackling
144 these challenges. This is an emerging concept that originated in the 1990s and began to describe
145 the interconnectedness of human and natural systems (Mace, 2014; Reyers & Bennett, 2025).
146 A search in the Web of Science using ‘social-ecological’ words from 1990 to 2025 shows that
147 the vast majority of publications (around 97%) appeared in the last two decades, reflecting a
148 sharp increase in research interest over this period. Social-ecological systems research is now a
149 recognized interdisciplinary field within this perspective, revealing that decision-making and
150 governance must incorporate both ecological knowledge and social dynamics in sustainability
151 science (Biggs et al., 2021). It also underscores the need for multi-level governance systems

152 that can operate coherently across scales (Reyers & Bennett, 2025). Next steps lie in integrating
153 all these complex structures with diverse social and ecological processes (Bell & Morse, 2008).

154 While previous studies have explored biodiversity governance and socio-ecological systems,
155 there remains a limited understanding of how socio-ecological knowledge is integrated into
156 decision-making, especially through the application of indicators to assess progress and inform
157 policy (Cruz et al., 2020; Stephanson & Mascia, 2014). By doing so, we ask the following
158 questions: 1) What socio-ecological indicators have been developed to support biodiversity-
159 related decision-making, and what evidence exists on their practical effectiveness?, 2) Which
160 dimensions of biodiversity (genes, population/species, communities, ecosystems, landscape)
161 and policy targets do these indicators address, and what evaluation approaches are most
162 commonly applied?, 3) Are participatory approaches used differently across regions (Global
163 South–Global North) and actor types in the cases where indicators were applied? and d) What
164 methodological, governance or data gaps constrain the operational use of socio-ecological
165 indicators, and what priorities emerge to close the science–policy implementation gap? This
166 study does not aim to evaluate the effectiveness of decision-making processes in socioecological
167 research. Instead, it focuses on understanding the conditions under which the socioecological
168 approach integrates decision-making. and also allows for the identification of biases and gaps
169 in terms of space-time, variables, conceptual frameworks, among others. We seek to understand
170 how scientific efforts have attempted to bridge the gap between research findings and real-world
171 decision-making.

172 We anticipate a dominant focus on ecosystem-level attributes—such as land-use–land-cover
173 integrity, connectivity, and resilience—while genetic metrics will remain markedly under-
174 represented, surfacing in fewer than one in ten studies. Evaluation methods are expected to be

175 predominantly descriptive or comparative *ex-post*, with counterfactual or quasi-experimental
176 designs constituting a clear minority. Indicators will most often be reported as applied during
177 the diagnostic and monitoring phases at local to sub-national scales, whereas their application
178 in option appraisal or implementation, particularly at national or transboundary levels, will
179 appear only sporadically.

180 **2. METHODS**

181 *Scope of review*

182 We performed a scoping review to evaluate the existing literature on socio-ecological
183 systems, indicators and biodiversity goals. To structure the query, we analyzed the frequency
184 of the words used in the indicators proposed in the Kunming–Montreal Global Biodiversity
185 Framework (KMGBF; [CBD/COP/DEC/15/5](#)) and we identified 61 key terms (Supporting
186 Information Fig S1). For the selection, we constructed a cloud word by merging full words and
187 eliminating punctuation, along with semantically related words such as prepositions,
188 conjunctions, adverbs, and pronouns. For example, Goal A of the GBF, in the headline indicator
189 A, target two, one of the component indicators is called *Maintenance and restoration of*
190 *connectivity of natural ecosystems*. Then, we used “maintenance”, “restoration”,
191 “connectivity”, “natural”, and “ecosystem” as possible keywords. We also examined the most
192 common stem of each word, removing the ending letters—for example, “fishing” and
193 “fisheries” have the same base but different terminations (Supporting Information Table S1).

194 The group of words was organized into three categories: biological or ecological processes,
195 social dynamics, and types of measurement. Additionally, the query evaluation included the
196 terms decision-making and indicators because they are vital to answering our questions. The

197 articles were found on the Web of Science and Scopus platforms by searching for the words in
198 the Title and Abstract fields. Finally, to increase the specificity of the literature obtained, the
199 search queries were improved by removing keywords related to health sciences (e.g. “clinical
200 trial”, “therapy”, “disease”) and specific environmental areas (e.g. “urban air quality”,
201 “renewable energy”). The queries used are provided in Supporting Information Text S1. To
202 ensure transparency, this systematic scoping review followed the Preferred Reporting Items for
203 Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page et al., 2021). The
204 systematic review was conducted using the Covidence software package (www.covidence.org),
205 which efficiently screens and extracts information for development reviews and facilitates
206 tracking. The PRISMA reporting workflow is shown in Supporting Information Figure S2.

207 *Scoping criteria*

208 We screen papers in two stages. *First*, we reviewed the abstracts and exclude (i) those that
209 focus solely on biological or ecological topics, such as species or interactions, (ii) papers related
210 to other fields not relevant to the objectives of these papers, such as health, engineering, or
211 education, and (iii) opinion, conference or theoretical papers. After the *second phase*, we
212 reviewed the whole paper and exclude articles that (i) did not include indicators or didn't refer
213 to policy/policymakers in the methods, (ii) did not employ a social or biological or ecological
214 approach in their methods, and (iii) were written in a language other than English or Spanish.

215 *Extraction of information*

216 We define 22 categories that are associated with each of the four questions. Additionally,
217 we have defined each possible option for each category. For example, in the geographical scale
218 category, the options were local, subnational, national, regional, or global. Similarly, for the
219 management implications category, the options were whether the study refers to best practices

220 to improve economic activity or if it offers environmental policy and governance. All the
221 categories defined can be consulted in Table 1. For more details regarding the options for each
222 category, see the Supplementary Data S1.

223 Table 1. Categories were evaluated to answer the question in the reviewed papers, as well as the explanation.

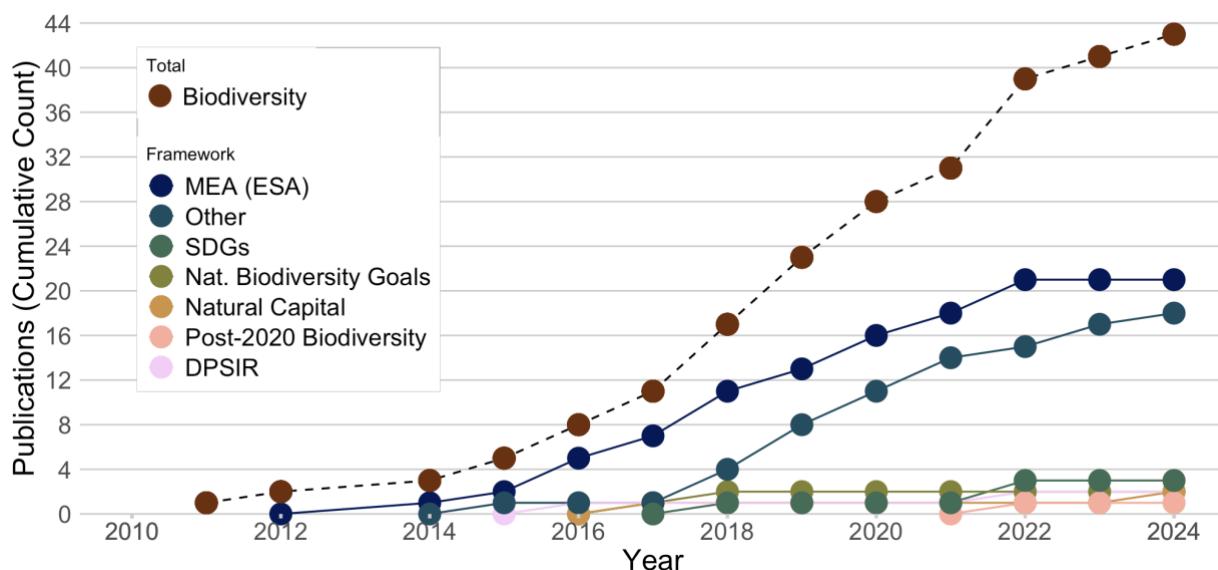
224 To check all evaluated options and the full definition for each category, see Supporting Data S1.

Question	Categories	Explanation
Q1	Framework Used	Framework used to explain or to categorize the relationship between the socioecological system (e.g. Pst-2020 Global Biodiversity or DPSIR Framework)
	Indicator used	Category of the indicator. It could be more than one (e.g. economic, social, biological/ ecological)
	Result level	Effect of the indicator(s) used (e.g. output or impact)
	Management implications	Summarize what the results mean in terms of actions (e.g. best practices to improve the economic activity or environmental policy and governance)
	outcomes or outputs to support decision making	The scope of the study includes scenario development, policy support, monitoring over time, and decision-making relevance.
Q2	Geographical Scale	Politico administrative boundaries defined. (e.g. local, subnational, regional or global)

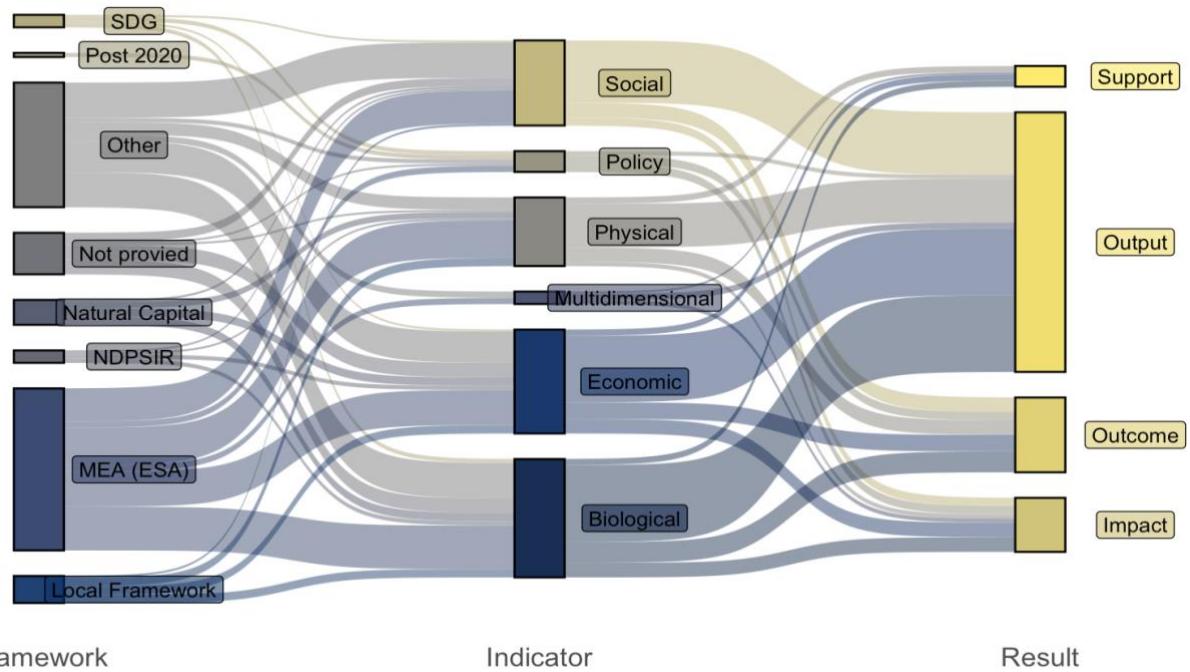
	Hierarchical biodiversity	Biological unit used in the study (e.g. genes, population or communities) (adapted from (Noss, 1990))
	Habitat type	General type of habitat described in the study (e.g. Freshwater, marine, or forest)
	Revealed Preferences	Empirical variables obtained to answer the goals of the papers (e.g. Ecological surveys, remote sensing or economic model)
	Stated preferences	information obtained from individuals through systems (e.g. interviews, participatory mapping or focus group)
Q3	Country	Country where the study was developed
	Participant types	Type of contributors who participated in the study (e.g. Local people, academic or civil servants)
	Role	Role of the participants in the study. It must be explicit in the methods (e.g. stakeholder or experts)
Q4	Limitations in the study	Limitations described by the authors in the study (e.g. data availability or conceptual issues)
	Challenges or suggestions for the future	challenges or suggestions offers by the authors (e.g. applicability, more empirical research or others)

226 The data and figures were processed using R software (R Development Core Team, 2022).
227 The *tidyverse* package (Wickham, n.d.) was used for data handling, while *ggplot2* (Wickham,
228 2016) facilitated graph visualization, with multi-panel layouts assembled with *patchwork*
229 (Pedersen, 2024) version 1.2.0. To ensure clarity and accessibility, colour schemes were chosen
230 from *scico* (Pedersen & Crameri, 2025) in the version v1.5.0.9 and *viridis* (Garnier et al., 2023)
231 in the version v0.6.4. Alluvial and Sankey diagrams were created using *easyalluvial*
232 (Koneswarakantha, 2023), version v0.3.2 and *ggsankey* (Sjoberg, 2025), version v0.0.9. Finally,
233 for spatial data and mapping, we employed *geodata* (Hijmans et al., 2023) using the version
234 v0.5-9 and *tmap* (Tennekes, 2018).

235 **3. RESULTS AND DISCUSSION**


236 A total of 906 references were imported and screened based on their titles and abstracts
237 (Supporting Information Figure S2). Three duplicates were identified manually, and 226 were
238 identified by the Covidence tool. After the abstract review, 165 studies were included and 512
239 were excluded. In this phase, all included studies were related to the environment and decision-
240 making. Finally, in the full-text review of the paper, we selected 43 papers.

241 3.1. Co-designed indicators show higher policy uptake.


242 *What socio-ecological indicators have been developed to support biodiversity-related decision-
243 making, and what evidence exists on their practical effectiveness?*

244 Socio-ecological indicators have become central tools for supporting biodiversity-related
245 decision-making. Since the 1980s, frameworks have sought to integrate environmental,
246 economic, and social dimensions into management and policy processes (Stokstad, 2020). The
247 most common framework we identified has been the Millennium Ecosystem Assessment (Fig.

248 1, *Top*, Dark Cyan Blue, n = 18) (MEA, 2003). Surprisingly, other methods, such as Natural
 249 Capital, Driver-Pressure-State-Impact-Response (DPSIR) Framework, and the Sustainable
 250 Development Goals, have not been widely consolidated in research focused on decision-making
 251 (less than 4; see Fig. 1). Instead, it is often the case that alternative methodologies have been
 252 proposed to support decision-making in socioecological processes through indicators (Fig. 1
 253 *Top*, “Others” category shown in Dark Cyan Blue, n = 18). Despite their wide application and
 254 an increasing number of studies demonstrating their potential usability, global environmental
 255 conditions continue to decline (Winkler et al., 2021). This ongoing challenge raises important
 256 questions about how effectively these indicators translate into concrete actions that improve
 257 biodiversity outcomes and inform sustainable management.

258

259 Framework Indicator Result

260 Figure 1, *Top*. The frameworks used in the research are evaluated. The most prevalent framework was the
261 MEA, followed by various approaches for analyzing socioecological systems. The remaining frameworks have
262 been used less frequently, despite being proposed before 2018, except for the Post-2020 Biodiversity framework.
263 Dashed lines indicate the total cumulative number of papers. *Down*: Connections among the defined conceptual
264 model, the indicators used, and the types of results obtained. The colours on the right help identify connections
265 with the middle column, while the colours in the middle categories are organized to aid in recognizing these
266 connections with the results.

267 The adoption of the framework to construct specific indicators across different socio-
268 ecological categories reflects the growing interest in aligning different fields with the global
269 frameworks (Burgass et al., 2021b). Biological information was the most common base
270 indicator used to construct the results (n=36), followed by economic indicators. (n=32) as the
271 input (Fig 1, down). In turn, we found that the use of multidimensional indicators, which
272 uniquely integrate all categories into a single measure, was less common (five of the studies,

273 Fig 1, down). Although proposed during a specific period, the policy indicators emerged as a
274 novel category that can be related to different frameworks.

275 Across the six socio-ecological indicator categories (Fig 1, down), the most common results
276 generated by them are the development of tools, workflows, or approaches to understand socio-
277 ecological processes (n=32; Fig. 1). These studies primarily reflect academic interests in
278 developing theories and creating new methodologies for studying the subject. These results are
279 essential, offering a picture of biodiversity, which helps to establish the state of the system
280 (Conroy et al., 1997). Additionally, historical information based on economic and social
281 records, and stakeholder insights were essential for understanding changes and future solutions
282 (Bornmann, 2013).

283 A second level is characterized by research that generates "socially robust" knowledge,
284 evaluated well beyond the initial user stage (Bornmann, 2013). In the last decade, policymakers
285 have increasingly focused on the societal impacts of research, including its contributions to the
286 economy, society, culture, public administration, health, environment, and quality of life, and
287 not only on knowledge (Fecher & Hebing, 2021). At this secondary user level, our findings
288 indicate that researchers who approach evaluation in this manner are less common (Fig 1, down;
289 n = 9 for outcomes and n = 8 for impact). This type of study is becoming important for
290 understanding the best way to make decisions because it offers us the opportunity to
291 comprehend what happens beyond the outputs generated by researchers. In contrast, the least
292 common result involves support efforts related to support programs that track the state of
293 systems over time (Fig. 1, down; n=2). This pattern aligns with previous critiques that highlight
294 the necessity to guide the use of indicators to capture ecological and social effectiveness, rather

295 than proposing procedural progress limits their capacity to reflect real conservation impact
296 (Beher et al., 2024).

297 Our review shows that the type of management implications reflected by indicators often
298 determines their potential impact on decision-making. Ecological and economic management
299 implications were the most common outcomes reported per indicator, whereas social aspects
300 appeared less frequently (Table 2). Although indicators are widely incorporated into public
301 policy documents—particularly through future change scenarios, which were recurrent at
302 regional and national levels (n = 28.3%; Table 2)—they seldom lead to direct actions or
303 strategies aimed at improving local economic or environmental conditions. Being explicitly
304 action-oriented, for instance, in evaluating environmental risks or improving resource
305 management practices, was relatively uncommon. The most frequent outcomes supporting
306 decision-making involved the development or approval of policy documents, mostly at regional
307 and national scales (Table 2). In these cases, land or vegetation cover was the most common
308 proxy for biodiversity, applied across multiple ecosystems.

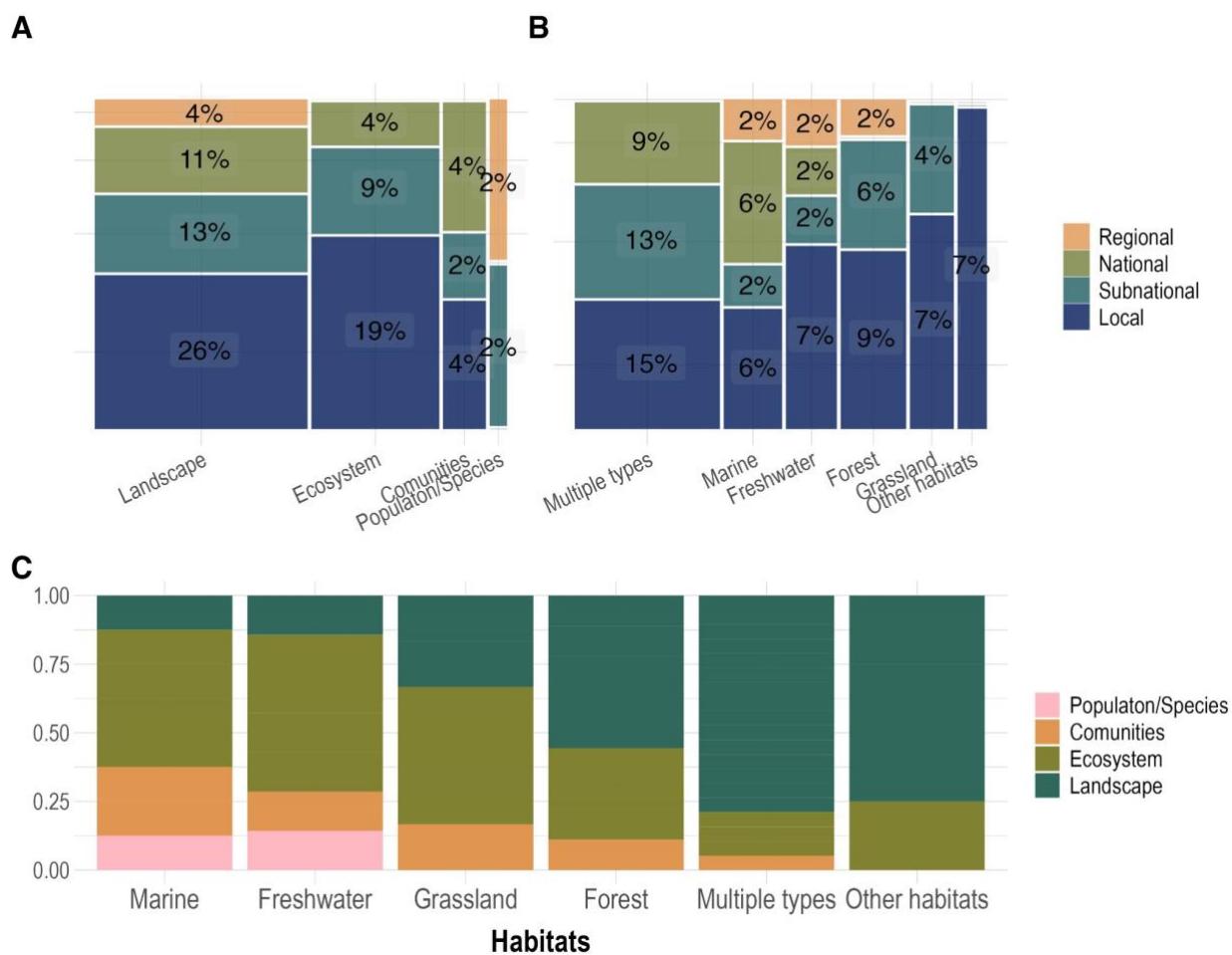
309 Table 2. Outlines of the management implications, outcomes, and outputs that support decision-making in the
310 reviewed studies.

Category	Options	n	%
Management implications	Ecological management	22	22.9
	Environmental policy and governance	22	22.9
	Economic improvement	21	21.9
	Water / soil management	15	15.6
	Environmental risk assessment	9	9.4

	Climate Change Vulnerability and Adaptation	3	3.1
	Other	3	3.1
	Not provided	1	1
Outcomes or outputs to support decision-making	Future change scenarios	15	28.3
	Public policy to improve activities	15	28.3
	Results from time-monitored characteristics	11	20.8
	Other	9	17
	Not provided	3	5.7

311 These findings indicate that, although indicators generate useful information for decision-
 312 making, their influence on real-world management remains limited (Díaz et al., 2020). A key
 313 reason is the insufficient integration of perspectives from the political, economic, and social
 314 sciences (Leadley et al., 2022). Research in these disciplines offers alternative ways of
 315 understanding how knowledge supports decision-making, highlighting the roles of institutions,
 316 governance, and power dynamics (Leadley et al., 2022). However, such perspectives are not yet
 317 fully reflected in biodiversity indicators or in the processes that guide their use and development
 318 (Butchart et al., 2010). The economy remains the most common social dimension included. At
 319 the same time, approaches that integrate policy or governance aspects are still scarce (Fig. 1
 320 down). Drawing more extensively on insights and tools from the social sciences and humanities
 321 could enhance the legitimacy, relevance, and effectiveness of these indicators (Liu et al., 2023;
 322 Díaz et al., 2018).

323 While they provide valuable ecological and economic information, they often fail to capture
324 the complexity of human–nature interactions that shape management outcomes (Holden et al.,
325 2024). Strengthening the interdisciplinary foundations of indicator frameworks, fostering
326 participatory approaches, and aligning indicators more closely with governance contexts could
327 help ensure that they not only describe environmental conditions but also promote
328 transformative and sustainable actions (Krebs et al., 2025).


329 3.2. Socioecological studies underrepresent the dimension of biodiversity

330 *Which dimensions of biodiversity (genes, population/species, communities, ecosystems,
331 landscape) and policy targets do these indicators address, and what evaluation approaches are
332 most commonly applied?*

333 3.2.1. Indicators, Scales, and Evaluation Approaches in Socioecological Systems

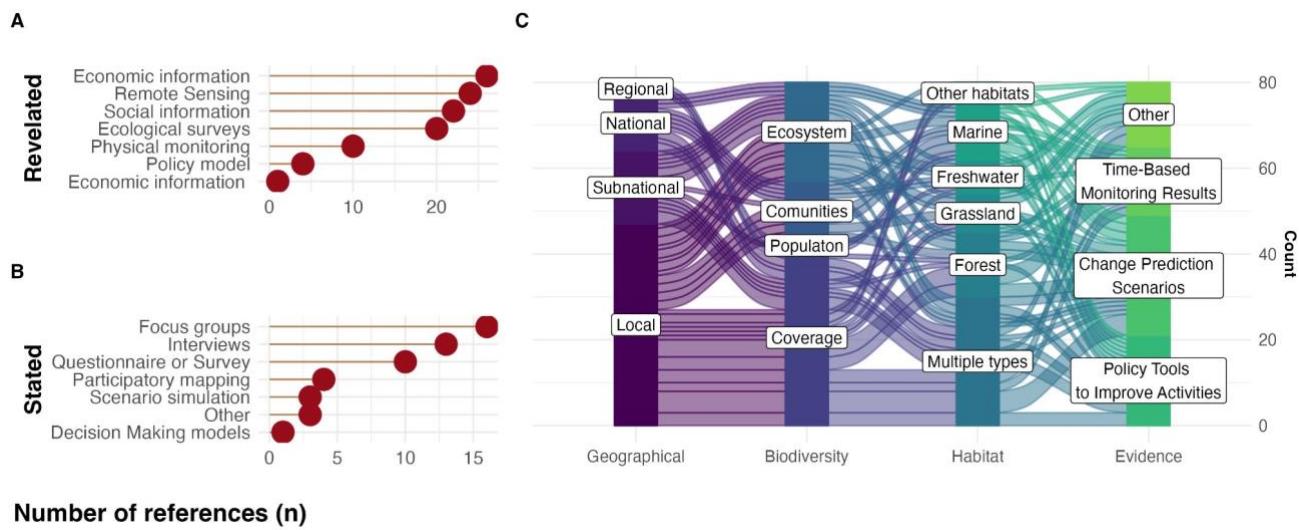
334 Building on these patterns, the choice of indicators and the scale of analysis are tightly linked
335 to data availability and decision contexts. Much socioecological and decision-oriented research
336 is conducted at local scales ($n = 23$; Fig. 2a–b), where fine-scale ecological variables and rates
337 can be measured (Schneider, 2001) and community-level economic information (e.g., small-
338 scale fishers, local farmer surveys) is most informative (Basurto et al., 2025; Agardy, 2000). At
339 the same time, many socioeconomic and development datasets exist only at regional or national
340 resolutions, producing scale mismatches with ecological processes and governance boundaries
341 (Diogo & Koomen, 2016; Scholes et al., 2013). Because decision-making problems typically
342 require analysis of causality and trade-offs, studies should therefore combine local
343 measurements with coarser socioeconomic data and explicitly reconcile scales (Butchart et al.,
344 2010).

345 In most studies, the most common approach is to operate at the landscape level, using the
 346 Land Use and Land Cover (LULC) as a proxy for biodiversity (54% of reviewed studies; Fig.
 347 2a). This is because LULC provides spatially consistent data that links social and ecological
 348 aspects across various scales (Diogo & Koomen, 2016). However, this proxy predominance is
 349 mainly terrestrial: in marine and freshwater systems, population and community level metrics
 350 are used more frequently (Fig. 2b–c). In these habitats, it is not always possible to use LULC,
 351 so using ecosystem or watershed boundaries shows that it is possible to adapt the scales based
 352 on the systems studied (Teixeira et al., 2016).

353

354 Figure 2. The relationship between the ecological (a) and habitat (b) scale, contrasted at the geographical scale.
355 The size of the box represents the number of papers related to the valued categories. Freshwater and marine systems
356 primarily advocate for biodiversity boundaries to define the group of interest (c). Instead, in land ecosystems, the
357 use of landscape was more predominant. The genetic category was not identified in the analyzed studies.

358 Socioecological studies also often neglect genetic approaches. In our study, we did not find
359 research that integrates genetic perspectives within a socioecological framework and decision-
360 making. Genetic assessments are essential for international conservation initiatives, such as the
361 Convention on Biological Diversity, and they help governments and managers monitor
362 conservation progress while also prioritizing species and populations for preservation and
363 recovery of their genetic diversity (Pereira et al., 2013). One of the main challenges is that direct
364 DNA-based assessments are resource-intensive and not feasible at scale for many species. For
365 that reason, new indicators such as the “Proportion of populations (or range) maintained” and
366 the “Proportion of populations with $Ne < 500$ ” have emerged as practical solutions (Sean et al.,
367 2024). These indicators provide a roadmap for implementation, making the contribution not just
368 theoretical but also applicable in real-world conservation contexts.


369 Accordingly, evaluation approaches in the reviewed literature range from spatial correlation
370 and modelling using LULC to more robust quasi-experimental designs that better support causal
371 inference (for example Before-After-Control-Impact, difference-in-differences, and matching
372 approaches) (De Palma et al., 2018). These stronger designs are especially useful where policies
373 or interventions need impact evaluation, but they depend on adequate baseline or counterfactual
374 data (Christie et al., 2020). Finally, stakeholder ownership across scales is essential for credible
375 assessments and for translating indicators into action (Cruz et al., 2020). Even when adequate
376 data exist, political and social barriers can hinder implementation (Krebs et al., 2025). This

377 raises the practical question: do we act on imperfect data, or restrict conclusions to what our
378 data can robustly support?

379 3.2.2. Empirical and Participatory Tools for Socioecological Decision Support

380 In economics, the terms “stated preferences” and “revealed preferences” are used to describe
381 two ways of understanding people’s choices (Shang & Chandra, 2023). *Stated preferences* refer
382 to the information people give directly, such as their opinions, values, or feelings. This type of
383 data is often collected through interviews, surveys, or participatory activities. *Revealed*
384 *preferences*, on the other hand, refer to behaviour that can be observed or measured. These are
385 based on real actions and are obtained through direct observation or empirical methods. In this
386 review, we use *stated preferences* to group the tools that collect people’s perceptions
387 and *revealed preferences* to group those that gather measurable, real-world data.

388 Among revealed preference tools, the most common data sources were the economic and
389 environmental variables used to describe how resources, goods, or services are produced and
390 shared (n = 26; Fig. 3a). Remote sensing was the second most common method (n = 24). It was
391 widely used as a flexible tool that combines social and ecological information through the
392 analysis of land use and cover (Diogo & Koomen, 2016). Policy data were less frequent (n = 4)
393 and usually appeared in models that included institutions or laws that shape how decisions are
394 made.

396 Figure 3. In revealed preferences (a), economic data were the most frequently followed by remote sensing analyses
 397 of social and ecological surveys. For stated preferences (b), the participatory process with various actors was the
 398 main method, with focus groups and interviews being the most cited. Scenario or decision-making models emerged
 399 as less frequent alternatives for generating analytical information. (c). Relationship between the *geographical*,
 400 *biodiversity*, and *habitat* scales, with the *evidence* presented in the paper reviewed. The count on this axis Y reflects
 401 category occurrences rather than unique documents, because individual studies may be assigned to multiple
 402 categories (e.g., different habitats within a single study).

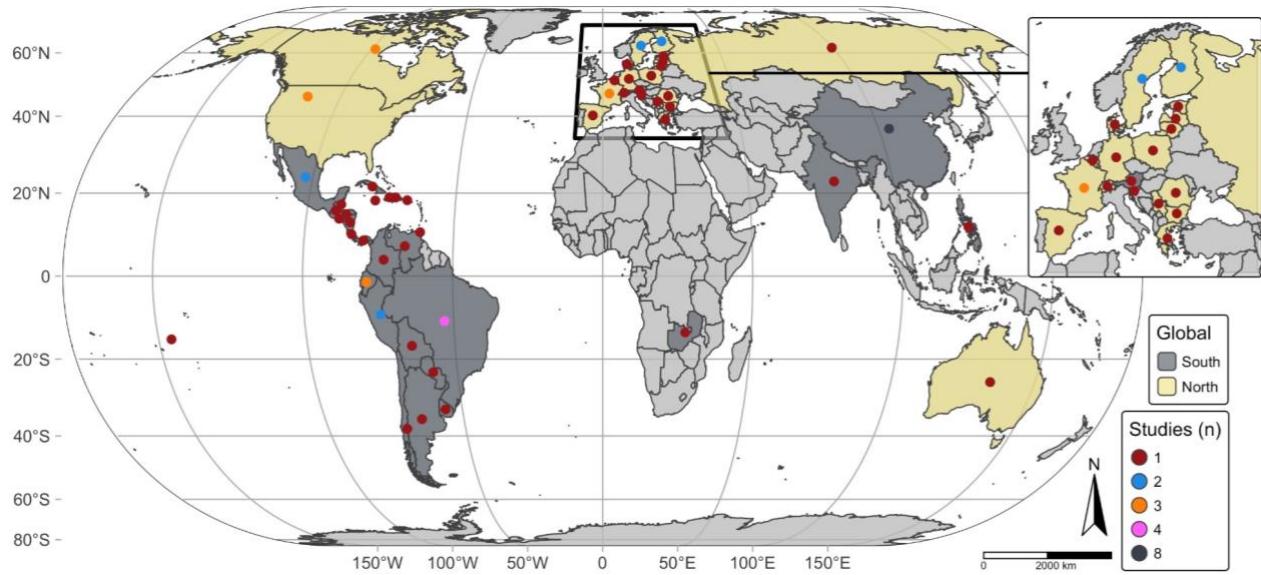
403 For stated preference tools, the most frequent approach was the use of participatory processes
 404 that include different actors. Among these, focus groups ($n = 15$) and interviews ($n = 13$) were
 405 the most common (Fig. 3b). Less frequent were scenario models ($n = 3$) and decision-making
 406 models ($n = 1$), but these were valuable because they helped generate information that could
 407 later be used for analysis and planning. For more details on the definition of each category,
 408 please see Supplementary Data 1.

409 Remote sensing and time-series data are still key tools for creating scenarios and monitoring
410 changes over time (Vihervaara et al., 2017). Community studies provide essential information
411 at the local level, helping to understand social and ecological changes in specific areas
412 (Magurran et al., 2010), Fig. 3c). Larger scales, such as subnational or national levels, rely more
413 on policy data to support decision-making. However, most studies that evaluated impacts were
414 not directly linked to policy design (Fig. 3c). This shows that there is still a gap between
415 scientific monitoring and how information is used to guide public policy (Tobias et al., 2025).

416 Hébert et al (2025) identified that most biodiversity indicators are used at national or
417 subnational levels, leaving a gap in monitoring local and short-term changes (Hébert et al.,
418 2025). In our review, we found the opposite pattern: most studies apply indicators at the local
419 scale (Fig. 3c). This could mean that research is starting to fill that gap, but it also adds some
420 challenges. Many of the indicators we found come from other frameworks, such as ecosystem
421 services or land-use and land-cover (LULC) studies, instead of the Global Biodiversity
422 Framework.

423 These approaches focus more on understanding the local context and how people and nature
424 interact, rather than just measuring biological changes. For that reason, our results may help
425 reduce the spatial gap mentioned by Hébert et al. (2025), but they also show that we still miss
426 the temporal side of biodiversity change, since our review did not evaluate how indicators vary
427 over time. Finally, socioecological systems are complex and dynamic, involving many
428 interactions between nature and society (Winkler et al., 2021). Future research should use mixed
429 approaches —combining participatory work, remote sensing, and modelling—to design
430 indicators and solutions that are both practical and sustainable (Fig. 3c).

431

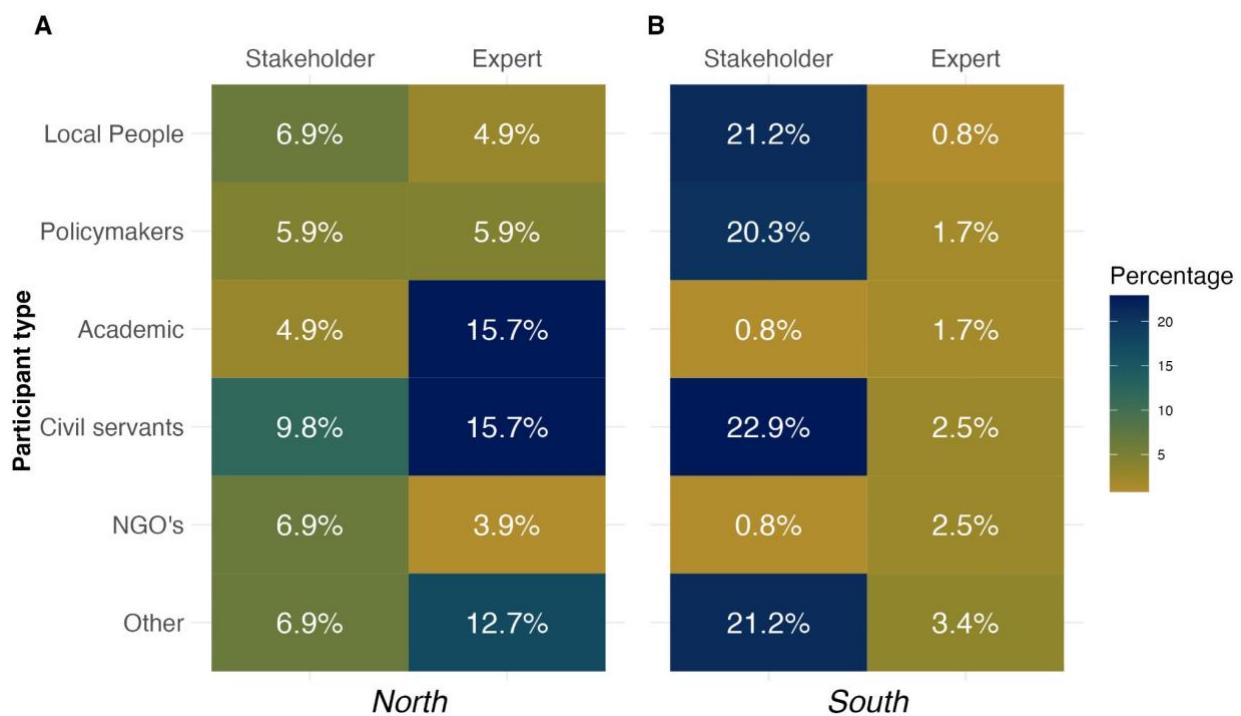

432 **3.3. Patterns of Participation and Knowledge Integration Across Scales**

433 *Are participatory approaches used differently across regions (Global South–Global North) and*

434 *actor types in the cases where indicators where applied?*

435 Indicators were used to map our findings onto the North–South highlighting how
436 participatory approaches and multi-scale integration differ across regions. These patterns
437 contribute to understanding how local applications connect to national biodiversity targets and
438 broader governance frameworks. Research was identified across all continents (Fig. 4),
439 demonstrating the global reach of multi-scale biodiversity governance studies. China accounted
440 for the highest number of studies ($n = 8$), followed by Brazil ($n = 4$), and then Canada, Ecuador,
441 France, and the United States ($n = 3$ each). The primary observation indicates that nations with
442 a greater number of case studies incorporating socio-ecological indicators into decision-making
443 processes also coincides to the countries that experience higher income growth and reduced

444 inequality (Chrisendo et al., 2025). The examples of China, which has the highest number of
445 studies, and Brazil serve as particularly illustrative cases.


446 Figure 4. Distribution of the number of papers per country registered in this study. Countries were also
447 categorized according to the relationship of the sources with respect to the Global South and North. The small
448 rectangle in the corner shows a zoomed-in view of the European area.

449 Most of the reviewed studies were conducted at a local scale (n = 23), while only a few
450 integrated information across countries (n = 3). This dominance of local-scale research suggests
451 that biodiversity governance remains strongly place-based, with limited efforts to connect
452 findings across national or regional levels (E. M. Bennett et al., 2021; Tengö et al., 2014).
453 Strengthening comparative and multi-level research could enhance understanding of how local
454 actions contribute to global biodiversity goals. Across studies, local communities and civil
455 servants were the most common participant types (19.1%), followed by members of academia
456 (16.4%) (Supporting Information Fig. 1). The roles of participants varied according to the

457 group: local communities were primarily identified as stakeholders (11.8%), whereas academics
458 often acted as experts (10%).

459 These patterns reflect how knowledge production and authority remain unevenly distributed
460 among actors (Newig et al., 2023). Participation was more prominent in the Global South, where
461 Local Communities represented a greater proportion of stakeholders (21.2%, Fig. 5b),
462 underscoring the importance of community-based engagement. In contrast, in the Global North,
463 the region with more in high-income (Chrisendo et al., 2025), participation was dominated by
464 academics and civil servants acting as experts (15.7%, Fig. 5a), suggesting a more
465 institutionalized and technical approach. This North–South difference illustrates two
466 complementary but imbalanced trends: while the Global South, the region with higher
467 inequality (Chrisendo et al., 2025) demonstrates stronger inclusion of local actors, the Global
468 North, which has the high-income countries, relies more heavily on formal institutions and
469 technical expertise. Such divergence highlights the need for governance models that balance

470 expert-driven analysis with participatory inclusion, ensuring that diverse perspectives
471 contribute to biodiversity indicators and management outcomes (Newig et al., 2023).

472 Figure 5. Regarding the role of participants in the Global North (A), there was more heterogeneity among the actors
473 involved in the processes, while in the South (B), the inclusion of local people and civil servants was predominant.

474 Although participation by local communities remains limited overall, its importance is
475 increasingly recognized in both regions (Tengö et al., 2014). Traditional and local communities
476 hold knowledge systems developed through generations of direct interaction with ecosystems
477 (Campbell & Gurney, 2024). Integrating this knowledge can improve the relevance and
478 legitimacy of biodiversity indicators, yet challenges persist due to differences between scientific
479 and local epistemologies. A case from the Amazon region of Colombia demonstrates this
480 integration: Indigenous communities developed their own indicators to inform policy decisions
481 and ensure autonomy in managing information (Cruz et al., 2020). This example shows the

482 potential of participatory indicator frameworks to enhance representation and accountability
483 within decision-making processes.

484 The findings also emphasize the importance of linking governance across scales. National
485 and regional institutions act as intermediaries that connect global biodiversity frameworks with
486 local implementation (Allen et al., 2023). Where such coordination is weak, local initiatives risk
487 being isolated from national targets, limiting their long-term impact (Allen et al., 2023).
488 Strengthening these connections—through co-production of indicators and dialogue between
489 knowledge systems—can make biodiversity governance more adaptive and inclusive. Overall,
490 the analysis reveals persistent asymmetries between the Global North and South, but also
491 growing recognition of the value of local participation and multi-scale integration (E. M.
492 Bennett et al., 2021; Newig et al., 2023; Tengö et al., 2014). Building effective biodiversity
493 governance will depend on balancing scientific expertise with local knowledge, enhancing the
494 connections between local and global scales, and developing indicators that reflect both
495 ecological realities and social priorities.

496 **3.4. The lack of information which could be integrated in the new socioecological
497 dimensions**

498 *What methodological, governance or data gaps constrain the operational use of socio-
499 ecological indicators, and what priorities emerge to close the science–policy implementation
500 gap?*

501 We identified multiple, recurrent information gaps that constrain socio-ecological integration
502 and science–policy implementation, indicating the need to quantify governance and data gaps
503 (Table 3). A substantial portion of studies did not report limitations (21.1%) and an equal

504 proportion did not report lack-of-information issues (21.1%) (Table 3). Among the specific data
 505 needs reported were: long-term time series to strengthen inference (e.g., (Chen et al., 2022;
 506 Darvill & Lindo, 2016), uneven information availability between regions and countries (Czucz
 507 et al., 2018; Manners & Varela-Ortega, 2017), finer-scale data (Xu et al., 2019), and explicit
 508 recognition of data limitations (Arlidge et al., 2020; Dietz et al., 2023; Kourantidou et al., 2020;
 509 Malmborg et al., 2021). Conceptual problems were least frequently cited (8.5%), reflecting
 510 continuing interest in methodological innovations for socio-ecological analysis (Fig. 2).

511 Table 3. Limitations reported by the researchers, as well as challenges or suggestions for the future.

Category	Options	n	%
Limitations in the study	Data availability	15	21.1
	Not provided	15	21.1
	Other Limitations	14	19.7
	Methodological approach	12	16.9
	Need to include social aspects	9	12.7
	Conceptual issues	6	8.5
Challenges or suggestions for the future	Other suggestions	22	28.9
	Participation of multiple actors or disciplines	16	21.1
	Applicability	14	18.4
	More empirical research	12	15.8
	Communicative tools	7	9.2
	Not provided	5	6.6

512

513 Researchers suggested future actions clustered around broad, practical priorities: increasing
514 participation of multiple actors or disciplines (21.1%), improving applicability of results
515 (18.4%), and conducting more empirical research (15.8%) (Table 3). The recurrent call to
516 integrate multiple actors underscores a perceived need to strengthen the legitimacy and usability
517 of outputs for decision-makers. When conceptual limitations were identified, authors
518 emphasized translating high-level frameworks into usable methodological procedures (Fontaine
519 et al., 2014), acknowledged the difficulty of reducing complex social–ecological interactions to
520 simplified valuation methods (Sajeva et al., 2020), and noted management challenges
521 highlighted elsewhere (Arlidge et al., 2020). The absence of a dominant single challenge or
522 recommendation (28.9% “other”) suggests heterogeneity in both contexts and priorities across
523 studies.

524 Integrating biological and social data in ways that preserve coherence across knowledge
525 systems requires improved communication tools and plural epistemological approaches
526 (Campbell & Gurney, 2024; Richter et al., 2022). Drivers that affect communities and natural
527 areas operate over time and across scales (Fig. 3c), so robust, long-term time series and
528 monitoring are essential to detect trends, evaluate interventions, and inform adaptive
529 management (Dornelas et al., 2025; Knapp et al., 2012). Although biological and social data
530 availability is increasing through new initiatives, persistent problems remain: many datasets are
531 spatially, temporally, or demographically unrepresentative and often provide only short-term
532 snapshots rather than continuous records (Bowler et al., 2025; Krebs et al., 2025). These
533 limitations complicate the translation of ecological signals into actionable policy, particularly
534 because required solutions are frequently social and political as much as ecological (Krebs et
535 al., 2025).

536 Social-science data streams (e.g., education, health, demographics, economic indicators) are
537 expanding and can support frameworks such as ecosystem services, but integrating knowledge
538 that departs from Western epistemologies remains a common and unresolved request (Urbina-
539 Cardona et al., 2023; Muradian & Gómez-Bagethun, 2021; Díaz et al., 2018; Adams et al.,
540 2014). This omission reduces the capacity of global frameworks to capture system complexity
541 in many contexts (Gonzalez-Redin et al., 2024) and contributes to persistent questions about
542 whether scientific outputs align with policy processes and decision-maker needs (Greenhalgh
543 et al., 2022).

544 In sum, our results show clear, actionable gaps: (1) frequent non-reporting of study
545 limitations and data shortages; (2) a strong demand for long-term, finer-scale, and
546 regionally representative datasets; and (3) a need for methods and communication tools that
547 bridge epistemic differences. Quantifying governance and data gaps—by region, actor type, and
548 data domain—should be a priority to evaluate the Q4 and to guide investments in monitoring,
549 co-production, and policy-relevant research.

550 4. CONCLUSION

551 Advancing the uptake of socio-ecological indicators requires strengthening long-term
552 monitoring to address data gaps, moving beyond land-cover proxies to capture ecosystem
553 processes, and incorporating community-based measures that explain biodiversity change.
554 While biodiversity indicators are improving at regional and national scales, and socio-ecological
555 indicators capture local dynamics, the main challenge is to develop integration processes that
556 connect local applications with national goals, rather than seeking a single universal measure.
557 Equally important is embedding stakeholder participation in indicator development, particularly

558 through the inclusion of local and Indigenous knowledge systems in participatory settings that
559 recognize their expertise. Addressing these gaps would transform socio-ecological indicators
560 from academic exercises into practical tools that effectively inform biodiversity policy and
561 decision-making.

562 Building on this initial research, a future review aiming to better understand the conditions
563 under which a socio-ecological indicator approach genuinely integrates decision-making should
564 consider expanding the evidence base beyond what is typically reported in academic articles. In
565 particular, it would be valuable to systematically capture (i) the stage of uptake of indicators
566 (from conceptual proposal to institutionalized use), (ii) the decision context and governance
567 arrangements in which indicators are embedded (mandates, accountability, capacity, incentives,
568 and rights/legitimacy), and (iii) the quality and intensity of participation across the full indicator
569 cycle (co-design, implementation, interpretation, and adaptive revision). With these elements in
570 place, the field would be better positioned to move from describing indicators to evaluating the
571 effectiveness of decision-making processes in socio-ecological research—using transparent
572 criteria (e.g., salience, credibility, legitimacy, equity) and, where feasible, designs that can trace
573 influence on decisions and downstream outcomes rather than relying solely on reported
574 intentions or inferred relevance.

575 **AUTHOR CONTRIBUTIONS**

576 Cristian Alexander Cruz-Rodríguez, María C. Londoño and Timothée Poisot conceived the
577 idea; Cristian Alexander Cruz-Rodríguez, J. Nicolas Urbina-Cardona, María Cecilia Londoño
578 Murcia and Timothée Poisot designed the methodology; Cristian Alexander Cruz-Rodríguez
579 collected and analyzed the data; Cristian Alexander Cruz-Rodríguez wrote a first draft of the

580 manuscript; All authors contributed critically to the drafts and gave final approval for
581 publication.

582 **ACKNOWLEDGEMENTS**

583 We thank the members of the Poisot Lab, who have helped us with their comments to include,
584 adjust, and improve this work. We also extend our thanks to everyone involved, including the
585 reviewers who have provided essential suggestions to enhance this paper. Cristian Alexander
586 Cruz-Rodríguez was founded through a donation from the Courtois Foundation. Timothée
587 Poisot was awarded 223764/Z/21/Z from the Wellcome Trust.

588 **CONFLICT OF INTEREST STATEMENT**

589 We have no conflicts of interest to disclose.

590 **DATA AVAILABILITY STATEMENT**

591 The data utilized to generate the figures, as well as the R script required to obtain them, are
592 available at the following GitHub repository.

593 https://github.com/crcruzr/Socioecologic_rev/tree/main

594 **REFERENCES**

595 Adams, M. S., Carpenter, J., Housty, J. A., Neasloss, D., Paquet, P. C., Service, C., Walkus,
596 J., & Darimont, C. T. (2014). Toward increased engagement between academic and
597 indigenous community partners in ecological research. *Ecology and Society*, 19(3),
598 art5. <https://doi.org/10.5751/ES-06569-190305>

599 Agardy, T. (2000). Effects of fisheries on marine ecosystems: A conservationist's perspective.

600 *Ices Journal of Marine Science*, 57(3), 761–765.

601 <https://doi.org/10.1006/jmsc.2000.0721>

602 Allen, C., Malekpour, S., & Mintrom, M. (2023). Cross-scale, cross-level and multi-actor

603 governance of transformations toward the Sustainable Development Goals: A review

604 of common challenges and solutions. *Sustainable Development*, 31(3), 1250–1267.

605 <https://doi.org/10.1002/sd.2495>

606 Arlide, W., Squires, D., Alfaro-Shigueto, J., Booth, H., Mangel, J., & Milner-Gulland, E.

607 (2020). A Mitigation Hierarchy Approach for Managing Sea Turtle Captures in Small-

608 Scale Fisheries. *Frontiers In Marine Science*, 7.

609 <https://doi.org/10.3389/fmars.2020.00049>

610 Basurto, X., Gutierrez, N. L., Franz, N., Mancha-Cisneros, M. del M., Gorelli, G., Aguión, A.,

611 Funge-Smith, S., Harper, S., Mills, D. J., Nico, G., Tilley, A., Vannuccini, S., Virdin,

612 J., Westlund, L., Allison, E. H., Anderson, C. M., Baio, A., Cinner, J., Fabinyi, M., ...

613 H. Thilsted, S. (2025). Illuminating the multidimensional contributions of small-scale

614 fisheries. *Nature*, 637(8047), 875–884. <https://doi.org/10.1038/s41586-024-08448-z>

615 Beher, J., Treml, E., & Wintle, B. (2024). 10 years of decision-making for biodiversity

616 conservation actions: A systematic literature review. *Conservation Science and*

617 *Practice*, 6(7), e13170. <https://doi.org/10.1111/csp2.13170>

618 Bell, S., & Morse, S. (2008). *Sustainability indicators: Measuring the immeasurable?* (2nd

619 ed). Earthscan.

620 Bennett, E. M., Morrison, P., Holzer, J. M., Winkler, K. J., Fraser, E. D. G., Green, S. J.,

621 Robinson, B. E., Sherren, K., Botzas-Coluni, J., & Palen, W. (2021). Facing the

622 challenges of using place-based social-ecological research to support ecosystem
623 service governance at multiple scales. *Ecosystems and People*, 17(1), 574–589.
624 <https://doi.org/10.1080/26395916.2021.1995046>

625 Bennett, N. J., & Satterfield, T. (2018). Environmental governance: A practical framework to
626 guide design, evaluation, and analysis. *Conservation Letters*, 11(e12600).
627 <https://doi.org/10.1111/conl.12600>

628 Bornmann, L. (2013). What is societal impact of research and how can it be assessed? A
629 literature survey. *Journal of the American Society for Information Science and*
630 *Technology*, 64(2), 217–233. <https://doi.org/10.1002/asi.22803>

631 Bowler, D. E., Boyd, R. J., Callaghan, C. T., Robinson, R. A., Isaac, N. J. B., & Pocock, M. J.
632 O. (2025). Treating gaps and biases in biodiversity data as a missing data problem.
633 *Biological Reviews*, 100(1), 50–67. <https://doi.org/10.1111/brv.13127>

634 Burgass, M. J., Larrosa, C., Tittensor, D. P., Arlidge, W. N. S., Caceres, H., Camaclang, A.,
635 Hampton, S., McLaverty, C., Nicholson, E., Muposhi, V. K., Pinto, C. M., Rowland, J.
636 A., Stevenson, S. L., Watermeyer, K. E., & Milner-Gulland, E. j. (2021a). Three Key
637 considerations for biodiversity conservation in multilateral agreements. *Conservation*
638 *Letters*, 14(2), e12764. <https://doi.org/10.1111/conl.12764>

639 Burgass, M. J., Larrosa, C., Tittensor, D. P., Arlidge, W. N. S., Caceres, H., Camaclang, A.,
640 Hampton, S., McLaverty, C., Nicholson, E., Muposhi, V. K., Pinto, C. M., Rowland, J.
641 A., Stevenson, S. L., Watermeyer, K. E., & Milner-Gulland, E. j. (2021b). Three Key
642 considerations for biodiversity conservation in multilateral agreements. *Conservation*
643 *Letters*, 14(2), e12764. <https://doi.org/10.1111/conl.12764>

644 Butchart, S. H. M., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J. P. W., Almond, R. E. A., Baillie, J. E. M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., Chanson, J., Chenary, A. M., Csirke, J., Davidson, N. C., Dentener, F., Foster, M., Galli, A., ... Watson, R. (2010). Global Biodiversity: Indicators of Recent Declines. *Science*, 328(5982), 1164–1168. <https://doi.org/10.1126/science.1187512>

645

646

647

648

649 Campbell, S., & Gurney, L. (2024). What are we protecting? Rethinking relational values and nature(s). *Ecosystems and People*, 20(1), 2315973. <https://doi.org/10.1080/26395916.2024.2315973>

650

651

652 Canedoli, C., Rota, N., Vogiatzakis, I. N., Zanchi, A., Drius, M., Nagendra, H., & Padoa-Schioppa, E. (2024). Review of indicators for mountain ecosystem services: Are the most frequently used also the best? *Ecological Indicators*, 166, 112310. <https://doi.org/10.1016/j.ecolind.2024.112310>

653

654

655

656 Chen, Q., Lin, Y., Zhang, Y., Wang, C., & Cai, A. (2022). Evaluation Framework for Determining the Developmental Suitability and Sustainability of Uninhabited Islands. *JOURNAL OF COASTAL RESEARCH*, 38(4), 816–827. <https://doi.org/10.2112/JCOASTRES-D-21-00121.1>

657

658

659

660 Chrisendo, D., Niva, V., Hoffmann, R., Masoumzadeh Sayyar, S., Rocha, J., Sandström, V., Solt, F., & Kummu, M. (2025). Rising income inequality across half of global population and socioecological implications. *Nature Sustainability*, 8(12), 1601–1613. <https://doi.org/10.1038/s41893-025-01689-4>

661

662

663

664 Christie, A. P., Abecasis, D., Adjeroud, M., Alonso, J. C., Amano, T., Anton, A., Baldigo, B. P., Barrientos, R., Bicknell, J. E., Buhl, D. A., Cebrian, J., Ceia, R. S., Cibils-Martina, L., Clarke, S., Claudet, J., Craig, M. D., Davoult, D., De Backer, A., Donovan, M. K.,

665

666

667 ... Sutherland, W. J. (2020). Quantifying and addressing the prevalence and bias of
668 study designs in the environmental and social sciences. *Nature Communications*,
669 11(1), 6377. <https://doi.org/10.1038/s41467-020-20142-y>

670 Conroy, M. J., Nichols, J. D., & Asanza, E. R. (1997). Contemporary quantitative methods to
671 understand and manage animal populations and communities. *Interciencia*, 22(5), 247.

672 Cruz, P. D. L., Acosta, L. E., Mendoza, D., Baltazar, E. B., Arce Ibarra, A. M., & Lugo, E. I.
673 J. E. (2020). Indicators of well-being among indigenous peoples of the Colombian
674 Amazon: Tensions between participation in public policy making and autonomy.
675 *Environmental and Sustainability Indicators*, 7, 100044.
676 <https://doi.org/10.1016/j.indic.2020.100044>

677 Cumming, G. S. (2023). *A mechanistic framework for social–ecological mismatches*. 10.

678 Czúcz, B., Kalóczkai, Á., Arany, I., Kelemen, K., Papp, J., Havadtői, K., Campbell, K.,
679 Kelemen, M., & Vári, Á. (2018). How to design a transdisciplinary regional ecosystem
680 service assessment: A case study from Romania, Eastern Europe. *One Ecosystem*, 3,
681 e26363. <https://doi.org/10.3897/oneeco.3.e26363>

682 Darvill, R., & Lindo, Z. (2016). The inclusion of stakeholders and cultural ecosystem services
683 in land management trade-off decisions using an ecosystem services approach.
684 *LANDSCAPE ECOLOGY*, 31(3), 533–545. <https://doi.org/10.1007/s10980-015-0260-y>

685 De Palma, A., Sanchez-Ortiz, K., Martin, P. A., Chadwick, A., Gilbert, G., Bates, A. E.,
686 Börger, L., Contu, S., Hill, S. L. L., & Purvis, A. (2018). Challenges With Inferring
687 How Land-Use Affects Terrestrial Biodiversity: Study Design, Time, Space and
688 Synthesis. In *Advances in Ecological Research* (Vol. 58, pp. 163–199). Elsevier.
689 <https://doi.org/10.1016/bs.aecr.2017.12.004>

690 De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R., & Pimm, S. L. (2015).
691 Estimating the normal background rate of species extinction. *Conservation Biology*:
692 *The Journal of the Society for Conservation Biology*, 29(2), 452–462.
693 <https://doi.org/10.1111/cobi.12380>

694 Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., Molnár, Z., Hill, R.,
695 Chan, K. M. A., Baste, I. A., Brauman, K. A., Polasky, S., Church, A., Lonsdale, M.,
696 Larigauderie, A., Leadley, P. W., Van Oudenhoven, A. P. E., Van Der Plaat, F.,
697 Schröter, M., Lavorel, S., ... Shirayama, Y. (2018). Assessing nature's contributions to
698 people. *Science*, 359(6373), 270–272. <https://doi.org/10.1126/science.aap8826>

699 Díaz, S., Zafra-Calvo, N., Purvis, A., Verburg, P. H., Obura, D., Leadley, P., Chaplin-Kramer,
700 R., De Meester, L., Dulloo, E., Martín-López, B., Shaw, M. R., Visconti, P.,
701 Broadgate, W., Bruford, M. W., Burgess, N. D., Cavender-Bares, J., DeClerck, F.,
702 Fernández-Palacios, J. M., Garibaldi, L. A., ... Zanne, A. E. (2020). Set ambitious
703 goals for biodiversity and sustainability. *Science*, 370(6515), 411–413.
704 <https://doi.org/10.1126/science.abe1530>

705 Dietz, J., Treydte, A., & Lippe, M. (2023). Exploring the future of Kafue National Park,
706 Zambia: Scenario-based land use and land cover modelling to understand drivers and
707 impacts of deforestation. *LAND USE POLICY*, 126.
708 <https://doi.org/10.1016/j.landusepol.2023.106535>

709 Diogo, V., & Koomen, E. (2016). Land Cover and Land Use Indicators: Review of available
710 data. *OECD Green Growth Papers*, 3. <https://doi.org/10.1787/5jlr2z86r5xw-en>

711 Dornelas, M., Antão, L. H., Bates, A. E., Brambilla, V., Chase, J. M., Chow, C. F. Y.,
712 Fontrodona-Eslava, A., Magurran, A. E., Martins, I. S., Moyes, F., Sagouis, A., Adu-

713 Acheampong, S., Acquah-Lamptey, D., Adam, D., Ajani, P. A., Albaina, A., Almaraz,
714 P., An, J., Anderson, R. S., ... Zvuloni, A. (2025). BioTIME 2.0: Expanding and
715 Improving a Database of Biodiversity Time Series. *Global Ecology and Biogeography*,
716 34(5), e70003. <https://doi.org/10.1111/geb.70003>

717 Ekardt, F., Günther, P., Hagemann, K., Garske, B., Heyl, K., & Weyland, R. (2023). Legally
718 binding and ambitious biodiversity protection under the CBD, the global biodiversity
719 framework, and human rights law. *Environmental Sciences Europe*, 35(1), 80.
720 <https://doi.org/10.1186/s12302-023-00786-5>

721 Fecher, B., & Hebing, M. (2021). How do researchers approach societal impact? *PLOS ONE*,
722 16(7), e0254006. <https://doi.org/10.1371/journal.pone.0254006>

723 Fontaine, C. M., Dendoncker, N., De Vreese, R., Jacquemin, I., Marek, A., Van Herzele, A.,
724 Devillet, G., Mortelmans, D., & François, L. (2014). Towards participatory integrated
725 valuation and modelling of ecosystem services under land-use change. *J. Land Use
726 Sci.*, 9(3), 278–303. <https://doi.org/10.1080/1747423X.2013.786150>

727 Garnier, S., Ross, N., Rudis, R., Camargo, A. P., Sciaiani, M., & Scherer, C. (2023). *viridis
728 (Lite): Colorblind-Friendly Color Maps for R*. <https://doi.org/10.5281/zenodo.4679423>

729 Gonzalez-Redin, J., Gordon, I. J., Polhill, J. G., Dawson, T. P., & Hill, R. (2024). Navigating
730 Sustainability: Revealing Hidden Forces in Social–Ecological Systems. *Sustainability*,
731 16(3), 1132. <https://doi.org/10.3390/su16031132>

732 Greenhalgh, S., Müller ,Karin, Thomas ,Steve, Campbell ,Marsha L., & and Harter, T. (2022).
733 Raising the voice of science in complex socio-political contexts: An assessment of
734 contested water decisions. *Journal of Environmental Policy & Planning*, 24(2), 242–
735 260. <https://doi.org/10.1080/1523908X.2021.2007762>

736 Hébert, K., Jousse, M., Serrano, J., Karger, D. N., Blanchet, F. G., & Pollock, L. J. (2025).

737 Five recommendations to fill the blank space in indicators at local and short-term

738 scales. *Biological Conservation*, 302, 111007.

739 <https://doi.org/10.1016/j.biocon.2025.111007>

740 Hijmans, R. J., Barbosa, M., Ghosh, A., & Mandel, A. (2023). *geodata: Download*

741 *Geographic Data*. <https://CRAN.R-project.org/package=geodata>

742 Holden, L., Lee, R. G., Orsini, L., Eastwood, N., Zhou, J., & Čavoški, A. (2024). Biodiversity

743 management challenges: A policy brief. *Environmental Law Review*, 26(2), 141–150.

744 <https://doi.org/10.1177/14614529241247361>

745 Jetz, W., McGeoch, M., Guralnick, R., Ferrier, S., Beck, J., Costello, M., Fernandez, M.,

746 Geller, G., Keil, P., Merow, C., Meyer, C., Muller-Karger, F., Pereira, H., Regan, E.,

747 Schmeller, D., & Turak, E. (2019). Essential biodiversity variables for mapping and

748 monitoring species populations. *NATURE ECOLOGY & EVOLUTION*, 3(4), 539–551.

749 <https://doi.org/10.1038/s41559-019-0826-1>

750 Knapp, A. K., Smith, M. D., Hobbie, S. E., Collins, S. L., Fahey, T. J., Hansen, G. J. A.,

751 Landis, D. A., La Pierre, K. J., Melillo, J. M., Seastedt, T. R., Shaver, G. R., &

752 Webster, J. R. (2012). Past, Present, and Future Roles of Long-Term Experiments in

753 the LTER Network. *BioScience*, 62(4), 377–389.

754 <https://doi.org/10.1525/bio.2012.62.4.9>

755 Koneswarakantha, B. (2023). *easyalluvial: Generate Alluvial Plots with a Single Line of*

756 *Code*. <https://CRAN.R-project.org/package=easyalluvial>

757 Kourantidou, M., Hoover, C., & Bailey, M. (2020). Conceptualizing indicators as boundary

758 objects in integrating Inuit knowledge and western science for marine resource

759 management. *ARCTIC SCIENCE*, 6(3), 279–306. <https://doi.org/10.1139/as-2019-0013>

760

761 Krebs, C. J., Boutin, S., & Boonstra, R. (2025). Population and community ecology: Past
762 progress and future directions. *Integrative Zoology*, 20(1), 2–14.
763 <https://doi.org/10.1111/1749-4877.12863>

764 Leadley, P., Gonzalez, A., Obura, D., Krug, C. B., Londoño-Murcia, M. C., Millette, K. L.,
765 Radulovici, A., Rankovic, A., Shannon, L. J., Archer, E., Armah, F. A., Bax, N.,
766 Chaudhari, K., Costello, M. J., Dávalos, L. M., Roque, F. D. O., DeClerck, F., Dee, L.
767 E., Essl, F., ... Xu, J. (2022). Achieving global biodiversity goals by 2050 requires
768 urgent and integrated actions. *One Earth*, 5(6), 597–603.
769 <https://doi.org/10.1016/j.oneear.2022.05.009>

770 Liu, F., Dai, E., & Yin, J. (2023). A Review of Social–Ecological System Research and
771 Geographical Applications. *Sustainability*, 15(8), 6930.
772 <https://doi.org/10.3390/su15086930>

773 Mace, G. M. (2014). Whose conservation? *Science*, 345(6204), 1558–1560.
774 <https://doi.org/10.1126/science.1254704>

775 Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. McP., Elston, D. A., Scott, E. M.,
776 Smith, R. I., Somerfield, P. J., & Watt, A. D. (2010). Long-term datasets in
777 biodiversity research and monitoring: Assessing change in ecological communities
778 through time. *Trends in Ecology & Evolution*, 25(10), 574–582.
779 <https://doi.org/10.1016/j.tree.2010.06.016>

780 Malmborg, K., Enfors-Kautsky, E., Queiroz, C., Norström, A., & Schultz, L. (2021).
781 Operationalizing ecosystem service bundles for strategic sustainability planning: A

782 participatory approach. *Ambio*, 50(2), 314–331. <https://doi.org/10.1007/s13280-020-01378-w>

784 Manners, R., & Varela-Ortega, C. (2017). Analysing latin American and caribbean forest
785 vulnerability from socio-economic factors. *J. Integr. Environ. Sci.*, 14(1), 109–130.
786 <https://doi.org/10.1080/1943815X.2017.1400981>

787 McAllister, T. G., Walker, L. A., Smiles, N. D., Jennings, L., Mogridge, B., Naepi, S.,
788 Kamai, B., & Milligan-McClellan, K. (2025). Decolonize scientific institutions, don't
789 just diversify them. *Nature*, 644, 331–334. <https://doi.org/10.1038/d41586-025-02516-8>

790 8

791 Montgomery, R. A., Kabra, A., Kepe, T., Garnett, S., & Merino, R. (2024). Re-centering
792 social justice in conservation science: Progressive policies, methods, and practices.
793 *Biological Conservation*, 294, 110600. <https://doi.org/10.1016/j.biocon.2024.110600>

794 Muradian, R., & Gómez-Bagethun, E. (2021). Beyond ecosystem services and nature's
795 contributions: Is it time to leave utilitarian environmentalism behind? *Ecological
796 Economics*, 185, 107038. <https://doi.org/10.1016/j.ecolecon.2021.107038>

797 Newig, J., Jager, N. W., Challies, E., & Kochskämper, E. (2023). Does stakeholder
798 participation improve environmental governance? Evidence from a meta-analysis of
799 305 case studies. *Global Environmental Change*, 82, 102705.
800 <https://doi.org/10.1016/j.gloenvcha.2023.102705>

801 Noss, R. F. (1990). Indicators for Monitoring Biodiversity: A Hierarchical Approach.
802 *Conservation Biology*, 4(4), 355–364. <https://doi.org/10.1111/j.1523-1739.1990.tb00309.x>

804 Ocampo-Ariza, C., Toledo-Hernández, M., Librán-Embid, F., Armenteras, D., Vansynghe, J.,
805 Raveloaritiana, E., Arimond, I., Angulo-Rubiano, A., Tscharntke, T., Ramírez-
806 Castañeda, V., Wurz, A., Marcacci, G., Anders, M., Urbina-Cardona, J. N., de Vos, A.,
807 Devy, S., Westphal, C., Toomey, A., Sheherazade, ... Maas, B. (2023). Global South
808 leadership towards inclusive tropical ecology and conservation. *Perspectives in*
809 *Ecology and Conservation*, 21(1), 17–24. <https://doi.org/10.1016/j.pecon.2023.01.002>
810 Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D.,
811 Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J.,
812 Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson,
813 E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated
814 guideline for reporting systematic reviews. *BMJ*, 372, n71.
815 <https://doi.org/10.1136/bmj.n71>
816 Pascual, U., Adams, W. M., Díaz, S., Lele, S., Mace, G. M., & Turnhout, E. (2021).
817 Biodiversity and the challenge of pluralism. *Nature Sustainability*, 4(7), 567–572.
818 <https://doi.org/10.1038/s41893-021-00694-7>
819 Pedersen, T. L. (2024). *patchwork: The Composer of Plots*. [https://CRAN.R-
820 project.org/package=patchwork](https://CRAN.R-project.org/package=patchwork)
821 Pedersen, T. L., & Crameri, F. (2025). *scico: Colour Palettes Based on the Scientific Colour-
822 Maps*. <https://github.com/thomasp85/scico>
823 Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J.,
824 Bruford, M. W., Brummitt, N., Butchart, S. H. M., Cardoso, A. C., Coops, N. C.,
825 Dulloo, E., Faith, D. P., Freyhof, J., Gregory, R. D., Heip, C., Höft, R., Hurt, G., Jetz,

826 W., ... Wegmann, M. (2013). Essential Biodiversity Variables. *Science*, 339(6117),
827 277–278. <https://doi.org/10.1126/science.1229931>

828 Pereira, H. M., Freyhof, J., Ferrier, S., & Jetz, W. (2015). *Global Biodiversity Change*
829 *Indicators* (Nos. 1–18; pp. 1–18). GEO Biodiversity Observation Network.

830 Reyers, B., & Bennett, E. M. (2025). Whose conservation, revisited: How a focus on people–
831 nature relationships spotlights new directions for conservation science. *Philosophical*
832 *Transactions of the Royal Society B: Biological Sciences*, 380(1917).
833 <https://doi.org/10.1098/rstb.2023.0320>

834 Richter, I., Roberts, B. R., Sailley, S. F., Sullivan, E., Cheung, V. V., Eales, J., Fortnam, M.,
835 Jontila, J. B., Maharja, C., Nguyen, T. Ha., Pahl, S., Praptiwi, R. A., Sugardjito, J.,
836 Sumeldan, J. D. C., Syazwan, W. M., Then, A. Y., & Austen, M. C. (2022). Building
837 bridges between natural and social science disciplines: A standardized methodology to
838 combine data on ecosystem quality trends. *Philosophical Transactions of the Royal*
839 *Society B: Biological Sciences*, 377(1854), 20210487.
840 <https://doi.org/10.1098/rstb.2021.0487>

841 Sajeva, M., Maidell, M., & Kotta, J. (2020). A Participatory Geospatial Toolkit for Science
842 Integration and Knowledge Transfer Informing SDGs Based Governance and Decision
843 Making. *SUSTAINABILITY*, 12(19). <https://doi.org/10.3390/su12198088>

844 Santos, B. de S. (2016). Epistemologies of the South and the future. *From Eur. South*, 1, 13.

845 Schneider, D. C. (2001). The Rise of the Concept of Scale in Ecology. *BioScience*, 51(7), 545.
846 [https://doi.org/10.1641/0006-3568\(2001\)051%255B0545:TROT%255D2.0.CO;2](https://doi.org/10.1641/0006-3568(2001)051%255B0545:TROT%255D2.0.CO;2)

847 Scholes, R., Reyers, B., Biggs, R., Spierenburg, M., & Duriappah, A. (2013). Multi-scale and
848 cross-scale assessments of social–ecological systems and their ecosystem services.

849 *Current Opinion in Environmental Sustainability*, 5(1), 16–25.

850 <https://doi.org/10.1016/j.cosust.2013.01.004>

851 Schwerdtner Máñez, K., Ring, I., Hildebrandt, R., & Brämick, U. (2025). Of ponds and

852 people: Governance to balance biodiversity conservation and carp pond farming in

853 Central Europe. *Ambio*, 54(11), 1809–1820. <https://doi.org/10.1007/s13280-025-02192-y>

854 Sean, H., da Silva, J., Hughes, A., Hunter, M., Kalamujić, B., Laikre, L., MasMastretta-

855 Yanestr, A., Millette, K., Paz-Vinas, I., Bustos, L., Shaw, R., & Vernesi, C. (2024).
856 Too simple, too complex, or just right? Advantages, challenges, and guidance for
857 indicators of genetic diversity. *BioScience*, 74, 269–280.
858 <https://doi.org/10.1093/biosci/biae006>

859 Shang, L., & Chandra, Y. (2023). An Overview of Stated Preference Methods: What and

860 Why. In L. Shang & Y. Chandra (Eds.), *Discrete Choice Experiments Using R: A*
861 *How-To Guide for Social and Managerial Sciences* (pp. 1–7). Springer Nature.
862 https://doi.org/10.1007/978-981-99-4562-7_1

863 Sjoberg, D. (2025). *ggsankey: Sankey, Alluvial and Sankey Bump Plots*.
864 <https://github.com/davidsjoberg/ggsankey>

865 Stephanson, S., & Mascia, M. (2014). Putting People on the Map through an Approach That

866 Integrates Social Data in Conservation Planning. *CONSERVATION BIOLOGY*, 28(5),
867 1236–1248. <https://doi.org/10.1111/cobi.12357>

868 Stokstad, E. (2020). Global efforts to protect biodiversity fall short. *Science*, 369(6510),
869 1418–1418. <https://doi.org/10.1126/science.369.6510.1418>

870

871 Teixeira, H., Berg, T., Uusitalo, L., Fürhaupter, K., Heiskanen, A.-S., Mazik, K., Lynam, C.
872 P., Neville, S., Rodriguez, J. G., Papadopoulou, N., Moncheva, S., Churilova, T.,
873 Kryvenko, O., Krause-Jensen, D., Zaiko, A., Veríssimo, H., Pantazi, M., Carvalho, S.,
874 Patrício, J., ... Borja, Å. (2016). A Catalogue of Marine Biodiversity Indicators.
875 *Frontiers in Marine Science*, 3. <https://doi.org/10.3389/fmars.2016.00207>

876 Tengö, M., Brondizio, E. S., Elmquist, T., Malmer, P., & Spierenburg, M. (2014). Connecting
877 Diverse Knowledge Systems for Enhanced Ecosystem Governance: The Multiple
878 Evidence Base Approach. *Ambio*, 43(5), 579–591. <https://doi.org/10.1007/s13280-014-0501-3>

880 Tennekes, M. (2018). tmap: Thematic Maps in R. *Journal of Statistical Software*, 84(6), 1–39.
881 <https://doi.org/10.18637/jss.v084.i06>

882 Tobias, J. A., Bullock, J. M., Dicks, L. V., Forester, B. R., & Razgour, O. (2025). Biodiversity
883 conservation requires integration of species-centric and process-based strategies.
884 *Proceedings of the National Academy of Sciences*, 122(31), e2410936122.
885 <https://doi.org/10.1073/pnas.2410936122>

886 Urbina-Cardona, N., Cardona, V. O., & Cuellar, S. (2023). Uncovering thematic biases in
887 ecosystem services mapping: Knowledge shortfalls and challenges for use in
888 conservation. *Biological Conservation*, 283, 110086.
889 <https://doi.org/10.1016/j.biocon.2023.110086>

890 Vihervaara, P., Auvinen, A.-P., Mononen, L., Törmä, M., Ahlroth, P., Anttila, S., Böttcher,
891 K., Forsius, M., Heino, J., Heliölä, J., Koskelainen, M., Kuussaari, M., Meissner, K.,
892 Ojala, O., Tuominen, S., Viitasalo, M., & Virkkala, R. (2017). How Essential
893 Biodiversity Variables and remote sensing can help national biodiversity monitoring.

894 *Global Ecology and Conservation*, 10, 43–59.

895 <https://doi.org/10.1016/j.gecco.2017.01.007>

896 Wickham, H. (n.d.). *tidyverse: Easily Install and Load the “Tidyverse.”*

897 <https://doi.org/10.32614/CRAN.package.tidyverse>

898 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New

899 York. <https://ggplot2.tidyverse.org>

900 Winkler, K. J., Garcia Rodrigues, J., Albrecht, E., & Crockett, E. T. H. (2021). Governance of

901 ecosystem services: A review of empirical literature. *Ecosystems and People*, 17(1),

902 306–319. <https://doi.org/10.1080/26395916.2021.1938235>

903 WWF *Living Planet Report 2024 A system in peril* (with World Wide Fund for Nature).

904 (2024). WWF Deutschland.

905 Xu, X., Yang, G., & Tan, Y. (2019). Identifying ecological red lines in China’s Yangtze River

906 Economic Belt: A regional approach. *ECOLOGICAL INDICATORS*, 96, 635–646.

907 <https://doi.org/10.1016/j.ecolind.2018.09.052>

908 Young, O. R. (2002). *The Institutional Dimensions of Environmental Change: Fit, Interplay,*

909 *and Scale*. The MIT Press. <https://doi.org/10.7551/mitpress/3807.001.0001>

910