

1 **Wild boar population control needs more than recreational hunting**

2 Christian Gortázar¹, David Relimpio^{1*}, Nicolás Urbani³, Jorge López-Olvera²

3 1.- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM,
4 Ronda de Toledo s/n, 13005 Ciudad Real, Spain

5 2.- Departament de Medicina i Cirurgia Animals. Universitat Autònoma de Barcelona UAB,
6 Campus Universitat Autònoma s/n, 08193 Barcelona, Spain

7 3.- Federación Aragonesa de caza FARCAZA, Plaza del Canal Imperial de Aragón 2, 50007
8 Zaragoza, Spain

9 * Correspondence: david.relimpio@uclm.es

10

11 **Abstract**

12 This perspective addresses the challenges of wild boar (*Sus scrofa*) population
13 control in two different scenarios: reactive management to control disease
14 epidemics and proactive management of wild boar populations at larger geographic
15 scales. Intense but silent wild boar culling can significantly contribute to local
16 outbreak control. Larger wild boar free buffer zones might work in front-like disease
17 expansion settings or to protect pig farming hotspots. However, long-term proactive
18 management based only on hunting, predation and diseases cannot compensate
19 the population growth favoured by increasing forest surface and irrigated crops and
20 disappearing competition by livestock. Addressing these drivers would imply
21 profound agricultural and environmental policy changes which often are beyond the
22 reach of wildlife managers and animal health authorities.

23 **Background**

24 The Eurasian wild boar (*Sus scrofa*) is an opportunistic species with high
25 reproductive potential, currently increasing and spreading throughout Eurasia and
26 Northern Africa. In its native range, the wild boar plays social and ecological roles
27 as ecosystem engineer, prey for large carnivores, and game species. Growing wild
28 boar populations can impact conservation, including adverse effects on ground-
29 dwelling vertebrates; affect human well-being through crop-damage and negative
30 interactions with livestock farming, including infection transmission; and colonize
31 urban areas, creating conflicts regarding road traffic and urban safety and
32 enhancing zoonotic risk. Thus, high wild boar population densities often meet the
33 requirements to be defined as overabundant (Gortázar & Fernández-de-Simón
34 2022).

35 These concerns generate the need to control wild boar populations. This is mostly
36 addressed by increasing wild boar extraction by non-professional hunters through
37 recreational hunting. However, while hunting may dampen wild boar population
38 growth, it is generally not enough to curb the population trend of a species capable
39 to increase even when 50% of the population is eliminated annually (Toïgo et al.
40 2008). This perspective addresses the challenges and limitations of wild boar

41 population control in two different scenarios: (1) reactive management required to
42 control disease epidemics, differentiating between (1A) complete depopulation in a
43 core outbreak area where disease will already cause mortality and (1B) generating
44 wild boar-free buffer zones to contain epidemics; and (2) proactive management of
45 wild boar populations at larger geographic scales in the absence of epidemics.

46 **1. Reactive wild boar control in disease outbreaks**

47 While disease spread in wild boar populations has never been halted in front-like
48 epidemic waves, management of focal outbreaks including containment, reducing
49 environmental transmission, and depopulation might be successful as
50 demonstrated in several point introductions of ASF (EFSA et al. 2022 and references
51 therein). Wild boar culling in or close to the infected core zone can be challenging,
52 especially when this zone includes urban habitats, and alternative methods
53 suitable for such environments are preferred (Escobar-González et al. 2024).

54 1A. Depopulation in core areas after disease-induced mortality

55 When trying to contain a lethal disease after a focal outbreak, recreative hunting
56 actions in the core area might facilitate wild boar movements or biosecurity
57 breaches and consequent disease spread (Jo and Gortázar 2021). Instead,
58 professional culling should be carried out after disease-induced mortality (EFSA et
59 al. 2022). The intensity of the complementary culling effort depends on the disease-
60 induced mortality, the remaining wild boar population density, and the area to be
61 depopulated.

62 Silent methods, such as live trapping followed by culling, snipers with thermal
63 imaging and silencers, or even trained bow-hunters should be preferred to avoid
64 wild boar disturbance and the probability of individuals exiting the core area as
65 much as possible, either if it is completely fenced or not. The successful
66 experiences in previous ASF outbreaks demonstrated that intense, local, silent wild
67 boar culling can significantly contribute to outbreak control.

68 1B. Generating wild boar free zones to contain epidemics

69 The mixed disease plus culling depopulation of the core area described in 1A must
70 be completed with wild boar depopulation in areas at risk surrounding the infected
71 zones (the so-called buffer or white zones). This has been regularly applied around
72 point introductions in Europe and modelling suggests that such zones might also
73 work in front-like disease expansion settings (EFSA et al. 2022). Depending on
74 habitat characteristics, 8-20 km-wide peripheral/surrounding depopulation zones
75 should be effective to prevent infected individuals exiting a risk zone (Wielgus et al.
76 2025). Wild boar-free zones might also be desirable to protect pig farming hotspots,
77 especially in regions with prevailing open-air farming systems.

78 However, culling all or almost all wild boar in a large area represents a formidable
79 challenge, accounting also for the fact that in these buffer zones no significant
80 disease-induced mortality is supposed to occur. For instance, a 10 km-wide white
81 zone surrounding a 20 km radius risk zone would affect 1570 km². Since wild boar
82 density in most of continental Europe ranges between 3 and 10 individuals/km², this
83 implies culling between 5250 and 15700 wild boars in a relatively short time. Should
84 the culling effort be prolonged over time because of logistical or practical
85 constraints, an even higher number of wild boars should be eliminated given the
86 capacity of wild boar populations to respond to intense harvest through
87 reproduction and immigration (Toïgo et al. 2008). Furthermore, the depopulated
88 areas need to be maintained, possibly by combining further culling with fencing.
89 Sustaining such an effort would possibly imply engaging recreational hunters as a
90 necessary but probably not sufficient requirement.

91 **2. Proactive management of wild boar populations at large geographic scales**

92 The two scenarios described above represent smaller or larger local depopulation
93 efforts reactive to epidemics. However, the issues and risks generated by
94 overabundant wild boar populations exist also in absence of epidemics and require
95 long-term action at a large, eventually country-wide scale. At such a large scale, wild
96 boar population size is not only driven by mortality, but also by habitat quality
97 including forest surface, food resources, competitors, and anthropisation
98 (González-Crespo et al. 2018). Like in any wild mammal, wild boar population size
99 is essentially driven by the balance between mortality (top-down regulation) and

100 recruitment (bottom-up regulation). Mortality is caused by (1) hunting; (2) predation;
101 and (3) diseases, while recruitment (defined by reproduction and juvenile survival)
102 depends on (4) habitat quality, including forest surface and productivity; (5) access
103 to anthropogenic food resources, including irrigated crops; and (6) resource
104 competition from other species, including ruminant livestock.

105 Only subsistence hunting (Bragina et al. 2015) or highly lethal diseases such as ASF
106 (EFSA et al. 2022) can increase wild boar mortality to the extent of causing
107 significant and long-lasting population declines. By contrast, while recreative
108 hunting contributes to dampening wild boar population growth, it does not reach
109 the high (>60%) mortality rate needed to cause a population decline, and the same
110 holds for large predators (Toïgo et al. 2008; Gortázar & Simón 2022). Moreover, the
111 effect of mortality on wild boar population dynamics is not only quantitative but
112 qualitative, i.e., it depends not only on the proportion eliminated but also on the sex
113 and age-class composition of the hunting bag (González-Crespo et al. 2018).

114 Regarding recruitment, the Spanish situation is an illustrative example. According to
115 the Ministry of Agriculture, between 1990 and 2022 the wooded area has grown by
116 34% and irrigated croplands by 24%, while sheep numbers declined by 43% (from
117 24 to 14 million) during the same period. The increase in food resources and refuge
118 availability and the decrease of competitors explain that wild boar numbers keep
119 growing, from a hunting harvest of 32,000 in 1985 to 450,000 in 2022, a 14-fold
120 increase (Figure 1). Moreover, this increase in hunting harvest occurred despite a
121 massive decline in hunter numbers (Gaspar et al. 2025).

122

Wild boar population balance

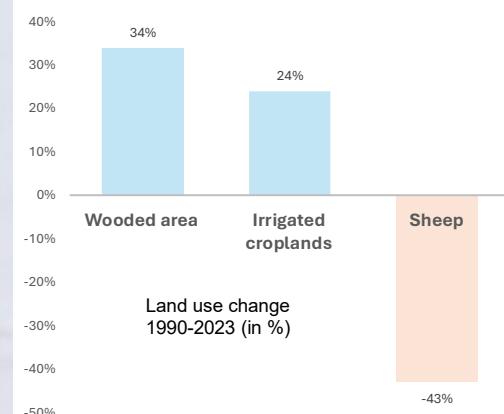
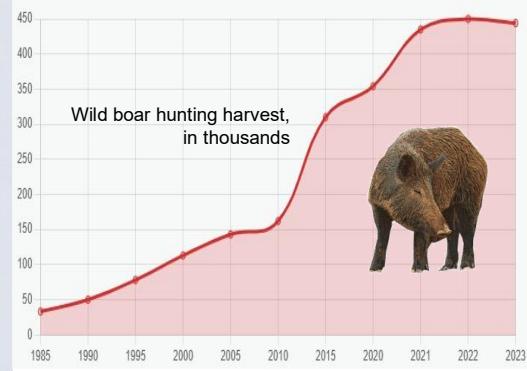
Mortality

Hunting

Predation

Diseases

Recruitment



Habitat quality

Access to anthropogenic food resources

Level of resource competition

123

124 **Figure 1.-** Wild boar population dynamics are driven top-down by mortality and bottom-up
 125 by recruitment (Left panel). In Spain (as in most European countries), the imbalance
 126 between mortality and recruitment derived in a sustained increase of the annual wild boar
 127 hunting harvest, an indicator of abundance (Top right panel). At the same time, wooded
 128 areas and irrigated crops increased while the sheep population decreased (Low right
 129 panel). The left and the top right panels were AI-assisted.

130 Reducing overabundant wild boar populations would have positive consequences
 131 for conservation, road safety, agriculture, and animal and human health. However,
 132 facing that challenge by addressing just one of the six drivers, namely hunting, might
 133 not be enough to sustainably manage overabundant wild boar at large spatial
 134 scales. Moreover, boosting the effect of recreational hunting on wild boar dynamics
 135 faces regulatory, practical, and social challenges. In Spain, for instance, the
 136 potential of recreational hunting for wild boar population control is not fully
 137 exploited. Although there is variability between regions, the contribution of
 138 recreational wild boar hunting to population control is hampered by regulations on
 139 hunting seasons and on the number of hunters and hunting dogs participating in
 140 driven hunts, but locally also by self-imposed seasonal restrictions and hunting

141 quotas that further limit its efficiency. There are also restrictions on hunting in
142 protected natural areas, which may act as wild boar reserves. The weapons
143 regulations and the natural heritage law limit the use of technologies that improve
144 hunting efficiency such as sound suppressors, radio headphones or artificial light
145 sources.

146 Additionally, the disposal of the hunted wild boars for commerce or self-
147 consumption requires hygienically adequate slaughter areas, storage chambers,
148 and game collection centres. Despite initiatives seeking to enhance the social value
149 of venison, public administrations underestimate its potential and are delayed in
150 providing the sector with innovative solutions. Social, cultural, and anthropologic
151 factors also condition the performance of recreative hunting to control wild boar
152 populations. Such factors range from hunter habituation to locally traditional
153 hunting practices, reluctance to innovate and practice different hunting methods,
154 and moral values to preserve game resources, to animal rights activism opposing
155 hunting and complicating social and political support to wild boar population
156 control. To overcome such issues it is essential to raise awareness among the
157 hunting community of the need for wild boar population control, while promoting
158 social support for hunting through specific communication policies.

159 Even if the efficiency and efficacy of hunting can be improved by targeting the most
160 population-sensitive sex and age-classes and combining and refining hunting
161 methods (González-Crespo et al. 2018, Escobar-González et al. 2024), reaching and
162 maintaining a high mortality through recreational hunting is hardly feasible and
163 would require an intense effort, difficult to maintain over time (Keuling et al. 2016).
164 This should also include population monitoring to evaluate its effectiveness. Yet,
165 addressing all six drivers of wild boar population dynamics is a mostly unexplored
166 management option implying profound agricultural and environmental policy
167 changes which often are beyond the reach of wildlife managers and animal health
168 authorities. Integrated targeting of the factors involved both in wild boar mortality
169 and recruitment is probably the only approach with a reasonable success
170 probability. The current management, almost exclusively focused on mortality, is
171 not capable to compensate the environmental and social factors favouring wild

172 boar population growth. This would however demand a true science-based wildlife
173 policy (Vicente et al. 2019).

174

175 **Declarations**

176 Conflict of interest

177 CG is the Editor-in-Chief, JLO is an Associate Editor, and DR is a Guest Editor of the
178 thematic collection “Management of Wild Boar and Other Suids” of the journal
179 EJWR.

180 Authors' contributions

181 CG and JLO prepared the manuscript, and NU and DR contributed to its review and
182 editing.

183 Funding

184 This work was supported by the EU Horizon Europe grant ASFaVIP (reference
185 number 101136676), the Bio-Graz project (PID2022-141906OB-C21), funded by
186 MCIN/AEI/10.13039/501100011033 and FEDER, EU, and by the EcoEpi project
187 (SBPLY/23/180225/000008), funded by the EU through the ERDF and by the JCCM
188 through INNOCAM.

189 Use of AI

190 Figure 1 was created using the Grok (X) assistant.

191 **References**

192 1. Baños, J. V., Boklund, A., Gogin, A., Gortázar, C., Guberti, V., Helyes, G., ... &
193 Ståhl, K. 2022. Scientific report on the epidemiological analyses of African swine
194 fever in the European Union. EFSA Journal, 20(5), 7290.
195 <https://doi.org/10.2903/j.efsa.2022.7290>

196 2. Bragina, E. V., Ives, A. R., Pidgeon, A. M., Kuemmerle, T., Baskin, L. M., Gubar,
197 Y. P., ... & Radeloff, V. C. 2015. Rapid declines of large mammal populations after the
198 collapse of the Soviet Union. Conservation Biology, 29(3), 844-853.
199 <https://doi.org/10.1111/cobi.12450>.

200 3. Escobar-González, M., López-Martín, J. M., Mentaberre, G., Valldeperes, M.,
201 Estruch, J., Tampach, S., ... & López-Olvera, J. R. 2024. Evaluating hunting and
202 capture methods for urban wild boar population management. Science of the Total
203 Environment, 940, 173463. <https://doi.org/10.1016/j.scitotenv.2024.173463>

204 4. Gaspar, M., Acevedo, P., Arrondo, E., García-Martínez, I., Herrero, J., Pascual-
205 Rico, R., ... & Anadón, J. D. 2025. The demographic collapse of hunting in the Iberian
206 Peninsula. People and Nature, 7(4), 765-776. <https://doi.org/10.1002/pan3.10770>.

207 5. González-Crespo, C., Serrano, E., Cahill, S., Castillo-Contreras, R.,
208 Cabañeros, L., López-Martín, J. M., ... & López-Olvera, J. R. 2018. Stochastic
209 assessment of management strategies for a Mediterranean peri-urban wild boar
210 population. PLoS One, 13(8), e0202289.
211 <https://doi.org/10.1371/journal.pone.0202289>.

212 6. Gortázar, C., & Fernandez-de-Simon, J. 2022. One tool in the box: the role of
213 hunters in mitigating the damages associated to abundant wildlife. European
214 Journal of Wildlife Research, 68(3), 28. <https://doi.org/10.1007%2Fs10344-022-01578-7>.

216 7. Jo, Y. S., & Gortazar, C. 2021. African swine fever in wild boar: assessing
217 interventions in South Korea. Transboundary and Emerging Diseases, 68(5), 2878-
218 2889. <https://doi.org/10.1111/tbed.14106>.

219 8. Keuling, O., Strauß, E., & Siebert, U. 2016. Regulating wild boar populations
220 is “somebody else's problem”! - Human dimension in wild boar management.

221 Science of the Total Environment, 554, 311-319.
222 <https://doi.org/10.1016/j.scitotenv.2016.02.159>.

223 9. Toïgo, C., Servanty, S., Gaillard, J. M., Brandt, S., & Baubet, E. 2008.
224 Disentangling natural from hunting mortality in an intensively hunted wild boar
225 population. The Journal of Wildlife Management, 72(7), 1532-1539.
226 <https://doi.org/10.2193/2007-378>.

227 10. Vicente, J., Apollonio, M., Blanco-Aguiar, J. A., Borowik, T., Brivio, F., Casaer,
228 J., ... & Acevedo, P. 2019. Science-based wildlife disease response. Science,
229 364(6444), 943-944. <https://doi.org/10.1126/science.aax4310>.

230 11. Wielgus, E., Alexandrov, T., Apollonio, M., Arnold, J., Bas, G., Baubet, E., ... &
231 Heurich, M. 2025. How big is enough? Movement-informed zoning for African swine
232 fever mitigation. bioRxiv, 2025-12. <https://doi.org/10.64898/2025.12.12.693251>.