
 

Data aggregation blurs inferred temporal trends in bird 
sampling 
  
Martin Bulla1,✉ and Peter Mikula2  
(bullab, Faculty of Environmental Science, Czech University of Life Sciences 
Prague) 
 
— 
1 bullam@fzp.czu.cz 
2 petomikula158@gmail.com 
 
We were supported by the Research Excellence in Environmental Sciences grant from the Faculty of 
Environmental Sciences CZU (REES 03 to MB) and declare no conflict of interest. 
— 

 
Ellis-Soto et al.1 reported that disparity in bird-sampling density between U.S. 
neighbourhoods rated as risky versus safe for real estate investment (a practice 
known as “redlining”) increased by 35.6% between 2000 and 2020. We show that this 
reported trend arises from data aggregation and linear model misspecification. Using 
the original neighbourhood-level yearly data and mixed-effects models that account 
for spatial and temporal non-independence, we show that temporal disparities are 
strongly non-linear and exceed 200% across the study period, while absolute 
differences remain small (~zero for most of the time and 25 observations per km² per 
year at maximum). These non-linearities temporally coincide with major shifts in 
citizen-science participation, including smartphone adoption and COVID-19-related 
increases in urban greenspace use. 
 
The code underlying the authors' key claim of a 35.6% temporal increase in disparity 
between worst- and best-rated U.S. neighbourhoods was missing. We further identified a 
major data-coding error that unintentionally multiplied the data, such that the reported 
temporal trends do not represent the underlying observations (e.g. authors’ Fig. 4, Table S4, 
and the reported 35.6% increase). Most other analyses could be reconstructed once missing 
data and minor coding issues were resolved (see Supporting Information2). 
 
Here, we correct the coding error and demonstrate that the authors’ temporal results arise 
from annual aggregates of sampling density that implicitly treat thousands of 
neighbourhoods as a single annual observation, precluding any modelling of spatial or 
temporal non-independence (our Fig. 1). We then show that accounting for such 
non-independence yields more complex temporal trends (Fig. 2). 

Consequences of annual aggregation 
To assess changes over time, the authors aggregated all observations within each year by  
1930’s Home Owners’ Loan Corporation (HOLC) grades (A–D, with A perceived as the 
safest and D as the least safe). The authors then calculated the relative difference between 
best- (A) and worst-rated (D) neighbourhoods and estimated the percentage change in such 
disparity between 2000 and 2020. However, this type of endpoint comparison implicitly 
assumes monotonic change and stable variance, neither of which holds for these data.  
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Visualising the A–D disparity in yearly aggregated sampling density reveals a strongly 
non-linear dynamic (our Fig. 1), with stable or decreasing disparity in the early 2000s, 
followed by a rapid increase around 2010 and subsequent periods of stagnation or decline. 
The relevance of comparing disparity only between the years 2000 and 2020 is therefore 
questionable. Notably, the disparity in the proportion of sampled neighbourhoods has 
decreased since ~2008, and the raw sampling densities of A and D polygons were nearly 
indistinguishable until ~2010 (our Fig. 1). 

Furthermore, disparity trajectories depend on the aggregation method (our Fig. 1; see 
Supporting Information for details2), and fitting linear models to such aggregates is likely to 
be misleading. Aggregating data by year and HOLC grade fails to account for polygon-level 
heterogeneity (our Extended Data Fig. 1-2) and ignores the non-independence of data points 
in space and time, thereby biasing the results. We thus analysed the raw yearly 
polygon-level data (i.e. the number of observations per sampling polygon per year) using 
models that explicitly accounted for such dependence.  

Only the A–D contrast showed a statistically supported difference in slopes, and even this 
effect was weak (Extended Data Fig. 3). Slope estimates were nearly identical across 
grades (particularly for B–D) and became statistically unclear when analyses were restricted 
to the 2010–2020 period (Extended Data Fig. 3), indicating that apparent differences in 
slopes are partly driven by model misfit rather than sustained divergence. Although these 
models provide appropriate alternatives to the authors’ misspecified analyses, they still 
impose linear relationships. Our results instead suggest more complex temporal dynamics in 
sampling disparity (Figs. 1 and Extended Data Fig. 1), motivating the use of flexible smooth 
models (see our supporting information2). 

The smooth models revealed a constant relative disparity of ~100% in the first five years 
(2000–2005), which increased to ~250% by 2010 and then remained stable or declined. 
After 2018, disparity rose sharply, reaching ~350% by 2020 (Fig. 2).  

Overall, relative disparity increased by ~200% between 2000 and 2020, which contrasts with 
the 35.6% increase reported by the authors. However, these large relative disparities 
correspond to small absolute differences: near zero until ~2010, ~5 observations per km2 per 
year by ~2017, and at most ~25 observations by 2020 (Fig. 2). Thus, although relative 
disparities appear visually dramatic, absolute differences remained small for most of the 
study period. This inflation of relative disparities largely reflects relative scaling on very small 
baselines rather than large absolute differences in sampling intensity: when sampling density 
in D-rated neighbourhoods is extremely low (<0.1), even small absolute differences yield 
large percentages. Importantly, the disparities are neither linear nor monotonic (our Fig. 1 
and 2).  

The rapid increase in sampling and disparity around 2010 coincides with the introduction of 
smartphones3 and the expansion of major citizen-science platforms such as eBird and 
iNaturalist4,5. Subsequent levelling off may reflect broader smartphone accessibility6,7, 
whereas the sharp rise in 2020 aligns with COVID-19-related increases in local greenspace 
use and public participation in citizen science8,9. 

Conclusions 
Despite issues with the original model specification and data aggregation, our alternative 
analytical approach reproduced the reported HOLC-grade differences while revealing 
strongly non-linear temporal dynamics. Relative disparity between best- and worst-rated 
neighbourhoods increased substantially over time, reaching ~350% by 2020 (an overall 
change in disparity of ~200% between 2000 and 2020, compared with the originally reported 
35.6%). However, these large relative changes corresponded to small absolute differences, 
which remained negligible until ~2017 and reached at most ~25 observations per km² and 
year by 2020. 
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Supporting material, including the code and data generating the outputs is freely available 
at https://martinbulla.github.io/MA_NHB/2. 
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Figure 1 | Change in relative disparity in bird sampling density between HOLC grade A and D over time. Each point 
represents relative percentage difference (two left columns), absolute difference (two middle columns) in sampling density of A 
given D (with D being a baseline) based on overall sampling density (i.e. sum of all A or D observation divided by the total area 
of A or D; 1st row), mean sampling density per HOLC grade and year (2nd row), proportion of sampled polygons (3rd row), mean 
sampling density across sampled polygons (i.e. excluding non-sampled ones; 4th row) and geometric mean in sampling 
density (5th row). The right column shows the actual values for A and D HOLC grades. Dots represent yearly values (for all 
data: large dots; for data with top 0.5% observations trimmed: small dots). Lines represent local regression non-parametric 
smoothing and shaded areas 95% confidence intervals. Colour in the left column indicates all data (black) or data with top 
0.5% trimmed (red), in the right column the HOLC grade category (A in green, D in red). The top row represents the 
aggregation likely used by the authors to support their claim about 35.6% increase, the other rows the aggregation done by 
us. 
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Figure 2 | Non-linear temporal changes in bird-sampling density by HOLC grade and disparity between grades A and D. 
Top two rows, population-level (marginal) predictions from a negative binomial generalised additive model (bam) with log link 
and centered log(area(km²) offset, fitted to polygon-level counts for 2000–2020 (left) and 2010-2020 (right). The model 
included a smooth for year, grade-specific smooth deviations, and random effects for state, city, and polygon, and city-specific 
temporal slopes. Curves show predicted sampling density (observations per km²) for each HOLC grade on a log scale (1st row) 
and original scale (2nd row). Bottom two rows, predicted differences between grades A and D from the same model fitted to 
observations from 2000-2020 (left) and 2010-2020 (right), expressed as percent difference relative to D (3rd row) and as 
absolute difference in observations per km² (bottom row). Relative disparity varies non-linearly over time and exceeds 350% 
by 2020, whereas absolute differences remain small (< ~25 observations per km²), indicating that large proportional disparities 
do not translate into large absolute changes in sampling intensity. In all panels, shaded ribbons are 95% confidence intervals. 
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Extended Data Figure 1 | Change in HOLC grade sampling density per km² over time across cities. Lines represent 
locally estimated scatterplot smoothing or predictions from generalised additive models (generated by stat_smooth function 
from ggplo2 R-package). Line colour indicates the HOLC grade. Dots depict raw data. 
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Extended Data Figure 2 | City-level variation in sampling density and HOLC grade skew. Top row, number of cities 
classified as A-skewed, D-skewed, mixed, or unclassified based on arithmetic-mean (left) or geometric-mean (middle) 
sampling density ratios between HOLC A and D polygons (for details see Supporting information2). Comparison of city-level 
A/D ratios from geometric vs arithmetic means (right); points above the 1:1 line indicate cities where arithmetic means 
underestimate A-skew (typically due to strong D-grade hotspots raising the arithmetic mean for D), while points below the line 
indicate cities where arithmetic means overestimate A-skew (typically due to strong A-grade hotspots raising the arithmetic 
mean for A). Arithmetic means are highly sensitive to rare but extreme polygons (“hotspots”), and therefore reflect occasional 
survey campaigns more than the underlying spatial structure. Geometric means minimise outliers and capture the “typical” 
polygon in the “typical” year. The wide scatter around the 1:1 line shows that no single aggregation metric yields a stable 
classification, cities frequently flip between A-skewed, mixed, and D-skewed depending on whether hotspots are emphasised 
(arithmetic) or down-weighted (geometric). Bottom row, representative example cities: A-skewed city (left), where A-grade 
polygons are consistently sampled more densely than D-grade polygons, mixed city (middle) with no persistent ordering 
between A and D grades across years, and D-skewed city (right), where D-grade polygons receive higher sampling density. 
Panels show raw polygon-level sampling densities (points) with local regression non-parametric smoothing trends per HOLC 
grade (solid lines). Cities were selected using a data-driven procedure based on the geometric mean A/D ratio (see 
SSupporting information2). These examples illustrate that within-city patterns vary substantially and help contextualize the 
aggregate national-level disparity trends shown in Fig. 1. The plots for each city are in Extended Data Fig. 1. 
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Extended Data Figure 3 | Estimated differences in HOLC grade sampling density over time. Dots represent fixed-effect 
contrasts on the log scale, together with the implied percentage change in sampling density (observations per km² per year; 
relative to grade D), obtained by exponentiating those contrasts from negative binomial mixed models with log link and offset 
of log(area(km²). Intercept panels show differences between each HOLC grade at the mean year, slope panels differences per 
standard deviation increase in year. Horizontal lines are 95% Wald confidence intervals. The vertical dashed line indicates zero 
difference. Colour indicates random-effects structures (variables left of | are random slopes, right of | random intercepts, and 
/ indicates nesting). The top row contains estimates for a dataset spanning 2000-2020 (for the linear model n = 84 sum of 
observations per grade and year, for the mixed models n = 206,787 sum of observations per polygon and year); the bottom 
row contains estimates for a dataset from 2010-2020 (n = 44 and n = 108,317, respectively). 
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