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Abstract

Meta-analyses in ecology and evolution typically focus on population means via effect
sizes such as the log response ratio. Recently, there has been interest in quantifying
effects on variability using the log variability ratio and the log coefficient of variation
ratio. Until now, testing for the effects on group means and variabilities has
necessitated two separate models. We present a workflow for one integrated meta-
analysis of mean and variation effects, or IMAMV’. In a worked example, using data
from the diet-mixing literature we show how the focal parameters from IMAMV match
those from the equivalent two-model analysis. A common limitation to meta-analysis of
variation, is unreported variance values in the primary literature. IMAMV can increase
the power to detect effects on variation in meta-analytics datasets with missing
variance values through ‘borrowing of strength’. We show, for example, that in a dataset
with 20% missing variance values, IMAMV increased the precision of the meta-analytic
estimate on the variation effect by 10% compared to the conventional two-model
approach. IMAMV can be implemented in commonly used software and requires no

additional data beyond that used in the analysis of group means.
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Introduction

Meta-analysis is widely used in many fields including ecology and evolutionary biology
. For meta-analysis, the user first quantifies the results from a set of comparable
studies using a common effect-size metric. Analysing these effect sizes, one then
estimates the overall sign and magnitude, as well as replicability, of effects in the
literature 2. The most widely used effect size in ecology is the log ratio of sample means
(a.k.a., the log response ratio, InRR) *%. The second most popular is the standardised
mean difference **, which is also a mean-centric effect size. Hence, ecological meta-
analysts have most often studied how phenomena affect group means, such as the

difference between control and experimental treatment groups.

Over the past decade there has been increasing interest in looking beyond means to
understand effects on inter-individual variability ¢°. This interest has been supported by
the development of effect sizes for meta-analysing variation effects ''". Differences in
variability between groups may be quantified using effect sizes such as the log
variability ratio (InVR) and log coefficient of variation ratio ((nCVR) '®'". Recent
applications include assessing how inter-individual variation is affected by light
pollution, sexual selection, and immune threats '>'*. These methods originated in
ecology and evolution '°, but have now become widespread e.g., in psychiatric

medicine; '>'%78,

Quantifying InVR or InCVR requires no additional data to that used for InRR "°. Therefore,

any dataset that assesses mean effects via InRR can also test for effects on variability.
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In rare cases, studies have performed a two step-analysis, first analysing the mean, and
then the variation e.g., %" (Figure 1A). In other instances, the variation effects have
been reported in subsequent re-analyses of data originally gathered to assess mean
effects e.g., 2. However, compared to InRR, effect sizes for variation seem to be used
rarely 2%, implying that most variation effects go untested or at least unreported.
Possible reasons for the underutilisation of the methods might include lack of
awareness, the perceived effort of undertaking a second analysis, and/or under-

reporting of variance values in the primary literature.

Here, we present an approach for the simultaneous meta-analysis of mean and
variability effects using a single model; we refer to this approach as integrated meta-
analysis of mean and variation effects (IMAMV; Figure 1B). We demonstrate how IMAMV
offers the convenience of a single integrated model and also provides information on
the correlation of mean- and variation-effects. Importantly, we show that for datasets
with missing-variance values IMAMV boosts power to detect effects on the variation
through ‘borrowing of strength’ (Figure 1B). IMAMV can be implemented in freely
available and widely used R packages. For example, all models in the main text have
been implemented in metafor 24, though packages such as brms or MCMCglmm 24?7

may also be used for more complex analyses.

As a case study, we apply IMAMV to the effects of diet-mixing on mean and among-
animal variation in reproductive function. Diet-mixing studies compare the
performance of groups of animals held on single- vs mixed-food diets. These data are

well suited because they contain layers of non-independence typically seen in other
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eco-evolutionary meta-analyses. The dataset contains data on the sample mean and
sample variability for reproductive function in 282 groups of animals clustered into 69
experiments. A priori, we expect single-food diets to decrease means and increase

among-animal variability .

Accompanying this paper is a vignette that describes the implementation of IMAMV in R
(a pdf has been supplied for review “IMAMV_Vignette.pdf”), and all code and data are

available at https://github.com/AlistairMcNairSenior/IMAMV_Vignette.

Key Effect Sizes and Estimators

A relatively unbiased estimator of the log population mean based on the sample mean,

which we refer to as Inx, and its sampling variance (v,¢) are ?°:

Inx = log(x) + i (@) = log(x) + % (CTVZ), (1)

_ (s/0?% | (s/©)* _cvz  cvt
Vinx = 2n2  n 2n2’

where X is the sample mean, s is the sample standard deviation (SD), n is the sample
size, and CV is the coefficient of variation (i.e., s/x). The InRR contrasts the sample

means of two groups, and along with its sampling variance, can be calculated as °:

InRR = InXxg — Inxc, (3)



116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

VInRR = Vinxg + Vlnzc» (4)

where Inxgand Inx; are the log sample means for the experimental and control groups
and vj,z,and vi,z.are the sampling variances (note, this formulation assumes the

samples are independent).

A relatively unbiased estimator of the log population SD, based on the sample SD and

its sampling variance (v),,) is "%

1
Ins = log(s) + 2D’

1 n

Vlns = 5 (n-1)?’

where all notation is as above. To quantify the difference in variation between two

samples, such as experimental and control groups, one may use the InVR °:
InVR = Insg — Insg, (7)
VInvR = VInsg t Vinsc- (8)

It may be desirable to meta-analyse studies where there is an association between the

mean and the variance of the data. For example, there is a very strong association
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between the log mean and log SD within the diet-mixing dataset (Figure 2A). Positive
associations persist after correcting for inter-study unitary differences by centring each
group on the within-study averages for log mean and log SD (Figure 2B). Hence, one may
wish to understand how treatments affect variation, after correcting for any effects on
the group mean. In such cases one may analyse the log CV seg 3'foradiscussionontheuse of CVas a

measure ofvariation Tha |og CV and its sampling variance can be estimated as '°:

InCV = Ins — Inx, (9)

VIncv = Vins + Vlnk- (10)

Up until now, the most common approach for the meta-analysis of variation has been to

compute an effect size for difference in the log CV of two groups as InCVR ":

InCVR = InCVg — InCV; = InVR — InRR, (11)

VIncvR = Vincvg T Vincve = VinRR T Vinvr- (12)

We now demonstrate how these effect sizes for the mean and the variance can be

analysed within a single statistical model, ‘IMAMV".
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Contrast-Based IMAMV

The standard random-effects meta-analysis for a conventional ‘contrast-based’

analysis of effects on the mean using the LnRR can be written as:

a;~N(0,02), (14)
my~N (0, vinge, ), (15)

where INnRR; is the sampled effect size in the jth study (i.e.,j=1 ... J effect sizes) as
estimated via egn. 3, 6 is the meta-analytic estimate of LnRR (i.e., yjnrRr), @ is the
deviation of the true effect in the jth study from 8, and mjis the deviation of InRR; from
the true effect due to sampling. g; is assumed to be normally distributed as per eqn. 14;
o, is the estimated SD in effects among studies, and its square is often referred to as
the heterogeneity, 72 (i.e., 72 = 02). m;is assumed to be normally distributed with mean

0 and SD VinRR,; (egn. 4). Where one wants to understand effects on variation, LnRR is

substituted for INnCVR (i.e., eqgns 11 and 12; Figure 1A).

We have applied eqn. 13 to the InRR and InCVR for the diet-mixing data using metafor
(see Vignette). We calculated effects such that negative values indicate lower measures
in the single-food group and vice versa. On average, single-food feeding leads to

reductions in mean reproductive output (Two-Model Analysis, Table 1). The effect on
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mean reproductive output is large, amounting to an 26% reduction on a single-food diet
(i.e., 1-e%%°=0.26). In contrast, single-food diets typically increase the CV by around
17% (i.e., €*'®=1.17). For both InRR and InCVR estimated heterogeneity is more than
double the estimated effect (Table 1), suggesting considerable variance in the

distribution of effects reported within the literature 2.

IMAMYV is an alternative to performing separate analyses of the InRR and InCVR. We
propose a bivariate meta-analysis that simultaneously estimates (1) the InRR and (2)
the paired differences between InVR and InRR. Importantly, this difference can be

considered an estimate of InCVR (see eqgn. 11; Figure 1B).

In the current worked example each pair of samples has both an InRR and LnVR, and an

IMAMYV version of eqn. 13 of these paired effect sizes can be written as:

Vij =a+aj+(ﬁ1nVR+bj)XSij+mij, (16)
[Zk ~N O] pabo-zao-b , (17)

k PabU Op Op
my~N (0,v,,,), (18)

where yjis the ith effect type (i.e., i =1 =InRR, i =2 = nVR) from the jth study. Here a is
the meta-analytic intercept which corresponds to the estimate for InRR (i.e., @ = YjyrR),

Binvr is the meta-analytic difference between InVR and InRR, and S; is a dummy

10



206 predictor coded as 0 if y; is a sample InRR and 1 for InVR. Because the term fj,yr is an
207  estimate of INVR - InRR, itis also an estimate of InCVR (egn. 11). Note that, the analysis
208  explicitly pairs instances of InRR and LnVR from the same samples, and the terms ax and
209 b then give deviations of average InRR and InCVR for study j from a and S;,yr- The jth
210 deviations are assumed bi-variate normally distributed as per egn. 17: o, and g, give
211  the among-study SDs in InRR and InCVR. The term p,;, gives the correlation between

212  effects on the mean and variation effects at the between-study level. Uy, is the

213 sampling variance for y;, estimated by eqn. 4 or 8 for instances of InRR or InVR,

214  respectively. We have applied egn. 16 to the diet mixing data and the estimated point-
215  estimates for effect magnitude are identical to those from the two-model analysis
216 (Table 1). In addition, the correlation between InRR and InCVR was estimated to be -
217  0.58, suggesting that as single food diets generate more negative effects on the mean,
218 they simultaneously generate more variation.

219

220 Non-Independence and Random Effects in IMAMV

221 The models in eqns 13 and 16 assume that all effect sizes are independent, such that
222  each study/experiment only contains one control and one experimental group. In

223  ecology and evolution this assumption often is invalid because most datasets contain
224  non-independent effect sizes 4%, For example, in the diet-mixing dataset most

225  experiments yield more than one effect size. The most widely used solution to this issue
226 of non-independence is to include an additional term, to form a multi-level meta-

227 analytic model sensu ®. In the case of IMAMV, we can formulate a multilevel extension

228 ofegn. 16 as:

11
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YVijk = @ + ag + € + (Binvr + b + firr) X Sijie + Myj, (19)
ak O pabo-ao-bl)
~N , (20)
[b" ( ] Ipaba Op ap
e 0,0
il (5o, )
Tk PerOefr  Of
mi]-k~N (O, vyijk), (22)

where yji is the ith effect type (i.e., i =1 =LnRR, i = 2 = InVR) from the jth pairwise
contrast of treatment groups in the kth study; i.e., the dataset contains k=1 ... K
studies, and the kth study containsj=1 ... J pairwise contrasts). ar and b, give
deviations of average InRR and InCVR for study k from a and S,yr, While ejx and fi give
the deviations for the jth pairwise contrast in experiment k. o, and g, give the among-
study SDs in InRR and InCVR respectively, while g, and a5 give the within-study (i.e.,
between group) SDs. The terms p,,and p.rgive the correlations between effects on the
mean and variation at the between- and within-study levels, respectively. The total
heterogeneity for InRR can be estimated as 73,z = 62 + 62, and that for INCVR as
Tfcvr = 0p + 0f . Table 1 shows that the application of this model to the diet mixing
dataset yields similar point estimates to the preceding analyses, though the Cls are

wider, having accounted for non-independence.

12
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Moderator Variables in IMAMV

Most ecological and evolutionary meta-analyses detect high levels of heterogeneity 335,
Moderators are meta-variables related to the individual effect sizes that may explain
this heterogeneity. For example, in the diet mixing dataset, we have coded effect sizes
by whether the focal species is terrestrial or marine dwelling. There are two common
approaches to testing moderator variables: (1) stratification, and (2) meta-regression.
IMAMV is compatible with both approaches. With stratification one simply subsets the
data by the levels of the moderator and analyses each using separate instances of

IMAMV.

Meta-regression involves fitting the moderator variable as a predictor in a model that
estimates differences in the overall effect size between levels of the moderator. The
IMAMV framework above already uses meta-regression, where the f;,yr termin eqn. 19,
estimates the InCVR. Incorporating a moderator variable involves including an
interaction between the moderator and the term estimating InCVR. In the case of the
IMAMV in egns 19 through 22, a meta-regression including a two-level moderator coded

as 0 and 1 can be formulated as:

Vijk = @+ ay + ejx + Bmod X Rijk +

(Binvr + bi + fir) X Sijk + Bumodamvr X Vijk + Miji, (23)

13



273 where Rjcis a dummy predictor coded 0 if y;« is an effect size associated with the

274 reference level of the moderator and 1 otherwise, fv.q is the meta-analytic estimate for
275 the difference in InRR between levels of the moderator, Vjxis a dummy predictor coded
276  as1ifyuis both an estimate of the InVR and level 1 of the moderator (and coded as 0
277  otherwise), fmodanvr IS @n estimate of the interaction term for the moderator and effect
278  size type, and all other terms are as in eqn. 19. The term Byoaainvr Can be interpreted as
279  difference in INCVR between levels of the moderator.

280

281 Here, we have applied the meta-regression described in egn. 23 to habitat differences
282 inthe diet mixing dataset. There are no statistically significant differences among

283  habitats for INCVR (Bmodamnvr = INCVRrerrestrian - INCVRMarine = 0.12, Cl =-0.10 to 0.35).

284 However, the reductive effect of single food diets on mean reproductive function is

285 estimated to be stronger in terrestrial than marine habitats (Syoq = INRRrerrestriau -

286  INRRmarine =-0.23, Cl =-0.47 to -0.002).

287

288 Borrowing of Strength and Missing Data

289  Alimitation to meta-analysis of variation effects is missing data. Unfortunately, it is
290 relatively common for some of the primary literature to not report the among-replicate
291 SDs (or related metrics), which are needed to calculate InVR or InCVR (e.g., Figure 1A).
292 IMAMV can boost power to detect effects on variability in datasets with missing SDs
293 through ‘borrowing of strength’. Borrowing of strength can occur in multivariate meta-
294  analyses of the effects of the treatment on a pair of correlated outcomes (e.g., effect of

295 anintervention on both blood-pressure and the risk of stroke) *. In such cases, the

14
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correlated outcomes provide indirect information about the effects of the treatment on
one another, potentially increasing the precision on the estimates in the analysis %%,
Borrowing of strength is expected to be particularly beneficial in cases where arandom
subset of studies does provide effect sizes one of the outcomes **’, making it a very

valuable phenomenon for meta-analysis of variation where there are missing SDs.

When faced with a meta-analytic dataset with missing among-replicate SDs, we
propose that the user may estimate the sampling variance of InRR for studies with
missing SDs using established methods e.g., ¢, before applying IMAMV to the full INRR
and partial InVR dataset. IMAMV is then expected to yield more precise estimate of the
effects on the variation than would be obtained from a univariate analysis of the partial

InVR or InCVR dataset.

To demonstrate this benefit of IMAMV, we have deleted the SD data from a random 20%
of the entries within the diet-mixing dataset. For the complete cases, where SD was not
missing, we estimated InVR and InCVR and the associated sampling variances as
above. We estimated the InRR and its sampling variance for every entry (i.e., including
those with missing SD) following Nakagawa, Noble, Lagisz, Spake, Viechtbauer, Senior
% This resulted in a dataset with 331 instances of InRR, but just 265 instances of INCVR
and InVR. We then compared the results of the two-model analysis of InRR and InCVR
with IMAMYV (following eqn. 16). Both analyses provide comparable estimates of effect
magnitude (Table 2). The estimates for INRR also have the same standard error (SE;
Table 2). However, the SE and Cls for the estimate of the InCVR are narrower in IMAMV

than in the two model analysis, despite the models containing the same effect sizes.

15
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These differences in SE translate into a 10% gain in precision and an increase in

2
1/SEfmamv

> .
1/SEz—model

efficiency for the IMAMV analysis (i.e., relative efficiency =1.1 =

Additional Sources of Non-Independence

Beyond hierarchical data structures, eco-evolutionary datasets often contain other
sources of non-independence. For example, by calculating multiple pair-wise effect
sizes using the same control-group data contrast-based analyses can induce
correlations among effect sizes; sometimes termed ‘stochastic dependency’ 3334, |n
the case of diet-mixing, consider a study that contains two single-food groups, A and B,
and one mixed food group, C. In this case we have pairwise effect sizes contrasting AC
and BC, duplicating the use of group C data. To a degree, contrast-based analyses can
be corrected for stochastic dependency by including the estimated covariance among-
correlated effect sizes *+°. Another solution to stochastic-dependency is to use an
‘arm-based’ model. Arm-based models circumvent the calculation of pairwise effect
sizes prior to fitting the model. Rather, one fits the sample statistics from individual
groups as outcomes (i.e., Inx and Ins rather than InRR and InVR) and uses a meta-
regression model to estimate the difference between treatment conditions. IMAMV is
compatible with both different corrections for stochastic dependency, and the vignette
gives a worked example of an arm-based IMAMV applied to the diet-mixing dataset (see

Supplementary Materials and Vignette).

Another common problem in eco-evolutionary meta-analyses is phylogenetic non-

independence **', where we might expect more closely related taxa to display more

16
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similar effect sizes. A solution, with which IMAMV is compatible, is to apply a
phylogenetic meta-analysis. The vignette associated with this paper contains code for a
phylogenetic IMAMV. The phylogenetic effects were accounted for by creating a
phylogenetic covariance matrix for all species within each analysis rotl package “?, and
including that matrix as a term in the model e.g., as in . We have implemented the
phylogenetic IMAMV using the package metafor, but note that there are limits to the
complexity of the IMAMV that can be fitted in this package. More complex models could

be implemented in brms or MCMCglmm * (see supplementary materials and Vignette).

Discussion

Here, we present a framework for the integrated meta-analysis of mean and variation
effects (IMAMV). This approach allows the user to simultaneously meta-analyse effects
on group means and variabilities, which previously necessitated two analyses. While
the bivariate models presented here appear complex, the key terms from IMAMV can be
interpreted equivalently to those coming from the univariate models of InRR and InCVR
currently in use. What is more, the models themselves are very closely related to two
analyses with which ecologists and evolutionary biologists may already be familiar. The
first is the linear mixed-effects model (LMM) %344; the most basic IMAMV in eqn. 16 has a
structural similarity to a LMM containing a random-regression at a single-level. The
second method with which IMAMV is similar is network meta-analysis (NMA). NMA is
increasingly common in medical research #°, but still emerging in ecology and evolution
c.f., 6. Through NMA one estimates the effects of different factors/treatments on an

outcome of interest, even if those factors/treatments are not directly compared in
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underlying literature; e.g., one may estimate the effects of B vs C, from studies
comparing A vs B and A vs C through their common control treatment A. The IMAMV
model in eqn. 16 is structurally comparable to NMA model %/, but rather than fitting
effect sizes from different treatments on the same outcomes, one fits mean and

variance effect sizes from the same samples.

We have shown that IMAMV can is compatible with many of the tools that eco-
evolutionary meta-analysts use to account for complex data structures (e.g.,
hierarchical and phylogenetic non-independence) **. Additionally, the usual frameworks
for reporting meta-analyses are transferable. For example, tools for visualisation of
contrasts-based effect sizes, such as forest plots and orchard plots #¢4°, can be applied
to InRR and InCVR. With regards to reporting heterogeneity statistics, the usual
heterogeneity statistics, such as Q and /*> are estimable. However, we urge users to also
think about direct derivatives of the estimated variation itself, such as the prediction
intervals e.g., in orchard plots; *°, the ‘coefficient of heterogeneity’ and the closely
related ‘M statistic’ *2. These metrics convey a sense of the expected distribution of

future effect sizes.

In addition to offering the convenience of a single analysis, IMAMV offers two explicit
benefits over the two-model approach. The first is that the user gets an estimate of the
correlation between effects on the mean and the variance. In some cases, this
correlation itself may be of biological relevance. For example, correlations between
effects on intra-genomic trait means and variances maybe indicative adaptation to a

fluctuating environment through bet-hedging *°. The second benefit of IMAMV (which

18
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flows indirectly from the estimated correlation) is borrowing of strength. Through
borrowing of strength IMAMV can supply more precise estimates of effects on
variability, thus yielding increased power. As we demonstrate these benefits manifest
where there are missing SDs in the dataset. The problem of missing SDs is pervasive in
meta-analysis. One survey found around 70% of meta-analytic datasets in ecology and
evolution contain missing SDs, with the rate of missingness in a given dataset affecting
up to 30% of effect sizes 3°'. Methods have been developed to deal with missing SD
data reviewed in °'. However, these methods are designed to estimate the sampling
variance for mean-focussed effect sizes (e.g., InRR and SMD) when SDs are missing and
are not considered appropriate when the SD is focus of the point estimate (e.g., InVR or
INCVR). As far as we can tell IMAMYV is the first method proposed to help boost the
power of variation-focussed analyses in the presence of missing SDs. Note that to gain
this benefit of IMAMV the user must collect data on sample means from all studies,
including those that do not report SD data. Put another way, counterintuitively missing
SDs should not be considered an exclusion criteria for meta-analysis of the variation via

IMAMV.

Biologists work hard to gather and curate their meta-analytic datasets. However, many
of these datasets have not been used to their full potential by testing for effects on
variability. This is particularly surprising in the eco-evolutionary space, where biological
variability underpins core theoretical concepts e.g., niche breadth, and natural
selection 2. We hope that IMAMV will allow eco-evolutionary users of meta-analysis to
conveniently test for the effects on both population means and within-population

variability.
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Tables

Table 1. Estimated parameters from different analyses of the InRR and InCVR including contrast-based integrated meta-analyses

of mean and variation effects (IMAMV). Cl =95% confidence interval, 7= heterogeneity.

Analysis (nRR (Cl) TinRR (nCVR (ClI) TincVR
Two-Model Analysis -0.30(-0.37 to0 -0.22) 0.68 0.16 (0.09t0 0.22) 0.53
Contrast-Based IMAMV -0.30(-0.37 to -0.22) 0.67 0.16 (0.09t0 0.22) 0.52
Multilevel Contrast-Based IMAMV -0.31 (-0.43 t0 -0.20) 0.69 0.17 (0.06 to 0.28) 0.54
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Table 2. Estimated parameters from two-model analyses and contrast-based integrated meta-analyses of mean and variation

effects (IMAMV) with 20% missing standard-deviation data. SE = standard error, Cl = 95% confidence interval.

Analysis InRR (Cl) SEunr InCVR (Cl) SEucvr
Two-Model Analysis -0.32 (-0.40 to -0.24) 0.040 0.18 (0.10 to 0.26) 0.040
Contrast-Based IMAMV -0.32 (-0.40 to -0.24) 0.040 0.18 (0.11 to 0.26) 0.038
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s69 Figures

A) Traditional Two-Model Analysis

Control Treatment Effect Sizes
n X SD n x SD InRR InVR InCVR (=InVR -InRR)
Studyl 5 5 3 5 8 4 05 03 -0.2
Study2 8 8 4 8 13 10 05 09 -0.4
Study3 15 7 NA 15 5 NA -03 NA NA

* Two separate models.

* Correlation between mean and Univariate fit of Univariate fit of
variation effects not estimated. mean effects. Variation effects.
e Study 3 excluded from analysis of
variation effects. HmRR Hincvr
B) IMAMV ,
N Control Treatment Effect Sizes
n x SD n x SD y Stat
T Y Study1 5 5 3 5 8 4 0.5 InRR
£5 /estudy2 8 8 4 8 13 10 05  InRR J
o B Study3 15 7 NA 15 5 NA -03 InRR
é % Stubyl 5 5 3 5 8 4 03 InVR
Study2 8 8 4 8 13 10 09 InVR
* One model.
¢ Correlation between mean and variation Pairwise
effects estimated. BTG
* Borrowing of strength from study 3 InRR u +B .
570 increases power to detect variation effects. InRR InVR —InRR (i.e,InCVR)

571 Figure 1. Hypothetical contrast of the current and proposed approach. A) the traditional method independently analyses effects
572 onthe mean and variation, overlooking any correlations among effect types. B) IMAMV uses bivariate meta-analysis to analyse

573 mean and variation effects at the same time, thereby estimating any correlations and increasing strength for datasets with

574  missing variance values.
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Supplement Information for the Integrated
Meta-Analysis of Mean and Variation
Effects in Ecology and Evolution



Arm-Based IMAMV

As discussed in the main text, contrast-based analyses is that they can induce an
additional layer of non-independence by calculating multiple pair-wise effect sizes
using the same control-group data; sometimes termed ‘stochastic dependency’ (1-3).
Arm-based models are free from this issue as one fits the sample statistics from
individual groups as outcomes (i.e., Inx and Ins rather than InRR and InVR) and uses a
meta-regression model to estimate the difference between treatment conditions. An
arm-based multi-level IMAMV can be written as:

Vijk = &+ ay + e + (Bins + bie + fix) X Sijre +

(Be + ¢k + gjic) X Tijie + (Bunsag + dic + hyre) X Ugge + Mg, (S1)
[ G 0 O-g pado-ao-d-
SI~N{ ] : : , (S2)
| d 0) |paa0a04 o2
€k 0 Utez peho-eo_h-
N ATHE : : , (S3)
—hf 01 |penceon - O-f%
mik"’N(O, vyik), (84)

where, yji is the ith sample statistic (i.e., i =1 =Inx, i = 2 = Ins) of the jth sample in the kth
experiment. Here, the @ and 3,5 are interpretable as meta-analytic estimates of the log
mean and log CV (i.e., Bins = Uins—1nz = Kincy; €dn. 9) under the control condition, and S
is a dummy predictor coded as 0 if yj« is a sample Inx and 1 if yj is Ins. Bg is a meta-
analytic estimate of difference in Inx in the experimental and control conditions and
can thus equivalent to InRR (i.e., Bg = linzz—Inz; = Minrr; €9N. 3), and Ty is a dummy
predictor coded as 0 if yj« is from a control condition and 1 for an experimental group.
Binsag is an interaction term giving the difference in B, under the experimental and
control conditions, and is therefore equivalent to INCVR (fpsag = InCVE — InCV; =
InCVR; egn. 11), with Ui as a third dummy predictor coded as 1 if y;x is an estimate of Ins
under the experimental condition, and 0 otherwise. ax through di give deviations of the
true values of each group from estimated parameters, and ej through hj give the within-
sample deviations. Finally, mj gives the deviation of the sample from the group-specific
effect, which has a SD estimated as v, (eqn. 2 if yji is Inx and eqgn. 6 for Ins). The key
variance components for meta-analytic interpretation are g, and o, which give the
among-experiment SD in InRR and InCVR, while the within-experiment SDs are g, and

.2 — 2 2 2 — 2 2
On; Tinrr = O¢ + 04 and Tj,cyr = 04 + 0%

We have applied the arm-based IMAMV shown in egn. S1 to the diet-mixing data using
metafor. The point estimates and statistical significance of the overall effects of diet
mixing on the log mean and log CV of traits are nearly identical using all methods (Table



S1). However, the arm-based estimates of heterogeneity are lower than those estimated
by the contrast-based models in all cases but one. The most likely explanation for this
difference is that the contrast-based model has treated a relatively large number of
dependent effect sizes as independent, thereby inflating the variation among effects.

One can also include moderators in an arm-based IMAMV. We have not written the
equation in full here, but the key terms of interest added to eqn. S1 would be: Byodags
which is an interaction interpretable as the difference in InRR between levels of the
moderator; and Syodainsags Which is a three-way interaction that is interpretable as the
difference in InCVR between levels of the moderator.

Dual Formula Implementation of Integrated Meta-
Analysis of Mean and Variation Effects (IMAMV)

In the main text we have implemented IMAMV models by simultaneously fitting
statistics related to the log group means and SDs as a single response and using a
moderator variable or fixed effect with appropriate error structure (e.g., a random-slope)
to induce a bivariate model. The advantage of this approach is that these models can
implemented in any software that can fit multi-level meta regression, such as the
popular R package metafor.

An alternative offered by some software is to implement a bivariate model using a ‘dual-
formula’ specification. One such example is the Bayesian R package brms (4), which
offers dual-formula model specification.

A dual formula specification for a simple random-effects contrast-based IMAMYV for the
InRR and InCVR is:
( lnRRi ) _ (elnRR + a; + pl) (85)

lnCVRi - GlnCVR + C; + q; !

(@ %) e
() (().Gr)). s

where InRR; and InCVR; are the effect sizes in the ith study as estimated by eqns 3 and
11 in the main text, 8;,rr and O;,cyr are the meta-analytic overall effects as estimated
by the model, a; and c; give the deviation of the population effect from 8,,gr and Oy,cvr
in the jith study p; and g, give the deviations of the sampled effects from the population
effects due to sampling in the ith study. Both a; and c; are assumed to be multi-variate
normally distributed as shown in eqn. S2, where 62 and 2 give the among-study
heterogeneity in InRR and InCVR, respectively, as estimated by the model, and g, gives
the covariance between effects at the level of the study. Also p; and g; are assumed to



be normally distributed as per eqn. S3, where the sampling variances are estimated via
eqns 4 and 12 in the main text.

An arm-based IMAMV may also be implemented in a dual formula context as:
InX;; \ [ &g+ a; + Bz + b)) X Tij +pyj (s8)
InCV;; Aincy + € + (Biney +di) X Tij + qi5 )

a; 0 O-g o Ogd
Pl~N L) , (S9)
d; 0/ \o4q .. 0F

ij v nx;;
(Zij’) ~N ((8) : (vli,cv;))’ (810)

where Inx;; and InCV;; are the log mean and log CV from the jth group (i.e., j= 1, 2, where
1 =control and 2 = treatment) in the jith study as estimated by eqns 1 and 9 in the main
text, a7 and a),cy are the meta-analytic overall estimates of Inx and InCV in the control
condition, and S,z and S, cv are the effects of the treatment on Inx and InCV. T;is a
dummy predictor, coded as 0 where InX;; and Ins;; is form a control group and 1
otherwise. a;and c; give the deviation of the population effect from ),z and a,cy in the
ith study, while b; and d; give the deviation of the population effect from B,z and Bicv in
the ith study. p; and g; give the deviations of the sampled statistics from the population
statistic due to sampling in the ith study for the jth group. a; through d; are assumed to
be multi-variate normally distributed as shown in egn. S5, where 62 through ag give the
among-study heterogeneities, with alf through ag respectively, being interpretable as
the estimated heterogeneity in the effect size. Also, p; and g; are assumed to be
normally distributed as per eqn. S6, where the sampling variances are estimated via
eqgns 2 and 10 in the main text.



Table S1

Example of full reporting of all terms from an arm-based integrated meta-analysis
of mean and variation effects (IMAMV). Results comes from the multi-level arm-
based IMAMYV in the diet-mixing dataset. For each term we report the interpretation
and equivalent term in eqn. 24 in the main text. For fixed effects we also include

95% confidence intervals (Cls).

Fixed Effects

Interpretation Eqgn. 24 Est. Cl
InXcontrol o 2.92 2.521t03.32
(Ins — InX) contro1 = INCVeontrol Lins -1.40 -0.32t0-0.19
InXgyp, — InXcontror = INRR e 0.34 -0.47t0-0.20
(Ins — InX)gy, — (Ins — InX) conerol = INCVR PinsAE 0.19 0.07 t0 0.30
Random Effects / Correlations

Interpretation Eqgn. 24 Est.

Among-study variance in « 0?2 2.72

Among-study variance in fs of 0.50

Among-study variance in [ o? 0.03

Among-study variance in Bnsac oF 0.04

Among-study correlation between o and fins Pab -0.13

Among-study correlation between aand S Pac 0.83

Among-study correlation between o and finsae Pad -0.57

Among-study correlation between f.s and [ Pbc -0.66

Among-study correlation between fns and fnsae Ppa -0.10

Among-study correlation between e and fnsae Pea -0.41

Within-study variance in o o? 0.14

Within-study variance in Bns of 0.08

Within-study variance in [ a; 0.42

Within-study variance in Bnsac op 0.09

Within-study correlation between aand fins Pef -0.39

Within-study correlation between aand [ Peg -0.26

Within-study correlation between a and fnsae Pen 0.38

Within-study correlation between s and [ Prg -0.31

Within-study correlation between fBns and fBnsae Prn -0.11

Within-study correlation between £ and fosae Pgn -0.73
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Overview

This vignette is written to accompany the paper “Methods for the Integrated Meta-analysis of Mean and
Variation Effects in Ecology and Evolution”.

Integrated meta-analysis of mean and variation effects (IMAMV) is a proposed analytical framework for
simultaneously meta-analysing effects of treatments/groupings on sample means and sample variation. The
method proposes to use a bivariate meta-analysis that analyses mean effects via the log ratio of sample
means (InRR), and variation via the log variance ratio (InVR) and log coefficient of variation ratio (InCVR). The
method exploits the fact that InVR - InRR = InCVR, and that this difference is estimable via meta-regression.

This vignette works through three different approaches to the meta-analysis of variation: (1) the standard two-
model approach, which uses separate meta-analyses of the INnRR and InCVR, (2) contrast-based IMAMYV, and
(8) arm-based IMAMV. Versions of each analysis that account for non-independence and test for moderator
variables are explored, as are phylogenetic models. Mathematical descriptions of the models are made
available in the accompanying paper.

As a working example, we study a meta-analytic dataset of experiments on diet-mixing. The models here are
implemented in metafor and brms , both of which are often used for meta-analysis in the eco-evo fields.
However, they can be implemented in any package that allows for meta-regression with random-effects, such
as MCMCglmm .

Dataset

Diet mixing experiments test for the effects of single- vs mixed-food diets on animal performance. We have
compiled a database of diet-mixing studies looking at reproductive data from 282 groups of animals in 69
experiments. The dataset was compiled by searching and updating the dataset analysed in “An Overlooked
Consequence of Dietary Mixing: A Varied Diet Reduces Interindividual Variance in Fitness. Am. Nat. 2015. 186,
649-659. DOI: 10.1086/683182”. The data contains several layers of non-independence, including that most
experiments contain more than two treatment groups that can be justifiably contrasted with one another (i.e.,
more than two effect sizes per experiment).
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For the sake of this vignette, effects sizes have already been calculated and the data processed in different
ways for the different variants of the analyses presented. Effect sizes were calculated using the formulas in the
main text of the accompanying paper. There are four different data formats: contrast- vs arm-based, and each
in long- vs wide-format. The processed dataframes have been stored in a list in the Rdata file
data_list.Rda . In any given analysis a user of IMAMV would only need to format their data in one of these
ways, depending on the analysis of choice.

Finally, the data_list object also contains a phylogenetic covariance matrix, used in the models toward the
end of this vignette. The full contents of the list is shown here.

load("data_list.Rda")
names (data_list)

## [1] "arm_wide" "arm_long" "contrast_wide
## [5] "phylo"

contrast_long"

Analysis 1: The Two-Model Approach

The conventional approach to meta-analysis of variation has most often used contrast-based effect sizes. The
effects on the mean being estimated via the InRR, then the effects on the variation using a separate model
applied to the INCVR (or in some instances the InVR).

For the diet-mixing data, we have pre-processed data in format amenable to these analyses. It can be
accessed in the data list via data_list$contrast_wide.

head(data_list$contrast_wide)

##  Article.ID Author Journal Year Consumer.Sp

## 1 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris

## 2 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris

## 3 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris

## 4 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris

## 5 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris

## 6 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris

##  Habitat Experiment.ID Data.ID 1nRR v_1nRR 1nVR v_1nVR
## 1 Marine cl datl 0.9387648 0.039645511 -0.7375989 0.1946240
## 2 Marine cl dat2 0.3849543 0.047678185 -0.3022809 0.1946240
## 3 Marine cl dat3 0.7386473 0.039141741 -1.1895841 0.1946240
## 4 Marine cl dat4 -0.3069166 0.003327347 -0.5465437 0.1583058
## 5 Marine cl dat5 -0.8607272 0.011360020 -0.1112256 0.1583058
## 6 Marine cl dat6 -0.5070341 0.002823576 -0.9985288 0.1583058
## 1nCVR  v_1nCVR

## 1 -1.6763638 0.2342695

## 2 -0.6872352 0.2423021

## 3 -1.9282314 0.2337657

## 4 -0.2396271 0.1616331

## 5 0.7495015 0.1696658

## 6 —-0.4914947 0.1611294

dim(data_list$contrast_wide)

## [1] 331 14
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The most relevant columns for now are:

» 1nRR gives the effect of a single-food diet relative to a mixed-food diet on the sample mean.

» v_1nRR gives the sampling variances for the InRR.

v_1nCVR gives the sampling variances for the INCVR.

e« Data.ID is a unit-level variable with 1:n effect sizes.

Other columns give meta-variables related to the article and species associated with each effect size.

A pair of random-effects meta-analyses using the package metafor can be specified as follows.

library(metafor)

rma.mv(yi = 1nRR, V = v_1nRR, random = list(~1|Data.ID), data = data_list$contrast_wi

de)

##

## Multivariate Meta-Analysis Model (k = 331; method: REML)

##
## Variance Components:
##

## estim sqrt nlvls fixed factor

## sigma”2 0.4564 0.6755 331 no Data.ID
#i#

## Test for Heterogeneity:

## Q(df = 330) = 23693.7200, p-val < .0001

#i#

## Model Results:

#i#

## estimate se zval pval ci.lb ci.ub
## -0.2961 0.0381 -7.7721 <.0001 -0.3707 -0.2214 k%%

##
#H —
## Signif. codes: 0 'skx' 0.001 'xx' 0.01 'x' 0.05

rma.mv(yi = InCVR, V = v_1nCVR, random = list(~1|Data.ID), data

wide)
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##

## Multivariate Meta-Analysis Model (k = 331; method: REML)
##

## Variance Components:

##

#i# estim sqrt nlvls fixed factor

## sigma”2 0.2798 0.5290 331 no Data.ID

##

## Test for Heterogeneity:
## Q(df = 330) = 1561.2967, p-val < .0001

##

## Model Results:

##t

## estimate se zval pval ci.lb ci.ub

## 0.1590 0.0332 4.7826 <.0001 0.0938 0.2241 kkxk

##t

## ——

## Signif. codes: 0 'xkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The model estimates give a negative INRR (estimate = -0.2961 ), which is statistically significant (i.e., the CI
does not span 0). This estimate suggests that single food diets decrease mean reproductive function to
around 74% of that on mixed-diets (i.e., exp(-0.2961) = 0.7437 ). However, there is a positive INCVR
(estimate = 0.1590 ), suggesting single food diets increase the CV by around 17% (i.e.,

exp(0.1590) = 1.1723). For InRR the heterogeneity is 0.6755 , while that for InCVR is 0.5290 , and in
both cases this can be considered substantial (i.e., sqrt(sigma”~2) > abs(estimate) )

Analysis 2: Contrast-Based IMAMV

IMAMV is an alternative to implementing two separate analyses. Rather a bivariate model is fitted to both the
InRR and InVR data. The model uses a meta-regression (similar to a ‘random-regression’) to estimate paired
differences between InVR and InRR from the same samples, thus yielding an estimate of InCVR.

The data for a contrast based IMAMV are effectively the same as those for the two-model analysis above, but
in long format. This means that effect sizes of different types (i.e., INnRR and InVR) are mixed in the same
column, with type identified by a dummy variable.

In the case of the diet-mixing dataset, we have formatted these data and they are available in the data list as
follows.

head(data_list$contrast_long)
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##
##
##
##
##
##
##
##
##
##
##
##
##
##

dim(data_list$contrast_long)

o Uk, WN B

yi
0.9387648
0.3849543
0.7386473
-0.3069166
-0.8607272
-0.5070341
Habitat
Marine
Marine
Marine
Marine
Marine
Marine

## [1] 662 7

vi
0.039645511
0.047678185
0.039141741
0.003327347
0.011360020
0.002823576

The key columns for analysis are:

yi contains a mix of InRR and InVR data

vi is the associated sampling variances.

Integrated Meta-Analysis of Mean and Variation Effects IMAMYV) Vignette

stat Experiment.ID Data.ID

1nRR
1nRR
1nRR
1nRR
1nRR
1nRR

cl
cl
cl
cl
cl
cl

datl
dat2
dat3
dat4
dat5
dat6

Consumer.Sp
Parvocalanus_crassirostris
Parvocalanus_crassirostris
Parvocalanus_crassirostris
Parvocalanus_crassirostris
Parvocalanus_crassirostris
Parvocalanus_crassirostris

stat is a dummy variable indicating whether the row contains an instance of InRR or InVR.

Data.ID indicates those InRR and InVR that are calculated from the same pair of samples.

We can implement a contrast-based IMAMV in metafor as follows.

rma.mv(yi=yi, V=vi, mods=~stat, random=list(~stat|Data.ID), struct="GEN", data =
_list$contrast_long)
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##

## Multivariate Meta-Analysis Model (k = 662; method: REML)
##

## Variance Components:

##

## outer factor: Data.ID (nlvls = 331)

## inner term:  ~stat (nlvls = 2)

##

#i# estim sqrt fixed rho: intr stVR
## intrcpt 0.4504 0.6711 no - -0.5805
## statlnVR 0.2751 0.5245 no no -
##

## Test for Residual Heterogeneity:

## QE(df = 660) = 26176.4495, p-val < .0001
##

## Test of Moderators (coefficient 2):

## QM(df = 1) = 22.8889, p-val < .0001

##

## Model Results:

##

## estimate se zval pval ci.lb ci.ub

## intrcpt -0.2940 0.0378 -7.7757 <.0001 -0.3681 -0.2199 skx*
## statlnVR 0.1574 0.0329 4,7842 <.0001 0.0929 0.2219 kkxk
##

#H —

## Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The estimates for the effect of diet mixing on the mean, as quantified by InRR, are given as the intrcpt. The
effect on variation, as quantified by INnCVR, are given as statlnVR . The overall effects are almost identical to
that estimated by the two-model analysis; here we have INnRR = -0.2940 and InCVR = 0.1574 , and again
the Cls exclude 0. The total heterogeneity estimates are also nearly identical to those from a two-model
analysis. For InRR thisis 0.6711 and for InCVR 0.5245 .

We have fitted InVR, so how is the model output is interpretable as INnCVR?

The model here has fitted the stat dummy variable in a meta-regression, estimating the difference in
magnitude between effect sizes that are coded as InVR and those coded as InRR, which is another way of
estimating InCVR; InVR - InRR = InCVR. Importantly, when we specified the model, we ensured that the InVR-
InRR differences were estimated at the level of the individual sample pairs. The argument struct = "GEN"
specifies a model that is similar to ‘random-regression’ mixed effects model, estimating the slopes for InVR-
InRR at the level of individual sample pairs (i.e., via ~stat|Data.ID).

The contrast-based IMAMV has estimated similar to terms to those from the two-model analysis, but also
yields additional estimates of the correlation between InRR and InCVR; stVR = -0.5805 . One can interpret
this as more negative estimates of InRR are associated with more positive effects of INCVR. Put another way,
the bigger the reductive effect of the diet on mean reproductive function, the more variation it generates.

Non-Indepdendence and Multi-Level IMAMV

This basic random-effects model has assumed independence of effect sizes. However, it is common in eco-
evolutionary meta-analyses for the same experiment to generate multiple effects sizes, meaning those effects
from the same experiment are non-independent. Multi-level models can be used to account for this non-
independence by clustering effect sizes based on some level of grouping.
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In the diet-mixing dataset, the column Experiment.ID codes each effect size by its experiment of origin.
This can be added to our contrast-based IMAMV under the random argument to create a multi-level model
as follows.

rma.mv(yi=yi, V=vi, mods=~stat, random=list(~stat|Experiment.ID, ~stat|Data.ID), stru

ct=

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

"GEN", data = data_list$contrast_long)

Multivariate Meta—-Analysis Model (k = 662; method: REML)

Variance Components:

outer factor: Experiment.ID (nlvls = 69)
inner term: ~stat (nlvls = 2)

estim sqrt fixed rho: intr stVR
intrcpt 0.1152 0.3395 no - -0.3896
statlnVR 0.1402 0.3745 no no -
outer factor: Data.ID (nlvls = 331)
inner term: ~stat (nlvls = 2)

estim sqrt fixed phi: intr stVR
intrcpt 0.3570 0.5975 no - -0.6992
statlnVR 0.1491 0.3862 no no -
Test for Residual Heterogeneity:

QE(df = 660) = 26176.4495, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 8.7982, p-val = 0.0030

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -0.3145 0.0596 -5.2734 <.0001 -0.4314 -0.1976 xxx
statlnVR 0.1706 ©0.0575 2.9662 0.0030 0.0579 0.2833  *k%k
Signif. codes: 0 'xkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The sign and statistical significance of the estimates in the multi-level models match those in the random-
effects model, though the magnitude of the effects are slightly larger (i.e., deviate more from 0) and precision
slightly lower (i.e., the Cls are wider). Here the heterogeneity has been partitioned between the among- and
within-experiment levels (i.e., Experiment.ID vs Data.ID). The total estimated heterogeneity can be
calculated as the square root of the sum of the sigma”2 estimates from the two levels. For InRR this is
sqrt(0.1152 + 0.3570) = 0.6872 and for INCVR itis sqrt(0.1402 + 0.1491) = 0.5379, largely
matching the estimates from the random-effects model above.

Meta-Regression in Contrast-Based IMAMV

Moderator variables, which might explain heterogeneity in effects, can be included in IMAMV. In the diet-
mixing dataset, for example, we have coded effect sizes by whether the focal species is terrestrial vs marine
dwelling in the column Habitat .
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argument.

rma.mv(yi=yi, V=vi, mods=~stat + Habitat + stat:Habitat, random=list(~stat|Experimen

t.ID, ~stat|Data.ID), struct="GEN", data =

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

In the meta-regression the marine category has been fitted as the reference group, and so the different

data_list$contrast_long)

Multivariate Meta-Analysis Model (k = 662; method: REML)

Variance Components:

outer factor: Experiment.ID (nlvls = 69)
inner term: ~stat (nlvls = 2)
estim sqrt fixed rho: intr stVR
intrcpt 0.1170 0.3421 no - -0.3591
statlnVR 0.1383 0.3720 no no -
outer factor: Data.ID (nlvls = 331)
inner term: ~stat (nlvls = 2)
estim sqrt fixed phi: intr stVR
intrcpt 0.3532 0.5943 no - -0.6984
statlnVR 0.1490 0.3860 no no -
Test for Residual Heterogeneity:
QE(df = 658) = 26171.7780, p-val < .0001
Test of Moderators (coefficients 2:4):
QM(df = 3) = 12.7709, p-val = 0.0052
Model Results:
estimate se zval pval
intrcpt -0.1910 0.0867 -2.2014 0.0277
statlnVR 0.1055 0.0857 1.2302 0.2186
HabitatTerrestrial -0.2361 0.1197 -1.9732 0.0485
statlnVR:HabitatTerrestrial 0.1248 0.1153 1.0825 0.2790
ci.ub
intrcpt -0.0209 x
statlnVR 0.2735
HabitatTerrestrial -0.0016 x
statlnVR:HabitatTerrestrial 0.3507
Signif. codes: 0 '"xkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

estimates can be interpreted as follows.

intrcpt = -0.1910 is the InRR in marine animals.

statlnVR = 0.1055 is the INCVR in marine animals.
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 HabitatTerrestrial = -0.2361 gives the difference in INnRR between terrestrial and marine
organisms. The estimate is negative and statistically significant, suggesting that single-food diets
reduce the mean reproductive function in terrestrial more than in marine habitats.

 statlnVR:HabitatTerrestrial = 0.1248 is the interaction between the stat term and the
Habitat moderator. Although it is an interaction it can quite straightforwardly be interpreted as the
difference in INCVR between habitats. While the estimate is positive, suggesting a larger effect of the
diet on the CV in the terrestrial habitat, it is non-significant.

Analysis 3: Arm-Based IMAMV

It is common for contrast-based analyses to contain an additional layer of non-independence that arises when
two effect sizes are based on the same control sample, sometimes termed ‘stochastic dependency’. In the
diet-mixing dataset, for instance, we calculated all pair-wise effect sizes within the same experiment.
Therefore, two effect sizes that compare different single-food treatments to the same mixed-food treatment
are correlated.

Stochastic dependency arises because contrast-based models calculate effect-sizes prior to model fitting.
Arm-based models circumvent this non-independence by fitting the sample statistic from each group as the
outcome, and using the model to estimate differences between treatment groups.

For an arm-based analysis the individual sample log means and log SDs or log CVs for each group are fitted,
and a dummy variable specifies, which treatment the group was exposed to. We have formatted the diet-
mixing data this way in the data list here.

head(data_list$arm_wide)

##  Article.ID Author Journal Year Consumer.Sp
## 1 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris
## 2 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris
## 3 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris
## 4 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris
## 5 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris
## 6 artl Alajmi Aquaculture Research 2015 Parvocalanus_crassirostris
##  Habitat Experiment.ID mean n sd treat 1nX v_1nX
## 1 Marine cl 89.03226 5 7.096774 single 4.489634 0.0012715488
## 2 Marine cl 50.96774 5 10.967742 single 3.935824 0.0093042225
## 3 Marine cl 72.90323 5 4.516129 single 4.289517 0.0007677783
## 4 Marine cl 34.19355 5 14.838710 mix 3.550869 0.0383739623
## 5 Marine cl 120.96774 5 12.258065 mix 4.796551 0.0020557977
## 6 Marine cl 19.35484 5 6.451613 mix 2.974054 0.0224691358
## nSD v_1nSD 1nCV v_1nCV Data.ID

## 1 2.084640 0.15625 -2.4049938 0.1575215 datl

## 2 2.519958 0.15625 -1.4158652 0.1655542 dat2

## 3 1.632655 0.15625 -2.6568614 0.1570178 dat3

## 4 2.822239 0.15625 -0.7286300 0.1946240 dat4

## 5 2.631184 0.15625 -2.1653667 0.1583058 dat5

## 6 1.989330 0.15625 -0.9847234 0.1787191 dat6

dim(data_list$arm_wide)

## [1] 282 18
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Each row contains the sample statistics from an individual group of animals, with the variable treat
specifying whether the group was exposed to a single- or mixed-food diet.

A very basic arm-based analysis of the mean effects using the 1nX and v_1lnX data can specified in
metafor as here.

rma.mv(yi = 1lnX, V = v_1nX, mods=~treat, random = list(~treat|Experiment.ID, ~treat|D
ata.ID), struct="GEN", data = data_list$arm_wide)

##

## Multivariate Meta-Analysis Model (k = 282; method: REML)
##

## Variance Components:

##

## outer factor: Experiment.ID (nlvls = 69)

## inner term:  ~treat (nlvls = 2)

##

#i# estim sqrt fixed rho: intr trts
## intrcpt 2.7342 1.6535 no - 1.0000
## treatsingle 0.0183 0.1353 no no -
##

## outer factor: Data.ID (nlvls = 282)

## inner term: ~treat (nlvls = 2)

##

#i# estim sqrt fixed phi: intr trts
## intrcpt 0.1387 0.3725 no - -0.1968
## treatsingle 0.3868 0.6219 no no -
##

## Test for Residual Heterogeneity:

## QE(df = 280) = 612141.6429, p-val < .0001

##

## Test of Moderators (coefficient 2):

## QM(df = 1) = 23.1014, p-val < .0001

##

## Model Results:

##

#i# estimate se zval pval ci.lb ci.ub

## intrcpt 2.9053 0.2027 14.3297 <.0001 2.5079 3.3027 kkk
## treatsingle -0.3279 0.0682 -4.8064 <.0001 -0.4616 -0.1942 k%
##

#H# ——

## Signif. codes: 0 'xkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The estimate for intrcpt is the average log mean of control groups, and is somewhat meaningless as we
have averaged over many different species and measures of reproductive function. However, the estimate for
treatsingle is the difference in log sample means between single- and mixed-food groups, and thus
interpretable as the INRR. Note samples from the same experiment etc. were paired in the analysis, thus
retaining the principle of concurrent control. The value -0.3228 is similar to those coming from the contrast-
based models above, though this analysis can be considered to have better accounted for non-independence
as it is free of stochastic dependency. The heterogeneity can be estimated by adding up the treatsingle
rows in the Experiment.ID and Data.ID parts of the output; sqrt(0.0183 + 0.3868) = 0.6365

For an arm-based IMAMV we need combine the above approach with bivariate model. For this analysis the
arm-based data are best transformed in to long-format with the log sample means ( 1nX) and log sample SDs
( UnSD ) in the same column and a dummy variable specifying which is which.
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For the diet mixing data, these are available pre-formatted here.

head(data_list$arm_long)

##
##
##
##
##
##
##
##
##
##
##
##
##
##

dim(data_list$arm_long)

SOuU A~ WN PR

OO~ WNPR

Article.ID Author Journal
artl Alajmi Aquaculture Research
artl Alajmi Aquaculture Research
artl Alajmi Aquaculture Research
artl Alajmi Aquaculture Research
artl Alajmi Aquaculture Research
artl Alajmi Aquaculture Research

Habitat Experiment.ID treat Data.ID

Marine cl single datl 2
Marine cl single dat2 2
Marine cl single dat3 1
Marine cl mix dat4 2
Marine cl mix dat5 2
Marine cl mix date 1

## [1] 564 12

Year
2015
2015
2015
2015
2015
2015

Consumer.Sp
Parvocalanus_crassirostris
Parvocalanus_crassirostris
Parvocalanus_crassirostris
Parvocalanus_crassirostris
Parvocalanus_crassirostris
Parvocalanus_crassirostris

yi vi stat
. 084640
.519958
.632655
.822239
.631184
.989330

.15625 1nSD
.15625 1nSD
.15625 1nSD
.15625 1nSD
.15625 1nSD
.15625 1nSD

[SENSI SIS BN S

The columns yi and vi give the log sample statistics and their sampling variances, stat is a dummy
variable identifying whether the sample statistic is an instance of the log mean or the log SD, and treat

specifies whether the sample is from a group on a single- or mixed-food diet. Here Data.ID pairs instances

of the log mean and log SD that are from the same sample.

A multi-level arm-based IMAMV can be fit as follows.

rma.mv(yi = yi, V = vi, mods=~treatkxstat, random
reatkstat|Data.ID), struct="GEN",
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##

## Multivariate Meta-Analysis Model (k = 564; method: REML)
##

## Variance Components:

##

## outer factor: Experiment.ID (nlvls = 69)

## inner term:  ~treat x stat (nlvls = 4)

##

#i# estim sqrt fixed rho: intr

## intrcpt 2.7207 1.6494 no -

## treatsingle 0.0288 0.1698 no no

## statlnSD 0.5015 0.7082 no no

## treatsingle:statlnSD 0.0438 0.2092 no no

## t:SD

## intrcpt -0.5710

## treatsingle -0.4058

## statlnSD -0.1024

## treatsingle:statlnSD -

##

## outer factor: Data.ID (nlvls = 282)

## inner term: ~treat x stat (nlvls = 4)

##

## estim sqrt fixed phi: intr

## intrcpt 0.1389 0.3727 no -

## treatsingle 0.4198 0.6479 no no

## statlnSD 0.0776 0.2786 no no

## treatsingle:statlnSD 0.0913 0.3021 no no

## t:SD

## intrcpt 0.3795

## treatsingle -0.7280

## stat1lnSD -0.1100

## treatsingle:stat1lnSD -

##

## Test for Residual Heterogeneity:

## QE(df = 560) = 629739.6516, p-val < .0001

##

## Test of Moderators (coefficients 2:4):

## QM(df = 3) = 306.6336, p-val < .0001

##

## Model Results:

##

## estimate se zval pval
## intrcpt 2.9207 0.2022 14.4430 <.0001
## treatsingle -0.3358 0.0691 -4.8575 <.0001
## statlnSD -1.4072 0.0929 -15.1505 <.0001
## treatsingle:statlnSD 0.1870 0.0581 3.2190 0.0013
##

#H ——

## Signif. codes: 0 'sxkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1

This model is arguably more free of (or corrected for) non-independence than any of the preceding analyses.

The output looks quite complex, but actually has a relatively easy interpretation that maps on to the contrast-

based models above.
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e intrcpt = 2.9207 is the log sample mean for control, in this instance mixed-food, groups. The

estimate is somewhat meaningless.

» treatsingle = -0.3358 is the InRR, here the difference in log means between single- and mixed-
food groups. The sign and magnitude of effect is consistent with all other analyses of the InRR above,

and remains statistically significant.

» statlnSD = -1.4072 is the log CV for the control group (actually log SD - log mean, but that is equal
to the log CV), and again the value is a bit meaningless.

treatsingle:statlnSD = 0.1870 is the estimate of the INCVR, which again matches the contrast-
based analyses above in terms of sign, magnitude and statistical significance.

The relevant heterogeneities for the InRR and InCVR are available in the rows labelled treatsingle and
treatsingle:stat1lnSD inthe Experiment.ID and Data.ID parts of the analysis. Correlations between
effect sizes at the among- and within-study levels have also been estimated, and can found by reading across
the row treatsingle to the column t:SD . At both levels the correlations are negative (among-experiment =
-0.4058 , within-experiment = -0.7280 ), matching the estimates from the contrast-based analyses.

Meta-Regression in Arm-Based IMAMV

Again we can include/test moderator variables in an arm-based IMAMV. Here is an arm-based model that
tests the moderating effect of Habitat again.

rma.mv(yi = yi, V = vi, mods=~treatkstatxHabitat, random = list(~treatxstat|Experimen
t.ID, ~treatxstat|Data.ID), struct="GEN", data = data_list$arm_long)
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10:46

Multivariate Meta—-Analysis Model (k = 564; method: REML)

Variance Components:

outer factor: Experiment.ID (nlvls = 69)
inner term: ~treat x stat (nlvls = 4)
estim sqrt fixed rho: intr
intrcpt 2.7234 1.6503 no -
treatsingle 0.0236 0.1537 no no
statlnSD 0.4880 0.6986 no no
treatsingle:statlnSD 0.0441 0.2099 no no
t:SD
intrcpt -0.5511
treatsingle -0.3476
statlnSD -0.1458
treatsingle:statlnSD -
outer factor: Data.ID (nlvls = 282)
inner term: ~treat x stat (nlvls = 4)
estim sqrt fixed phi: intr
intrcpt 0.1406 0.3750 no -
treatsingle 0.2919 0.5403 no no
statlnSD 0.0778 0.2789 no no
treatsingle:statlnSD 0.0298 0.1726 no no
t:SD
intrcpt -0.4041
treatsingle -0.8601
statlnSD 0.4447
treatsingle:stat1lnSD -
Test for Residual Heterogeneity:
QE(df = 556) = 589589.8407, p-val < .0001
Test of Moderators (coefficients 2:8):
QM(df = 7) = 313.0065, p-val < .0001
Model Results:
estimate se
intrcpt 3.1690 0.3224
treatsingle -0.2257 0.0985
statlnSD -1.5932 0.1454
HabitatTerrestrial -0.4043 0.4142
treatsingle:statlnSD 0.1380 0.0860
treatsingle:HabitatTerrestrial -0.2007 0.1374
statlnSD:HabitatTerrestrial 0.3043 0.1876
treatsingle:statlnSD:HabitatTerrestrial 0.0908 0.1169
ci.lb ci.ub
intrcpt 2.5372 3.8009
treatsingle -0.4188 -0.0325
stat1lnSD -1.8782 -1.3081
HabitatTerrestrial -1.2161 0.4075
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trts stSD
0.8385 -0.1125
- -0.6358
no -
no no
trts stSD
-0.0060 -0.3903
- -0.3167
no -
no no
zval pval
9.8304 <.0001
-2.2898 0.0220
-10.9538 <.0001
-0.9761 0.3290
1.6057 0.1084
-1.4610 0.1440
1.6221 0.1048
0.7767 0.4373
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%
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## treatsingle:statlnSD -0.0305 0.3065

## treatsingle:HabitatTerrestrial -0.4701 0.0686

## statlnSD:HabitatTerrestrial -0.0634 0.6721

## treatsingle:statlnSD:HabitatTerrestrial -0.1383 0.3198

##

#H —

## Signif. codes: 0 'xkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The long list of interaction terms in the model looks daunting, but again can be directly mapped on to a
contrast-based model in terms of effect size. The most important terms to look at are:

» treatsingle = -0.2257, which gives the InRR for marine species.

» treatsingle:statlnSD = 0.1380, which gives the INCVR in the marine species.

treatsingle:HabitatTerrestrial = -0.2007 is the difference in INnRR between terrestrial and
marine species. This estimate is similar in magnitude to the contrast-based meta-regression, but is non-
significant.

e treatsingle:statlnSD:HabitatTerrestrial = 0.0908 (the three-way-interactive term) is the
difference in INCVR between the different habitats.

The less interesting terms can be interpreted as follows. intrcpt and stat1lnSD is the average log mean
and log CV of the control groups for all marine species, while HabitatTerrestrial and
statlnSD:HabitatTerrestrial are differences between terrestrial and marine taxa for those log means and
log CVs.

Phylogenetic Models

Multi-species meta-analyses such as are explored here contain phylogenetic non-independence as some of
the species are more closely related, while others are more distantly related. It is common for ecologists and
evolutionary biologists to correct for this non-independence using a phylogenetic model. IMAMV is
compatible with such models. We now demonstrate two options for fitting phylogentic IMAMV.

First we must load and solve a matrix which gives the relatedness among the different species in the diet-
mixing dataset, which we created using the R package rotl . The matrix is stored at the end of the data list.

phyloM<-data_list$phylo
A<-solve(as(phyloM, '"dgCMatrix"))

The matrix contains a row/column for each of the species in the dataset listed under the column
Consumer.Sp . A phylogenetic correction can then applied to the arm-based IMAMV in metafor as follows
using the R argument.

rma.mv(yi = yi, V = vi, mods=~treatkstat, random = list(~treatxstat|Consumer.Sp, ~tre

atkstat|Data.ID), struct="GEN", data = data_list$arm_long, R = list(Consumer.Sp =
A))
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##

## Multivariate Meta-Analysis Model (k = 564; method: REML)
##

## Variance Components:

##

## outer factor: Consumer.Sp (nlvls = 51)

## inner term:  ~treat x stat (nlvls = 4)

##

#i# estim sqrt fixed rho: intr

## intrcpt 2.2229 1.4909 no -

## treatsingle 0.0278 0.1666 no no

## statlnSD 0.5236 0.7236 no no

## treatsingle:statlnSD 0.0206 0.1435 no no

## t:SD

## intrcpt -0.9760

## treatsingle -0.8478

## statlnSD 0.0163

## treatsingle:statlnSD -

##

## outer factor: Data.ID (nlvls = 282)

## inner term: ~treat x stat (nlvls = 4)

##

## estim sqrt fixed phi: intr

## intrcpt 0.7893 0.8884 no -

## treatsingle 0.3247 0.5698 no no

## statlnSD 0.1518 0.3896 no no

## treatsingle:statlnSD 0.1534 0.3917 no no

## t:SD

## intrcpt -0.3784

## treatsingle -0.2281

## stat1lnSD -0.2183

## treatsingle:stat1lnSD -

##

## Test for Residual Heterogeneity:

## QE(df = 560) = 629739.6516, p-val < .0001

##

## Test of Moderators (coefficients 2:4):

## QM(df = 3) = 166.7641, p-val < .0001

##

## Model Results:

##

## estimate se zval pval
## intrcpt 3.0229 0.2275 13.2904 <.0001
## treatsingle -0.3305 0.1220 -2.7092 0.0067
## statlnSD -1.3713 0.1121 -12.2311 <.0001
## treatsingle:statlnSD 0.1829 0.0659 2.7740 0.0055
##

#H ——

## Signif. codes: 0 'sxkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1

The key estimates from for the main effects (treatsingle
treatsingle:statlnSD = 0.1829 for INCVR) match those from the non-phylogenetic model.
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The user may have noted that here we swapped the experiment-level random effect for the species. This is a
limit of the current implementation of rma.mv , which only permits two random effects with the inner terms
(i.e., inner|outer) used to pair data from the same samples.

We now demonstrate how to implement an IMAMV model with more than two random effects using brms .
See ?brms to get started with this package.

library(brms)

brms allows ‘dual-formula’ specification, which some users may find more straight forward. Here we are
implementing an arm-based model and thus we specify an equation for the log mean and for the log SD. The
data are best suited to this function in wide format (i.e., with the mean and variance-related statistics in
separate columns).

The formula for the model is specified here. Important parts to note are that (1) the treat is fitted as a fixed
effect, and random slope at each of the multiple levels, (2) that the phylogenetic correlation matrix is
associated with the Consumer.Sp level of the model, (3) we have specified 1nCV as the variation-related
metric and (4) that the formula is duplicated for both the log mean and log CV

arm_form<-bf(lnX |se(sqrt(v_1lnX)) ~ treat + (l+treat|a|gr(Consumer.Sp, cov=A)) + (1+t
reat|b|Experiment.ID) + (1l+treat|c|Data.ID)) +

bf(1nCV |se(sqrt(v_lnCV)) ~ treat + (1l+treat|a|gr(Consumer.Sp, cov=A)) +
(1+treat|b|Experiment.ID) + (l+treat|c|Data.ID)) +

set_rescor(FALSE)

The model fits using an MCMC alogirthm. The user must specify how long the model runs for ( iter and
warmup arguments), how frequently samples are taken ( thin argument), and how many replicate chains are
run ( chains argument). Here we have specified a model that will run relatively quickly for the sake of the
vignette. MCMC algorithms must be checked in a series of diagnostic tests for behavior and convergence
(e.g., see ?gelman.diag ). A robust analysis that passes all such checks would likely need a longer run and
with chains run in, at least, triplicate.

Finally we run the model, noting | have set the seed to increase the reproducibility of results.
set.seed(123)

phylo_IMAMV<-brm(formula=arm_form, data=data_list$arm_wide, data2=1ist(A=A), family=g
aussian, cores=1, chains=1, iter=3000, warmup=2000, thin=1)

summary (phylo_IMAMV)

## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
## careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.

## Warning: There were 38 divergent transitions after warmup. Increasing
## adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions—-after-warmup
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## Family: MV(gaussian, gaussian)

## Links: mu = identity; sigma = identity

#i# mu = identity; sigma = identity

## Formula: 1nX | se(sqrt(v_1lnX)) ~ treat + (1 + treat | a | gr(Consumer.Sp, cov =
A)) + (1 + treat | b | Experiment.ID) + (1 + treat | c | Data.ID)

#H InCV | se(sqrt(v_1nCV)) ~ treat + (1 + treat | a | gr(Consumer.Sp, cov =
A)) + (1 + treat | b | Experiment.ID) + (1 + treat | ¢ | Data.ID)

## Data: data_list$arm_wide (Number of observations: 282)

## Draws: 1 chains, each with iter = 3000; warmup = 2000; thin = 1;

## total post-warmup draws = 1000

##

## Multilevel Hyperparameters:
## ~Consumer.Sp (Number of levels: 51)

## Estimate Est.Error 1-95% CI u-95% CI Rhat
## sd(lnX_Intercept) 0.18 0.10 0.01 0.38 1.00
## sd(lnX_treatsingle) 0.03 0.02 0.00 0.08 1.00
## sd(1nCV_Intercept) 0.08 0.05 0.01 0.18 1.00
## sd(1nCV_treatsingle) 0.06 0.03 0.01 0.13 1.00
## cor(lnX_Intercept,nX_treatsingle) 0.05 0.44 -0.77 0.83 1.00
## cor(lnX_Intercept, InCV_Intercept) -0.05 0.41 -0.76 0.77 1.00
## cor(lnX_treatsingle, InCV_Intercept) -0.01 0.46 -0.82 0.81 1.00
## cor(lnX_Intercept, InCV_treatsingle) -0.24 0.43 -0.91 0.71 1.00
## cor(lnX_treatsingle, InCV_treatsingle) -0.23 0.43 -0.89 0.72 1.00
## cor(lnCV_Intercept, InCV_treatsingle) -0.07 0.44 -0.82 0.77 1.00
#H Bulk_ESS Tail_ESS

## sd(1nX_Intercept) 59 171

## sd(1nX_treatsingle) 154 369

## sd(1nCV_Intercept) 105 178

## sd(1nCV_treatsingle) 78 308

## cor(lnX_Intercept, InX_treatsingle) 398 476

## cor(1nX_Intercept, InCV_Intercept) 242 255

## cor(lnX_treatsingle, InCV_Intercept) 185 182

## cor(lnX_Intercept, InCV_treatsingle) 156 248

## cor(lnX_treatsingle, InCV_treatsingle) 193 328

## cor(lnCV_Intercept, InCV_treatsingle) 198 481

##

## ~Data.ID (Number of levels: 282)

## Estimate Est.Error 1-95% CI u-95% CI Rhat
## sd(lnX_Intercept) 0.38 0.04 0.31 0.46 1.01
## sd(lnX_treatsingle) 0.50 0.14 0.25 0.74 1.01
## sd(1nCV_Intercept) 0.30 0.05 0.21 0.40 1.04
## sd(1nCV_treatsingle) 0.26 0.13 0.03 0.55 1.13
## cor(lnX_Intercept, InX_treatsingle) 0.19 0.37 -0.40 0.91 1.03
## cor(lnX_Intercept, InCV_Intercept) -0.57 0.13 -0.80 -0.30 1.01
## cor(lnX_treatsingle, InCV_Intercept) -0.47 0.33 -0.94 0.41 1.04
## cor(lnX_Intercept, InCV_treatsingle) -0.35 0.37 -0.88 0.48 1.02
## cor(lnX_treatsingle, InCV_treatsingle) -0.49 0.34 -0.95 0.30 1.00
## cor(lnCV_Intercept, InCV_treatsingle) 0.12 0.39 -0.61 0.83 1.05
#Ht Bulk_ESS Tail_ESS

## sd(1nX_Intercept) 216 370

## sd(1nX_treatsingle) 15 170

## sd(1nCV_Intercept) 55 76

## sd(1nCV_treatsingle) 15 36

## cor(lnX_Intercept, InX_treatsingle) 14 62

## cor(lnX_Intercept, InCV_Intercept) 126 255
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## cor(lnX_treatsingle, InCV_Intercept) 24 41

## cor(lnX_Intercept, InCV_treatsingle) 44 112

## cor(lnX_treatsingle, InCV_treatsingle) 53 127

## cor(lnCV_Intercept, InCV_treatsingle) 53 117

##

## ~Experiment.ID (Number of levels: 69)

## Estimate Est.Error 1-95% CI u-95% CI Rhat
## sd(1nX_Intercept) 1.61 0.19 1.23 2.01 1.00
## sd(1lnX_treatsingle) 0.12 0.08 0.01 0.30 1.02
## sd(1nCV_Intercept) 0.68 0.09 0.50 0.84 1.01
## sd(lnCV_treatsingle) 0.10 0.07 0.01 0.26 1.00
## cor(lnX_Intercept, InX_treatsingle) 0.23 0.37 -0.56 0.83 1.00
## cor(lnX_Intercept, InCV_Intercept) -0.17 0.15 -0.44 0.14 1.01
## cor(lnX_treatsingle, InCV_Intercept) -0.30 0.42 -0.89 0.64 1.03
## cor(lnX_Intercept, InCV_treatsingle) -0.17 0.40 -0.83 0.66 1.01
## cor(lnX_treatsingle, InCV_treatsingle) -0.10 0.43 -0.84 0.75 1.00
## cor(lnCV_Intercept, nCV_treatsingle) -0.15 0.43 -0.84 0.76 1.00
## Bulk_ESS Tail_ESS

## sd(1nX_Intercept) 141 339

## sd(lnX_treatsingle) 73 327

## sd(1nCV_Intercept) 216 286

## sd(1nCV_treatsingle) 165 302

## cor(lnX_Intercept, InX_treatsingle) 527 544

## cor(lnX_Intercept, InCV_Intercept) 179 357

## cor(lnX_treatsingle, InCV_Intercept) 18 61

## cor(lnX_Intercept, InCV_treatsingle) 436 623

## cor(lnX_treatsingle, InCV_treatsingle) 355 533

## cor(lnCV_Intercept, InCV_treatsingle) 349 508

##

## Regression Coefficients:

## Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

## 1nX_Intercept 2.93 0.21 2.54 3.35 1.00 123 200

## 1nCV_Intercept -1.39 0.10 -1.59 -1.19 1.00 269 517

## 1nX_treatsingle -0.34 0.07 -0.48 -0.20 1.02 189 378

## 1nCV_treatsingle 0.21 0.07 0.08 0.35 1.00 311 522

##

## Further Distributional Parameters:

## Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

## sigma_1lnX 0.00 0.00 0.00 0.00 NA NA NA

## sigma_1lnCV 0.00 0.00 0.00 0.00 NA NA NA

##

## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

The first thing to note is the warnings at the top of the output. This model would clearly need a good deal of
tinkering with the MCMC specifications before we would consider the results robust. The fixes to these issues
will be data set specific and do not affect dual formula specification for IMAMV. Hence, we do not present a
full exploration of how to adjust the MCMC part of the model. Some solutions to explore might include
adjusting max_treedepth viathe control argument, running the model for longer ( iter , warmup and
thin arguments), and specifying a different prior ( prior argumnet). There are many good tutorials on using
the brms package that cover model specification in detail; see here https://ayumi-495.github.io/multinomial-
GLMM-tutorial/ (https://ayumi-495.github.io/multinomial-GLMM-tutorial/).
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Putting these concerns aside for the sake of the vignette, we can interpret the results as follows. The main
overall estimates for the effects of diet mixing can be found under the Regresson Coefficients part of the
output. The term 1nX_treatsingle = -0.35 is the INRR, while 1nCV_treatsingle = 0.21 is the INCVR.
Again these estimates are similar to those seen in the phylogenetic model from metafor . The heterogeneity
estimates can be found under the Multilevel Hyperparameters part of the output. The rows labelled
sd(1nX_treatsingle) and sd(1nCV_treatsingle) give the SD among InRR and InCVR at different levels
of the analysis. Note the estimates for Consumer.Sp are considerably smaller than those at other levels of the
analysis, indicating that phylogenetic effects are likely to be weak.

Data Visualization

Contrast-based IMAMV can use the already wide array of tools for data-visualization (e.g., forest plots and
orchard plots). These must just be applied to the INRR and InCVR (or InVR if that is the analysis of choice).

There are no widely used formats for the visualization of arm-based meta-analyses. Here we propose a new
tool, based on estimation plots and orchard plots. We have written a function called gg_mestimation , which
requires the packages ggplot2 and ggbeeswarm to work.

The function can be loaded from the header file mestimation_functions.R.
source("mestimation_function.R")

The key arguments to pass to the function are as follows:

» data: a dataframe containing, at least, the sample statistics to be plotted, the group of each statistic
(e.g., control or experimental) and the sample size of each.

group : the column name in data giving the group for each statistic being plotted.

o stat:the column namein data giving the sample statistics being plotted.

» n:the column namein data giving the sample sizes for each statistic being plotted.
» control_mu : the estimate of the meta-analytic mean in the control group.

« mu : the overall effect estimated by meta-analysis.

e ci_1 and ci_u: the confidence intervals on mu .

« tau: the total heterogeneity associated with mu .

Here for example, we plot the analysis in the first arm-based IMAMV from above. This model was specified as:

rma.mv(yi = yi, V = vi, mods=~treatkxstat, random = list(~treatxstat|Experiment.ID, ~t
reatkstat|Data.ID), struct="GEN", data = data_list$arm_long)
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##

## Multivariate Meta-Analysis Model (k = 564; method: REML)
##

## Variance Components:

##

## outer factor: Experiment.ID (nlvls = 69)

## inner term:  ~treat x stat (nlvls = 4)

##

#i# estim sqrt fixed rho: intr

## intrcpt 2.7207 1.6494 no -

## treatsingle 0.0288 0.1698 no no

## statlnSD 0.5015 0.7082 no no

## treatsingle:statlnSD 0.0438 0.2092 no no

## t:SD

## intrcpt -0.5710

## treatsingle -0.4058

## statlnSD -0.1024

## treatsingle:statlnSD -

##

## outer factor: Data.ID (nlvls = 282)

## inner term: ~treat x stat (nlvls = 4)

##

## estim sqrt fixed phi: intr

## intrcpt 0.1389 0.3727 no -

## treatsingle 0.4198 0.6479 no no

## statlnSD 0.0776 0.2786 no no

## treatsingle:statlnSD 0.0913 0.3021 no no

## t:SD

## intrcpt 0.3795

## treatsingle -0.7280

## stat1lnSD -0.1100

## treatsingle:stat1lnSD -

##

## Test for Residual Heterogeneity:

## QE(df = 560) = 629739.6516, p-val < .0001

##

## Test of Moderators (coefficients 2:4):

## QM(df = 3) = 306.6336, p-val < .0001

##

## Model Results:

##

## estimate se zval pval
## intrcpt 2.9207 0.2022 14.4430 <.0001
## treatsingle -0.3358 0.0691 -4.8575 <.0001
## statlnSD -1.4072 0.0929 -15.1505 <.0001
## treatsingle:statlnSD 0.1870 0.0581 3.2190 0.0013
##

#H ——

## Signif. codes: 0 'sxkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
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Data in wide-format are well suited for use in this function, and we start by plotting the effects on the log
mean (data in 1nX). The estimate for the mean in the control group for control_mu is given under the

analysis intrcpt =
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given under treatsingle = -0.3358, along withits Cls (ci.lb = -0.4713, ci.ub = -0.2003). The total

heterogeneity for tau, estimated as the sum of the treatsingle terms at the two levels of the analysis, is
sqrt(0.4198 + 0.0288) = 0.6698.

gg_mestimation(data = data_list$arm_wide, group = "treat", stat = "1nX", n = "n", con
trol_mu = 2.9207, mu = -0.3358, ci_1l = -0.4713, ci_u = -0.2003, tau = 0.6698)
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We see the log mean (y-axis) as a function of the dietary treatment (x-axis). Individual sample statistics are
scaled by their sample size. The right-hand axis gives the projection in to the effect size (INRR) space. In the
effect size space, the line of no effect is the black horizontal line, while the estimated effect is the red
horizontal line. The red shading gives the 95% CI on the effect on the mean, which excludes 0 in this case.
The blue shaded zone visualizes the 95% prediction interval for future effects, which is based on the
estimated heterogeneity ( tau ).

We can then reapply this to the INCVR, using the estimates for stat1lnSD in the model as the control_mu,
and treatsingle:statlnSD in the model as mu . The heterogeneity is
sqrt(0.0913 + 0.0438) = 0.3676.

gg_mestimation(data = data_list$arm_wide, group = "treat", stat = "1nCV", n = "n", co
ntrol_mu = -1.4072, mu = 0.1870, ci_l = 0.0731, ci_u = 0.3008, tau = 0.3676)
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library(sessioninfo)
session_info()
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