

1 **Consensus on future research directions in the Phylum Rotifera**

2 **Running Head:** Global priorities in rotifer research

3 Rafael L. Macêdo^{1,2*}, Carlota Solano-Udina^{3§}, Melanie D. Borup^{4,5§}, Marco Antonio Jiménez-
4 Santos^{6,7}, Cristina Arenas-Sánchez³, Christina W.C. Branco⁸, Karen Costa⁸, Betina Kozlowsky-
5 Suzuki⁹, Claudia Bonecker¹⁰, Elizabeth J. Walsh¹¹, André R.S. Garraffoni¹², S.S.S. Sarma¹³,
6 Agnieszka Ochocka¹⁴, Nandini Sarma¹³, Robert Wallace¹⁵, Diego Fontaneto¹⁶, Jonathan M.
7 Jeschke^{1,2}, Gissell Lacerot¹⁷

8 *corresponding author: macedo@edu.unirio.br

9 § shared second authors

10 ¹ Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587
11 Berlin, Germany

12 ² Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1–3, 14195 Berlin, Germany

13 ³ Evolutionary Ecology Unit, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat
14 de València, Spain

15 ⁴ Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania,
16 Australia

17 ⁵ Australian Antarctic Division, Department of Climate Change, Energy, the Environment and
18 Water, Kingston, Tasmania, Australia

19 ⁶ Institute of Soil Biology and Biogeochemistry, Biology Centre, Czech Academy of Sciences,
20 České Budějovice, Czech Republic

21 ⁷ Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Academy
22 of Sciences of the Czech Republic, Liběchov, Czech Republic

23 ⁸ Departamento de Zoologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro,
24 Brazil

25 ⁹ Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de
26 Janeiro, Rio de Janeiro, Brazil

27 ¹⁰ Núcleo de Pesquisa em Limnologia, Ictiologia e Aquicultura (NUPÉLIA), Universidade
28 Estadual de Maringá, Paraná, Brazil

29 ¹¹ Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA

30 ¹² Laboratory of Evolutionary Meiofaunal Organisms, Department of Animal Biology, Institute of
31 Biology, Universidade de Campinas, Campinas, Brazil

32 ¹³ Laboratorio de Zoología Acuática, Universidad Nacional Autónoma de México, FES Iztacala,
33 State of Mexico, Mexico

34 ¹⁴ Department of Aquatic Ecosystems Research, Institute of Environmental Protection – National
35 Research Institute, Warsaw, Poland

36 ¹⁵ Department of Biology, Ripon College, Ripon, WI, USA

41 ¹⁶ National Research Council of Italy (CNR), Water Research Institute (IRSA), Verbania, Italy

42 ¹⁷ Departamento Interdisciplinario de Sistemas Costeros y Marinos, Universidad de la República,
43 Maldonado, Uruguay

44

45 **Abstract**

46

47 Rotifers play key roles in aquatic ecosystems, yet significant uncertainty remains about their
48 diversity and evolution, and basic knowledge is still lacking to address practical challenges related
49 to global change. To identify the major knowledge gaps hindering progress, we carried out a
50 Delphi process both online and during the 17th International Rotifer Symposium, involving more
51 than forty experts working across diverse regions and subdisciplines. A total of 133 research
52 questions were screened for relevance and clarity, and reduced to 100 for online scoring. These
53 were evaluated on a 1-to-10 priority scale, after which 67 questions that exceeded 50% agreement
54 were advanced to an in-person workshop. Through structured discussions and round-table voting,
55 participants identified gold, silver, and bronze priority questions, while also considering the
56 feasibility to address them, resulting in a final consensus set of high-priority questions across basic,
57 applied, and philosophical perspectives. The strong support for questions on taxonomic knowledge
58 transfer, digital curation, and AI-assisted identification highlights the emergence of a
59 methodological subfield that links classical taxonomy with modern computational tools. Likewise,
60 the emphasis on improving genetic markers and connecting DNA sequences with traits shows that
61 molecular research is now viewed as a foundational component of rotiferology. This synthesis
62 provides the first community-driven roadmap for advancing rotifer research. By articulating shared
63 priorities and clarifying persistent knowledge gaps – including the lack of reliable phylogenies,
64 uneven global sampling, and limited hypothesis-driven work – it establishes a foundation for
65 future collaborative projects, funding strategies, and cross-disciplinary integration.

66

67 **Keywords:** communities, evolution, diversity, methods, populations, rotifer research agenda

68

69 **1. Introduction**

70

71 Collaborative identification and prioritization of fundamental research questions has become an
72 effective way to organize knowledge in complex scientific disciplines. A common framework for
73 this process is the Delphi technique, which uses repeated rounds of structured questionnaires to
74 gather, compare, and refine expert opinions. This approach is useful not only to build consensus
75 but also to identify priorities, and expose areas where viewpoints diverge (Hasson et al. 2000). It
76 has been used successfully in broad ecological and conservation contexts (Sutherland et al. 2012;
77 Mukherjee et al. 2015) and in more focused fields including subterranean biology, invasion science
78 and meiofauna research (Enders et al. 2020; Mammola et al. 2020; Martínez et al. 2025). By
79 creating a roadmap, such exercises are particularly valuable for disciplines at an inflection point,
80 where a long history of research is met with new technological capabilities and pressing
81 environmental challenges, creating a timely opportunity to redefine research priorities.

82

83 The study of Rotifera, a phylum of microscopic metazoans, exemplifies a discipline where long-
84 standing research intersects with emerging tools and new environmental challenges. With a rich,
85 century-old history of taxonomic and ecological research, our understanding of rotifers has been
86 profoundly shaped by advancements in microscopy, molecular biology, and ecological modeling
87 (Lampert 1997; Gómez 2005; Serra et al. 2019; Gansfort et al. 2020). These ubiquitous organisms,
88 inhabiting freshwater, saline, and semi-terrestrial ecosystems, play pivotal roles in nutrient cycling,

89 energy transfer, and serve as bioindicators of environmental health (Arndt 1993; Fontaneto et al.
90 2006; Ejsmont-Karabin 2012; Wallace et al. 2021). Their diverse morphologies, feeding
91 mechanisms, and life-history strategies, including the remarkable anhydrobiotic capabilities,
92 obligate parthenogenesis, and horizontal gene transfer of bdelloid rotifers, make them a subject for
93 fundamental biological inquiry (Ricci 1983; Melone and Ricci 1995; Ricci and Boschetti 2003;
94 King et al. 2005; Gladyshev and Meselson 2008; Declerck and Papakostas 2017; Hespeels et al.
95 2023). However, important gaps in rotifer research remain. Geographic and taxonomic biases
96 continue to limit our understanding of global biogeography and biodiversity patterns (Dumont
97 1983; Fontaneto et al. 2012). In addition, the widespread occurrence of cryptic species complicates
98 estimates of species richness, distribution, and ecological roles (May and Wallace 2019; Wallace
99 et al. 2024; Walczyńska et al. 2024). Against this backdrop, we here report the results of an
100 exercise to identify the most important outstanding research questions related to rotifers.

101
102 This paper argues that the time is ripe for a concerted, community-driven effort to identify the
103 fundamental questions that will guide the next era of rotifer research. The rapid pace of
104 environmental change, coupled with the advent of powerful new research tools (e.g., eDNA,
105 genomics: Mohl et al. 2025; AI-assisted taxonomy and ecology: Chen et al. 2023; Ienaga et al.
106 2024; Zhang et al. 2024), creates both an urgent need and an unprecedented opportunity to address
107 long-standing questions in rotifer biology. By synthesizing the collective expertise of the
108 international rotifer research community, we can move beyond a fragmented and specialized
109 approach towards a more integrated and strategic research agenda. This paper, therefore, does not
110 test specific hypotheses, but rather presents the outcome of a comprehensive Delphi process

111 designed to elicit, refine, and prioritize a consensus-based list of key unanswered research
112 questions in the field of Rotifera research.

113 We aimed to identify a consensus-based list of the major unanswered questions in Rotifera
114 research that may guide and shape future work. Through this collective initiative, we hope to help
115 students, researchers, and funding agencies in setting priorities, and to encourage collaboration
116 across different areas of rotifer biology by highlighting shared interests and persistent challenges.
117 Importantly, articulating fundamental questions also stimulates the development of new
118 hypotheses, since questions define the boundaries of inquiry, while hypotheses provide testable
119 explanations. By doing so, this effort seeks not only to outline directions for future research but
120 also to reinforce the iterative cycle of questioning and hypothesis testing that drives scientific
121 progress. Ultimately, we hope to inspire a new wave of integrated and impactful research that will
122 deepen our understanding of this fascinating phylum and strengthen our ability to conserve and
123 manage the freshwater ecosystems upon which we all depend.

124

125 **2. Materials and Methods**

126

127 We followed a structured approach based on the Delphi technique to gather and prioritize expert
128 opinions on key unanswered questions in Rotifera research. It was designed to be iterative,
129 involving multiple rounds and feedback of expert consultation, moving from a broad collection of
130 questions to a refined, prioritized list reflecting the current challenges, emerging trends and future
131 directions deemed most critical by the international rotifer research community. This was
132 developed through both pre-symposium online forms and in-person discussions during the
133 workshop “Emerging Consensus and Key Questions in Rotifera Research”, held at the 17th IRS

134 in Rio de Janeiro (see Fig. 1 for the workflow). Since 1976, a triennial meeting, the International
135 Rotifer Symposium (IRS) has gradually become a focal point for discussion and collaboration.
136 The most recent meeting, the 17th IRS, was held in Rio de Janeiro, Brazil, from 4 – 8th August,
137 2025.

138

139 During Phase 1, experts were invited to submit three to five key research questions. Over 230
140 email invitations were sent to individuals selected based on their contributions to innovative, high-
141 impact, and high-volume research on Rotifera, and their participation in the International Rotifer
142 Symposium (IRS). In addition, the invitation was shared via the rotifer-family newsletter mailing
143 list to broaden outreach. In total, thirty-seven experts responded. For each contributor, their region
144 of work, study environment, education level, ethnicity, and gender were recorded (see Figure 2).
145 There was also the option to not answer for each of the demographic questions. A total of 133
146 questions were formulated, and these were screened for duplicates and refined for clarity,
147 consistency, and alignment with the predefined criteria of relevance and testability, resulting in a
148 list of 100 questions (see Supplementary Document S1).

149

150 To avoid overly broad or vague topics, we focused on questions that could realistically be
151 addressed by a small research team or through a limited set of funded projects. To achieve this, we
152 adopted an established methodology based on Sutherland et al. (2011a, b), which emphasizes a
153 rigorous, democratic, and transparent approach to identifying key research questions. Thus, an
154 ideal question should either directly suggest a research design or be framed in a way that allows it
155 to be translated into specific, testable research hypotheses, according to the following criteria:

156

157 (i) be answerable through a realistic research design;
158 (ii) address significant gaps in current knowledge;
159 (iii) have a factual answer that is not dependent on value judgments;
160 (iv) be of a spatial and temporal scale that is feasible for a research team to address;
161 (v) not be formulated as a broad or vague topic area;
162 (vi) avoid being answerable with "it depends";
163 (vii) not be framed as a yes/no question (e.g., avoid phrasing it like "Is Lecanidae more species-
164 rich than Brachionidae?");
165 (viii) and, if related to impacts or interventions, clearly include a subject, an intervention, and a
166 measurable outcome.

167
168 During Phase 2, the 100 questions were ranked through an online voting process, prior to the in-
169 person workshop. In this stage, experts rated each question on a scale from 1 to 10, where 1–3
170 indicated low relevance, 4–6 intermediate relevance, 7–9 high relevance, and 10 very high priority.
171 Participants were instructed to base their assessments primarily on their scientific knowledge and
172 expertise rather than on personal interest, while acknowledging that complete objectivity may not
173 be attainable. Based on the online voting results, 67 questions were selected according to a pre-
174 established consensus threshold of 50% agreement on high or very high priority, and these were
175 brought forward to the experts attending the 17th IRS. The prioritized research questions were
176 subsequently categorized into six themes for in-person voting. These themes broadly reflect major
177 ecological topics or methodological approaches. However, the boundaries between themes were
178 approximate as many questions span more than one area (Sutherland et al. 2012). This was done

179 because previous exercises had shown that sorting questions into themes too early might
180 unintentionally discourage cross-cutting perspectives and novel combinations of ideas.

181

182 Phase 3 consisted of an in-person workshop. All participants received the voting results and were
183 asked to reflect on the 67 most relevant questions prior to the meeting. However, changes in gender
184 balance and participant characteristics were expected during the 17th IRS due to logistical and
185 availability constraints not present in the online process. Participants were self-divided into seven
186 groups of 5–10 experts, with two groups assigned to *Community and Diversity* because this theme
187 contained the highest number of questions. Group leaders were chosen for the in-person
188 discussions and asked to ensure that the process remained democratic, with all views respected.

189 Within each group, experts were instructed to rank all questions as gold, silver, or bronze, without
190 limits on each type. Then, the group selected two gold, one silver, and one bronze questions. Votes
191 during the selection process of gold, silver, and bronze questions were used to understand group
192 consensus across each theme. Final decisions were made by a show-of-hands vote, requiring a
193 consensus threshold of 75% for the selection of gold, silver, and bronze questions. Questions that
194 did not reach consensus were retained in the final record to acknowledge areas of expert
195 disagreement and to reflect the current diversity of perspectives within rotifer ecology. Gold
196 questions generally reflected broad research across interdisciplinary topics. Silver questions
197 addressed important but more focused topics. Bronze questions captured research gaps that were
198 potentially overlooked but still considered essential by the group. A final plenary session then
199 determined the overall top-priority questions while also accounting for the feasibility to address
200 these questions.

201

202 All analyses were performed using R Statistical Software (v 4.4.2; R Core Team 2026). Boxplots
203 were used to summarize the distribution, central tendency, and variability of question scores by
204 theme. We tested whether mean question scores differed among themes using Welch's ANOVA,
205 which does not assume equal variances or balanced sample sizes. A Sankey diagram illustrates the
206 flow and relative importance of questions across themes, subthemes and priority levels.

207

208 **3. Results**

209

210 **3.1 Expert Panel**

211 The expert panel ($n = 37$) was geographically diverse but predominantly based in Europe, followed
212 by representation from South America and North America. Most participants specialized in
213 freshwater ecosystems and were senior researchers with over ten years of experience, indicating
214 strong disciplinary expertise, and there was limited early-career researcher input. Ethnic
215 representation was primarily white, with lower participation from underrepresented groups, and
216 the gender balance was slightly male-skewed (56.8% male, 40.5% female, 2.7% preferred not to
217 say) (Fig. 2).

218

219 **3.2 Priority questions**

220

221 Across themes, Communities and Diversity included the largest number of high-priority questions
222 (21 out of 35; 60% within this theme), consistent with it also having the largest number of
223 submitted questions. Although it had the lowest absolute number of questions, Human Impacts
224 and Global Change showed the highest within-theme proportion of high-priority classifications (5

225 out of 6; 83.3%). Methods also contained many high-priority questions (16 out of 23; 69.6%),
226 reflecting strong consensus on the need for methodological advances. Notably, *Methods* included
227 many high-priority questions, reflecting a strong consensus that methodological advances
228 (especially molecular tools, integrative approaches, and digital identification) are urgently needed
229 to support progress across all research areas. Several subthemes cluster strongly toward high
230 priority, including *Trait Evolution & Plasticity*, *Species Interactions*, *Functional Diversity*,
231 *Environmental Stressors*, *Molecular & Genetic Tools*, and *Biodiversity Patterns & Distribution*.
232 In contrast, *Morphology*, *Monitoring & Assessment*, and *Communication* show a higher proportion
233 of lower-priority classifications.

234

235 Consensus dynamics during Phase 3 varied across themes. Most themes (*Ecosystems and*
236 *Functioning*, *Evolution and Ecology*, *Methods*, *Populations*) reached full agreement on gold,
237 silver, and bronze questions. In contrast, *Communities and Diversity* showed internal
238 disagreement: one subgroup did not reach consensus on a gold question, likely reflecting
239 differences between monogonont-focused and bdelloid-focused researchers. The highest-scoring
240 question from the online voting round (Q05-What are the mechanisms behind the extreme
241 tolerance of bdelloid rotifers?) from *Ecosystems and Functioning* did not appear among the final
242 gold, silver, or bronze selections in the in-person workshop. This discrepancy illustrates how
243 expert-panel composition and in-person deliberation can shift perceived priorities. *Human Impacts*
244 and *Global Change* had only gold consensus questions, partly due to the smaller number of
245 questions generated in this theme and its broader conceptual diversity. Moreover, most gold
246 questions fell into the high-feasibility quadrant (Fig. 5). Some questions, however, were judged
247 high priority but low feasibility (e.g., Q32, Q71, Q53), indicating important topics that require

248 substantial methodological or conceptual advances. Only Q26 was rated highly feasible despite
249 being also considered of low priority, suggesting accessible research opportunities that are not
250 considered urgent.

251

252 From the full set of questions submitted by experts (see demographic composition in Fig. 2), the
253 67 questions that reached at least 50% agreement on their relevance during Phase 2 are listed below
254 by theme (Boxes 1-6), without implying rank. Mean scores (1–10 scale) varied among themes
255 (Fig. 3). Figure 4 visualizes how these questions assigned to the six initial themes were
256 redistributed according to their priority scores and then grouped into more specific subthemes for
257 Phase 3. The highlighted portion of Boxes 1–6 presents the questions selected during Phase 3;
258 these were evaluated for both relevance and feasibility, and their classification as gold, silver and
259 bronze reached at least 75% agreement (see Fig. 5). Note that for some questions, there may
260 already be some theoretical understanding, but empirical support for the theory is still lacking
261 across taxonomic groups or contexts. Differences between mean scores were small and confidence
262 intervals largely overlapped (Welch's ANOVA: $F_{5,26.977} = 1.17$, $p = 0.350$), indicating that all
263 themes received similarly high evaluations.

264

265 For each of the the six themes ($n = 100$ questions), the share of high-priority questions were as:
266 *Communities and Diversity* 60% ($n=35$); *Ecosystems and Functioning* 72.7% ($n=11$); *Evolution*
267 and *Ecology* 58.3% ($n=12$); *Human Impacts and Global Change* 83.3% ($n=6$); *Methods* 69.6%
268 ($n=23$); *Populations* 76.9% ($n=13$).

269

270 ***Communities and Diversity***

271

272 Diversity within rotifer communities encompass taxonomic, functional and genetic dimensions,
273 serving as indicators of environmental change and providing insights into ecological processes
274 across space and time (Wallace 2002; Obertegger et al. 2011; Kuczynska-Kippen et al. 2021;
275 Wallace et al. 2021). However, rotifers seem to be nearly ubiquitous, occurring in environments
276 ranging from permanent systems to temporary habitats only lasting a few days, which makes it
277 difficult to fully characterize the diversity and structure of their communities (Wallace 2006;
278 Segers 2007). This vast array of habitats suggests that we take a different approach to understand
279 their communities. We could, for example, (1) consider the relative importance of qualitative
280 versus quantitative differences in the structure of rotifer communities, (2) analyze the distribution
281 of the physical and metabolic traits that they possess across their habitats, and (3) evaluate their
282 capacity for rapid evolution within the diversity of the environments in which they are found.
283 Alongside the need for new approaches, several knowledge gaps persist. These include limited
284 spatial and temporal coverage, biases on methodological approaches, scarce information on
285 functional and genetic diversity, limited understanding of biotic interactions and responses to
286 multiple stressors. These shortcomings hinder our ability to generalize patterns, compare studies
287 across regions, and link community changes to ecosystem processes. Among the most pressing
288 topics, experts emphasize the need for intergenerational transfer of taxonomic knowledge,
289 ensuring the detection of cryptic diversity and production of comparable inventories (Q71, Box 1).
290 Moving towards trait- and interaction-based frameworks is equally essential, as these processes
291 underpin structure communities and ecosystem functioning (Q97), and how environmental
292 stressors may reshape their communities (Q18) and affect their roles in ecosystem processes (Q26).
293 Rotifer diversity research also has an interdisciplinary component, as patterns and processes

294 observed in rotifers can inform broader questions in other fields of research, such as ecology and
295 evolution. Similarly, the identification of reliable bioindicators and trait-based metrics (Q89) has
296 direct relevance for ecosystem monitoring and management across aquatic habitats.

297

**Box 1. Selected questions in the Community and Diversity theme after Phase 2. Ranked
questions resulting from Phase 3 are highlighted in orange.**

Q12. How can we interpret and resolve the concept of cosmopolitanism among rotifer species?
(Gold)

Q18. What are the effects of multiple environmental stressors on rotifer development and
community structure? (Gold)

Q71. What strategies can sustain intergenerational transfer of taxonomic expertise in rotifer
research? (Gold)

Q97. What types of ecological interactions occur between rotifers and other organisms, and
how do these interactions affect community structure and ecosystem functioning? (Gold)

Q26. What are the effects of specific environmental stressors (e.g., increased temperature,
nutrient enrichment, or emerging contaminants) on rotifer community functional traits and
their contribution to ecosystem processes in freshwater environments? (Silver)

Q89. Which rotifer species or trait-based groups serve as effective bioindicators in lakes and
reservoirs, and which environmental gradients drive their patterns? (Silver)

Q22. Does global rotifer biodiversity reflect the biodiversity of species commonly used as
indicators of environmental degradation? (Bronze)

Q91. Which quantifiable traits best represent rotifer functional diversity across diverse aquatic

habitats? (Bronze)

Q08. Why has the number of rotifer species recorded in Latin America remained low, and what factors (e.g., sampling bias, taxonomic effort) explain this pattern?

Q14. How do taxonomic and functional diversity patterns of rotifer communities vary across environmental gradients and biogeographic regions, and what ecological or evolutionary factors explain these patterns?

Q14. What is the most appropriate framework to analyze beta diversity in rotifers: species contributions (SCBD) or local contributions (LCBD)?

Q15. What are the environmental drivers that shape beta and functional diversity of rotifers across different regions?

Q17. How do rotifer communities respond to rapid environmental change compared to crustaceans like copepods and Daphnia?

Q23. Which rotifer community metrics (e.g., diversity, dominance, trophic interactions) are most sensitive to early biodiversity loss caused by pond desiccation and habitat fragmentation?

Q29. How does cryptic diversity in monogonont rotifers vary between molecular and morphological assessments, and what does this reveal about species richness?

Q30. How many rotifer species likely exist globally, considering cryptic diversity and sampling gaps?

Q31. How does the scale of cryptic diversity differ between monogonont and bdelloid rotifers, considering their reproductive and genetic systems?

Q39. How does spatial connectivity influence rotifer species or genotype exchange across freshwater metacommunities, and how can mesocosm experiments simulate this?

Q50. How does environmental changes affect the expression of plastic traits in species complexes (e.g., *Brachionus calyciflorus*)?

Q90. Which rotifer taxonomic or functional groups respond most sensitively to water quality degradation in rivers and streams, and how can they serve as bioindicators?

Q94. How do anthropogenic actions alter rotifer functional diversity in streams and ponds?

298

299 ***Ecosystems and Functioning***

300

301 Rotifers often dominate aquatic ecosystems in abundance and play a central role in nutrient cycling
302 and energy transfer through microbial food webs. They connect detritus, bacteria, algae, and other
303 microorganisms to higher consumers such as crustaceans, insect larvae, and small fishes. With
304 their high reproductive capacity and short generation times, rotifers can form large populations in
305 response to fluctuations in food availability, facilitating the efficient use of ephemeral or newly
306 available resources (Walz 1987; Gilbert 2022). Their extensive morphological and functional
307 diversity (Obertegger and Flaim 2015; Balkić et al. 2017; Obertegger and Wallace, 2023) allows
308 them to inhabit a wide range of aquatic systems from temporary ponds to oligotrophic and
309 eutrophic lakes, making them ideal models for studying ecosystem responses to disturbance.
310 Functional approaches have improved our understanding of zooplankton ecology (Branco et al.
311 2023), including links between rotifer feeding guilds and land use in tropical streams (Bomfim et
312 al. 2023). However, the integration of frameworks combining response and effect traits (Hébert et
313 al. 2017) remains limited (Huỳnh et al. 2024), leaving several major questions open. Relevant
314 knowledge gaps concern how environmental stressors and anthropogenic disturbances reshape
315 rotifer functional traits, community structure, and trophic roles (Q21, Q87, Box 2), how short- and

316 long-term climate variability influences community resilience (Q25), and how rotifers contribute
317 to energy transfer in tropical food webs (Q86). However, without a joint implementation across
318 spatial and temporal scales of response-and-effect trait frameworks that meaningfully connect
319 rotifers to ecosystem functioning, these key questions will remain partly unanswered.

320

Box 2. Selected questions in the Ecosystems and Functioning theme after Phase 2.

Ranked questions resulting from Phase 3 are highlighted in purple.

Q21. What are the effects of specific environmental stressors (e.g., temperature, nutrients, contaminants) on rotifer functional traits and their contribution to ecosystem processes? (Gold)

Q87. How do anthropogenic disturbance gradients shape the functional composition and trophic roles of rotifer communities in freshwater and transitional systems? (Gold)

Q25. To what extent does the structure of rotifer communities reflect short-term versus long-term climate-induced changes in small aquatic ecosystems? (Silver)

Q86. How do rotifers contribute to energy transfer and trophic dynamics in tropical stream food webs? (Bronze)

Q005. What are the mechanisms behind the extreme tolerance of bdelloid rotifers?

Q055. How does desiccation duration affect hatching success and development time in rotifer resting eggs with different life-history strategies?

Q56. What molecular and physiological mechanisms enable rotifer resting stages to survive desiccation, and how do these mechanisms differ among taxa from contrasting hydrological regimes?

Q57. Which morphological traits of rotifer resting eggs predict delayed hatching or reduced viability across environmental gradients (e.g. salinity, nutrients)?

326 Evolutionary aspects within a taxon of interest have been the focus of several lines of research
327 across the whole tree of life: most taxa have now reliable phylogenies that allow addressing clear
328 questions to, for example, disentangle effects of interspecific relationships, including for birds
329 (Stoddard et al. 2017), mammals (DeCasien et al. 2017), and spiders (Hopfe et al. 2024). For
330 rotifers, early phylogenetic studies did not manage to provide unambiguous relationships (Melone
331 et al. 1998; Sørensen and Giribet, 2006), and the current use of phylogenomics did not improve
332 the situation (Vasilikopoulos et al. 2024; Herlyn et al. 2025). Without a reliable phylogeny, most
333 of the relevant questions highlighted by the panel of experts cannot be addressed, given the
334 potential confounding factor of evolutionary relationships in cross-taxa comparative analyses
335 (Garamszegi 2014). Without improving conceptual and comparative phylogenetic frameworks,
336 many key evolutionary questions such as those addressing the genetic and ecological mechanisms
337 underlying bdelloid speciation and adaptation (Q32, Q36, Box 3), the evolutionary role of
338 homologous and horizontal gene transfer in asexual lineages (Q068, Q78), and the phylogenetic
339 structure and morphological innovation within the group (Q96), remain unresolved.
340 Notwithstanding such limitation, there is a broad interest in eco-evolutionary aspects of rotifers,
341 especially related to their peculiar reproductive biology, the ability to survive desiccation, and the
342 high level of horizontal gene transfer.

343

**Box 3. Selected questions in the Evolution and Ecology theme after Phase 2. Ranked
questions resulting from Phase 3 are highlighted in red.**

Q32. What are the main ecological or genetic mechanisms driving speciation in bdelloid
rotifers? (Gold)

Q36. Which genetic mechanisms enable rotifers to adapt to changes in salinity? (Gold)

Q78. Why are horizontally transferred genes so common and successfully integrated in bdelloid rotifers? (Silver)

Q96. What parasites and epibionts infect rotifers, how specific are these associations, and what are their impacts on host fitness? (Bronze)

Q68. In the absence of sexual recombination, how do alternative forms of homologous recombination contribute to adaptation in bdelloids?

Q79. How can phylogenetic relationships among rotifers inform our understanding of organ system evolution and morphological innovation?

Q80. What is the current phylogenetic structure of rotifers, and which clades are most closely related?

344

345 ***Human Impacts and Global Change***

346

347 Anthropogenic pressures such as habitat degradation, biological invasions, and contamination are
348 among the most severe threats to biodiversity. Disturbance often reduces native populations,
349 disrupts trophic links, and accelerates community-wide biodiversity loss (Molinero et al. 2006).

350 Yet much less is known about the effects of urbanization on microscopic animals, which may
351 respond in different and sometimes unpredictable ways (Macêdo et al. 2020; Partemi et al. 2024;

352 Han et al. 2025). These impacts generate many important questions (Q38–Q42). Anthropogenic
353 pressures have created novel selective forces favoring pollution-tolerant rotifer species while

354 destabilizing population dynamics, highlighting the need for robust quantification of the strength
355 and direction of these responses. Key questions include how multiple stressors jointly affect rotifer

356 development and reproduction (Q61, Box 4), how sensitive rotifers are to environmental and
357 contaminant gradients across regions (Q04), and how such responses link to functional traits. An
358 underappreciated dimension of global change is the biological invasion of microorganisms, with
359 potentially far-reaching consequences (Macêdo et al. 2022; Oesterwind et al. 2025). Current
360 understanding remains limited, risking misinterpretation and misuse of jargon in the field (Oliveira
361 et al. 2019; Arcifa et al. 2020), with broad hypothesis testing still uncommon (Branco et al. 2023).
362 This raises further questions about how rotifer abundance and diversity shift after invasions and
363 the mechanisms underlying these changes (Q100). Meanwhile, wastewater treatment systems
364 reveal the dual roles of rotifers as bioindicators and as active agents in remediation (Pajdak-Stós
365 et al. 2023; Soto et al. 2019), prompting questions about the effectiveness of rotifer-based indices
366 in detecting subtle shifts in water quality (Q16) and their contributions to nutrient recycling and
367 microbial regulation in reuse-oriented systems (Q84).

368

Box 4. Selected questions in the Human Impacts and Global Change theme after Phase 2.

Ranked questions resulting from Phase 3 are highlighted in grey.

Q84. How do rotifer communities influence nutrient recycling and microbial regulation in reuse-oriented systems like wastewater or agricultural reservoirs? (Gold)

Q100. How does rotifer abundance and diversity change in response to invasive species introductions, and what mechanisms underlie these responses? (Gold)

Q61. How do multiple environmental stressors affect rotifer development, survival, and reproduction across taxa? (Silver)

Q04. How sensitive are bdelloid rotifers to environmental stressors (salinity, temperature) and contaminants (e.g., metals, emerging contaminants), and are there locality-specific differences (e.g., Antarctic vs. Tropical)?

Q16. How effective are rotifer-based bioindicator indices in detecting subtle shifts in water quality across gradients of anthropogenic impact?

369

370 **Methods**

371

372 Both accurate identification and delimitation of species is crucially important to rotifer research.
373 In the past, most researchers received taxonomic instruction from other researchers. Unfortunately,
374 the number of rotifer taxonomists is declining, thus the opportunity for students to receive adequate
375 training is nearly non-existent (Wallace et al. 2024). To build capacity and competency among
376 new researchers, rotiferologists need to explore novel and efficient approaches (Q42, Box 5). A
377 related issue is the need of assessing many samples rapidly and accurately. Artificial Intelligence
378 tools may have the capacity to do this, but we need to have the procedures developed and tested
379 and then made available at reasonable cost (Wallace et al. 2024) (Q46). Associated with accurate
380 identification of species is the use of molecular data in two areas: (1) Appropriate genetic markers
381 are needed to advance identification of species, so that changes in community structure can be
382 monitored (eDNA) (Papakostas et al. 2016; Fröbius and Funch 2017) (Q35). (2) Genetic and
383 morphological data should be integrated to advance phylogenetic studies. Ideally, a suite of genes
384 including highly conserved, variable, and trait-specific genes for genetic studies is needed (Wilke
385 et al. 2020) (Q34).

386

Box 5. Selected questions in the Methods theme after Phase 2. Ranked questions resulting from Phase 3 are highlighted in yellow.

Q34. What steps are required to link molecular sequence data with morphological traits in rotifers? (Gold)

Q46. Which tools or AI-assisted programs can support accurate rotifer species identification, and how can their efficiency be evaluated? (Gold)

Q35. What are the appropriate genetic markers for using eDNA in rotifer detection and monitoring? (Silver)

Q42. What educational tools are most effective for training new researchers in rotifer taxonomy and identification? (Bronze)

Q27. How do species within rotifer species complexes differ genetically and ecologically, and how can integrative methods (e.g., sequencing and habitat-based experiments) clarify their species status?

Q33. How can eDNA tools be used to detect cryptic rotifer diversity?

Q37. What empirical or modeling approaches best estimate rotifer dispersal rates across freshwater habitats, and how do estimates vary by environment type?

Q40. What are the key barriers to accurate rotifer species identification in potentially high diverse regions (e.g., Australia and the Neotropics), and how can they be overcome through targeted training or integrative methods?

Q45. What strategies can address the shortage of trained rotifer taxonomists in tropical regions, and how can this gap be sustainably filled?

Q44. Which PCR primers are most effective for amplifying rotifer DNA, and how do they perform across clades?

Q60. What are the molecular and physiological mechanisms underlying transgenerational plasticity in sexual reproduction in monogonont rotifers?

Q69. How can integrative approaches combining taxonomy, molecular tools, and ecological data accelerate rotifer biodiversity research?

Q72. How can a digital platform be built to compile and update historical literature on rotifers, including rare publications?

Q76. What are the genomic consequences of DNA damage and repair during anhydrobiosis in bdelloid rotifers?

Q88. How can standardized quantification of rotifer functional traits improve detection of anthropogenic impacts in small water bodies?

Q95. What mechanisms maintain the stable coexistence of multiple rotifer species in shared aquatic environments?

387

388 *Populations*

389

390 Using rotifer population dynamics to infer abiotic and biological drivers remains a core task in
391 ecological and evolutionary research (Gilbert 1988; Lemmem et al. 2022; Réveillon and Becks,
392 2024). Recent studies show that rapid evolution and phenotypic plasticity can feed back on
393 population dynamics even across short environmental gradients (Tarazona et al. 2019; Ramos-
394 Rodríguez et al. 2020). This is especially clear in traits tied to persistence (e.g., resting egg banks,
395 parthenogenesis, and dormancy timing), where small changes in hydroperiod or temperature can

396 alter cohort structure and long-term resilience. How environmental variability (e.g., hydroperiod
397 fluctuations) affects the evolution of diapause traits in rotifers, and how this influences long-term
398 population persistence, remains a key question (Q53, Box 6). While correlative studies have
399 documented associations between environmental variables and community composition,
400 mechanistic understanding of such causal pathways driving population responses remains limited.
401 For instance, understanding why bdelloid rotifers give birth to live young, and what adaptive
402 advantages this confers in Antarctic environments (Q07), highlights how life-history traits may be
403 causally linked to environmental constraints. This shift toward causal frameworks is critical
404 because our ability to predict how rotifer assemblages will respond to global warming based on
405 their diversity and distribution (Q24) will determine our capacity to forecast ecosystem functioning
406 under novel conditions. Likewise, assessing whether geographically separated populations of the
407 same rotifer species exhibit niche conservatism across environmental gradients (Q09) is essential
408 for predicting their responses to environmental change. Such understanding is also important to
409 evaluate the impact of invasive species on different local communities (Haubrock et al. 2024).
410 Numerous studies on rotifers over almost a century have generated sufficient knowledge to apply
411 them in fields such as aquaculture and ecotoxicology. However, basic research on their
412 demography remains restricted to a few taxa such as *Brachionus calyciflorus* Pallas, 1776, *B*
413 *plicatilis* Müller, 1786, *B. rubens* Ehrenberg, 1838, and *Plationus patulus* Müller, 1786 (Lemmem
414 et al. 2022; Réveillon and Becks 2024). As a consequence, these species have become
415 indispensable as food for larval stages in aquaculture or as bioassay organisms, while the potential
416 of many other rotifer taxa, especially littoral species, has largely been neglected (e.g., in bioassays
417 of toxicants that tend to sink to the bottom of ponds, lakes, and reservoirs).
418

Box 6. Selected questions in the Populations theme after Phase 2. Ranked questions resulting from Phase 3 are highlighted in blue.

Q53. How does environmental variability (e.g. hydroperiod fluctuations) affect the evolution of diapause traits in rotifers, and how does this influence long-term population persistence? (Gold)

Q09. Do geographically separated populations of the same rotifer species exhibit niche conservatism across environmental gradients? (Silver)

Q24. How well can rotifer community responses to global warming be predicted from diversity and distribution? (Silver)

Q07. Why do bdelloid rotifers give birth to live young, and what adaptive advantages does this confer in Antarctic environments? (Bronze)

Q10. What is the influence of climate change and new environmental conditions on the current distribution and abundance of rotifer species?

Q11. How have historical and evolutionary processes shaped the geographic distribution patterns of rotifers?

Q28. What is the extent and distribution of cryptic speciation across the rotifer phylum, and how can it be quantified?

Q38. How does dispersal of rotifers among connected freshwater habitats influence nutrient cycling and productivity in metacommunity frameworks?

Q52. Is population differentiation in rotifers driven more by isolation by distance or by environmental differences?

Q59. Which environmental cues or stressors trigger male production in rotifers, and how do these vary across habitats and taxa?

419

420 **4. Discussion**

421

422 **4.1 Knowledge gaps and a hypothesis-driven future**

423

424 Despite substantial advances in rotifer research, key gaps persist. The lack of reliable phylogenies
425 is a major limitation for addressing evolutionary questions. Moreover, translating high-priority
426 questions into testable hypotheses requires further effort. Persistent divergences in consensus,
427 especially in *Evolution and Ecology*, suggest the need for more diverse approaches. These
428 findings, together with the wide yet uneven international engagement observed in our research
429 network (Fig. 2), reflect demographic biases common across ecological research (Tydecks et al.
430 2018). They also reveal that perceived research priorities vary across thematic areas, with stronger
431 agreement in areas such as *Human Impacts and Global Change* and *Methods*, and more divergent
432 views in *Ecosystems and Functioning*. Addressing these limitations will strengthen rotifer research
433 and align the field with global scientific challenges.

434

435 One of the most significant challenges in rotifer research pertains to fundamental questions about
436 their diversity and distribution. For instance, the persistently low number of rotifer species
437 recorded in Latin America raises questions about underlying factors such as sampling bias and
438 taxonomic effort (Fontaneto et al. 2012). This points to a broader issue of understanding global
439 rotifer biodiversity, especially when considering the pervasive nature of cryptic diversity within

440 rotifers and the potential for many species to remain undiscovered globally. The findings of this
441 study contribute to illuminating these gaps, and planning scenarios for continuous taxonomic effort
442 in multiple geographic regions, habitats and microhabitats. Implementing modern techniques will
443 be essential for achieving a more accurate assessment of the full biodiversity of Rotifera.

444

445 A core objective of this initiative is to move beyond descriptive research towards a more
446 hypothesis-driven future. By clearly articulating fundamental questions, this study lays the
447 groundwork for generating testable hypotheses. For instance, questions about the mechanisms
448 driving speciation in bdelloid rotifers (Q32/Gold) or the genetic basis of adaptation to salinity
449 changes (Q36/Gold) directly invite the formulation and empirical testing of specific hypotheses.
450 Similarly, e investigations how multiple environmental stressors affect rotifer development
451 (Q61/Silver) and community structure (Q18/Gold) necessitate the development of predictive
452 hypotheses that can be empirically evaluated. This shift is crucial for advancing rotifer biology
453 from a phase of observation and description to one of mechanistic understanding and predictive
454 power. Rotifers have the potential to serve as bioindicators of ecosystem health and can actively
455 improve water quality. Recent studies (Davis et al. 2015; Pajdak-Stós et al. 2020) have
456 demonstrated that certain rotifer taxa can significantly influence the composition of algal
457 communities, including the suppression of harmful cyanobacterial blooms and toxin-producing
458 species such as *Prymnesium parvum*. Their rapid reproduction, extensive grazing and tolerance of
459 changing environmental conditions make them promising organisms for biomanipulation and
460 ecological restoration strategies. This shift redefines rotifer research, expanding its focus beyond
461 traditional monitoring and bioindicator roles to include the protection of aquatic ecosystem
462 functioning and resilience.

463 Future plans to address priority questions in Rotifera research involve a strategic plan focusing on
464 collaboration, funding, and dissemination, particularly between triennial IRS. Key initiatives
465 include forming thematic working groups to translate questions into research, seeking targeted
466 funding for collaborative proposals and taxonomist training, and promoting collaborations through
467 webinars, virtual meetings, inter-symposium workshops, a digital collaboration platform, and
468 researcher exchange programs. These efforts aim to advance research cohesively, address
469 fundamental questions effectively, and enhance rotifers' relevance in ecology and conservation.

470

471 **4.2 Philosophical dimensions**

472

473 Our analysis of the 67 expert-selected research questions on rotifers (>50% consensus) showed
474 that several had a philosophical dimension, touching on ontology, epistemology, and axiology
475 (ethical and value-related questions), as outlined by Heger et al. (2024) who demonstrated the
476 relevance of philosophical approaches to ecology. Ontological concerns, which deal with what
477 exists and how it is connected, can be seen in Q22 (“Does global rotifer biodiversity reflect the
478 biodiversity of species commonly used as indicators of environmental degradation?”) and in the
479 more fundamental issue of “What constitutes a rotifer community?” implied in Q26 and Q97.
480 Rotifer studies often rely on community definitions and biodiversity indicators that lack
481 standardization or are based on subjective criteria and challenging definitions (Sládeček 1983;
482 Fontaneto et al. 2007).

483

484 Epistemological challenges, concerning what we know and how we know it, are raised by Q25
485 (“To what extent does the structure of rotifer communities reflect short-term versus long-term

486 climate-induced changes?”), which points to problems of temporal scale, and by Q78 (“Why are
487 horizontally transferred genes so common and successfully integrated in bdelloid rotifers?”),
488 which highlights issues of explanatory adequacy and levels of explanation. Other epistemological
489 questions address methodological and conceptual issues. Q34 (“What steps are required to link
490 molecular sequence data with morphological traits in rotifers?”) exemplifies methodological
491 pluralism by demanding the integration of molecular evidence, which captures processes at the
492 level of genes and sequences, with morphological traits that emerge at higher levels of biological
493 organisation. Q46 (“Which tools or AI-assisted programs can support accurate rotifer species
494 identification?”) and Q71 (“What strategies can sustain intergenerational transfer of taxonomic
495 expertise in rotifer research?”) highlight a growing tension between tacit, experience-based
496 expertise and emerging technological approaches. In this sense, both questions reflect deeper
497 epistemological debates about how scientific communities adapt to technological change and how
498 knowledge persists (or is lost) across generations. These questions extend beyond improving
499 identification: they ask whether taxonomic expertise can be formalised and delegated to algorithms
500 or whether it remains embodied knowledge requiring mentorship.

501

502 At the same time, these questions also carry axiological and ethical implications, as an increasing
503 reliance on AI reshapes whose expertise is valued, how authority is distributed, and what levels of
504 transparency are acceptable in ecological practice. AI may expand data-processing capacity but
505 also alters standards of evidence, accountability, and trust (Macêdo et al. 2023; Lu et al. 2025).
506 Ethical and value-related aspects are also evident, for example, in Q100 (“How does rotifer
507 abundance and diversity change in response to invasive species introductions?”), where the use of
508 the term “invasive” rather than “non-native” has conservation and management implications (see

509 Soto et al. 2024). For further examples illustrating how ecological research engages with
510 ontological, epistemological, and axiological issues, see Table 1 in Heger et al. (2025).

511

512 **4.3 Model organisms**

513

514 The 67 high-priority questions did not usually target individual species, but rather broader
515 taxonomic groups. Only *Brachionus* Pallas, 1776, specifically *B. calyciflorus*, appeared in two
516 questions focused on how environmental changes affect the expression of plastic traits within
517 species complexes (Q50 and Q74). This reflects a critical research direction that leverages well-
518 studied, phenotypically flexible species to understand adaptation in the face of climate change and
519 environmental variability. Additionally, there are no high-priority questions specific to
520 acanthocephalans or seisonids. Bdelloidea (mentioned eight times) and Monogononta (three times)
521 also highlight pervasive interest in these groups. Interest in bdelloid rotifers stems from their
522 extreme physiological tolerance, and the need to explain unique traits such as DNA repair during
523 anhydrobiosis, the high incidence of horizontal gene transfer, and their responses to environmental
524 stress and contaminants. Questions on monogonont rotifers, by contrast, often focused on resolving
525 cryptic diversity and speciation, and on the molecular and physiological bases of transgenerational
526 plasticity in sexual reproduction. Broader groups within Rotifera (see Sørensen and Giribet, 2006),
527 including acanthocephalans and seisonids, were not specifically mentioned in any of the priority
528 questions. Although bdelloid rotifers were specifically mentioned more frequently, many of the
529 questions were only relevant to monogonont rotifers and not the broader phylum (e.g. resting eggs
530 - Q55, Q56, Q57; male production - Q59; diapause - Q53, Q66).

531

532 **4.4. De-colonizing Rotifera research**

533 Reliance on expert elicitation can introduce geographical and disciplinary biases, particularly
534 when certain regions or research traditions are over-represented. To amplify voices from
535 historically underrepresented regions will strengthen the field and foster a more just, inclusive, and
536 globally relevant vision for Rotifera research.

537

538 As in other research areas where persistent global inequities have been documented (e.g. Tydecks
539 et al. 2018; Jian et al. 2025), our Delphi process also reflected imbalances. Experts working in
540 freshwater ecosystems and researchers based in Europe and North America constituted the
541 majority of contributors. Notably, no experts from the African continent participated, potentially
542 reinforcing pre-existing geographic blind spots. At the same time, the workshop for Phase 3 of the
543 Delphi process was held during the 17th IRS in Rio de Janeiro, the first time the IRS was hosted
544 in the southern hemisphere. This location enabled unprecedented participation from researchers in
545 South America, Central America, and the Caribbean, reducing common barriers to attendance and
546 promoting greater regional representation in the consensus process. Such expanded participation
547 is important because some research priorities—especially those concerning under-studied
548 regions—may be overlooked when shaped predominantly by Global North perspectives. For
549 instance, questions on rotifer diversity in Latin America (e.g., Q08), where sampling bias and
550 limited taxonomic capacity strongly influence recorded species richness (López et al. 2025), might
551 not surface as priorities without meaningful regional insight. By encouraging readers to examine
552 the full list of 100 questions (Table S1), we aim to draw attention to topics that may have received
553 fewer votes not because of low relevance, but because of limitations in participation, framing, or
554 disciplinary familiarity.

555 Our study also revealed a gender imbalance among contributors in both Phases 1 and 2, with men
556 representing a higher proportion of respondents (16% difference; Fig. 2), whereas gender parity
557 was achieved during the in-person deliberation of Phase 3. The male bias in early phases likely
558 reflects the predominantly male demographics at the education and career stages represented. This
559 pattern mirrors well-documented structural inequities in academia, where women –although
560 dominating student levels – remain underrepresented in senior and decision-making positions (Ceci
561 et al. 2014; Wellenreuther and Otto 2016; Débarre et al. 2018; Salerno et al. 2019). Achieving
562 parity in Phase 3 contrasted with typical trends and may relate to the fact that the 17th IRS was
563 organized by a woman, as gender of organizers and senior authors strongly predicts the gender
564 balance among participants (Débarre et al. 2018; Salerno et al. 2019). Such disparities are not only
565 a matter of fairness; the composition of contributors can shape research agendas and determine
566 whose perspectives influence scientific interpretation (Brizga et al. 2025; Débarre et al. 2018;
567 Salerno et al. 2019). While the potential influence of the observed male bias on Rotifera research
568 priorities was not assessed here, it may be an interesting consideration for future studies. More
569 broadly, identity-based exclusion—including gender, LGBTQIA+ identity, or socio-economic
570 constraints—can reduce both creativity and productivity in science, and is exacerbated by barriers
571 such as event affordability and accessibility (Tulloch 2020). Although our questionnaire captured
572 only three gender options, acknowledging these biases and monitoring representation helps
573 support more inclusive and diverse research agendas. We recognize that equity is only one
574 dimension of diversity, but addressing it is a meaningful step toward broader inclusion in scientific
575 knowledge production (Débarre et al. 2018; Tulloch 2020).

576

577

578 **4.5. Conservation efforts**

579 Small waterbodies and shallow lakes often carry high species richness (Smolak and Walsh 2022),
580 yet many of them are highly vulnerable to human impacts. Some of them are left to dry and
581 converted for agriculture, real-estate development, or other human land uses. Larger waterbodies
582 are not exempt from such pressures, and many waterbodies host endemic species and type
583 localities (Kuczyńska-Kippen et al. 2025). Their loss results in a critical loss of biodiversity – in
584 many cases biodiversity that was gone before it could have been detected and described. Such
585 cases also cause serious gaps in our understanding of natural taxonomic diversity. Poorly studied
586 systems, for example in South America, exacerbate this knowledge deficit in rotifer diversity
587 (Q08), and reliance on extraterritorial material may also lead to underestimation of the true species
588 richness within a given waterbody (Q42).

589 Conservation efforts targeting waterbodies with high species richness, high endemic taxa, or type
590 localities should involve public engagement and local governmental support (Q87). Rotifer
591 research is often hidden in limnological studies, meaning that national and international
592 conferences may carry valuable information on unique freshwater habitats that may go unnoticed.
593 Therefore, systematically compiling available data from such sources could substantially enhance
594 our understanding of rotifer diversity and support the preservation of waterbodies that harbour
595 exceptional biological value.

596

597 **Conclusion**

598

599 By leveraging a comprehensive Delphi process, our study has synthesized the collective expertise
600 of the international rotifer community to identify and prioritize fundamental questions guiding

601 rotifer research. While not intended as an exhaustive list, it represents a collective snapshot of the
602 field's current priorities and emerging directions, offering a curated roadmap for students,
603 researchers, funding agencies, and environmental policy. Our aim was to stimulate new
604 collaborations and interdisciplinary research, fostering the formulation and testing of new
605 hypotheses, and promoting integration of rotifer studies into broader ecological and evolutionary
606 contexts.

607

608 **Author Contributions**

609 Conceptualization: Rafael L. Macêdo, Gissell Lacerot and Jonathan M. Jeschke. Investigation,
610 methodology, validation: Rafael L. Macêdo, Gissell Lacerot and Jonathan M. Jeschke. Data
611 curation: Rafael L. Macêdo and Gissell Lacerot. Formal analysis: Rafael L. Macêdo. Writing—
612 original draft: Rafael L. Macêdo. Visualization: Rafael L. Macêdo, Gissell Lacerot, Carlota
613 Solano-Udina, Melanie D. Borup, Marco Antonio Jiménez-Santos, Diego Fontaneto. Writing—
614 review and editing: All authors wrote sections of the Results and Discussion and critically
615 reviewed and edited the entire manuscript.

616

617 **Acknowledgements**

618 We thank all researchers who participated in the surveys of the initial research questions and voted
619 during both online and in-person phases. Our deep gratitude to the organization committee of the
620 17th International Rotifer Symposium for hosting the workshop. MAJS thanks to Secretaría de
621 Educación, Ciencia, Tecnología e Innovación de la Ciudad de México, Mexico.

622

623 **Conflict of Interest**

624 None declared.

625

626 **Data Availability Statement**

627 The data that supports the findings of this study are available in the supplementary material of
628 this article.

629 **References**

630 Arcifa, M. S., B. B. de Souza, C. S. de Moraes-Junior, A. C. de S. Franco, J. R. Lima, and L. F. M.
631 Velho. 2020. Functional groups of rotifers and an exotic species in a tropical shallow lake. Sci.
632 Rep. 10: 14698. <https://doi.org/10.1038/s41598-020-71778-1>

633 Arndt, H. 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic
634 flagellates, ciliates)—a review. *Hydrobiologia* 255: 231–246.
635 <https://doi.org/10.1007/BF00025844>

636 Balkić, A. G., I. Ternjej, and M. Špoljar. 2017. Hydrology-driven changes in the rotifer trophic
637 structure and implications for food web interactions. *Ecohydrology* 11: e1917.
638 <https://doi.org/10.1002/eco.1917>

639 Bomfim, F. F., S. Deosti, N. Louback-Franco, R. L. M. Sousa, and T. S. Michelan. 2023. How are
640 zooplankton's functional guilds influenced by land use in Amazon streams? *PLoS One* 18:
641 e0288385. <https://doi.org/10.1371/journal.pone.0288385>

642 Branco, C. W. C., C. M. Leitão, D. F. Carvalho, R. L. Macêdo, M. Garrafoni, C. Bonecker, and E. J.
643 Walsh. 2023. A review of functional approaches for the study of freshwater communities with a
644 focus on zooplankton. *Hydrobiologia*. <https://doi.org/10.1007/s10750-023-05227-1>

645 Branco, C. W. C., L. C. Santos-Cabral, B. Kozlowsky-Suzuki, R. L. Macêdo, T. S. Michelan, and M.
646 M. Petrucio. 2024. Persistence of the non-native *Kellicottia bostoniensis* (Rousselet, 1908) in a
647 large tropical reservoir. *Hydrobiologia* 851: 3039–3060. <https://doi.org/10.1007/s10750-023-05295-3>

649 Brizga, S. O., F. C. Aguiar, C. S. Pavanelli, and M. Ilhéu. 2025. Editorial: Women at the frontier of
650 freshwater science. *Front. Environ. Sci.* 13: 1672849.
651 <https://doi.org/10.3389/fenvs.2025.1672849>

652 Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. 2014. Women in academic science: A
653 changing landscape. *Psychol. Sci. Public Interest*, 15(3), 75–141.

654 Chen, Z., M. Du, X.-D. Yang, W. Chen, Y.-S. Li, C. Qian, and H.-Q. Yu. 2023. Deep-learning-based
655 automated tracking and counting of living plankton in natural aquatic environments. *Data
656 Science* (May 19, 2023).

657 Davis, S. L., D. L. Roelke, B. W. Brooks, V. M. Lundgren, F. Withrow, and W. C. Scott. 2015.
658 Rotifer–Prymnesium parvum interactions: role of lake bloom history on rotifer adaptation to
659 toxins produced by *P. parvum*. *Aquat. Microb. Ecol.* 75: 55–68.
660 <https://doi.org/10.3354/ame01748>

661 Débarre, F., Rode, N. O., & Ugelvig, L. V. 2018. Gender equity at scientific events. *Evol. Lett.*, 2(3),
662 148–158.

663 DeCasien, A., S. Williams, and J. Higham. 2017. Primate brain size is predicted by diet but not
664 sociality. *Nat. Ecol. Evol.* 1: 0112. <https://doi.org/10.1038/s41559-017-0112>

665 Declerck, S. A. J., and S. Papakostas. 2017. Monogonont rotifers as model systems for the study of
666 micro-evolutionary adaptation and its eco-evolutionary implications. *Hydrobiologia* 796: 131–
667 144. <https://doi.org/10.1007/s10750-016-2782-y>

668 Dumont, H. J. 1983. Biogeography of rotifers. *Hydrobiologia* 104: 19–30.
669 <https://doi.org/10.1007/BF00045948>

670 Ejsmont-Karabin, J. 2012. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic
671 state index. *Pol. J. Ecol.* 60: 339–350.

672 Enders, M., F. Havemann, F. Ruland, M. Bernard-Verdier, J. A. Catford, L. Gómez-Aparicio, S.
673 Haider, T. Heger, C. Kueffer, I. Kühn, L. A. Meyerson, C. Musseau, A. Novoa, A. Ricciardi, A.
674 Sagouis, C. Schittko, D. L. Strayer, M. Vilà, F. Essl, P. E. Hulme, M. van Kleunen, S. Kumschick,
675 J. L. Lockwood, A. L. Mabey, M. A. McGeoch, E. Palma, P. Pyšek, W. C. Saul, F. A. Yannelli,
676 and J. M. Jeschke. 2020. A conceptual map of invasion biology: Integrating hypotheses into a
677 consensus network. *Glob. Ecol. Biogeogr.* 29: 978–991. <https://doi.org/10.1111/geb.13082>

678 Fontaneto, D., W. H. De Smet, and C. Ricci. 2006. Rotifers in saltwater environments: Re-evaluation
679 of an inconspicuous taxon. *J. Mar. Biol. Assoc. U.K.* 86: 623–656.
680 <https://doi.org/10.1017/S0025315406013531>

681 Fontaneto, D., Herniou, E. A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., & Barraclough, T.
682 G. (2007). Independently evolving species in asexual bdelloid rotifers. *PLoS Biology*, 5(3), e87.
683 <https://doi.org/10.1371/journal.pbio.0050087>

684 Fontaneto, D., A. M. Barbosa, H. Segers, and M. Pautasso. 2012. The ‘rotiferologist’ effect and other
685 global correlates of species richness in monogonont rotifers. *Ecography* 35: 174–182.
686 <https://doi.org/10.1111/j.1600-0587.2011.06850.x>

687 Fröbius, A. C., and P. Funch. 2017. Rotiferan Hox genes give new insights into the evolution of
688 metazoan bodyplans. *Nat. Commun.* 8: 9. <https://doi.org/10.1038/s41467-017-00020-w>

689 Garamszegi, L. Z. (Ed.). 2014. Modern phylogenetic comparative methods and their application in
690 evolutionary biology: Concepts and practice. Springer-Verlag, Berlin, Heidelberg.
691 <https://doi.org/10.1007/978-3-662-43550-2>

692 Gansfort, B., D. Fontaneto, and M. Zhai. 2020. Meiofauna as a model to test paradigms of ecological
693 metacommunity theory. *Hydrobiologia* 847: 2645–2663. <https://doi.org/10.1007/s10750-020-04185-2>

695 Gilbert, J. J. 1988. Suppression of rotifer populations by Daphnia: evidence, mechanisms, and
696 community effects. *Limnol. Oceanogr.* 33: 1286–1303.
697 <https://doi.org/10.4319/lo.1988.33.6.1286>

698 Gilbert, J. J. 2022. Food niches of planktonic rotifers: Diversification and implications. *Limnol.
699 Oceanogr.* 67: 2218–2251. <https://doi.org/10.1002/lno.12199>

700 Gómez, A. 2005. Molecular ecology of rotifers: From population differentiation to speciation.
701 *Hydrobiologia* 546: 83–99. <https://doi.org/10.1007/s10750-005-4104-7>

702 Han, S., P. J. Van den Brink, and S. A. J. Declerck. 2025. Asymmetric micro-evolutionary responses
703 in a warming world: Heat-driven adaptation enhances metal tolerance in a planktonic rotifer, but
704 not vice versa. *Glob. Change Biol.* 31: 70347. <https://doi.org/10.1111/gcb.70347>

705 Haubrock, P. J., I. Soto, D. A. Ahmed, A. R. Ansari, A. S. Tarkan, I. Kurtul, R. L. Macêdo, A. Lázaro-
706 Lobo, M. Toutain, B. Parker, D. Błońska, S. Guareschi, C. Cano-Barbacil, V. Domínguez
707 Almela, D. Andreou, J. Moyano, S. Akalın, C. Kaya, E. Bayçelebi, B. Yoğurtçuoğlu, E. Briski,
708 S. Aksu, Ö. Emiroğlu, S. Mammola, V. De Santis, M. Kourantidou, D. Pincheira-Donoso, J. R.
709 Britton, A. Kouba, E. J. Dolan, N. I. Kirichenko, E. García-Berthou, D. Renault, R. D. Fernandez,
710 S. Yapıcı, D. Giannetto, M. A. Nuñez, E. J. Hudgins, J. Pergl, M. Milardi, D. L. Musolin, and R.
711 N. Cuthbert. 2024. Biological invasions are a population-level rather than a species-level
712 phenomenon. *Glob. Change Biol.* 30: e17312. <https://doi.org/10.1111/gcb.17312>

713 Hébert, M.-P., B. E. Beisner, and R. Maranger. 2017. Linking zooplankton communities to ecosystem
714 functioning: Toward an effect-trait framework. *J. Plankton Res.* 39: 3–12.
715 <https://doi.org/10.1093/plankt/fbw068>

716 Heger, T., A. Elliot-Graves, M. I. Kaiser, K. H. Morrow, W. Bausman, G. P. Dietl, C. F. Dormann,
717 D. J. Gibson, J. Griesemer, Y. Itescu, K. Jax, A. M. Latimer, C. Liu, J. Starrfelt, P. A. Stephens,
718 and J. M. Jeschke. 2024. Looking beyond Popper: How philosophy can be relevant to ecology.
719 *Oikos* 2024(1): e10994. <https://doi.org/10.1111/oik.10994>

720 Herlyn, H., A. A. Hembrom, J.-P. Tosar, B. K. Sahu, R. L. Wallace, and E. J. Walsh. 2025. Substantial
721 hierarchical reductions of genetic and morphological traits in the evolution of rotiferan parasites.
722 *Genome Biol. Evol.* 17: evaf124. <https://doi.org/10.1093/gbe/evaf124>

723 Hopfe, C., B. Ospina-Jara, T. Schulze, J. D. Madureira, A. A. França, and M. P. Soares. 2024. Impact
724 of environmental factors on spider silk properties. *Curr. Biol.* 34: 56–67.e5.
725 <https://doi.org/10.1016/j.cub.2023.11.043>

726 Huỳnh, T.-H., Z. Horváth, K. Pálffy, V. Kardos, B. Szabó, P. Dobosy, and C. F. Vad. 2024. Heatwave-
727 induced functional shifts in zooplankton communities result in weaker top-down control on
728 phytoplankton. *Ecol. Evol.* 14: e70096. <https://doi.org/10.1002/ece3.70096>

729 Ienaga, N., T. Takashi, H. Tamamizu, and K. Terayama. 2024. Rotifer detection and tracking
730 framework using deep learning for automatic culture systems. *Smart Agricultural Technology* 9:
731 100577. <https://doi.org/10.1016/j.atech.2024.100577>

732 Jiang, Q., Sun, Y., Jeppesen, E. et al. Persistent inequities in global lake science. *Nat Rev Earth*
733 *Environ* 6, 629–631 (2025). <https://doi.org/10.1038/s43017-025-00722-6>

734 Kuczyńska-Kippen, N., M. Špoljar, M. Mleczek, and C. Zhang. 2021. Elodeids, but not helophytes,
735 increase community diversity and reduce trophic state: Case study with rotifer indices in field
736 ponds. *Ecol. Indic.* 128: 107829. <https://doi.org/10.1016/j.ecolind.2021.107829>

737 Kuczyńska-Kippen, N., C. Zhang, M. Mleczek, L. Bowszys, E. Gołdyn, and R. Cerbin. 2025. Rotifers
738 as indicators of trophic state in small water bodies with different catchments (field vs. forest).
739 *Hydrobiologia* 852: 2669–2685. <https://doi.org/10.1007/s10750-024-05760-7>

740 Lampert, W. 1997. Zooplankton research: The contribution of limnology to general ecological
741 paradigms. *Aquat. Ecol.* 31: 19–27. <https://doi.org/10.1023/A:1009943402621>

742 Lemmen, K. D., L. Zhou, S. Papakostas, and S. A. J. Declerck. 2022. An experimental test of the
743 growth rate hypothesis as a predictive framework for microevolutionary adaptation. *Ecology* 103:
744 e3853. <https://doi.org/10.1002/ecy.3853>

745 Levins, R. 1966. The strategy of model building in population biology. *Am. Sci.* 54: 421–431.

746 López, C., C. Bonecker, G. Perbiche-Neves, and M. Elías-Gutiérrez. 2025. The lack of researchers: A
747 critical threat to studies on freshwater zooplankton in Latin America. *Diversity* 17: 381.
748 <https://doi.org/10.3390/d17060381>

749 Lu, S., C. Fang, H. Zeng, R. Hu, C. Wei, R. Miao, X. Gan, B. Guo, M. Yao, and S. He. 2025.
750 Advancing biological taxonomy in the AI era: Deep learning applications, challenges, and future
751 directions. *Sci. China Life Sci.* <https://doi.org/10.1007/s11427-025-3074-8>

752 Macêdo, R. L., A. C. S. Franco, G. Klippel, E. F. Oliveira, L. H. S. Silva, L. N. dos Santos, and C. W.
753 C. Branco. 2020. Small in size but rather pervasive: The spread of the North American rotifer
754 *Kellicottia bostoniensis* (Rousselet, 1908) through Neotropical basins. *BioInvasions Rec.* 9: 287–
755 302. <https://doi.org/10.3391/bir.2020.9.2.14>

756 Macêdo, R. L., A. C. S. Franco, B. Kozlowsky-Suzuki, S. Mammola, T. Dalu, and O. Rocha. 2022.
757 The global socio-economic dimension of biological invasions by plankton: Grossly
758 underestimated costs but a rising concern for water quality benefits? *Water Res.* 222: 118918.
759 <https://doi.org/10.1016/j.watres.2022.118918>

760 Macêdo, R. L., L. M. A. Elmoor-Loureiro, F. D. R. Sousa, V. A. Paggi, A. A. Sinev, M. T. D. N.
761 Palacios-Vargas, A. M. A. C. Elmoor-Loureiro, and O. Rocha. 2023. From pioneers to modern-
762 day taxonomists: The good, the bad, and the idiosyncrasies in choosing species epithets of rotifers
763 and microcrustaceans. *Hydrobiologia* 850: 4271–4282. <https://doi.org/10.1007/s10750-023-05302-7>

765 Mammola, S., I. R. Amorim, M. E. Bichuette, P. A. V. Borges, N. Cheeptham, S. J. B. Cooper, D. C.
766 Culver, L. Deharveng, D. Eme, R. L. Ferreira, C. Fišer, Ž. Fišer, D. W. Fong, C. Griebler, W. R.
767 Jeffery, J. Jugovic, J. E. Kowalko, T. M. Lilley, F. Malard, R. Manenti, A. Martínez, M. B.
768 Meierhofer, M. L. Niemiller, D. E. Northup, T. G. Pellegrini, T. Pipan, M. Protas, A. S. P. S.
769 Reboleira, M. P. Venarsky, J. J. Wynne, M. Zagmajster, and P. Cardoso. 2020. Fundamental
770 research questions in subterranean biology. *Biol. Rev.* 96: 1305–1331.
771 <https://doi.org/10.1111/brv.12642>

772 Martínez A, Bonaglia S, Di Domenico M, Fonseca G, Ingels J, Jörger KM, Laumer C, Leasi F, Zeppilli
 773 D, Baldrighi E, Bik H, Cepeda D, Curini-Galletti M, Cutter AD, dos Santos G, Fattorini S, Frisch
 774 D, Gollner S, Jondelius U, Kerbl A, Kocot KM, Majdi N, Mammola S, Martín-Durán JM,
 775 Menegotto A, Montagna PA, Nascimento FJA, Puillandre N, Rognant A, Sánchez N, Santos IR,
 776 Schmidt-Rhaesa A, Schratzberger M, Semprucci F, Shimabukuro M, Sommerfield PJ, Struck
 777 TH, Sørensen MV, Wallberg A, Worsaae K, Yamasaki H, Fontaneto D. Fundamental questions
 778 in meiofauna research highlight how small but ubiquitous animals can improve our understanding
 779 of Nature. *Commun Biol.* 2025;8:449. doi:10.1038/s42003-025-06520-9.

780 May, L., and R. L. Wallace. 2019. An examination of long-term ecological studies of rotifers:
 781 Comparability of methods and results, insights into drivers of change and future research
 782 challenges. *Hydrobiologia* 844: 129–147. <https://doi.org/10.1007/s10750-019-04059-2>

783 Melone, G., C. Ricci, H. Segers, and R. L. Wallace. 1998. Phylogenetic relationships of phylum
 784 Rotifera with emphasis on the families of Bdelloidea. *Hydrobiologia* 387: 101–107.
 785 <https://doi.org/10.1023/A:1017057619574>

786 Mohl, J. E., P. D. Brown, A. J. Robbins, P. Lavretsky, R. Hochberg, R. L. Wallace, and E. J. Walsh.
 787 2025. Comparing small and large genomes within monogonont rotifers. *Genome Biol. Evol.* 17:
 788 evaf041. <https://doi.org/10.1093/gbe/evaf041>

789 Molinero, J. C., O. Anneville, S. Souissi, G. Balvay, and D. Gerdeaux. 2006. Anthropogenic and
 790 climate forcing on the long-term changes of planktonic rotifers in Lake Geneva, Europe. *J.*
 791 *Plankton Res.* 28: 287–296. <https://doi.org/10.1093/plankt/fbi110>

792 Mukherjee, N., J. Hugé, W. J. Sutherland, J. McNeill, M. Van Opstal, F. Dahdouh-Guebas, and N.
 793 Koedam. 2015. The Delphi technique in ecology and biological conservation: Applications and
 794 guidelines. *Methods Ecol. Evol.* 6: 1097–1109. <https://doi.org/10.1111/2041-210X.12387>

795 Mukhopadhyay, S. K., B. Chattopadhyay, A. R. Goswami, and A. Chatterjee. 2007. Spatial variations
 796 in zooplankton diversity in waters contaminated with composite effluents. *J. Limnol.* 66: 97–106.
 797 <https://doi.org/10.4081/jlimnol.2007.97>

798 Obertegger, U., H. A. Smith, G. Flaim, B. Pinel-Alloul, E. J. Walsh, R. L. Wallace, T. Weisse, and S.
 799 Nandini. 2011. Using the guild ratio to characterize pelagic rotifer communities. *Hydrobiologia*
 800 662: 157–162. <https://doi.org/10.1007/s10750-010-0491-5>

801 Obertegger, U., and G. Flaim. 2015. Community assembly of rotifers based on morphological traits.
 802 *Hydrobiologia* 753: 31–45. <https://doi.org/10.1007/s10750-015-2191-7>

803 Obertegger, U., and R. L. Wallace. 2023. Trait-based research on Rotifera: The holy grail or just
 804 messy? *Water* 15: 1459. <https://doi.org/10.3390/w15081459>

805 Oesterwind, D., V. Bartolino, J. W. Behrens, M. Börger, S. J. Franchini, A. Gallego, L. Haase, A. L.
 806 Fricke, A. Kuparinen, A. Lehikoinen, and N. Rückert. 2025. Disentangling the potential effects

807 of four non-indigenous species on commercially and recreationally used fish stocks in the Baltic
808 Sea – a review. *Biol. Invasions* 27: 76. <https://doi.org/10.1007/s10530-025-03537-0>

809 Oliveira, F. R., F. M. Lansac-Tôha, B. R. Meira, C. C. Joko, R. M. Pinto-Coelho, and C. W. C. Branco.
810 2019. Effects of the exotic rotifer *Kellicottia bostoniensis* (Rousselet, 1908) on the microbial
811 food web components. *Aquat. Ecol.* 53: 581–594. <https://doi.org/10.1007/s10452-019-09710-7>

812 Pajdak-Stós, A., E. Fiałkowska, F. Hajdyła, and W. Fiałkowski. 2023. The potential of Lecane rotifers
813 in microplastics removal. *Sci. Total Environ.* 899: 165662.
814 <https://doi.org/10.1016/j.scitotenv.2023.165662>

815 Pajdak-Stós, A., W. Fiałkowski, and E. Fiałkowska. 2020. Rotifers weaken the efficiency of the
816 cyanobacterium defence against ciliate grazers. *FEMS Microbiol. Ecol.* 96: fiaa189.
817 <https://doi.org/10.1093/femsec/fiaa189>

818 Papakostas, S., E. Michaloudi, K. Proios, M. Brehm, L. Verhage, J. Rota, C. Peña, G. Stamou, V. L.
819 Pritchard, D. Fontaneto, and S. A. J. Declerck. 2016. Integrative taxonomy recognizes
820 evolutionary units despite widespread mitonuclear discordance: Evidence from a rotifer cryptic
821 species complex. *Syst. Biol.* 65: 508–524. <https://doi.org/10.1093/sysbio/syw016>

822 Partemi, R., N. Debortoli, A. Martínez, P. Declerck, and A. Fontaneto. 2024. Weak effect of
823 urbanization on bdelloid rotifers living in lichens. *R. Soc. Open Sci.* 11: 231978.
824 <https://doi.org/10.1098/rsos.231978>

825 Qingsong, J., Y. Sun, E. Jeppesen, J. P. Smol, D. Scavia, R. E. Hecky, T. Mehner, Y. Qin, Y. Tong,
826 B. Qin, K. D. Hambricht, X. Jin, J. Li, K. Cai, Z. Wu, and Y. Liu. 2025. Persistent inequities in
827 global lake science. *Nat. Rev. Earth Environ.* <https://doi.org/10.1038/s43017-025-00722-6>

828 Ramos-Rodríguez, E., E. Moreno, and J. Conde-Porcuna. 2020. Intraspecific variation in sensitivity
829 to food availability and temperature-induced phenotypic plasticity in the rotifer *Keratella*
830 *cochlearis*. *J. Exp. Biol.* 223: jeb209676. <https://doi.org/10.1242/jeb.209676>

831 Réveillon, T., and L. Becks. 2024. Trade-offs between defense and competitive traits in a planktonic
832 predator-prey system. *Ecology* 105: e4456. <https://doi.org/10.1002/ecy.4456>

833 Ricci, C., and C. Boschetti. 2003. Bdelloid rotifers as a model system to study developmental biology
834 in space. *Adv. Space Biol. Med.* 9: 25–39. [https://doi.org/10.1016/S1569-2574\(03\)09002-6](https://doi.org/10.1016/S1569-2574(03)09002-6)

835 Salerno, P. E., Páez-Vacas, M., Guayasamin, J. M., & Stynoski, J. L. 2019. Male principal
836 investigators (almost) don't publish with women in ecology and zoology. *PLoS one*, 14(6),
837 e0218598.

838 Segers, H. 2007. Global diversity of rotifers (Rotifera) in freshwater. In *Freshwater Animal Diversity*
839 Assessment, eds. E. V. Balian, C. Lévéque, H. Segers, and K. Martens. *Dev. Hydrobiol.* 198:
840 177–185. https://doi.org/10.1007/978-1-4020-8259-7_6

841 Serra, M., E. M. García-Roger, R. Ortells, and M. J. Carmona. 2019. Cyclically parthenogenetic
842 rotifers and the theories of population and evolutionary ecology. *Limnetica* 38: 67–93.
843 <https://doi.org/10.23818/limn.38.13>

844 Sládeček, V. Rotifers as indicators of water quality. *Hydrobiologia* 100, 169–201 (1983).
845 <https://doi.org/10.1007/BF00027429>

846 Sørensen, M. V., and G. Giribet. 2006. A modern approach to rotiferan phylogeny: Combining
847 morphological and molecular data. *Mol. Phylogenet. Evol.* 40: 585–608.
848 <https://doi.org/10.1016/j.ympev.2006.04.001>

849 Soto, F., M. A. Lopez-Ramirez, I. Jeerapan, B. E. F. de Ávila, R. K. Mishra, X. Lu, I. Chai, C. Chen,
850 D. Kupor, V. Dotson, R. Liang, B. Waters, and J. Wang. 2019. Rotibot: Use of rotifers as self-
851 propelling biohybrid microcleaners. *Adv. Funct. Mater.* 29: 1900658.
852 <https://doi.org/10.1002/adfm.201900658>

853 Stoddard, M. C., E. H. Yong, D. Akkaynak, C. Sheard, J. A. Tobias, and L. Mahadevan. 2017. Avian
854 egg shape: Form, function, and evolution. *Science* 356: 1249–1254.
855 <https://doi.org/10.1126/science.aa j1945>

856 Sutherland, W. J., E. Fleishman, M. B. Mascia, J. Pretty, and M. A. Rudd. 2011. Methods for
857 collaboratively identifying research priorities and emerging issues in science and policy. *Methods*
858 *Ecol. Evol.* 2: 238–247.

859 Sutherland, W. J., R. P. Freckleton, H. C. J. Godfray, A. Balmford, F. E. Coomes, T. M. Coulson, G.
860 M. Mace, and D. W. Macdonald. 2012. Identification of 100 fundamental ecological questions.
861 *J. Ecol.* 101: 58–67. <https://doi.org/10.1111/1365-2745.12025>

862 Tarazona, E., C. Hahn, L. Franch-Gras, E. García-Roger, M. Carmona, and A. Gómez. 2019.
863 Ecological genomics of adaptation to unpredictability in experimental rotifer populations. *Sci.*
864 *Rep.* 9: 56100. <https://doi.org/10.1038/s41598-019-56100-y>

865 Tulloch, A. I. 2020. Improving sex and gender identity equity and inclusion at conservation and
866 ecology conferences. *Nat. Ecol. Evol.*, 4(10), 1311–1320.

867 Tydecks L, Jeschke JM, Wolf M, Singer G, Tockner K (2018) Spatial and topical imbalances in
868 biodiversity research. *PLoS ONE* 13(7): e0199327.
869 <https://doi.org/10.1371/journal.pone.0199327>

870 Vasilikopoulos, A., H. Herlyn, D. Fontaneto, B. Niehuis, B. Misof, S. Podsiadlowski, T. Schwentner,
871 A. Blanke, and O. R. P. Bininda-Emonds. 2024. Whole-genome analyses converge to support
872 the Hemirotifera hypothesis within Syndermata (Gnathifera). *Hydrobiologia* 851: 2795–2826.
873 <https://doi.org/10.1007/s10750-023-05451-9>

874 Wallace, R. L. 2002. Rotifers: Exquisite metazoans. *Integr. Comp. Biol.* 42: 660–667.
875 <https://doi.org/10.1093/icb/42.3.660>

876 Wallace, R. L. 2006. Biology, ecology and systematics. Kenobi Productions.

877 Wallace, R. L., E. J. Walsh, S. Nandini, and S. S. S. Sarma. 2021. A meta-analysis of benthic rotifer
878 community structure as a function of lake trophic state. *Aquat. Ecol.* 55: 1297–1304.
879 <https://doi.org/10.1007/s10452-020-09825-2>

880 Wallace, R. L., R. Hochberg, and E. J. Walsh. 2024. The undiscovered country: Ten grand challenges
881 in rotifer biology. *Hydrobiologia* 851: 3225–3248. <https://doi.org/10.1007/s10750-023-05247-x>

882 Walz, N. 1987. Comparative population dynamics of the rotifers *Brachionus angularis* and *Keratella*
883 *cochlearis*. *Hydrobiologia* 147: 209–213.

884 Walczyńska, A., D. Fontaneto, A. Kordbacheh, J. Rota, K. A. Kordbacheh, P. Nowak, A. F.
885 Sepúlveda-Jauregui, and S. Nandini. 2024. Niche differentiation in rotifer cryptic species
886 complexes: A review of environmental effects. *Hydrobiologia* 851: 2909–2926.
887 <https://doi.org/10.1007/s10750-023-05291-7>

888 Wellenreuther, M., & Otto, S. 2016. Women in evolution—highlighting the changing face of
889 evolutionary biology. *Evol. Appl.*, 9(1), 3–16.

890 Wilke, T., W. H. Ahlrichs, and O. R. P. Bininda-Emonds. 2020. The evolution of Synchaetidae
891 (Rotifera: Monogononta) with a focus on Synchaeta: An integrative approach combining
892 molecular and morphological data. *J. Zool. Syst. Evol. Res.* 58: 823–857.
893 <https://doi.org/10.1111/jzs.12378>

894 Zhang, W., H. Bi, D. Wang, X. Cheng, Z. Cai, and K. Ying. 2024. Automated zooplankton size
895 measurement using deep learning: Overcoming the limitations of traditional methods. *Frontiers*
896 in Marine Science

11: 1341191. <https://doi.org/10.3389/fmars.2024.1341191>

897

898

899

900

901

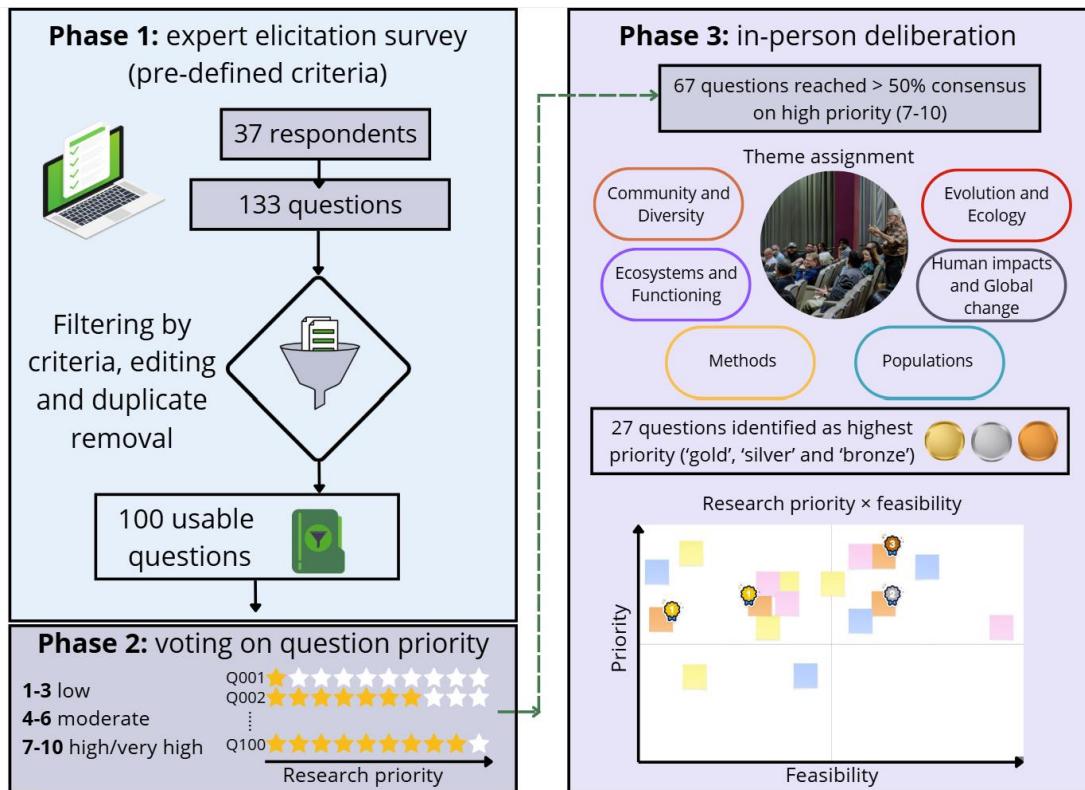
902

903

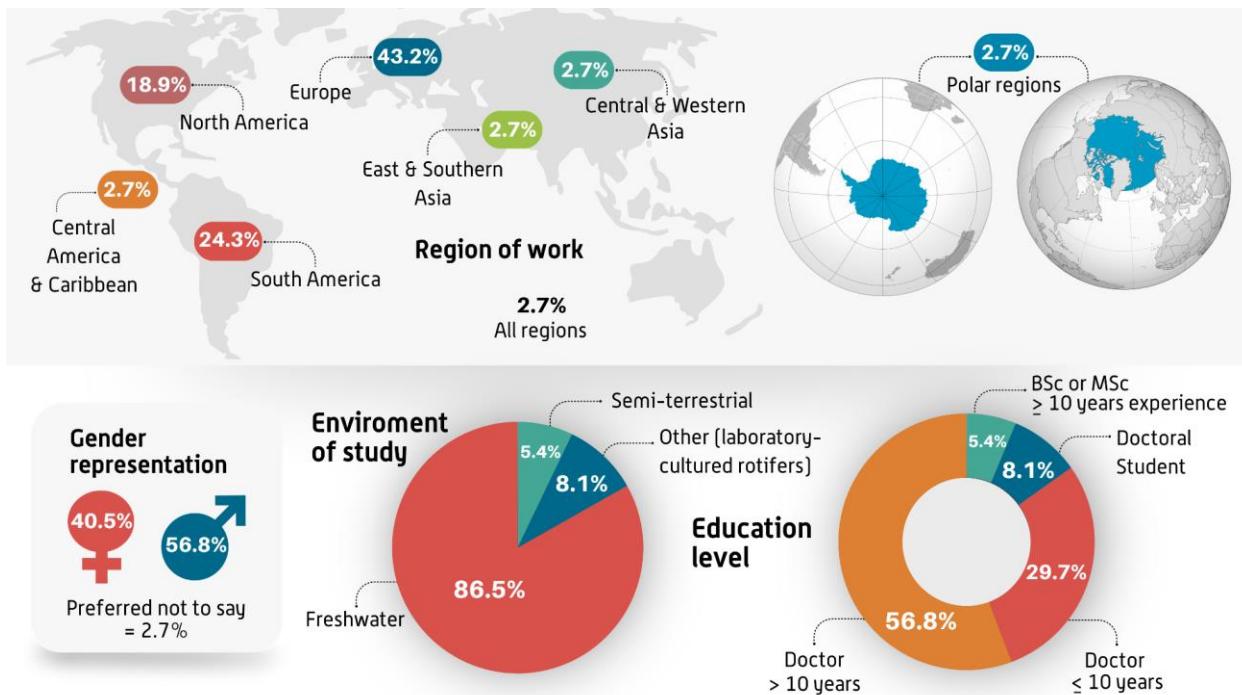
904

905

906


907

908

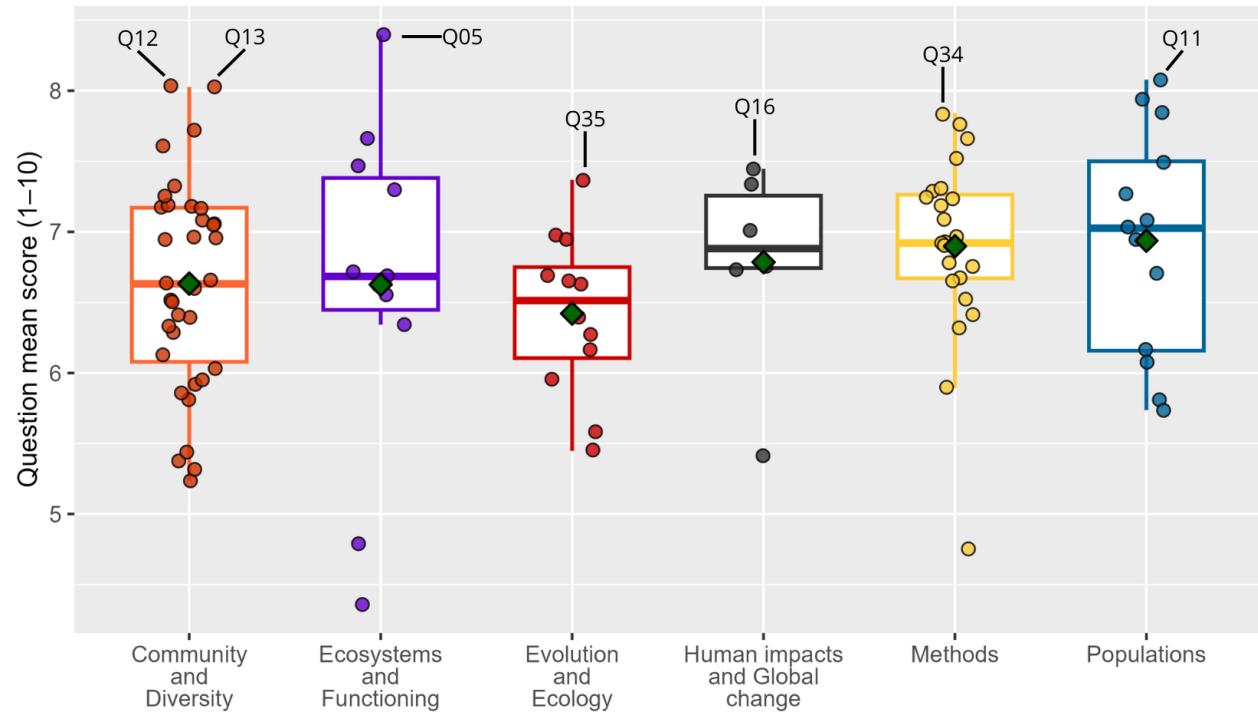

909

910

911 FIGURES
912

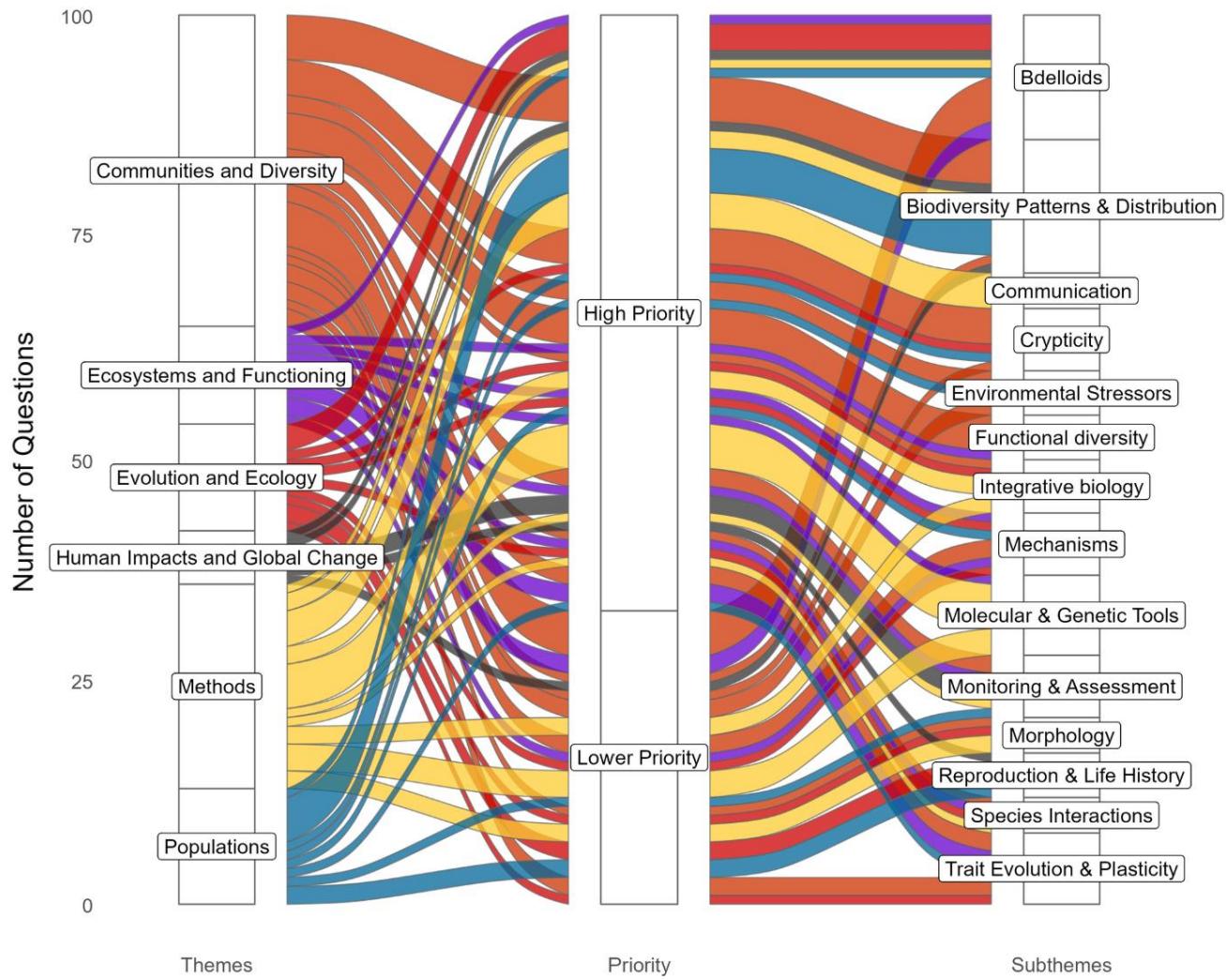
913
914 **Figure 1.** Workflow of our approach to identify research priorities in Rotifera research. Phase 1
915 involved expert elicitation and filtering of 133 proposed questions into 100 usable ones (see
916 Supplementary Document S1). Phase 2 focused on expert scoring to prioritize the questions, and
917 Phase 3 involved in-person deliberation, theme assignment, and identification of the top 27 high-
918 priority questions.

919


920 **Figure 2.** Demographic composition of the expert panel ($n = 37$) during Phase 1. The map shows
 921 the geographic distribution of experts by region of work, expressed as percentages of total
 922 participants. Accompanying charts present the academic backgrounds, education levels, ethnic
 923 groups, and gender representation.

924

925


926

927

928

929 **Figure 3.** Distribution of the 100 questions mean scores by research theme. Each point represents
 930 the mean expert score for one question during Phase 2, boxplots indicate the interquartile range,
 931 whiskers represent the maximum values within 1.5 interquartile ranges, horizontal lines within
 932 each box show the median, and diamonds mark the mean values. This visualization highlights
 933 variation in perceived priority across themes. Scores did not differ significantly among themes
 934 (Welch's ANOVA, $p = 0.35$)

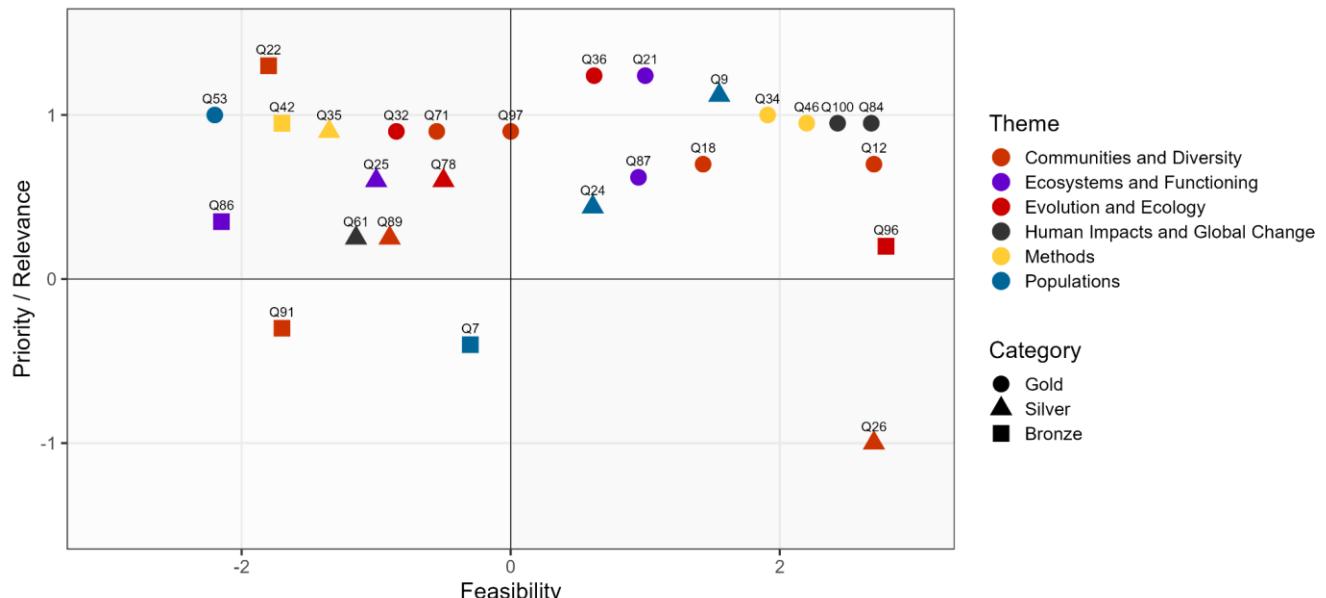
935

Themes

Priority

Subthemes

936


Figure 4. Sankey diagrams showing flows from Themes → Priority classification → Subthemes

937

from Phase 1 to 3. Widths reflect the number of questions considered during Phase 3, highlighting

938

absolute research focus. Subthemes were grouped based on shared conceptual keywords.

939

940 **Figure 5.** Phase 3 results: highest-priority questions placed on a two-axis grid (priority ×
 941 feasibility), enabling experts to visually compare and negotiate the relative importance and
 942 practicality of candidate research questions. The original panel resulting from the in-person
 943 exercise during the workshop is available at Genially.com for close inspection.

944

945