

1 Personality tips the scale: How individual differences in exploration shape
2 behavioural and hormonal adjustment to different environments

3 Sophia Marie Quante^{1*}, Dongying Zhao¹, Sylvia Kaiser^{1,2}, S. Helene Richter^{1,2}

4

5 ¹Department of Behavioural Biology, University of Münster, Germany

6 ²Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and
7 Bielefeld University, Bielefeld, Germany

8

9 *Corresponding author (sophia.quante@uni-muenster.de)

10

11 Keywords: animal personality, anxiety-like behaviour, environmental adjustment, exploratory
12 locomotion, glucocorticoid

13 **Abstract**

14 Individuals show consistent differences in their behaviour across time and/or context, usually
15 referred to as animal personality in behavioural ecology. These inter-individual differences raised
16 the question if animals of different personalities also vary in how they adjust to certain
17 environmental conditions. In the present study, we aimed to investigate personality-dependent
18 adjustments to different environmental conditions. By means of two distinct experiments, rats
19 were characterised regarding their level of exploration and exposed to an environment with a
20 predictable versus an unpredictable food availability (experiment 1) or to an environment with a
21 social partner of matching versus mismatching personality (experiment 2). To assess behavioural
22 differences between individuals of varying exploration levels, the home cage behaviour of the
23 animals was monitored and two tests for measuring anxiety-like behaviour were conducted.
24 Furthermore, concentrations of basal faecal corticosterone metabolites were determined to
25 record hypothalamic–pituitary–adrenocortical activity repeatedly. The characterisation showed
26 consistent inter-individual differences in exploration levels in both experiments. While
27 personality, environment and the interaction of both did not affect basal faecal corticosterone
28 metabolite concentrations in neither of the experiments, several behavioural differences between
29 individuals of varying exploration levels were detected in the home cage and in the tests. Most
30 interestingly, interactions between personality and environment were found, pointing towards a
31 better behavioural adjustment of highly explorative animals to predictable conditions. Therefore,
32 the results emphasise the existence of context-specific personality-dependent behavioural
33 adjustment. Moreover, personality-dependent differences in affiliative behaviour and
34 environment-dependent differences in welfare-associated measures were reported, highlighting
35 the importance of integrating personality into both eco-evolutionary perspectives on adjustment
36 processes and animal welfare endeavours.

37

38 **Introduction**

39 Individuals show consistent differences in their behaviour across time and/or context, usually
40 referred to as animal personality in behavioural ecology (Kaiser & Müller, 2021; Stamps &
41 Groothuis, 2010). Thereby, an animal's personality has been described as a composition of
42 different personality traits, such as "boldness" or "aggressiveness", that can be reflected by
43 multiple behaviours (Kaiser & Müller, 2021). Over the past years, evidence for these consistent
44 inter-individual differences has been documented for many different taxa, from primates to
45 insects (Gosling, 2001), basing observations on a variety of different measurements. Among these,
46 there are behavioural parameters, such as exploration and vocalisation (Mällö et al., 2007; Réale

47 et al., 2007), but meanwhile the animal personality framework even expands towards
48 endocrinological parameters, such as glucocorticoid levels (Fanson & Biro, 2019; Taff et al., 2018).

49 Interestingly, such findings on consistent personality traits challenge the idea that variation
50 between individuals is centred around an evolutionary optimum shaped by natural selection (Dall
51 et al., 2004; Sih et al., 2004). Thus, the question arises as to how animal personalities could have
52 evolved and how they are maintained within a population (Sih et al., 2004). In fact, several
53 hypotheses exist in this regard (e.g. reviewed in Bergmüller & Taborsky, 2010; Wolf & Weissing,
54 2010, 2012), one of them suggesting that consistent personality traits are favoured, as constant
55 adaptation to changeable conditions might be too costly. This would allow appropriate responses
56 on an average level, leading to similar fitness effects for each of the different personalities (Wolf &
57 Weissing, 2010). At the same time, this trade-off is likely to come along with limited coping abilities
58 under specific environmental conditions (Sih et al., 2004), raising the question of how such
59 constraints translate into fitness consequences. In this context, Smith and Blumstein (2008)
60 published a meta-analysis on fitness consequences and survival of different personality traits,
61 revealing exploration to have positive effects on survival. More recent studies suggest, however,
62 that this effect might be dependent on the specific context or the environmental condition the
63 animals experience (Brehm & Mortelliti, 2024; Haage et al., 2017).

64 For instance, proactive animals, i.e. more bold, active and aggressive individuals with a lower
65 hypothalamic–pituitary–adrenocortical (HPA) axis (re-)activity and less cognitive flexibility
66 (Koolhaas et al., 1999; Mazza et al., 2018), seem to perform better under stable environmental
67 conditions, while reactive animals, i.e. less bold, active and aggressive individuals with a higher
68 HPA axis (re-)activity and greater cognitive flexibility (Koolhaas et al., 1999; Mazza et al., 2018),
69 seem to adjust better to changing environments (Benus et al., 1991; Verbeek et al., 1994). Based
70 on these studies, several other studies systematically investigated personality-dependent
71 variation in environmental adjustment, for instance, to different foraging conditions. Indeed,
72 depending on the individuals' personality, differences occurred regarding the use of space and
73 food resources as well as concerning risk taking behaviour (Mazza, Jacob, et al., 2019; Wauters et
74 al., 2021; Wirowska et al., 2024). Likewise, personality-dependent adjustment to an individual's
75 social environment is documented (reviewed in Mittelbach et al., 2014; Webster & Ward, 2011).
76 In fish, for instance, it has been found that shy personality types show a more pronounced
77 adjustment to their social environment, which is expressed in greater behavioural changes
78 compared to bold individuals (Magnhagen & Staffan, 2005). More specifically, shy individuals
79 became even more shy in the presence of bold conspecifics, highlighting the impact of the partner
80 animal's personality as a factor of the individual's social environment. In line with this, a study in
81 primates documents that the interplay between an individual's personality and the personality of
82 group members affects behavioural outcomes. In fact, individuals with more similar personality

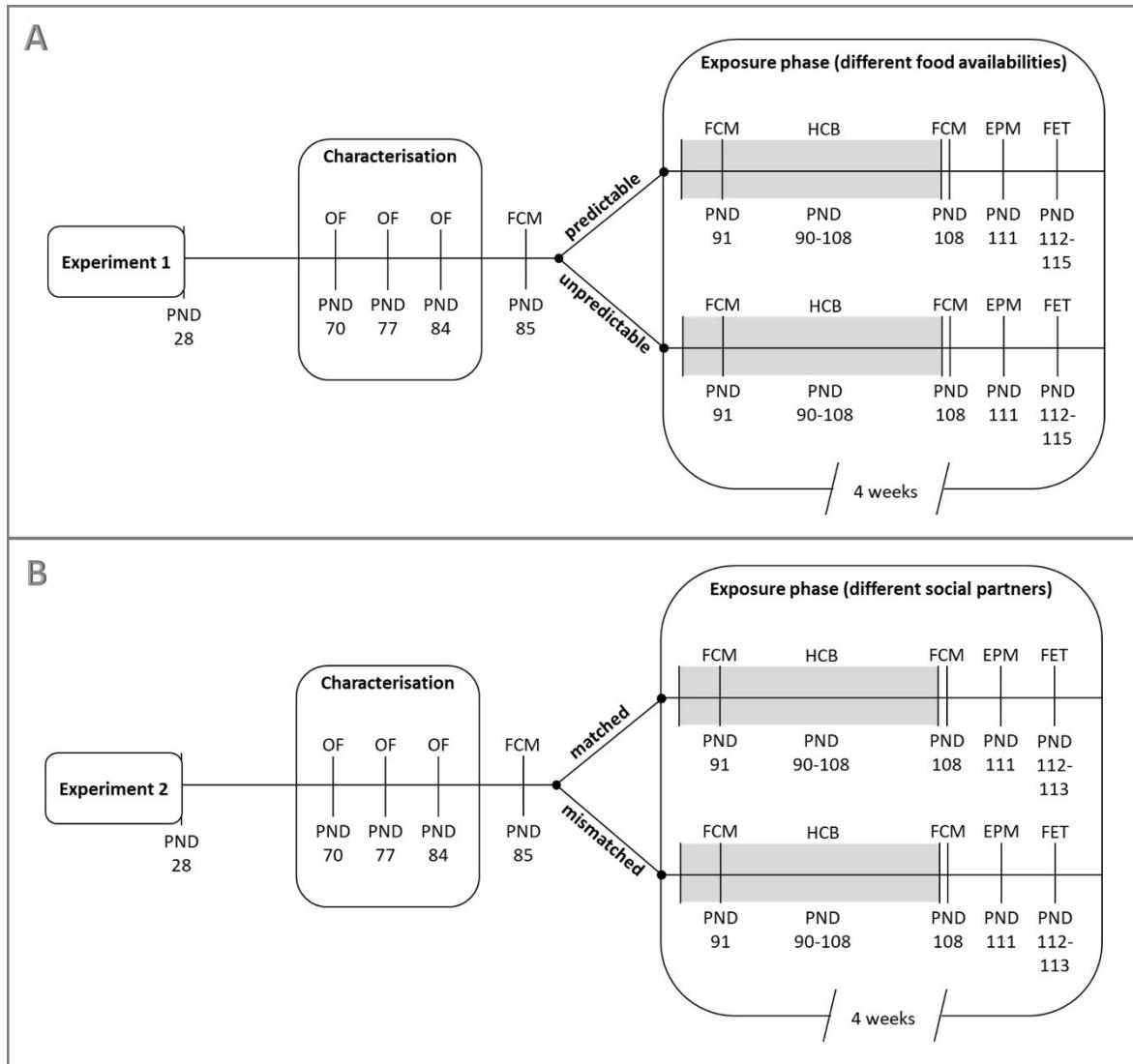
83 types were more likely to form close social bonds, supporting the principle of homophily (Massen
84 & Koski, 2014).

85 Taken together, these findings suggest that the interaction between an individual's personality and
86 its environment can be a key determinant of behavioural and physiological outcomes. In the
87 present study, we therefore aimed to systematically investigate such personality-dependent
88 adjustments to different environmental conditions. More specifically, we repeatedly tested the
89 animals in the Open field to assess consistent individual differences in their exploratory
90 locomotion, referred to as "trait exploration" in the following. Subsequently to the
91 characterisation, the animals were assigned to different environmental conditions: In experiment
92 1, individuals were confronted with an environment characterised by either a predictable or an
93 unpredictable food availability. In experiment 2, individuals were housed with a social partner of
94 either a matching or mismatching personality. While most studies investigating effects of social
95 factors have focussed on group-level parameters such as group size and composition (e.g. Olsson
96 & Westlund, 2007), we here examine the effects of the social partner's personality, a social factor
97 on the individual level that has been mainly overlooked so far. To assess behavioural differences,
98 we monitored the home cage behaviour of the animals and conducted two tests for anxiety-like
99 behaviour. Furthermore, we repeatedly determined faecal corticosterone metabolites (FCMs) to
100 assess HPA axis activity (Palme, 2019). In line with the literature, we hypothesised individuals to
101 display repeatable individual differences in exploratory locomotion. In addition, we hypothesised
102 that trait exploration interacts with the respective environmental condition in such a way that
103 individuals differ in their behavioural and endocrinological responses depending on both their
104 personality and the environment they live in.

105

106 Animals, materials & methods

107 *Animals and housing conditions*


108 The study consisted of two experiments, each including 24 female Lister Black Hooded rats,
109 ordered at postnatal day (PND) 28 from Charles River Laboratories (Research Models Services,
110 Germany GmbH, Sulzfeld, Germany). The rats were delivered in three batches per experiment,
111 with 8 females per batch and all animals could be identified by their individual fur pattern.
112 Animals of each batch were housed in same-sex groups of 8 individuals until PND 86±1 and in
113 groups of 4 (experiment 1) or groups of 2 (experiment 2) for the remaining duration of the
114 experiment (Fig. 1). The cages (Furat, Ferplast, Italy; 48 cm x 78 cm and 70 cm high) contained
115 wood shavings as bedding material (TierWohl Super, J. Rettenmaier and Söhne GmbH & Co KG,
116 Rosenberg, Germany), two additional floors, paper tissues as nesting material, four wooden cubes,

117 a cardboard tunnel, two hanging houses (Sputnik, SAVIC, Belgium; 29 cm x 26 cm and 19 cm high),
118 a semi-transparent red plastic house (ZOONLAB GmbH Animal Husbandry Experts, Germany; 20.5
119 cm x 15.7 cm and 11.5 cm high) and a semi-transparent red plastic tunnel (ZOONLAB GmbH
120 Animal Husbandry Experts, Germany; 15 cm x 9 cm and 9.5 cm high). Thereby, the housing
121 conditions exceeded the standard housing conditions for laboratory rats regarding floor space
122 (approximately two times a standard Makrolon Typ IV cage) and number of enrichment items. In
123 experiment 1, water was offered *ad libitum*, while food (Dustless Precision Pellets, Grain-Based,
124 45 mg, Bio-Serv, New Jersey, United States) was offered *ad libitum* until PND 90 and limited
125 thereafter until the end of the experiment (for details see below). In experiment 2, water and food
126 (Altromin 1324, Altromin Spezialfutter GmbH & Co. KG, Lage, Germany) were offered *ad libitum*
127 at all times. Each experiment was carried out in a separate housing room that was maintained at
128 a reversed dark/light cycle with lights off at 9 am, a temperature of ~22 °C, and a relative humidity
129 of about 50%.

130

131 *Experimental design*

132 Both experiments consisted of a characterisation and a subsequent exposure phase, where the
133 rats were distributed to different environmental conditions (experiment 1: predictable versus
134 unpredictable food availability, experiment 2: matched versus mismatched social partner; Fig. 1).
135 In the characterisation phase, rats were tested for their exploratory locomotion in the Open field
136 (OF) in order to assess trait exploration. The test was repeated three times (PND 70, 77 and 84),
137 as this was found to deliver robust results regarding temporal consistency (Martin et al., 2011).
138 Subsequently to the characterisation phase, faecal corticosterone metabolites (FCMs) were
139 determined (PND 85) and the animals were distributed to the different environmental conditions
140 under which they were housed for approximately four weeks (PND 86±1 - 114±1). Within this
141 exposure phase, the home cage behaviour (HCB) was monitored (PND 90-108), faecal samples for
142 FCM analysis were collected two more times (PND 91 & 108) and two behavioural tests for
143 anxiety-like behaviour were conducted (Elevated plus maze (EPM): PND 111, Free exploration test
144 (FET): PND 112-114±1) (for details regarding the different test procedures see below). At all
145 times, rats were exclusively cup-handled from their arrival until the end of the experiment.

146

147 **Figure 1: Experimental design of experiment 1 (A) and 2 (B).** After the rats were characterised by
148 repeatedly testing them in the Open field (OF; PND 70, 77 and 84), faecal corticosterone metabolites (FCM)
149 were collected (PND 85). Subsequently, the animals were distributed to the different environmental
150 conditions (Experiment 1: predictable versus unpredictable food availability, experiment 2: matched versus
151 mismatched social partner) and housed under these conditions for four weeks (PND 86±1 - 114±1). Within
152 this phase the home cage behaviour (HCB) was monitored (PND 90-108), faecal corticosterone metabolites
153 (FCM) were collected twice (PND 91 & 108) and two behavioural tests for anxiety-like behaviour were
154 conducted (Elevated plus maze (EPM): PND 111, Free exploration test (FET): PND 112-114±1).

155

156 *Experiment 1: predictable versus unpredictable food availability*

157 Experiment 1 was designed to concentrate on personality-dependent adjustment to a non-social
158 environmental factor, i.e. the food availability, which was either predictable or unpredictable.
159 Regarding this factor, variation in adjustment depending on an individuals' personality is assumed
160 and has already been reported in previous studies (Mazza, Jacob, et al., 2019; Réale et al., 2007;
161 Wauters et al., 2021; Wirowska et al., 2024). After the characterisation phase, rats were ordered
162 from high to low trait exploration and then distributed to the two environments in an alternating

163 order, for which the first assignment was pseudorandomised across batches. For example, if the
164 rat with the highest trait exploration in the first batch was assigned to the predictable food
165 availability environment, the rat with the second highest trait exploration was assigned to the
166 unpredictable environment, and so on until all animals were allocated. In the following batch, the
167 assignment order was reversed, such that the rat with the highest trait exploration was placed in
168 the unpredictable environment and the rat with the second highest trait exploration in the
169 predictable one. This procedure ensured that trait exploration was balanced across environments.

170 The differences in food availability were created by using automated feeders (Pellet Dispenser
171 with IR Sentry, 45 mg, pedestal mount, OCB Systems Ltd, Sawbridgeworth, United Kingdom). In
172 the predictable condition, the feeders were programmed to deliver 37 pellets (Dustless Precision
173 Pellets, Grain-Based, 45 mg, Bio-Serv, New Jersey, United States) every 20 minutes for 12 hours
174 starting at 9 am, while in the unpredictable condition the sum of pellets for the day was the same
175 (1332 pellets between 9 am and 9 pm), but time and amount of food delivery were randomised
176 within the 12 hours interval. Nevertheless, an interval with no food delivery did never exceed 24
177 hours. The total amount of food, i.e. ~60 g, was calculated based on a pilot project prior to the
178 experiment. The feeders were attached to the cage and delivered the food pellets via a tube into
179 the food bowl used before in the home cage of the rats. To ensure that each individual receives a
180 sufficient amount of food (i.e. maintaining or increasing initial *ad libitum* weight) during the
181 exposure phase, individuals' current percentage bodyweights were calculated by daily weighing
182 in the morning (PCE-BT 2000, PCE Deutschland GmbH, Meschede, Germany; weighing capacity:
183 2100 g, resolution: 0.01 g). The calculation was based on the *ad libitum* bodyweights determined
184 by daily weighing in the week before the rats were assigned to the different environmental
185 conditions. Since all animals maintained or increased their bodyweight across the exposure phase,
186 no additional feeding was required.

187

188 *Experiment 2: matched versus mismatched social partner*

189 Experiment 2 was designed to concentrate on personality-dependent adjustment to a social
190 environmental factor, i.e. the social partner, which was either of matching or mismatching
191 personality, as regarding this factor personality-dependent differences in adjustment are assumed
192 and already reported (Magnhagen & Staffan, 2005; Massen & Koski, 2014; Oosten et al., 2010).
193 After the characterisation phase, rats were ordered from high to low trait exploration and then
194 distributed to the two environments in an alternating order, for which the first assignment was
195 pseudorandomised across batches. However, whenever an animal was assigned to the matched
196 condition the animal right next to it on the continuum was chosen as the social partner to create
197 the best match possible based on the trait exploration continuum that was observed. For example,

198 if the rat with the highest trait exploration in the first batch was assigned to the mismatched social
199 partner environment, the rat with the second highest trait exploration was assigned to the
200 matched social partner environment together with the rat with the third highest trait exploration.
201 This was continued until all animals were allocated. In the following batch, the assignment order
202 was reversed, such that the rat with the highest trait exploration was placed in the matched social
203 partner environment together with the rat with the second highest trait exploration, while the rat
204 with the third highest trait exploration was placed in the mismatched social partner environment.
205 This procedure ensured that trait exploration was balanced across environments.

206

207 *Characterisation phase*

208 *Open field (OF)*

209 The OF is a behaviour test that is commonly used to evaluate anxiety-like behaviour and
210 exploratory locomotion in rodents, which naturally tend to avoid open and bright areas (Archer,
211 1973; Treit & Fundytus, 1988). In the field of animal personality research, the OF has become one
212 of the most widely used behaviour tests, repeatedly performed to assess activity, exploration and
213 boldness as consistent personality traits (Améndola et al., 2022; Herde & Eccard, 2013; Mazza et
214 al., 2018; Réale et al., 2007; Santicchia et al., 2022; Wirowska et al., 2024; Yuen et al., 2017).
215 Moreover, a previous study working with rats of the same strain and age documented high
216 repeatability estimates for the total distance travelled in the arena of the OF (Quante et al., 2025),
217 supporting the use of this parameter for the characterisation in the present study. The OF
218 apparatus consisted of a square grey plastic arena measuring 104 cm × 104 cm, with walls 40 cm
219 high. To prevent rats from climbing or jumping onto the walls, transparent flexible plastic
220 protectors were placed on top. The area within 26 cm of the walls was designated as the peripheral
221 zone, while the central 52 cm × 52 cm section was defined as the centre zone. The arena was
222 illuminated from above at an intensity of ~35 Lux.

223 The OF was conducted on PND 70, 77, and 84 between 9 am and 1 pm on each testing day. Rats
224 were tested in a randomised order in a dedicated testing room and placed inside a semi-
225 transparent red plastic box (22 cm × 22 cm × 15 cm), which was cleaned between individuals, for
226 transportation. Prior to each test, rats remained inside the transport box for 1 minute to ensure
227 that all animals were in the same state of arousal when being tested (Izídio et al., 2005).
228 Afterwards, the rat was placed in the front left corner of the arena, facing the wall. The behaviour
229 of the rat was recorded and automatically tracked by using a camera (Logitech HD Pro C920 Full
230 HD-Webcam 1920 x 1080 Pixel, Logitech, Apples, Switzerland) and a tracking software (ANY-maze
231 Video Tracking Software, version 6.32, Stoelting Co., Wood Dale, United States). The test duration

232 was 5 min, and the experimenter left the room during testing to prevent bias. The apparatus was
233 cleaned with 70% ethanol and paper towels before testing the first rat as well as between rats.

234

235 *Exposure phase*

236 *Faecal corticosterone metabolites (FCM)*

237 Faecal corticosterone metabolites (FCMs), which serve as a non-invasive indicator of pituitary-
238 adrenocortical activity (Palme, 2019), were measured to assess the animals' baseline
239 corticosterone levels before they were distributed to the different environments (PND 85), right
240 after they entered the new environmental conditions (PND 91) and at the end of the exposure
241 phase (PND 108). Sampling was conducted between 1 pm and 3 pm in the animals' housing room
242 on all sampling dates. For a period of exactly 2 hours, rats were individually housed in prepared
243 Makrolon Type IV cages containing a small amount of bedding, a paper tissue, a semi-transparent
244 red plastic house, and provided with food and water *ad libitum*. Following the sampling period,
245 rats were returned to their home cages, and faecal pellets were collected using gloves. All faeces
246 from a given cage were transferred into a labelled 25 ml Eppendorf tube (Eppendorf AG, Hamburg,
247 Germany) and stored at -27.5 °C until analysis.

248 For the analysis of FCMs, the wet weight of each faecal sample was first determined using a
249 precision scale (Model 510-23, Kern, Balingen, Germany; weighing capacity: 300 g, resolution:
250 0.001 g). Samples were then dried in an oven (Model 500, D-06061, Memmert, Schwabach,
251 Germany) at 80 °C for 3 hours. After drying, the samples were reweighed and stored in 25 ml
252 Eppendorf tubes. The dried faeces were subsequently ground to a fine powder using a mixer mill
253 (Mixer Mill MM 400, Retsch, Haan, Germany) equipped with a stainless-steel ball (diameter: 12-
254 15 mm, Retsch, Haan, Germany). A 70 mg portion of the faecal powder was transferred into a 2 ml
255 Eppendorf tube and mixed with 1.4 ml of 80% methanol. The mixture was vortexed for 30 minutes
256 (Multi-vortex V-32, Kisker, Steinfurt, Germany) and then centrifuged at 5,200 rpm for 10 minutes
257 (Centrifuge 5415 R, Eppendorf, Hamburg, Germany). From the resulting supernatant, 500 µl was
258 collected and stored in a 2.0 ml safe-lock Eppendorf tube at -20 °C. FCM concentrations were
259 subsequently measured using a 5 α -pregnane-3 β ,11 β ,21-triol-20-one enzyme immunoassay (see
260 Lepschy et al., 2007; Touma et al., 2003).

261

262 *Home cage behaviour (HCB)*

263 To monitor the animals' behaviour under the different environmental conditions, daily home cage
264 behaviour observations were carried out during the exposure phase (PND 90-108). Observations

265 took place 6 times a week, whereas 3 observation intervals were scheduled before noon and 3
266 observations in the afternoon. The home cage behaviour was assessed using focal continuous
267 sampling for 5 minutes on each animal, with a pseudorandomised observation order in which two
268 animals from the same cage were never observed directly after each other. In experiment 1, the
269 experimenter was blinded to the individual's trait exploration and in experiment 2, the
270 experimenter was blinded to the individual's trait exploration and the environmental condition.
271 The recorded behaviours were grouped into the following main categories: *Inactivity, General*
272 *activity, Affiliative behaviour, Agonistic behaviour, Maintenance behaviour, Abnormal behaviour*
273 (for details see supplementary material).

274

275 *Elevated plus maze (EPM)*

276 The EPM is a widely used behaviour test for rodents, designed to assess anxiety-like behaviour
277 based on the animals' natural avoidance of open and bright spaces (Lister, 1987; Pellow et al.,
278 1985; Rodgers & Johnson, 1995; Treit et al., 1993). The apparatus consisted of a plus-shaped
279 structure made of grey plastic, featuring two opposing closed arms (52 cm × 10 cm), two opposing
280 open arms (52 cm × 10 cm), and a central square zone (10 cm × 10 cm). The closed arms were
281 enclosed by 30 cm high walls, topped with transparent flexible plastic protectors to prevent the
282 rats from jumping and walking on the walls. The open arms were bordered by a 0.4 cm edge to
283 provide safety when rats would lean over. The entire maze was elevated 60 cm above the floor and
284 consistently positioned in a fixed orientation within the testing room across all experimental
285 sessions. The test apparatus was illuminated from above at an intensity of ~25 Lux.

286 In both experiments of the present study, the EPM was performed on PND 111 between 1 pm and
287 5 pm. Rats were tested in a randomised order in a dedicated testing room and placed inside a semi-
288 transparent red plastic box (22 cm × 22 cm × 15 cm), which was cleaned between individuals, for
289 transportation. Prior to each test, rats remained inside the transport box for 1 minute to ensure
290 that all animals were in the same state of arousal when being tested (Izídio et al., 2005).
291 Afterwards, the rat was put in the centre zone of the test apparatus, facing the open arm of the
292 maze. The behaviour of the rat was recorded and automatically tracked by using a camera
293 (Logitech HD Pro C920 Full HD-Webcam 1920 x 1080 Pixel, Logitech, Apples, Switzerland) and a
294 tracking software (ANY-maze Video Tracking Software, version 6.32, Stoelting Co., Wood Dale,
295 United States). The test duration was 5 min, and the experimenter left the room during testing to
296 prevent bias. The apparatus was cleaned with 70% ethanol and paper towels before testing the
297 first rat as well as between rats. Measured parameters were the relative entries and relative time
298 spent on the open arms, the distance travelled on the open arms, the sum of entries into the open
299 and closed arms and the total distance travelled (Rodgers & Johnson, 1995; Treit et al., 1993).

300

301 *Free exploration test (FET)*

302 The FET is a behaviour test that determines anxiety-like behaviour in rodents (Griebel et al.,
303 1993). While being similar to the OF, it is less often used in behavioural ecology with the main
304 difference being that the tested animal is not directly confronted with an unknown environment,
305 but that it can freely chose if it wants to leave a familiar environment to explore, thereby covering
306 another aspect of anxiety-like and exploratory behaviour. For the FET the home cage of the animal
307 was connected to the OF arena (for details see above) with a tunnel (2 x Tunnel FPI 4844, Ferplast,
308 Italy; length: 25 cm, diameter: 10.5 cm). The test arena was illuminated from above with a light
309 intensity of ~35 Lux.

310 The FET was performed on PND 112-114±1 between 2 pm and 5 pm, with the rats being tested in
311 a randomised order in a separate test room. As this test included the home cage of the tested
312 individual, all other animals from the cage were temporarily put in a Makrolon Type IV cage
313 equipped with bedding and *ad libitum* access to water for the duration of the test. To prevent an
314 effect of this procedure on the test results, only one rat per cage was tested per day. For the
315 transport of the animals to the test room a semi-transparent red plastic box (22 cm x 22 cm and
316 15 cm high) was used, which was cleaned between individuals. Before the start of the test, the rat
317 spent 2 min inside the transport box for acclimatisation, to make sure that all animals were in the
318 same state of arousal when being tested (Izídio et al., 2005). During that time the home cage of the
319 animal was connected to the arena. Then, the rat was put back into its home cage. The behaviour
320 of the rat inside the arena was recorded and automatically tracked by using a camera (Logitech
321 HD Pro C920 Full HD-Webcam 1920 x 1080 Pixel, Logitech, Apples, Switzerland) and a tracking
322 software (ANY-maze Video Tracking Software, version 6.32, Stoelting Co., Wood Dale, United
323 States). The test duration was 15 min and during testing, the experimenter left the room to prevent
324 bias. Before the first rat as well as between rats the apparatus and the tunnel were cleaned with
325 70% ethanol and paper tissues. Measured parameters were the latency to enter the arena, the
326 entries made into the arena and the time spent there as well as the distance travelled inside the
327 arena (Krakenberg et al., 2019).

328

329 *Statistics & Sample sizes*

330 The two experiments of the present study were planned with a sample size of 24 female rats each,
331 based on an a priori power analysis performed in G*Power (version 3.1.9.7) that aimed to detect
332 an average effect size ($f = 0.3$) with a power of 80%. In experiment 2, one individual was excluded
333 from the study before testing started, two individuals were excluded at the end of the

334 characterisation phase and one individual was excluded in the middle of the exposure phase, due
335 to health issues that were not related to the experiment (for details see supplementary material).
336 As this experiment is based on housing the animals in pairs, the cage partner had to be removed
337 from the study as well. Thus, for experiment 2, this results in a sample size of 23 individuals for
338 the characterisation phase, a sample size of 18 individuals for FCM and HCB and a sample size of
339 16 for the EPM and FET.

340 All analyses for both experiments were conducted in R version 4.4.0 (R Core Team) and
341 significance levels of $0.05 < p \leq 0.1$ were considered a trend, while $p \leq 0.05$ was considered
342 significant. Moreover, estimates whose 95% confidence intervals (CI) did not overlap zero were
343 considered significant. To verify the temporal consistency of inter-individual differences in
344 exploratory locomotion, we first determined a repeatability estimate (R) for the distance travelled
345 in the OF. Repeatability estimates are often used in animal behaviour to quantify the consistency
346 of individual differences (e.g. Bell et al., 2009; Nakagawa & Schielzeth, 2010). Using the rptR
347 package in R, the repeatability was estimated in a univariate, linear mixed effects model
348 framework (Stoffel et al., 2017). The model was fitted with the test repetition as a fixed effect and
349 individual ID as a random effect. The uncertainty of the repeatability estimates, i.e. confidence
350 intervals, was calculated using parametric bootstrapping ($n = 1000$, confidence level = 95%) and
351 the statistical significance was tested by likelihood ratio tests.

352 To investigate effects of trait exploration, environmental condition and the interaction of both,
353 (general) linear mixed models ((G)LMMs) were used ("lme4" package; Bates et al., 2015), with the
354 interaction of trait exploration and environmental condition as fixed effects. Moreover, the
355 timepoint was added as a fixed effect for the FCM model and the models on HCB. Concerning the
356 HCB, data from each individual was pooled by week. Please note that for experiment 1 the HCB
357 Bar mouthing was excluded from the analysis, due to its rare occurrence. In the models, "Batch" or
358 "ID" were used as a random effect, depending on whether the data included repeated measures
359 per individual. Please note, that for experiment 2 "Cage" was tested as a random effect as well by
360 comparing the Akaike information criterion (AIC) (see Zuur et al., 2010) but was found to not
361 improve model fit. Thus, the final models for FCM and HCB included the interaction of trait
362 exploration and environmental condition, and also timepoint as fixed effects as well as ID as a
363 random effect (FCM/HCB ~ trait exploration * environmental condition + timepoint + (1|ID),
364 family = gaussian/poisson), while the final models for the EPM and FET included the interaction
365 of trait exploration and environmental condition as fixed effects and Batch as a random effect
366 (EPM/FET ~ trait exploration * environmental condition + (1|Batch), family = gaussian/poisson).
367 For all models, "DHARMA" package (Hartig, 2024) was used to check model residuals and
368 significance of fixed effects was assessed using likelihood ratio chi-square tests (Type III). If
369 appropriate, the "emmeans" package ((Lenth, 2024); pairwise comparisons adjusted using

370 Tukey's method) was used to perform subsequent post hoc analyses. For Gaussian models
371 (LMMs), denominator degrees of freedom were estimated using the Kenward–Roger
372 approximation, yielding t-tests. For non-Gaussian models (GLMMs), asymptotic Wald tests were
373 used, yielding z-tests.

374

375 *Ethical Note*

376 All procedures complied with the regulations covering animal experimentation within Germany
377 (Animal Welfare Act) and the EU (European Communities Council DIRECTIVE 2010/63/EU) and
378 were approved by the local (Gesundheits- und Veterinäramt Bielefeld, Nordrhein-Westfalen) and
379 federal authorities (Landesamt für Verbraucherschutz und Ernährung "LAVE NRW" (formerly
380 Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen "LANUV"), reference
381 number: 81-02.04.2022.A101).

382 The welfare of the animals was carefully monitored during the whole experiment and beyond.
383 Testing was conducted during the active phase of the animals only and was based solely on non-
384 invasive methods. The housing conditions included spacious cages with multiple levels and a
385 variety of enrichment items. After the experiment, rats remained in the housing facility, were
386 rehomed or handed over to a cooperation partner.

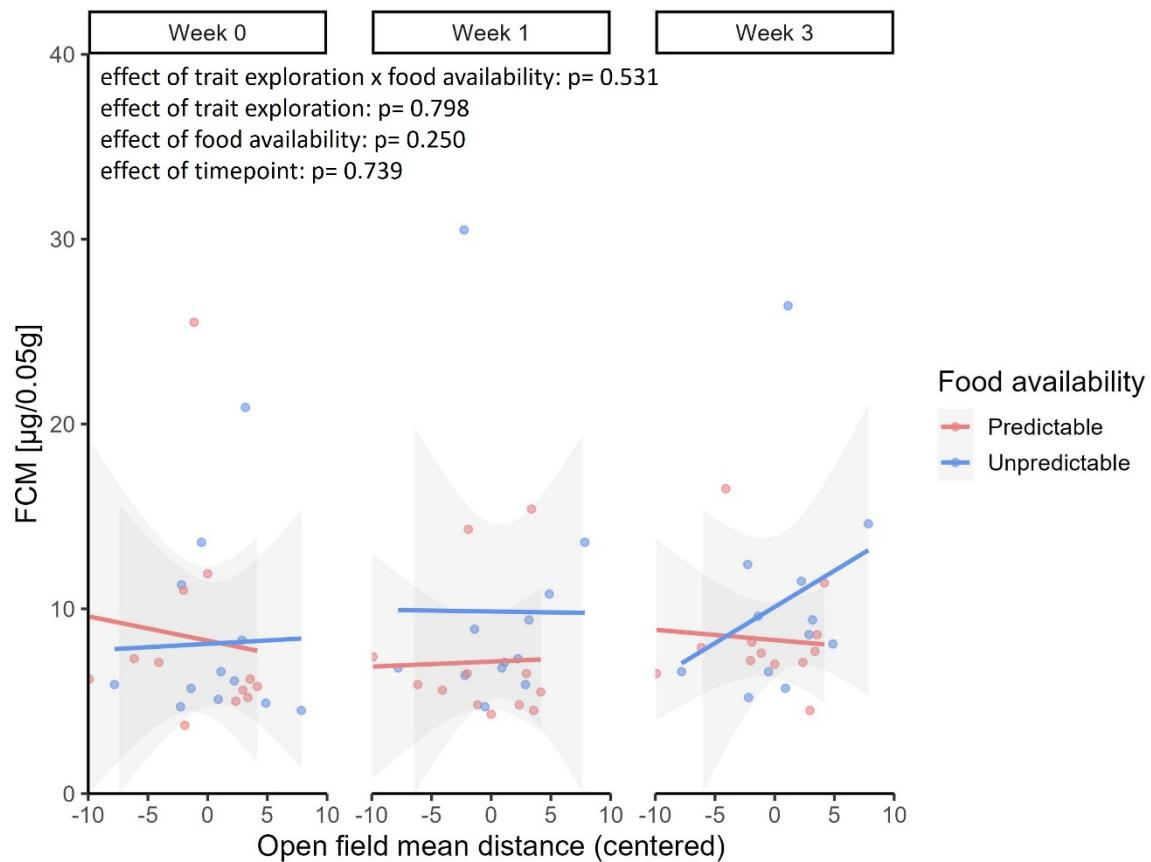
387

388 Results

389 *Experiment 1: predictable versus unpredictable food availability*

390 *Characterisation phase*

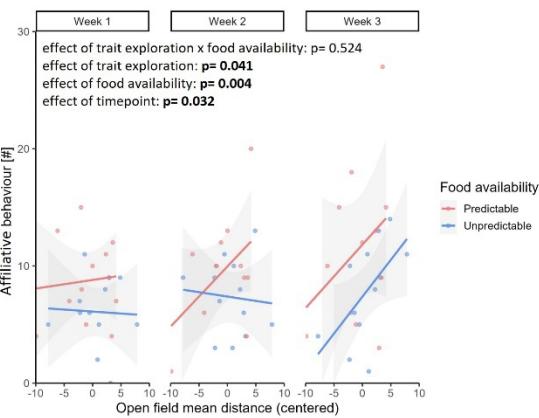
391 The repeatability analysis for characterising the animals regarding their exploratory locomotion
392 in the Open field (OF) revealed temporally consistent inter-individual differences ($R = 0.370$, CI:
393 $[0.100, 0.613]$, $p = 0.001$), indicating exploratory locomotion to be a consistent personality trait.


394

395 *Exposure phase*

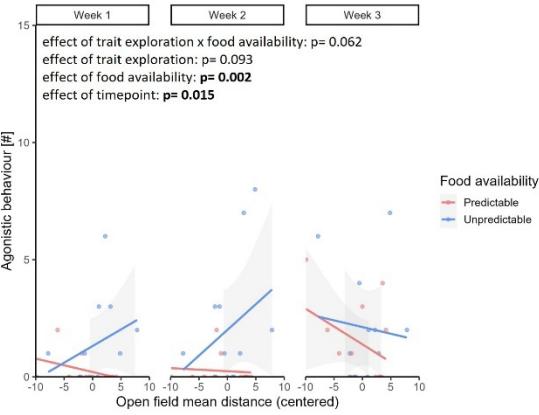
396 *Personality-by-environment interaction effects*

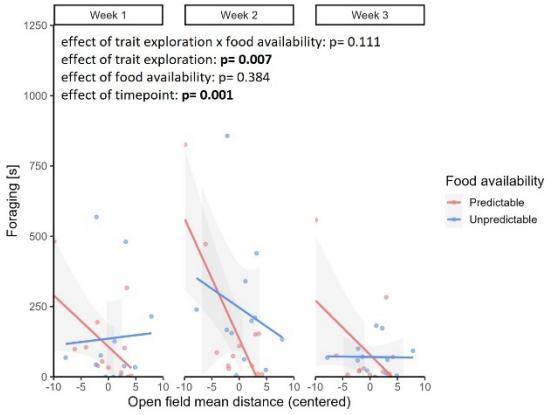
397 The analysis of faecal corticosterone metabolites (FCMs) did not detect a significant interaction
398 between trait exploration and food availability in experiment 1 ($\chi^2 = 0.391$, $df = 1$, $p = 0.531$) (Fig.
399 2). Regarding home cage behaviour (HCB), a significant interaction effect of trait exploration x


400 food availability was found for *Huddling* ($\chi^2 = 7.335$, $df = 1$, $p = 0.007$) (Fig. 3). Post hoc testing
401 revealed that under a predictable food availability, individuals with a higher tendency to explore
402 showed significantly longer huddling durations than individuals with a lower trait exploration
403 (slope estimate = 0.555 ± 0.215 , CI: [0.107, 1.004]). This association differed significantly from the
404 one under an unpredictable food availability. Here, there was a negative relationship between trait
405 exploration and huddling duration on a descriptive level (slope estimate = -0.307 ± 0.235 , CI: [-
406 0.796, 0.183]; slope comparison estimate = 0.862 ± 0.318 , $t = 2.708$, $p = 0.014$), demonstrating
407 personality-dependent behavioural adjustment to differences in food availability. Moreover, there
408 was a trend for an effect of trait exploration x food availability for *Agonistic behaviour* ($\chi^2 = 3.471$,
409 $df = 1$, $p = 0.062$; Fig. 3) and *Maintenance behaviour* ($\chi^2 = 3.788$, $df = 1$, $p = 0.052$). Specifically,
410 individuals with a higher tendency to explore were characterised by decreasing agonistic (slope
411 estimate = -0.101 ± 0.060 , CI: [-0.220, 0.017]) and decreasing maintenance behaviour (slope
412 estimate = -0.043 ± 0.272 , CI: [-0.097, 0.010]) in predictable conditions. In both cases, this
413 association showed a trend to differ from the relationship found in the unpredictable food
414 availability condition, where agonistic and maintenance behaviour increased on a descriptive level
415 for individuals with a higher tendency to explore (*Agonistic behaviour*: slope estimate = $0.048 \pm$
416 0.053 , CI: [-0.055, 0.152], slope comparison estimate = -0.150 ± 0.080 , $z = -1.863$, $p = 0.063$;
417 *Maintenance behaviour*: slope estimate = 0.036 ± 0.030 , CI: [-0.023, 0.095], slope comparison
418 estimate = -0.079 ± 0.041 , $z = -1.946$, $p = 0.052$). For the remaining behavioural parameters, i.e.
419 *Inactivity*, *General activity*, *Affiliative behaviour* and *Foraging*, no significant interaction effects of
420 trait exploration and food availability were detected (for details see supplementary material).

421

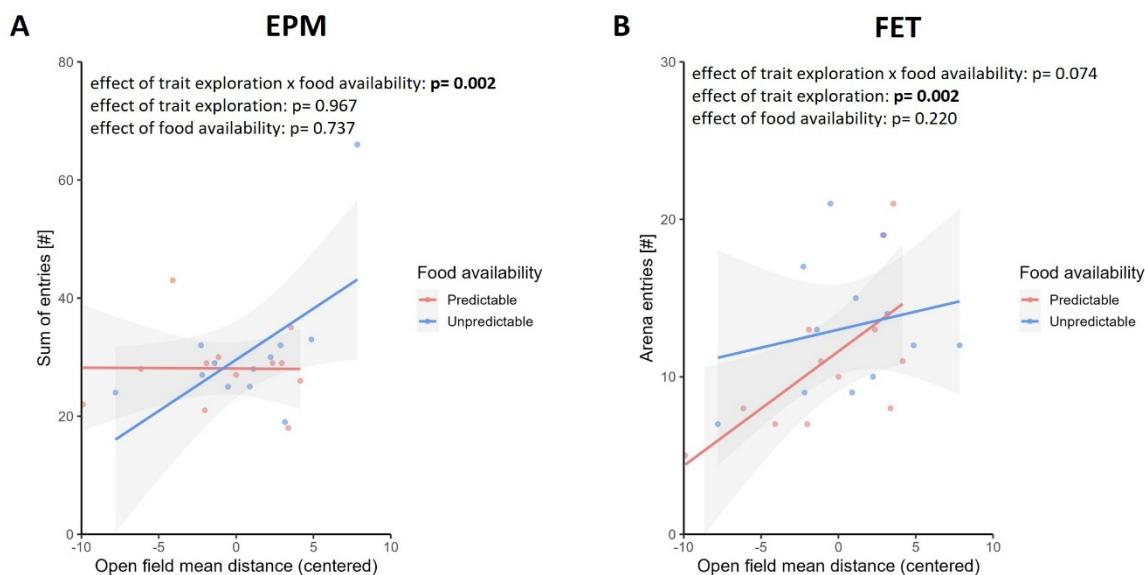
Figure 2: Faecal corticosterone metabolites (FCM). Shown is the relationship between trait exploration measured in the Open field (increasing trait exploration from left to right on x-axis) and FCM concentration (y-axis) separated by exposure weeks (facets) and food availability (colours). Points represent individual animals, lines show model-estimated slopes, and shaded areas represent 95% confidence intervals.


A


B

C

D



426

427 **Figure 3: Home cage behaviour.** Shown is the relationship between trait exploration measured in the Open
 428 field (increasing trait exploration from left to right on x-axis) and (A) the frequency of affiliative behaviour
 429 (y-axis) separated by exposure weeks (facets) and food availability (colours), (B) the duration of huddling
 430 (y-axis) separated by exposure weeks (facets) and food availability (colours), (C) the frequency of agonistic
 431 behaviour (y-axis) separated by exposure weeks (facets) and food availability (colours), (D) the duration of
 432 foraging (y-axis) separated by exposure weeks (facets) and food availability (colours). Points represent
 433 individual animals, lines show model-estimated slopes, and shaded areas represent 95% confidence
 434 intervals.

435 Furthermore, the analysis concerning the tests for anxiety-like behaviour revealed a significant
 436 effect of trait exploration x food availability regarding the sum of entries made to the arms of the
 437 Elevated plus maze (EPM) ($\chi^2 = 9.455$, $df = 1$, $p = 0.002$) and a trend for such an interaction effect
 438 concerning the entries made to the arena of the Free exploration test (FET) ($\chi^2 = 3.189$, $df = 1$, $p =$
 439 0.074) (Fig. 4). In fact, with increasing trait exploration, individuals made significantly more
 440 entries to the arms of the EPM under unpredictable food availability conditions (slope estimate =
 441 0.058 ± 0.014 , CI: [0.031, 0.086]). In contrast, in an environment with a predictable food
 442 availability, they made less entries (slope estimate = -0.001 ± 0.013 , CI: [-0.026, 0.025]). This
 443 resulted in a significant difference between the two environmental conditions (slope comparison
 444 estimate = -0.059 ± 0.019 , $z = -3.075$, $p = 0.002$). Regarding the FET arena entries, higher trait
 445 exploration was associated with more arena entries in both environmental conditions. However,
 446 the relationship was stronger and significant only for the predictable food availability condition

447 (predictable food availability: slope estimate = 0.074 ± 0.024 , CI: [0.028, 0.120]; unpredictable
 448 food availability: slope estimate = 0.018 ± 0.021 , CI: [-0.024, 0.059]), resulting in a trend for a
 449 difference between environmental conditions (slope comparison estimate = 0.056 ± 0.032 , $z =$
 450 1.786, $p = 0.074$). The analysis of the remaining parameters from the EPM and FET did not reveal
 451 a significant effect of trait exploration x food availability (for details see supplementary material).

452

453 **Figure 4: Elevated plus maze (EPM) and Free exploration test (FET).** Shown is the relationship between
 454 trait exploration measured in the Open field (increasing trait exploration from left to right on x-axis) and
 455 (A) the sum of arm entries in the EPM (y-axis) separated by food availability (colours), (B) the number of
 456 arena entries in the FET (y-axis) separated by food availability (colours). Points represent individual
 457 animals, lines show model-estimated slopes, and shaded areas represent 95% confidence intervals.

458

459 *Personality main effects*

460 While the analysis of FCMs did not detect a significant effect for trait exploration alone ($\chi^2 = 0.066$,
 461 $df = 1$, $p = 0.798$) (Fig. 2), HCB was found to be affected by the animals' personality. Specifically, an
 462 effect of trait exploration was noted for *Affiliative behaviour* ($\chi^2 = 4.191$, $df = 1$, $p = 0.041$) and
 463 *Foraging* ($\chi^2 = 7.378$, $df = 1$, $p = 0.007$) (Fig. 3). Moreover, there was a trend for an effect of trait
 464 exploration on *General activity* ($\chi^2 = 2.832$, $df = 1$, $p = 0.092$). Here, highly explorative individuals
 465 showed significantly more affiliative behaviour (estimate = 0.044 ± 0.021 , $z = 2.047$, $p = 0.041$),
 466 spent less time foraging (estimate = -0.950 ± 0.350 , $t = -2.716$, $p = 0.013$) and tended to have a
 467 higher activity in general (estimate = 0.366 ± 0.217 , $t = 1.683$, $p = 0.108$), indicating wide-ranging
 468 behavioural differences in individuals with varying personality. By contrast, trait exploration did
 469 not affect any of the behavioural parameters from the EPM and FET significantly (for details see
 470 supplementary material).

471

472 *Environment main effects*

473 Similar to the FCM findings above, no significant effect of food availability was detected concerning
474 this parameter ($\chi^2 = 1.323$, $df = 1$, $p = 0.250$), indicating an overall robustness of this
475 endocrinological measure to personality-dependent and environmental influences (Fig. 2).
476 Regarding HCB, the analysis revealed a significant effect of food availability on *Affiliative behaviour*
477 ($\chi^2 = 8.359$, $df = 1$, $p = 0.004$), with individuals displaying more affiliative behaviours under a
478 predictable food availability (estimate = 0.367 ± 0.127 , $z = 2.891$, $p = 0.004$) (Fig. 3). Concerning
479 the tests for anxiety-like behaviour, no significant effects of food availability were found.
480 Nevertheless, there was a trend for an effect of food availability on the latency to enter the arena
481 in the FET ($\chi^2 = 2.982$, $df = 1$, $p = 0.084$). However, post hoc analysis did not detect a significant
482 difference between the predictable and unpredictable condition (estimate = 27.200 ± 15.800 , $t =$
483 1.720 , $p = 0.103$). For an overview of statistical information, please see supplementary material.

484

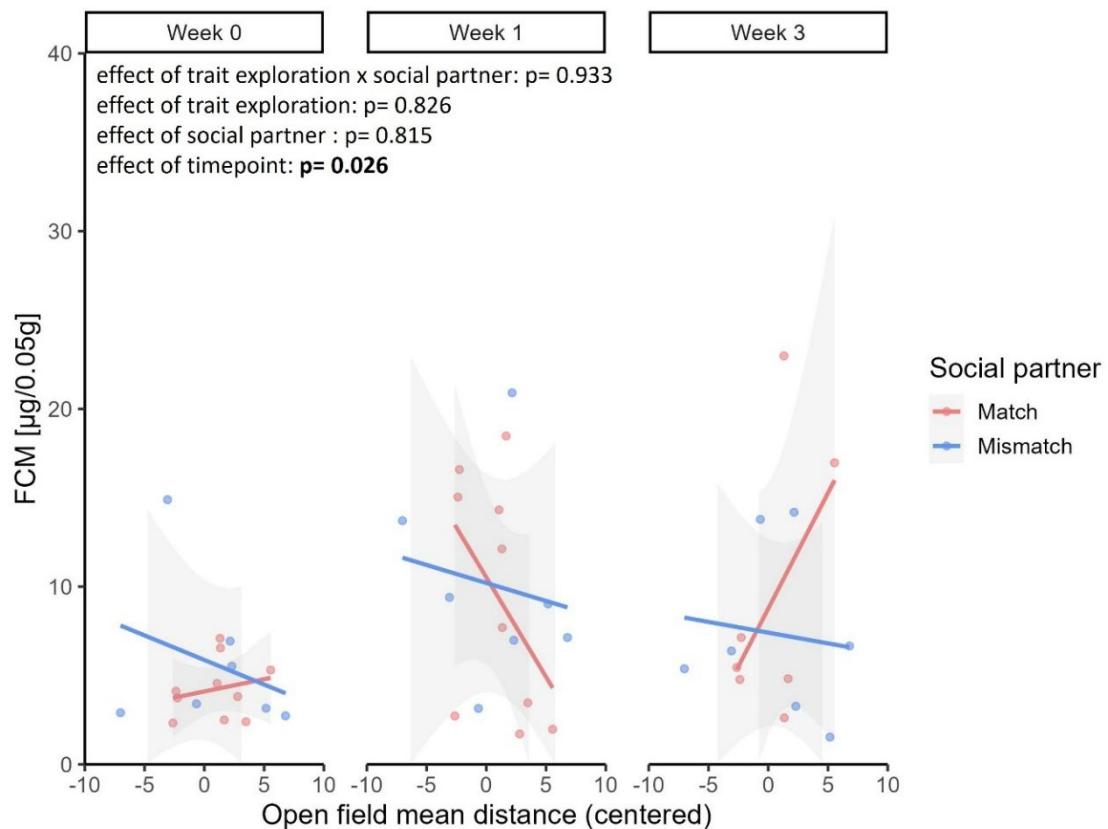
485 *Timepoint main effects*

486 Also for timepoint, the analysis of FCMs did not detect a significant effect ($\chi^2 = 0.606$, $df = 2$, $p =$
487 0.739) (Fig. 2). Again, effects on HCB were found, with timepoint significantly affecting *Affiliative*
488 *behaviour* ($\chi^2 = 6.906$, $df = 2$, $p = 0.032$), *Agonistic behaviour* ($\chi^2 = 8.450$, $df = 2$, $p = 0.015$) and
489 *Foraging* ($\chi^2 = 14.689$, $df = 2$, $p = 0.001$) (Fig. 3). According to the post hoc comparisons, affiliative
490 interactions were less common in exposure week 1 than in exposure week 3 (estimate = $-0.261 \pm$
491 0.099 , $z = -2.621$, $p = 0.024$), while agonistic interactions were more common in exposure week 1
492 than in exposure week 3 (estimate = -0.765 ± 0.271 , $z = -2.828$, $p = 0.013$). Moreover, foraging
493 behaviour showed a peak in exposure week 2 (week 1 versus week 2: estimate = -3.090 ± 1.270 , t
494 = -2.433 , $p = 0.049$; week 2 versus week 3: estimate = 4.810 ± 1.270 , $t = 3.781$, $p = 0.001$) ($p > 0.05$
495 for the remaining comparisons, for details see supplementary material).

496

497 *Experiment 2: matched versus mismatched social partner*

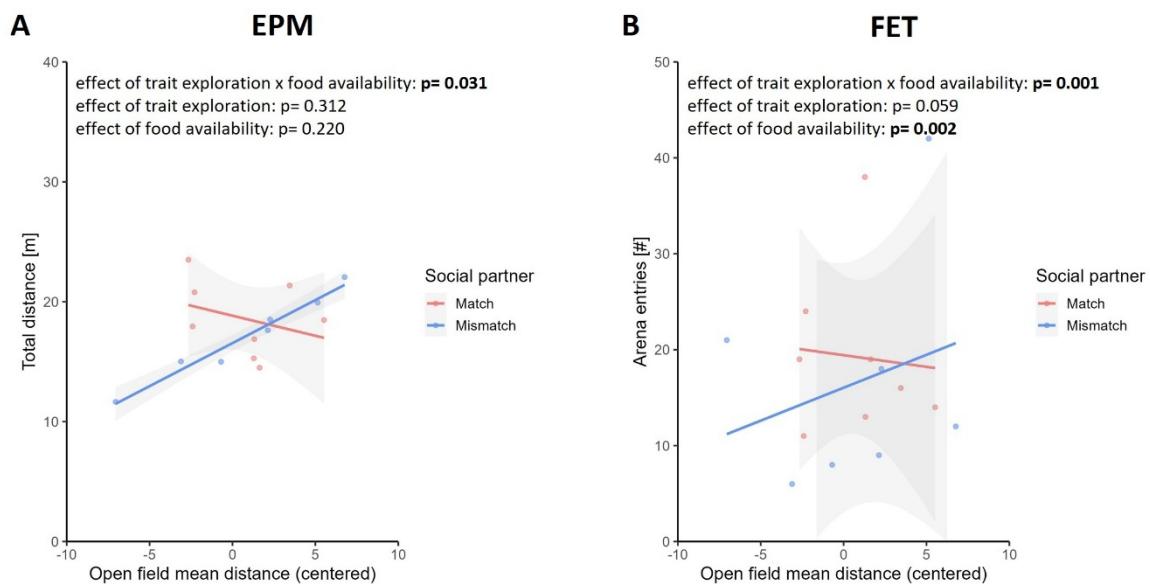
498 *Characterisation phase*


499 In line with the results from experiment 1, the repeatability analysis for characterising the animals
500 regarding their exploratory locomotion in the OF showed temporally consistent inter-individual
501 differences ($R = 0.446$, $CI: [0.171, 0.660]$, $p < 0.001$), indicating exploratory locomotion to be a
502 consistent personality trait.

503

504 *Exposure phase*

505 *Personality-by-environment interaction effects*


506 Regarding the analysis of FCMs, no significant effect of trait exploration x social partner was found
507 ($\chi^2 = 0.007$, $df = 1$, $p = 0.933$) (Fig. 5). Likewise, the analysis of HCB did not show a significant
508 interaction effect between trait exploration and social partner for any of the behavioural
509 parameters recorded (for details see supplementary material).

511 **Figure 5: Faecal corticosterone metabolites (FCM).** Shown is the relationship between trait exploration
512 measured in the Open field (increasing trait exploration from left to right on x-axis) and FCM concentration
513 (y-axis) separated by exposure weeks (facets) and social partner (colours). Points represent individual
514 animals, lines show model-estimated slopes, and shaded areas represent 95% confidence intervals.

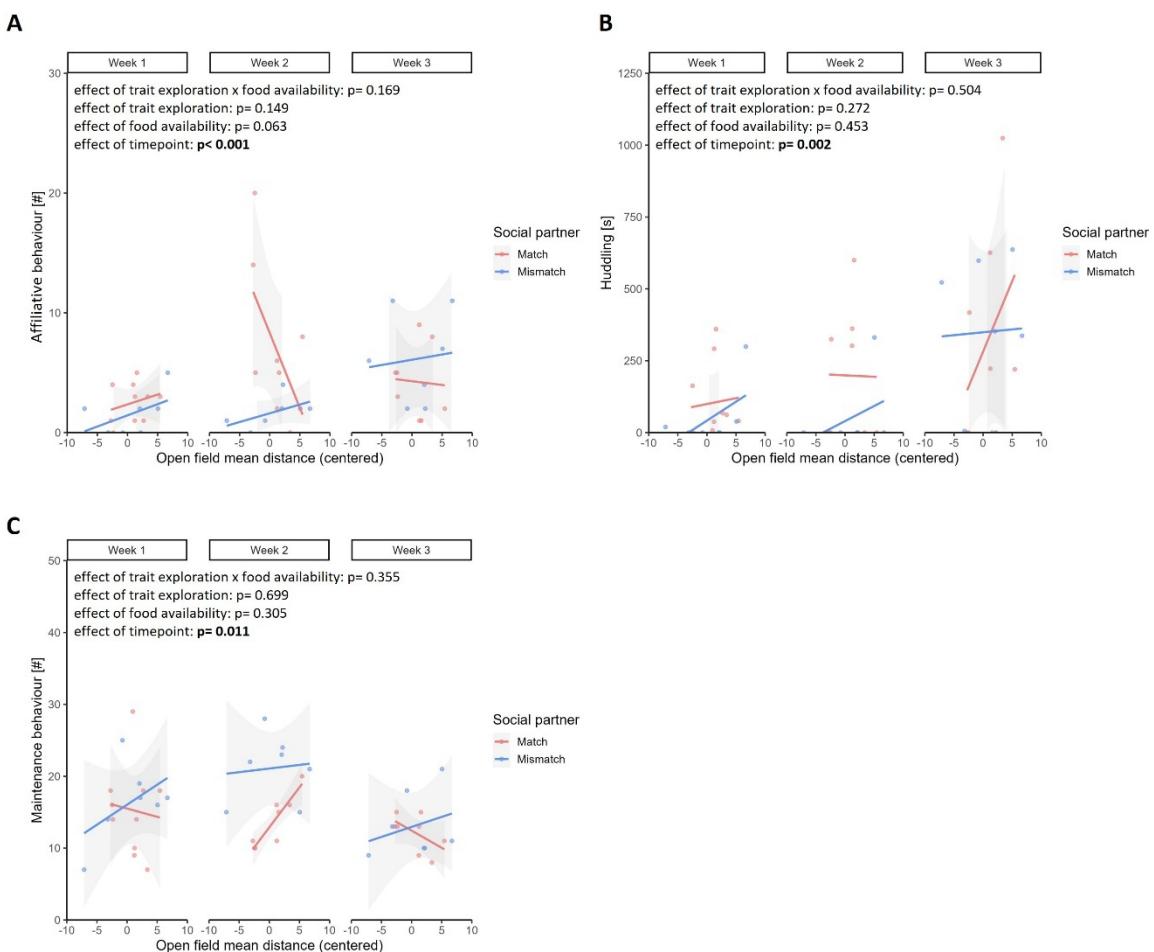
515 However, the tests for anxiety-like behaviour revealed a significant effect of trait exploration x
516 social partner on the total distance travelled in the EPM ($\chi^2 = 4.632$, $df = 1$, $p = 0.031$) and the
517 entries made into the arena of the FET ($\chi^2 = 10.230$, $df = 1$, $p = 0.001$) (Fig. 6). Post hoc analysis
518 detected a significant positive relationship between trait exploration and the total distance
519 travelled in the EPM for individuals housed with a mismatched social partner (slope estimate =
520 0.460 ± 0.175 , CI: [0.077, 0.842]) and a negative relationship on a descriptive level for matched
521 pairs (slope estimate = -0.334 ± 0.398 , CI: [-1.206, 0.537]). However, the slopes from the two
522 environmental conditions did not differ significantly (slope comparison estimate = -0.794 ± 0.455 ,
523 $t = -1.746$, $p = 0.109$). Furthermore, animals with a higher trait exploration showed significantly

524 more entries to the FET arena when housed with a mismatched social partner (slope estimate =
 525 0.065 ± 0.017 , CI: [0.032, 0.099]). This relationship differed significantly from the one in the
 526 environment with a matched social partner, where animals with a higher trait exploration entered
 527 the FET arena less often on a descriptive level (slope estimate = -0.070 ± 0.037 , CI: [-0.142, 0.003];
 528 slope comparison estimate = -0.135 ± 0.042 , $z = -3.198$, $p = 0.001$), indicating differences in
 529 anxiety-like behaviour depending on the combination of personality in one cage. Furthermore,
 530 there was a trend for an effect of trait exploration x social partner regarding the distance travelled
 531 on the open arms of the EPM ($\chi^2 = 3.153$, $df = 1$, $p = 0.076$) and the sum of entries made to the
 532 arms of the EPM ($\chi^2 = 3.643$, $df = 1$, $p = 0.056$), both parameters reflecting locomotor activity.
 533 However, no significant results were detected in the post hoc analysis concerning EPM open arm
 534 distance (matched social partner: slope estimate = -0.050 ± 0.056 , CI: [-0.173, 0.073]; mismatched
 535 social partner: slope estimate = 0.041 ± 0.025 , CI: [-0.013, 0.095]; slope comparison estimate =
 536 -0.0991 ± 0.064 , $t = -1.430$, $p = 0.182$). Nevertheless, for the sum of EPM arm entries, a significant
 537 positive relationship with trait exploration was found in mismatched pairs (slope estimate = 0.033
 538 ± 0.012 , CI: [0.009, 0.058]). This positive association showed a statistical trend to differ from the
 539 relationship found in matched pairs, where more explorative individuals showed fewer EPM arm
 540 entries on a descriptive level (slope estimate = -0.021 ± 0.025 , CI: [-0.070, 0.029]; slope
 541 comparison estimate = -0.054 ± 0.028 , $z = -1.909$, $p = 0.056$).

542

543 **Figure 6: Elevated plus maze (EPM) and Free exploration test (FET).** (A) Shown is the relationship
 544 between trait exploration measured in the Open field (increasing trait exploration from left to right on x-
 545 axis) and (A) the total distance travelled in the EPM (y-axis) separated by social partner (colours), (B) the
 546 number of arena entries in the FET (y-axis) separated by social partner (colours). Points represent
 547 individual animals, lines show model-estimated slopes, and shaded areas represent 95% confidence
 548 intervals.

549


550 *Personality main effects*

551 Also for trait exploration alone, no significant effect on FCMs was detected ($\chi^2 = 0.048$, $df = 1$, $p = 0.826$) (Fig. 5). Likewise, no significant effect of trait exploration was found for the HCB and 553 regarding the EPM and the FET (for details see supplementary material).

554

555 *Environment main effects*

556 Regarding an impact of the social partner, the analysis of FCMs did not reveal a significant effect 557 ($\chi^2 = 0.055$, $df = 1$, $p = 0.815$), again reflecting a high robustness of this endocrinological parameter 558 to personality-dependent and environmental influences (Fig. 5). Also for HCB, no significant effect 559 of social partner alone was found. Yet, there was a trend for an effect of social partner on *Affiliative* 560 behaviour ($\chi^2 = 3.450$, $df = 1$, $p = 0.063$), with matched pairs tending to show more affiliative 561 behaviour than mismatched pairs (estimate = 0.393 ± 0.211 , $z = 1.858$, $p = 0.063$) (Fig. 7).

562

563 **Figure 7: Home cage behaviour.** Shown is the relationship between trait exploration measured in the Open 564 field (increasing trait exploration from left to right on x-axis) and (A) the frequency of affiliative behaviour 565 (y-axis) separated by exposure weeks (facets) and social partner (colours), (B) the duration of huddling (y- 566 axis) separated by exposure weeks (facets) and social partner (colours), (C) the frequency of maintenance 567 behaviour (y-axis) separated by exposure weeks (facets) and social partner (colours). Points represent

568 individual animals, lines show model-estimated slopes, and shaded areas represent 95% confidence
569 intervals.

570 In the tests for anxiety-like behaviour, the social partner was found to affect the distance travelled
571 in the arena of the FET ($\chi^2 = 9.288$, df = 1, p = 0.002). Here, animals housed with a matched social
572 partner travelled greater distances than animals housed with a mismatched social partner
573 (estimate = 15.200 ± 5.590 , t = 2.727, p = 0.019). In addition, there was a trend for an effect of
574 social partner on the latency to enter the arena of the FET ($\chi^2 = 3.379$, df = 1, p = 0.066) and time
575 spent there ($\chi^2 = 3.543$, df = 1, p = 0.060), both parameters that reflect anxiety-like behaviour.
576 However, a significant difference was detected for neither of the two parameters in the post hoc
577 analysis (FET arena latency: estimate = -31.900 ± 19.400 , t = -1.645, p = 0.127; FET arena time:
578 estimate = 94.800 ± 56.300 , t = 1.685, p = 0.119). For an overview of statistical information, please
579 see supplementary material.

580

581 *Timepoint main effects*

582 The FCM analysis revealed a significant effect of timepoint ($\chi^2 = 7.337$, df = 2, p = 0.026), with post
583 hoc analysis showing that adrenocortical activity was significantly lower before regrouping the
584 animals according to their environmental condition compared to the first week after the
585 regrouping (estimate = -0.755 ± 0.283 , t = -2.669, p = 0.031) (Fig. 5). This indicates an impact of
586 the change in environmental condition on HPA axis activity (p > 0.05 for the remaining
587 comparisons, for details see supplementary material). Moreover, in the analysis of HCB, timepoint
588 had a significant effect on *Affiliative behaviour* ($\chi^2 = 21.969$, df = 2, p < 0.001), *Huddling* ($\chi^2 =$
589 12.029, df = 2, p = 0.002) and *Maintenance behaviour* ($\chi^2 = 8.934$, df = 2, p = 0.011) (Fig. 7).
590 Regardless of social partner, animals showed a higher frequency of affiliative behaviours in
591 exposure week 2 and 3 compared to exposure week 1 (week 1 versus week 2: estimate = $-0.808 \pm$
592 0.197, z = -4.090, p < 0.001; week 1 versus week 3: estimate = -0.871 ± 0.195 , z = -4.454, p < 0.001)
593 and longer durations of huddling in exposure week 3 compared to exposure weeks 1 and 2 (week
594 1 versus week 3: estimate = -9.250 ± 2.980 , t = -3.101, p = 0.011; week 2 versus week 3: estimate
595 = -8.892 ± 3.050 , t = -2.915, p = 0.018). Moreover, maintenance behaviour of the animals decreased
596 from exposure week 2 to exposure week 3 (estimate = 0.279 ± 0.094 , z = 2.973, p = 0.008) (p >
597 0.05 for the remaining comparisons, for details see supplementary material).

598

599 **Discussion**

600 The aim of the present study was to investigate personality-dependent adjustments to different
601 environmental conditions. Therefore, animals were characterised regarding their trait exploration

602 and exposed to an environment with a predictable versus an unpredictable food availability in
603 experiment 1 as well as to an environment with a social partner of matching versus mismatching
604 personality, i.e. trait exploration, in experiment 2. In the characterisation phase, consistent inter-
605 individual differences in trait exploration were found for both experiments. While personality,
606 environment and the interaction of both did not affect FCMs in neither of the experiments, several
607 behavioural adjustments were detected. In fact, experiment 1 revealed an effect of personality x
608 food availability concerning the affiliative, agonistic and maintenance behaviour in the home cage
609 as well as regarding anxiety-like behaviour and locomotor activity in the EPM and FET. Moreover,
610 an effect of personality alone was noted for foraging, activity and affiliative behaviour in the home
611 cage, the latter being also affected by food availability alone. Additionally, experiment 2 detected
612 an effect of personality x social partner in the tests for anxiety-like behaviour and an effect of the
613 social environment on affiliative behaviour in the home cage as well as on locomotor activity in
614 the FET.

615

616 *Exploratory locomotion was a consistent personality trait in both experiments*

617 In line with the literature, the characterisation performed in both experiments showed temporally
618 consistent inter-individual differences in the rats' exploratory locomotion measured within the
619 OF, indicating this behaviour to reflect a consistent personality trait (Quante et al., 2025). Thus,
620 the findings add to the body of empirical evidence regarding temporally consistent behaviour in
621 the OF (e.g. Améndola et al., 2022; Herde & Eccard, 2013; Mazza et al., 2018; Réale et al., 2007;
622 Santicchia et al., 2022; Wirowska et al., 2024; Yuen et al., 2017). Besides consistent individual
623 differences in anxiety-related behaviours (e.g. time spent close to the walls of the OF arena versus
624 the centre) that are often used to assess boldness, this finding particularly underscores the
625 existence of differences in spatial exploration among rats. As mentioned in the introduction, such
626 consistent personality traits might have been pressured by natural selection, as they allow
627 appropriate responses on an average level when unlimited behavioural plasticity is too costly
628 (Bergmüller & Taborsky, 2010; Wolf & Weissing, 2010, 2012). Especially in social-living species,
629 behavioural consistency is likely to be advantageous as it increases the predictability of the
630 interaction partner (Cabrera et al., 2021). Although exploration is not a social behaviour per se,
631 consistent individual differences still might have been favoured due to exploration being linked to
632 social behaviour (Aplin et al., 2013; Hakataya et al., 2023; further discussed below).

633

634 *Personality-dependent adjustment to the environment was found for*
635 *behavioural measures but not regarding HPA axis activity*

636 In experiment 1, individuals with a higher trait exploration were characterised by more huddling
637 in the predictable food availability condition. Moreover, higher trait exploration was associated
638 with less agonistic and less maintenance behaviour in this condition. The decrease in maintenance
639 behaviour could be explained by an indirect effect of the increased huddling, as socially more
640 integrated animals presumably have a higher chance of being allo-groomed. At the same time, the
641 increase in huddling together with the decrease in agonistic interactions are likely to reduce
642 energetic costs, both by lowering investment in fighting and by supporting more efficient
643 thermoregulation (e.g. Vavrušková et al., 2022). Since energetic savings constitute a fitness
644 advantage for the individual animal, this finding might point towards a better behavioural
645 adjustment of highly explorative animals to predictable conditions. Although increased huddling
646 has also been reported in response to stress (Muroy et al., 2016), other findings that would have
647 indicated elevated stress levels, such as reduced general activity (Blanchard & Blanchard, 1969)
648 or increased HPA axis activity (Amaral et al., 2010), were not detected in the present study, arguing
649 against this interpretation. In an unpredictable environment, in contrast, such behavioural
650 adjustments might not have been possible, due to a constant change in resource availability.

651 In line with the home cage behaviour results, the tests for anxiety-like behaviour revealed higher
652 trait exploration to be associated with more FET arena entries in the predictable food availability
653 condition. As more FET arena entries are widely interpreted as an indicator of reduced anxiety-
654 like behaviour, this might point towards improved welfare in these animals (e.g. Hurst & West,
655 2010). Taken together, these findings support the assumption that more explorative individuals
656 perform better in predictable environmental conditions (Benus et al., 1991; Verbeek et al., 1994).
657 From a population level perspective, such inter-individual variation might be beneficial, as it
658 increases resilience to fluctuating environmental conditions (Réale et al., 2007; Sih et al., 2012;
659 Wolf & Weissing, 2012).

660 Although, the literature often describes less explorative animals to adjust better to unstable
661 environmental conditions (Benus et al., 1991; Verbeek et al., 1994), the present study did not
662 report clear evidence that low trait exploration animals performed better in the unpredictable
663 condition. This might be due to the unpredictable condition constituting a more drastic change in
664 housing condition. In fact, all animals were used to *ad libitum*, i.e. very predictable, feeding before
665 the start of the exposure phase. The stress caused by this environmental change might have
666 impeded the detection of personality-dependent differences, as it was shown that moderate stress
667 decreases inter-individual variation in behavioural and physiological measures (Macrì et al.,
668 2007). In fact, the only finding reported in the unpredictable food availability condition was an
669 association between higher trait exploration and more EPM arm entries, reflecting increased
670 locomotor activity. This increase could be caused by a stronger motivation for foraging under
671 unpredictable food availability conditions, which is in line with previous findings, reporting a

672 mildly restricted feeding routine to decrease anxiety-like behaviour and to increase exploratory
673 locomotion (Quante et al., 2023).

674 In experiment 2, personality x environment interactions were only detected in the behavioural
675 tests. More specifically, higher trait exploration was associated with more EPM arm entries and a
676 greater distance travelled there as well as more FET arena entries in mismatched pairs. These
677 behavioural differences indicate reduced anxiety-like behaviour and hint towards a better
678 adjustment of highly explorative individuals to a mismatched social partner, when following a
679 traditional interpretation (e.g. Hurst & West, 2010). However, this interpretation is not further
680 supported by the results from the home cage behaviour, where no interaction effects were
681 observed. Moreover, the interpretation contrasts the finding that matching pairs engaged more in
682 affiliative behaviours independent of personality in the home cage (further discussed below).

683 A reason for this rather weak evidence of personality-dependent adjustments to the social
684 environment might be the presence of only one social partner in the present study. Indeed,
685 researchers assume that effects of the social environment critically depend on the number of
686 group mates (Brehm & Mortelliti, 2024; Krause & Ruxton; Graeme D., 2002) and previous studies
687 have already reported on personality x social environment effects in larger groups (e.g.
688 Magnhagen & Staffan, 2005). Thus, future studies are advised to include larger group sizes to
689 investigate potential personality x social environment effects.

690

691 *Personality affected behavioural measures in the home cage but not HPA axis
692 activity*

693 In both experiments, trait exploration did not affect HPA axis activity determined by FCM
694 measurements (Palme, 2019). In the literature, divergent findings regarding a link between
695 personality and HPA axis activity are reported. While traditional coping style models describe
696 personality-dependent differences in hormone profiles, with more bold and active individuals
697 typically showing lower basal corticosterone levels and HPA axis reactivity (Carere et al., 2003;
698 Cockrem, 2007; Koolhaas et al., 1999; Mazza, Dammhahn, et al., 2019), further studies report no
699 such link (Sroka et al., 2024) or a context-specific pattern (Mazza, Jacob, et al., 2019). Due to the
700 inconsistent study results, researchers proposed an updated coping style model supporting the
701 idea that physiological and behavioural measures might be more decorrelated in an individual's
702 reaction to environmental challenges than previously assumed (e.g. Koolhaas et al., 2010; Mazza,
703 Dammhahn, et al., 2019; Westrick et al., 2019). Hence, animals with a similar behavioural
704 response, such as the same level of exploration, may vary in their HPA axis activity (e.g. Sroka et
705 al., 2024; Van Reenen et al., 2005; Westrick et al., 2019).

706 Another explanation for the inconsistent findings may lie in the different tests and parameters
707 used to characterise the animals, as they are likely to measure different aspects of boldness,
708 exploration and activity (Krebs et al., 2019; Sroka et al., 2024). Consequently, two parameters
709 assumed to measure boldness, might not necessarily correlate and differ in their associations with
710 other behavioural and physiological measurements. This is supported by the present study, where
711 EPM and FET measures were unaffected by personality in both experiments, a pattern also
712 reported by other studies comparing multiple tests for anxiety-like and exploratory behaviour
713 (Carter et al., 2012; O'Leary et al., 2013; Yuen et al., 2017).

714 In experiment 1, personality-dependent differences were found with respect to home cage
715 behaviour. Specifically, individuals with a higher trait exploration were characterised by more
716 affiliative behaviour and general activity but less foraging behaviour. In general, the findings add
717 to the already existing reports of personality-dependent behavioural differences in the literature
718 (Koolhaas et al., 1999; Sroka et al., 2024; Verbeek et al., 1996). While increased general activity is
719 likely to be a direct expression of higher trait exploration, less foraging behaviour could be an
720 indirect consequence of more time spent displaying other behaviours, such as object manipulation
721 and affiliative behaviours. Indeed, a similar finding is reported in a study on bank voles, where
722 individuals were characterised as shy or bold based on several measures, including exploration
723 (Mazza, Jacob, et al., 2019). In this study, bolder individuals (also characterised by more
724 exploratory behaviour) spent less time foraging. The authors suggest that this finding is mainly
725 caused by a higher foraging efficiency in these individuals (Mazza, Jacob, et al., 2019). Regarding
726 the link between trait exploration and affiliative behaviour, a study conducted in birds found
727 personality-dependent differences in social strategies, with fast-exploring birds establishing more
728 but weaker and short-lived social bonds compared to slow-exploring birds that had less but
729 stronger and persistent social associations (Aplin et al., 2013). In this study, it is suggested that
730 these differences reflect the slow-exploring individuals' preference for a safer environment.
731 Smaller social groups may provide more safety by reducing pathogen exposure and improving
732 group-level predator defence, for example through alarm calling. In line with this, a link between
733 exploration and social relationships has recently been reported in rats, with more explorative
734 animals engaging more in the formation of social bonds to conspecifics (Hakataya et al., 2023).
735 Similar to the suggestion above, the authors of the study assume that this is due to more
736 explorative animals being more likely to seek novel and unfamiliar conspecifics. In summary, the
737 observed personality-dependent differences could indicate a higher flexibility in the
738 establishment of social relationships in more explorative individuals, which is likely to be
739 advantageous under changing social environmental conditions.

740 The fact that no such differences were observed in experiment 2 of the present study, might be
741 explained by the differences in housing condition and food availability, as here, individuals were

742 pair-housed and fed *ad libitum*. While group size is known to particularly affect social interactions
743 (Monfils et al., 2024), both factors, i.e. group size and feeding routine, are known to alter activity
744 levels (e.g. Feige-Diller et al., 2020; Pinelli et al., 2017; Quante et al., 2023). Thus, these factors
745 might have concealed personality-dependent effects on the affiliative behaviour and general
746 activity of the animals in experiment 2.

747

748 *Environment affected the affiliative behaviour in the home cage*

749 In both experiments, environmental condition was found to affect the rats' affiliative behaviour in
750 the home cage. Although agonistic behaviour decreased and affiliative behaviour increased across
751 the exposure phase of experiment 1, affiliative behaviours were generally more frequent in the
752 predictable food availability condition. This may result from consistent feeding times facilitating
753 more social interactions, as animals quickly habituate to predictable feeding schedules (e.g.
754 Quante et al., 2023). In contrast, the unpredictable food availability might have reduced affiliative
755 behaviours, as rats perceive it as aversive and prefer a predictable over an unpredictable food
756 delivery (Prokasy, 1956; for a review on effects of predictability see Bassett & Buchanan-Smith,
757 2007). However, this interpretation is not further supported by the measured FCM levels that
758 usually increase in response to stress (e.g. Amaral et al., 2010) but remained unaffected in the
759 present study.

760 Likewise, experiment 2 revealed increasing affiliative behaviours across the exposure phase,
761 especially in matched pairs. The results are in line with previous studies in primates, reporting
762 individuals with more similar personality types to form closer social bonds (Massen & Koski,
763 2014), indicating the principle of homophily to also apply to adult female rats. While other studies
764 have demonstrated this phenomenon in relation to other characteristics, such as sex, age, strain
765 and playfulness in juveniles, our study shows homophily to be also present regarding a more
766 fundamental personality trait with high ecological relevance, i.e. exploration (Hakataya et al.,
767 2023; Lampe et al., 2019; Mauri et al., 2022).

768 Moreover, the tests for anxiety-like behaviour found individuals from matched pairs to travel a
769 greater distance in the arena of the FET. As in this test the animals can freely choose to enter the
770 arena, the increase in exploratory locomotion also implies a reduction in anxiety-like behaviour.
771 As mentioned before, this finding can be interpreted as an indicator of good welfare (e.g. Hurst &
772 West, 2010), pointing towards a welfare-improving effect of housing individuals with matched
773 personality together. Furthermore, the experiment also pointed towards an effect of social group
774 on the welfare of animals. Specifically, a temporal increase in basal corticosterone levels after
775 regrouping the animals into pairs was detected. Following the traditional interpretation (e.g.

776 Amaral et al., 2010), the finding indicates that either the change in social group or the reduction
777 in group size might have acted as a stressor for the animals. This is in line with previous studies,
778 demonstrating rats in general and female rats in particular to be very social animals that prefer to
779 live in stable groups comprising several individuals (Hackenberg et al., 2021; Patterson-Kane et
780 al., 2004).

781

782 Conclusion

783 The present study reproduces and emphasises previous findings regarding consistent inter-
784 individual differences in rats' exploratory locomotion, encouraging the use of trait exploration for
785 further investigations regarding the consequences of personality traits. By demonstrating that
786 personality and environment jointly shape behavioural adjustment in rats, while physiological
787 responses remain largely independent, the study moreover supports revised suggestions on
788 coping style models. These models propose a greater independency of behavioural and
789 physiological measures than previously assumed. Furthermore, the detected positive association
790 between exploration and affiliative behaviour indicates personality-dependent patterns of social
791 interaction that may influence group structure and social organisation. Additionally, the principle
792 of homophily is shown to apply regarding trait exploration. Together with the finding that social
793 group and feeding routine affects animal welfare indicators, this emphasises the relevance of
794 considering both personality and environment in further research regarding the refinement of
795 housing conditions for animals held in captivity. In summary, the findings highlight the importance
796 of integrating personality into eco-evolutionary perspectives on adjustment processes as well as
797 into animal welfare endeavours.

798

799 Author statement

800 S.H.R. conceived the study. S.H.R., S.K. and S.M.Q. designed the experiments. S.H.R. and S.K.
801 supervised the project. D.Z. and S.M.Q. carried out the experiments. S.M.Q. conducted the statistical
802 analysis of the data. S.M.Q. wrote the initial draft of the manuscript. All authors critically revised
803 the manuscript and gave final approval for publication.

804

805 Funding

806 This research was funded by the German Research Foundation (DFG) as part of the CRC TRR 212
807 (NC³) – Project number 396776123.

808

809 Declaration of competing interest

810 The authors declare that the research was conducted in the absence of any commercial or financial
811 relationships that could be construed as a potential conflict of interest.

812

813 Acknowledgements

814 The authors thank Friederike Dechert and Edith Klobetz-Rassam for excellent technical assistance,
815 Melanie Dammhahn for statistical advice and Yana Belazarovich and the whole animal care team
816 for taking care of the animals.

817

818 References

819 Amaral, V. C. S., Santos Gomes, K., & Nunes-de-Souza, R. L. (2010). Increased corticosterone levels in
820 mice subjected to the rat exposure test. *Hormones and Behavior*, 57(2), 128–133. doi:
821 10.1016/j.yhbeh.2009.09.018

822 Améndola, L., Weary, D., & Zobel, G. (2022). Effects of personality on assessments of anxiety and
823 cognition. *Neuroscience and Biobehavioral Reviews*, 141. doi: 10.1016/j.neubiorev.2022.104827

824 Aplin, L. M., Farine, D. R., Morand-Ferron, J., Cole, E. F., Cockburn, A., & Sheldon, B. C. (2013).
825 Individual personalities predict social behaviour in wild networks of great tits (*Parus major*).
826 *Ecology Letters*, 16(11), 1365–1372. doi: 10.1111/ele.12181

827 Archer, J. (1973). Tests for emotionality in rats and mice: A review. *Animal Behaviour*, 21(2), 205–235.
828 doi: 10.1016/S0003-3472(73)80065-X

829 Bassett, L., & Buchanan-Smith, H. M. (2007). Effects of predictability on the welfare of captive
830 animals. *Applied Animal Behaviour Science*, 102(3–4), 223–245. doi:
831 10.1016/j.applanim.2006.05.029

832 Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using
833 lme4. *Journal of Statistical Software*, 67(1). doi: 10.18637/jss.v067.i01

834 Bell, A. M., Hankison, S. J., & Laskowski, K. L. (2009). The repeatability of behaviour: a meta-analysis.
835 *Animal Behaviour*, 77(4), 771–783. doi: 10.1016/j.anbehav.2008.12.022

836 Benus, R. F., Bohus, B., Koolhaas, J. M., & van Oortmerssen, G. A. (1991). Heritable variation for
837 aggression as a reflection of individual coping strategies. *Experientia*, 47(10), 1008–1019. doi:
838 10.1007/BF01923336

839 Bergmüller, R., & Taborsky, M. (2010). Animal personality due to social niche specialisation. *Trends in
840 Ecology and Evolution*, 25(9), 504–511. doi: 10.1016/j.tree.2010.06.012

841 Blanchard, R. J., & Blanchard, D. C. (1969). Crouching as an index of fear. *Journal of Comparative and*
842 *Physiological Psychology*, 67(3), 370–375.

843 Brehm, A. M., & Mortelliti, A. (2024). Environmental heterogeneity modifies the link between
844 personality and survival in fluctuating small mammal populations. *Journal of Animal Ecology*,
845 93(2), 196–207. doi: 10.1111/1365-2656.14037

846 Cabrera, D., Nilsson, J. R., & Griffen, B. D. (2021). The development of animal personality across
847 ontogeny: a cross-species review. *Animal Behaviour*, 173, 137–144. doi:
848 10.1016/j.anbehav.2021.01.003

849 Carere, C., Groothuis, T. G. G., Möstl, E., Daan, S., & Koolhaas, J. M. (2003). Fecal corticosteroids in a
850 territorial bird selected for different personalities: Daily rhythm and the response to social
851 stress. *Hormones and Behavior*, 43(5), 540–548. doi: 10.1016/S0018-506X(03)00065-5

852 Carter, A. J., Marshall, H. H., Heinsohn, R., & Cowlishaw, G. (2012). How not to measure boldness:
853 Novel object and antipredator responses are not the same in wild baboons. *Animal Behaviour*,
854 84(3), 603–609. doi: 10.1016/j.anbehav.2012.06.015

855 Cockrem, J. F. (2007). Stress, corticosterone responses and avian personalities. *Journal of Ornithology*,
856 148(SUPPL. 2), 169–178. doi: 10.1007/s10336-007-0175-8

857 Dall, S. R. X., Houston, A. I., & McNamara, J. M. (2004). The behavioural ecology of personality:
858 Consistent individual differences from an adaptive perspective. *Ecology Letters*, 7(8), 734–739.
859 doi: 10.1111/j.1461-0248.2004.00618.x

860 Fanson, K. V., & Biro, P. A. (2019). Meta-analytic insights into factors influencing the repeatability of
861 hormone levels in agricultural, ecological, and medical fields. *American Journal of Physiology -*
862 *Regulatory Integrative and Comparative Physiology*, 316(2), R101–R109. doi:
863 10.1152/ajpregu.00006.2018

864 Feige-Diller, J., Krakenberg, V., Bierbaum, L., Seifert, L., Palme, R., Kaiser, S., Sachser, N., & Richter, S.
865 H. (2020). The Effects of Different Feeding Routines on Welfare in Laboratory Mice. *Frontiers in*
866 *Veterinary Science*, 6(January), 1–15. doi: 10.3389/fvets.2019.00479

867 Gosling, S. (2001). From mice to men: What can we learn about personality from animal research?
868 *Psychological Bulletin*, 127, 45–86.

869 Griebel, G., Belzung, C., Misslin, R., & Vogel, E. (1993). The free-exploratory paradigm: An effective
870 method for measuring neophobic behaviour in mice and testing potential neophobia-reducing
871 drugs. *Behavioural Pharmacology*, 4(6), 637–644. doi: 10.1097/00008877-199312000-00009

872 Haage, M., Maran, T., Bergvall, U. A., Elmhagen, B., & Angerbjörn, A. (2017). The influence of
873 spatiotemporal conditions and personality on survival in reintroductions—evolutionary
874 implications. *Oecologia*, 183(1), 45–56. doi: 10.1007/s00442-016-3740-0

875 Hackenberg, T. D., Vanderhooft, L., Huang, J., Wagar, M., Alexander, J., & Tan, L. (2021). Social
876 preference in rats. *Journal of the Experimental Analysis of Behavior*, 115(3), 634–649. doi:
877 10.1002/jeab.686

878 Hakataya, S., Katsu, N., Okanoya, K., & Toya, G. (2023). An exploratory study of behavioral traits and
879 the establishment of social relationships in female laboratory rats. *PLoS ONE*, 18(12 December).
880 doi: 10.1371/journal.pone.0295280

881 Hartig, F. (2024). *DHARMA: Residual diagnostics for hierarchical (multi-level/mixed) regression models*
882 (R package version 0.4.7).

883 Herde, A., & Eccard, J. A. (2013). Consistency in boldness, activity and exploration at different stages
884 of life. *BMC Ecology*, 13(49). <http://www.biomedcentral.com/1472-6785/13/49>

885 Hurst, J. L., & West, R. S. (2010). Taming anxiety in laboratory mice. *Nature Methods*, 7(10), 825–826.
886 doi: 10.1038/nmeth.1500

887 Izídio, G. S., Lopes, D. M., Spricigo, L., & Ramos, A. (2005). Common variations in the pretest
888 environment influence genotypic comparisons in models of anxiety. *Genes, Brain and Behavior*,
889 4(7), 412–419. doi: 10.1111/j.1601-183X.2005.00121.x

890 Kaiser, M. I., & Müller, C. (2021). What is an animal personality? *Biology and Philosophy*, 36(1). doi:
891 10.1007/s10539-020-09776-w

892 Koolhaas, J. M., de Boer, S. F., Coppens, C. M., & Buwalda, B. (2010). Neuroendocrinology of coping
893 styles: Towards understanding the biology of individual variation. *Frontiers in*
894 *Neuroendocrinology*, 31(3), 307–321. doi: 10.1016/j.yfrne.2010.04.001

895 Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., De Jong,
896 I. C., Ruis, M. A. W., & Blokhuis, H. J. (1999). Coping styles in animals: Current status in behavior
897 and stress- physiology. *Neuroscience and Biobehavioral Reviews*, 23(7), 925–935. doi:
898 10.1016/S0149-7634(99)00026-3

899 Krakenberg, V., von Kortzfleisch, V. T., Kaiser, S., Sachser, N., & Richter, S. H. (2019). Differential Effects
900 of Serotonin Transporter Genotype on Anxiety-Like Behavior and Cognitive Judgment Bias in
901 Mice. *Frontiers in Behavioral Neuroscience*, 13(December). doi: 10.3389/fnbeh.2019.00263

902 Krause, J., & Ruxton; Graeme D. (2002). *Living in Groups*. Oxford University Press.

903 Krebs, R., Linnenbrink, M., & Guenther, A. (2019). Validating standardised personality tests under
904 semi-natural conditions in wild house mice (*Mus musculus domesticus*). *Ethology*, 125(11), 761–
905 773. doi: 10.1111/eth.12930

906 Lampe, J. F., Ruchti, S., Burman, O., Würbel, H., & Melotti, L. (2019). Play like me: Similarity in
907 playfulness promotes social play. *PLoS ONE*, 14(10). doi: 10.1371/journal.pone.0224282

908 Lenth, R. V. (2024). *emmeans: Estimated Marginal Means, aka Least-Squares Means* (R package
909 version 1.11.0).

910 Lepschy, M., Touma, C., Hraby, R., & Palme, R. (2007). Non-invasive measurement of adrenocortical
911 activity in male and female rats. *Laboratory Animals*, 41, 372–387.

912 Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse. *Psychopharmacology*,
913 92(2), 180–185.

914 Macrì, S., Pasquali, P., Bonsignore, L. T., Pieretti, S., Cirulli, F., Chiarotti, F., & Laviola, G. (2007).
915 Moderate neonatal stress decreases within-group variation in behavioral, immune and HPA
916 responses in adult mice. *PLoS ONE*, 2(10). doi: 10.1371/journal.pone.0001015

917 Magnhagen, C., & Staffan, F. (2005). Is boldness affected by group composition in young-of-the-year
918 perch (*Perca fluviatilis*)? *Behavioral Ecology and Sociobiology*, 57(3), 295–303. doi:
919 10.1007/s00265-004-0834-1

920 Mällo, T., Matrov, D., Herm, L., Kõiv, K., Eller, M., Rinken, A., & Harro, J. (2007). Tickling-induced 50-
921 kHz ultrasonic vocalization is individually stable and predicts behaviour in tests of anxiety and
922 depression in rats. *Behavioural Brain Research*, 184(1), 57–71. doi: 10.1016/j.bbr.2007.06.015

923 Martin, J. G. A., Nussey, D. H., Wilson, A. J., & Réale, D. (2011). Measuring individual differences in
924 reaction norms in field and experimental studies: A power analysis of random regression
925 models. *Methods in Ecology and Evolution*, 2(4), 362–374. doi: 10.1111/j.2041-
926 210X.2010.00084.x

927 Massen, J. J. M., & Koski, S. E. (2014). Chimps of a feather sit together: Chimpanzee friendships are
928 based on homophily in personality. *Evolution and Human Behavior*, 35(1), 1–8. doi:
929 10.1016/j.evolhumbehav.2013.08.008

930 Mauri, D., Bonelli, S., & Ozella, L. (2022). The “Second Life” of laboratory rats (*Rattus norvegicus*):
931 Assessment of social behavior of a colony of rats based on social network analysis. *Journal of
932 Applied Animal Welfare Science*, 26(4), 693–707. doi: 10.1080/10888705.2022.2132826

933 Mazza, V., Dammhahn, M., Eccard, J. A., Palme, R., Zaccaroni, M., & Jacob, J. (2019). Coping with
934 style: individual differences in responses to environmental variation. *Behavioral Ecology and
935 Sociobiology*, 73(10). doi: 10.1007/s00265-019-2760-2

936 Mazza, V., Eccard, J. A., Zaccaroni, M., Jacob, J., & Dammhahn, M. (2018). The fast and the flexible:
937 cognitive style drives individual variation in cognition in a small mammal. *Animal Behaviour*,
938 137, 119–132. doi: 10.1016/j.anbehav.2018.01.011

939 Mazza, V., Jacob, J., Dammhahn, M., Zaccaroni, M., & Eccard, J. A. (2019). Individual variation in
940 cognitive style reflects foraging and anti-predator strategies in a small mammal. *Scientific
941 Reports*, 9(1). doi: 10.1038/s41598-019-46582-1

942 Mittelbach, G. G., Ballew, N. G., & Kjelvik, M. K. (2014). Fish Behavioral Types and their Ecological
943 Consequences. *Canadian Journal of Fisheries and Aquatic Sciences*, 71(6), 927–944.

944 Monfils, M.-H., Pasala, M., Malone, C., Agee, L., Roquet, R., & Cormack, L. (2024). Effects of group size
945 on movement patterns and clustering dynamics in rats. *Oxford Open Neuroscience*, 3. doi:
946 10.1093/oons/kvae005

947 Muroy, S. E., Long, K. L. P., Kaufer, D., & Kirby, E. D. (2016). Moderate Stress-Induced Social Bonding
948 and Oxytocin Signaling are Disrupted by Predator Odor in Male Rats.
949 *Neuropsychopharmacology*, 41(8), 2160–2170. doi: 10.1038/npp.2016.16

950 Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: A practical
951 guide for biologists. *Biological Reviews*, 85(4), 935–956. doi: 10.1111/j.1469-185X.2010.00141.x

952 O’Leary, T. P., Gunn, R. K., & Brown, R. E. (2013). What are we measuring when we test strain
953 differences in anxiety in mice? *Behavior Genetics*, 43(1), 34–50. doi: 10.1007/s10519-012-9572-
954 8

955 Olsson, I. A. S., & Westlund, K. (2007). More than numbers matter: The effect of social factors on
956 behaviour and welfare of laboratory rodents and non-human primates. *Applied Animal
957 Behaviour Science*, 103(3–4), 229–254. doi: 10.1016/j.applanim.2006.05.022

958 Oosten, J. E., Magnhagen, C., & Hemelrijk, C. K. (2010). Boldness by habituation and social
959 interactions: A model. *Behavioral Ecology and Sociobiology*, 64(5), 793–802. doi:
960 10.1007/s00265-009-0896-1

961 Palme, R. (2019). Non-invasive measurement of glucocorticoids: Advances and problems. *Physiology*
962 and *Behavior*, 199, 229–243. doi: 10.1016/j.physbeh.2018.11.021

963 Patterson-Kane, E. P., Hunt, M., & Harper, D. (2004). Short Communication: Rat's Demand for Group
964 Size. *Journal of Applied Animal Welfare Science*, 7(4), 267–272.

965 Pellow, S., Chopin, P., File, S. E., & Briley, M. (1985). Validation of open: closed arm entries in an
966 elevated plus-maze as a measure of anxiety in the rat. *Journal of Neuroscience Methods*, 14(3),
967 149–167. doi: 10.1016/0165-0270(85)90031-7

968 Pinelli, C. J., Leri, F., & Turner, P. V. (2017). Long term physiologic and behavioural effects of housing
969 density and environmental resource provision for adult male and female sprague dawley rats.
970 *Animals*, 7(6). doi: 10.3390/ani7060044

971 Prokasy, W. F. (1956). The acquisition of observing responses in the absence of differential external
972 reinforcement. *Journal of Comparative and Physiological Psychology*, 49(2), 131–134.

973 Quante, S. M., Mundinger, C., Palme, R., Kaiser, S., & Richter, S. H. (2025). What it is like to be an
974 optimist: temporal stability of cognitive bias in rats and its link to other individual traits. *Animal*
975 *Behaviour*, 224. doi: 10.1016/j.anbehav.2025.123202

976 Quante, S. M., Siewert, V., Palme, R., Kaiser, S., Sachser, N., & Richter, S. H. (2023). The power of a
977 touch: Regular touchscreen training but not its termination affects hormones and behavior in
978 mice. *Frontiers in Behavioral Neuroscience*, 17.

979 Réale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal
980 temperament within ecology and evolution. *Biological Reviews*, 82(2), 291–318. doi:
981 10.1111/j.1469-185X.2007.00010.x

982 Rodgers, R. J., & Johnson, N. J. T. (1995). Factor Analysis of Spatiotemporal and Ethological Measures
983 in the Murine Plus-Maze Test of Anxiety. *Pharmacology Biochemistry and Behavior*, 52(2), 297–
984 303.

985 Santicchia, F., Wauters, L. A., Tranquillo, C., Villa, F., Dantzer, B., Palme, R., Preatoni, D., & Martinoli, A.
986 (2022). Invasive alien species as an environmental stressor and its effects on coping style in a
987 native competitor, the Eurasian red squirrel. *Hormones and Behavior*, 140. doi:
988 10.1016/j.yhbeh.2022.105127

989 Sih, A., Bell, A., & Johnson, J. C. (2004). Behavioral syndromes: An ecological and evolutionary
990 overview. *Trends in Ecology and Evolution*, 19(7), 372–378. doi: 10.1016/j.tree.2004.04.009

991 Sih, A., Cote, J., Evans, M., Fogarty, S., & Pruitt, J. (2012). Ecological implications of behavioural
992 syndromes. *Ecology Letters*, 15(3), 278–289. doi: 10.1111/j.1461-0248.2011.01731.x

993 Smith, B. R., & Blumstein, D. T. (2008). Fitness consequences of personality: A meta-analysis.
994 *Behavioral Ecology*, 19(2), 448–455. doi: 10.1093/beheco/arm144

995 Sroka, M. G. U., Ambree, O., Dohmen, C., Palme, R., Kaiser, S., & Richter, S. H. (2024). Personality
996 matters – The interplay between consistent individual differences and mouse welfare in female
997 C57BL6/J mice. *Frontiers in Animal Science*, 5. doi: 10.3389/fanim.2024.1423814

998 Stamps, J., & Groothuis, T. G. G. (2010). The development of animal personality: Relevance, concepts
999 and perspectives. *Biological Reviews*, 85(2), 301–325. doi: 10.1111/j.1469-185X.2009.00103.x

1000 Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: repeatability estimation and variance
1001 decomposition by generalized linear mixed-effects models. *Methods in Ecology and Evolution*,
1002 8(11), 1639–1644. doi: 10.1111/2041-210X.12797

1003 Taff, C. C., Schoenle, L. A., & Vitousek, M. N. (2018). The repeatability of glucocorticoids: A review and
1004 meta-analysis. *General and Comparative Endocrinology*, 260, 136–145. doi:
1005 10.1016/j.ygcen.2018.01.011

1006 Touma, C., Sachser, N., Möstl, E., & Palme, R. (2003). Effects of sex and time of day on metabolism
1007 and excretion of corticosterone in urine and feces of mice. *General and Comparative*
1008 *Endocrinology*, 130(3), 267–278. doi: 10.1016/S0016-6480(02)00620-2

1009 Treit, D., & Fundytus, M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. *Pharmacology,*
1010 *Biochemistry and Behavior*, 31(4), 959–962. doi: 10.1016/0091-3057(88)90413-3

1011 Treit, D., Menard, J., & Royan, C. (1993). Anxiogenic stimuli in the elevated plus-maze. *Pharmacology,*
1012 *Biochemistry and Behavior*, 44(2), 463–469. doi: 10.1016/0091-3057(93)90492-C

1013 Van Reenen, C. G., O'Connell, N. E., Van Der Werf, J. T. N., Korte, S. M., Hopster, H., Jones, R. B., &
1014 Blokhuis, H. J. (2005). Responses of calves to acute stress: Individual consistency and relations
1015 between behavioral and physiological measures. *Physiology and Behavior*, 85(5), 557–570. doi:
1016 10.1016/j.physbeh.2005.06.015

1017 Vavrušková, Z., Okrouhlík, J., & Šumbera, R. (2022). Together or alone? Huddling energetic savings in
1018 three social mole-rat species of genus Fukomys. A dispersal perspective. *Journal of Thermal*
1019 *Biology*, 110. doi: 10.1016/j.jtherbio.2022.103385

1020 Verbeek, M. E. M., Boon, A., & Drent, P. J. (1996). Exploration, aggressive behaviour and dominance in
1021 pair-wise confrontations of juvenile male great tits. *Behaviour*, 133, 945–963.

1022 Verbeek, M. E. M., Drent, P. J., & Wiepkema, P. R. (1994). Consistent individual differences in early
1023 exploratory behaviour of male great tits. *Animal Behaviour*, 48, 1113–1121.

1024 Wauters, L. A., Mazzamuto, M. V., Santicchia, F., Martinoli, A., Preatoni, D. G., Lurz, P. W. W., Bertolino,
1025 S., & Romeo, C. (2021). Personality traits, sex and food abundance shape space use in an
1026 arboreal mammal. *Oecologia*, 196(1), 65–76. doi: 10.1007/s00442-021-04901-2

1027 Webster, M. M., & Ward, A. J. W. (2011). Personality and social context. *Biological Reviews*, 86(4),
1028 759–773. doi: 10.1111/j.1469-185X.2010.00169.x

1029 Westrick, S. E., van Kesteren, F., Palme, R., Boonstra, R., Lane, J. E., Boutin, S., McAdam, A. G., &
1030 Dantzer, B. (2019). Stress activity is not predictive of coping style in North American red
1031 squirrels. *Behavioral Ecology and Sociobiology*, 73(8). doi: 10.1007/s00265-019-2728-2

1032 Wirowska, M., Iwińska, K., Borowski, Z., Brzeziński, M., Solecki, P., & Boratyński, J. S. (2024).
1033 Explorative behavior allows the successful finding of ephemeral food resources in the wild.
1034 *Mammal Research*, 69(1), 89–98. doi: 10.1007/s13364-023-00719-w

1035 Wolf, M., & Weissing, F. J. (2010). An explanatory framework for adaptive personality differences.
1036 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1560), 3959–3968.
1037 doi: 10.1098/rstb.2010.0215

1038 Wolf, M., & Weissing, F. J. (2012). Animal personalities: Consequences for ecology and evolution.
1039 *Trends in Ecology and Evolution*, 27(8), 452–461. doi: 10.1016/j.tree.2012.05.001

1040 Yuen, C. H., Schoepf, I., Schradin, C., & Pillay, N. (2017). Boldness: are open field and startle tests
1041 measuring the same personality trait? *Animal Behaviour*, 128, 143–151. doi:
1042 10.1016/j.anbehav.2017.04.009

1043 Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common
1044 statistical problems. *Methods in Ecology and Evolution*, 1(1), 3–14. doi: 10.1111/j.2041-
1045 210x.2009.00001.x

1046 Supplementary material

1047 *Animal health statement*

1048 The mentioned and unexpected health problems that occurred in experiment 2 encompassed four
1049 females that were excluded from the study at varying time points. All females showed
1050 abnormalities in health condition due to one or more bladder stones causing urinary blockage.
1051 The breeder was contacted immediately to inquire about such problems in the strain's stock,
1052 which was denied. The authors would like to emphasise that none of the rats was part of a
1053 manipulation other than what is stated in the manuscript. Moreover, the health status of all
1054 animals was carefully monitored by experimenters, animal caretakers and vets before, during and
1055 beyond the experiment, ensuring that obtained data is unaffected by any compromising health
1056 conditions.

1057 *Ethogram for home cage behaviour*

Inactivity	<i>Inactive (s)</i>	The rat does not show any locomotion or movement for at least three seconds, except for breathing or tiny ear or whisker movements. The behaviour is often accompanied by lying down. The behaviour ends when the rat shows locomotion for at least three seconds or any of the other defined behaviours.
General activity	<i>Climb (s)</i>	The rat grabs the grid of the cage with at least three paws and moves along it. The behaviour ends as soon as none of the paws touch the cage bars anymore.
	<i>Object manipulation (s)</i>	The rat interacts with the cage enrichment or nest material and manipulates it with its snout or limbs. The behaviour ends when there is no more manipulation for at least three seconds.
Affiliative behaviour	<i>Rough & tumble play (#)</i>	Two rats interact with each other by hopping and pinning each other on the ground by using the forepaws. The behaviour ends, when the pinned rat is on all four paws again.
	<i>Allo-grooming (#)</i>	The rat touches the fur of another rat with its snout for at least three seconds; licking movements may occur. The behaviour ends as soon as there is a distance of at least one snout length between the snout and the body of the conspecific or if the snout is not touching the conspecific for at least three seconds.
	<i>Being allo-groomed (#)</i>	The rat is groomed by another rat (see definition above).
	<i>Huddling (s)</i>	At least two rats are inactive while having body contact for at least three seconds and at least one side of one rat's body touches the side of

Agonistic behaviour	<i>Chasing (#)</i>	another rat's body. The behaviour ends as soon as contact ceases for more than three seconds. A rat runs after another rat, which runs in front of it, with a distance between the rats of less than one body length. The behaviour ends as soon as the distance between the rats is more than one body length or the race is interrupted for at least three seconds.
	<i>Being chased (#)</i>	The rat is chased by another rat (see definition above).
	<i>Biting (#)</i>	The rat touches the body of another rat and pinches the skin with its teeth. Every pinch is counted separately.
	<i>Being bitten (#)</i>	The rat is bitten by another rat (see definition above).
	<i>Fighting (#)</i>	At least two rats kick and wrestles each other in fast movements. The rats may produce squeaking noises.
	<i>Mounting (#)</i>	The rat lays its upper body on the back of another rat. The front paws grab the sides of the body of the recipient rat. The rat may show pelvic thrusts.
	<i>Being mounted (#)</i>	The rat is mounted by another rat (see definition above).
Maintenance behaviour	<i>Feeding (#)</i>	The rat touches a pellet with its snout and/or forepaws and jaw movements are seen. The behaviour ends, when no jaw movements are seen for at least three seconds.
	<i>Foraging (s)</i> (Only recorded in experiment 1)	The rat inspects the food bowl or the feeder adapter with its snout and/or limbs for at least three seconds. The behaviour ends, when the rat moves away from the food bowl or feeder adapter by at least one snout length or if <i>Feeding</i> starts (see definition above).
	<i>Drinking (#)</i>	The rat touches the water bottle with its snout and licking movements are seen. The behaviour ends, when no licking movements are seen for at least three seconds.
	<i>Grooming (#)</i>	The rat moves front limbs or snout in sweeping motions over its body and/or tail. The behaviour ends, when there are no such movements for at least three seconds.
Abnormal behaviour	<i>Bar mouthing (#)</i>	The rat places a cage bar between its jaws and gnaws on the bar for at least three seconds. The behaviour ends as soon as the snout moves away from the bar by at least one snout length or the jaw movements are interrupted for at least three seconds.

Supplementary tables

Supplementary Table 1: Statistical information for experiment 1. Statistical information given: data family used for analysing and transformation applied (sqrt = square root transformation). Main effect of interaction and fixed effects ((G)LMM: χ^2 -value, df = degrees of freedom, p-value). HCB = Home cage behaviour, FCM = faecal corticosterone metabolites, EPM = Elevated plus maze, FET = Free exploration test.

Experiment 1: predictable vs. unpredictable food availability														
Test	Parameter	Data family (Transformation)	Exploratory locomotion x food availability			Exploratory locomotion			Food availability			Timepoint		
			χ^2	df	p	χ^2	df	p	χ^2	df	p	χ^2	df	p
HCB	Inactivity	Gaussian (sqrt)	1.119	1	0.290	0.966	1	0.326	0.154	1	0.694	5.549	2	0.062
	General activity	Gaussian (sqrt)	2.105	1	0.147	2.832	1	0.092	0.344	1	0.558	1.222	2	0.543
	Affiliative behaviour	Poisson	0.406	1	0.524	4.191	1	0.041	8.359	1	0.004	6.906	2	0.032
	Huddling	Gaussian (sqrt)	7.335	1	0.007	6.665	1	0.010	0.651	1	0.420	3.261	2	0.196
	Agonistic behaviour	Poisson	3.471	1	0.062	2.819	1	0.093	9.765	1	0.002	8.450	2	0.015
	Maintenance behaviour	Poisson	3.788	1	0.052	2.510	1	0.113	1.356	1	0.244	3.489	2	0.175
	Foraging	Gaussian (sqrt)	2.536	1	0.111	7.378	1	0.007	0.756	1	0.384	14.689	2	0.001
	Bar mouthing	Poisson	-	-	-	-	-	-	-	-	-	-	-	-
FCM		Gaussian	0.391	1	0.531	0.066	1	0.798	1.323	1	0.250	0.606	2	0.739
EPM	Relative open arm time	Gaussian	0.337	1	0.562	0.458	1	0.499	0.995	1	0.318	-	-	-
	Relative open arm entries	Gaussian	2.658	1	0.103	0.999	1	0.318	0.005	1	0.945	-	-	-
	Open arm distance	Gaussian	1.682	1	0.195	0.083	1	0.773	0.004	1	0.949	-	-	-
	Sum of arm entries	Poisson	9.455	1	0.002	0.002	1	0.967	0.113	1	0.737	-	-	-
	Total distance	Gaussian (sqrt)	0.518	1	0.472	0.151	1	0.697	0.356	1	0.551	-	-	-
FET	Arena latency	Gaussian	1.104	1	0.293	1.621	1	0.203	2.982	1	0.084	-	-	-
	Arena entries	Poisson	3.189	1	0.074	9.853	1	0.002	1.505	1	0.220	-	-	-
	Arena time	Gaussian (sqrt)	0.088	1	0.767	0.174	1	0.677	0.252	1	0.616	-	-	-
	Arena distance	Gaussian	0.061	1	0.805	2.432	1	0.119	0.772	1	0.380	-	-	-

Supplementary Table 2: Statistical information for experiment 2. Statistical information given: data family used for analysing and transformation applied (sqrt = square root transformation). Main effect of interaction and fixed effects ((G)LMM: χ^2 -value, df = degrees of freedom, p-value). HCB = Home cage behaviour, FCM = faecal corticosterone metabolites, EPM = Elevated plus maze, FET = Free exploration test.

Experiment 2: matched vs. mismatched social partner														
Test	Parameter	Data family (Transformatio n)	Exploratory locomotion x social partner			Exploratory locomotion			Social partner			Timepoint		
			χ^2	df	p	χ^2	df	p	χ^2	df	p	χ^2	df	p
HCB	Inactivity	Gaussian (sqrt)	2.137	1	0.144	0.554	1	0.457	0.397	1	0.529	2.695	2	0.260
	General activity	Gaussian (sqrt)	1.682	1	0.195	0.096	1	0.757	0.814	1	0.367	3.909	2	0.142
	Affiliative behaviour	Poisson	1.896	1	0.169	2.078	1	0.149	3.450	1	0.063	21.969	2	< 0.001
	Huddling	Gaussian (sqrt)	0.447	1	0.504	1.208	1	0.272	0.564	1	0.453	12.029	2	0.002
	Agonistic behaviour	Poisson	0.082	1	0.775	0.067	1	0.796	0.089	1	0.766	1.186	2	0.553
	Maintenance behaviour	Poisson	0.856	1	0.355	0.149	1	0.699	1.051	1	0.305	8.934	2	0.011
	Bar mouthing	Poisson	0.610	1	0.435	0.027	1	0.869	1.363	1	0.243	1.241	2	0.538
FCM		Gaussian (sqrt)	0.007	1	0.933	0.048	1	0.826	0.055	1	0.815	7.337	2	0.026
EPM	Relative open arm time	Gaussian (sqrt)	0.358	1	0.550	0.129	1	0.719	1.890	1	0.169	-	-	-
	Relative open arm entries	Gaussian (sqrt)	0.890	1	0.346	1.716	1	0.190	0.241	1	0.624	-	-	-
	Open arm distance	Gaussian (sqrt)	3.153	1	0.076	1.173	1	0.279	0.125	1	0.724	-	-	-
	Sum of arm entries	Poisson	3.643	1	0.056	0.666	1	0.415	0.561	1	0.454	-	-	-
	Total distance	Gaussian	4.632	1	0.031	1.021	1	0.312	1.502	1	0.220	-	-	-
FET	Arena latency	Gaussian	0.093	1	0.760	0.289	1	0.591	3.379	1	0.066	-	-	-
	Arena entries	Poisson	10.23 0	1	0.001	3.574	1	0.059	9.186	1	0.002	-	-	-
	Arena time	Gaussian	0.128	1	0.721	0.594	1	0.441	3.543	1	0.060	-	-	-
	Arena distance	Gaussian	1.355	1	0.244	0.502	1	0.479	9.288	1	0.002	-	-	-