

1 **Marine biodiversity indicators and online data knowledge systems**

2 Nazli Demirel^{1*}, Alice C. Hughes², David K.A. Barnes³, Patricia Miloslavich⁴, Frank E. Muller-
3 Karger⁵, Ana Lara-Lopez^{6,7}, Ina Helene Ahlquist⁸, Clive R. McMahon⁹, Charlie Taylor⁴, Alena
4 Cierna¹⁰, Andrew Szopa-Comley¹⁰, Frances Davis¹⁰, Chris McOwen¹⁰, Katherine Richardson¹¹, Ward
5 Appeltans¹², Mary S. Wisz¹³, Neil D. Burgess^{10,11}

6
7 ¹ Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkiye
8 ndemirel@istanbul.edu.tr

9 ² School of BioSciences, University of Melbourne, Australia

10 ³ British Antarctic Survey, UKRI, Cambridge, CB3 0ET, UK

11 ⁴ Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water,
12 Kingston, Tasmania, Australia

13 ⁵ University of South Florida, College of Marine Science, St. Petersburg, Florida, U.S.A.

14 ^{6,7} Institute for Marine and Antarctic Studies, University of Tasmania, Australia & Intergovernmental
15 Oceanographic Commission (IOC UNESCO) - Global Ocean Observing System (GOOS)

16 ⁸ SINTEF Ocean, Department of Fisheries and New Biomarine Industry, Trondheim, Norway

17 ⁹ IMOS Animal Tagging, Chowder Bay, Sydney Institute of Marine Science, Mosman, New South
18 Wales, 2088, Australia

19 ⁴ Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water,
20 Kingston, Tasmania, Australia

21 ¹⁰ United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC),
22 Cambridge, UK

23 ¹¹ Centre for Macroecology, Evolution and Climate (CMEC), Globe Institute, University of
24 Copenhagen, Denmark

25 ¹² Intergovernmental Oceanographic Commission, Ocean Biodiversity Information System (OBIS),
26 UNESCO/IOC Project Office for IODE, Jacobsenstraat 1, 8400, Belgium

27 ¹³ Section for Ecosystem-based Marine Management, Technical University of Denmark, National
28 Institute of Aquatic Resources, Lyngby Denmark. ORCID:0000-0002-5357-6367

29 ^{10,11} United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC),
30 Cambridge, UK & Centre for Macroecology, Evolution and Climate (CMEC), University of
31 Copenhagen, Denmark

32
33 **Key words:** marine biodiversity, monitoring, indicator, knowledge systems, decision-making

34 **Abstract**

35 Coastal marine ecosystems and biodiversity are changing rapidly under climate forcing, resource use,
36 pollution and habitat modification. Monitoring these changes, and tracking progress across policy
37 targets, remain constrained by uneven data coverage, fragmented observing networks and inconsistent
38 measurement practices. International policy frameworks, most prominently the Kunming-Montreal
39 Global Biodiversity Framework, alongside Sustainable Development Goal 14 and Regional Seas
40 Agreements, rely on structured indicators to track biodiversity state, pressures, change and management
41 outcomes. However, how well existing indicators align with current monitoring needs, data readiness,
42 analytical maturity and recurring assessment pipelines has not been evaluated systematically. This

43 review compiled and synthesised 145 operational marine biodiversity indicators and examined 223
44 marine-relevant online knowledge systems that were active and accessible in December 2025.
45 Indicators were classified by analytical role within a state, pressure, response, benefit model, and
46 assessed against their data sources, calculation transparency, update frequency and assessment
47 applicability across depth zones and regions. Indicators describing biodiversity state and spatial
48 pressure composites dominate current reporting and assessment use, particularly for coastal habitats
49 and species-population trends. Fisheries sustainability indicators are comparatively well represented,
50 while indicators tracking responses and biodiversity-linked benefits remain less mature, less
51 standardised across measurement pipelines and less developed for offshore and areas beyond national
52 jurisdiction. The current indicator overview shows expanding analytical capacity, but routine indicator
53 production pipelines and integration of measured biological responses into recurring assessments
54 remain limited relative to pressure mapping and species-level status reporting. The next phase of marine
55 monitoring will likely be defined by recurring analytical production of indicators, greater comparability
56 of measurements and stronger integration of observed biological patterns into routine assessment and
57 policy tracking. Further development of indicators that can support management of pressures at a sector-
58 level to support environmental impact assessment and area-based management or zoning of human
59 activities remains a key direction for future analytical progress.

60 1. Introduction

61 Marine life and biological diversity shift continually through chemical, physical and biotic (including
62 human) interactions. Scientific and policy interest in predicting and interpreting these changes has
63 intensified, driven by the growing understanding that marine biodiversity underpins economic and
64 social benefits (Díaz et al., 2019; Fleming et al., 2023; Dajka et al., 2025). This review provides a broad,
65 marine-focused evaluation of biodiversity metrics (including indicators, indices and spatial datasets)
66 and online biodiversity knowledge systems that support monitoring, assessment and reporting across
67 global and regional ocean governance regimes. Ocean monitoring enables detection of trends in species,
68 habitats and ecosystem processes, interpretation of cumulative pressure responses, and alignment of
69 conservation actions with societal outcomes. Indicators, and their measurement protocols, allow
70 comparison of regional conditions, evaluation of management interventions, and tracking of policy
71 progress (Pereira et al., 2013; IPBES, 2019). Planning economic outlooks, identifying emerging risks,
72 and ensuring accountability for international commitments require transparent and interoperable
73 indicator frameworks (von Schuckmann et al., 2025). Indicators serve as bridges between systematic
74 marine observation and decision-making across multilateral agreements.

75 The terrestrial and marine biospheres differ fundamentally in structure, scale and observability, which
76 directly shape what monitoring systems can realistically achieve. On land, the biosphere is
77 comparatively two-dimensional, bounded by atmosphere and soil, allowing fixed plots, repeat surveys
78 and persistent visual detection of organisms and habitats. In the ocean, biodiversity occupies a dynamic
79 three-dimensional environment, structured vertically by light, oxygen, temperature and pressure
80 gradients, creating stacked ecological provinces rather than a single surface plane, and complicating
81 systematic sampling (Pereira & Cooper, 2006). Microorganisms constitute most of the marine
82 biosphere, driving primary production, nutrient cycling and trophic transfer, yet remain difficult to
83 monitor consistently due to their size, turnover rates and detection limits of conventional survey
84 methods (Gagne et al., 2020). Unlike terrestrial systems, where static infrastructure commonly hosts
85 long-term biodiversity sensors, marine observations increasingly incorporate fixed-location assets such
86 as harbours, offshore energy and industrial platforms, aquaculture infrastructure, and sustained
87 moorings or buoys, although these platforms have historically prioritized ocean physics over biological

88 standardization and repeat survey continuity (Canonico et al., 2019; Deyoung et al., 2019; Martín
89 Míquez et al., 2019). Complementary ocean observation pathways including satellite and animal
90 telemetry, ships of opportunity and autonomous observing systems are rapidly expanding capacity to
91 monitor ecosystem state and species movement (Benway et al., 2019; Mariani et al., 2021), but cross-
92 platform harmonization, indicator automation, and standardized biodiversity pipelines remain uneven
93 relative to terrestrial monitoring (Blowes et al., 2019). Large-scale syntheses show terrestrial metrics
94 have achieved broader methodological alignment, indicator automation and policy uptake, while marine
95 frameworks lag in cross-component compatibility and benefit tracking (Blowes et al. 2019; Burgess et
96 al. 2024). Microbial dominance, vertical stratification, high dispersal connectivity and rapid
97 compositional reorganisation in marine biomes explain why land-derived monitoring strategies, even
98 when conceptually transferable, often fail to meet the logistical and analytical constraints of ocean
99 systems (Steele & Brink, 2019).

100 Demand for marine biodiversity indicators translates into operational monitoring only when supported
101 by structured, sustained observing systems. Indicators derive from surveys, monitoring programmes
102 and observing networks, and reflect spatial and temporal sampling footprints across biodiversity levels
103 (Miloslavich et al., 2018; Muller-Karger et al., 2018). Indicator development and analytical support
104 differ markedly between realms. Terrestrial biodiversity metrics, models and indicator frameworks have
105 advanced rapidly through systematic syntheses and standardisation (Burgess et al., 2024; Hughes et al.,
106 2025). Marine indicator identification and development, by comparison, has been more fragmented,
107 with development pathways often anthropocentric and shaped by sectoral or policy-specific drivers
108 (Teixeira et al., 2016). Indicator maturity and recurring production pipelines are also influenced by
109 governance mandates, which determine what is measured, reported and updated. International
110 monitoring alignment efforts include essential variable frameworks. The Essential Ocean Variables
111 (EOVs) defined under the Framework for Ocean Observing (IOC-UNESCO, 2012) outline sustained
112 measurements required for globally coordinated, long-term ocean observation. The biology and
113 ecosystems EOV (BioEco EOV) support standardised assessments of habitat extent, coral and seafloor
114 community composition, and ecosystem condition and change (Miloslavich et al., 2018; Martin Miguez
115 et al., in prep). The complementary Essential Biodiversity Variables (EBVs) are part of Bio-Eco EOV
116 and provide a framework for indicators to support the Kunming-Montreal Global Biodiversity
117 Framework (KMGBF) (Dajka et al., 2025) and other multilateral environmental agreements. The
118 Global Climate Observing System (GCOS) coordinates Essential Climate Variables (ECVs), which also
119 encompass some BioEco EOVs, emphasising long-term climate feedback on marine systems. Indicator
120 production remains limited by spatial, temporal and depth-linked data coverage, analytical maturity and
121 comparability across observing networks (Muller-Karger et al., 2018). The United Nations Sustainable
122 Development Goals (SDGs), adopted in 2015 to guide sustainability progress to 2030, are tracked
123 through a periodically refined global indicator framework. Seventeen Goals¹ are framed by specific
124 targets and associated indicators that enable consistent measurement and reporting of progress across
125 countries and sectors. Among them, SDG 14 (Life Below Water) aligns most directly with marine
126 biodiversity by monitoring species status, habitat condition, ocean health and human pressures through
127 globally standardised indicators.

128 Realm-wide imbalances in data coverage shape analytical and decision-support readiness. The ocean
129 spans more than 70% of Earth's surface, but remains poorly observed e.g. only around 26% of the
130 seabed bathymetry has been mapped accurately². Similarly, systematic biological observations across

¹ <https://sdgs.un.org/goals>

² General Bathymetric Chart of the Oceans, www.gebco.net

131 the full water column, offshore and ABNJ environments remain sparse, with substantial data
132 deficiencies in the bathyal, abyssal and hadal zones of the Atlantic, Indian and Pacific oceans (Webb et
133 al., 2010; Bridges and Howell, 2025). These scientific gaps intersect with deep-ocean resource interest,
134 including mining and fisheries, and align directly with monitoring expectations under the Agreement
135 on the Conservation and Sustainable Use of Marine Biological Diversity of Areas Beyond National
136 Jurisdiction (BBNJ Agreement; UN Doc. A/CONF/232/2023/4). GBIF and OBIS continue to expose
137 spatial and depth-linked data gradients that influence marine indicator maturity (Hughes et al., 2025).
138 Policy tracking obligations across overlapping international and regional legal frameworks³ that cover
139 ocean uses generate further complexity. Legal frameworks guiding marine reporting include United
140 Nations Convention on the Law of the Sea (UNCLOS, 1982), the BBNJ Agreement, Regional Seas
141 Conventions, fisheries management organisations, the Convention on Migratory Species (CMS), the
142 Convention on International Trade in Endangered Species (CITES), and Convention for the
143 Conservation of Antarctic Marine Living Resources (CCAMLR), all of which rely on structured
144 monitoring frameworks to track policy progress (Kemp et al., 2025; Hughes et al., 2025). Regional
145 mandates (e.g. European Union Marine Strategy Framework Directive - EU MSFD contexts; Nicolaou
146 et al., 2025), and national environmental reporting pipelines (e.g. Australia's State of the Environment
147 Report⁴ and Canada's Oceans Now report⁵ continue to operate through diverse, and often fragmented,
148 indicator production systems across spatial, sectoral and biological levels. Cross-governance indicator
149 usability remains a shared ambition across regional policy communities (McOwen et al., 2025; Kemp
150 et al., 2025).

151 For causal-chain alignment, Burgess et al. (2024) evaluated terrestrial indicators using the State-
152 Pressure-Response-Benefit (SPRB) framework across genes, species-communities and ecosystems.
153 Kemp et al. (2025) documented overlap, redundancy and decision-support gaps across online
154 biodiversity knowledge systems. Equivalent synthesis for marine indicators, including recurring
155 analytical pipelines and cross-realm comparability, remains less developed. This review therefore (i)
156 compiles marine biodiversity metrics used in operational monitoring, assessment and reporting, (ii)
157 evaluates their distribution across SPRB categories and biodiversity components, (iii) examines
158 indicator support through transparent data sources and recurring analytical workflows, and (iv) analyses
159 usability across online marine biodiversity knowledge systems. A total of 145 marine biodiversity
160 indicators and 223 marine biodiversity-relevant global and regional online knowledge systems
161 accessible in December 2025 form the indicator access environment for this evaluation. The review
162 also examines how system structure, function and usability shape indicator delivery for recurring
163 assessment and policy tracking.

164 **2. Review methodology**

165 Here indicators are defined as quantitative measurements derived from biodiversity observations
166 collected over space and, or time. Indicators may describe biodiversity state directly (e.g. species
167 abundance, biomass, demographic rates), or represent pressures, responses, or benefits through
168 composite indices, or spatial data products. This interpretation is consistent with the indicator
169 frameworks used under the Kunming-Montreal Global Biodiversity Framework and other regional, or
170 national, policy reporting systems (CBD, 2022; Burgess et al., 2024).

³ Information on Multilateral Environmental Agreements: <https://www.informeia.org/en/mea-topic/biological-diversity>

⁴ <https://soe.dcceew.gov.au/marine/environment/marine-ecosystem-processes>

⁵ <https://www.dfo-mpo.gc.ca/oceans/publications/soto-rceo/2022/report-rapport-eng.html>

171 Online biodiversity knowledge systems are web-accessible digital infrastructures that collate, serve, or
172 enable interaction with biodiversity observations, derived indicators, curated datasets, or decision-
173 support tools intended to support policy design, planning, conservation, reporting, or business
174 applications (Kemp et al., 2025). System functionality varies, including: official data portals providing
175 FAIR data ranging from a single resource to an integration of 1000s of quality controlled datasets;
176 decision-support tools that generate tailored answers using predefined analytical pipelines; curated
177 libraries, or catalogues, that index metadata and direct users to external sources; repositories storing
178 deposited datasets for reuse; and data capture, or reporting, systems that collect structured inputs for
179 policy tracking. Most systems are not the original source of observational data, and do not enable
180 complex analyses beyond their intended interface. System endurance and analytical value are shaped
181 by user focus, indicator transparency, update cadence, and trusted data governance (Kemp et al., 2025).

182 We used the State-Pressure-Response-Benefit (SPRB) framework to categorise both marine
183 biodiversity indicators and online biodiversity knowledge systems by their analytical role (Table 1).
184 Online system classification was applied to support transparent interpretation of system purpose,
185 analytical role, overlap across SPRB roles, and indicator delivery readiness. Non-exclusive assignments
186 were recorded explicitly for both indicators and online systems, preserving analytical overlaps. State
187 category describes biodiversity condition, distribution, or temporal trends. Pressure category describes
188 anthropogenic, or environmental drivers associated with biodiversity change. Response category
189 describes institutional, regulatory, or management actions intended to reduce pressures, or support
190 ecological recovery. Benefit category describes material, or non-material contributions from
191 biodiversity that can be linked to human well-being, economic activity, or cultural outcomes. All
192 assignments were retained as originally classified to enable clear interpretation of coverage, overlap
193 and analytical maturity.

194 **Table 1.** Definition of SPRB framework in biodiversity measurement and three components of
195 biodiversity.

SPRB Framework in biodiversity measurement	
State	Measure the condition, composition, or function of biodiversity (e.g., coral cover, seagrass extent, species presence, abundance or biomass).
Pressure	Describe environmental and direct human impacts on marine ecosystems (e.g., fishing intensity, pollution, habitat loss).
Response	Track conservation or management actions (e.g., marine-protected-area coverage, restoration extent).
Benefit	Assess ecosystem-service flows and other material or non-material benefits derived from biodiversity (e.g., sustainable seafood provision, tourism, blue-carbon sequestration).

Biodiversity Component	
Genes	Genetic attributes including effective population size, genetic connectivity, within-species diversity, and between-species diversity (phylogenetic diversity).
Species	Functional extinction risk, population abundance, changes in distribution and functional role. Includes communities as groups of two or more interacting populations within a habitat.
Ecosystems	Extent, density or percent cover, condition, regime shift, risk of collapse.

196 **2.1. Marine indicators**

197 A database of marine biodiversity indicators was compiled (Supplementary Table 1 [SupplTable1.xlsx](#))
198 from the Biodiversity Indicators Partnership database (BIP, 2024), KMGBF monitoring documentation,
199 SDG 14 indicator metadata, and established international observation and reporting programmes
200 relevant to marine and coastal systems. Source systems included global initiatives, conventions and
201 intergovernmental organisations (e.g. FAO, IOC-UNESCO, UNEP-WCMC, IUCN, CITES,
202 CCAMLR, GEO BON, the Biodiversity Indicators Partnership - BIP, and regional ICES, and OSPAR
203 Commission).

204 Indicators were retained in the database if they met three criteria: (i) quantifying a measurable attribute
205 of marine biodiversity state, pressure, response, or benefit; (ii) being supported by an identifiable and
206 transparent data source; and (iii) operational applicability at global or multi-regional scales, with
207 evidence of repeated or ongoing updates. Indicators differing only in spatial resolution, or reporting
208 format, but derived from the same underlying observation pipeline were merged into single
209 representative entries. Composite indices maintained by a single programme, or organisation, were
210 treated as single entries even when they served multiple reporting streams, ensuring analytical neutrality
211 in system counts. Throughout the analysis, indicators are classified according to the analytical role they
212 play within the SPRB framework (Table 1).

213 **2.2. Online marine biodiversity knowledge systems**

214 A structured inventory of global and regional online biodiversity knowledge systems was compiled
215 from the datasets by Kemp et al. (2025). The marine subset was extracted from that global and regional
216 inventory by retaining entries tagged as “marine & freshwater”, “marine & terrestrial”, “marine &
217 coastal”, and “coastal”, capturing systems with explicit marine relevance as recorded in the original
218 datasets (for global Supplementary Table 2 [SupplTable2.xlsx](#) and for regional Supplementary Table 2
219 [SupplTable3.xlsx](#)).

220 Discovering online biodiversity knowledge systems combined institutional inventories, expert-led
221 verification batches, and targeted internet, or AI-assisted, searches across global and regional
222 biodiversity communities, or ocean monitoring networks, including contributions from UNEP-WCMC,
223 GEO BON, IUCN, FAO, IOC-UNESCO, GBIF and ICES. They were included in the inventory if they
224 were web-accessible and operational at the time of review (December 2025). The typology of online
225 marine biodiversity knowledge systems followed the functional classification of data systems, spanning
226 from data portals to decision-support tools, and the main types of data included such as ecosystems,
227 species data, and oceanographic layers (Table 2). They were further identified for the primary intended
228 user groups (government, business, citizen or NGO, or scientist), based on stated purpose,
229 documentation, interface design and example use cases. User-group classification was applied as non-
230 exclusive when systems explicitly targeted multiple audiences, and all relevant user groups were
231 recorded. The SPRB framework was then used as an analytical perspective to examine system coverage
232 and identify shared gaps across global and regional online marine biodiversity knowledge systems.

233 **Table 2.** Typology of online marine biodiversity knowledge systems (modified from Kemp et al., 2025).

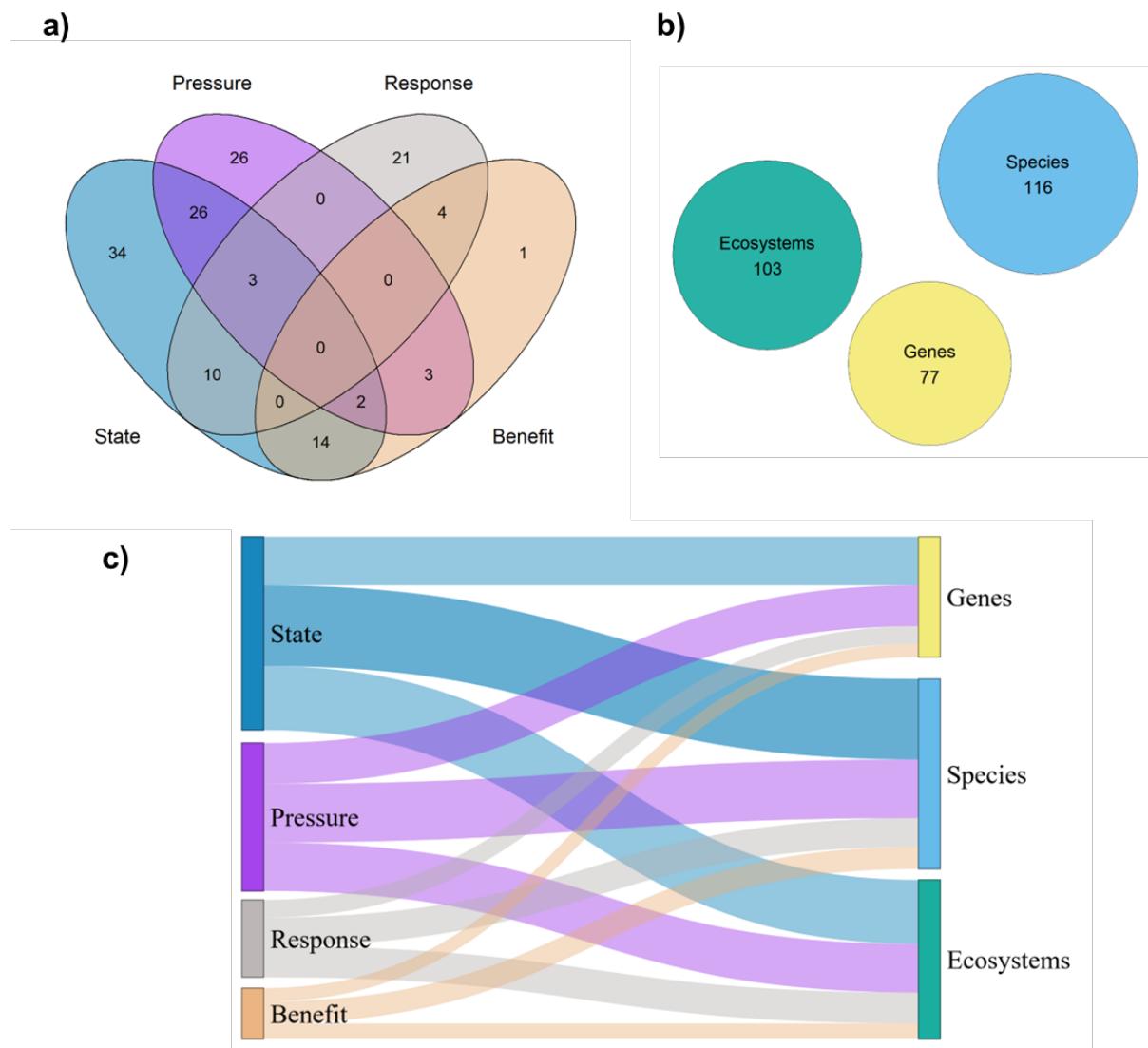
Category	Main type of data systems	Description
Data source (portal)	Provides web-based access to one or a small number of biodiversity databases, enabling data discovery, download, and basic visualisation, with limited on-platform analysis.	

Decision-support tool	Online systems designed to support specific policy, planning, or management questions by integrating data with predefined analytical workflows.
Libraries/catalogues	Curated collections of biodiversity datasets, indicators, reports, or metadata that guide users to external data sources rather than hosting data directly.
Repositories	Platforms primarily intended for long-term storage and access to biodiversity datasets, with minimal analytical functionality.
Others	<p>Flexible analysis platform: Configurable platforms allowing users to combine datasets and apply custom analytical workflows.</p> <p>Data capture / reporting systems: Systems designed to collect biodiversity data or reports from users or institutions, often supporting monitoring or policy reporting.</p> <p>Initiative / organization: Websites coordinating biodiversity-related initiatives, commitments, or collaborations, without functioning as data or analysis platforms.</p> <p>Software: Standalone or web-enabled tools supporting biodiversity analysis or visualisation without hosting biodiversity data or indicators.</p>

Main types of data included	
Earth observations	Satellite- and airborne sensor-derived datasets providing spatially explicit information on oceanographic, ecological, and environmental variables.
Ocean	Physical, chemical, and biological ocean data underpinning marine monitoring, modelling, and assessment activities.
Ecosystems	Data describing habitat extent, percent cover, condition, structure, functioning, and ecosystem dynamics across marine systems.
Species data	Data on species occurrence, abundance, biomass, distribution, population trends, and extinction risk across marine taxa.
Genetic	Information on genetic diversity, population structure, traits, or connectivity, including molecular and genomic datasets where available.
Natural capital and ecosystem service	Data quantifying ecosystem services, nature's contributions to people, and natural-capital attributes associated with marine biodiversity.
Business impacts and risks	Data describing biodiversity dependencies, pressures, and risks relevant to corporate activities, finance, and supply chains in marine and coastal contexts.
Area-based / land-use planning data	Spatial information supporting marine spatial planning, protected areas, zoning, and site-based management, including boundaries, designations, and planning layers.
Climate change and disaster risk	Information on environmental change, hazards, exposure, vulnerability, and adaptation relevant to marine and coastal ecosystems, including extreme events and long-term change.
Trade	Information describing extraction, harvest, trade, and use of marine biological resources, including fisheries and wildlife trade.

234 3. Results

235 3.1. Marine biodiversity indicators


236 A total of 145 marine biodiversity indicators were compiled and classified under the SPRB framework.
 237 These indicators encompass habitat extent (e.g. mangrove, seagrass and coral cover), ecological
 238 condition (e.g. live coral cover, reef-fish biomass, marine trophic index), human pressures (e.g.
 239 cumulative ocean impact, pollution indices, fishing effort), and management or socio-economic

240 responses (e.g. protected-area coverage, certification schemes, fisheries contributions to national
241 accounts).

242 State indicators formed the largest group ($n = 34$), followed by pressure ($n = 25$) and response ($n = 21$),
243 while the benefit category comprised a single indicator (Figure 1a). Several indicators spanned more
244 than one SPRB category. The most common overlap occurred between state and pressure ($n = 27$), with
245 additional overlaps between state and response ($n = 10$) and between response and benefit ($n = 4$). Two
246 indicators bridged three categories (pressure-state-response), but none linked all four.

247 Classification by biodiversity components (genes, species and ecosystems) showed broad distribution
248 across components (Figure 1b). For remote reporting pipelines, including BBNJ, indicators are often
249 produced at a unit larger than species and smaller than ecosystem, commonly documented as an
250 assemblage. Assemblage-level products include seabed imaging in situ (diver cams, drop cams, ROVs,
251 AUVs) and OTU-based outputs derived from box cores, dredges, sediment or water samples (Brasier
252 et al., 2021). Indicator counts reveal strong analytical coupling between species- and ecosystem-level
253 observations, with seventy-seven indicators shared between these components. Thirty-seven indicators
254 described species-level attributes uniquely, twenty-four described ecosystem attributes specifically, and
255 two linked species and ecosystems jointly. No indicator was retained exclusively for genetic
256 components, underscoring limited operationalisation of genetic-level monitoring in the marine realm
257 and the predominance of population- and habitat-based data structures (Supplementary Table
258 1SupplTable1.xlsx).

259 Weighted linkages between SPRB categories and biodiversity components (Figure 1c) showed that state
260 indicators contributed the highest number of linkages across all of the components: 73 linkages to
261 species, 58 to ecosystems and 44 to genes. Pressure indicators followed with 53, 44 and 37 linkages,
262 respectively. Response indicators contributed 26 linkages to species, 28 to ecosystems and 16 to genes.
263 Indicators classified under benefits were least represented across components ($n = 12$ for genes).

264

265 **Figure 1.** Overview of the 145 marine biodiversity indicators and their organisation into metrics
 266 (Supplementary Table 1). (a) Number of and overlap among indicators classified within the state-
 267 pressure-response-benefit framework. (b) Total counts (including overlaps) of biodiversity components
 268 (genes, species, and ecosystems). (c) Sankey diagram illustrating the distribution of twelve aggregated
 269 indicator flows from SPRB categories (left) to biodiversity components (right).

270 **3.1.1 State of Biodiversity**

271 Indicators classified under state ($n = 36$) describe the condition and spatial distribution of marine
 272 biodiversity, primarily at species and ecosystem levels (Supplementary Table 1 [SupplTable1.xlsx](#)).
 273 Genetic diversity is not measured directly by any state indicator, a gap that reflects limited operational
 274 readiness for genetic-level monitoring. State indicators quantify habitat extent, habitat condition,
 275 population abundance, and spatial or temporal change across major marine systems, with strongest
 276 representation for coastal and shelf domains (Figure 3). Most state indicators draw on Earth-observation
 277 products, long-term ecological surveys, and harmonised spatial layers, enabling recurring production
 278 and multi-regional comparison. Carbon-focused indicators include spatial estimates of mangrove soil
 279 carbon at 30 m resolution (Global Mangrove Soil Carbon; Sanderman et al., 2018), and global model
 280 outputs for sediment carbon stocks (Global Patterns in Marine Sediment Carbon Stocks; Atwood et al.,

281 2020). Habitat-climate linkages are captured by connectivity indicators integrating coral larval
282 dispersal, thermal exposure and cyclone history (Coral Reef Connectivity; Beyer et al., 2019; Wood et
283 al., 2014), and by characterising freshwater-marine migratory pathways (River Connectivity Status
284 Index⁶). Marine bioregionalisation layers (e.g. Marine Biomes, MEOW-PPOW, Marine Realms and
285 Pelagic Provinces) provide spatial context for species- and assemblage-level state interpretation
286 (Spalding et al., 2007; 2012). Spatial prioritisation is represented by the Marine Priority Areas dataset,
287 which integrates biodiversity state, food-provision potential and climate relevance (Sala et al., 2021).

288 **3.1.1.1 Species**

289 State indicators for species (n = 8) describe population abundance, temporal trends and spatial
290 distributions across plankton, marine vertebrates, assessed fish stocks and reef-associated taxa. Long-
291 baseline plankton biomass records support regional assessments using time series spanning the 1950s
292 to 2023 (Plymouth University, HBDSEG programme; OSPAR⁷). Vertebrate trends are represented
293 through Living Planet Index products, including the Marine Living Planet Index⁸ and biennially updated
294 products for migratory freshwater and diadromous species⁹. Regionally scaled species-state surrogates
295 include Baltic seal abundance (by The Baltic Marine Environment Protection Commission - HELCOM)
296 and population layers for selected marine mammals, seabirds and reptiles (by The Mediterranean Action
297 Plan UNEP-MAP¹⁰). Fish-stock sustainability state is tracked through the FAO indicator on the
298 proportion of fish stocks within biologically sustainable levels (since 1974, biennial updates as SDG
299 14.4.1 indicator (FAO, 2024). Reef species state is complemented by developing population-status
300 composites coordinated by the Global Coral Reef Monitoring Network¹¹ under The International Coral
301 Reef Initiative.

302 **3.1.1.2 Ecosystems**

303 Ecosystem-state indicators (n = 17) describe the extent and condition of habitats underpinning marine
304 biodiversity observation and reporting. These include multi-decadal Earth-observation products for
305 mangrove extent (Bunting et al., 2018; Hamilton and Casey, 2016), global compilations for saltmarsh
306 and coastal wetlands (McOwen et al., 2017). Shelf-scale ecosystem state is supported by long-baseline
307 seagrass bioregional layers¹², coral-reef extent composites¹³, and higher-resolution reef products
308 including Allen Coral Atlas (Lyons et al., 2022). Structural proxies for ecosystem condition, such as
309 kelp-canopy extent from repeated photographic and satellite records (1980s onward by Environmental
310 Data Initiative¹⁴), and seagrass-cover assemblage composites support recurring state interpretation for
311 temperate and shelf habitats. Benthic structural-complexity indicators remain under development, and
312 are therefore retained as state proxies with partial operational readiness.

313 **3.1.2 Pressures on Biodiversity**

⁶ hydratelab.io/ffr

⁷ <https://oap.ospar.org/en/versions/1756-en-1-0-0-bb11-plankton-biomass-andor-abundance/>

⁸ livingplanetindex.org/projects

⁹ https://www.livingplanetindex.org/migratory_lpi

¹⁰ <https://www.unep.org/uneppmap/>

¹¹ https://github.com/GCRMN/global_2024

¹² <https://www.seagrassnet.org/map>

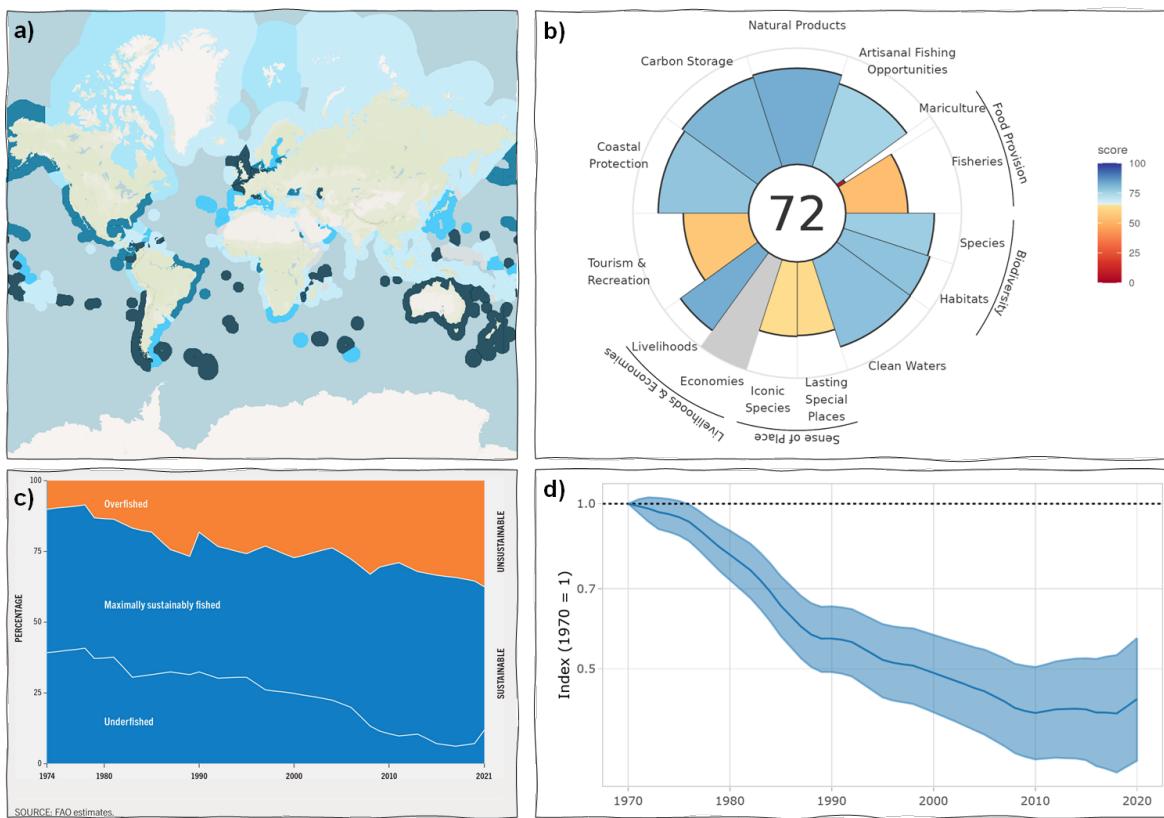
¹³ <https://habitats.oceanplus.org/>

¹⁴ edirepository.org

314 Indicators on pressure upon biodiversity (n = 26) capture environmental and anthropogenic drivers
315 affecting marine biodiversity across biological levels (Supplementary Table 1[SupplTable1.xlsx](#)). They
316 encompass cumulative human impacts, pollutant inputs, nutrient enrichment, acidification, invasive-
317 species trends and fishing effort. Species-level pressure indicators are currently regional in scope and
318 supported by EU monitoring and reporting pipelines, including those coordinated under the EU MSFD
319 (Descriptor 8 in Directive 2008/56/EC, 2008). Cumulative anthropogenic pressures on marine
320 ecosystems are estimated through integrated global analyses combining climate stress, pollution and
321 fishing activity (Halpern et al., 2015). Additional pressure components, such as inorganic pollution,
322 nutrient plumes, pesticide inputs and ocean-based pollution, are available through associated global
323 model outputs. Fishing pressure is quantified using global estimates of fishing effort derived from
324 satellite-based vessel monitoring (Kroodsma et al., 2018). Ocean acidity (pH) is quantified annually (in
325 relation with SDG 14.3.1 indicator), while coastal eutrophication and marine-debris are measured
326 through metrics of nutrient enrichment and plastic accumulation (in relation with SDG 14.1.1a
327 indicator). Regional pressure datasets complement global layers, for example nutrient and chlorophyll-
328 a concentrations for the Mediterranean and nutrient loads, or hazardous substances and pollution trends
329 for the Baltic Sea. Biological invasions are represented by trends in invasive alien species introduction
330 events derived from global occurrence records. No indicators in the dataset directly quantify pressures
331 on genetic diversity.

332 **3.1.2.1 Pressures on species**

333 A limited set of indicators (n = 3) quantify pressures resolved at species or taxon level, focusing on
334 biological impairment, incidental mortality, or direct extraction. Most pressure indicators in the broader
335 inventory describe environmental or human drivers at habitat or jurisdiction scale, but only three meet
336 criteria for species-specific recurring monitoring and reporting. Contaminant pressure on gastropod
337 reproduction is assessed using long-term records of imposex incidence, a condition where females
338 develop male sexual characteristics following exposure to tributyltin (TBT), a legacy antifouling-paint
339 contaminant. This indicator is operational under the The Convention for the Protection of the Marine
340 Environment of the North-East Atlantic (OSPAR) hazardous substances monitoring pipeline, and
341 supports multi-decadal pressure interpretation across European marine regions (OSPAR, 2017).
342 Incidental mortality of marine mammals and waterbirds in fishing gear is documented through regional
343 bycatch assessments for the Baltic Sea (HELCOM, 2018). Global records on extraction pressures on
344 cetaceans are represented by annual catch statistics reported by International Whaling Commission,
345 providing a continuous record since the mid-1980s¹⁵.


346 **3.1.2.2. Pressures on ecosystems**

347 Pressures on ecosystems (n = 1) are represented through global analyses of cumulative human impacts
348 on marine habitats, integrating multiple stressor layers including climate change, pollution, habitat
349 modification and fishing pressure (Halpern et al., 2015). These datasets provide globally consistent
350 spatial and temporal estimates of anthropogenic pressure and can be resolved at national scales¹⁶.

¹⁵ iwc.int/total-catches

¹⁶ nceas.ucsb.edu/globalmarine

351

352 **Figure 2.** Examples of marine indicators. a) State-response indicator: Percent coverage of countries by
 353 protected areas and other effective area-based conservation measures (OECMs) for the marine realm as
 354 of August 2024; Source: UNEP-WCMC and IUCN 2024. b) State-pressure indicator: The Ocean Health
 355 Index 2025, global assessment includes scores from 2012 to 2025 for 220 coastal countries and
 356 territories. The global average 2025 Index score was 72 out of 100 (Ocean Health Index, 2025:
 357 <https://oceanhealthindex.org/global-scores>). c) State indicator: Global trends in the state of the world's
 358 marine fishery stocks, 1974–2021 (FAO, 2024); d) State indicator: The Living Planet Index for Marine
 359 populations between 1970 to 2020. The bold line shows the index values and the shaded areas represent
 360 the statistical certainty surrounding the trend (95%). The index represents 16,909 populations of 1,816
 361 species (CC BY 4.0).

362 3.1.3 Policy and Management Responses

363 Indicators for policy and management responses ($n = 21$) capture institutional, policy and management
 364 actions implemented at national, regional and global scales (Supplementary Table 1 [SupplTable1.xlsx](#)).
 365 They encompass protected-area coverage, restoration, regulatory frameworks, research capacity,
 366 marine spatial planning, statistical support and international cooperation. Many are formally linked to
 367 SDG indicators and therefore form part of national reporting processes.

368 Forest-restoration potential relevant to coral-reef conservation identifies terrestrial actions with direct
 369 implications for coastal and reef systems (Suárez-Castro et al., 2021). Marine science capacity is
 370 quantified through indicators (in relation to SDG 14.a.1) coordinated under the Global Ocean Science
 371 Report, including ocean-science researchers per million population, research-vessel days, national
 372 inventories of marine stations, the proportion of Exclusive Economic Zones (EEZs) covered by marine

373 spatial plans, and the proportion of national research budgets allocated to marine technology (IOC-
374 UNESCO, 2020). Change in water-use efficiency supports (in relation to SDG 6.4.1), national progress
375 on integrated water-resources management¹⁷ (in relation to SDG 6.5.1), and financial and technical
376 support to biodiversity-relevant governance (in relation to SDG 17.9.1) are quantified¹⁸. Fisheries-
377 related responses include reporting on the proportion of fish stocks under sustainable-management
378 certification (in relation to SDG 14.4.1), and implementation of international instruments against Illegal,
379 Unreported and Unregulated (IUU) fishing is addressed by Red List Index for impacts of fisheries¹⁹.
380 Ecosystem restoration and protection responses include global records of mangrove restoration²⁰,
381 quantifying spatial extent and restoration outcomes (Worthington and Spalding, 2018), and indicators
382 reporting the proportion of coral reefs within effectively managed marine protected areas (MPAs) and
383 other effective area-based conservation measures^{21 22 23}. Contextual governance information is provided
384 by response indicators beyond biological components. Maritime jurisdiction is delineated through the
385 global EEZs dataset²⁴. Climate-policy responses (in relation to SDG 13.b.1) are captured through
386 national submissions of determined contributions, adaptation plans and long-term strategies compiled
387 under the UNFCCC²⁵.

388 **3.1.4 Benefits from Biodiversity**

389 Only one indicator is classified exclusively under benefits (Figure 1a; Supplementary Table
390 1[SupplTable1.xlsx](#)). It quantifies tourism and recreation through modelled estimates of total visitation
391 value of coral reefs at the global scale (Spalding et al., 2017 and Ocean Wealth).

392 **3.1.5. Multidimensional indicators under overlapping metrics**

393 Some indicators are multidimensional in that they present information on biodiversity state together
394 with pressures and, in some cases, responses or benefits (Figure 1a; Supplementary Table
395 1[SupplTable1.xlsx](#)).

396 Several indicators combine information on habitat extent or species state with exposure to
397 environmental change or human activities (Figure 3). Long-term time series provide coastal and wetland
398 extent and loss, surface-water dynamics and habitat modification (e.g. Global Mangrove Watch; World
399 Mangrove Atlas; Ramsar Sites Information Service; Global Surface Water dataset) (Bunting et al.,
400 2018; Thomas et al., 2017; Spalding et al., 1997; Pekel et al., 2016). Comparable spatial²⁶ baselines are
401 available for seagrass, warm-water coral and cold-water coral systems, where updates over time reflect
402 degradation or recovery (e.g. seagrass, coral reef and cold-water coral; Short, 2020; Freiwald et al.,
403 2017). Composite indices merge state information with multiple stressors to generate national or global
404 scores such as Ocean Health Index²⁷, as well as cumulative human-impact layers quantifying aggregated

¹⁷ iwrmdataportal.unepdhi.org

¹⁸ <https://www.paris21.org/>

¹⁹ <https://dart.informeia.org/taxonomy/term/3865>

²⁰ maps.oceanwealth.org/mangrove-restoration

²¹ oceanconference.un.org/commitments/?id=15692

²² iyor2018.org

²³ aires-marines.com

²⁴ <https://www.vliz.be/en/imis?dasid=5465&doiid=312>

²⁵ unfccc.int

²⁶ <https://habitats.oceanplus.org/>

²⁷ ohi-science.org/ohi-global

405 anthropogenic pressures across marine systems (Halpern et al., 2015). Species-based metrics similarly
406 integrate population state with exposure to exploitation, climate stress or habitat loss. These include
407 indicators tracking changes in trophic structure, abundance and size composition, thermal sensitivity
408 and extinction risk (e.g. Marine Trophic Index²⁸, Living Planet Index²⁹ and its variants, Reef Fish
409 Thermal Index³⁰, Red List Index³¹ and its different products).

410 Linking biodiversity state directly to spatial protection or management measures represents another
411 multidimensional approach. These include global and regional site-based designations recording both
412 ecological importance and protection status such as Ecologically or Biologically Significant Marine
413 Areas³² (CBD, 2022) and Ramsar Wetlands³³. Regional datasets further describe the representation of
414 habitats, depth zones and ecoregions within MPAs, including key Mediterranean habitats and cetacean
415 critical areas (UNEP/MAP³⁴, SPA/RAC³⁵ and MedPAN datasets³⁶).

416 Spatial prioritisation frameworks identifying areas where maintaining ecosystem state supports food
417 provision and climate relevance, and ecosystem-service models quantifying coastal protection, flood-
418 risk reduction and tourism value (e.g. Marine Priority Areas for Food Security, Mapping Ocean Wealth)
419 connect biodiversity state with benefits derived from biodiversity (Jones et al., 2018; Sala et al., 2021;
420 Tellman et al., 2021).

421 Some indicators link pressures directly to benefits by illustrating how environmental stressors influence
422 human well-being such as water availability under variable pressure regimes (eg. Freshwater
423 Provisioning Index for Humans) and fisheries certification metrics connecting extraction pressure to
424 sustainability outcomes by Marine Stewardship Council³⁷.

425 A smaller number of indicators integrate state, pressure and response within a single framework such
426 as indices combining watershed state, fishing pressure and governance information (Sustainable
427 Watershed and Inland Fisheries Index). Economic indicators can link fisheries performance to stock
428 state and management (sustainable fisheries as a percentage of GDP), and carbonate-budget
429 assessments combining reef state, erosion pressure and management signals (Supplementary Table
430 1 [SupplTable1.xlsx](#)).

431 **3.2. Online Marine Biodiversity Knowledge Systems**

432 A total of 223 online marine biodiversity knowledge systems (systems hereafter) were identified,
433 comprising 141 global and 82 regional entries (for global Supplementary Table 2 [SupplTable2.xlsx](#) and
434 for regional Supplementary Table 2 [SupplTable3.xlsx](#)). The analysis follows a common typology and
435 an SPRB lens, together with a user grouping and a main-data grouping.

²⁸ <https://www.seaaroundus.org/data/#/marine-trophic-index>

²⁹ <https://www.livingplanetindex.org>

³⁰ <https://dart.informeia.org/taxonomy/term/3878>

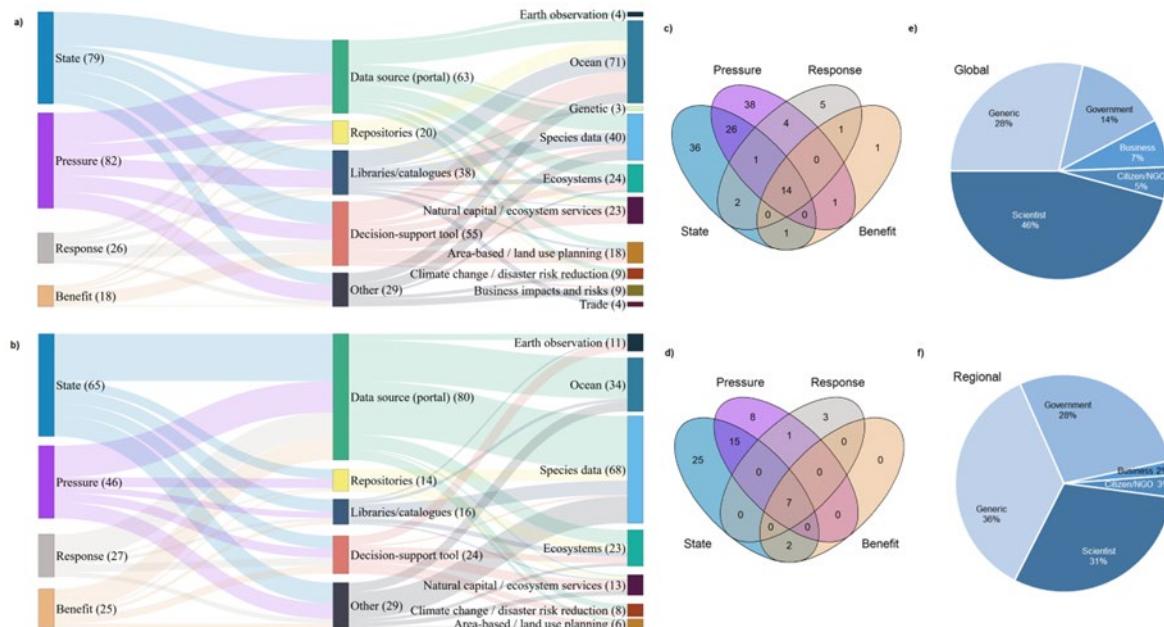
³¹ <https://www.iucnredlist.org/assessment/red-list-index>

³² <https://gobi.org/ebsas/>

³³ <https://www.ramsar.org/>

³⁴ <https://www.unep.org/uneppmap/>

³⁵ <https://www.rac-spa.org/node/2047>


³⁶ <https://medpan.org/en/resource-center/status-marine-protected-areas-mediterranean-sea-2020-edition>

³⁷ <https://www.msc.org/for-business/fisheries>

436 At the global scale (Figure 3a, c, e), systems categorized for showing state and pressure account for the
437 largest number of systems (Supplementary Table 2 [SupplTable2.xlsx](#)), with state being the most
438 frequently represented SPRB component, followed by pressure. Response and benefit are represented
439 by substantially fewer systems. Across global, the main data groupings are dominated by ocean-related
440 variables, species-level data, and ecosystem-level information, whereas genetic data and earth-
441 observation-only categories are comparatively limited. Overlap among SPRB categories is common at
442 the global scale (Figure 3c). The largest intersection occurs between state and pressure, followed by
443 overlaps that include response. Systems related to benefits are few and typically appear in combination
444 with other SPRB components. A small part spans three components simultaneously, while
445 representation across all four SPRB categories is rare. None is classified solely as benefits but in
446 combination with other categories.

447 At the regional scale (Figure 3b, d, f), the overall distribution across SPRB categories follows a similar
448 pattern, with state related systems remaining the most frequently represented component
449 (Supplementary Table 3 [SupplTable3.xlsx](#)). However, pressure classifications are less numerous than
450 at the global scale, while response and benefit account for a relatively higher proportion of platforms.
451 Regional systems are most often classified as data source portals and decision-support tools, with fewer
452 entries falling under repositories or libraries compared to the global set. SPRB overlap at the regional
453 scale (Figure 2d) is less extensive than at the global scale. Intersections most commonly involve state,
454 pressure, and response, while benefit remains weakly represented and is rarely combined with other
455 components.

456 Across both global and regional systems, species-level data constitute the most frequently represented
457 biodiversity component, followed by ecosystem-level information. Genetic data are marginal in both
458 cases. Global systems more often include ecosystem-related data within multidimensional SPRB
459 classifications, particularly those combining state and pressure. In contrast, regional systems show a
460 stronger concentration on species-level data, consistent with inventories, monitoring programmes, and
461 assessment-focused initiatives. Ocean-related variables and earth-observation data are strongly
462 associated with pressure classifications at both scales, with a higher concentration in global platforms.
463 Regional systems more frequently combine physical and environmental variables with spatially explicit
464 layers relevant to area-based planning and ecosystem assessments. User-group classifications differ
465 between scales (Figure 3e, f). Global systems are most frequently associated with scientific users,
466 followed by platforms with no clearly specified primary user group. Government, business, and NGO
467 user groups represent smaller shares. In contrast, regional systems show a more even distribution
468 between scientific and government users, with generic users also forming a substantial proportion.

469
470 **Figure 3.** Structure and use of global-regional online marine biodiversity knowledge systems. (a-b)
471 Sankey diagrams showing linkages between SPRB categories, type of data system, and main type of
472 data included for global and regional systems, respectively. (c-d) Number of and overlap within the
473 SPRB framework. (e-f) Distribution of primary user groups for global and regional systems.

474 **3.2.1. Global Scale**

475 State-related online systems ($n = 36$) provide baseline information on the distribution, status and
476 temporal dynamics of marine biodiversity, without explicitly incorporating pressures, management
477 actions or benefit-oriented valuation (Supplementary Table 2 [SupplTable2.xlsx](#)). They primarily deliver
478 species occurrence data, taxonomic backbones, habitat extent and ecological state layers and are most
479 commonly implemented as open-access data portals or map-based exploration tools supporting
480 biodiversity assessment, research and reporting. Use is dominated by scientific users, with substantial
481 uptake by government agencies. Update frequencies depend on the underlying monitoring programmes.
482 Data source portals represent the dominant system type. Global species and taxonomic infrastructures
483 provide access to occurrence and classification data (e.g. OBIS³⁸, World Register of Marine Species
484 WoRMS³⁹, Blue Corridors⁴⁰, Seabird Tracking Database⁴¹) while ecosystem observation platforms
485 provide standardised monitoring products (e.g. CoralNet⁴², Reef Life Survey⁴³). These are typically
486 updated regularly and are widely used by scientists. Decision-support tools translate biodiversity
487 observations into spatial products relevant for conservation planning and prioritisation (e.g. Important
488 Marine Mammal Areas IMMA⁴⁴; Important Shark and Ray Areas ISRA⁴⁵, AquaMaps⁴⁶,
489 Happywhale⁴⁷). Libraries and catalogues provide curated reference datasets rather than dynamic

³⁸ <https://obis.org/>

³⁹ <https://www.marinespecies.org/>

⁴⁰ <https://bluecorridors.org/>

⁴¹ <https://data.seabirdtracking.org/>

⁴² <https://coralnet.ucsd.edu/about>

⁴³ <https://portal.aodn.org.au/search>

⁴⁴ <https://www.marinemammalhabitat.org/immas/>

⁴⁵ <https://sharkrayareas.org/>

⁴⁶ aquamaps.org

⁴⁷ <https://happywhale.com>

490 monitoring outputs, including taxonomic and biological catalogues (e.g. Eschmeyer's Catalog of
491 Fishes⁴⁸, FishBase⁴⁹, SeaLifeBase⁵⁰, Interim Register of Marine and Nonmarine Genera IRMNG⁵¹) and
492 microbial or genetic reference systems (International Census of Marine Microbes ICoMM⁵²,
493 Metazoaogen⁵³). A smaller number of platforms operate as repositories, initiatives or specialised
494 software systems (e.g. MEOP⁵⁴; eOceans⁵⁵; Global Coral Reef Monitoring Network; Zostera
495 Experimental Network⁵⁶).

496 Pressures-related systems (n = 38) support detection and monitoring of physical, chemical and climatic
497 stressors and are dominated by oceanographic, biogeochemical and Earth-observation data
498 (Supplementary Table 2 [SupplTable2.xlsx](#)). Common data types include sea-surface temperature, sea
499 ice, winds, radiative fluxes, sea level, ocean circulation, carbon chemistry, oxygen concentration, and
500 nutrient enrichment. These platforms are closely embedded within global observing and climate-
501 monitoring infrastructures. Data source portals and repositories dominate this category, providing
502 access to continuous or near-real-time observational streams. Major global systems include satellite-
503 derived products (EUMETSAT OSI SAF⁵⁷), autonomous in situ observing networks (Argo; Biogeochemical Argo⁵⁸), sea-level observing systems (GLOSS⁵⁹), and integrated ocean data services (Copernicus Marine Data Store⁶⁰, NOAA CoastWatch⁶¹). Climate-change and disaster-risk-related
504 pressure data are further delivered through tsunami-monitoring systems and coastal risk frameworks
505 (Coastal Hazard Wheel⁶²). Libraries and catalogues provide curated, quality-controlled reference
506 datasets underpinning pressure analyses (ICOADS; SOCAT; GLODAP; Global Surface pCO₂
507 database). Repositories archive long-term or mission-based datasets supporting assessment of physical
508 and biogeochemical pressures over decadal scales (GO-SHIP; OceanGliders; SOCAT; SWOT). These
509 systems are updated less frequently and primarily serve expert scientific users. Decision-support tools
510 and thematic initiatives form a smaller subset. The Ocean Health Index integrates multiple pressure
511 layers alongside state information to support comparative assessments. Observing initiatives such as
512 GO2NE and VOS/SOT coordinate measurements related to oxygen decline and shipping-based
513 observations. Only one pressure platform explicitly incorporates natural-capital or ecosystem-service
514 information, the ASFIS List of Species for Fishery Statistics Purposes maintained by FAO, which links
515 species classifications to fisheries statistics and economic use.

518 Response-related systems (n = 5) document policy, management and governance actions implemented
519 to reduce pressures, support recovery or improve sustainability outcomes (Supplementary Table 2
520 [SupplTable2.xlsx](#)). They compile information on spatial protection, financing mechanisms,

⁴⁸ <https://www.calacademy.org/scientists/projects/eschmeyers-catalog-of-fishes>

⁴⁹ <https://www.fishbase.se/>

⁵⁰ <https://www.sealifebase.se>

⁵¹ <https://www.irmng.org>

⁵² <http://www.coml.org/international-census-marine-microbes-icomm/>

⁵³ <https://metazoaogen.org/database/>

⁵⁴ <https://meop.net/>

⁵⁵ <https://eoceans.co/>

⁵⁶ <https://serc.si.edu/research/projects/zostera-experimental-network-zen>

⁵⁷ <https://osi-saf.eumetsat.int/>

⁵⁸ <https://biogeochemical-argo.org/>

⁵⁹ <https://psmsl.org/>

⁶⁰ <https://data.marine.copernicus.eu/>

⁶¹ <https://coastwatch.noaa.gov/>

⁶² <https://chw-app.coastalhazardwheel.org/>

521 management initiatives and business-oriented sustainability actions, rather than ecological state or
522 environmental drivers. Information is typically structured around projects, commitments or
523 management instruments and updated according to reporting cycles or institutional review processes.
524 Spatial protection and planning are represented through global inventories of MPAs, and for example,
525 Marine Protected Area Atlas⁶³ and ProtectedSeas Navigator⁶⁴, provides information on the expected
526 effectiveness through the MPA Guide. Conservation finance and investment mechanisms are compiled
527 through thematic platforms (e.g. Coral Reef Funding Landscape⁶⁵). Fisheries-related responses are
528 tracked through decision-support systems linking governance actions to structured progress indicators
529 (FisheryProgress⁶⁶). Technical mitigation responses are compiled through catalogue-based platforms
530 (Consortium for Wildlife Bycatch Reduction⁶⁷). Business-oriented response information is organised
531 through resource databases addressing sustainability commitments, sourcing practices and supply-chain
532 risk (Conservation Alliance for Seafood Solutions⁶⁸). Benefit-related one system explicitly addresses
533 benefits derived from marine biodiversity. The Atlas of Ocean Wealth - Mapping Ocean Wealth,
534 developed by The Nature Conservancy⁶⁹, operates as a decision-support platform focused on natural
535 capital and ecosystem services. It provides spatially explicit estimates of economic and protective
536 benefits derived from marine ecosystems, including coastal protection, fisheries production and tourism
537 value.

538 Many global systems combine more than one component of the SPRB framework (n = 60) (Figure 2;
539 Supplementary Table 2 [SupplTable2.xlsx](#)). State and pressure related ones describe ecosystem or
540 species state together with exposure to environmental or anthropogenic drivers (e.g. Allen Coral Atlas,
541 Global Mangrove Watch⁷⁰, EBSAs). Species-focused systems follow the same logic by combining
542 distribution data with environmental conditions or exploitation pressure (Marine Megafauna Movement
543 Analytical Program⁷¹, TurtleNet⁷², Global Marine Species Assessment⁷³). Some links state and
544 response by associating ecological importance with spatial protection or management status (Important
545 Marine Mammal Areas). Comparable linkages are represented by decision-support systems connecting
546 state information to management and planning contexts (Local Ecological Footprint Tool Marine⁷⁴). A
547 single platform links state and benefit by relating ecosystem vulnerability to fisheries sustainability
548 considerations (Vulnerable Marine Ecosystems Database⁷⁵) while another one links pressure and
549 benefit by connecting fishing-pressure indicators to natural-capital considerations in seafood supply
550 chains (FishSource⁷⁶). Some combine pressure and response by situating environmental or
551 anthropogenic drivers within management or monitoring frameworks (Harmful Algal Information

⁶³ <https://mpatlas.org/mpaguide/>

⁶⁴ <https://map.navigatormap.org>

⁶⁵ <https://coralfunders.com>

⁶⁶ <https://fisheryprogress.org/>

⁶⁷ <https://bycatch.org/>

⁶⁸ <https://solutionsforseafood.org/>

⁶⁹ <https://oceanealth.org/resources/atlas-of-ocean-wealth/>

⁷⁰ <https://www.globalmangrovewatch.org/>

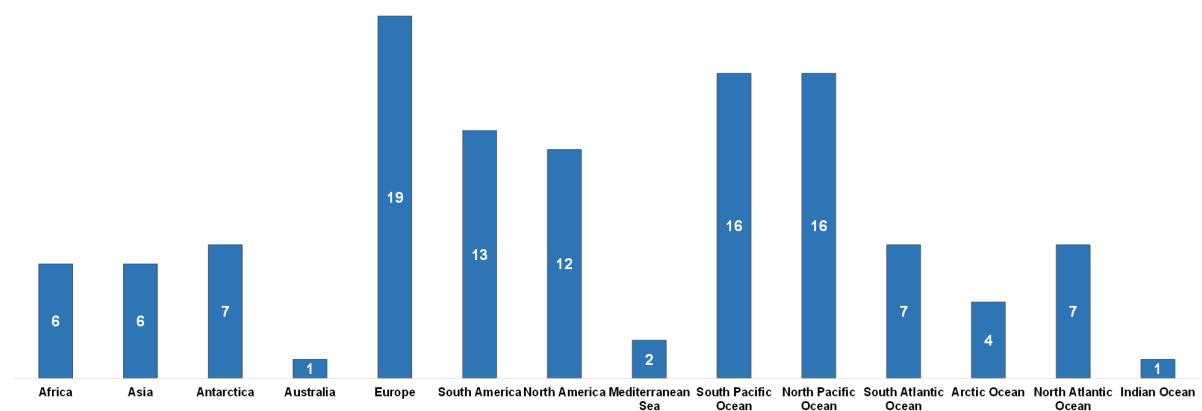
⁷¹ <https://megamove.org/data-portal/>

⁷² <https://experience.arcgis.com/experience/0eda722f6cfa4ac89606df50d7e40468>

⁷³ <https://sites.wp.odu.edu/GMSA/initiatives/gmsa/>

⁷⁴ <https://www.marineleft.ox.ac.uk/>

⁷⁵ <https://www.fao.org/fishery/geoserver/factsheets/vme.html>


⁷⁶ <https://www.fishsource.org/>

552 System⁷⁷, MarineGEO⁷⁸) while the others with response and benefit focus on governance actions and
553 sustainability outcomes, particularly in fisheries contexts (Fisheries and Resources Monitoring
554 System⁷⁹). A small number integrate all four SPRB components within a single framework, combining
555 biodiversity state, pressures, responses and benefit-oriented information (Ocean+Habitats, Mapping
556 Ocean Wealth, Global Fishing Watch⁸⁰, Indicators for the Seas⁸¹, Sea Around Us, Bycatch
557 Management Information System⁸²).

558 **3.2.2. Regional Scale**

559 Regional state-related systems ($n = 26$) document the condition, distribution and temporal dynamics of
560 marine species and ecosystems within defined ocean basins, regional seas or biogeographic contexts
561 (Figure 4, Supplementary Table 3 [SupplTable3.xlsx](#)). They provide baseline regional-scale information,
562 including species occurrence and abundance data, ecosystem distribution layers and long-term
563 monitoring records linked to specific regions.

Regional online marine biodiversity knowledge systems

564

565 **Figure 4.** Distribution of regional online marine biodiversity knowledge systems.

566 Data source portals form the most common system type among regional state platforms. These provide
567 access to observational and compiled datasets through map-based interfaces and basic visualisation
568 tools (Critical Site Network⁸³, Sea Ice Aware⁸⁴, COSYNA⁸⁵). Taxonomic and habitat-focused portals
569 provide curated regional reference datasets used in biodiversity assessments (European Register of
570 Marine Species⁸⁶, Deep Sea Corals and Sponges portal⁸⁷, Australian DNA Library⁸⁸). Region-focused
571 biodiversity systems provide access to species data within specific seas and regional conventions

⁷⁷ <https://data.hais.ioc-unesco.org/>

⁷⁸ <https://marinegeo.si.edu/network>

⁷⁹ <https://firms.fao.org/firms/home/en>

⁸⁰ <https://globalfishingwatch.org/map/>

⁸¹ www.indiseas.org

⁸² <https://www.bmis-bycatch.org/>

⁸³ <https://criticallsites.wetlands.org/en>

⁸⁴ <https://livingatlas.arcgis.com/sea-ice/>

⁸⁵ https://www.hereon.de/institutes/carbon_cycles/cosyna/data_management/index.php.en

⁸⁶ <http://www.marbef.org/data/erms.php>

⁸⁷ <https://www.ncei.noaa.gov/maps/deep-sea-corals-portal>

⁸⁸ <https://nndl.csiro.au/>

572 (EurOBIS⁸⁹, HELCOM Biodiversity Database⁹⁰). Ecosystem-oriented portals provide regionally
573 scoped datasets on biogeochemical and ecosystem dynamics (Sustained Indian Ocean Biogeochemistry
574 and Ecosystem Research portal⁹¹, Micronesia Challenge Indicator Monitoring system⁹²). Decision-
575 support tools translate state observations into spatial products relevant for regional planning and
576 ecosystem mapping (MarCNoWA Coastal Ecosystem Mapping⁹³, Sargassum Watch System⁹⁴).
577 Visualisation platforms provide interactive access to regional biodiversity-related datasets without
578 operating as primary data repositories (FACT Network⁹⁵ visualisation platform). Libraries and
579 catalogues provide curated datasets underpinning long-term regional biodiversity assessments (OSPAR
580 Data and Information Management System⁹⁶, Joint Cetacean Data Programme⁹⁷, Intercet⁹⁸). Long-term
581 monitoring catalogues compile standardized biological time series used in regional and basin-scale
582 assessments (SCAR Southern Ocean Continuous Plankton Recorder Survey⁹⁹, Continuous Plankton
583 Recorder Survey¹⁰⁰). A diverse set of regional initiatives and repositories complement these systems by
584 aggregating species, habitat and monitoring data within specific geographic or governance contexts
585 (DIPnet¹⁰¹, CAFF¹⁰², Asia-Pacific MBON¹⁰³, Southern Ocean Research Partnership portal¹⁰⁴, NOAA
586 Whale and Dolphin Surveys in the Pacific Islands¹⁰⁵, Multi-agency Rocky Intertidal Network¹⁰⁶, SNO
587 MEMO observing system¹⁰⁷).

588 Pressure-related systems (n = 7) focus on environmental, anthropogenic and governance-related drivers
589 affecting marine systems at basin, subregional or regional-seas scales (Supplementary Table 3
590 [SupplTable3.xlsx](#)). In contrast to global dominated by continuous physical and biogeochemical
591 observations, regional ones emphasise region-specific threats, policy-relevant drivers and applied
592 management contexts. They rely primarily on species data, interpreted Earth-observation products and
593 policy-embedded indicators. Use is oriented towards governmental and intergovernmental users, with
594 additional uptake by scientific communities involved in regional assessments. Update frequencies are
595 typically annual or episodic, reflecting reporting cycles and coordinated surveys rather than continuous
596 monitoring. Initiatives, repositories and catalogues represent the dominant system types within this
597 category. Libraries and coordination platforms compile Earth-observation and in situ datasets relevant
598 to pressure assessment within specific ocean basins (AtlantOS¹⁰⁸). Repository-based ones provide

⁸⁹ <http://www.eurobis.org/about>

⁹⁰ <https://maps.helcom.fi/website/biodiversity/>

⁹¹ <https://incois.gov.in/site/datainfo/jointportal.jsp>

⁹² <https://mcterrestrialmeasures.org/#/intro>

⁹³ <https://acma.africanmarineatlas.org/catalogue/#/datasets>

⁹⁴ <https://optics.marine.usf.edu/projects/saws.html>

⁹⁵ <https://secoora.org/fact/data-visualization-tool/>

⁹⁶ <https://odims.ospar.org>

⁹⁷ <https://jncc.gov.uk/our-work/joint-cetacean-data-programme>

⁹⁸ <https://www.intercet.it>

⁹⁹ <https://data.aad.gov.au/aadc/cpr/index.cfm>

¹⁰⁰ <https://www.cprsurvey.org/data/our-data/>

¹⁰¹ <http://diversityindopacific.net>

¹⁰² <https://www.caff.is>

¹⁰³ <https://members.geobon.org/pages/ap-mbon.php>

¹⁰⁴ <http://www.marinemammals.gov.au/sorp>

¹⁰⁵ <https://www.fisheries.noaa.gov/pacific-islands>

¹⁰⁶ <https://marine.ucsc.edu/explore-the-data>

¹⁰⁷ <https://sextant.ifremer.fr>

¹⁰⁸ <https://www.ocean-ops.org/board?t=atlantos>

599 species-based indicators used as proxies for fishing pressure, ecosystem change or climate-driven
600 redistribution (Western European Pelagic Acoustic Survey¹⁰⁹, Distributed Biological Observatory¹¹⁰).
601 Thematic initiatives link environmental drivers to policy and management contexts. Earth-observation
602 products are translated into coastal habitat assessment tools at the regional scale (IOC-WESTPAC
603 Ocean Remote Sensing Project for Coastal Habitat Mapping¹¹¹). Governance-oriented regional
604 frameworks integrate pollution, habitat degradation and resource-use pressures within natural-capital
605 and ecosystem-services perspectives (Northwest Pacific Action Plan¹¹²). Species-oriented pressure
606 information links distributions to anthropogenic stressors such as bycatch, underwater noise and vessel
607 traffic (ASCOBANS¹¹³). At the European scale, harmonised pressure and impact indicators support
608 policy reporting and assessment under the Marine Strategy Framework Directive (WISE Marine¹¹⁴).

609 Response-related systems (n = 3) focus on policy implementation, management coordination and
610 institutional action at the regional scale and are primarily implemented as data portals or decision-
611 support systems (Supplementary Table 3 [SupplTable3.xlsx](#)). Fisheries governance platforms provide
612 access to management measures, compliance information and stock-related policy instruments
613 (Western and Central Pacific Fisheries Commission¹¹⁵). Species-focused response information is
614 provided through harmonised datasets supporting conservation planning, monitoring obligations and
615 regional reporting (Pacific Seabird Colonies Database¹¹⁶). Decision-support platforms translate policy
616 commitments into spatial planning and management products for marine and coastal protected areas
617 (Pacific Islands Protected Area Portal¹¹⁷).

618 A substantial part of regional systems are multidimensional, reflecting the integration of monitoring,
619 assessment, management and reporting functions within regional governance and observing
620 frameworks (Supplementary Table 3 [SupplTable3.xlsx](#)). State and pressure are mostly data-portals
621 integrating biodiversity or ecosystem state with environmental or anthropogenic drivers (e.g.
622 PacificMap¹¹⁸, Coral Triangle Atlas, Ocean Networks Canada¹¹⁹, Atlantic Meridional Transect¹²⁰).
623 Species-oriented platforms follow a similar structure by linking species distributions or movements to
624 environmental variability or climate-related pressures (e.g. Censo Centroamericano de Aves
625 Acuáticas¹²¹, European Tracking Network¹²², Humpback Whale Sentinel Program¹²³). Connecting
626 ecosystem condition or stock status directly to management and conservation action combines state and
627 response (e.g. ICES data systems¹²⁴, Blue Forests platform¹²⁵). Platforms combining pressure and

¹⁰⁹ <https://www.marine.ie/site-area/areas-activity/fisheries-ecosystems/acoustic-surveys>

¹¹⁰ <https://www.pmel.noaa.gov/dbo/cruise-data>

¹¹¹ <https://ioc-westpac.org/session/xv/marine%20biodiversity/Ocean%20Remote%20Sensing.pdf>

¹¹² www.unenvironment.org/nowpap

¹¹³ www.ascobans.org

¹¹⁴ <https://water.europa.eu/marine>

¹¹⁵ <https://cmm.wcpfc.int/>

¹¹⁶ <https://map.pacificdata.org>

¹¹⁷ <https://pipap.sprep.org/>

¹¹⁸ <https://map.pacificdata.org/>

¹¹⁹ <https://data.oceanetworks.ca>

¹²⁰ <https://www.bodc.ac.uk/resources/inventories/edmed/report/207/>

¹²¹ <https://whsrn.org/es>

¹²² <https://europeantrackingnetwork.org>

¹²³ <https://www.southernoceansentinel.org>

¹²⁴ <https://data.ices.dk>

¹²⁵ <https://gefblueforests.org/>

628 response translate environmental or anthropogenic drivers into management-relevant information
629 without explicitly tracking biodiversity state (e.g. Sea Turtle Tag Inventory¹²⁶, CARICOOS¹²⁷).
630 Fisheries-oriented systems link fishing-pressure indicators to natural-capital and ecosystem-service
631 considerations relevant for governance (e.g. Western and Central Pacific Fisheries Commission¹²⁸).
632 Some platforms combining response and benefit describe how management actions and governance
633 arrangements generate sustainability or socio-economic outcomes (e.g. Fisheries and Resources
634 Monitoring System¹²⁹, Bycatch Management Information System¹³⁰). A limited number integrate all
635 four SPRB components. These include large-scale observing and information infrastructures that
636 combine ecological baselines, environmental drivers, management-relevant analytics and benefit-
637 oriented outputs (e.g. Copernicus Marine Environment Monitoring Service¹³¹, EMODnet¹³²,
638 Mediterranean Ocean Observing System for the Environment¹³³, Pacific Islands Ocean Observing
639 System¹³⁴, MACBIO¹³⁵, Baltic Sea Environment Database¹³⁶).

640 **4. Discussion**

641 Our review and synthesis of marine biodiversity indicators and data systems helps to understand the
642 information base available to evaluate KMGBF, the BBNJ agreement, and other marine-relevant policy
643 processes. Marine biodiversity indicators are strongly weighted toward describing state and regional
644 pressures, while response and benefit indicators are less common, especially for offshore, bathyal, and
645 ABNJ regions (Hughes et al., 2025; Bridges and Howell, 2025), where biological sampling and
646 indicator uptake remain less systematic despite alignment with formally recognised global frameworks,
647 including EOVs and EBVs (Pereira et al., 2013; Miloslavich et al., 2018; Muller-Karger et al., 2018).
648 Online marine biodiversity knowledge systems show a comparable geography of information:
649 ecological records from deeper and distant waters exist, but are distributed across regional or
650 institutional databases, move slowly into shared global infrastructures, and are seldom structured
651 explicitly for indicator workflows or EBV classes. Strengthening harmonised data ingestion, automated
652 quality control, and governance-aligned digital design would help ecological evidence transition more
653 consistently into online knowledge systems, improving their capacity to support transparent,
654 comparable, and policy-ready biodiversity reporting, including evaluation of regional management
655 outcomes and global commitments.

656 **4.1. What do we have, and what are the gaps**

657 Across ocean monitoring programmes, the challenge is lack of cohesive data pathways that serve
658 indicator workflows. Long-term reef surveys in frequently visited protected areas of Seychelles
659 demonstrate that ecological signal detection is limited not by monitoring effort, but by rarity-weighted
660 sampling noise, where nearly half of all recorded species were represented by fewer than three

¹²⁶ <https://accstr.ufl.edu>

¹²⁷ <http://caricoos.org>

¹²⁸ <https://cmm.wcpfc.int/>

¹²⁹ <https://firms.fao.org>

¹³⁰ <https://www.bmis-bycatch.org/>

¹³¹ <https://marine.copernicus.eu>

¹³² <https://www.emodnet.eu>

¹³³ <https://www.moose-network.fr>

¹³⁴ <https://www.pacioos.hawaii.edu>

¹³⁵ <https://macbio-pacific.info>

¹³⁶ <https://metadata.helcom.fi>

661 individuals, and species continued to accumulate despite sustained sampling (Barnes et al., 2011). This
662 pervasive rarity explains why indicator confidence declines offshore and at depth, even in nominal data
663 hotspots, and sets the context for understanding platform-level gaps.

664 Ships of opportunity have substantially expanded spatio-temporal coverage of upper-ocean physical,
665 chemical, and selected biological measurements through the deployment of instruments on volunteer
666 commercial and research vessels, and now constitute a core component of sustained observing
667 networks, such as the Ship-of-Opportunity Programme (SOOP¹³⁷) coordinated under GOOS.
668 Complementing these vessel-based contributions, AniBOS¹³⁸, the GOOS tagged animal programme
669 that tracks sensor-equipped marine fauna (Harcourt et al., 2019; McMahon et al., 2021; McMahon et
670 al., 2025), demonstrates a growing and coordinated approach to observing animal movement, behaviour
671 and in situ environmental conditions, strengthening biological EOV uptake across epipelagic and
672 mesopelagic. Contributions from multiple national and regional institutions follow broadly shared
673 methodological principles (e.g., NOAA¹³⁹, IMOS¹⁴⁰), although practical implementation varies with
674 fleet composition, sensor suites, and regional priorities. Sampling is inherently concentrated along
675 established shipping routes and restricted largely to surface and upper-water layers, leaving deep pelagic
676 waters and seafloor habitats outside the routine scope of observation. Biodiversity monitoring in these
677 environments requires vessels to interrupt transit, deploy specialised sampling or imaging equipment,
678 and allocate substantially greater operational time and effort, factors that sharply limit data acquisition
679 relative to continuous, or underway, measurements. Alignment with physical and biogeochemical
680 EOVs is therefore strong, whereas biological and ecological EOVs that depend on targeted sampling,
681 imaging, or specimen-based observations remain weakly supported, contributing to the persistent
682 under-representation of deep-sea systems relative to shelf and coastal waters across both indicators and
683 the platforms that underpin them.

684 Recent large-scale mapping has enabled substantial improvements in baseline knowledge for some
685 previously under-represented areas. Mapping of biodiversity, rare species, biomass, vulnerable marine
686 ecosystems, and conservation priorities across the southern half of Greenland's continental shelf has
687 filled a major Arctic data gap and provided a more resolved picture of ecosystem structure in a region
688 that had long remained poorly characterised (Zwerschke et al., 2025). At the global scale, datasets
689 describing deep-sea features, such as seamounts and hydrothermal vents, have expanded spatial
690 coverage, but typically remain static and offer limited insight into ecological conditions, or change,
691 through time (Bridges and Howell, 2025). More recent compilations of marine critical habitats extend
692 spatial representation further by integrating seamounts and vent fields across the global ocean,
693 improving understanding of the distribution of ecologically significant deep-sea environments, while
694 remaining largely focused on habitat occurrence, rather than temporal dynamics, of ecosystem change
695 (Dunnett et al., 2025).

696 Animal-borne telemetry has similarly become an important component of the ocean observing toolkit,
697 providing in situ measurements across wide spatial and temporal scales, while linking physical
698 variability to animal behaviour and performance (Fedak, 2004; Fedak, 2013; Harcourt et al., 2019;
699 McMahon et al., 2021; McMahon et al., 2025). However, data generated by these approaches are not

¹³⁷ <https://goosocean.org/who-we-are/observations-coordination-group/global-ocean-observing-networks/ship-of-opportunity-programme-soop/>

¹³⁸ <https://anibos.com/>

¹³⁹ <https://www.aoml.noaa.gov/ships-of-opportunity/>

¹⁴⁰ <https://imos.org.au/facility/ships-of-opportunity/>

700 yet consistently incorporated into indicators, or into platforms, designed for routine reporting, which
701 constrains their contribution to repeated assessment, and comparative, decision-making.

702 Technological advances such as Remotely Operated Vehicles (ROVs), Autonomous Underwater
703 Vehicles (AUVs), drones or Remotely Piloted Aircraft Systems (RPAS) are very promising, especially
704 when accompanied by powerful Artificial intelligence (AI). AI, and machine-learning approaches are
705 reshaping marine biodiversity monitoring through improved processing of underwater imagery
706 (Remmers et al., 2025), and large environmental DNA (e-DNA) datasets. These methods increasingly
707 support biological and ecological EOVs, including ecosystem structure, community composition, and
708 species distributions, while enabling the derivation of corresponding EBVs at spatial scales that were
709 previously impractical to observe consistently. Automated segmentation, and classification, of
710 photogrammetric products now allow extraction of benthic community composition, colony-level
711 metrics, and fine taxonomic information from large-area underwater image mosaics at speeds and
712 spatial extents that exceed manual approaches by orders of magnitude (Remmers et al., 2025). Gains in
713 detection capacity, and taxonomic resolution, have strengthened baselining, and monitoring, of
714 vulnerable marine ecosystems and selected taxa (Bridges et al., 2023a; Gros et al., 2023). e-DNA
715 workflows are also advancing rapidly, and emerging analytical environments increasingly support
716 large-scale visualisation, and exploration, of molecular biodiversity signals across many samples,
717 including datasets spanning surface to deep-ocean environments (e.g., OceanOmics eDNA
718 Dashboard¹⁴¹, UNESCO eDNA Expeditions Dashboard¹⁴²). Sustained use of systems depends primarily
719 on standardised metadata, stable data pipelines, robust quality control procedures, and long-term
720 institutional support, rather than analytical capability alone.

721 Limitations in observation and data integration constrain the capacity to quantify ecosystem functions,
722 and benefits derived from marine biodiversity. For example, marine organisms mediate a substantial
723 share of the ocean's role in the global carbon cycle through the production, transformation, and vertical
724 transport of organic carbon from surface waters to depth (Grigoratou et al., 2025). The efficiency of
725 this biological transfer is shaped by ecosystem structure, trophic interactions, particle aggregation, and
726 remineralisation processes, which together determine the proportion of carbon retained in the upper
727 ocean, versus sequestered at depth, (Passow and Carlson, 2012). Recent global analyses have quantified,
728 and valued, biologically mediated carbon sequestration (Morley et al., in press), revealing pronounced
729 spatial structure across ocean basins, and substantial contributions, from areas beyond national
730 jurisdiction, (Berzaghi et al., 2025), within the online marine biodiversity knowledge systems reviewed
731 here, decision-support tools show a spatial bias similar to that observed for biodiversity indicators. Most
732 of these observing networks are concentrated in coastal and shelf waters, where data availability is
733 higher, jurisdictional boundaries are clearer, and management mandates are well established. Moving
734 decision-support tools into offshore and open-ocean settings introduces additional challenges linked to
735 three-dimensional ocean structure, moving water masses, shifting species distributions, and
736 connectivity driven by currents. Although global bathymetric, and habitat, datasets now provide
737 extensive spatial coverage, these products are typically static, and offer limited representation, of
738 biological dynamics, or ecosystem change, through time.

739 Finally, online marine biodiversity knowledge systems addressing pressures tend to focus on stressors
740 that are spatially explicit, and comparatively tractable, including pollution, eutrophication, bottom-
741 contact fishing, seabed-associated infrastructure, and anthropogenic noise. These pressures are

¹⁴¹ <https://www.minderoo.org/media/uncovering-the-mysteries-of-the-sea-meet-the-groundbreaking-new-oceanomics-dashboard/>

¹⁴² <https://dashboard.ednaexpeditions.org/>

742 increasingly combined within cumulative-impact products that summarise multiple drivers to support
743 broad-scale comparison (Halpern et al., 2015; O'Hara et al., 2021; 2024). While useful for identifying
744 areas of elevated exposure, such products remain constrained by the resolution, and update frequency,
745 of underlying datasets, particularly in offshore, and deep-sea, contexts, and provide limited insight into
746 how exposure translates into ecological response. This limitation is especially evident for fishing
747 pressure. Satellite-based vessel monitoring delivers unprecedented spatial coverage of global fishing
748 pressure, but most pressure layers remain gear-implicit, preventing separation of fishing gears with very
749 different benthic footprints, intensity, frequency, or ecological consequence. Bottom-contact fishing,
750 especially trawling, can have disproportionate, and spatially extensive, effects on benthic habitats, and
751 associated biodiversity, which remain inseparable within aggregated fishing-effort layers (Kroodsma et
752 al., 2018). Emerging global syntheses targeting bottom fishing, and seabed disturbance, illustrate the
753 scale, and corridor-level concentration, of impacts, but these data streams are not yet consistently
754 integrated into routinely updated pressure-related biodiversity indicators^{143 144 145}.

755 **4.2. Relevance to international policy agreements**

756 This section interprets the policy relevance of the marine indicators and online marine biodiversity
757 knowledge systems analysed in this study, drawing directly on the documented distribution of indicators
758 across the SPRB framework and the functional characteristics of existing online systems. While many
759 international agreements articulate clear monitoring ambitions for marine biodiversity, the current
760 landscape shows that indicator availability and online system design remain uneven, with strong
761 representation of state and pressure-related ones, comparatively limited coverage of response and
762 benefit. The linkages between available marine indicators and the KMGBF and the SDGs show clear
763 traction at the global policy level, alongside growing expectations that existing metrics and platforms
764 can better inform global and regional decision-making. Monitoring ambitions across international
765 instruments are well articulated, but translating marine observations into repeatable, governance-
766 aligned indicators remains uneven because digital pipelines and sampling designs have not co-evolved
767 at the same pace.

768 The agreements discussed here were selected to span global biodiversity governance, sectoral
769 regulation, and emerging ocean governance, and to illustrate distinct ways in which marine biodiversity
770 metrics and online platforms are expected to support monitoring, reporting, and evaluation across policy
771 contexts. Rather than providing an exhaustive review of all marine-relevant multilateral environmental
772 agreements, this section focuses on representative frameworks where the alignment, or misalignment,
773 between policy-articulated data needs and the current landscape of marine metrics and platforms is most
774 evident.

775 **Convention on Biological Diversity:** The monitoring framework of the KMGBF comprises 26 headline
776 indicators, 58 component indicators and 230 complementary indicators adopted by Parties to track
777 progress toward the Framework's goals and targets (CBD, 2022; CBD/COP/DEC/16/31). While the
778 framework is not organised by ecological realm, a substantial subset of these indicators is directly
779 applicable to marine and coastal systems, or explicitly designed to be disaggregated by ecosystem type
780 or realm. Approximately one-third of headline indicators, a similar proportion of component indicators,
781 and a smaller but still substantial subset of complementary indicators can be operationalised using

¹⁴³ <https://www.searroundus.org/bottom-trawling-global-extent-impacts-and-solutions/>

¹⁴⁴ <https://obis.org/node/6f3223e3-50a6-4ba5-b02c-0037ae3863ce>

¹⁴⁵ <https://epi.yale.edu/measure/2024/BTO>

782 marine biodiversity data, based on indicator scope and the disaggregation options defined in the
783 monitoring framework. In practice, however, the marine-relevant indicators most commonly
784 implemented correspond to biodiversity state and pressure dimensions, while response- and benefit-
785 oriented indicators remain comparatively under-represented in marine reporting.

786 These marine-relevant indicators are concentrated primarily on well-established coastal ecosystems
787 such as coral reefs, saltmarshes, seagrass beds, and mangroves, while other ecologically and carbon-
788 significant marine habitats, including macro-algal forests, fjords, and seamounts, remain comparatively
789 weakly represented in both biodiversity and climate-related monitoring frameworks. Despite their
790 prominence in monitoring and reporting, nearshore and coastal protected areas are also subject to
791 substantial erosion of protection through legal changes. Global analyses of marine Protected Area
792 Downgrading, Downsizing, & Degazettement (PADDD¹⁴⁶) document at least 43 enacted PADDD
793 events across six countries, affecting more than 1,1 million km² of marine protected area, with most
794 events associated with industrial-scale resource use and commercial fishing (Albrecht et al., 2021).
795 Recent assessments further indicate that the designation of new protected areas has not consistently
796 offset losses arising from PADDD, particularly in coastal systems where governance pressures and
797 competing uses are highest, undermining assumptions of stable protection embedded in biodiversity
798 indicators (Turner et al., 2024).

799 This distribution closely mirrors the patterns identified in our online systems analysis, where indicators
800 aligned with GBF reporting are predominantly supported by data portals and repositories, rather than
801 by integrated ones capable of linking biodiversity state to management actions and societal benefits.
802 Although indices such as the Red List Index and Living Planet Index include marine species and can
803 be disaggregated by realm, they remain uneven in their coverage of deep-sea and polar biota, despite
804 evidence of rapid environmental change and heightened sensitivity in these systems (Rogers et al.,
805 2020). As Parties move toward repeated global reviews of GBF implementation, these structural
806 imbalances risk constraining the interpretability of reported progress in marine and offshore contexts.
807 This gap between policy ambition and operational data supply is consistent with broader assessments
808 of international biodiversity monitoring needs, which identify response-oriented and outcome-focused
809 indicators as persistently under-supported within existing marine data infrastructures (McOwen et al.,
810 2025). Table 4 summarises all GBF headline indicators with clear marine relevance alongside
811 prominent component and complementary indicators, and maps them to the marine metrics and platform
812 capacities identified in this study.

813 **Table 4.** Alignment between GBF headline, component and complementary indicators with marine
814 relevance and the marine metrics and platforms identified in this study.

Indicator type	GBF indicator (COP-16)	Marine relevance	Dominant SPRB	Marine indicators	Platform support
Headline	Extent of natural ecosystems	Explicitly includes coastal and marine ecosystems	State	Coral reef, mangrove, Strong seagrass, saltmarsh extent	
Headline	Red List of Ecosystems	Disaggregable by realm, State includes marine ecosystems		Risk of collapse, Moderate ecosystem condition indices	
Headline	Red List Index	Includes marine taxa, State realm-disaggregable		Marine RLI, Moderate threatened marine species indices	

¹⁴⁶ <https://www.paddtracker.org/>

Headline	Proportion of fish stocks within biologically sustainable levels	Explicitly marine	State / Pressure	Stock status, exploitation indicators	Strong
Headline	Coverage of protected areas and OECMs	Explicit reference to marine areas	Response	MPA and OECM coverage	Strong
Headline	Percentage of land and sea area covered by biodiversity-inclusive spatial plans	Explicit reference to sea area	Response	Marine spatial planning coverage	Moderate
Headline	Area under restoration	Applicable to coastal and marine restoration	Response	Mangrove, seagrass, reef restoration extent	Weak/Moderate
Headline	Rate of invasive alien species establishment	Includes marine invasive species	Pressure	Marine IAS occurrence trends	Weak
Headline	Services provided by ecosystems	Includes marine ecosystem services	Benefit	Blue carbon, fisheries, coastal protection proxies	Weak
Headline	Nature's contributions to people	Includes marine contributions	Benefit	Fisheries yield, tourism proxies	Weak
Component	Sustainable fisheries	Core marine target	Pressure / State	Fishing effort, bycatch, stock exploitation	Strong
Component	Pollution and eutrophication	Coastal and marine impacts	Pressure	Nutrient loading, pollution indices	Moderate
Component	Climate change impacts on biodiversity	Strong marine relevance	Pressure	Warming, acidification proxies	Moderate
Component	Spatial management effectiveness	Marine relevance via MPAs	Response	Management coverage and designation metrics	Moderate
Complementary	Cumulative human pressures	Widely applied to marine systems	Pressure	Cumulative impact indices	Strong
Complementary	Ecosystem services and benefits	Marine benefits under-represented	Benefit	Blue carbon, tourism value	Weak
Complementary	Genetic diversity	Applicable but rarely operationalised	State	Population structure proxies	Very weak

815

816 **Convention on Migratory Species (CMS):** CMS was established to facilitate global cooperation to
 817 improve the conservation status of species that regularly cross international boundaries, including wide-
 818 ranging marine taxa such as seabirds, cetaceans, pinnipeds, marine turtles, and sharks and rays. In line
 819 with approaches adopted under the Convention on Biological Diversity, the development of the CMS
 820 monitoring framework emphasises the use of existing indicators supported by scientifically robust,
 821 peer-reviewed methodologies. For marine migratory species, additional metrics are needed to underpin
 822 indicators relevant to the Samarkand Strategic Plan, particularly to address recognised gaps in tracking
 823 functional connectivity, key pressures such as bycatch and marine pollution, disease (Leguia et al.,
 824 2023), and management responses including the integration of migratory species into marine spatial
 825 planning and the effectiveness of multilateral cooperation.

826 Given its mandate, CMS requires indicators that capture ecological processes central to migration.
 827 While many global biodiversity metrics are broadly relevant to the marine realm, few can be readily
 828 disaggregated or interpreted in ways that align directly with CMS-listed species and migratory
 829 processes. This creates a need to bridge the gap between global-scale marine metrics, which often
 830 describe broad ecosystem or pressure trends, and more granular, species-specific information that
 831 reflects movement, connectivity, and exposure to threats along migratory pathways. Open-data

832 platforms and atlases providing information on species at-sea distributions and movements, including
833 OBIS, Movebank, MiCO, and the emerging Move BON initiative, offer important opportunities to
834 support this integration by linking species-level data with other spatially explicit datasets. This reliance
835 on species-level distribution and movement data reflects a broader pattern identified in our analysis,
836 whereby connectivity-related indicators remain weakly represented (Metaxas et al., 2024) among
837 operational marine indicators and are rarely embedded within platforms that also integrate pressures
838 and management responses. As a result, CMS monitoring risks remaining data-rich but analytically
839 fragmented, particularly in its capacity to evaluate progress against response-oriented elements of the
840 Samarkand Strategic Plan.

841 ***Convention on International Trade in Endangered Species (CITES):*** CITES regulates international
842 trade in a substantial number of marine taxa, including tropical corals and marine fishes traded for the
843 aquarium and ornamental markets. Of the approximately 6500 animal species included in the CITES
844 Appendices, around 2400 are marine taxa, including all cetaceans, all marine turtles, many sharks and
845 rays, and coral species (Pavitt et al., 2021). Trade in ornamental fish remains a gap. At present, around
846 35 ornamental fish are listed in CITES, but there are more than 1000 species in trade (CITES Secretariat
847 and UNEP-WCMC, 2022). Under CITES, the primary metric used to characterise trade is the number
848 of individuals, or parts of individuals, recorded in international trade, supported by dedicated online
849 systems that facilitate access to trade statistics and non-detiment findings. While effective for tracking
850 regulated international trade volumes, this reliance on trade quantities provides limited insight into how
851 trade pressure relates to population status, extinction risk, or cumulative impacts alongside other drivers
852 of biodiversity change. Some of these insights can be gleaned by linking CITES appendices to the IUCN
853 Red List database, but this is not without challenges (Challender et al. 2023). Large numbers of traded
854 marine species are not listed in the CITES appendices and are therefore not captured within CITES
855 trade databases, limiting the capacity of existing trade metrics to be interpreted in relation to broader
856 patterns of marine biodiversity status and cumulative pressure (Murray et al., 2025; Hughes et al., in
857 prep). Broader-scale datasets for commercially harvested and widely distributed marine species,
858 including those maintained by FAO and represented within macroeconomic databases such as OECD,
859 GTAP¹⁴⁷, and UN Comtrade Database¹⁴⁸, similarly prioritise extraction or economic value over
860 ecological status because they record aggregate commodity flows by product codes rather than species-
861 level ecological detail. The marine extension of the Species Threat Abatement and Restoration metric
862 (Marine STAR) integrates species distributions, IUCN Red List extinction risk, and threat information
863 to quantify where reducing pressures such as unsustainable fishing would deliver the greatest reductions
864 in marine species extinction risk (Turner et al., 2024). In parallel, variants of the Living Planet Index
865 explicitly track population trends of exploited species, providing a direct means of relating harvest and
866 trade pressures to observed biodiversity change over time. This separation reinforces a broader pattern
867 identified in our analysis, whereby pressure-related indicators are comparatively well developed but
868 rarely embedded within shared analytical environments capable of evaluating whether trade regulation
869 under CITES is contributing to measurable conservation outcomes in marine systems.

870 ***Regional Seas Management Agreements (RSMOs):*** RSMOs provide an important regional-scale
871 governance framework for marine biodiversity, typically relying on periodic integrated assessments to
872 synthesise information on ecosystem condition, pressures, and management actions across contracting
873 parties. Our analysis suggests that most online marine biodiversity knowledge systems supporting
874 RSMO reporting emphasise biodiversity state and selected pressures, with limited capacity to

¹⁴⁷ <https://www.gtap.agecon.purdue.edu/>

¹⁴⁸ <https://comtradeplus.un.org/>

875 systematically track coordinated management responses, implementation progress or outcomes across
876 countries. As a result, these knowledge systems tend to support descriptive regional overviews rather
877 than enabling consistent evaluation of policy effectiveness, comparability among parties or assessment
878 of change through indicators.

879 RSMOs increasingly recognise the need to connect pressure observations with ecological consequences,
880 but most existing monitoring frameworks still prioritise spatial presence over dynamic attributes such
881 as intensity, frequency or duration, limiting inference on cumulative effects and temporal change.
882 Pressures mediated by discrete or interrupted sampling, unlike continuous underway measurements,
883 remain harder to implement systematically across contracting parties (McOwen et al., 2025). Large
884 areas of the global ocean are weakly represented in open-access online marine biodiversity knowledge
885 systems, especially deep-sea environments and ABNJ (Hughes et al., 2025; Bridges and Howell, 2025).
886 This reinforces a persistent imbalance in how indicators describing ecological response and benefit can
887 be derived, updated and compared through time across multinational reporting cycles. Observation
888 fragmentation, rather than ecological absence, remains a defining constraint of current RSMO digital
889 support, many online marine biodiversity knowledge systems ingest overlapping datasets from a small
890 set of shared sources, reinforcing geographic and taxonomic bias toward well-monitored coastal or
891 surface-accessible demersal species, while deep-sea ecological dynamics, genetic signals and indicator
892 uptake remain inconsistently incorporated into routinely updated indicators (McOwen et al., 2025).
893 Improving structured, automated ingestion and quality control pipelines within online marine
894 biodiversity knowledge systems would strengthen the ability of RSMOs to track coordinated
895 multinational outcomes, resolve ecological confidence in deep-sea environments and support more
896 comparable, repeatable and routinely updated indicators for future integrated regional assessments.

897 ***Biodiversity Beyond National Jurisdiction:*** The Agreement on the Conservation and Sustainable Use
898 of Marine Biological Diversity of Areas Beyond National Jurisdiction (BBNJ Agreement; UN Doc.
899 A/CONF/232/2023/4) establishes obligations for implementation, review, and adaptive management
900 that are explicitly grounded in the use of the best available scientific information, including biodiversity
901 data from areas beyond national jurisdiction. Recent syntheses of international biodiversity policy
902 requirements indicate that the operationalisation of the BBNJ agreement will depend on the
903 development of a monitoring and review framework supported by appropriate metrics and indicators,
904 and on the availability, representativeness, and continuity of biodiversity data from ABNJ (McOwen et
905 al., 2025). Within this context, assessing monitoring readiness, rather than defining new indicator
906 concepts, emerges as a priority for early implementation.

907 Results from this study show that marine biodiversity information is predominantly delivered through
908 data portals and repositories, with relatively few platforms designed to support sustained, standardised,
909 and repeatable indicator production. This structural pattern is particularly consequential for ABNJ,
910 which rely almost exclusively on global data infrastructures and lack complementary national
911 monitoring systems. Consistent with broader assessments of monitoring capacity, biodiversity data
912 collection has increased in polar regions, but this growth has been accompanied by increasing
913 fragmentation across national, project-based, and institution-specific repositories, such that progress is
914 not always visible when assessed through any single global platform, including OBIS or GBIF
915 (McOwen et al., 2025). By contrast, biodiversity sampling in the mid-ocean, bathyal, abyssal, hadal,
916 and sub-ice-shelf environments remains disproportionately sparse, reflecting the high logistical and
917 financial costs associated with access and sustained observation.

918 At the same time, advances in acoustic instrumentation, seabed mapping, and analytical methods have
919 improved the capacity to infer habitat extent and structure in data-poor regions using non-biological
920 observations. Activities associated with seabed mineral exploration, subsea cable installation, and other

921 offshore infrastructure developments have become important sources of multibeam sonar data, which,
922 when combined with improved interpretation tools and ground-truthed reference data, offer
923 opportunities to approximate habitat status and extent at broad spatial scales (Bridges et al., 2023b).
924 However, our platform inventory indicates that data systems relevant to ABNJ currently operate
925 primarily as project-based or discipline-specific repositories, rather than as sustained platforms
926 designed for routine and repeatable indicator production. This misalignment creates a structural tension
927 between the long-term monitoring ambitions articulated under the BBNJ agreement and the current
928 organisation of marine biodiversity data infrastructures, particularly for deep-sea and mid-ocean
929 ecosystems (McOwen et al., 2025).

930 **4.3 Relevance to business needs**

931 With growing awareness and understanding of the importance of biodiversity among businesses, an
932 increasing number of businesses are taking steps to assess, manage and disclose their biodiversity
933 impacts, dependencies, risks and opportunities (IPBES, 2026; TNFD, 2025a; CDP, 2025). This creates
934 a clear need for biodiversity data for business use, including data on biodiversity in the marine realm.
935 Leading frameworks and standards, such as the Taskforce on Nature-related Financial Disclosures
936 (TNFD), GRI Standards or European Sustainability Reporting Standards (ESRS), cover marine
937 biodiversity disclosures through cross-realm disclosure recommendations as well as topic- and sector-
938 specific guidance (TNFD, 2023a; GRI, 2021; ESRS 2025). The Science Based Targets Network
939 (SBTN) provides target setting guidance for business, including methods for several types of business
940 targets in oceans (SBTN, 2025a). Limited availability of data for the marine realm is often cited as a
941 challenge for business assessment, disclosure and target setting, and therefore seen as one of the key
942 barriers to business action on marine biodiversity impacts and risks (TNFD, 2025b; UNEP FI, 2025).
943 Although this study focused on marine biodiversity metrics applied as indicators in policy frameworks,
944 several of them are relevant for use by business. For example, metrics measuring the change in the
945 extent of marine and coastal ecosystems can be applied at the level of an individual firm or business
946 operation site to reflect business impact on these ecosystems. Other metrics reviewed may not be
947 applicable at sub-national or sub-regional levels, but information on performance against these metrics
948 can inform business biodiversity assessments as high-level indicators on state of biodiversity in
949 different countries and regions (e.g. Ocean Health Index, Marine Living Planet Index). Further research
950 could explore overlap between the 145 marine biodiversity metrics reviewed here and metrics
951 recommended for business disclosure, assessment and target setting (see for example business metrics
952 recommended in TNFD, 2023a; SBTN, 2025b; WBCSD, 2025). This could complement ongoing
953 efforts to build scientific consensus on marine biodiversity metrics for business (NPI, 2025; TNFD,
954 2025b).

955 From the online marine biodiversity knowledge systems ([Annex1_Sept 2025.xlsx](#)) reviewed in this
956 study, 73 mention business among their main stated user groups. This includes 5 data sources (portals),
957 30 decision-support tools, 19 flexible analysis platforms, 4 libraries/catalogues, 2 repositories and 13
958 other resources or initiatives. Of the 73 marine biodiversity platforms that aim to support users from
959 business, 10 platforms are specifically focused on marine and coastal data (e.g. Coastal Risk Index,
960 FishSource, Global Fishing Watch, OBIS). The remaining 63 platforms cover the marine realm
961 alongside terrestrial and/or freshwater realm (e.g. GIST Impact, Iceberg Data Lab, IBAT). Many cross-
962 realm platforms have started with a narrower focus, with other realms being added at a later stage. For
963 example, IBAT is planning improvements in its coverage of the marine realm with the incorporation of
964 marine STAR (Turner et al., 2024). The global Critical Habitat screening layer, as another example,
965 was initially calculated for the marine realm (Martin et al., 2015), was then expanded to the terrestrial
966 realm (Brauneder et al., 2018) and has recently been updated as one cross-realm layer (Dunnett et al.,
967 2025).

968 Business assessment and disclosure of biodiversity impacts, dependencies, risks and opportunities
969 encompasses multiple use cases for marine biodiversity metrics and platforms. This includes
970 prioritization of locations based on ecological sensitivity, evaluation of business impacts and
971 dependencies, and assessment of risks and opportunities for the business (UNEP-WCMC, Capitals
972 Coalition, Arcadis, ICF, WCMC Europe, 2022; TNFD, 2023b). Each of these use cases has its own
973 metrics requirements and data specifications. For example, high-level screening of ecologically
974 sensitive locations can be completed with coarser data than data needed to measure a change in the state
975 of nature caused by the activities of a business in a specific location. Yet another example is
976 prioritization of potential impacts based on biodiversity footprints, which uses secondary and modelled
977 data on pressures and impacts of different economic activities and sectors (PBAF, 2022; TNFD, 2023c).
978 Marine biodiversity indicators and online systems gaps for business therefore include necessary
979 improvements in Earth observation and *in situ* data as well as further development of datasets, models
980 and indices that transform this data for business applications.

981 **4.4. Moving forwards**

982 Biodiversity monitoring originates locally, where ecological signals are first detected, interpreted, and
983 validated. Local observing nodes must align with shared principles, standardized protocols, metadata
984 standards, and interoperable indicator workflows to support aggregation to regional and global scales.
985 When harmonisation is inconsistent at the point of data generation, marine indicators inherit uneven
986 comparability and reduced analytical maturity. GOOS plays a central role in coordinating the
987 harmonisation of ocean observations by defining Essential Ocean Variables (EOVs) through
988 standardised specification sheets¹⁴⁹ that align measurements, methods and data practices across global
989 observing networks. Advancing beyond the gaps identified in this review requires a conceptual shift
990 from incremental expansion of observations toward integrated, outcome-focused marine monitoring
991 (O'Callaghan et al., 2025). Similar to the sustained development logic advocated within the GOOS,
992 progress depends on co-designed partnerships, an inclusive and skilled workforce, long-term
993 technological innovation, and durable operational models that prioritise system endurance over
994 temporary, project-bound data generation (Miloslavich, 2025). Collectively, these enabling conditions
995 define how marine biodiversity data evolve from disparate local observations into scientifically robust
996 and policy-relevant indicators that can be interpreted with multi-regional consistency.

997 Marine biodiversity observation remains inherently more complex, costly, and logistically demanding
998 than in terrestrial systems. Ship-based surveys, autonomous and remotely operated underwater vehicles,
999 fixed and mobile acoustic platforms, and deep-water sampling methods such as box corers, multicorers,
1000 and drop cameras continue to underpin observation of offshore and deep-sea ecosystems. These
1001 approaches are time-, effort-, and capital-intensive, and in practice are often constrained less by sensor
1002 availability than by access to vessels and specialist taxonomic expertise. Opportunities for low-cost,
1003 mobile phone-based citizen science are therefore more limited, although surface-based initiatives have
1004 proved highly effective for whales, seals, seabirds, and coastal wetland species. At the same time, the
1005 use of ships of opportunity, including commercial and cruise vessels, for plankton sampling, plastics
1006 monitoring, and water collection demonstrates how observation coverage can be expanded when
1007 biodiversity monitoring is embedded within routine maritime activity.

1008 Recent advances in artificial intelligence are beginning to alter the balance between data volume and
1009 analytical capacity, particularly for monitoring human pressures. AI applications applied to vessel
1010 monitoring systems, automatic identification systems, electronic monitoring, and related fisheries data
1011 streams are now widely used to classify fishing activity, estimate effort, and infer bycatch and discards,
1012 substantially strengthening global monitoring of fisheries pressure (Welch et al., 2024). These
1013 approaches have the potential to support near-real-time analysis of large volumes of vessel tracking

¹⁴⁹ <https://goosocean.org/what-we-do/framework/essential-ocean-variables/>

1014 data and increasingly integrate multiple observation sources, including satellite imagery, radar, and on-
1015 board sensors, allowing detection of fishing activity even where vessels do not broadcast location data.
1016 Animal-borne telemetry systems, in addition, providing near-real-time biological data, such as AniBOS,
1017 strengthen spatial management readiness in regions where direct biological sampling is constrained,
1018 complementing pressure indicators including fishing activity¹⁵⁰. Such developments illustrate how
1019 advances in analysis, rather than new observation platforms alone, can significantly enhance monitoring
1020 capacity.

1021 Despite these advances, large areas of the ocean will remain inaccessible to routine biological
1022 observation, and much available data will continue to originate from infrequent, project-based scientific
1023 expeditions. In this context, improvements in high-resolution digital imaging, automated image
1024 analysis, and machine-learning classification are particularly significant for deep-sea monitoring.
1025 Automated processing of seabed imagery can reduce reliance on on-site taxonomic expertise and enable
1026 repeatable extraction of benthic community metrics at spatial scales previously impractical (Gros et al.,
1027 2023; Remmers et al., 2025). Parallel advances in molecular approaches further extend monitoring
1028 potential. As genetic reference databases expand, curation improves, and taxon-specific primers become
1029 more widely available, environmental DNA approaches offer relatively low-impact detection of species
1030 and communities in semi-remote and offshore environments, provided that metadata standards and
1031 analytical pipelines are robust and interoperable.

1032 Technological capability alone, however, is insufficient. Progress toward effective marine biodiversity
1033 monitoring also depends on accelerating the translation of observations into actionable information.
1034 Real-time quality control, automated data ingestion, and standardised data flows across platforms are
1035 advancing, yet fragmentation and duplication continue to limit efficiency and comparability.
1036 Frameworks based on Essential Variables provide a coherent pathway for aligning observations,
1037 indicators, and policy needs, but uptake remains uneven across the science–policy interface and
1038 inconsistently reflected in monitoring frameworks. Moving faster will require clearer incentives for
1039 adoption, including explicit alignment of Essential Variables with reporting obligations under major
1040 international agreements and sustained support for platforms that operationalise them.

1041 Tangible societal and economic benefits from marine observing systems help sustain the transition
1042 toward digital, automated monitoring. Near-real-time biodiversity and pressure data increasingly
1043 support adaptive operations that reduce ecological risks while strengthening management and industry
1044 use, including dynamic vessel routing or speed adjustment during marine mammal aggregations,
1045 migration-linked bycatch reduction windows for fisheries, and time-bounded offshore infrastructure
1046 activity that avoids disturbance in sensitive ecological periods. Norwegian fisher evaluations of
1047 automatic catch-registration technologies show that acceptance rises when monitoring systems remove
1048 manual reporting burden, support perceptions of legal fairness among skippers, and generate benefits
1049 that are directly relevant to daily operations, including improved detection of species migrations and
1050 catch-composition shifts which influence willingness to adopt digital monitoring and data-sharing
1051 systems across commercial fleets (Ahlquist et al., 2025). Automated segmentation and multi-view
1052 benthic image classification now enable extraction of colony- and community-level seabed biodiversity
1053 signals at spatial scales and processing speeds previously impractical using manual annotation,
1054 strengthening EOVS and EBVs confidence classes for benthic community composition, coral colony
1055 metrics, and habitat-linked species populations (Remmers et al., 2024).

1056 Closing remaining gaps will require coordinated action across organisations operating at different points
1057 along the marine data landscape. Global coordination bodies such as GOOS and Ocean Decade
1058 initiatives provide the structural backbone for aligning observation priorities and supporting the uptake

¹⁵⁰ <https://www.ocean-ops.org/goosreport/#oceanhealth-section>

1059 of Essential Variables. Major data infrastructures including OBIS and GBIF remain indispensable for
1060 aggregation, standardisation, and global accessibility of marine biodiversity observations, particularly
1061 by resolving spatial, depth-linked, and taxonomic gradients (Hughes et al., 2025). Policy advice and
1062 interventions (such as protection) should still significantly aid reducing nature loss (and climate
1063 mitigation, see Shin et al., 2022). Policy-facing organisations, including regional seas conventions and
1064 fisheries management bodies, currently provide the primary interfaces connecting monitoring outputs
1065 to international reporting obligations. However, this interface remains disproportionately centred on
1066 fisheries pressure reporting, and a broader thematic expansion of biodiversity monitoring outputs is now
1067 needed to support more balanced international assessments and governance decisions.

1068 Moving beyond gap identification toward meaningful gap closure will require strategic prioritisation
1069 and systemic realignment. Expanding observations in underrepresented regions and depth zones,
1070 embedding biodiversity monitoring within routine maritime and industrial activities, and strengthening
1071 interoperability through Essential Variable frameworks will increase cross-realm comparability. A
1072 more holistic overview of marine biodiversity demands improved integration of non-fisheries biological
1073 indicators, particularly for ecosystems, species interactions, and genetic observations, so that
1074 monitoring outputs more equitably represent biodiversity state alongside fisheries pressures
1075 (Miloslavich, 2025). Together, these actions outline a realistic path toward a marine biodiversity
1076 monitoring system that is progressively more comprehensive, thematically balanced, scientifically
1077 traceable, and responsive to the needs of both global governance and advancing marine science.
1078

1079 **Acknowledgements**

1080 We thank staff at UNEP-WCMC for their help in compiling the data on the metrics and online data
1081 systems tables used in this paper, especially Heli Sihvonen and Ayesha Hargey. For online data systems
1082 we also thank Eugenia Degano and Yanica Sica at the Senckenberg Museum in Bonn, Germany; and
1083 Antonella Arcangeli at ISPRA, Italy. Neil Burgess thanks the EU Horizon “More for Nature” project
1084 for support (other funders). Ina Helene Ahlquist thanks the Norwegian Environment Agency for support
1085 and the IPBES fellowship programme.

1086 **Supplementary Materials**

1087 Supplementary Table 1 [SupplTable1.xlsx](#)
1088 Supplementary Table 2 [SupplTable2.xlsx](#)
1089 Supplementary Table 3 [SupplTable3.xlsx](#)

1090 **References**

1091 Ahlquist I. H., Hatlebrekke H. H., and Tiller R. (2025). Fishing for solutions: Norwegian fishers’
1092 perspectives on the implementation of automatic catch registration for combating IUU fishing. *Marine
1093 Policy*, 179: 106750. <https://doi.org/10.1016/j.marpol.2025.106750>

1094 Albrecht, R., Cook, C.N., Andrews, O., Roberts, K.E., Taylor, M.F.J., Mascia, M.B., Kroner, R.E.G.
1095 (2021). Protected area downgrading, downsizing, and degazettement (PADDD) in marine protected
1096 areas. *Marine Policy*, 129: 104437. <https://doi.org/10.1016/j.marpol.2021.104437>

1097 Atwood, T.B., Witt, A., Mayorga, J., Hammill, E. Sala, E. (2020). Global Patterns in Marine Sediment
1098 Carbon Stocks. *Frontiers in Marine Science*, 7:165. <https://doi.org/10.3389/fmars.2020.00165>

1099 Barnes, D.K.A., Barnes, R.S.K., Smith, D.J., Rothery, P. (2009). Littoral biodiversity across scales in
1100 the Seychelles, Indian Ocean. *Marine Biodiversity*, 39: 109–119. <https://doi.org/10.1007/s12526-009-0010-y>

1102 Benway, H.M., Lorenzoni, L., White, A.E., Fiedler, B., Levine, N.M., Nicholson, D.P., DeGrandpre,
1103 M.D., Sosik, H.M., Church, M.J., O'brien, T.D. and Leinen, M. (2019). Ocean time series observations
1104 of changing marine ecosystems: an era of integration, synthesis, and societal applications. *Frontiers in*
1105 *Marine Science*, 6: 393. <https://doi.org/10.3389/fmars.2019.00393>

1106 Berzaghi, F., Pinti, J., Aumont, O. et al. Global distribution, quantification and valuation of the
1107 biological carbon pump. *Nat. Clim. Chang.* 15, 385–392 (2025). <https://doi.org/10.1038/s41558-025-02295-0>

1109 Beyer, Hawthorne L., Kennedy, Emma V., Wood, Sally, Puotinen, Marji, Skirving, William, and
1110 Hoegh-Guldberg, Ove (2019). 50 Reefs Global Coral Ocean Warming, Connectivity and Cyclone
1111 Dataset. The University of Queensland. Data Collection. <https://doi.org/10.14264/uql.2019.782>

1112 BIP (2011). Biodiversity Indicators Partnership Guidance for national biodiversity indicator
1113 development and use. UNEP World Conservation Monitoring, Centre, Cambridge, UK. 40pp.
1114 <https://www.bipindicators.net/national-indicator-development>

1115 BIP (2024) The Biodiversity Indicators Partnership, <https://www.bipindicators.net/> (Last access: 29
1116 December 2025).

1117 Blowes, S.A., Supp, S.R., Antao, L.H., Bates, A., et al. (2019). The geography of biodiversity change
1118 in marine and terrestrial assemblages. *Science*, 366: 339-345. <https://doi.org/10.1126/science.aaw1620>

1119 Brasier, M.J., Barnes, D., Bax, N., Brandt, A. (2021). Responses of Southern Ocean seafloor habitats
1120 and communities to global and local drivers of change. *Frontiers in Marine Science*, 8: 622721.
1121 <https://doi.org/10.3389/fmars.2021.622721>

1122 Brauneder KM, Montes C, Blyth S, Bennun L, Butchart SHM, et al. (2018) Global screening for Critical
1123 Habitat in the terrestrial realm. *PLOS ONE* 13(3): e0193102.
1124 <https://doi.org/10.1371/journal.pone.0193102>

1125 Bridges, A.E.H. and Howell, K.L. 2025. Prioritisation of ocean biodiversity data collection to deliver a
1126 sustainable ocean. *Nature Communications Earth and Environment*, 6. <https://doi.org/10.1038/s43247-025-02442-7>

1128 Bridges, A.E.H., Barnes, D.K.A., Bell, J.B., Ross, R.E., Voges, L., Howell, K.L. (2023a). Filling the
1129 data gaps: Transferring models from data-rich to data-poor deep-sea areas to support spatial
1130 management. *Journal of Environmental Management*, 345: 118325,
1131 <https://doi.org/10.1016/j.jenvman.2023.118325>.

1132 Bridges, A.E.H., Howell, K.L. (2025). Prioritisation of ocean biodiversity data collection to deliver a
1133 sustainable ocean. *Communications Earth & Environment*, 6: 473. <https://doi.org/10.1038/s43247-025-02442-7>

1135 Bridges, A.E.H., Howell, K.L., Amaro, T., Atkinson, L., Barnes, D.K.A. et al. (2023b). Review of the
1136 central and South Atlantic shelf and deep-sea benthos: science, policy and management. *Oceanography*
1137 and *Marine Biology - An Annual Review*, ISBN: 978-1-03-36387-3 (ebk)
1138 <https://doi.org/10.1201/9781003363873-5>

1139 Bunting, P., Rosenqvist, A., Lucas, R.M., Rebelo, L.-M., Hilarides, L., Thomas, N., Hardy, A., Itoh, T.,
1140 Shimada, M., Finlayson, C.M. (2018). The Global Mangrove Watch-A New (2010). Global Baseline
1141 of Mangrove Extent. *Remote Sensing*, 10(10): 1669. <https://doi.org/10.3390/rs10101669>

1142 Burgess, N.D., Ali, N., Bedford, J., Bhola, N., et al. (2024). Global metrics for terrestrial biodiversity.
1143 Annual Review of Environment and Resources, 49(1): 673–709,. <https://doi.org/10.1146/annurev-environ-121522-045106>

1145 Canonico, G., Buttigieg, P.L., Montes, E., Muller-Karger, F.E., et al. (2019). Global Observational
1146 Needs and Resources for Marine Biodiversity. *Frontiers in Marine Sciences*, 6: 367.
1147 <https://doi.org/10.3389/fmars.2019.00367>

1148 CBD (2022). Monitoring framework for the Kunming-Montreal Global Biodiversity Framework. Doc.
1149 CBD/COP/15/L.26, Convention on Biological Diversity, Montreal.

1150 CDP (2025) CDP data on GBF Target 15.1: <https://www.cdp.net/en/data/monitoring-gbf>

1151 Challender, D.W.S., Cremona, P.J., Malsch, K. et al. (2023). Identifying species likely threatened by
1152 international trade on the IUCN Red List can inform CITES trade measures. *Nature Ecology and*
1153 *Evolution*, 7: 1211–1220. <https://doi.org/10.1038/s41559-023-02115-8>

1154 CITES Secretariat and UNEP-WCMC (2022). A guide to using the CITES Trade Database. Version 9.
1155 Geneva, Switzerland, and Cambridge, UK. https://trade.cites.org/cites_trade_guidelines/en-CITES_Trade_Database_Guide.pdf

1157 CITES Secretariat and UNEP-WCMC. 2024. International trade in non-CITES listed marine
1158 ornamental fish: International trade, conservation status, management and legislation for non-CITES
1159 marine ornamental fish in support of the implementation of Decision 18.296 [Updated]. UNEP-WCMC,
1160 Cambridge.

1161 Dajka, J.-C., Eilrich, A.K., Franke, A., Halpern, B.S., et al. (2025) From science to policy: evolving
1162 marine biodiversity targets. *Frontiers in Ecology and the Environment*, e70000.
1163 <https://doi.org/10.1002/fee.70000>

1164 Deyoung, B., Visbeck, M., de Araujo Filho, M.C., Baringer, M.O.N., Black, C., Buch, E., Canonico,
1165 G., Coelho, P., Duha, J.T., Edwards, M. and Fischer, A. (2019). An integrated all-Atlantic Ocean
1166 observing system in 2030. *Frontiers in Marine Science*, 6: 428.
1167 <https://doi.org/10.3389/fmars.2019.00428>

1168 Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A.,
1169 Butchart, S.H.M., Chan, K.M.A., Garibaldi, L.A., Ichii, K., Liu, J., Subramanian, S.M., Midgley, G.F.,
1170 Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Roy
1171 Chowdhury, R., Shin, Y.-J., Visseren-Hamakers, I., Willis, K.J., Zayas, C.N. (2019). Pervasive human-
1172 driven decline of life on Earth points to the need for transformative change. *Science*, 366.
1173 <https://doi.org/10.1126/science.aax3100>

1174 Dunnett, S., Muge, A., Ross, A. et al. (2025). An update to the global Critical Habitat screening layer.
1175 *Scientific Data* 12, 1812. <https://doi.org/10.1038/s41597-025-06117-y>

1176 ESRS (2025). European Sustainability Reporting Standards: <https://www.efrag.org/en/draft-simplified-esrs>

1178 EU MSFD (2008). European Union, Marine Strategy Framework Directive. Directive 2008/56/EC of
1179 the European Parliament and of the Council of 17 June 2008 establishing a framework for community
1180 action in the field of marine environmental policy. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02008L0056-20170607>

1182 FAO. 2024. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome.

1183 Fedak, M. A. (2004). Marine animals as platforms for oceanographic sampling: a “win/win” situation
1184 for biology and operational oceanography. Memoirs of the National Institute for Polar Research 58,
1185 133–147.

1186 Fedak, M. A. (2013). The impact of animal platforms on polar ocean observation. Deep-Sea Research
1187 Part II-Topical Studies in Oceanography, 88-89: 7-13. <https://doi.org/10.1016/j.dsr2.2012.07.007>

1188 Fleming LE, Rabbottini L, Depledge MH, et al. 2023. Overview of oceans and human health. In:
1189 Fleming LE, Alcantara Creencia LB, Gerwick WH, *et al.* (Eds). Oceans and human health (2nd edn).
1190 San Diego, CA: Academic Press.

1191 Freiwald, A., Rogers, A., Hall-Spencer, J., Guinotte, J.M., Davies, A.J., Yesson, C., Martin, C.S.,
1192 Weatherdon, L.V., 2017. Global distribution of cold-water corals (version 5.0). In: Fifth update to the
1193 dataset in Freiwald et al. (2004) by UNEP-WCMC, in collaboration with Andre Freiwald and John
1194 Guinotte. UN Environment World Conservation Monitoring Centre, Cambridge (UK). <http://data.unep-wcmc.org/datasets/3>.

1195

1196 Gagné, T.O., Reygondeau, G., Jenkins, C.N., Sexton, J.O., et al. (2020) Towards a global understanding
1197 of the drivers of marine and terrestrial biodiversity. PLOS ONE 15(2): e0228065.
1198 <https://doi.org/10.1371/journal.pone.0228065>

1199 GRI (2021). The GRI Standards, A guide for policy makers:
1200 <https://www.globalreporting.org/media/nmmnwfsm/gri-policymakers-guide.pdf>

1201 Grigoratou, M., Menden-Deuer, S., McQuatters-Gollop, A., Arhonditsis, G., Artigas, L. F., Ayata, S.
1202 D., et al. (2025). The immeasurable value of plankton to humanity. BioScience, biaf049.
1203 <https://doi.org/10.1093/biosci/biaf049>

1204 Gros, C., Jansen, J., Untiedt, C., Downey, R., Pearman, T.R.R., et al. (2023). Identifying vulnerable
1205 marine ecosystems: an image-based vulnerability index for the Southern Ocean seafloor. ICES Journal
1206 of Marine Science, 80(4), 972–986, <https://doi.org/10.1093/icesjms/fsad021>

1207 Halpern, B., Frazier, M., Potapenko, J. et al. (2015). Spatial and temporal changes in cumulative human
1208 impacts on the world’s ocean. Nature Communications, 6: 7615. <https://doi.org/10.1038/ncomms8615>

1209 Hamilton, S.E., Casey, D. (2016). Creation of a high spatio-temporal resolution global database of
1210 continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and
1211 Biogeography, 25(6): 729-738. <https://doi.org/10.1111/geb.12449>

1212 Harcourt, R., Sequeira, A.M.M., Zhang, X., Roquet, F., et al. (2019). Animal-Borne Telemetry: An
1213 Integral Component of the Ocean Observing Toolkit. Frontiers in Marine Science, 6: 326.
1214 <https://doi.org/10.3389/fmars.2019.00326>

1215 HELCOM (2018). Number of drowned mammals and waterbirds in fishing gear. HELCOM core
1216 indicator report. Online <https://helcom.fi/wp-content/uploads/2019/08/Number-of-drowned-mammals-and-waterbirds-HELCOM-core-indicator-2018.pdf> ISSN 2343-2543 (Accessed on 29 December 2025).

1217

1218 Hughes, A.C., Demirel, N., Barnes, D.K., Alquist, I.H., Ondo, I., Hirsch, T., Guralnick, R., Enquist, B.,
1219 Merow, C., Waller, J., Kaschener, K., Reygondeau, G., Egorova, Y., Orr, M.C., Qiao, H., Stephenson,
1220 P.J., Burgess, N.D. (2025) Understanding the adequacy and representativeness of species distribution
1221 data. EcoEvoRxiv, <https://doi.org/10.32942/X28S82>

1222 IOC-UNESCO (2012). A Framework for Ocean Observing. By the Task Team for an Integrated
1223 Framework for Sustained Ocean Observing, UNESCO 2012 (revised in 2017), (by Lindstrom, E., Gunn,

1224 J., Fischer, A., McCurdy, A., & Glover, L. K. et al). Paris, France, UNESCO, 25pp. (IOC Information
1225 Document 1284, Rev. 2). <https://doi.org/10.5270/OceanObs09-FOO>

1226 IOC-UNESCO (2020). Global Ocean Science Report 2020—Charting Capacity for Ocean Sustainability.
1227 K. Isensee (ed.), Paris, UNESCO Publishing. <https://gosp.ioc-unesco.org/>

1228 IPBES (2019). Global assessment report on biodiversity and ecosystem services of the
1229 intergovernmental Science-Policy platform on biodiversity and ecosystem services, Zenodo (2019)
1230 <https://zenodo.org/doi/10.5281/zenodo.3831673>

1231 Jones, K.R., Klein, C.J., Halpern, B.S., Venter, O., et al. (2018). The Location and Protection Status of
1232 Earth's Diminishing Marine Wilderness. *Current Biology*, 28(15):2506-2512.e3.
1233 <https://doi.org/10.1016/>

1234 Kemp, H., Cierna, A., Hughes, A., Arcangeli, A., Soesbergen, A., Hargey, A., Taylor, C., Taylor, C.,
1235 Degano, M.E., Buschke, F., Tin, F.Y.K.; Sihvonen, H., Weatherdon, L., Miles, L.; Bhola, N.,
1236 McDermott Long, O., Blanque, V., Sica, Y., Thatey, Z., Demirel, N., Stephenson, P.J., Burgess, N.
1237 (2025). The past, present and future of online biodiversity knowledge systems, EcoEvoRxiv,
1238 <https://doi.org/10.32942/X2464F>

1239 Kroodsma, D.A., Mayorga, J., Hochberg, T., Miller, N.A., Boerder, K., Ferretti, F., Wilson, A.,
1240 Bergman, B., White, T.D., Block, B.A., Woods, P., Sullivan, B., Costello, C., Worm, B. (2018).
1241 Tracking the global footprint of fisheries. *Science* 359, 904–908.
1242 <https://doi.org/10.1126/science.aa05646>.

1243 Leguia, M., Garcia-Glaessner, A., Muñoz-Saavedra, B. et al. (2023). Highly pathogenic avian influenza
1244 A (H5N1) in marine mammals and seabirds in Peru. *Nature Communications*, 14: 5489.
1245 <https://doi.org/10.1038/s41467-023-41182-0>

1246 Mariani, P., Bachmayer, R., Kosta, S., Pietrosemoli, E., Ardelan, M.V., Connelly, D.P., Delory, E.,
1247 Pearlman, J.S., Petihakis, G., Thompson, F. and Crise, A. (2021). Collaborative automation and IoT
1248 technologies for coastal ocean observing systems. *Frontiers in Marine Science*, 8: 647368.
1249 <https://doi.org/10.3389/fmars.2021.647368>

1250 Martin, C.S., Tolley, M.J., Farmer, E., Mcowen, C.J., et al. (2015). A globalmap to aid the identification
1251 and screening of critical habitat for marine industries. *Marine Policy*, 53: 45–53.
1252 <https://doi.org/10.1016/j.marpol.2014.11.007>

1253 Martín Míguez, B., Novellino, A., Vinci, M., Claus, S., Calewaert, J.B., Vallius, H., Schmitt, T., Ptitto,
1254 A., Giorgetti, A., Askew, N. and Iona, S. (2019). The European Marine Observation and Data Network
1255 (EMODnet): visions and roles of the gateway to marine data in Europe. *Frontiers in Marine Science*, 6:
1256 313. <https://doi.org/10.3389/fmars.2019.00313>

1257 McMahon, C. R., Roquet, F., Baudel, S., Belbeoch, M., et al. (2021). Animal Borne Ocean Sensors –
1258 AniBOS – An Essential Component of the Global Ocean Observing System. *Frontiers in Marine
1259 Science*, 8: 751840. <https://doi.org/10.3389/fmars.2021.751840>

1260 McMahon, C. R., Roquet, F., Guinet, C., Hindell, M.A., et al. (2025). An enduring, 20-year,
1261 multidisciplinary seal-borne ocean sensor research collaboration in the Southern Ocean. *Elementa
1262 Science of the Anthropocene*, 13: 00071. <https://doi.org/10.1525/elementa.2024.00071>

1263 McOwen, C., Chandler, G., Faessler, C., Bland, R., et al. (2025). Meeting the Demand: Aligning Marine
1264 Biodiversity Data Supply with Policy Needs. EcoEvoRxiv, <https://doi.org/10.32942/X2665F>

1265 McOwen, C.J., Weatherdon, L.V., Van Bochove, J.W., Sullivan, E., Blyth, S., Zockler, C., Stanwell-
1266 Smith, D., Kingston, N., Martin, C.S., Spalding, M., Fletcher, S., 2017. A global map for saltmarshes.
1267 *Biodiversity Data Journal*, 5(1): e11764. <https://doi.org/10.3897/BDJ.5.e11764>

1268 Metaxas, A., Harrison, AL., Dunn, D. (2024). From oceans apart to the global ocean: Including marine
1269 connectivity in global conservation targets. *npj Ocean Sustainability*, 3: 40.
1270 <https://doi.org/10.1038/s44183-024-00079-1>

1271 Miloslavich, P. (2025). The United Nations Ocean Decade: A catalyst for international collaboration
1272 enhancing ocean monitoring and data. *Science*, 390: eaed3111. <https://doi.org/10.1126/science.aed3111>

1273 Miloslavich, P., Bax, N. J., Simmons, S. E., Klein, E., Appeltans, W., Aburto-Oropeza, O., et al. (2018).
1274 Essential ocean variables for global sustained observations of biodiversity and ecosystem changes.
1275 *Global Change Biology*, 24: 2416–2433. <https://doi.org/10.1111/gcb.14108>

1276 Mitchell Lyons, Kirk Larsen, & Matt Skone. (2022). CoralMapping/AllenCoralAtlas: DOI for paper at
1277 ~ v1.3 (v1.3). Zenodo. <https://doi.org/10.5281/zenodo.6622015>

1278 Morley S.A., Barnes D.K.A., Neder C., Sahade R., et al. (2026). Standardising research on marine
1279 biological carbon pathways required to estimate sequestration at Polar and sub-Polar latitudes. *Earth
1280 Science Review* (in press)

1281 Muller-Karger, F.E., Miloslavich, P., Bax, N.J., Simmons, S. et al. (2018) Advancing Marine Biological
1282 Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and
1283 Essential Biodiversity Variables (EBVs) Frameworks. *Frontiers in Marine Science*, 5: 211.
1284 <https://doi.org/10.3389/fmars.2018.00211>

1285 Murray, C.C., Dunham, A., Rubidge, E. et al. (2025). Safeguarding marine protected areas from
1286 cumulative effects: a review of methods, best practices, and applications. *Environmental Management*,
1287 75: 3010–3024. <https://doi.org/10.1007/s00267-025-02146-w>

1288 Nikolaou, A., Borja, A., Katsanevakis, S. (2025). What Do We Know About the Environmental Status
1289 of European Seas? *Conservation Letters*, 18(4): e13118. <https://doi.org/10.1111/conl.13118>

1290 O'Callaghan J., Miloslavich P., Lorenzoni L., Satterthwaite E., Rome N., Schloss I., Heupel M., O
1291 Elegbede I., Fontela M. (2025). The cross-cutting role of Ocean Decade Challenge 7 in achieving a
1292 sustainable and resilient global ocean observing system. *ICES Journal of Marine Science*, 82:fsaf079.
1293 <https://doi.org/10.1093/icesjms/fsaf079>

1294 O'Hara CC, Frazier M, Valle M, Butt N, Kaschner K, Klein C, et al. (2024). Cumulative human impacts
1295 on global marine fauna highlight risk to biological and functional diversity. *PLoS ONE* 19(9):
1296 e0309788. <https://doi.org/10.1371/journal.pone.0309788>

1297 O'Hara, C.C., Frazier, M., Halpern, B.S. (2021). At-risk marine biodiversity faces extensive,
1298 expanding, and intensifying human impacts. *Science*, 372: 84-87.
1299 <https://doi.org/10.1126/science.abe6731>

1300 OSPAR (2017). OSPAR Publication 2017-695. Levels and trends in marine contaminants and their
1301 biological effects – CEMP Assessment report 2016. OSPAR Recommendation 2014/18 on the Strategy
1302 for the Joint Assessment and Monitoring Programme.

1303 Passow, U., Carlson, C.A. (2012). The biological pump in a high CO₂ world. *Marine Ecology Progress Series*, 470, 249-271. <https://doi.org/10.3354/meps>

1305 Pavitt, A., Malsch, K., King, E., Chevalier, A., Kachelriess, D., Vannuccini, S. & Friedman, K. 2021.
1306 *CITES and the sea: Trade in commercially exploited CITES-listed marine species*. FAO Fisheries and
1307 Aquaculture Technical Paper No. 666. Rome, FAO.

1308 PBAF (2022). PBAF, Taking Biodiversity into account, PBAF Standard v2022 – Biodiversity impact
1309 assessment - Footprinting, June 2022. https://pbafglobal.com/files/downloads/PBAF_FP2022.pdf

1310 PBES (2026). Methodological assessment of the impact and dependence of business on biodiversity
1311 and nature's contributions to people of the Intergovernmental Science-Policy Platform on Biodiversity
1312 and Ecosystem Services. Rueda X., Jones M., Polasky S., (eds.). IPBES secretariat, Bonn, Germany.
1313 <https://doi.org/10.5281/zenodo.17185116>

1314 Pekel, J.F., Cottam, A., Gorelick, N., et al. (2016). High-resolution mapping of global surface water
1315 and its long-term changes. *Nature*, 540: 418–422. <https://doi.org/10.1038/nature20584>

1316 Pereira, H.M., Cooper, H. D. (2006). Towards the global monitoring of biodiversity change. *Trends in
1317 Ecology & Evolution*, 21(3):123-129. <https://doi.org/10.1016/j.tree.2005.10.015>

1318 Pereira H.M., Ferrier S., Walters M., Geller G.N., et al. (2013). Essential biodiversity variables. *Science*,
1319 339 (6117): 277–278. <https://doi.org/10.1126/science.1229931>

1320 Remmers, T., Boutros, N., Wyatt, M., Gordon, S. (2025). RapidBenthos: Automated segmentation and
1321 multi-view classification of coral reef communities from photogrammetric reconstruction. *Methods in
1322 Ecology and Evolution*, 16(2): 427-441. <https://doi.org/10.1111/2041-210X.14477>

1323 Rogers, A.D., Frinault, B.A.V. et al. (2020). Antarctic Futures: An Assessment of Climate-Driven
1324 Changes on Ecosystem Structure, Function and Service Provision in the Southern Ocean. *Annual
1325 Review of Marine Science*, 12: 87–120. <https://doi.org/10.1146/annurev-marine-010419-011028>

1326 Sala, E., Mayorga, J., Bradley, D., Cabral, R.B., et al., (2021). Protecting the global ocean for
1327 biodiversity, food and climate, *Nature*, 592 (7854): 397-402. [https://doi.org/10.1038/s41586-021-03371-z](https://doi.org/10.1038/s41586-021-
1328 03371-z)

1329 Sanderman, J., Hengl, T., Fiske, G., Solvik, K., et al. (2018). A global map of mangrove forest soil
1330 carbon at 30 m spatial resolution. *Environmental Research Letters*, 13 (5): 055002.
1331 <https://doi.org/10.1088/1748-9326/aabe1c>

1332 SBTN (2025a). Science Based Targets Network: [https://sciencebasedtargetsnetwork.org/wp-
content/uploads/2025/03/Technical-Guidance-2025-Step3-Ocean-v1.pdf](https://sciencebasedtargetsnetwork.org/wp-
1333 content/uploads/2025/03/Technical-Guidance-2025-Step3-Ocean-v1.pdf)

1334 SBTN (2025b). Science Based Targets Network Ocean Data Resources Tool:
1335 [https://docs.google.com/spreadsheets/d/12JThysayQMqYb2YbwmbyeTvwVz_-
9UqoJU5PfOpj7RM/edit?gid=591586129#gid=591586129](https://docs.google.com/spreadsheets/d/12JThysayQMqYb2YbwmbyeTvwVz_-
1336 9UqoJU5PfOpj7RM/edit?gid=591586129#gid=591586129)

1337 Shin, Y.-J., Midgley, G. F., Archer, E. R. M., Arneth, A., Barnes, D. K. A., Chan, L., Hashimoto, S.,
1338 Hoegh-Guldberg, O., Insarov, G., Leadley, P., Levin, L., Ngo, H. T., Pandit, R., Pires, A. P. F., Pörtner,
1339 H.-O., Rogers, A. D., Scholes, R. J., Settele, J., Smith, P. (2022). Actions to halt biodiversity loss
1340 generally benefit the climate. *Global Change Biology*, 28: 2846–2874.
1341 <https://doi.org/10.1111/gcb.16109>

1342 Short, F.T. (2020). Global distribution of seagrasses (version 7.0). Seventh update to the data layer used
1343 in Green and Short (2003). Cambridge (UK): UN Environment World Conservation Monitoring Centre.
1344 URL: <http://data.unep-wcmc.org/datasets/7>

1345 Spalding, M., Burke, L., Wood, S.A., Ashpole, J., Hutchison, J., Zu Ermgassen, P. (2017). Mapping the
1346 global value and distribution of coral reef tourism. *Marine Policy*, 82: 104–113.
1347 <https://doi.org/10.1016/j.marpol.2017.05.014>

1348 Spalding, M.D., Agostini, V.N., Rice, J., Grant, S.M. (2012). Pelagic provinces of the world: A
1349 biogeographic classification of the world's surface pelagic waters. *Ocean & Coastal Management*, 60:
1350 19–30. <https://doi.org/10.1016/j.ocecoaman.2011.12.016>

1351 Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdana, Z.A., Finlayson, M.A.X., Halpern, B.S.,
1352 Jorge, M.A., Lombana, A.L., Lourie, S.A., Martin, K.D. (2007). Marine ecoregions of the world: a
1353 bioregionalization of coastal and shelf areas. *BioScience* 57, 573–583.
1354 <https://doi.org/10.1641/B570707>.

1355 Spalding, M., Grenfell, A. (1997). New estimates of global and regional coral reef areas. *Coral Reefs*,
1356 16 (4): 225–230. <https://doi.org/10.1007/s003380050078>

1357 Steele, J.H., Brink, K.H., Scott, B.E. (2019). Comparison of marine and terrestrial ecosystems:
1358 suggestions of an evolutionary perspective influenced by environmental variation, *ICES Journal of*
1359 *Marine Science*, 76(1): 50–59. <https://doi.org/10.1093/icesjms/fsy149>

1360 Suárez-Castro, A.F., Beyer, H.L., Kuempel, C.D., Linke, S., Borrelli, P., Hoegh-Guldberg, O. (2021).
1361 Global forest restoration opportunities to foster coral reef conservation. *Global Change Biology*,
1362 27:5238–5252. <https://doi.org/10.1111/gcb.15811>

1363 Teixeira, H., Berg, T., Uusitalo, L., Fürhaupter, K., et al. (2016). A Catalogue of Marine Biodiversity
1364 Indicators. *Frontiers in Marine Science* 3:207. <https://doi.org/10.3389/fmars.2016.00207>

1365 Tellman, B., Sullivan, J.A., Kuhn, C. et al. (2021). Satellite imaging reveals increased proportion of
1366 population exposed to floods. *Nature* 596, 80–86. <https://doi.org/10.1038/s41586-021-03695-w>

1367 Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A, et al. (2017). Distribution and drivers of global
1368 mangrove forest change, 1996–2010. *PLOS ONE* 12(6): e0179302.
1369 <https://doi.org/10.1371/journal.pone.0179302>

1370 TNFD (2023a). Taskforce on Nature-related Financial Disclosures (TNFD) Recommendations:
1371 <https://tnfd.global/publication/recommendations-of-the-taskforce-on-nature-related-financial->
1372 [disclosures/](https://tnfd.global/publication/recommendations-of-the-taskforce-on-nature-related-financial-)

1373 TNFD (2023b). Guidance on the identification and assessment of nature-related issues: the LEAP
1374 approach. <https://tnfd.global/publication/additional-guidance-on-assessment-of-nature-related-issues->
1375 [the-leap-approach/#publication-content](https://tnfd.global/publication/additional-guidance-on-assessment-of-nature-related-issues-)

1376 TNFD (2023c). Discussion paper on Biodiversity footprinting approaches for financial institutions:
1377 https://tnfd.global/wp-content/uploads/2023/12/Discussion-paper-on_Biodiversity-footprinting-
1378 [approaches-for-financial-institutions_2023.pdf?v=1701785880](https://tnfd.global/wp-content/uploads/2023/12/Discussion-paper-on_Biodiversity-footprinting-)

1379 TNFD (2025a). TNFD 2025 Status Report: <https://tnfd.global/tnfd-2025-status-report/>

1380 TNFD (2025b). Discussion paper on measurement of ocean-related issues:
1381 <https://tnfd.global/publication/discussion-paper-on-measurement-of-ocean-related-issues/>

1382 Turner, J.A., Starkey, M., Dulvy, N.K. et al. (2024). Targeting ocean conservation outcomes through
1383 threat reduction. *npj Ocean Sustainability*, 3: 4. <https://doi.org/10.1038/s44183-023-00040-8>

1384 UNCLOS (1982). UN General Assembly, *Convention on the Law of the Sea*, -, 10 December 1982,
1385 <https://www.refworld.org/legal/agreements/unga/1982/en/40182> [accessed 29 December 2025]

1386 UNEP FI (2025). United Nations Environment Programme Finance Initiative, Accountability for
1387 Nature: Comparison of Nature-related Assessment and Disclosure Frameworks and Standards:
1388 [https://www.unepfi.org/publications/accountability-for-nature-comparison-of-nature-related-
1389 assessment-and-disclosure-frameworks-and-standards-3/](https://www.unepfi.org/publications/accountability-for-nature-comparison-of-nature-related-assessment-and-disclosure-frameworks-and-standards-3/)

1390 UNEP-WCMC, Capitals Coalition, Arcadis, ICF, WCMC Europe (2022). Recommendations for a
1391 standard on corporate biodiversity measurement and valuation, Aligning accounting approaches for
1392 nature.

1393 Von Schuckmann, K., Godoy-Faundez, A., Garçon, V., Muller-Karger, F. et al. (2025). Global Ocean
1394 Indicators: Marking Pathways at the Science-Policy Nexus. Marine Policy.
1395 [https://doi.org/10.1016/j.marpol.2025.106922.](https://doi.org/10.1016/j.marpol.2025.106922)

1396 WBCSD (2025). World Business Council for Sustainable Development:
1397 <https://www.wbcsd.org/nature-action-portal/>

1398 Webb, T.J., Vanden Berghe, E., O'Dor, R. (2010). Biodiversity's Big Wet Secret: The Global
1399 Distribution of Marine Biological Records Reveals Chronic Under-Exploration of the Deep Pelagic
1400 Ocean. PLoS ONE 5(8): e10223. <https://doi.org/10.1371/journal.pone.0010223>

1401

1402 Welch, R.J., Childs, A., Murray, T.S., Darnaude, A.M., James, N.C. (2024). The role of acoustic
1403 telemetry in assessing fish connectivity within marine seascapes: a global review. Journal of Fish
1404 Biology, 16011. <https://doi.org/10.1111/jfb.16011>

1405 Wood, S., Paris, C.B., Ridgwell, A., Hendy, E.J. (2013). Modelling dispersal and connectivity of
1406 broadcast spawning corals at the global scale. Global Ecology and Biogeography, 23(1): 1-11.
1407 <https://doi.org/10.1111/geb.12101>

1408 Worthington, T., Spalding, M. (2018). Mangrove Restoration Potential: A global map highlighting a
1409 critical opportunity. Apollo - University of Cambridge Repository.
1410 <https://doi.org/10.17863/CAM.39153>

1411 Zwierschke, N, Arboe, N.H., Behrisch, J., Blicher, M., Barnes, D.K.A. (2025). Towards a regional
1412 baseline of Greenland's continental shelf seabed biodiversity, Journal of Environmental Management,
1413 382: 125285, doi.org/10.1016/j.jenvman.2025.125285