N

(0] ~ ook w

10
11
12
13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28

Neuroethology of Corpse-Directed Behaviors in
Bees

Stephanie Yiru Zhu', Z Yan Wang'?
1. Department of Biology, University of Washington, Seattle, WA, USA, 98195
2. Department of Psychology, University of Washington, Seattle, WA, USA, 98195

Corresponding Author: Z Yan Wang (zywang22@uw.edu)

Acknowledgements

This work is funded by the University of Washington Department of Psychology, Department of
Biology, and the Royalty Research Fund. We would like to sincerely thank Nastacia Goodwin,
Sama Ahmed, Laura Quinche, and Andrea Durant for their thoughtful comments on our
manuscript.

Abstract

Across taxa, social animals inevitably encounter dying or dead conspecifics and respond in
patterned ways, yet the mechanisms underlying these behaviors remain understudied. Bees
offer a powerful comparative system for exploring the neuroethology of corpse-directed
behaviors. Across the bee phylogeny, sociality has been gained and lost multiple times,
resulting in species that range from solitary to highly eusocial. As nesting became increasingly
communal, bees evolved diverse corpse-directed behaviors including avoidance, transport and
removal, cannibalism, and burial. These behaviors are thought to mitigate pathogen and
predation risks, influence resource allocation, and shape colony functioning. In this review, we
synthesize findings on corpse-directed behaviors across bee species and social systems. We
examine the emerging neurobiological, sensory, endocrine, molecular, and social mechanisms
that support corpse detection and behavioral specialization. Lastly, we highlight key gaps in
existing research and priorities for future work on the neurobiological and evolutionary
foundations of corpse-directed behaviors.
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Introduction

Group-living animals, from social insects to mammals, are among the most
evolutionarily successful organisms on Earth, exhibiting remarkable ecological
dominance, cognitive complexity, and long lifespans [1-3]. Social behaviors are critical
for the health and functioning of animal and human societies [4-8]. Yet nearly all
mechanistic studies of social behaviors focus on interactions between living
conspecifics. In reality, social animals regularly encounter dying or dead conspecifics,
and respond in strikingly patterned ways [9,10]. For example, humans and mice readily
engage in prosocial physical contact with unconscious individuals, promoting recovery
from unresponsiveness [11,12]. Many mammals, including non-human primates,
elephants, and aquatic mammals, transport, groom, and protect deceased infants
[9,13-17]. Corvids aggregate around deceased conspecifics and perform alarm calls to
share information about potential threats [18-20]. Rodents and termites bury aged
corpses, which reduces pathogen spread and predator threats [21,22]. Thus, interacting
with the dead is a fundamental component of social living.

Despite the prevalence of corpse-directed behaviors across taxa, the mechanisms by
which animals detect and respond to dead conspecifics remain poorly understood. Bees
(Clade: Apoidea) are an ideal system to address this gap. Across bee lineages, multiple
independent gains and losses of sociality have resulted in species that span the full
spectrum from solitary to highly eusocial (Figure 1A) [23,24]. As group living evolved,
social insects developed strategies for active corpse management, otherwise known as
undertaking behaviors [22,25-30]. Bees exhibit diverse undertaking behaviors, including
necrophobia (corpse avoidance), necrophoresis (corpse transport and removal),
cannibalism, and burial [26,28,29,31-34]. These behaviors enhance colony fitness by
minimizing pathogen spread, reducing potential predator threats, and recycling nutrients
[22,27,35,36]. In this review, we first summarize corpse-directed behaviors across bee
lineages and modes of sociality, then discuss the underlying mechanisms, including
chemosensation, hormonal profiles, gut microbiota, gene expression, and behavioral
specialization.

Corpse-directed behavior across bees

Honey bees

Honey bees are advanced eusocial insects characterized by age-based division of labor
and sophisticated social communication [37]. Honey bee colonies comprise nestmates
at multiple life stages [38]. Workers exhibit undertaking behaviors toward both dead
adults and dead brood containing larvae or pupae [28,39-41].

Honey bee behavioral responses to dead adult nestmates have been most well-studied
in the western honey bee (Apis mellifera). Workers display a wide range of responses to
adult corpses, including antennal and proboscis contact, grasping, pulling, and removal
from the nest, which can involve multiple workers transporting the corpse around the
nest (Figure 1B) [28]. Interestingly, removal follows an indirect path to the nest
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entrance, which is not expected if the primary function of undertaking is to minimize
pathogen spread [28].

Honey bee responses to dead brood are widely regarded as hygienic behaviors [42]. A.
mellifera and Apis cerana workers uncap brood cells to remove dead or diseased larvae
and pupae from the nest (Figure 1B) [40,41,43,44]. A. cerana removes dead brood
faster than A. mellifera, though both reach the same percentage of removal after 48
hours [43,45,46]. In some cases, A. mellifera partially cannibalizes Varroa mite-infected
pupae [32]. Beyond cavity-nesting species, migratory, open-air nesting honey bees also
show brood undertaking behaviors [47,48]. The dwarf honey bee, Apis florea, removes
dead brood from both sealed and unsealed cells [48]. The giant honey bees, Apis
dorsata and Apis laboriosa, only remove dead brood from already-damaged cells,
leaving dead brood in intact cells alone [47]. This distinction is likely associated with
their different migratory patterns: A. florea migrates short distances based on resource
availability, making the prompt removal of any dead brood beneficial, while A. dorsata
migrate seasonally for long distances, making it adaptive to leave sealed dead brood
behind [49,50].

Research on honey bee undertaking has established key observational and
experimental approaches applicable to other bee species. Both adult and brood removal
demonstrate colonies’ rapid response to parasite and disease threats. Future studies
should investigate adult removal across species and quantify the full behavioral
sequence of brood removal to enable direct comparisons and elucidate how complex
social behaviors are organized and regulated.

Bumblebees

Compared to honey bees, bumblebees are annually eusocial and exhibit weak task
specialization [51]. In the common eastern bumblebee (Bombus impatiens) and the
buff-tailed bumblebee (Bombus terrestris), workers make antennal contact, pick up, and
drag both larval and adult corpses (Figure 1C) [26,29]. Undertakers pick up larvae
quickly but spend more time antennating and biting adult corpses [26]. A higher
percentage of larvae are successfully removed than adults, which may reflect physical
constraints of corpse type: larvae can be removed by flight or dragging, while adults can
only be dragged out of the nest [26]. These differences lead to the question of how
bumblebees respond to dead pupae, which is completely unknown. Pupae, being the
intermediate life stage, may carry different values to the colony and may result in
different undertaking strategies.

Findings from bumblebees demonstrate that even species with annual colonies and
limited task specialization exhibit adaptive undertaking strategies. Compared to honey
bees, bumblebees have lower rates of removing corpses from the nest and exhibit
greater behavioral variability, including occasional burial and midden deposition
[26,28,29]. The behavioral differences may reflect reduced pressure for long-term nest
hygiene in their annual colonies. However, with few detailed studies to date, key
aspects, such as the spatial trajectories of undertakers and corpses, remain unknown.



110  Quantifying these features can reveal how nest structure, colony organization, and
111 social complexity shape removal strategies.

112  Other bees

113  In other bee species, studies of corpse-directed behavior differ in scope and detail.
114  Experimental protocols vary greatly, and for many species, corpse-directed behaviors
115  are described only by brief observations, making cross-species comparisons difficult.
116  However, existing data reveal a broad pattern consistent with kin selection: solitary
117  species manage their own dead offspring, whereas social species gain indirect fithess
118 by managing the corpses of closely related nestmates.

119  Solitary but gregarious species manage dead offspring and tolerate dead conspecifics.
120 The alkali bee Nomia melanderi, which nests solitarily in dense aggregations, uncaps
121 and fills diseased or dead brood cells with compacted soil, which resembles burial

122 (Figure 1E) [33,34]. When nest sharing occurs, dead female conspecifics are either
123  buried within or outside of the nest [52]. The red mason bee Osmia bicornis, another
124  solitary species, tolerates conspecific corpses and continues to nest nearby [53].

125  Semi-social and facultatively eusocial bees also manage dead offspring. The allodapine
126  bee Braunsapis foveata pushes dead larvae and pupae out of the nest with its head or
127  abdomen, similar to nest waste removal (Figure 1D), and the sweat bee Megalopta

128 genalis pulls dead larvae out of brood cells and removes them from the nest [54,55].
129  These behaviors suggest that brood removal may have emerged from general nest-
130 cleaning strategies [54].

131  Other eusocial species show undertaking behaviors similar to honey bees and

132 bumblebees. Annually eusocial sweat bees (Lasioglossum lineare, Lasioglossum

133  malachurum) remove or bury dead brood [56,57]. Advanced eusocial stingless bees
134  (Melipona spp.) uncap and remove dead brood [58-60]. Across eusocial bees, corpse
135 removal is consistent, but burial within the nest only occurs in some species, which may
136  reflect ecological constraints, such as the availability of movable substrate in the nest.
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Figure 1. Diverse bee lineages exhibit a wide range of corpse-directed behaviors. A.
Phylogeny of bee lineages with documented corpse-directed behaviors discussed in
this paper [24]. Colors represent degree of sociality. B. Honey bees (Apis spp.)
remove dead larvae, pupae, and adult corpses [28,40,41]. C. Bumblebees (Bombus
spp.) remove dead larvae and adult corpses [26,29]. D. Allodapine bee (Braunsapis
foveata) pushes dead larvae out of the nest [54]. E. Alkali bee (Nomia melanderi)
buries dead larvae in the brood cell and adult corpses at the end of a burrow [34].
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Neurobiological mechanisms and social influences

Across bee species, corpse-directed behaviors vary in form and complexity, yet they all
mitigate risks associated with death. Their prevalence across species raises important
questions about the sensory and neural adaptations that enable prompt detection and
response to death. Here, we explore emerging insights on how sensory systems,
ecological context, and social organization may contribute to corpse-directed behaviors.
Although most of the known mechanisms are from the western honey bee (A. mellifera),
these results provide a framework for what may be possible and shared across bees.

Chemosensation

Many bee species nest in dark cavities or subterranean environments, making chemical
signaling the primary mode of communication [52,61]. Chemical cues are critical for the
initiation of undertaking behaviors [22,28,62—64]. Two main classes of death cues have
been identified in honey bees: fatty acids that are highly conserved across taxa and
volatiles that are species-specific [22,62,65—68]. While other death cues may also be
involved, existing research has focused on how oleic acid, a fatty acid, and the volatile
pheromone 3-ocimene impact removal of brood and adult corpses.

Dead honey bee (A. mellifera) brood release both oleic acid and (3-ocimene, and
application of either or both compounds to healthy brood triggers brood rejection and
removal [62,68]. Interestingly, B-ocimene is a brood pheromone associated with larval
food-begging, initiation of foraging, and inhibition of worker reproduction, but dead
brood release significantly higher amounts of 3-ocimene than live brood [68—72]. Thus,
B-ocimene may function broadly as an urgency signal, recruiting workers to care for
brood at low concentrations and prompting the disposal of dead brood at high
concentrations, while oleic acid acts as a death cue in parallel. Sharing chemical cues
and sensory pathways across contexts may be efficient for integrating different in-nest
behaviors.

In contrast, death cues from adult honey bee corpses remain largely unknown. -
ocimene is not present on live workers, but whether it is released upon death is
unknown [73]. Oleic acid is a more plausible death cue from adults. It is a highly
conserved death cue across insects and elicits removal in ants and burial in termites,
even when applied to inanimate objects [22,25,30,65,66,74]. Oleic acid alone does not
elicit adult corpse removal in A. cerana, but the Nasonov gland extract, which contains
oleic acid and other fatty acids, does [63]. This may be because oleic acid is not
exclusively a death cue in honey bees, as it also exists in body tissues and pollen [75—
77]. Oleic acid may contribute to adult death signaling, and its capacity to induce
undertaking behaviors could depend on its concentration, the presence of other
chemicals, the life stage of the corpse, and species-specific sensory tuning.

Workers likely detect death cues through multiple sensory modalities. In A. mellifera,
electroantennogram recordings show that both 3-ocimene and a blend of 3-ocimene
and oleic acid elicit significant antennal depolarization, while oleic acid alone does not
(Figure 2A) [62]. Therefore, B-ocimene is likely an olfactory signal, whereas oleic acid
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may be detected through a combination of olfaction and contact-based chemoreception,
though its exact sensory pathway is unclear. Beyond antennal responses, undertakers
are molecularly tuned to death cues. In A. mellifera, brood-removing undertakers show
upregulation of two antennal odorant binding proteins (OBPs) with high affinity to oleic
acid and 3-ocimene [62]. In A. cerana, highly hygienic colonies show upregulation of
several OBPs [78]. These findings suggest that undertakers experience increased
sensitivity to death cues, along with other physiological specializations that we explore
below.

Hormonal profiles and gut microbiota

Honey bee undertakers differ from other workers in their hormonal profiles and gut
microbiota, potentially supporting their specialization. Under age-based division of labor,
workers transition from nursing to foraging as they age, and a subset of middle-aged
bees start undertaking while their age-matched peers remain in nursing roles [64]. Adult
corpse undertakers show higher levels of juvenile hormone in their corpora allata-
corpora cardiaca complex than in-nest workers, comparable to those of foragers [79].
Juvenile hormone is associated with division of labor, and elevated levels may facilitate
the shift to undertaking [80]. Brood undertakers show strong octopamine activity in
neurons in the deutocerebrum [81]. Octopamine treatment in non-undertakers enhances
antennal sensitivity to diseased brood odors, demonstrating a modulatory effect on
sensory tuning [81]. Moreover, brood undertakers have distinct gut microbiota, with
greater microbial diversity and higher abundance of immunity-associated bacterial
species than non-undertakers (Figure 2C) [82]. These physiological differences may
predispose some workers to take on undertaking tasks while mitigating risks of
contacting corpses, raising the question of whether these traits evolved prior to the
emergence of undertaking or developed through exposure to corpses.

Gene expression

Honey bees’ specialization in undertaking is accompanied by differences in gene
expression [83]. Transcriptomic data show that adult corpse undertakers’ brain gene
expression more closely resembles that of guard bees than that of nurses or foragers
(Figure 2B) [84]. The foraging (for) gene, linked to distance traveled and activities
outside of the nest, is expressed at higher levels in undertakers and foragers and lower
levels in in-nest workers [85,86]. These findings suggest that undertaking shares
molecular pathways with other highly active and high-risk tasks such as guarding or
foraging. Future comparative work across species will be essential for identifying
evolutionary conservation of molecular mechanisms underlying undertaking.

Behavioral specialization

While physiological and molecular mechanisms may influence which workers are more
likely to engage in undertaking, the expression of social behaviors is strongly shaped by
social context. Interactions with nestmates, task allocation, and other colony-level cues
can determine when and how undertaking is performed.
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Colony life history shapes how undertaking is distributed among workers. Honey bees
exhibit highly structured division of labor in their perennial colonies, with only 1-2% of
workers participating in undertaking at a time and up to 10% ever participating
[28,38,87]. Bumblebees are more behaviorally flexible in their annual colonies, with
31.1% of workers participating in undertaking [29,51]. Among undertakers, different
behavioral phenotypes exist, some individuals repeatedly perform undertaking while
others do so only once [29,39]. Repeat undertakers are more successful at completing
corpse removals [29,39].

Spatial patterns provide additional evidence that undertaking is a specialized task. In
honey bees, adult corpse undertakers preferentially occupy the lower hive near the
entrance, similar to guard bees [64]. The spatial distribution of brood undertakers is
currently unknown, though they do not differ in colony integration or centrality from other
bees [88]. In bumblebees, foragers and nurses show different spatial distributions while
in the nest, but the spatial preferences of undertakers have not yet been documented
[89]. Understanding where undertakers operate in the nest could reveal overlaps with
other colony tasks and provide insights into task allocation.

Morphological differences may also contribute to undertaking specialization, particularly
in bumblebees. Bumblebee workers' body size varies considerably and is linked to their
division of labor [89,90]. In B. impatiens, adult corpse undertakers are larger than non-
undertakers [29]. In B. terrestris, undertakers and non-undertakers do not differ in body
size, but larval undertakers are larger than adult corpse undertakers [26]. Interestingly,
depleting large workers did not impair the colony’s undertaking performance [91].
Therefore, body size may influence the likelihood of undertaking, but behavioral
flexibility compensates for changing availability of workers. Future work on
biomechanics and muscle physiology of corpse handling could help us understand the
demands of performing this task.

Together, these findings demonstrate that undertaking is a specialized yet flexible task
performed by a subset of workers. Honey bee workers that specialize in brood removal
are also more likely to remove adult corpses from the nest, but these two behaviors
have largely been studied in isolation [92]. Future work integrating both forms of
undertaking using consistent assays will be crucial for understanding specialization and
flexibility in undertaking subgroups.
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Figure 2. Sensory, molecular, and physiological mechanisms underlying corpse-
directed behaviors. A. The antenna senses chemical signals (e.g. B-ocimene) from
a corpse and results in depolarization [62]. B. Differential brain gene expressions
distinguish undertakers from in-nest workers [84—86]. C. Undertakers exhibit distinct
gut microbiota composition with greater microbial diversity and higher abundance of
immunity-associated bacteria [82].

Conclusion

Corpse-directed behaviors are a fundamental component of social living, and the
diverse phenotypes across bee lineages provide excellent opportunities for comparative
analyses. Corpse-directed behaviors are deeply implicated in the traits that characterize
eusociality: 1) they are a specialized task within division of labor; 2) removal of diseased
and dead brood directly supports cooperative brood care; 3) removal of dead nestmates
maintains the health of a colony with overlapping generations. Beyond their implications
on social evolution, understanding corpse-directed behaviors also sheds light on how
animals respond adaptively across dynamic, complex social environments. Future
mechanistic experiments to further elucidate behaviors, sensory pathways, and neural
circuits in other bee species will inform us how evolution has shaped the neurobiological
underpinnings of this critical behavior.
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