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ABSTRACT 24 

Population genetic structure is commonly inferred using statistical and ordination-based methods 25 

that emphasize variance partitioning or likelihood-based clustering. While powerful, these 26 

approaches may undersample the full space of possible population partitions, particularly in 27 

systems characterized by weak genetic differentiation and high connectivity. Here, I present a 28 

proof-of-concept framework that reframes population genetic distance data as a combinatorial 29 

optimization problem, enabling structure to be interrogated through a distinct computational lens. 30 

Pairwise genetic distances derived from mitochondrial COI sequences of the shell-boring 31 

polychaete Polydora websteri are represented as a weighted graph and optimized using a 32 

quantum-inspired implementation of the Max-Cut problem via the Quantum Approximate 33 

Optimization Algorithm (QAOA). Using small, tractable datasets, I demonstrate that this 34 

approach recovers partitions consistent with classical analyses without claiming improved 35 

inference or computational advantage. Rather, the contribution of this work lies in establishing a 36 

transparent and reproducible mapping between population genetic distance structure and 37 

quantum-ready optimization frameworks, providing methodological groundwork for future 38 

studies using high-dimensional genomic SNP data.  39 

 40 
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I. INTRODUCTION 47 

Population genetic inference underpins a wide range of biological applications, from 48 

reconstructing evolutionary history and identifying barriers to gene flow, to informing 49 

conservation planning and managing biological invasions [1 – 4]. Classical population genetic 50 

analyses rely on a well-established toolkit which includes summary statistics such as FST 51 

(Wright’s fixation index), ordination methods such as principal component analysis (PCA), 52 

clustering approaches and phylogeographic reconstruction, to identify genetic structure and 53 

connectivity among populations [5 – 8]. For decades, these methods have proven powerful and 54 

interpretable, particularly for small to moderate datasets and simple demographic scenarios. 55 

However, as genomic datasets continue to grow in size and complexity, there is increasing 56 

interest in alternative computational frameworks that can interrogate genetic structure in 57 

fundamentally different ways [9 – 11].  58 

 Recent advances in quantum information science have opened the possibility of applying 59 

quantum algorithms to hard optimization problems that arise across scientific domains [12 – 15]. 60 

In particular, combinatorial optimization problems, many of which are NP-hard, are central to 61 

tasks such as graph partitioning, clustering, and network analysis [15]. Once such problem is 62 

Max-Cut, which seeks an optimal bipartition of a weighted graph that maximizes the sum of 63 

edge weights crossing the partitioning [12, 13, 17]. Max-Cut is a canonical benchmark problem 64 

in quantum computing and has motivated the development of variational quantum algorithms 65 

such as the Quantum Approximate Optimization Algorithm (QAOA) [16 – 18].  66 

 Here, I explore the use of Max-Cut as a conceptual bridge between population genetic 67 

distance data and quantum optimization. Genetic distance matrices, derived from DNA sequence 68 

data, can be naturally represented as weighted graphs, where nodes correspond to individuals or 69 
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populations and edge weights reflect genetic divergence. Casting genetic structure inference as a 70 

graph partitioning problem allows the application of quantum optimization techniques that differ 71 

fundamentally from classical population genetic workflows. Importantly, this approach does not 72 

seek to replace existing statistical models of population history, but rather to evaluate whether 73 

quantum algorithms can uncover structure through a distinct computational lens.  74 

 In this study, I present a proof-of-concept application of QAOA to genetic distance data 75 

derived from mitochondrial COI gene sequences of the shell-boring polychaete worm Polydora 76 

websteri. Polydora is a marine parasite that infects commercially reared shellfish such as oysters 77 

and scallops, and has been shown to exhibit low genetic differentiation and high haplotype 78 

sharing across global geographic regions [19]. Using small tractable sample sizes, I demonstrate 79 

how genetic distances can be encoded into a Max-Cut formulation and optimized using quantum 80 

circuits executed on quantum simulators. I explicitly compare quantum-derived partitions with 81 

exact classical solutions, emphasizing algorithmic behavior, convergence properties, and circuit 82 

depth (p-level) rather than biological novelty. 83 

 Importantly, the goal of this study was not to supplant established population genetic 84 

methods, nor to claim superior biological inference at present. Rather, the novelty lies in the 85 

explicit mapping of population genetic distance structure to a quantum-ready optimization 86 

framework and the demonstration that such mappings are feasible, interpretable, and 87 

reproducible using existing quantum software infrastructure. This work provides a foundation for 88 

future investigations using larger multilocus datasets—such as RAD-seq–derived SNP 89 

matrices—where the combinatorial complexity of population partitions may exceed the practical 90 

limits of classical approaches. 91 

 92 
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II. METHODS 93 

Study System and Genetic Distance Data 94 

Mitochondrial cytochrome c oxidase subunit I (COI) sequence data for the shell-boring 95 

polychaete Polydora websteri were retrieved from the NCBI GenBank database. A total of 96 

twelve individuals were selected, representing four geographically distinct regions: Cape Cod, 97 

Massachusetts, USA; South Africa; China; and Australia (three individuals per population). 98 

Previous population genetic studies on P. websteri have reported extensive haplotype sharing and 99 

global homogenization among these regions along with low levels of genetic differentiation, 100 

consistent with widespread anthropogenic-mediated dispersal and high connectivity [19]. 101 

Sequences were aligned using the MAFFT algorithm, and pairwise genetic distances were 102 

calculated under the kimura-2-parameter (K2P) substitution model using the Biopython library 103 

[20]. The resulting genetic distance matrix represents pairwise evolutionary divergence among 104 

sampled individuals and serves as the sole biological input to the quantum optimization 105 

framework described below. No demographic parameters or population genetic models were 106 

assumed beyond the computation of pairwise distances.  107 

 108 

Graph Representation of Genetic Distances 109 

Pairwise genetic distances were represented as a weighted, undirected graph G = (V, E), where 110 

each node 𝑣𝑖 ∈ 𝑉 corresponds to an individual/sample and each edge 𝑒𝑖𝑗 ∈ 𝐸 connects 111 

individuals i and j. Edge weights were defined as the normalized genetic distance between the 112 

corresponding pair of individuals, such that larger weights reflect greater genetic divergence.  113 

To ensure numerical stability and facilitate comparison across datasets, the distance matrix was 114 

normalized by its maximum value such that all edge weights lie in the interval [0, 1]. Missing or 115 
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undefined distances (e.g., due to alignment gaps) were conservatively set to zero, effectively 116 

removing their contribution to the optimization objective. This graph-based representation allows 117 

genetic structure inference to be reframed as a combinatorial optimization problem, independent 118 

of explicit population genetic assumptions.  119 

 120 

Max-Cut Formulation 121 

Genetic structure inference was formulated as a Max-Cut problem, a canonical NP-hard 122 

optimization task. Given the weighted graph described in the previous section, the objective is to 123 

partition the nodes into two disjoint sets such that the sum of edge weights crossing the partition 124 

is maximized.  125 

Formally, for a binary assignment vector 𝑥 ∈ {0,1}𝑛, the cut value is defined as: 126 

 127 

𝐶(𝑥) = ∑ 𝑤𝑖𝑗𝑖<𝑗 ⋅ 𝐼(𝑥𝑖 ≠ 𝑥𝑗), 128 

 129 

where 𝑤𝑖𝑗  denotes the normalized genetic distance between nodes 𝑖 and 𝑗. 130 

This formulation does not assume that the biological populations are bifurcating or that two 131 

clusters represent true biological evolutionary units; rather, it provides a mathematically well-132 

defined optimization landscape for evaluating how quantum algorithms partition population 133 

genetic distance graphs.  134 

Exact Classic Optimization  135 

For small datasets (n ≤ 12), the Max-Cut problem was solved exactly used brute-force 136 

enumeration of all possible binary partitions, fixing one node to remove symmetry between 137 

equivalent cuts. This provided the true global optimum against which quantum-derived solutions 138 
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could be evaluated. Exact solutions were used solely for validation purposes and were not 139 

feasible for large datasets due to the exponential growth of the search space.  140 

 141 

Quantum Optimization via QAOA 142 

Quantum optimization was performed using the Quantum Approximate Optimization Algorithm 143 

(QAOA). QAOA is a variational, hybrid quantum-classical algorithm designed to approximate 144 

solutions to combinatorial optimization such as Max-Cut. The Max-Cut objective was encoded 145 

into a problem Hamiltonian acting on n qubit, where each qubit represents the binary assignment 146 

of a node in the graph. The algorithm alternates between applying the problem Hamiltonian and 147 

a mixing Hamiltonian for a specific number of layers, p, with each layer parameterized by angles 148 

 and .  149 

 In this study, QAOA circuits were constructed manually to ensure compatibility with 150 

current quantum simulation backends. Circuits were executed using Qiskit’s Aer simulator, and 151 

parameter optimization was performed using COBYLA classical optimizer. For all reported 152 

results, we used p = 1, corresponding to a single alternation layer, to maintain circuit simplicity 153 

and interpretability.  154 

 155 

Sampling and Solution Extraction  156 

After parameter optimization, the final QAOA circuit was sampled to generate a distribution over 157 

bitstrings corresponding to candidate cuts. The expected cut value was computed from the full 158 

distribution, while the best sampled bitstring was identified and evaluated using the classical cut 159 

objective. Quantum-derived solutions were compared to exact classical optima in terms of cut 160 
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value and node assignments, without post hoc adjustment or biological interpretation. A 161 

summary of the analytical pipeline is shown in figure 1. 162 

 163 
Figure 1. Conceptual pipeline for applying quantum optimization to population genetic distance data. (A) 164 
Multiple sequence alignment of mitochondrial cytochrome c oxidase I (COI) sequences from 165 
geographically distinct populations of Polydora websteri. (B) Pairwise genetic distance matrix computed 166 
under the Kimura-2-parameter (K2P) model and normalized to the interval [0,1]. (C) Weighted, undirected 167 
graph representation of genetic distances, where nodes correspond to individual sequences and edge 168 
weights reflect normalized pairwise genetic distances. (D) Formulation of genetic structure inference as a 169 
Max-Cut optimization problem, in which nodes are partitioned into two groups such that the sum of edge 170 
weights crossing the partition is maximized. Node layout is schematic and does not imply spatial or 171 
evolutionary proximity. (E) Conceptual depiction of the Quantum Approximate Optimization Algorithm 172 
(QAOA) applied to the Max-Cut problem; qubits are initialized in superposition, evolved under cost (γ) 173 
and mixer (β) operators, and measured to produce bitstrings encoding candidate partitions with the highest-174 
scoring partition retained (partition A or B). 175 
 176 

Software and Reproducibility.  177 

All analyses were implemented in Python using NumPy and Qiskit [19, 20]. Scripts for loading 178 

genetic distance matrices, constructing optimization problems, executing QAOA circuits, and 179 

evaluating results were written to be fully reproducible and platform independent. All 180 

computations were performed on a classical macintosh workstation using quantum simulators; 181 
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no access to physical quantum hardware was required. All datasets including the aligned DNA 182 

sequence file, distance matrix and python scripts are available via Github 183 

(https://github.com/parasiteguy/population-genetic-max-cut.git)  184 

 185 

III. Results  186 

Pairwise K2P genetic distances computed from COI sequences of Polydora websteri exhibited 187 

low overall divergence, consistent with previous population genetic analyses reporting extensive 188 

haplotype sharing and weak geographic structure. Normalization of the distance matrix yielded a 189 

dense, weighted graph in which most edges carried small but nonzero weights, reflecting shallow 190 

differentiation among individuals across sampling regimes. This graph representation provided a 191 

suitable test case for evaluating whether quantum optimization recovers structure consistent with 192 

classical expectations under conditions of genetic homogeneity.  193 

 For the dataset consisting of 12 individuals sampled across four geographic regions (Cape 194 

Cod, South Africa, China, and Australia), the Max-Cut problem was solved exactly using brute-195 

force enumeration. The optimal partition maximized the sum of normalized genetic distances 196 

across the cut and resulted in a highly asymmetric split, separating two Cape Cod individuals 197 

from the remaining 10 sequences. The exact solution achieved a maximum cut value of 9.99 198 

(normalized units). Importantly, this portion did not correspond to an ecologically interpretable 199 

population split and instead reflects the optimization objective acting on subtle distance variation 200 

within an otherwise homogenous dataset.  201 

 The same Max-Cut problem was solved using the Quantum Approximate Optimization 202 

Algorithm (QAOA) with a single alternation layer (p = 1) executed on a classical quantum 203 

simulator. Parameter optimization converged to a set of angles  and  that maximized the 204 

https://github.com/parasiteguy/population-genetic-max-cut.git
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expected cut value under the QAOA ansatz. The optimized quantum stated yielde an expected 205 

cut value of 6.57, lower than the exact optimum, as expected for shallow-depth QAOA. 206 

However, sampling from the optimized quantum circuit produced bitstrings corresponding to the 207 

exact optimal cut identified by the brute-force classic solver. Thus, despite the reduced expected 208 

value at p = 1, QAOA successfully recovered the globally optimal solution through probabilistic 209 

sampling.  210 

 The best quantum-derived partition was identical to the exact classical Max-Cut solution 211 

in both cut value and cluster membership. This result demonstrates that, even at minimal circuit 212 

depth and without quantum advantage, the QAOA framework can faithfully encode and recover 213 

optimization structure present in genetic distance graphs. Notably, the quantum optimization did 214 

not reveal population structure inconsistent with classical analysis for this dataset. Instead, the 215 

quantum solution reproduced the same weakly structured partition implied by low genetic 216 

divergence and minimal classic population differentiation. These results confirm that quantum 217 

optimization can be applied to population genetic distance matrices in a mathematically 218 

consistent and computationally tractable manner using existing quantum software infrastructure. 219 

 220 

IV. Discussion 221 

This study demonstrates that population genetic structure inference can be reformulated as a 222 

combinatorial optimization problem and addressed using quantum-inspired methods. By 223 

representing genetic distance matrices as weighted graphs and applying Max-Cut optimization, a 224 

statistical inference task was translated into a problem class that is native to quantum algorithms. 225 

This reframing is conceptually distinct from classical population genetic analyses such as FST, 226 

Analysis of Molecular Variance (AMOVA), PCA or clustering-based methods (e.g. 227 
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STRUCTURE), which rely on variance partitioning, eigen-decomposition, or likelihood-based 228 

inference [7, 23]. In contrast, the Max-Cut formulation seeks global partitions that maximize 229 

pairwise genetic dissimilarity across groups, providing an alternative lens through which genetic 230 

structure can be interrogated.  231 

 232 

Interpretation of Quantum Results in a Biologically Homogenous Dataset 233 

Application of both exact classical Max-Cut and shallow-depth QAOA to COI data from 234 

Polydora websteri recovered equivalent partitions characterized by weak and biologically 235 

uninformative splits. This outcome is consistent with prior analyses of the species that reported 236 

extensive haplotype sharing and low geographic differentiation across this species’ range [19]. 237 

Perhaps more importantly, the quantum approach did not produce spurious or contradictory 238 

structure relative to classical methods. Instead, it reproduced the same absence of meaningful 239 

population subdivision, indicating that quantum optimization behaves sensibly when applied to 240 

biologically homogenous datasets. This result reinforces that the framework does not artificially 241 

impose structure where none exist. At the same, the ability of QAOA to recover the exact optimal 242 

cut through probabilistic sampling – despite lower expected objective values at p = 1 – 243 

demonstrates that quantum variational algorithms can faithfully encode and explore genetic 244 

distance landscapes.  245 

 246 

No Claim of Quantum Advantage 247 

I should explicitly note here that this work does not claim quantum advantage, improved 248 

biological inference, or computational speedup. All quantum computations were executed using 249 

classical simulators and the problem size (12 individuals representing four populations – three 250 
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per population) remains well within the tractable regime of brute-force classical solvers. Rather, 251 

the contribution of this study is methodological: it establishes a clear, reproducible mapping 252 

between population genetic data structures and quantum optimization frameworks, and it 253 

validates that this mapping behaves consistently with biological expectations under controlled 254 

conditions. Such groundwork is essential before more ambitious claims regarding scaling 255 

behavior, advantage, or discovery can be credibly assessed.  256 

 257 

Why Classical Methods May Miss Structure in High-Dimensional Regimes  258 

Classical population genetic tools are highly effective for many applications, but they often rely 259 

on heuristics or dimensionality reductions that may obscure complex or weakly expressed 260 

structure in large, multilocus datasets [24]. For example, PCA and related methods emphasize 261 

variance along dominant axes, potentially overlooking subtle but globally optimal partitions. 262 

Similarly, likelihood-based clustering methods can be sensitive to model assumptions and 263 

initialization.  264 

 In contrast, combinatorial optimization formulations such as Max-Cut operate directly on 265 

pairwise relationships without requiring assumptions about population number, Hardy-Weinberg 266 

equilibrium, or linkage equilibrium. Quantum optimization algorithms are designed to explore 267 

rugged, high-dimensional solution landscapes that become increasingly difficult for classical 268 

heuristics as problem size grows. This distinction suggests that quantum approaches may prove 269 

most informative not for small mitochondrial datasets that were used here, but for multilocus 270 

SNP datasets generated via RAD-seq or whole-genome sequencing, where the dimensionality 271 

and complexity of genetic distance graphs increase dramatically.  272 

 273 
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Implications for Future Quantum-Enabled Population Genetics and Genomics 274 

The results presented here motivate several directions for future work. Increasing the QAOA 275 

depth parameter (p) will allow exploration of more expressive quantum circuits and may 276 

improve solution quality for larger or more complex datasets. Systematic scaling analyses across 277 

increasing numbers of individuals and loci will be critical for identifying regimes where quantum 278 

optimization diverges from classical heuristics. Beyond Max-Cut, other graph-based 279 

optimization problems, such as community detection, minimum bisection, or modularity 280 

maximization, may offer alternatives formulations better aligned with specific biological data 281 

questions. Integrating multilocus distance measures or SNP-based similarity graphs represents a 282 

particularly promising avenue, as these datasets more fully capture population structure than 283 

single-locus mitochondrial markers.  284 

 More broadly, this work represents the first attempt to bridge evolutionary biology and 285 

quantum information science. In terms of contextualizing the role of quantum computing in 286 

biological data analysis, early-stage applications should focus on conceptual clarity, algorithmic 287 

transparency, and biological interpretability rather than premature claims of advantage. By 288 

providing a concrete, reproducible example of quantum optimization applied to population 289 

genetic data, this study establishes a foundation for interdisciplinary collaboration and positions 290 

population genetics, and evolutionary biology as a whole as a domain where quantum methods 291 

may eventually offer novel insights.  292 

 293 

 294 

 295 

 296 
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