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ABSTRACT

Population genetic structure is commonly inferred using statistical and ordination-based methods
that emphasize variance partitioning or likelihood-based clustering. While powerful, these
approaches may undersample the full space of possible population partitions, particularly in
systems characterized by weak genetic differentiation and high connectivity. Here, I present a
proof-of-concept framework that reframes population genetic distance data as a combinatorial
optimization problem, enabling structure to be interrogated through a distinct computational lens.
Pairwise genetic distances derived from mitochondrial COI sequences of the shell-boring
polychaete Polydora websteri are represented as a weighted graph and optimized using a
quantum-inspired implementation of the Max-Cut problem via the Quantum Approximate
Optimization Algorithm (QAOA). Using small, tractable datasets, I demonstrate that this
approach recovers partitions consistent with classical analyses without claiming improved
inference or computational advantage. Rather, the contribution of this work lies in establishing a
transparent and reproducible mapping between population genetic distance structure and
quantum-ready optimization frameworks, providing methodological groundwork for future

studies using high-dimensional genomic SNP data.
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I. INTRODUCTION

Population genetic inference underpins a wide range of biological applications, from
reconstructing evolutionary history and identifying barriers to gene flow, to informing
conservation planning and managing biological invasions [1 —4]. Classical population genetic
analyses rely on a well-established toolkit which includes summary statistics such as Fst
(Wright’s fixation index), ordination methods such as principal component analysis (PCA),
clustering approaches and phylogeographic reconstruction, to identify genetic structure and
connectivity among populations [5 — 8]. For decades, these methods have proven powerful and
interpretable, particularly for small to moderate datasets and simple demographic scenarios.
However, as genomic datasets continue to grow in size and complexity, there is increasing
interest in alternative computational frameworks that can interrogate genetic structure in
fundamentally different ways [9 — 11].

Recent advances in quantum information science have opened the possibility of applying
quantum algorithms to hard optimization problems that arise across scientific domains [12 — 15].
In particular, combinatorial optimization problems, many of which are NP-hard, are central to
tasks such as graph partitioning, clustering, and network analysis [15]. Once such problem is
Max-Cut, which seeks an optimal bipartition of a weighted graph that maximizes the sum of
edge weights crossing the partitioning [12, 13, 17]. Max-Cut is a canonical benchmark problem
in quantum computing and has motivated the development of variational quantum algorithms
such as the Quantum Approximate Optimization Algorithm (QAOA) [16 — 18].

Here, I explore the use of Max-Cut as a conceptual bridge between population genetic
distance data and quantum optimization. Genetic distance matrices, derived from DNA sequence

data, can be naturally represented as weighted graphs, where nodes correspond to individuals or
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populations and edge weights reflect genetic divergence. Casting genetic structure inference as a
graph partitioning problem allows the application of quantum optimization techniques that differ
fundamentally from classical population genetic workflows. Importantly, this approach does not
seek to replace existing statistical models of population history, but rather to evaluate whether
quantum algorithms can uncover structure through a distinct computational lens.

In this study, I present a proof-of-concept application of QAOA to genetic distance data
derived from mitochondrial COI gene sequences of the shell-boring polychaete worm Polydora
websteri. Polydora is a marine parasite that infects commercially reared shellfish such as oysters
and scallops, and has been shown to exhibit low genetic differentiation and high haplotype
sharing across global geographic regions [19]. Using small tractable sample sizes, I demonstrate
how genetic distances can be encoded into a Max-Cut formulation and optimized using quantum
circuits executed on quantum simulators. I explicitly compare quantum-derived partitions with
exact classical solutions, emphasizing algorithmic behavior, convergence properties, and circuit
depth (p-level) rather than biological novelty.

Importantly, the goal of this study was not to supplant established population genetic
methods, nor to claim superior biological inference at present. Rather, the novelty lies in the
explicit mapping of population genetic distance structure to a quantum-ready optimization
framework and the demonstration that such mappings are feasible, interpretable, and
reproducible using existing quantum software infrastructure. This work provides a foundation for
future investigations using larger multilocus datasets—such as RAD-seq—derived SNP
matrices—where the combinatorial complexity of population partitions may exceed the practical

limits of classical approaches.
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II. METHODS

Study System and Genetic Distance Data

Mitochondrial cytochrome c oxidase subunit I (COI) sequence data for the shell-boring
polychaete Polydora websteri were retrieved from the NCBI GenBank database. A total of
twelve individuals were selected, representing four geographically distinct regions: Cape Cod,
Massachusetts, USA; South Africa; China; and Australia (three individuals per population).
Previous population genetic studies on P. websteri have reported extensive haplotype sharing and
global homogenization among these regions along with low levels of genetic differentiation,
consistent with widespread anthropogenic-mediated dispersal and high connectivity [19].
Sequences were aligned using the MAFFT algorithm, and pairwise genetic distances were
calculated under the kimura-2-parameter (K2P) substitution model using the Biopython library
[20]. The resulting genetic distance matrix represents pairwise evolutionary divergence among
sampled individuals and serves as the sole biological input to the quantum optimization
framework described below. No demographic parameters or population genetic models were

assumed beyond the computation of pairwise distances.

Graph Representation of Genetic Distances

Pairwise genetic distances were represented as a weighted, undirected graph G = (¥, E), where
each node v; € V corresponds to an individual/sample and each edge e;; € E connects
individuals i and j. Edge weights were defined as the normalized genetic distance between the
corresponding pair of individuals, such that larger weights reflect greater genetic divergence.
To ensure numerical stability and facilitate comparison across datasets, the distance matrix was

normalized by its maximum value such that all edge weights lie in the interval [0, 1]. Missing or
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undefined distances (e.g., due to alignment gaps) were conservatively set to zero, effectively
removing their contribution to the optimization objective. This graph-based representation allows
genetic structure inference to be reframed as a combinatorial optimization problem, independent

of explicit population genetic assumptions.

Max-Cut Formulation

Genetic structure inference was formulated as a Max-Cut problem, a canonical NP-hard
optimization task. Given the weighted graph described in the previous section, the objective is to
partition the nodes into two disjoint sets such that the sum of edge weights crossing the partition
is maximized.

Formally, for a binary assignment vector x € {0,1}", the cut value is defined as:

C(x) = Yicjwij - 1(x; # x;7),

where w;; denotes the normalized genetic distance between nodes i and j.

This formulation does not assume that the biological populations are bifurcating or that two
clusters represent true biological evolutionary units; rather, it provides a mathematically well-
defined optimization landscape for evaluating how quantum algorithms partition population
genetic distance graphs.

Exact Classic Optimization

For small datasets (n < 12), the Max-Cut problem was solved exactly used brute-force
enumeration of all possible binary partitions, fixing one node to remove symmetry between

equivalent cuts. This provided the true global optimum against which quantum-derived solutions
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could be evaluated. Exact solutions were used solely for validation purposes and were not

feasible for large datasets due to the exponential growth of the search space.

Quantum Optimization via QAOA

Quantum optimization was performed using the Quantum Approximate Optimization Algorithm
(QAOA). QAOA is a variational, hybrid quantum-classical algorithm designed to approximate
solutions to combinatorial optimization such as Max-Cut. The Max-Cut objective was encoded
into a problem Hamiltonian acting on n qubit, where each qubit represents the binary assignment
of a node in the graph. The algorithm alternates between applying the problem Hamiltonian and
a mixing Hamiltonian for a specific number of layers, p, with each layer parameterized by angles
Y and .

In this study, QAOA circuits were constructed manually to ensure compatibility with
current quantum simulation backends. Circuits were executed using Qiskit’s Aer simulator, and
parameter optimization was performed using COBYLA classical optimizer. For all reported
results, we used p = 1, corresponding to a single alternation layer, to maintain circuit simplicity

and interpretability.

Sampling and Solution Extraction

After parameter optimization, the final QAOA circuit was sampled to generate a distribution over
bitstrings corresponding to candidate cuts. The expected cut value was computed from the full
distribution, while the best sampled bitstring was identified and evaluated using the classical cut

objective. Quantum-derived solutions were compared to exact classical optima in terms of cut
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value and node assignments, without post hoc adjustment or biological interpretation. A

summary of the analytical pipeline is shown in figure 1.

A. Sanger COI sequence input (aligned) B. Pairwise genetic distance matrix_ C. Weighted graph from distance

WILETEUETETT | °
TTATTACCGTAATTTTA TTAATTC'!CGC ®
CapeCods TTATTACCETAATTTTATTAATTCTC Q@
CapeCod2 TTATTACCEBTAATTTTATTAATTCTC
CapeCod3 TTATTACCTAATTTYA‘I’TAATYCTC .
SouthAfrical TTATTACCEGTAATTTTATTAATTCTC ®
SouthAfrica? TTATTACCGTAATTTTATTAATTCTC
SouthAfrica3 TTATTACCGTAATTTTATTAATTCTC
Chinal TTATTACCGTAATTTTATTAATTCTCG (S
China2 TTATTACCGTAATTTTATTAATTCTCG .
China3 TTATTACCGTAATTTTATTAATTCTC
Australiel  TTATTACCGTAATTTTATTAATTCTC @

g 4 @

Australia2 TTATTACCTAATTTTATTAATYCTC
Australia3 T‘rATTACcTAATTTTATTAATTCTC CA .

D. Max-Cut Partition E. QAOA Solver (conceptual circuit)
Group A Group B q0: _E_{ Cost (Y) ]—{ Mixer (B) H Meas ]-—— 0/1 (A/B)
® ql: Cost (Y) }—{ Mixer (B) H Meas }— 0/1 (A/B)

a2 [ H J—{ Cost(v) |— Mixer(®) }-{meas}— 0/1(a/B)
a3: {H }—{ Cost(v) |— Mixer () |{Meas }— 0/1(A/B)

Figure 1. Conceptual pipeline for applying quantum optimization to population genetic distance data. (A)
Multiple sequence alignment of mitochondrial cytochrome c oxidase I (COI) sequences from
geographically distinct populations of Polydora websteri. (B) Pairwise genetic distance matrix computed
under the Kimura-2-parameter (K2P) model and normalized to the interval [0,1]. (C) Weighted, undirected
graph representation of genetic distances, where nodes correspond to individual sequences and edge
weights reflect normalized pairwise genetic distances. (D) Formulation of genetic structure inference as a
Max-Cut optimization problem, in which nodes are partitioned into two groups such that the sum of edge
weights crossing the partition is maximized. Node layout is schematic and does not imply spatial or
evolutionary proximity. (E) Conceptual depiction of the Quantum Approximate Optimization Algorithm
(QAOA) applied to the Max-Cut problem; qubits are initialized in superposition, evolved under cost (y)
and mixer () operators, and measured to produce bitstrings encoding candidate partitions with the highest-
scoring partition retained (partition A or B).

Software and Reproducibility.
All analyses were implemented in Python using NumPy and Qiskit [19, 20]. Scripts for loading
genetic distance matrices, constructing optimization problems, executing QAOA circuits, and

evaluating results were written to be fully reproducible and platform independent. All

computations were performed on a classical macintosh workstation using quantum simulators;
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no access to physical quantum hardware was required. All datasets including the aligned DNA
sequence file, distance matrix and python scripts are available via Github

(https://github.com/parasiteguy/population-genetic-max-cut. git)

II1. Results
Pairwise K2P genetic distances computed from COI sequences of Polydora websteri exhibited
low overall divergence, consistent with previous population genetic analyses reporting extensive
haplotype sharing and weak geographic structure. Normalization of the distance matrix yielded a
dense, weighted graph in which most edges carried small but nonzero weights, reflecting shallow
differentiation among individuals across sampling regimes. This graph representation provided a
suitable test case for evaluating whether quantum optimization recovers structure consistent with
classical expectations under conditions of genetic homogeneity.

For the dataset consisting of 12 individuals sampled across four geographic regions (Cape
Cod, South Africa, China, and Australia), the Max-Cut problem was solved exactly using brute-
force enumeration. The optimal partition maximized the sum of normalized genetic distances
across the cut and resulted in a highly asymmetric split, separating two Cape Cod individuals
from the remaining 10 sequences. The exact solution achieved a maximum cut value of 9.99
(normalized units). Importantly, this portion did not correspond to an ecologically interpretable
population split and instead reflects the optimization objective acting on subtle distance variation
within an otherwise homogenous dataset.

The same Max-Cut problem was solved using the Quantum Approximate Optimization
Algorithm (QAOA) with a single alternation layer (p = 1) executed on a classical quantum

simulator. Parameter optimization converged to a set of angles Y and 3 that maximized the
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expected cut value under the QAOA ansatz. The optimized quantum stated yielde an expected
cut value of 6.57, lower than the exact optimum, as expected for shallow-depth QAOA.
However, sampling from the optimized quantum circuit produced bitstrings corresponding to the
exact optimal cut identified by the brute-force classic solver. Thus, despite the reduced expected
value at p = 1, QAOA successfully recovered the globally optimal solution through probabilistic
sampling.

The best quantum-derived partition was identical to the exact classical Max-Cut solution
in both cut value and cluster membership. This result demonstrates that, even at minimal circuit
depth and without quantum advantage, the Q4OA framework can faithfully encode and recover
optimization structure present in genetic distance graphs. Notably, the quantum optimization did
not reveal population structure inconsistent with classical analysis for this dataset. Instead, the
quantum solution reproduced the same weakly structured partition implied by low genetic
divergence and minimal classic population differentiation. These results confirm that quantum
optimization can be applied to population genetic distance matrices in a mathematically

consistent and computationally tractable manner using existing quantum software infrastructure.

IV. Discussion

This study demonstrates that population genetic structure inference can be reformulated as a
combinatorial optimization problem and addressed using quantum-inspired methods. By
representing genetic distance matrices as weighted graphs and applying Max-Cut optimization, a
statistical inference task was translated into a problem class that is native to quantum algorithms.
This reframing is conceptually distinct from classical population genetic analyses such as F'st,

Analysis of Molecular Variance (AMOVA), PCA or clustering-based methods (e.g.
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STRUCTURE), which rely on variance partitioning, eigen-decomposition, or likelihood-based
inference [7, 23]. In contrast, the Max-Cut formulation seeks global partitions that maximize
pairwise genetic dissimilarity across groups, providing an alternative lens through which genetic

structure can be interrogated.

Interpretation of Quantum Results in a Biologically Homogenous Dataset

Application of both exact classical Max-Cut and shallow-depth QAOA to COI data from
Polydora websteri recovered equivalent partitions characterized by weak and biologically
uninformative splits. This outcome is consistent with prior analyses of the species that reported
extensive haplotype sharing and low geographic differentiation across this species’ range [19].
Perhaps more importantly, the quantum approach did not produce spurious or contradictory
structure relative to classical methods. Instead, it reproduced the same absence of meaningful
population subdivision, indicating that quantum optimization behaves sensibly when applied to
biologically homogenous datasets. This result reinforces that the framework does not artificially
impose structure where none exist. At the same, the ability of QAOA to recover the exact optimal
cut through probabilistic sampling — despite lower expected objective valuesatp =1 —
demonstrates that quantum variational algorithms can faithfully encode and explore genetic

distance landscapes.

No Claim of Quantum Advantage
I should explicitly note here that this work does not claim quantum advantage, improved
biological inference, or computational speedup. All quantum computations were executed using

classical simulators and the problem size (12 individuals representing four populations — three

11
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per population) remains well within the tractable regime of brute-force classical solvers. Rather,
the contribution of this study is methodological: it establishes a clear, reproducible mapping
between population genetic data structures and quantum optimization frameworks, and it
validates that this mapping behaves consistently with biological expectations under controlled
conditions. Such groundwork is essential before more ambitious claims regarding scaling

behavior, advantage, or discovery can be credibly assessed.

Why Classical Methods May Miss Structure in High-Dimensional Regimes

Classical population genetic tools are highly effective for many applications, but they often rely
on heuristics or dimensionality reductions that may obscure complex or weakly expressed
structure in large, multilocus datasets [24]. For example, PCA and related methods emphasize
variance along dominant axes, potentially overlooking subtle but globally optimal partitions.
Similarly, likelihood-based clustering methods can be sensitive to model assumptions and
initialization.

In contrast, combinatorial optimization formulations such as Max-Cut operate directly on
pairwise relationships without requiring assumptions about population number, Hardy-Weinberg
equilibrium, or linkage equilibrium. Quantum optimization algorithms are designed to explore
rugged, high-dimensional solution landscapes that become increasingly difficult for classical
heuristics as problem size grows. This distinction suggests that quantum approaches may prove
most informative not for small mitochondrial datasets that were used here, but for multilocus
SNP datasets generated via RAD-seq or whole-genome sequencing, where the dimensionality

and complexity of genetic distance graphs increase dramatically.
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Implications for Future Quantum-Enabled Population Genetics and Genomics

The results presented here motivate several directions for future work. Increasing the QAOA
depth parameter (p) will allow exploration of more expressive quantum circuits and may
improve solution quality for larger or more complex datasets. Systematic scaling analyses across
increasing numbers of individuals and loci will be critical for identifying regimes where quantum
optimization diverges from classical heuristics. Beyond Max-Cut, other graph-based
optimization problems, such as community detection, minimum bisection, or modularity
maximization, may offer alternatives formulations better aligned with specific biological data
questions. Integrating multilocus distance measures or SNP-based similarity graphs represents a
particularly promising avenue, as these datasets more fully capture population structure than
single-locus mitochondrial markers.

More broadly, this work represents the first attempt to bridge evolutionary biology and
quantum information science. In terms of contextualizing the role of quantum computing in
biological data analysis, early-stage applications should focus on conceptual clarity, algorithmic
transparency, and biological interpretability rather than premature claims of advantage. By
providing a concrete, reproducible example of quantum optimization applied to population
genetic data, this study establishes a foundation for interdisciplinary collaboration and positions
population genetics, and evolutionary biology as a whole as a domain where quantum methods

may eventually offer novel insights.
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