

1 **Title:**

2 An analysis of passerine egg traits across the city mosaic: Urbanisation does not affect egg size
3 and pigmentation patterns

4

5 **Authors:**

6 Ignacy Stadnicki^{a*,f,1}, Michela Corsini^{b,2}, Klaudia Szala^{c,d,3}, Andrew Gosler^{e,f,4} & Marta
7 Szulkin^{a,5}

8

9 **Affiliations:**

10 *^aInstitute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of
11 Biology, University of Warsaw, Warsaw, Masovian Voivodeship, Poland*

12 *^bInstitute for Alpine Environment, Eurac Research, Viale Druso 1, Bolzano, Italy*

13 *^cDepartment of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University,
14 Poznań, Poland*

15 *^dDepartment of Biology, George Mason University, Fairfax, VA, USA*

16 *^eEdward Grey Institute of Field Ornithology, Department of Biology, University of Oxford,
17 Oxford, United Kingdom*

18 *^fInstitute of Human Sciences, School of Anthropology & Museum of Ethnography, University
19 of Oxford, Oxford, United Kingdom*

20

21 **ORCID:**

22 ¹ 0000-0002-0526-9610

23 ² 0000-0001-5196-086X

24 ³ 0000-0003-1697-2149

25 ⁴ 0000-0002-8074-8064

26 ⁵ 0000-0002-7355-5846

27

28 **Corresponding author email:**

29 i.stadnicki@student.uw.edu.pl

30

31 **ABSTRACT**

32

- 33 1. Rapid urbanisation provides remarkable opportunities to study how sudden, extreme
34 changes impact wildlife. Compared to natural areas, cities are characterised by
35 factors affecting both abiotic (e.g. climate, pollution, habitat fragmentation) and
36 biotic (e.g. Normalized Difference Vegetation Index (NDVI), species composition,
37 phenology) components of the ecosystem, ultimately changing the ecological and
38 evolutionary dynamics of those habitats. Analogously to many other taxonomic
39 groups, urban birds differ from rural birds in morphology, behaviour and
40 reproductive patterns. Yet potential links between urbanisation and avian egg traits
41 — a key aspect of the avian life-cycle — remain under-researched. Given the limited
42 availability of primary natural calcium sources (snails) in cities, eggs from heavily
43 urbanised areas were expected to be smaller and more pigmented, indicating thinner
44 shells and lower overall egg quality.
- 45 2. To better understand how urbanisation affects eggs, data on 718 great tit (*Parus*
46 *major*) eggs from 90 clutches, spread across eight study sites in a city mosaic, were
47 collected for two breeding seasons. All clutches were photographed using a
48 standardised approach, and further analysed using digital imaging and visual scoring
49 to assess egg volume and pigmentation patterns. Urbanisation was quantified as the
50 percentage of Impervious Surface Area (ISA) in the vicinity of each clutch via
51 satellite imagery.
- 52 3. In line with some of the earlier studies conducted on semi-natural bird communities,
53 egg volume covaried with lay date and female body condition, while for both egg
54 volume and egg pigmentation (*spots percentage*) — a year effect was detected.

55 However, in contrast with predictions, there was no association between
56 urbanisation and the examined egg traits.

57 4. While urban clutches are consistently smaller, this study shows that eggs as such are
58 similar to those found in rural habitats in terms of volume and pigmentation patterns.
59 These results suggest that urban-driven environmental pressures may not be as
60 strong or directional during the egg laying phase as they are at later stages of
61 reproduction, and highlight the complexities of urban ecological and evolutionary
62 dynamics.

63

64 **Key words:** environmental constraints, calcium, egg pigmentation, egg volume, great tit,
65 protoporphyrin IX, reproduction, urbanisation

66

67 **INTRODUCTION**

68

69 Cities provide remarkable opportunities to study how extreme environmental changes can
70 impact organismal biology, giving us both a better understanding of eco-evolutionary processes
71 and consequences that anthropogenic pressures may have (Rivkin et al., 2019). Among other
72 factors, urbanisation is characterised by a large amount of impervious surfaces (Szulkin et al.,
73 2020) which translates into highly fragmented habitats, higher average temperatures (known as
74 urban heat island effect; Oke, 1973), lower capacity for water retention, and fewer biologically
75 active areas. Ultimately, such changes are known to affect eco-evolutionary dynamics, species
76 composition, abundance, interactions (Des Roches et al., 2020), and even genetic makeup
77 (Bosse et al., 2017).

78 Due to its common presence in both rural habitats and cities (Bańbura & Bańbura,
79 2012), the great tit (*Parus major*) is a valuable model organism for urban biology research.
80 Over the years, much work has demonstrated the impact of urbanisation on a large number of
81 this passerine's traits, including changes in morphology (Thompson et al., 2022), behaviour
82 (Corsini et al., 2022), survival (Corsini et al., 2020; Corsini & Szulkin 2025) and reproduction
83 (Charmantier et al., 2017). Thus, urban tits start laying their clutches earlier, often have fewer
84 eggs (Charmantier et al., 2017), hatchlings and fledglings (Corsini & Szulkin, 2025) relative to
85 their rural conspecifics. However, only a few studies to date investigated the potential
86 associations between urbanisation and egg size (Hörak et al., 1995; Bańbura et al., 2010; Bailly
87 et al., 2016; Hargitai et al., 2016a) or pigmentation (Hargitai et al., 2016a). More generally,
88 great tit egg traits have been shown to be associated with the immediate environment -
89 specifically, calcium availability (Mänd et al., 2000; Gosler et al., 2005, Gosler & Wilkin, 2017)
90 and were proposed as predictors of clutch quality (Sanz & García-Navas, 2009). Namely, egg
91 size has been shown to positively covary with calcium availability (Mänd et al., 2000), hatching

92 success, nestling development and survival (meta-analysis, Krist, 2011), while pigmentation
93 patterns were found to correlate with calcium availability, eggshell thickness (Gosler et al.,
94 2005), incubation period length, hatching success, and nestling morphology (Sanz & García-
95 Navas, 2009).

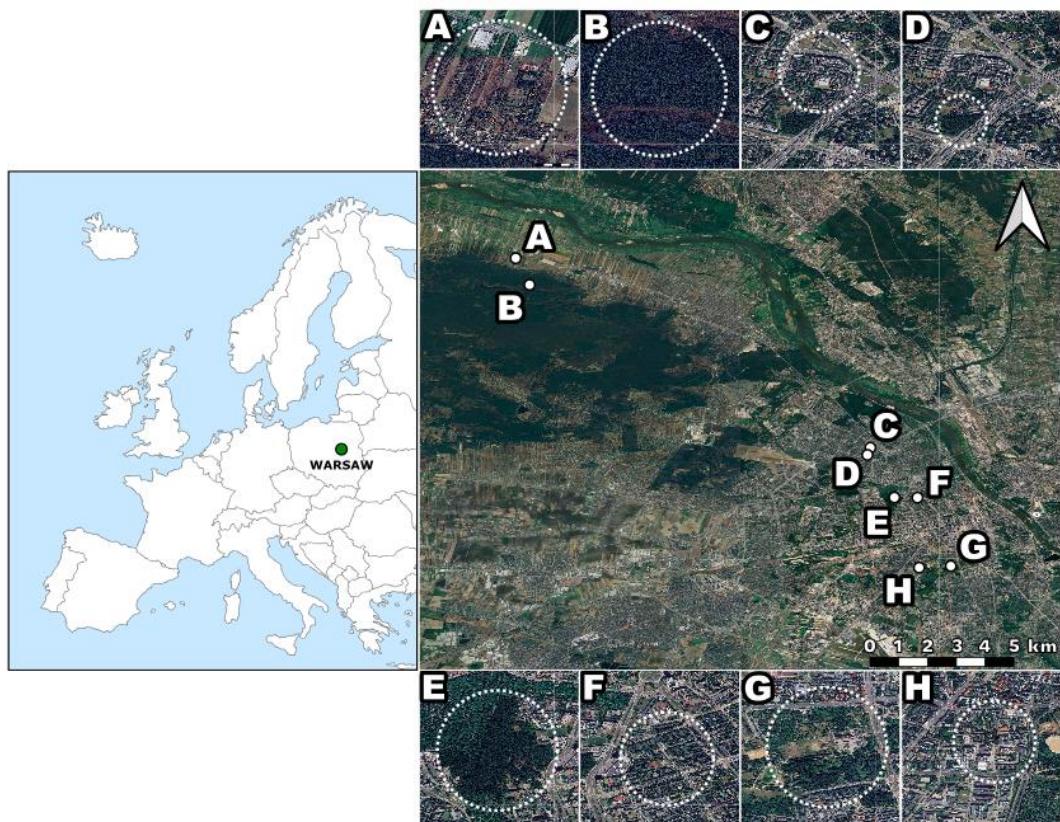
96 Great tits lay one egg per day, with typically 5 to 12 of them in a clutch. Each egg
97 weighs *c.*1.2-2.0 g (Gosler et al., 2005), and has a volume of $1.50 \pm 0.12 \text{ cm}^3$ (Encabo et al.,
98 2001). The eggshell is white with reddish spots (the pigment is protoporphyrin IX, produced
99 by females in the biosynthesis of blood haem (Burley & Vadehra, 1989)). The primary
100 component of the eggshell is calcium carbonate (Romanoff & Romanoff, 1949). A single blue
101 tit (*Cyanistes caeruleus*) clutch can contain more calcium than the entire female skeleton
102 (Perrins & Birkhead, 1983). Since tits do not store calcium in their bones for egg laying
103 (Graveland & Gijzen, 1994), it must be obtained daily from the environment, making it a
104 limiting resource in egg formation (Graveland & Gijzen, 1994, Graveland & Berends, 1997,
105 Graveland & Drent, 1997). Hence, breeding in calcium-poor habitats can have detrimental
106 consequences for bird reproduction (Reynolds & Perrins, 2010). The main source of calcium
107 for great tits in rural environments (such as woodlands and forests) are small snails (Graveland,
108 1996), which may be negatively affected by urbanisation both in terms of species diversity
109 (Čiliak et al., 2024) and abundance (Perez et al., 2021), although abundance patterns are
110 species-specific (Saeki et al., 2020).

111 Snail abundance correlates strongly with soil-calcium (Jubb et al., 2006). In tits, calcium
112 availability in the immediate environment has been shown to be reflected in both egg size and
113 pigmentation patterns in non-urban habitat. Thus, eggs in calcium-poor areas are smaller (Mänd
114 et al., 2000; Hargitai et al., 2013; Bańbura et al., 2020), with pigment being darker and more
115 aggregated around the broad end of the egg (Gosler et al., 2005; Gosler & Wilkin, 2017; Briggs

116 & Mainwaring, 2017; see Fig.2 for an example of pigment variation within and between
117 clutches).

118 While previous researchers did not find urban-driven differences in great tit egg size
119 (Hörak et al., 1995; Bańbura et al., 2010; Bailly et al., 2016; Hargitai et al., 2016a) or
120 pigmentation patterns (Hargitai et al., 2016a), the studies were methodologically limited. Thus,
121 in earlier studies urbanisation was defined using habitat dichotomy (urban vs. rural), an
122 approach that does not necessarily reflect the ecological structure of the urban mosaic (Szulkin
123 et al., 2020). Most importantly, to date, only one study examined pigmentation patterns in an
124 urban-rural contrast, and was based on a small sample size (Hargitai et al., 2016a; a total of 37
125 eggs from 37 clutches) — thus, finer scale environmental data and larger sample sizes are
126 needed to uncover potential urban-driven variation in egg traits.

127 The aim of this study is to quantify the impact of urbanisation on egg size and
128 pigmentation patterns (proposed indicators of clutch quality), which is currently overlooked in
129 the field of urban ecology. To achieve this goal, data were collected over two years on 718
130 eggs, from 90 clutches, spread across eight diverse study sites within the urban mosaic of
131 Warsaw, Poland. Importantly, urbanisation was quantified at high resolution with the use of
132 remote sensing imagery, thus acknowledging the fine-scale environmental variability occurring
133 in cities. Considering the amount of impervious surface area (ISA) in the city and the well
134 documented detrimental impact of urbanisation on nestling development (e.g. Chamberlain et
135 al., 2009; Bailly et al., 2016; Corsini et al., 2020), we predicted that eggs found in highly
136 urbanised areas would be smaller and more pigmented, indicating lower clutch and habitat
137 quality.


138

139 **METHODS**

140

141 **Study sites**

142 This study is part of a long-term research project investigating the ecology and evolution of
143 passerine birds in the urban mosaic. Initiated in 2016, the project consists of 500 woodcrete
144 nestboxes (Schwegler, type 1b with 32 mm entrance) arranged in a grid of 50 meters at eight
145 study sites across the Capital City of Warsaw, Poland, each varying in urbanisation levels (see
146 Fig.1). For this study, data were collected over two breeding seasons, in 2021 and 2022. Brief
147 descriptions of each study site can be found in the Supplementary Materials (Text S1).

148

149 **Figure 1.** Map of study sites located in a gradient of urbanisation in the capital city of Warsaw,
150 Poland. These include: a suburban village (A), a national park (B), two residential areas (C and
151 F), two urban woodlands (D and E), an urban park (G) and a university campus (H). Satellite
152 images acquired from Google Maps (2024).

153

154 **Quantifying urbanisation**

155 The definition of urbanisation is not agreed unanimously among researchers (Szulkin et al.,
156 2020). Urbanisation is increasingly quantified using continuous parameters, such as land-cover
157 classes, specific environmental variables or pollution gradients, which allows for finer inference
158 than qualitative urban-rural assessments (Szulkin et al., 2020). Here, urbanisation was
159 quantified using the amount of Impervious Surface Area (ISA) as a proxy - that is all built-up
160 areas, such as infrastructural networks and buildings, around the nestbox vicinity. ISA is a
161 reliable and repeatable indicator of urbanisation worldwide (Szulkin et al. 2020; Murray-Stoker
162 et al., 2025). ISA also covaries positively with other urban features, such as temperature, sound
163 or noise pollution, and negatively covaries with NDVI (Normalized Difference Vegetation
164 Index, a measure of vegetation greenness) and tree cover (Szulkin et al. 2020). The percentage
165 of ISA was measured in a 100 m radius for each nestbox using the open source software QGIS
166 (version 3.40), with a 20-m-pixel resolution extrapolated via satellite imagery from 2015
167 (Copernicus Land Monitoring Services, <https://land.copernicus.eu/sitemap>) as described in
168 Szulkin et al. 2020. The 100 m radius also corresponds to a conservative estimate of distance
169 typically flown from the nest by great tits to forage for food for their chicks in urban settings
170 (Seress et al., 2025).

171

172 **Life history data collection and bird measurements**

173 Starting from the last week of March, all nestboxes across the study sites were visited weekly
174 to monitor occupancy. Once incubation started, hatching date was estimated (12 days from
175 clutch completion) (Álvarez & Barba, 2014). Nestboxes were visited on the expected hatching
176 date (± 1 day) and every other day thereafter until hatching (hatching day=day 1) or until the
177 nest was considered deserted. Each parent bird was caught once between chick day 10 and 15,
178 at the nestbox with traps or by manually blocking the nestbox entrance. All birds were ringed

179 using standard-numbered metal rings supplied by the Polish Ringing Centre (Museum and
180 Institute of Zoology, Polish Academy of Sciences). All recaptures from previous years were
181 noted. Adult biometric measurements were collected as follows: birds were sexed and aged as
182 first year breeders or older (two age levels) according to plumage characteristics (Demongin,
183 2016), wing length was measured to the nearest 1.0 mm with a wing-ruler, tarsus to the nearest
184 0.1 mm with a manual calliper, and weight was recorded to the nearest 0.1 g with a digital scale.
185 In this study, only data on great tit first broods, defined as clutches that started within 30 days
186 from the recording of the first egg at a given site and year (Van Balen, 1973), were included.

187

188 **Egg photography**

189 To collect data on egg characteristics, clutches were photographed during the incubation phase,
190 around 10 days after clutch completion. Pictures of eggs were taken using a Canon EOS 1100D
191 reflex camera with a Canon EF-S 18-55 mm f/3.5-5.6 IS II lens, set on a tripod. Eggs were put
192 in shallow pits on a custom-made tray. The tray was fixed to a small tripod and equipped with
193 grey colour standards (X-Rite ColorChecker Classic Mini, X-Rite, Grand Rapids, USA) and a
194 scale bar (5 cm with 1 mm divisions) (Fig. 2). Using a round spirit level, both the camera and
195 the tray were aligned perpendicularly to the ground. All clutches were photographed between
196 9:00 AM and 4:15 PM, when the sun was not covered by clouds. To avoid overexposure,
197 equipment was set with a photographer casting a shadow on the whole tray with eggs (following
198 Troscianko et al., 2016). Aperture f/8, ISO 400 and focal length of 18 mm were used. Only
199 shutter speed was manipulated to adjust the duration of light exposure. Exposure bracketing
200 with ± 1 step was used. All images were saved in RAW format. To generate a full record of egg
201 speckling, eggs were first photographed from one side, then turned 180° sideway and
202 photographed again. Furthermore, eight clutches (61 eggs) were photographed on two separate
203 days to check for data collection repeatability. Eggs that were to be photographed again were

204 numbered, so that they could be identified later. To test for a potential effect of the placement
205 of the eggs on the tray on the measurements, they were arranged differently (i.e. put in different
206 pits) between the trials and the order was recorded for further repeatability estimates.

207

208

209 **Figure 2.** Example of great tit clutches differing in pigmentation patterns. Top line - a lightly
210 pigmented clutch with mostly medium and small sized spots, laid in an *Urban park*. Bottom
211 line - heavily pigmented clutch with a lot of large spots laid in a *Natural forest*.

212

213 **Digital imaging**

214 Pictures were processed using the ImageJ software (version 1.54d) with MICA Toolbox plug-
215 in designed for research in the field of visual ecology (Troscianko & Stevens, 2015a). Using
216 the Photo Screening tool, the brightest and simultaneously not over-exposed images were
217 selected for both sides of the eggs for all clutches. Second, images were calibrated with respect
218 to the darkest and the brightest grey standards (3.22% and 90.03% of light reflectance
219 respectively) and a 10 mm scale bar was selected to set the scale.

220 Using the multipoint tool, each egg was outlined using at least eight anchor points along
221 the egg's edges, which also provided data on egg *volume* (Troscianko, 2014). Afterwards, the
222 Scale Bar Calculator tool was used to obtain the minimum px/mm factor for the set of pictures
223 (10.7012 px/mm rounded down to 10.5 px/mm). This factor is needed to make pattern
224 measurements comparable between images and should always be rounded down (Troscianko
225 & Stevens, 2015b). Finally, colour and pattern were automatically measured using custom-
226 written scripts for the MICA Toolbox that segmented the egg image into spots and eggshell
227 background (Szala and Šulc, in prep). The following settings were used for the segmentation:
228 50 px radius for thresholding (Phansalkar et al., 2011), a difference of 128 px Gaussian blur
229 (Gómez et al., 2018) and the outline was shrunk by 10% of egg width to avoid measuring
230 shadows occurring at the egg's edges. Egg spot colour and the extent to which spots cover the
231 egg area (in %) were shown to best correlate with the concentration of protoporphyrin in great
232 tit eggshells (Wegmann et al., 2015; Hargitai et al., 2016b). For this reason, these two features
233 of eggshell coloration were measured: spot colour was calculated as the reflectance in the red
234 channel divided by the sum of reflectance in red, green and blue channels (*spot red chroma*
235 hereafter) and *spot percentage* as the eggshell area covered by spots divided by the whole
236 surface area of the egg side.

237 After normalisation, a significant portion of the eggs (N=c.320) were identified as
238 overexposed near the pointed end ('top'). To retain as large a sample size as reliably possible
239 and exclude overexposed regions, measurements were restricted to a sub-area of eggs. This sub-
240 area comprised 85% of every egg's width, 30% of its length and was positioned at the 0.6 of its
241 length (with 0 being the 'top' and 1 being the 'bottom' edge of the egg) and constituted c. 27%
242 (minimum=26.02%, median=26.82%, maximum=27.87%) of one side of the egg surface.
243 Overexposed pixels were counted in the sub-area and eggs with >0.5% of overexposed pixels
244 were excluded from further analyses (N = 29). Using pictures of clutches that were not
245 overexposed (N = 382 eggs from 46 clutches), the repeatability of pigmentation characteristics
246 between the whole egg surface and its sub-area was tested. Given good repeatability (R>0.820;
247 see Results), measurements of eggshell pigmentation (*spot red chroma* and *spot percentage*)
248 based on the sub-area of eggs were used in further analyses.

249 Data from clutches in which no egg was overexposed from either side (N=359 eggs
250 from 43 clutches) were extracted first and repeatability tests of egg traits between two sides
251 were performed (see Methods, Statistical analysis). The repeatability of egg volume was above
252 0.9 and the repeatabilities of pigmentation characteristics were above 0.8 (see Results).
253 Therefore, the rest of the clutches were imaged using just one picture (side) instead of two, and
254 data from only one side of each egg were used in the models.

255

256 **Visual scoring of egg pigmentation**

257 To retain comparability with earlier studies of egg pigmentation a method of visual egg
258 pigmentation scoring, following Gosler et al. (2000) was also applied. Each egg was visually
259 scored in three categories: pigment *intensity* (scored in 0.5 increments from 1 for palest to 5 for
260 the darkest), *distribution* (scored in 0.5 increments from 1 for > 90% of spots concentrated at
261 one end, to 5 for an evenly distributed) and *spot-size* (scored in 0.5 increments from 1 for small

262 spots, to 3 for large spots). All eggs were scored by the same observer, with the scores being
263 assigned using pictures of both sides of the egg. To test for within-observer repeatability of
264 scoring, the observer assessed one egg from each brood again, in a randomized order. To learn
265 more about different methods of assessing eggshell pigmentation and their limitations see
266 Brulez et al. (2014) and Stevens (2011).

267

268 **Statistical analysis**

269 All statistical analyses were performed in R (version 4.1.2). To test for repeatability of egg
270 *volume* and pigmentation between (1) sides of eggs, (2) between trials (i.e. same clutches
271 photographed twice on different days), (3) between two visual scoring sessions and (4) between
272 whole eggshell side and sub-area, the *rpt* function in the *rptR* package (version 0.9.22, Stoffel
273 et al., 2016, 2017) was used. *Egg ID* was used as a grouping factor for all tests. The confidence
274 interval was set to 0.95, number of bootstrap samples to 500, number of permutations to 0 and
275 Gaussian distribution was used. Repeatability reliability categories, based on R value, were
276 assigned following Koo & Li (2015).

277 To test for an association between egg traits (egg *volume* and pigmentation
278 characteristics: *spot red chroma*, *percentage*, *intensity*, *distribution* and *size*), urbanisation and
279 life-history traits, Generalized Linear Mixed Models (GLMMs) were fitted using Template
280 Model Builder (glmmTMB) (Brooks et al., 2017). For continuous predictors, mean-centered
281 values of *ISA* (%), *lay date* (date of the first egg laid in the clutch; starting from 1st of April
282 recorded as 1), *clutch size* and *female body condition* (calculated following Peig & Green, 2009)
283 were used. In terms of categorical variables, *year* was fitted as a fixed effect with two levels.
284 To avoid pseudoreplication, *clutch ID*, *site ID* and *female ID* were included as random effects,
285 accounting for eggs sampled within the same clutch and site and for females sampled in both
286 years, respectively. To detect potential multicollinearity issues, the *check_collinearity* function

287 was used (*performance* package, Fox & Weisberg, 2019): all VIF (variance inflation factor)
288 values were below 2 and therefore no continuous predictors were excluded. To verify model
289 fits and assumptions, the *DHARMAa* package was used (see Fig.S1) (Hartig, 2020). Data were
290 visualised using *ggplot2* (Wickham, 2011). Environmental categories used in Fig. 3 were
291 defined based on the median value of ISA for all clutches, i.e. *Low ISA*<median, *High*
292 *ISA*>median (see Results for details).

293

294 **RESULTS**

295 **Sample size and Impervious Surface Area**

296 Following digital processing, the final dataset included measurements from 718 eggs
297 from 90 broods. Final GLMMs included 568 eggs from 74 broods as data were unavailable for
298 16 females that were not caught or escaped before all measurements were performed. The
299 amount of Impervious Surface Area ISA (in %) in a 100 m radius around each clutch used in
300 this study varied from a minimum of 0.00% to a maximum of 60.73%, with an average at
301 12.73% and median at 4.73 %. For details see Table S1.

302

303 **Repeatability of egg traits**

304 The results of repeatability tests summarised in Table 1 were categorised following Koo & Li,
305 2015, i.e. R, less than 0.5 — poor, 0.5-0.75 — moderate, 0.75-0.9 — good, greater than 0.9
306 — excellent. The tests confirmed that egg traits have excellent (*volume*) or good (*spot red*
307 *chroma* and *percentage*) repeatability between egg sides. Importantly, the reliability (defined
308 as consistency of results when measurements are repeated under similar conditions) of both
309 digital and visual quantification methods were confirmed with good repeatability. Additionally,
310 both *spot red chroma* and *percentage* had good repeatability between the whole side of an egg

311 and its sub-area, which allowed for inclusion of eggs that were partially overexposed in the
312 analysis (for details, see Methods, Repeatability).

313

314 **Table 1**

315 Repeatability of egg traits regarding quantification and data collection methods: (1) sides of
 316 eggs, (2) between trials (i.e. same clutches photographed twice on different days), (3) between
 317 two visual scoring sessions and (4) between whole eggshell side and sub-area. Significance
 318 levels are indicated in **bold**: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Egg sides	R	SE	CI	p-value
N=359 x 2				
<i>Volume</i>	0.98	0.00	[0.98, 0.98]	<0.001***
<i>Spot red chroma</i>	0.83	0.02	[0.79, 0.85]	<0.001***
<i>Spot percentage</i>	0.83	0.02	[0.79, 0.86]	<0.001***
Trials	R	SE	CI	p-value
N=61 x 2				
<i>Volume</i>	0.79	0.05	[0.67, 0.87]	<0.001***
<i>Spot red chroma</i>	0.78	0.05	[0.66, 0.86]	<0.001***
<i>Spot percentage</i>	0.83	0.04	[0.73, 0.89]	<0.001***
Visual scoring	R	SE	CI	p-value
N=90 x 2				
<i>Intensity</i>	0.88	0.03	[0.82, 0.92]	<0.001***
<i>Distribution</i>	0.87	0.03	[0.80, 0.91]	<0.001***
<i>Spot size</i>	0.79	0.04	[0.70, 0.86]	<0.001***
Sub-area	R	SE	CI	p-value
N=382 x 2				
<i>Spot red chroma</i>	0.86	0.02	[0.79, 0.85]	<0.001***
<i>Spot percentage</i>	0.83	0.02	[0.79, 0.86]	<0.001***

321 **Covariation between urbanisation, egg traits and life-history traits**

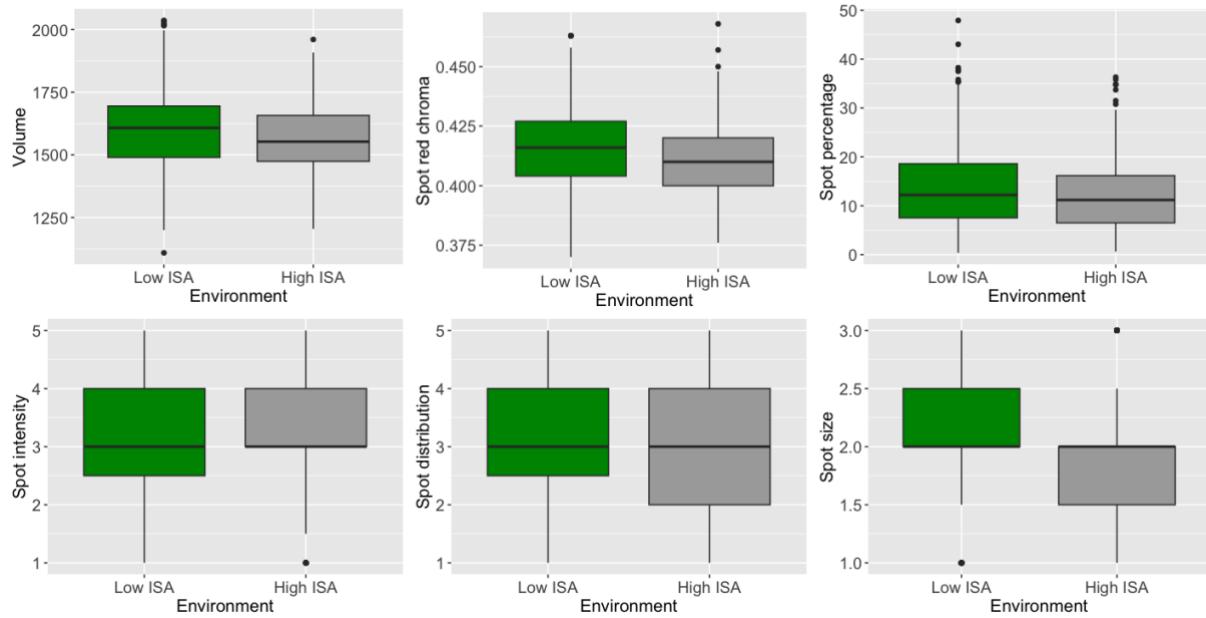
322 Urbanisation modelled as the amount of *ISA* in the nest vicinity was not associated with egg
323 *volume* (Table 2) or egg pigmentation traits (*spot red chroma*, *spot percentage*) as quantified
324 with digital imaging (Fig. 3, top line; Table S2). In contrast to a lack of urban-driven effects
325 on egg traits, egg *volume* covaried positively with *lay date* and *female body condition* (Table
326 1). Egg traits also varied between years: eggs were larger and less covered in spots in 2022 than
327 in 2021 (Table 1 & Table S2). Finally, *spot red chroma* was not associated with any of the
328 explanatory variables (Table S2).

329 Consistently with models using egg traits data quantified with digital imaging, models
330 using data based on visual egg pigmentation scoring (*spot intensity*, *distribution and size*) were
331 not influenced by urbanisation (*ISA*) (Fig. 3, bottom line; Table S2). The only association found
332 in all three models was a negative one, between *female body condition* and *spot intensity* (Table
333 S2).

334

335 **Table 2**

336 GLMMs with Gaussian distribution testing the association between egg *volume*, urbanisation
 337 and life-history traits, $N_{\text{eggs}}=568$. Continuous predictors were mean-centered (mc).
 338 Significance levels are indicated in bold: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.


Family: Gaussian, Random = Site ID (N=8) + Clutch ID (N=74) + Female ID (N=66)

Model structure (glmmTMB): volume ~ ISA_{mc} + Lay date_{mc} + Clutch size_{mc} + Female body condition_{mc} + Year

Volume	Estimate	SE	z-value	p-value
Intercept	1536.07	29.17	52.76	<0.001***
ISA	-0.25	1.02	-0.25	0.804
Lay date	6.72	2.82	2.38	0.017 *
Clutch size	5.51	9.40	0.59	0.558
Female body condition	32.65	15.10	2.16	0.03 **
Year	90.84	24.19	3.76	<0.001***

339

340

341

342 **Figure 3.** Comparison of six great tit egg traits between *Low ISA* and *High ISA* environments,
 343 when using digital quantification (top line) and visual scoring (bottom line); $N_{\text{eggs}}=568$. No
 344 significant effect of urbanisation was noted in either digital quantification of trait variation (egg
 345 *volume*, *spot red chroma*, *spot percentage*; see Table 2 and Table S2 for models) or visual
 346 scoring (egg spot *intensity*, *distribution* or *size*; see Table S2 for models).

347

348 DISCUSSION

349 Based on a two-year data set containing 568 eggs from 74 clutches, spread across 8 study sites
 350 differing in urbanisation levels, this study reports that while great tit egg *volume* and
 351 pigmentation patterns covary with life history variables (i.e. *lay date*, *female body condition*
 352 and *year*), these egg traits are not affected by urbanisation. Although literature for egg trait
 353 variation is available from rural habitats (see Introduction), knowledge about urban-driven
 354 variation is limited (Hörak et al., 1995; Bailly et al., 2016; Hargitai et al., 2016a; Bańbura et
 355 al., 2010). Moreover, to the best of the authors' knowledge, this is the first study on egg trait
 356 variation that incorporates a fine-scale spatial quantification of urbanisation: in this study, all
 357 analyses were based on the amount of impervious surface area in close nest vicinity, as opposed

358 to using dichotomical approaches (rural vs urban), commonly used in urban ecology and
359 evolution research. While analysing egg trait data, both digital and visual quantification
360 methods were applied in parallel. To confirm that the methods of data collection and analysis
361 were reliable, four repeatability tests regarding different aspects of the methodology were
362 performed, and confirmed a reliable quantification of egg trait variation (Table 1). Therefore,
363 this study offers valuable insight into the scope for detecting the potential effect of urbanisation
364 on eggs, a key aspect of bird reproduction.

365 Based on selected literature, Table 3 presents a summary of findings regarding egg size
366 and pigmentation and associated factors in great tits and blue tits. What emerges from the
367 current study and earlier research, is the strong heterogeneity in variables associated with egg
368 traits between studies. Thus, while some studies report specific associations, other studies fail
369 to report the same biological signal. Such inconsistencies in earlier research outcomes on egg
370 size have readily been pointed out by Encabo et al. (2001), as different trends could be found
371 in the same population in different years of study. Therefore, if possible, research on egg traits
372 should rely on large samples, spanning multiple years. Moreover, obtained results should be
373 interpreted cautiously.

374

375 **Table 3**

376 Summary of associations between great tit and blue tit egg traits and explanatory variables
 377 reported in selected literature. Associations (or lack thereof) as tested in this study are indicated
 378 in **bold**. As some studies used either egg volume or mass (which are highly correlated, $R=0.97$,
 379 Van Noordwijk et al., 1981) the collective category *egg size* was used. *Female condition* refers
 380 to either *body mass* or *tarsus length*, while *body condition* was used in this study.

	Egg size	Spot red chroma	Spot percentage	Spot Intensity	Spot distribution	Spot size
Lay date	Positive: This study Wilkin et al., 2009 Negative: Pitt et al., 2024 None: Eeva, 1995 Encabo et al., 2001 Hargitai et al., 2016c Järvinen & Pöylä, 1989 Szigeti et al., 2007	Positive: Negative: This study	Positive: Negative: Hargitai et al., 2016c None: This study Martínez-de la Puente et al., 2007	Positive: Negative: Gosler et al., 2000 Hargitai et al., 2016c None: This study Sanz & García-Navas, 2009	Positive: Gosler et al., 2000 Negative: None: This study Hargitai et al., 2016c Sanz & García-Navas, 2009	Positive: Negative: Gosler et al., 2000 None: This study Hargitai et al., 2016c
Clutch size	Positive: Encabo et al., 2001 Negative: Banbura et al., 2018 You et al., 2008 None: This study Eeva, 1995 Järvinen & Pöylä, 1989	Positive: Negative: Hargitai et al., 2016b None: This study Malinowska et al., 2023	Positive: Malinowska et al., 2023 Negative: None: This study Hargitai et al., 2016b Martínez-de la Puente et al., 2007	Positive: Negative: None: This study Gosler et al., 2000 Hargitai et al., 2016b Sanz & García-Navas, 2009	Positive: Sanz & García-Navas, 2009 Negative: None: This study Gosler et al., 2000 Hargitai et al., 2016b	Positive: Negative: None: This study Gosler et al., 2000 Hargitai et al., 2016b
Female condition	Positive: This study Järvinen & Pöylä, 1989 Ojanen et al., 1979 Negative: None: Szigeti et al., 2007	Positive: Negative: None: This study Hargitai et al., 2016b	Positive: Negative: Martínez-de la Puente et al., 2007 None: This study Hargitai et al., 2016b	Positive: Sanz & García-Navas, 2009 Negative: None: This study Hargitai et al., 2016b Sanz & García-Navas, 2009 None: Hargitai et al., 2016b	Positive: Negative: None: This study Hargitai et al., 2016b Sanz & García-Navas, 2009	Positive: Negative: None: This study Hargitai et al., 2016b
Year effect	Present: This study Encabo et al., 2001 Szigeti et al., 2007 Not present: Bañbura et al., 2018 Eeva, 1995 Järvinen & Pöylä, 1989	Present: Not present: This study	Present: Not present: Hargitai et al., 2016b	Present: Gosler et al., 2000 Hargitai et al., 2016b Not present: This study Sanz & García-Navas, 2009	Present: Gosler et al., 2000 Not present: This study Hargitai et al., 2016b Sanz & García-Navas, 2009	Present: Gosler et al., 2000 Not present: This study Hargitai et al., 2016b

381 None of the investigated egg traits were associated with urbanisation. This is in line
382 with previous studies on great tits, reporting that neither egg size nor pigmentation was
383 associated with urban habitat (Hörak et al., 1995; Bańbura et al., 2010; Bailly et al., 2016;
384 Hargitai et al., 2016a). Moreover, two of the studies incorporated direct eggshell thickness
385 measurements and also reported no differences between urban and rural habitats (Bailly et al.,
386 2016), or only marginal differences (Hargitai et al., 2016; $F_{1,35} = 4.53$, $P = 0.040$; mean \pm SD:
387 woodland: $79.1 \pm 3.0 \mu\text{m}$; urban: $81.6 \pm 3.8 \mu\text{m}$). In contrast, urban-driven differences in egg
388 size were found in blue tits, with larger eggs found in the urban habitat than in rural habitat
389 (Bailly et al., 2016; Bańbura et al., 2010), indicating a species-specific response in egg trait
390 variation in response to urbanisation. Therefore, results from this study and earlier studies in
391 the topic demonstrate that great tit eggs do not differ in terms of size and pigmentation patterns
392 between urban and rural environments.

393 Given that both egg size and pigmentation patterns were previously proposed as clutch
394 quality indicators as they are associated with hatching success (Sanz & García-Navas, 2009;
395 Krist, 2011), this study suggests that urbanisation does not necessarily affect egg quality in
396 great tits. Indeed, research conducted on the same population as this study, revealed that there
397 are no urban-driven differences in hatching success or in chick mass 1 day after hatching
398 (Corsini et al. 2020, Corsini & Szulkin 2025, Table S3). However, Bailly et al., (2016) and
399 Charmantier et al. (2017), did find a slightly lower hatching success in cities. Interestingly,
400 urban clutches have consistently fewer eggs, a trend that was reported both in this population
401 (Corsini & Szulkin, 2025, Supplementary Information), as well as in others (see meta-analysis
402 by Chamberlain, 2009).

403 A strong argument that urban females are environmentally constrained by nutrient
404 availability was suggested by Pitt et al. (2024). An egg removal experiment conducted on blue
405 tits revealed that in comparison to forest birds, urban birds have lower capacity to compensate

406 for missing eggs (i.e., approximately 2 vs 0.36 new eggs laid in forest vs urban environments).
407 Therefore, it is likely that birds in urban environments have an ability to cope with limited food
408 and nutrient availability while laying the eggs, but only to some extent - which is translated into
409 eggs of similar characteristics, but with a smaller number of them in each clutch.

410 In terms of coping mechanisms, it is likely that calcium-seeking urban females either
411 increase their search efforts for calcium and/or that they supplement their diet with other
412 resources. In calcium-poor natural forests, great tits nesting near human settlements were
413 compensating for the lack of snails with anthropogenic resources such as chicken eggshells
414 (Graveland, 1996), while some other suggestions include plaster, ash and calcium leaching from
415 concrete (Eeva & Lehikoinen, 2004). Moreover, urban tits are known to have higher exploration
416 rates (Charmantier et al., 2017) and to travel further while seeking food for their chicks (Jarrett
417 et al., 2020; Seress et al., 2025). At the same time, females which were experimentally deprived
418 of calcium were seeking it actively, doubling the time spent on searching and resorting to eating
419 sand, small stones or even their own eggs (Graveland & Berends, 1997). Lastly, it is worth
420 noting that a smaller clutch size does not necessarily change the final reproductive success of
421 urban tits as they are strongly constrained by the urban environment at later stages of
422 reproduction, which results in fewer fledglings leaving the nest (Charmantier et al., 2017;
423 Corsini & Szulkin, 2025), meaning that urban females lay more eggs than they can successfully
424 rear (Pitt et al., 2024).

425

426 **Conclusions**

427 This study highlights the complexities of urban phenotypic egg trait variation. While it was
428 expected that urbanisation would affect egg traits negatively, as such trends were reported in
429 calcium-poor natural habitats, and for other avian reproductive traits in cities, no such pattern
430 was found, despite using a large dataset and fine-scale quantification of urban habitat. Instead,

431 urban birds lay eggs which are similar to those found in more natural habitats in terms of *volume*
432 and pigmentation patterns, but often have fewer of them in a clutch. Given the environmental
433 constraints arising in the urban habitat and associated, consistently lower fledging success,
434 investing additional resources into larger clutches is not likely to benefit their reproduction and
435 could instead further hinder it.

436 Although this paper broadens our understanding of egg trait variation in the urban space,
437 future long-term research on other avian species, and in cities with different socio-geographical
438 settings, is needed. Moreover, further studies quantifying the urban availability of calcium, as
439 well as experimental approaches incorporating calcium supplementation in urban and natural
440 populations should be conducted to confirm the mechanistic links underlying the findings
441 presented in this study.

442

443 **Ethical statement**

444 This research was carried out with a permit from the Regional Directorate for Environmental
445 Protection in Warsaw, Poland. Permissions for bird ringing were granted by the Polish Ringing
446 Centre (Museum and Institute of Zoology, Polish Academy of Sciences).

447 **Acknowledgements**

448 We thank all the field workers who took part in data collection and the site managers for
449 enabling research in the study areas. This work was supported by the University of Warsaw
450 (Excellence Initiative Research University IV.2.2 grant number 501-D114-20-0004410
451 awarded to Ignacy Stadnicki) Polish National Science Centre (NCN-Sonata bis grant number
452 2014/14/E/NZ8/00386, OPUS grant 2021/41/B/NZ8/04472, both awarded to Marta Szulkin,
453 and NCN-Preludium grant number 2017/25/N/NZ8/02852, awarded to Michela Corsini).

454

455

456 **Author contributions**

457 **Ignacy Stadnicki:** Conceptualisation, Methodology, Data collection, Data curation, Formal
458 analysis, Writing - original draft preparation, review and editing, Visualisation, Funding
459 acquisition **Michela Corsini:** Conceptualisation, Data collection, Data curation, Formal
460 analysis, Writing - review and editing, Supervision, Funding acquisition **Klaudia Szala:**
461 Methodology, Software, Writing - review and editing, Supervision **Andrew Gosler:**
462 Methodology, Writing - review and editing, Supervision **Marta Szulkin:** Validation, Data
463 collection, Resources, Writing - review and editing, Supervision, Project administration,
464 Funding acquisition

465

466 **Conflicts of interest statement**

467 The authors declare no conflicts of interest.

468

469 **Data sharing and accessibility**

470 Data and codes for this manuscript will be made available on Mendeley Data Repository in the
471 near future.

472

473 **REFERENCES**

- 474 Álvarez, E., & Barba, E. (2014). Incubation and hatching periods in a Mediterranean
475 Great Tit *Parus major* population. *Bird Study*, 61, 152–161.
476 <https://doi.org/10.1080/00063657.2014.908819>
- 477 Bailly, J., Scheifler, R., Berthe, S., Clément-Demange, V.-A., Leblond, M., Pasteur, B., &
478 Faivre, B. (2016). From eggs to fledging: Negative impact of urban habitat on
479 reproduction in two tit species. *Journal of Ornithology*, 157(2), 377–392.
480 <https://doi.org/10.1007/s10336-015-1293-3>

- 481 Bańbura, J., & Bańbura, M. (2012). Blue Tits *Cyanistes Caeruleus* And Great Tits *Parus*
482 Major As Urban Habitat Breeders. *International Studies on Sparrows*, 36.
483 <https://doi.org/10.1515/isspar-2015-0014>
- 484 Bańbura, J., Sulikowska-Drozd, A., Bańbura, M., Zieliński, P., Kaliński, A., Wawrzyniak,
485 J., Gładalski, M., Skwarska, J., & Markowski, M. (2020). Blue Tits *Cyanistes caeruleus*
486 Laying Smaller Eggs after a Decline in Snail Numbers: An Indirect Effect of Slug Control
487 in a City Park. *Acta Ornithologica*, 54(2), 139–148.
488 <https://doi.org/10.3161/00016454AO2019.54.2.001>
- 489 Bańbura, M., Gładalski, M., Kaliński, A., Markowski, M., Skwarska, J., Wawrzyniak, J.,
490 Zieliński, P., & Bańbura, J. (2018). A consistent long-lasting pattern of spatial variation in
491 egg size and shape in blue tits (*Cyanistes caeruleus*). *Frontiers in Zoology*, 15, 34.
492 <https://doi.org/10.1186/s12983-018-0279-4>
- 493 Bańbura, M., Sulikowska-Drozd, A., Kaliński, A., Skwarska, J., Wawrzyniak, J., Kruk,
494 A., Zieliński, P., & Bańbura, J. (2010). Egg size variation in Blue Tits *Cyanistes caeruleus*
495 and Great Tits *Parus major* in relation to habitat differences in snail abundance. *Acta
496 Ornithologica*, 45(2), 121–129. <https://doi.org/10.3161/000164510X551264>
- 497 Bosse, M., Spurgin, L. G., Laine, V. N., Cole, E. F., Firth, J. A., Gienapp, P., Gosler, A.
498 G., McMahon, K., Poissant, J., Verhagen, I., Groenen, M. A. M., van Oers, K., Sheldon,
499 B. C., Visser, M. E., & Slate, J. (2017). Recent natural selection causes adaptive evolution
500 of an avian polygenic trait. *Science*, 358(6361), 365–368.
501 <https://doi.org/10.1126/science.aal3298>
- 502 Briggs, K. B., & Mainwaring, M. C. (2017). Habitat Geology Influences Intraspecific
503 Variation in the Speckling Patterns of Blue Tit *Cyanistes caeruleus* and Great Tit *Parus*
504 major Eggs. *Acta Ornithologica*, 52(1), 11–20.
505 <https://doi.org/10.3161/00016454AO2017.52.1.002>

506 Brooks, M. E., Kristensen, K., Benthem, K. J. van, Magnusson, A., Berg, C. W., Nielsen,
507 A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB Balances Speed and
508 Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. *The R
509 Journal*, 9(2), 378–400.

510 Brulez, K., Cassey, P., Meeson, A., Mikšík, I., Webber, S. L., Gosler, A. G., & Reynolds,
511 S. J. (2014). Eggshell spot scoring methods cannot be used as a reliable proxy to
512 determine pigment quantity. *Journal of Avian Biology*, 45(1), 94–102.
513 <https://doi.org/10.1111/j.1600-048X.2013.00236.x>

514 Burley, R. W., & Vadehra, D. V. (1989). *The Avian Egg: Chemistry and Biology*. Wiley.

515 Chamberlain, D., Cannon, A. R., Toms, M. P., Leech, D. I., Hatchwell, B., & Gaston, K.
516 (2009). Avian productivity in urban landscapes: A review and meta-analysis. *Ibis*, 151, 1–
517 18. <https://doi.org/10.1111/j.1474-919X.2008.00899.x>

518 Carlsson, H., Carlsson, L., Wallin, C., & Wallin, N.-E. (1991). Great Tits incubating
519 empty nest cups. *Ornis Svecica*, 1(1), Article 1. <https://doi.org/10.34080/os.v1.23096>

520 Charmantier, A., Demeyrier, V., Lambrechts, M., Perret, S., & Grégoire, A. (2017).
521 Urbanization Is Associated with Divergence in Pace-of-Life in Great Tits. *Frontiers in
522 Ecology and Evolution*, 5. <https://doi.org/10.3389/fevo.2017.00053>

523 Čiliak, M., Čejka, T., Tej, B., Oboňa, J., & Manko, P. (2024). Species richness patterns
524 and community structure of land snail communities along an urban-rural gradient in river
525 floodplains. *Urban Ecosystems*, 27(3), 953–963. <https://doi.org/10.1007/s11252-023-01501-1>

527 Corsini, M., Leanza, P., Rodewald, A. D., Sudyka, J., Dhondt, A. A., & Szulkin, M.
528 (2022). Coping with novelty across an urban mosaic: Provisioning latency increases closer
529 to roads and is associated with species-specific reproductive success in two urban

530 adapters. *Science of The Total Environment*, 847, 157450.
531 <https://doi.org/10.1016/j.scitotenv.2022.157450>

532 Corsini, M., Schöll, E., Lecce, I., Chatelain, M., Dubiec, A., & Szulkin, M. (2020).
533 Growing in the city: Urban evolutionary ecology of avian growth rates. *Evolutionary*
534 *Applications*, 14. <https://doi.org/10.1111/eva.13081>

535 Corsini, M. & Szulkin, M. (2025). Concrete Habitat Severely Decreases the Reproductive
536 Output of Two Urban Birds. *Conservation Letters*, 18. <https://doi.org/10.1111/conl.13093>

537 Demongin, L. (2016). Identification Guide to Birds in the Hand: The 301 Species Most
538 Frequently Caught in Western Europe : Identification, Measurements, Geographical
539 Variation, Moult, Sex and Age. Laurent Demongin.
540 Des Roches, Simone, Kristien I. Brans, Max R. Lambert, L. Ruth Rivkin, Amy Marie
541 Savage, Christopher J. Schell, Cristian Correa, et al. 2021. 'Socio-Eco-Evolutionary
542 Dynamics in Cities'. *Evolutionary Applications* 14 (1): 248–67.
543 <https://doi.org/10.1111/eva.13065>.

544 Eeva, T., & Lehikoinen, E. (1995). Egg shell quality, clutch size and hatching success of
545 the great tit (*Parus major*) and the pied flycatcher (*Ficedula hypoleuca*) in an air pollution
546 gradient. *Oecologia*, 102(3), 312–323. <https://doi.org/10.1007/BF00329798>
547 Eeva, T., & Lehikoinen, E. (2004). Rich calcium availability diminishes heavy metal
548 toxicity in Pied Flycatcher. *Functional Ecology*, 18(4), 548–553.
549 <https://doi.org/10.1111/j.0269-8463.2004.00875.x>

550 Encabo, S., Monrós, J., & Barba, E. (2001). Egg size variation in a Mediterranean Great
551 Tit *Parus major* population. *Ardeola: Revista Ibérica de Ornitología*, 48, 63–70.
552 Fox, J., & Weisberg, S. (2019). *An R Companion to Applied Regression*. Sage.
553 <https://www.john-fox.ca/Companion/>

- 554 García-Navas, V., Sanz, J. J., Merino, S., Martínez-de la Puente, J., Lobato, E., del Cerro,
555 S., Rivero, J., Ruiz de Castañeda, R., & Moreno, J. (2011). Experimental evidence for the
556 role of calcium in eggshell pigmentation pattern and breeding performance in Blue Tits
557 *Cyanistes caeruleus*. *Journal of Ornithology*, 152(1), 71–82.
558 <https://doi.org/10.1007/s10336-010-0551-7>
- 559 Gosler, A. (1993). *The Great Tit*. Hamlyn.
- 560 Gosler, A. G., Higham, J. P., & James Reynolds, S. (2005). Why are birds' eggs speckled?
561 *Ecology Letters*, 8(10), 1105–1113. <https://doi.org/10.1111/j.1461-0248.2005.00816.x>
- 562 Gosler, A. G., Barnett, P. R., & Reynolds, S. J. (2000). Inheritance and variation in
563 eggshell patterning in the great tit *Parus major*. *Proceedings. Biological Sciences*,
564 267(1461), 2469–2473. <https://doi.org/10.1098/rspb.2000.1307>
- 565 Gosler, A. G., & Wilkin, T. A. (2017). Eggshell speckling in a passerine bird reveals
566 chronic long-term decline in soil calcium. *Bird Study*, 64(2), 195–204.
567 <https://doi.org/10.1080/00063657.2017.1314448>
- 568 Gómez, J., Ramo, C., Troscianko, J., Stevens, M., Castro, M., Pérez-Hurtado, A., Liñán-
569 Cembrano, G., & Amat, J. A. (2018). Individual egg camouflage is influenced by
570 microhabitat selection and use of nest materials in ground-nesting birds. *Behavioral
571 Ecology and Sociobiology*, 72(9), 1–10. <https://doi.org/10.1007/s00265-018-2558-7>
- 572 Graveland, J., & Gijzen, T. (1994). Arthropods and Seeds are not Sufficient as Calcium
573 Sources for Shell Formation and Skeletal Growth in Passerines. *Ardea*, 82, 299–314.
574 <https://doi.org/10.5253/arde.v82.p299>
- 575 Graveland, J., & Berends, A. E. (1997). Timing of the calcium intake and effect of
576 calcium deficiency on behaviour and egg laying in captive great tits, *Parus major*.
577 *Physiological Zoology*, 70(1), 74–84. <https://doi.org/10.1086/639547>

- 578 Graveland, J., & Drent, R. H. (1997). Calcium Availability Limits Breeding Success of
579 Passerines on Poor Soils. *Journal of Animal Ecology*, 66(2), 279–288.
580 <https://doi.org/10.2307/6028>
- 581 Graveland, J. (1996). Avian eggshell formation in calcium-rich and calcium-poor habitats:
582 Importance of snail shells and anthropogenic calcium sources. *Canadian Journal of
583 Zoology*, 74(6), 1035–1044. <https://doi.org/10.1139/z96-115>
- 584 Hargitai, R., Nagy, G., Nyiri, Z., Bervoets, L., Eke, Z., Eens, M., & Török, J. (2016a).
585 Effects of breeding habitat (woodland versus urban) and metal pollution on the egg
586 characteristics of great tits (*Parus major*). *Science of The Total Environment*, 544, 31–38.
587 <https://doi.org/10.1016/j.scitotenv.2015.11.116>
- 588 Hargitai, R., Nagy, G., Herényi, M., Nyiri, Z., Laczi, M., Hegyi, G., Eke, Z., & Török, J.
589 (2016b). Darker eggshell spotting indicates lower yolk antioxidant level and poorer
590 female quality in the Eurasian Great Tit (*Parus major*). *The Auk*, 133(2), 131–146.
591 <https://doi.org/10.1642/AUK-15-128.1>
- 592 Hargitai, R., Herényi, M., Nagy, G., Nyiri, Z., Eke, Z., & Török, J. (2016c). Effects of
593 environmental conditions on the egg mass, yolk antioxidant level, eggshell thickness and
594 eggshell spotting patterns of Great Tits (*Parus major*). *Journal of Ornithology*, 157(4),
595 995–1006. <https://doi.org/10.1007/s10336-016-1348-0>
- 596 Hargitai, R., Nagy, G., Herényi, M., & Török, J. (2013). Effects of experimental calcium
597 availability, egg parameters and laying order on Great Tit *arus major* eggshell
598 pigmentation patterns. *Ibis*, 155(3), 561–570. <https://doi.org/10.1111/ibi.12054>
- 599 Hartig, F. (2020). DHARMA: Residual diagnostics for hierarchical (multi-level/mixed)
600 regression models. *R Package Version 0.3, 3*.
- 601 Hõrak, P., Mänd, R., Ots, I., & Leivits, A. (1995). Egg size in the Great Tit *Parus major*:
602 Individual, habitat and geographic differences. *Ornis Fennica*, 72(3), Article 3.

- 603 Jarrett, C., Powell, L. L., McDevitt, H., Helm, B., & Welch, A. J. (2020). Bitter fruits of
604 hard labour: Diet metabarcoding and telemetry reveal that urban songbirds travel further
605 for lower-quality food. *Oecologia*, 193(2), 377–388. <https://doi.org/10.1007/s00442-020-04678-w>
- 606
- 607 Järvinen, A., & Pöylä, M. (1989). Egg dimensions of the Great Tit *Parus major* in southern
608 Finland. *Ornis Fennica*, 66(2), Article 2.
- 609
- 610 Jubb, M., Wilkin, T., & Gosler, A. (2006). Eggshell-pigmentation, soil calcium and the
611 local abundance, distribution and diversity of woodland snails (Mollusca). *Ardea* -
612 Wageningen-, 94, 59–70.
- 613
- 614 Krist, M. (2011). Egg size and offspring quality: A meta-analysis in birds. *Biological
Reviews*, 86(3), 692–716. <https://doi.org/10.1111/j.1469-185X.2010.00166.x>
- 615
- 616 Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass
617 Correlation Coefficients for Reliability Research. *Journal of Chiropractic Medicine*, 15(2),
618 155–163. <https://doi.org/10.1016/j.jcm.2016.02.012>
- 619
- 620 Malinowska, K., Szala, K., Podkowa, P., & Surmacki, A. (2023). Effect of light intensity
621 in the nest site on eggshell pigmentation in a hole-nesting passerine. *Scientific Reports*,
622 13(1), 9764. <https://doi.org/10.1038/s41598-023-36658-4>
- 623
- 624 Mänd, R., Tilgar, V., & Leivits, A. (2000). Calcium, snails, and birds: A case study. *Web
Ecology*, 1(1), 63–69. <https://doi.org/10.5194/we-1-63-2000>
- 625
- Martínez-de La Puente, J., Merino, S., Moreno, J., Tomás, G., Morales, J., Lobato, E.,
626 García-Fraile, S., & Martínez, J. (2007). Are eggshell spottiness and colour indicators of
627 health and condition in blue tits *Cyanistes caeruleus*? *Journal of Avian Biology*, 38(3),
628 377–384. <https://doi.org/10.1111/j.0908-8857.2007.03877.x>

- 626 Murray-Stoker, D., Santangelo, J. S., Szulkin, M., & Johnson, M. T. J. (2025). Comparing
627 approaches to quantify urbanization on a multicontinental scale. *Urban Ecosystems*, 28(2),
628 82. <https://doi.org/10.1007/s11252-025-01696-5>
- 629 Ojanen, M., Orell, M., & Väisänen, R. A. (1979). Role of heredity in egg size variation in
630 the Great Tit *Parus major* and the Pied Flycatcher *Ficedula hypoleuca*. *Ornis
631 Scandinavica*, 22–28.
- 632 Oke, T. R. (1973). City size and the urban heat island. *Atmospheric Environment* (1967),
633 7(8), 769–779. [https://doi.org/10.1016/0004-6981\(73\)90140-6](https://doi.org/10.1016/0004-6981(73)90140-6)
- 634 Peig, J., & Green, A. J. (2009). New perspectives for estimating body condition from
635 mass/length data: The scaled mass index as an alternative method. *Oikos*, 118(12), 1883–
636 1891. <https://doi.org/10.1111/j.1600-0706.2009.17643.x>
- 637 Perez, K., Najev, B. L., Christoffersen, B., & Nekola, J. (2021). Biotic homogenization or
638 riparian refugia? Urban and wild land snail assemblages along a subtropical precipitation
639 gradient. *Journal of Urban Ecology*. <https://doi.org/10.1093/jue/juab002>
- 640 Perrins, C. M., & Birkhead, T. R. (1983). *Avian Ecology*. Blackie.
- 641 Phansalkar, N., More, S., Sabale, A., & Joshi, M. (2011). Adaptive local thresholding for
642 detection of nuclei in diversity stained cytology images. 2011 International Conference on
643 Communications and Signal Process. <https://doi.org/10.1109/ICCSP.2011.5739305>
- 644 Pitt, M. D., Alhowiti, N. S. S., Branston, C. J., Carlon, E., Boonekamp, J. J., Dominoni,
645 D. M., & Capilla-Lasheras, P. (2024). Environmental constraints can explain clutch size
646 differences between urban and forest blue tits: Insights from an egg removal experiment.
647 *Journal of Animal Ecology*, 94(3), 368–378. <https://doi.org/10.1111/1365-2656.14171>
- 648 Reynolds, S. J., & Perrins, C. M. (2010). Dietary Calcium Availability and Reproduction
649 in Birds. In C. F. Thompson (Ed.), *Current Ornithology Volume 17* (pp. 31–74). Springer.
650 https://doi.org/10.1007/978-1-4419-6421-2_2

651 Rivkin, L. R., Santangelo, J. S., Alberti, M., Aronson, M. F. J., Keyzer, C. W. de,
652 Diamond, S. E., Fortin, M.-J., Frazee, L. J., Gorton, A. J., Hendry, A. P., Liu, Y., Losos, J.
653 B., MacIvor, J. S., Martin, R. A., McDonnell, M. J., Miles, L. S., Munshi-South, J., Ness,
654 R. W., Newman, A. E. M., ... Johnson, M. T. J. (2019). A roadmap for urban evolutionary
655 ecology. *Evolutionary Applications*, 12(3), 384–398. <https://doi.org/10.1111/eva.12734>

656 Romanoff AL, Romanoff AJ (1949) The avian egg. Wiley, New York

657 Saeki, I., Niwa, S., Osada, N., Azuma, W., & Hiura, T. (2020). Contrasting effects of
658 urbanization on arboreal and ground-dwelling land snails: Role of trophic interactions and
659 habitat fragmentation. *Urban Ecosystems*, 23(3), 603–614.
660 <https://doi.org/10.1007/s11252-020-00930-6>

661 Sanz, J. J., & García-Navas, V. (2009). Eggshell pigmentation pattern in relation to
662 breeding performance of blue tits *Cyanistes caeruleus*. *Journal of Animal Ecology*, 78(1),
663 31–41. <https://doi.org/10.1111/j.1365-2656.2008.01465.x>

664 Seress, G., Sándor, K., Bókony, V., Bukor, B., Hubai, K., & Liker, A. (2025). Radio-
665 tracking urban breeding birds: The importance of native vegetation. *Ecological
666 Applications*, 35(1), e3095. <https://doi.org/10.1002/eap.3095>

667 Stevens, M. (2011). Avian Vision and Egg Colouration: Concepts and Measurements.
668 *Avian Biology Research*, 4(4), 168–184.
669 <https://doi.org/10.3184/175815511X13207790177958>

670 Stoffel, M., Nakagawa, S., & Schielzeth, H. (2016). rptR: Repeatability Estimation for
671 Gaussian and Non-Gaussian Data (p. 0.9.22) [Computer software]. <https://CRAN.R-project.org/package=rptR>

672 Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: Repeatability estimation and
673 variance decomposition by generalized linear mixed-effects models. *Methods in Ecology
674 and Evolution*, 8(11), 1639–1644. <https://doi.org/10.1111/2041-210X.12797>

- 676 Szigeti, B., Török, J., Hegyi, G., Rosivall, B., Hargitai, R., Szöllősi, E., & Michl, G.
- 677 (2007). Egg quality and parental ornamentation in the blue tit *Parus caeruleus*. *Journal of*
678 *Avian Biology*, 38, 105–112. <https://doi.org/10.1111/j.2007.0908-8857.03769.x>
- 679 Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z., & Dominoni, D. (2020). How
680 to Quantify Urbanization When Testing for Urban Evolution? In M. Szulkin, J. Munshi-
681 South, & A. Charmantier (Eds.), *Urban Evolutionary Biology* (p. 0). Oxford University
682 Press. <https://doi.org/10.1093/oso/9780198836841.003.0002>
- 683 Thompson, M. J., Capilla-Lasheras, P., Dominoni, D. M., Réale, D., & Charmantier, A.
684 (2022). Phenotypic variation in urban environments: Mechanisms and implications.
685 *Trends in Ecology & Evolution*, 37(2), 171–182.
686 <https://doi.org/10.1016/j.tree.2021.09.009>
- 687 Troscianko, J., Wilson-Aggarwal, J., Stevens, M., & Spottiswoode, C. N. (2016).
688 Camouflage predicts survival in ground-nesting birds. *Scientific Reports*, 6, 19966.
689 <https://doi.org/10.1038/srep19966>
- 690 Troscianko, J. (2014). A simple tool for calculating egg shape, volume and surface area
691 from digital images. *Ibis*. <https://onlinelibrary.wiley.com/doi/10.1111/ibi.12177>
- 692 Troscianko, J., & Stevens, M. (2015a). Image calibration and analysis tool- box user
693 guide.
694 https://www.jolyon.co.uk/research/micaToolbox/micaToolbox_User_Guide_V1.11.pdf
- 695 Troscianko, J., & Stevens, M. (2015b). Image calibration and analysis toolbox – a free
696 software suite for objectively measuring reflectance, colour and pattern. *Methods in*
697 *Ecology and Evolution*, 6(11), 1320–1331. <https://doi.org/10.1111/2041-210X.12439>
- 698 Van Balen J. H. (1973). A Comparative Study of the Breeding Ecology of the Great Tit
699 *Parus major* in Different Habitats. *Ardea*, 38-90, 1–93.
700 <http://dx.doi.org/10.5253/arde.v61.p1>

- 701 Van Noordwijk, A. J., Keizer, L. C. P., Van Balen, J. H., & Scharloo, W. (1981). Genetic
702 variation in egg dimensions in natural populations of the Great Tit. *Genetica*, 55(3), 221–
703 232. <https://doi.org/10.1007/BF00127206>
- 704 Wegmann, M., Vallat-Michel, A., & Richner, H. (2015). An evaluation of different
705 methods for assessing eggshell pigmentation and pigment concentration using great tit
706 eggs. *Journal of Avian Biology*, 46(6), 597–607. <https://doi.org/10.1111/jav.00495>
- 707 Wickham, H. (2011). Ggplot2. *WIREs Computational Statistics*, 3(2), 180–185.
708 <https://doi.org/10.1002/wics.147>
- 709 Wilkin, T. A., Gosler, A. G., Garant, D., Reynolds, S. J., & Sheldon, B. C. (2009).
710 Calcium effects on life-history traits in a wild population of the great tit (*Parus major*):
711 Analysis of long-term data at several spatial scales. *Oecologia*, 159(2), 463–472.
712 <https://doi.org/10.1007/s00442-008-1222-8>
- 713 You, Y., Feng, J., Wang, H., Wang, J., Dong, C., Su, X., Sun, H., & Gao, W. (2009).
714 Variation in egg size and nestling growth rate in relation to clutch size and laying
715 sequence in great tits *Parus major*. *Progress in Natural Science*, 19(4), 427–433.
716 <https://doi.org/10.1016/j.pnsc.2008.05.035>
- 717

SUPPORTING INFORMATION

718

719

720 Title:

721 An analysis of passerine egg traits across the city mosaic: Urbanisation does not affect egg size
722 and pigmentation patterns

723

724 Authors:

725 Ignacy Stadnicki^{a*,f,1}, Michela Corsini^{b,2}, Klaudia Szala^{c,d,3}, Andrew Gosler^{e,f,4} & Marta
726 Szulkin^{a,5}

727

728 **Affiliations:**

*729 "Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of
730 Biology, University of Warsaw, Warsaw, Masovian Voivodeship, Poland*

731 *^bInstitute for Alpine Environment, Eurac Research, Viale Druso 1, Bolzano, Italy*

732 *Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University,*
733 *Poznań, Poland*

734 *^dDepartment of Biology, George Mason University, Fairfax, VA, USA*

735 *Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford,*
736 *Oxford, United Kingdom*

737 *Institute of Human Sciences, School of Anthropology & Museum of Ethnography, University*
738 *of Oxford, Oxford, United Kingdom*

739

740 ORCID:

741 1 0000-0002-0526-9610

742 2 0000-0001-5196-086X

743 3 0000-0003-1697-2149

744 ⁴ 0000-0002-8074-8064

745 5 0000-0002-7355-5846

746

747 Corresponding author email:

748 i.stadnicki@student.uw.edu.pl

749

750

751 **ABSTRACT**

752

753 1. Rapid urbanisation provides remarkable opportunities to study how sudden, extreme
754 changes impact wildlife. Compared to natural areas, cities are characterised by
755 factors affecting both abiotic (e.g. climate, pollution, habitat fragmentation) and
756 biotic (e.g. Normalized Difference Vegetation Index (NDVI), species composition,
757 phenology) components of the ecosystem, ultimately changing the ecological and
758 evolutionary dynamics of those habitats. Analogously to many other taxonomic
759 groups, urban birds differ from rural birds in morphology, behaviour and
760 reproductive patterns. Yet potential links between urbanisation and avian egg traits
761 — a key aspect of the avian life-cycle — remain under-researched. Given the limited
762 availability of primary natural calcium sources (snails) in cities, eggs from heavily
763 urbanised areas were expected to be smaller and more pigmented, indicating thinner
764 shells and lower overall egg quality.

765 2. To better understand how urbanisation affects eggs, data on 718 great tit (*Parus*
766 *major*) eggs from 90 clutches, spread across eight study sites in a city mosaic, were
767 collected for two breeding seasons. All clutches were photographed using a
768 standardised approach, and further analysed using digital imaging and visual scoring
769 to assess egg volume and pigmentation patterns. Urbanisation was quantified as the
770 percentage of Impervious Surface Area (ISA) in the vicinity of each clutch via
771 satellite imagery.

772 3. In line with some of the earlier studies conducted on semi-natural bird communities,
773 egg volume covaried with lay date and female body condition, while for both egg
774 volume and egg pigmentation (*spots percentage*) — a year effect was detected.

775 However, in contrast with predictions, there was no association between
776 urbanisation and the examined egg traits.

777 4. While urban clutches are consistently smaller, this study shows that eggs as such are
778 similar to those found in rural habitats in terms of volume and pigmentation patterns.
779 These results suggest that urban-driven environmental pressures may not be as
780 strong or directional during the egg laying phase as they are at later stages of
781 reproduction, and highlight the complexities of urban ecological and evolutionary
782 dynamics.

783

784 **Key words:** environmental constraints, calcium, egg pigmentation, egg volume, great tit,
785 protoporphyrin IX, reproduction, urbanisation

786

787 **TABLE OF CONTENTS**

788

- 789 • **Text S1.** Descriptions of study sites set in a gradient of urbanisation in Warsaw,
790 Poland.
- 791 • **Figure S1.** DHARMA diagnostics of models testing for the association between egg traits,
792 urbanisation and life-history traits
- 793 • **Text S2.** Discussion on repeatability of egg traits quantification and data collection.
- 794 • **Table S2.** GLMMs with Gaussian distribution testing the association between egg
795 pigmentation traits, urbanisation and life-history traits
- 796 • **Table S3.** Linear Mixed Effect Models (LMMs) testing the association between
797 Impervious Surface Areas (%) measured in a 100m radius around each nestbox, and
798 number of hatched offspring in great tits and blue tits. Based on data and methods
799 from Szulkin & Corsini (2025).

800 **Text S1**

801 Descriptions of study sites set in a gradient of urbanisation in Warsaw, Poland. Descriptions
802 are ordered from the most northern to the most southern sites. For more details see Corsini et
803 al. (2020).

804

805 A. Suburban village ($20^{\circ}46'48.9748''$ E - $52^{\circ}22'11.3382''$ N, c. 95 ha., 47 nestboxes). Palmiry
806 village is located c. 21 km northwest from Warsaw city borders, next to Kampinos National
807 Park. It is characterised by residential homes with gardens, crop fields and plots of unused
808 land covered by grass, shrubs or trees.

809

810 B. Natural forest ($20^{\circ}47'14.3867''$ E - $52^{\circ}21'22.5409''$ N, c. 38,500 ha., 110 nestboxes).
811 Kampinos National Park is located c. 20 km northwest from Warsaw city border. The large
812 mixed-coniferous forest, with a predominance of pine trees (*Pinus sp.*) and oaks (*Quercus*
813 *sp.*), is divided into strictly and partially protected zones and is connected with Warsaw city
814 by a green corridor.

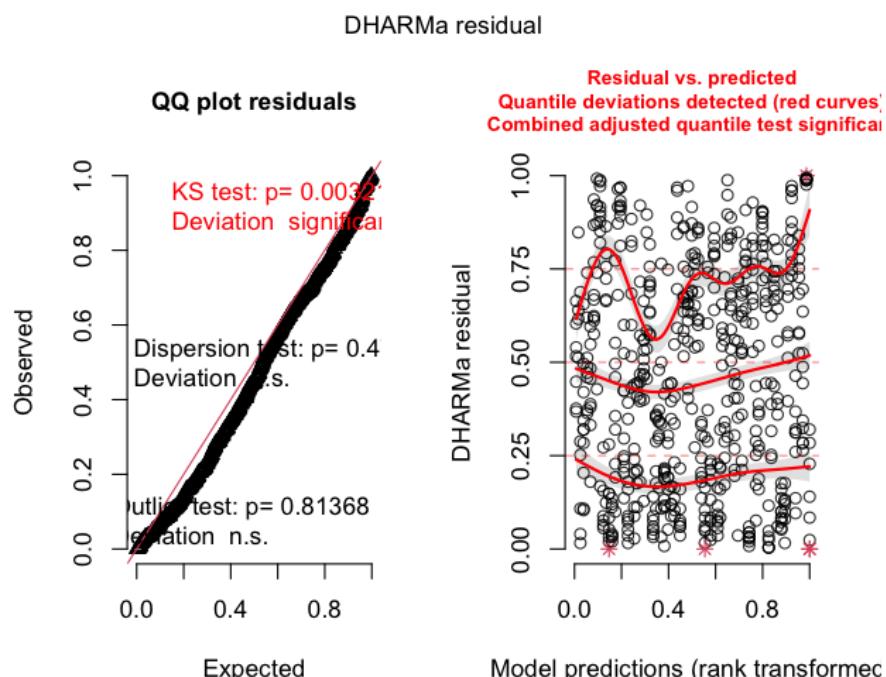
815

816 C. Residential area I ($20^{\circ}57'39.37097''$ E - $52^{\circ}16'23.71883''$ N, c. 19 ha., 52 nestboxes).
817 Olszyna Residential Area is located in a north-western district of Warsaw. It is characterised
818 by blocks of flats, public facilities (e.g. schools, grocery stores) and green spaces.

819

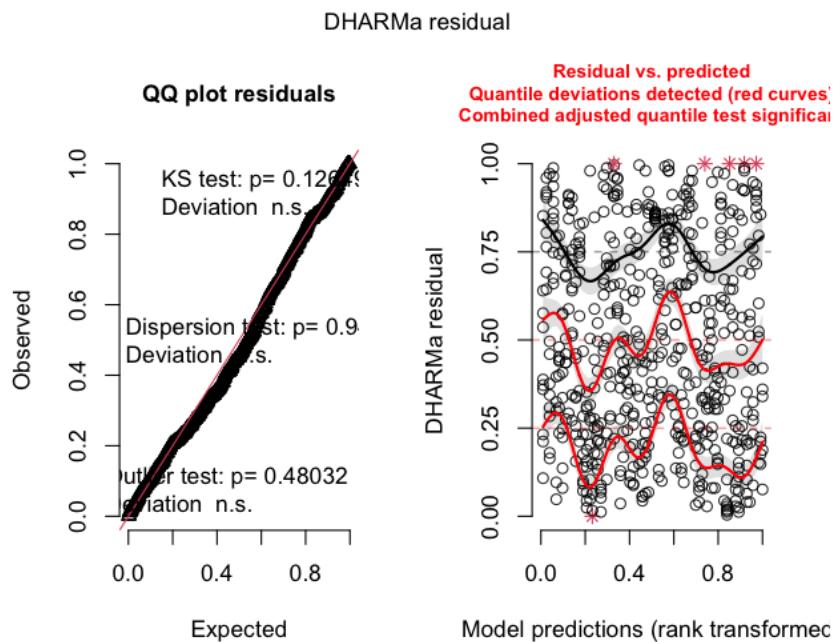
820 D. Urban woodland I ($20^{\circ}57'33.93652''$ E - $52^{\circ}16'10.55093''$ N, c. 3.4 ha., 21 nestboxes).
821 Olszyna woodland, adjacent to Residential area I, is a small urban wet forest with a
822 predominance of common alders (*Alnus glutinosa*), birches (*Betula sp.*) and oaks (*Quercus*
823 *sp.*).

824

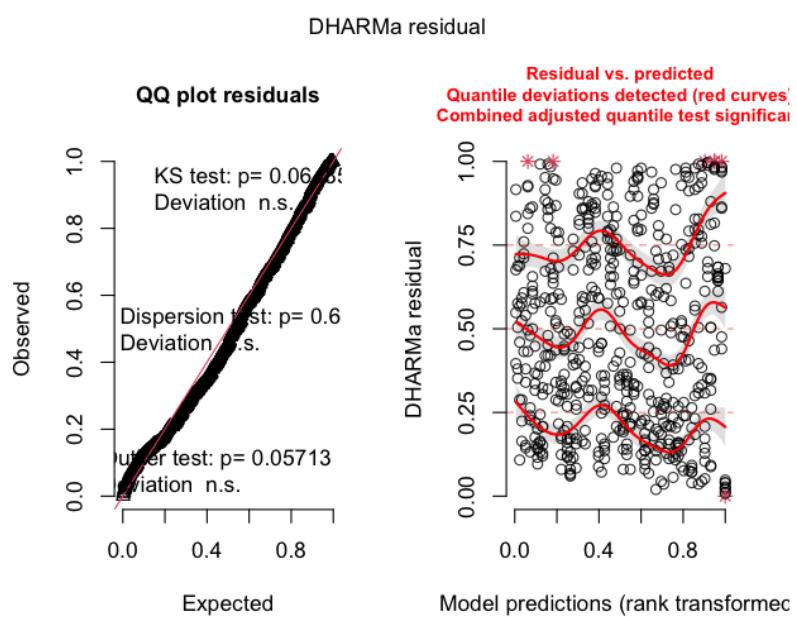

825 E. Urban woodland II ($20^{\circ}58'23.44285''$ E - $52^{\circ}14'52.45584''$ N, c. 33 ha., 91 nestboxes).
826 Jewish Cemetery, located in the midtown of Warsaw, is a historical site, which was partially
827 destroyed during World War II. A portion of the area has been in renovation since 1990s,
828 however it mostly consists of moss-covered tombstones and a wild urban forest, composed
829 of both native and foreign species, mainly oaks (*Quercus sp.*), birches (*Betula sp.*), elms
830 (*Ulmus sp.*) and Norway maples (*Acer platanoides*).

831

832 F. Residential area II ($20^{\circ}59'5.74332''$ E - $52^{\circ}14'52.17925''$ N, c. 36 ha., 46 nestboxes).
 833 Muranów Residential Area is located next to Urban woodland II. Similarly to Residential
 834 Area I, it is characterised by blocks of flats, public facilities and green spaces.
 835
 836 G. Urban park ($21^{\circ}0'6.98321''$ E - $52^{\circ}12'46.66874''$ N, c. 65 ha., 105 nestboxes). Mokotów
 837 Field, located in the south-central district of Warsaw, is a large urban park characterised by
 838 a mosaic of flowerbeds, grass, trees as well as impervious surfaces. It also offers dining
 839 places, playgrounds, an outdoor gym and a water pond, making it a popular recreational
 840 area among city dwellers.
 841
 842 H. University campus ($20^{\circ}59'8.85224''$ E - $52^{\circ}12'43.77676''$ N, c. 9 ha., 28 nestboxes). Ochota
 843 Campus, adjacent to the Urban park, is an office area consisting of university faculties,
 844 research centres, student dormitories and scarce greenery.
 845

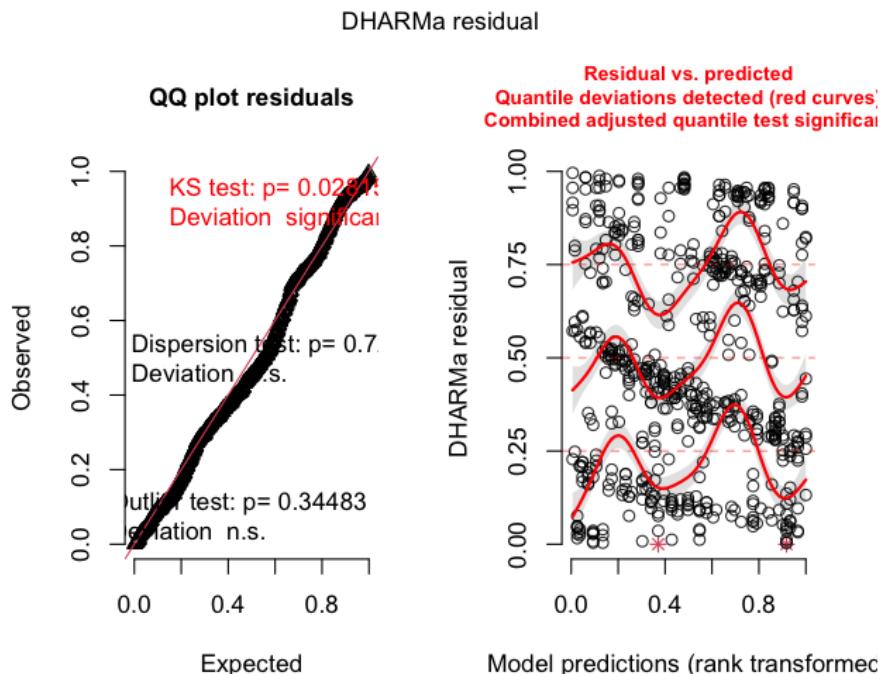

846 **Figure S1.** DHARMA diagnostics of models testing for the association between egg traits,
 847 urbanisation and life-history traits (see Methods).

848
 849 (a)

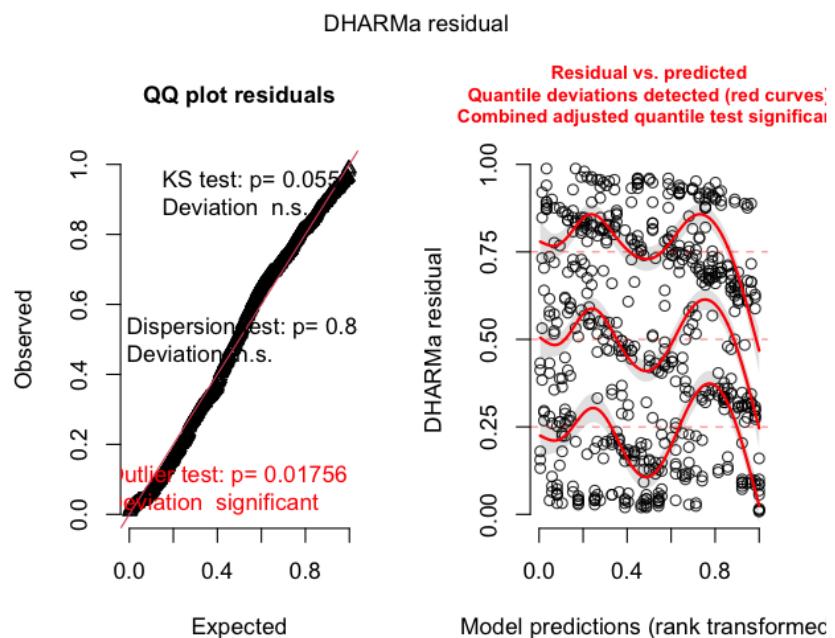


850
 851

852
853
854 (b)


855
856 (c)

857
858
859
860
861
862

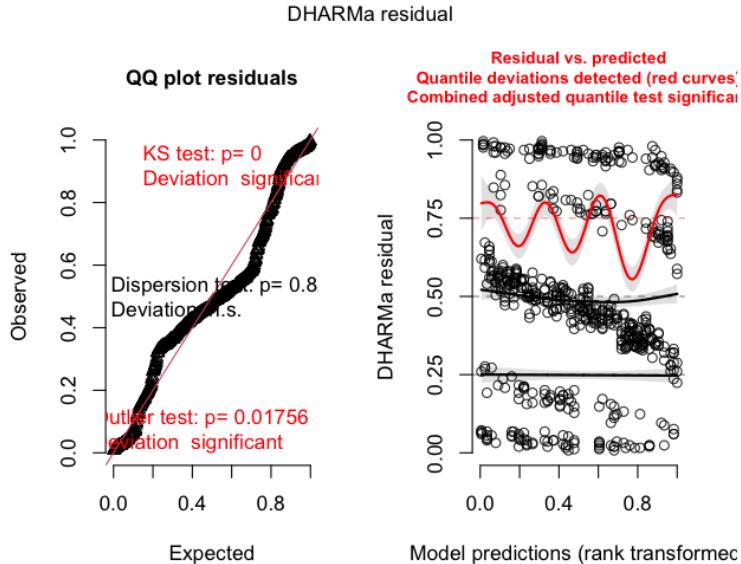

863

864 (d)

865

866 (e)

867


868

869

870

871

872
873
874 (f)

875
876

- 877 (a) *Model structure: Volume* ~ ISA_{mc} + Lay date_{mc} + Clutch size_{mc} + Female body condition_{mc}
878 + Year, Random = Site ID (N=8) + Clutch ID (N=74) + Female ID (N=66)
- 879 (b) *Model structure: Spot red chroma* ~ ISA_{mc} + Lay date_{mc} + Clutch size_{mc} + Female body
880 condition_{mc} + Year, Random = Site ID (N=8) + Clutch ID (N=74) + Female ID (N=66)
- 881 (c) *Model structure: Spot percentage* ~ ISA_{mc} + Lay date_{mc} + Clutch size_{mc} + Female body
882 condition_{mc} + Year, Random = Site ID (N=8) + Clutch ID (N=74) + Female ID (N=66)
- 883 (d) *Model structure: Spot intensity* ~ ISA_{mc} + Lay date_{mc} + Clutch size_{mc} + Female body
884 condition_{mc} + Year, Random = Site ID (N=8) + Clutch ID (N=74) + Female ID (N=66)
- 885 (e) *Model structure: Spot distribution* ~ ISA_{mc} + Lay date_{mc} + Clutch size_{mc} + Female body
886 condition_{mc} + Year, Random = Site ID (N=8) + Clutch ID (N=74) + Female ID (N=66)
- 887 (f) *Model structure: Spot size* ~ ISA_{mc} + Lay date_{mc} + Clutch size_{mc} + Female body condition_{mc}
888 + Year, Random = Site ID (N=8) + Clutch ID (N=74) + Female ID (N=66)

889 **Table S1**

890 Summary of ISA values for clutches for all study sites.

Site	Nclutches	Minimum	Average	Median	Maximum
Suburban village	18	0.00	1.97	0.85	13.60
Natural forest	16	0.00	0.00	0.00	0.00
Residential area I	2	32.38	42.06	42.06	51.74
Urban woodland I	2	24.19	24.19	24.19	24.19
Urban woodland II	3	10.24	18.99	16.65	30.07
Residential area II	5	35.62	42.91	43.68	47.17
Urban park	36	0.00	10.22	7.21	38.08
University campus	8	29.04	29.04	38.28	60.73
Summary	90	0.000	12.73	4.74	60.73

891

892 **Table S2**

893 GLMMs with Gaussian distribution testing the association between egg pigmentation traits,
 894 urbanisation and life-history traits, $N_{\text{eggs}}=568$. Continuous predictors were mean-centered (mc).
 895 Significance levels are indicated in **bold**: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Family: Gaussian, Random = Site ID (N=8) + Clutch ID (N=74) + Female ID (N=66)

Model structure (glmmTMB): Egg trait ~ ISA_{mc} + Lay date_{mc} + Clutch size_{mc} + Female body condition_{mc} + Year

Spot red chroma	Estimate	SE	z-value	p-value
Intercept	0.41	<0.01	164.53	<0.001***
ISA	<0.001	<0.001	-0.37	0.714
Lay date	<0.001	<0.001	0.29	0.773
Clutch size	<0.001	<0.01	-0.15	0.883
Female body condition	<0.001	<0.01	-0.52	0.603
Year	<0.001	<0.01	0.31	0.754
Spot percentage				
Intercept	17.65	0.92	19.29	<0.001***
ISA	<0.01	0.03	0.14	0.887
Lay date	0.02	0.12	0.19	0.848
Clutch size	0.51	0.40	1.26	0.207
Female body condition	-0.33	0.66	-0.50	0.618
Year	-7.66	1.18	-6.51	<0.001***
Spot intensity				
Intercept	3.26	0.14	23.45	<0.001***
ISA	<0.01	0.01	0.63	0.526
Lay date	-0.01	0.02	-0.30	0.764
Clutch size	0.12	0.06	1.85	0.064
Female body condition	-0.26	0.11	-2.37	0.018*
Year	-0.03	0.16	-0.20	0.840
Spot distribution				
Intercept	3.36	0.16	21.58	<0.001***
ISA	-0.01	0.01	-0.81	0.420
Lay date	-0.02	0.02	-0.73	0.463
Clutch size	0.10	0.07	1.45	0.146
Female body condition	0.15	0.12	1.26	0.207
Year	-0.31	0.17	-1.82	0.069
Spot size				
Intercept	2.16	0.08	27.70	<0.001***
ISA	<0.001	<0.01	0.20	0.840
Lay date	0.01	0.01	0.91	0.362

Clutch size	0.05	0.04	1.32	0.186
Female body condition	-0.01	0.06	-0.21	0.84
Year	-0.15	0.08	-1.92	0.06

897 **Table S3.** Linear Mixed Effect Models (LMMs) testing the association between Impervious
 898 Surface Areas (%) measured in a 100m radius around each nestbox, and the number of hatched
 899 offspring in great tits and blue tits. Continuous predictors were scaled and mean-centered (mc).
 900 Significance levels are indicated in **bold**: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Data and details
 901 regarding methods can be found in Corsini & Szulkin (2025).

Family: Gaussian, Random = Site (N=8)

Model structure (LMMs): Number of hatched offspring ~ ISA_{mc} + Clutch size_{mc} + Female body mass_{mc}
 + Lay date_{mc} + Year

Great tit (n = 252)				
Variable	Estimate	se	t-value	p-value
(Intercept)	7.78	0.20	38.28	<0.001***
ISA	<0.01	<0.01	0.13	0.899
Clutch size	0.95	0.05	17.87	<0.001***
Female body mass	-0.07	0.09	-0.80	0.426
Lay date	-0.01	0.01	-1.00	0.320
Year ₂₀₁₇				
Year ₂₀₁₈	0.11	0.27	0.40	0.689
Year ₂₀₁₉	-0.19	0.25	-0.76	0.446
Year ₂₀₂₀	-0.50	0.25	-1.96	0.051
Year ₂₀₂₁	-0.58	0.29	-1.97	0.050
Blue tit (n = 305)				
(Intercept)	8.62	0.21	42.02	<0.001***
ISA	-0.01	0.01	-2.12	0.052
Clutch size	0.95	0.06	15.39	<0.001***
Female body mass	-0.29	0.16	-1.86	0.06
Lay date	-0.01	0.02	-0.56	0.57
Year ₂₀₁₇				
Year ₂₀₁₈	0.40	0.28	1.43	0.154
Year ₂₀₁₉	0.25	0.28	0.89	0.373
Year ₂₀₂₀	-0.34	0.28	-1.22	0.222
Year ₂₀₂₁	0.18	0.29	0.63	0.503

902