

Social structure in northern bottlenose whales: Stable relationships without stable groups

1 Sam F. Walmsley^{1*}, Laura J. Feyrer¹, Hal Whitehead¹

2 ¹ Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.

3

4 **Abstract**

5 Uncovering the drivers and function(s) of social relationships across a wide range of species is key to
6 understanding the ecology and evolution of social behaviour. Northern bottlenose whales have been
7 identified as a particularly important case study for social evolution. Unlike other large, toothed whale
8 species which live in kin-based social units, northern bottlenose whales appear to form fluid, fission-
9 fusion communities. However, this understanding has not been revisited in over 20 years, and new lines
10 of evidence suggest that female relationships may have been underestimated in previous work. Drawing
11 on 35 years of photo-identification data, we used Bayesian social network and binomial mixture models
12 to quantify social relationships between individuals. Northern bottlenose whale social networks had very
13 low modularity but high social differentiation, indicating strong social preferences in the absence of stable
14 groups or community partitions. Contrary to previous work, we found evidence for strong, long-lasting
15 relationships among females, not just males. Though kinship had little influence on social relationships,
16 age differences and residency influenced patterns of association. Broadly, this analysis supports the
17 hypothesis that northern bottlenose whales exhibit a social system more similar to smaller, less sexually
18 dimorphic toothed whales, such as dolphins. This work highlights the value of long-term ecological
19 research for quantifying the social lives of long-lived species.

20 **Keywords**

21 Social relationships - Social networks - Whales - Relatedness - Kinship - Age differences - Residency –
22 Social structure - Mixture model - *Hyperoodon ampullatus*

23

24 *Corresponding author: sam.walmsley@dal.ca

25

26 **Introduction**

27 Social relationships between individuals are increasingly recognized as essential to many species, with
28 clear links to survival, reproduction, and well-being (Snyder-Mackler et al., 2020). And while it has been
29 argued that sociality is ubiquitous across life (Frank, 2007), there remains enormous variation in how
30 individuals, populations, and species rely on others. Understanding the ecological and evolutionary
31 factors that underlie the formation of social relationships is a key goal for behavioural ecology. However,
32 meeting this goal hinges on the quality of description of social behaviour across a wide range of species
33 and populations. Studies on wild and less accessible animal populations are especially valuable, given the
34 historical focus on “STRANGE” study species (e.g., individuals in captivity, or model species bred for
35 lab research), which may exhibit atypical social behaviour (Webster & Rutz, 2020). In turn, these
36 descriptions can offer insights into the functions of social behaviour and facilitate downstream
37 comparative analyses to trace the phylogenetic history of social structure.

38 Kinship is often considered one of the most important factors underlying social relationships and shaping
39 social structure across species (Lukas & Clutton-Brock, 2018; Smith, 2014). However, recent theoretical
40 and empirical evidence suggests that even when relationships among genetic relatives are important,
41 individuals may still opt to invest in relationships with non-kin. A review of kinship composition across
42 18 mammalian species found that nearly half lived in social units where they regularly interacted with
43 non-kin (Pereira et al., 2023), while approximately 45% of cooperatively breeding bird species nest with
44 non-relatives (Riehl, 2013). Longitudinal research has similarly shown that female rhesus macaques
45 (*Macaca mulatta*) form strong (though somewhat less stable) relationships with non-kin, especially when
46 they lack kin in their social environment (Cheng et al., 2024). Relationships with non-kin relationships
47 may be beneficial simply in that they buffer against the risk of losing preferred kin partners, as described
48 by the “social bet-hedging” hypothesis (Carter et al., 2017). Non-kin partners may also be able provide
49 specific resources, information, or capacities that an individual’s available kin cannot provide (Cheng et
50 al., 2024). And while these types of relationships have generally received less attention than relationships
51 among relatives, growing evidence suggests that they may be similarly important facets of social
52 behaviour and its consequences.

53 Whales and dolphins (the cetaceans) have proven to be an excellent system for understanding the
54 evolution and diversity of social behaviour in the context of kinship. Generally, larger toothed whales are
55 thought to form social units based on maternal kin, centered on extended relationships between mothers
56 and offspring (Rendell et al., 2019). Here, stable units of related females and offspring often live and
57 travel together (e.g., sperm whales, *Physeter macrocephalus*). Smaller species are thought to form more

58 fluid social networks (Weiss et al., 2021), often with fission-fusion grouping patterns and where kinship
59 remains important, but a higher proportion of relationships are formed with non-kin. Toothed whale
60 communities are generally thought to be female-centric (Rendell et al., 2019), though this may not be
61 ubiquitous. Beluga whales (*Delphinapterus leucas*) often associate with unrelated or paternally-related
62 individuals, upending the previous assumption that maternal kinship defines their social organization, as
63 has been found in better-studied species (O’Corry-Crowe et al., 2020). Similarly, there is growing
64 evidence that social relationships may be less tied to genetic relatedness than previously thought. For
65 example, a study of Gray’s beaked whales (*Mesoplodon grayi*) found that adults stranding together were
66 exclusively non-relatives (Patel et al., 2017).

67 Little is known about the social behaviour of the beaked whales (family *Ziphiidae*), despite the fact that
68 they comprise 24 of the nearly 80 species of toothed whales (Weiss et al., 2021). Blainville’s beaked
69 whale (*Mesoplodon densirostris*) and goose-beaked whales (*Ziphius cavirostris*) are considered less social
70 generally (Baird, 2019), though do appear to dive collectively in relatively small groups (Alcázar-Treviño
71 et al., 2021). Research on Blainville’s beaked whales off Madeira Island found evidence for relatively
72 short-term relationships involving females (e.g., up to 3.5 years but often less), and no evidence of long-
73 term relationships among males. For this and other populations, female defense polygyny has been
74 proposed as the mating system, whereby males compete and defend access to females. Research on
75 Baird’s beaked whales (*Berardius bairdii*) near the Commander Islands, Bering Sea, points to the
76 presence of moderately differentiated relationships and some loose clustering into sub-groups (Fedutin et
77 al., 2015). Though males and females were not distinguished, evidence of stronger relationships between
78 more heavily scarred individuals raises the possibility of male-male coalitions (Fedutin et al., 2015).
79 Baird’s beaked whales also show potential evidence of culturally transmitted knowledge relating to
80 foraging locations (Filatova et al., 2024).

81 Northern bottlenose whales may provide one of the most promising case studies for understanding the
82 factors underlying whale social behaviour. While much remains to be learned, preliminary evidence from
83 the Scotian Shelf population of northern bottlenose whales suggests that, unlike the female-centric
84 societies of other deep-diving whales (e.g., sperm whales), they lack hierarchically structured social units
85 (O’Brien, 2013; Weiss et al., 2019), and rarer long-term associations tend to be between males (Gowans
86 et al., 2001; Gowans & Rendell, 1999), with few stable relationships occurring among females (O’Brien,
87 2013). However, a recent analysis of stable isotopes in northern bottlenose whale teeth indicates long
88 weaning periods of 4 years (Feyrer et al., 2020), suggesting that sustained mother-calf relationships and
89 potentially other social dynamics are yet to be understood for this population. Northern bottlenose whales
90 are also highly interactive and exhibit pro-social behaviours, such as gathering around injured animals

91 (Gray, 1882). That these whales combine traits typical of female-centric, interdependent odontocete
92 societies (e.g., extended weaning, group defense) with fluid social networks makes them a particularly
93 interesting case study for understanding the form and function of social relationships. Furthermore,
94 suggestions that differences in foraging ecology or site fidelity might also drive their unusual social
95 behaviour (see Weiss et al., 2021), makes this Scotian Shelf population a particularly important system
96 for advancing our understanding of odontocete sociality.

97 Here, we draw on individual-based data spanning 35 years to characterize the social relationships of
98 northern bottlenose whales. With a much larger and longer-term dataset than previously available, and
99 applying new analytic techniques, we aimed to provide a new description of social structure in the
100 species, and specifically the Endangered population inhabiting the Scotian Shelf. Using a combination of
101 Bayesian social network and social mixture models, we quantify the global structure of northern
102 bottlenose whale relationships, test for the presence of long-term associations, and revisit the conclusion
103 that females show no signal of differentiated relationships. We also explore how genetic relatedness, age
104 differences, and residency patterns influence relationship formation. This expanded test of the idea that
105 northern bottlenose whales have diverged in social structure from ecologically similar species advances
106 an understanding of the factors influencing the evolution of social structure in whales and other mammals.

107 Methods

108 Study system and data collection

109 Northern bottlenose whales are deep-diving beaked whales found in several areas of the North Atlantic
110 Ocean, and that primarily feed on squid, benthic fishes, and invertebrates (Moors-Murphy, 2018).
111 Individuals in the present dataset are estimated to live up to approximately 37 years of age, and there has
112 been some evidence that males live longer than females (Ellis et al., 2025). Northern bottlenose whales
113 were photographed on the edge of the Scotian Shelf from ocean-going sailing vessels during 28 summers
114 spanning 1988-2024 (Table S1). Research efforts were predominantly focused within the Gully
115 submarine canyon (which became a Marine Protected Area in 2004). Smaller amounts of photographic
116 data from other areas (e.g., Shortland and Haldimand canyons) were not considered in this analysis,
117 though we did include photographs collected by other research vessels in the Gully during 2007-2009 and
118 2013. Film photography was replaced by digital technology starting in 2007, though all other procedures
119 remained consistent across years. As photo-identifications are side-specific (i.e., left, or right side of the
120 dorsal fin), and identity cannot always be linked across sides, we only considered left-sided identifications

121 for our analysis. We also restricted our analysis to high-quality photographs (rating of 3 or above out of 4)
122 to reduce heterogeneity in detection probabilities across individuals.

123 Visual sex classification was performed based on the shape of the melon (forehead) when photographs of
124 melons and dorsal fins could be linked. Females tend to have smaller, rounded melons while males
125 develop squarer, flatter, and often whiter melons over time. This means that younger males may
126 sometimes be visually misclassified as females, which we accounted for in our analysis (See Robustness
127 Checks). Sex classifications were only assigned if the observer was confident in melon characteristics.
128 Biopsies and accompanying genetic sex and microsatellite data were collected for a subset of individuals
129 in the population (N = 54 left-sided IDs). Bottlenose whales were biopsied during fieldwork using darts
130 attached to a crossbow, and the tissue was stored in liquid nitrogen after retrieval. Microsatellite assays
131 were applied to each biopsy sample (Feyrer et al., 2019). See (Feyrer & Walmsley, 2024) for additional
132 details on photo-identification and the visual sex-classification of northern bottlenose whales. Simple age
133 classes of calf, juvenile, and adult were also assigned for each individual in each year it was observed,
134 based on relative body size, colouration, fin shape, and the presence of fetal folds (see Walmsley et al.,
135 2024 for additional detail). Here, we restricted our analysis to individuals that were either visually
136 classified as adults, or had a minimum age of 4 years old, which corresponds to the estimated weaning
137 age for northern bottlenose whales (Feyrer et al., 2020). This allowed us to consider relationships among
138 adults without the influence of potentially strong or consistent relationships between mothers and
139 suckling offspring. Following (Walmsley et al., 2024), we calculated minimum age from the number of
140 years that individuals were re-sighted in the photo-identification catalogue. Individuals classified as
141 calves when first observed were assigned a minimum age of zero, while those classified as juveniles or
142 adults when first observed were given a minimum age of one and three years, respectively.

143 **Defining social associations**

144 Similar to previous work on this population, we defined groups as photo-identifications within 10 minutes
145 of one another (Gowans, 1999; O'Brien, 2013). This definition was transitive, i.e., if individual A was
146 seen at 4:01 pm, B at 4:05 pm, and C at 4:12 pm, all three individuals would have been within a group.
147 While northern bottlenose whales may spend variable amounts of time at the surface, has been shown that
148 after approx. 10 minutes the probability of re-sighting the same animals decreases significantly (Gowans,
149 1999; O'Brien, 2013). When applied to the long-term dataset, this resulted in encounters with groups
150 lasting 4.4 minutes on average (time between first and last photograph; SD of 7.3 minutes; range 0-74
151 minutes). Social associations were then defined based on group membership, i.e., we assumed that all
152 group members were associated, following the “gambit of the group”(Whitehead & Dufault, 1999). For
153 each group observation, we considered a social association to be possible between a pair of whales if at

154 least one individual was present. This means that group observations were treated as sampling periods.
155 When estimating dyadic relationships across years, we included an additional requirement that both
156 whales were known to be alive. In other words, we excluded periods before the first, and after the final,
157 year that each whale was photo-identified, so as not to confound our estimates of social relationships with
158 demographic effects (especially birth and death).

159 **Bayesian social network analysis**

160 We used a Bayesian approach to generate posterior distributions of the strength of specific pairwise
161 relationships between northern bottlenose whales. These are equivalent to “edge weights” in social
162 network analysis. This approach allowed us to simultaneously track statistical uncertainty in the estimates
163 for each relationship. We also used partial pooling, i.e., fitting relationship measures as a random effect,
164 which should enhance the accuracy of our measures. We fit two types of network models: the first was a
165 multi-year network incorporating data from all years and the aforementioned demographic restriction, and
166 can be represented by the following equation:

$$\begin{aligned} \text{Together}_N &\sim \text{Binomial}(\text{opportunities}, p) \\ \text{logit}(p) &= \alpha_{\text{overall}} + \alpha_{[\text{Dyad}]} \\ \alpha_{[\text{Dyad}]} &\sim \text{Normal}(0, \sigma) \\ \alpha_{\text{overall}} &\sim \text{Normal}(-1.5, 1) \\ \sigma &\sim \text{Exponential}(1) \end{aligned}$$

167
168 Here, p represents the probability of a social association (binary) being observed between two animals.
169 Here, *opportunities* represents the number of group observations during which a social association
170 between two animals was possible (see above), while Together_N refers to the number of group
171 observations when both individuals were detected. Crucially, α_{dyad} represents dyad-specific deviations
172 from the mean α_{overall} , which together allow us to estimate how often any given dyad is observed
173 together (i.e., edge weight). The resulting multi-year network does not necessarily represent the social
174 structure of the bottlenose whale community at any given time, but provides estimates of the strength of
175 dyadic relationships across years.

176 Using the same model structure and priors as above, we also calculated annual networks. These were
177 based on the same group association data, but only including individuals observed at least once in a given
178 year. In other words, individuals lacking any detections in a given year would not be included in that
179 year’s network. To pool information about typical association rates across years, these annual networks
180 were fit in a single model whereby dyads were treated completely independently (e.g., dyad A-B in 2021
181 was considered independent from dyad A-B in 2023). We then extracted each set of year-specific edge

182 weights to create annual networks. These provided a better depiction of northern bottlenose whale social
183 structure at a specific time point. Both network models were fit using the *brms* package in R (Bürkner,
184 2021).

185 **Estimating global network properties**

186 We calculated two metrics to characterize the social structure of northern bottlenose whales. Social
187 differentiation (S) is the estimated coefficient of variation of the real association indices and is a measure
188 of the variability in the strength of social relationships. Values less than 0.5 often interpreted as indicating
189 homogenous associations while values greater than 2.0 indicate strong social preferences or “extreme”
190 differentiation (Whitehead, 2009). Note that though this measure can provide similar insights to measures
191 of Shannon complexity (also sometimes referred to as “S” and applied to animal communities), they are
192 distinct measures. Modularity (Q) is a measure of the clustering or fragmentation of relationships into
193 sub-units or groups. Ranging from 0 to 1, values of 0.3 or higher are generally interpreted as indicating
194 non-trivial divisions (Newman, 2006; Whitehead, 2009).

195 All metrics were estimated within years, to avoid the influence of temporal or demographic changes
196 influencing apparent network structure (Cantor et al., 2012). Both Q and S were estimated using the fitted
197 annual Bayesian edge weight models. To propagate uncertainty in edge weights through these
198 calculations, we constructed networks based on each of 1,000 randomly selected draws from the posterior
199 of the edge weight model. We then calculated Q and S for each of these networks, resulting in a full
200 posterior distribution for each annual measure. Q was calculated using the Louvain clustering algorithm
201 in the *igraph* package in R (Csardi & Nepusz, 2006), while S was calculated as the coefficient of variation
202 of edge weights for each network. Both measures were estimated using across all dyads taking edge
203 weights into account, i.e., we did not restrict the calculation to dyads with an edge weight above a given
204 threshold. However, we did not calculate modularity or social differentiation for two years during which
205 just one pair of animals was observed (1991, 2009).

206 **Exploring the duration of relationships**

207 We used lagged association rate (LAR) analysis to quantify the duration of relationships in northern
208 bottlenose whales. Given an observed social association between two animals, LARs represent the
209 probability of another association being observed at a given time lag. Generalized across a community,
210 visualizing change in LARs across time lags can provide insight into the formation and decay of social
211 relationships. LARs were calculated using SOCOPROG (Whitehead, 2009), based on associations within
212 groups and using days as sampling periods. We ran separate analyses for all individuals, as well as sex-

213 specific relationships (e.g., male-male, female-female, male-female). Because LARs are calculated from
214 the perspective of a given focal animal, male-to-female and female-to-male dyads were analyzed
215 separately. We also calculated a null association rate to determine the time lag at which dyadic
216 relationships cease to differ from hypothetical random associations in the community. Jackknifing was
217 used to estimate the precision of both LARs and null association rates.

218 **Mixture models: Identifying types of social relationships**

219 Mixture models can be a useful tool for distinguishing relationships of varying strength from a
220 distribution of edge weights (Weiss et al., 2019). We fit a series of binomial mixture models to identify
221 the number of “types” of relationships (i.e., components of mixture model) that northern bottlenose
222 whales had, and whether this differs according to the sex composition of dyads (e.g., Female-Female,
223 Male-Male, etc.). Models were fit using 1-5 components for different relationship types, and the Bayesian
224 Information Criterion (BIC), which performs well at smaller sample sizes, was used to identify the best-
225 fitting model (Ellis et al., 2021; Weiss et al., 2019). This approach also allowed us to directly estimate the
226 complexity of social relationships, using Shannon entropy, where more even distributions of varied
227 relationship strengths are considered most complex. Binomial mixture models were fit with the
228 *SocMixMods* package in R (Ellis et al., 2021), using the same association data used for the social network
229 model (i.e., only considering demographically possible associations), with the numerator as the number of
230 sampling periods in which a given dyad was observed together, and the denominator as the number of
231 sampling periods in which at least one of the individuals in the dyad was observed. We fit models specific
232 to each sex combination, as well as an overall model that allowed us to incorporate additional data from
233 individuals with unknown sex.

234 **Modelling the drivers of social relationships**

235 We used dyadic regression to explore how the formation of social relationships varied with several key
236 predictors. The type of relationship (absent, weak, strong) assigned to each dyad by the mixture model
237 approach was used as a response variable in these analyses, similar to (Ellis et al., 2021; Nielsen et al.,
238 2023). This allowed us to estimate the relative probability of a given dyad forming an absent, weak, or
239 strong social relationship across three key predictor variables: genetic relatedness, difference in minimum
240 age, and residency (see below). This approach offered a straightforward and computationally feasible way
241 to manage the otherwise large amount of absent or potentially avoidant relationships in the population
242 (i.e., dyads with edge weights very close to zero). This also allowed specific types of relationships to vary
243 in relation to predictor variables of interest, i.e., avoiding the implicit assumption that a predictor (e.g.,
244 relatedness) will influence the probability of forming weak or strong relationships in a similar fashion.

245 Separate models were fit for all individuals (including those of unknown sex), and for each dyadic sex
246 combination where both sexes were known (male-male, female-male, female-female). We also included a
247 multi-membership varying effect on the intercept, which accounts for the non-independence of specific
248 animals being present in multiple dyads (Hart et al., 2022). We fit two versions of each model. The first
249 version was fit using a single dataset where, for each dyad, we assigned their relationship type as the type
250 with the highest probability in the mixture model results. These “hard label” assignments provided a best
251 guess of each dyad’s social relationship. The second versions were fit and pooled across 10 datasets
252 where relationship assignments were drawn at random based on the dyad-specific probabilities from the
253 mixture model results. This allowed us to assess the sensitivity of our results from the hard label models
254 with an approach that incorporates the full uncertainty about each dyad’s relationship type. We used
255 Normal priors for slope terms with mean of 0 and standard deviation of 1 (while using standardized
256 predictors), and verified that they were appropriate using prior predictive checks. Otherwise, we used
257 default priors from *brms* in these models, which are only very weakly informative.

258 *Genetic relatedness*

259 We estimated the genetic relatedness between all biopsied individuals from the microsatellite data with
260 the Wang estimator (Wang, 2002), implemented in the *related* package in R (Frasier et al., 2014). This
261 estimator is designed to be robust to small sample sizes. It can also provide negative values, if pairs of
262 individuals are less related than average given the sample. The resulting estimates of relatedness can
263 simply be interpreted as a measure of genetic correlation between two individuals and are well-suited for
264 analyses like generalized linear models where differences in relatedness across sampling units are of
265 interest (Wang, 2017).

266 *Differences in minimum age*

267 Next, we explored how dyadic relationships varied as a function of *difference in minimum age*. Following
268 Walmsley et al. (2024), we calculated the minimum age of individuals based on the year of first
269 identification as well as their age class (calf, juvenile, adult) in that year. Absolute differences in these
270 minimum age values were then used as a predictor of the formation and strength of dyadic relationships in
271 northern bottlenose whales. As before, only “possible” dyads were considered, so we do not expect a
272 negative relationship between difference in minimum age and the presence of social relationships to
273 emerge simply because of births and deaths in the population.

274 *Residency*

275 Lastly, we explored how residency patterns impacted relationships between bottlenose whales. While this
276 population shows strong site-fidelity to the Gully and year-round presence (Feyrer et al., 2024; Wimmer
277 & Whitehead, 2005), some individuals have been repeatedly observed across decades (max. 34 years),
278 while others are detected over much shorter time periods, i.e., within a single field season. Individuals
279 were considered to exhibit *transient* behaviour if they only were detected in a single year (based on left-
280 sided photoidentifications) that was not the first or last year of the study period (1988, 2024; as we would
281 be unable to distinguish residency from demographic changes). While incomplete sampling of all
282 individuals in each year will mean some misclassification of resident behaviour as transient, this provided
283 a simple measure of residency patterns in the population. Similar measures have also been linked to
284 behavioural differences in other beaked whales (Filatova et al., 2024). We used these classifications to
285 compare social relationships across resident-resident, resident-transient, and transient-transient dyads.

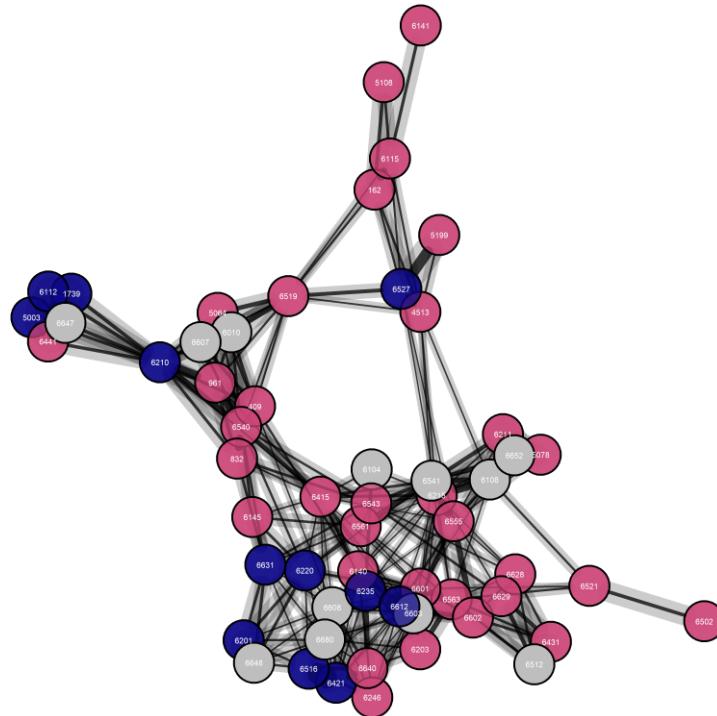
286 **Robustness checks**

287 Northern bottlenose whales vary in the distinctiveness and permanence of their markings, which may
288 affect our ability to re-identify individuals across multiple years. To address this issue, previous analyses
289 of behaviour in this population have sometimes exclusively focused on individuals with more permanent
290 markings (e.g., notches and back indentations; S. Gowans & Whitehead, 2001). While our photo-
291 identification catalogue and protocol has been updated to focus on higher-quality photographs (which
292 should reduce heterogeneity in re-identifications), we repeated key analyses with a restricted dataset to
293 ensure that our findings were robust to the exclusion of less-distinctively-marked individuals. These
294 checks included the re-analysis of global network measures, lagged association rates, mixture models, and
295 multinomial GLMMs linking relatedness, age differences, and residency patterns to relationship types.

296 Additionally, sex classifications for individuals without genetic (biopsy) data may sometimes mistake
297 younger males for females, as flatter, larger melons (foreheads) of males develop over time. To assess
298 whether potential misclassifications could be influencing results for female-female dyads, we fit an
299 additional multinomial GLMM to assess whether dyads of females with genetically confirmed sex
300 differed in their distribution of social relationship types. For example, if strong relationships among
301 “females” were in fact driven by misclassified males, “female-female” dyads lacking genetic sex
302 confirmations should be less likely to form strong relationships. Aside from the lagged association rates,
303 all analyses were conducted in R version 4.3.2, organized into a reproducible pipeline using the *targets*
304 package (Landau, 2021; R Core Development Team, 2022), and are available at
305 github.com/swalmsley/Bottlenose-Relationships. Models were assessed diagnostically using R-hat and

306 effective sample size values prior to interpretation. Unless otherwise stated, we present 90% credible
307 intervals (CIs) and effects are otherwise reported as the mean of the posterior of each coefficient
308 alongside the associated probability of a directional effect (pd).

309 **Ethical Note**

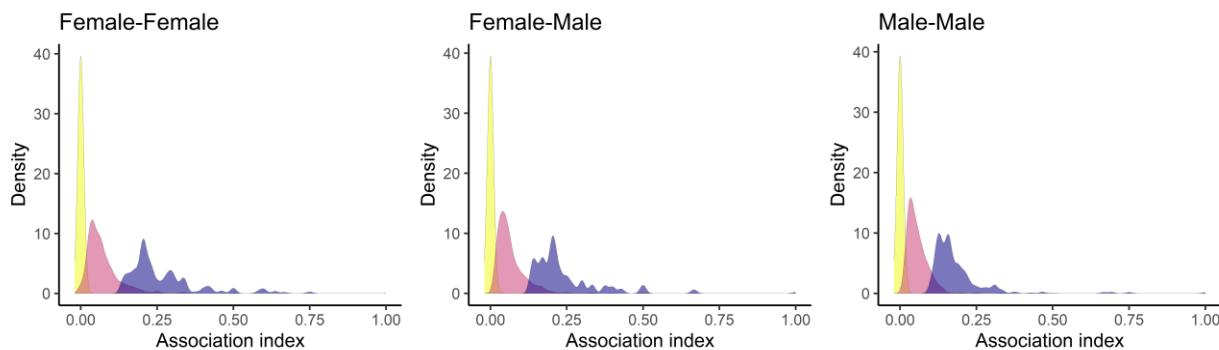

310 Field research on northern bottlenose whales was approved by the Dalhousie University Committee on
311 Laboratory Animals (UCLA), as well as the Department of Fisheries and Oceans (UCLA protocol
312 number 24-017). This included permits from the Species at Risk Act Program and the Gully Marine
313 Protected Area management team. The most invasive component of field research is biopsy collection,
314 which involves collecting a small piece of skin using a sampling tip attached to either a crossbow bolt or a
315 pole. This procedure has been shown to produce only moderate behavioural responses in biopsied whales,
316 i.e., no severe reactions (Hooker et al., 2001). Less invasive procedures such as photo-identification and
317 the presence of the research vessel are expected to have minimal impacts on the animals.

318 **Results**

319 In total, our analysis included 5,112 pairwise social associations (i.e., co-occurrence within groups)
320 between 42,459 dyads of 623 individual northern bottlenose whales. Of these individuals, 110 were
321 classified as male, 212 as female, and 301 as unknown sex. Groups included an average of 2.43 adult
322 individuals (SD 1.89, range 1-27) and showed varying sex composition. While most groups consisted of
323 individuals of a single sex, mixed sex groups were also common (35.7% of groups with at least 2 adults
324 included males and females). Nearly half of groups with at least 2 adults included individuals of unknown
325 sex (45.6%). Northern bottlenose whales formed a relatively fluid social community, with a mean
326 posterior modularity of 0.28 (90% CI 0.17-0.38), calculated annually based on 1,000 draws of each
327 network. This mean lies below the typical threshold of 0.3 for important divisions within a community
328 (Whitehead, 2008), though there was a 35.5% posterior probability that modularity was above 0.3.
329 Despite this lack of clear sub-units, social differentiation was high (mean 2.1, 90% CI 1.53-2.49),
330 indicating the presence of differentiated relationships (Figure 1). Robustness checks excluding individuals
331 with potentially less permanent markings returned very similar results, and we found no evidence that
332 female dyads with genetically confirmed sex differed from those with visually confirmed sex, so here we
333 focus solely on findings from our main analysis (See Supplemental Material for summary).

334 Most demographically possible dyads were never observed together in our sample (83%). Based on the
335 multi-year network model, dyads that were observed associating at least once were detected together
336 approximately 6% of time on average (i.e., mean edge weight of 0.06). However, relationships were

337 highly variable. The mean maximum edge weight across individuals was 0.15, and the highest estimated
338 edge weight was 0.59, suggesting little evidence of *very* strong associates or “constant companions”.



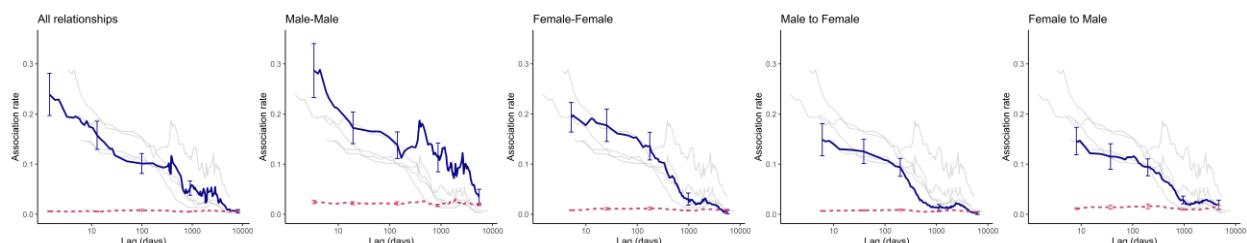
339
340 **Figure 1** – Example of annual network based on data from 2023 showing relationships among northern bottlenose
341 whales. Individuals (“nodes”) are represented by circles while the lines linking them represent estimates of the
342 proportion of time that individuals are observed together (“edge weights”). The darker inner portion of each line
343 represents the mean of the posterior of each edge weight (thicker lines implying a stronger relationship), while the
344 outer grey bands represent the standard deviation. The blue circles or “nodes” represent males, the light red nodes
345 represent females, and the grey nodes represent individuals of unknown sex. For visualization purposes, we only
346 show edge weights with a mean of at least 0.02 (i.e., lines linking dyads that are estimated to be observed together at
347 least 2% of the time).

348 **Evidence for multiple types of social relationships**

349 Social mixture models suggested that northern bottlenose whales formed at least 3 types of relationships,
350 and potentially more. Based on BIC, the best model for female-female relationships included 4 categories,
351 while the best model for male-male relationships included 5 categories. However, the categories with the
352 highest association rates accounted for a very small proportion of possible relationships (< 1% for female-
353 female relationships, < 3% for male-male relationships), and there was similar statistical support for
354 models with 3 categories (Figure S1).

355 Accordingly, we carried out subsequent analyses based on the 3-category model for all sex combinations,
356 allowing us to compare “absent or avoidant”, “weak”, and “strong” relationships across the population
357 (Figure 2). These categories were based on the frequency of associations: absent or avoidant relationships
358 involve dyads that were never or almost never observed together, weak relationships involved dyads that
359 were detected together approximately 3% of the time, and strong relationships involved dyads detected
360 together greater than 10% of the time. However, these rates and the proportion of dyads with each
361 relationship type varied by sex (See Supplemental materials for summary tables). Note that while the very
362 low association rates may result from an avoidant relationship, we cannot distinguish between avoidance
363 and the simple lack of a preferred social relationship, so we use the term “avoidant/absent” to refer
364 broadly to relationships with very few associations. It is also important to note that these rates will
365 underestimate the true amount of time that dyads are together, as they rely on side-specific observations
366 of individual whales in the wild, which will sometimes be missed. For example, a whale may not be
367 photographed from both sides, or may not surface during photo-identification efforts. The complexity of
368 associations, measured by Shannon entropy, varied by sex composition (female-female: 0.76, female-
369 male: 0.86, male-male: 1.09). Shannon complexity increases as the number and evenness of relationship
370 categories increase. Though there was some uncertainty in the mixture model’s assignment of specific
371 relationship categories to dyads, the difference in probabilities of assignment between the first and second
372 highest category was almost always greater than 30% (99% of dyads for model with all individuals).

373


374 **Figure 2** – Northern bottlenose whales have three types of relationships with others, regardless of the sexes of the
375 dyad. These types represent dyads that very rarely interact (yellow), those that form weak relationships (red), and
376 those that form strong relationships (purple). See Supplemental Materials for proportions and mean association
377 index values for each category.

378 Evidence for strong bonds between females is of particular interest, as the previous understanding has
379 been that females form weaker associations in this population (but see O’Brien, 2013). In fact, the mean
380 association index of the “strong” relationship for female-female dyads was higher than that of male-male

381 dyads, suggesting that they form the strongest relationships in terms of frequency of association. More
382 generally, evidence for both weak and strong relationships in northern bottlenose whales runs counter to
383 previous research which suggests that northern bottlenose whales have just two types of relationships
384 (absent and weak; Weiss et al., 2019).

385 **Long-term persistence of social relationships**

386 Northern bottlenose whales formed extended social relationships, lasting more than a decade on average
387 (Figure 3). Male-male relationships were particularly long-lasting (~15 years or more), while female-
388 female relationships appeared to last approximately 10 years, based on the average point at which the
389 lagged association rate crosses the null association rate (Figure 3). Relationships between males and
390 females were shortest in duration, but were still unexpectedly long-lasting, only decaying to null
391 association rates after approximately 3 years. While these reflect the average duration of social
392 relationships across the community, our dataset included several examples of dyads seen together over
393 periods of more than two decades (e.g., females “832” and “1336” were observed together in 1997 and
394 2021, while “102” and “409”, a male-female pair, were observed together in 1996 and 2019), highlighting
395 the extended history and familiarity between animals in this population. Results from the robustness
396 check based on observations of individuals with more permanent markings were very similar, indicating
397 that potential misidentifications were not influencing these patterns (Figure S3). Additionally, such
398 misidentifications would likely result in underestimated relationship durations, meaning that we can be
399 very confident that long-term relationships are present among these whales.

400

401 **Figure 3** – Lagged association rates (LARs) reveal long-term relationships in northern bottlenose whales. Solid lines
402 show LARs, which represent the probability of associated animals associating after a given time lag, while dashed
403 lines represent the null association rate if no preferred relationships existed within the community. Error bars
404 represent estimates of precision from jackknifing.

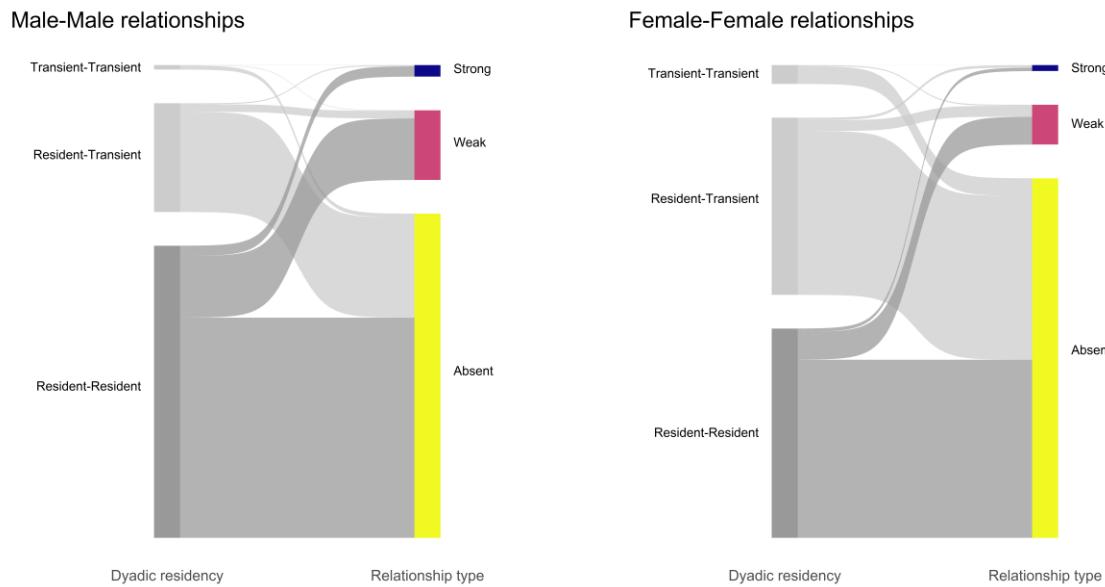

405 **Factors influencing dyadic relationships in northern bottlenose whales**

406 *Effects of genetic relatedness on social relationships*

407 We were able to estimate the relatedness of 431 dyads that overlapped in our long-term study and thus
408 could have been socially associated. Estimates of relatedness ranged from -0.71 to 0.54, and were
409 uncertain, with relatively wide confidence intervals. While this reduced our ability to be certain about
410 specific genealogical relationships, we were still able to consider a range of relatedness estimates against
411 social behaviour. Generally, relatedness did not appear to be a major driver of social relationships
412 between northern bottlenose whales. This was true both when considering all individuals in the
413 population, and when considering each sex combination in turn. For example, relative to absent
414 relationships, the effect of relatedness on the probability of forming relationships was centered on zero for
415 both weak relationships ($\beta = 2.50 \times 10^{-3}$, 90% CI: -1.02–1.1, pd= 51%), and strong relationships ($\beta = 0.1$,
416 90% CI: -1.45–1.62, pd = 54.6%). Similarly, we found little correlation between relatedness and Bayesian
417 edge weights (Figure S2).

418 *Effects of age differences on social relationships*

419 Though we did not know the true ages of animals in the population, we estimated the minimum age of
420 each individual based on age class (calf, juvenile, adult) and sightings records. Differences in minimum
421 age appeared to negatively influence the probability of forming social relationships overall (weak
422 relationships: $\beta = -0.2$, 90% CI -0.23–0.16, pd = 100%; strong relationships: $\beta = -0.13$, 90% CI -0.24–
423 0.02, pd = 97.5%). These effects were much less certain when using multiple imputation to account for
424 uncertainty in the assignment of relationship types to each dyad (weak relationships: $\beta = -4.90 \times 10^{-3}$,
425 90% CI -0.02–0.01, pd = 65.8%, strong relationships: $\beta = -4.10 \times 10^{-3}$, 90% CI -0.08–0.07, pd = 54.9%).
426 However, male-male dyads specifically tended to form strong relationships with individuals of similar
427 minimum ages ($\beta = -0.26$, 90% CI -0.48–0.06, pd = 98.7%). This effect was detected regardless of
428 whether we used multiple imputation, or a single dataset with the most likely relationship type assigned to
429 each dyad. This contrasted with the strong relationships observed in female-female or female-male dyads,
430 which were less common overall, but also largely independent of age differences (Figure 4).


431

432 **Figure 4** – The probability that a pair of whales forms a strong relationship depends on sex composition and age
 433 differences. For male-male pairs, strong relationships were more likely to occur within individuals of similar
 434 minimum ages.

435 *Effects of residency on social relationships*

436 Including individuals of unknown sex, most dyads in our analysis were composed of residents and
 437 transients (54%) or resident-resident pairs (34%), with fewer dyads of transient individuals (10%).
 438 Whales classified as transient were observed across shorter timespans *within* years as well (mean of 3.9
 439 days between first and last observation), compared to residents (mean of 9.4 days between first and last
 440 observation). Social relationships, either weak or strong, were proportionally more common in resident-
 441 resident dyads than in resident-transient dyads (see Figure 5). This was true for male-male pairs (25% of
 442 resident dyads vs. 8% of resident-transient dyads), male-female pairs (14% vs. 6%), and for female-
 443 female pairs (15% vs. 8%). This pattern was reflected in GLMMs based on the most likely relationship
 444 type for each dyad (i.e., “hard labels”), where social relationships were less likely to occur for resident-
 445 transient (weak: $\beta = -1.34$, 90% CI -1.47–-1.2, pd = 100%; strong: $\beta = -1.02$, 90% CI -1.28–-0.76, pd =
 446 100%) and also transient-transient dyads (weak: $\beta = -0.99$, 90% CI -1.26–-0.73, pd = 100%; strong: $\beta =$
 447 1.4, 90% CI -1.92–-0.9, pd = 100%). However, we found no clear links between residency patterns and
 448 social relationships when using multiple imputed datasets (e.g., for resident-transient dyads, weak
 449 relationships: $\beta = 6.70 \times 10^{-4}$, 90% CI -0.04–0.04, pd = 50.3%; strong relationships: $\beta = 0.04$, 90% CI -
 450 0.1–0.19, pd = 65.5%). This likely resulted from the inherent uncertainty around relationships with

451 “transient” whales, which by definition observed for shorter periods of time. Accordingly, we propose
452 that these patterns be interpreted as only preliminary evidence of stronger relationships among resident
453 dyads.

454

455 **Figure 5** – Connections between residency patterns and relationship types for male-male and female-female dyads
456 of northern bottlenose whales. The vertical width of grey and coloured bars represents the number of dyads of each
457 type. Most female resident-transient pairs rarely interacted (with “absent” relationships), while male resident-
458 transient pairs most often formed weak relationships.

459 Discussion

460 Northern bottlenose whales have been identified as an important species for understanding the diversity of
461 social structures across toothed whales (Weiss et al., 2021; Whitehead, 2003). Our analysis supports this
462 idea, demonstrating that strongly differentiated and long-lasting relationships can exist in the absence of
463 stable groups. Toothed whales generally exist along a continuum of labile, fission-fusion dynamics to
464 stable social groups centered around female kin (Rendell et al., 2019). Theory and comparative analyses
465 indicate that these stable social systems are more likely to be found in toothed whales with “slower” life
466 histories: larger body sizes, extended sexual maturity, and longer lifespans (Walmsley et al., 2025). These
467 larger-bodied, more socially modular species are also expected to form relationships based on female
468 kinship. Northern bottlenose whales provide a useful foil for these patterns (Gowans et al., 2001), by
469 displaying many of the features more common to smaller species (e.g., dolphins) despite being among the

470 largest beaked whales, and exhibiting deep-diving foraging behaviour, which has also been linked to the
471 formation of stable social groups (Whitehead, 1996).

472 Most strikingly, we found no link whatsoever between kinship and the probability of forming a social
473 relationship. This lies in clear contrast to populations where kinship is a principal driver of patterns of
474 social association, as seen in many mammals (Archie et al., 2006), and more specifically to other large
475 toothed whales, where matrilineal social units shape individual social environments (Rendell et al., 2019).
476 While estimates of relatedness were uncertain and only available for a subset of possible dyads in our
477 study, it also included several highly related dyads of various sex combinations with no evidence of social
478 interaction whatsoever. For example, males “45” and “480” had an estimated Wang relatedness of 0.52
479 (CI 0.31-0.70) indicating they are likely brothers (based on similar minimum ages) or possibly father and
480 son. However, they were *never* observed associating, despite overlapping in the dataset for 23 years,
481 during which there were 77 group observations where one of the pair was seen. Similarly, two relatively
482 closely related females “162” and “653” were not seen associating despite 8 years of overlap ($r = 0.45$, CI
483 0.17-0.63; 14 possible group observations). Thus, while we cannot rule out the possibility that kinship
484 plays a more subtle role in structuring relationships (especially as we did not include very young animals
485 in our analysis), northern bottlenose whales appear to diverge from species like sperm whales where
486 social units are largely kin-based (Konrad et al., 2018). This is somewhat puzzling, as one might still
487 expect animals lacking clear kin-based units to be exploiting the benefits of cooperation with kin present
488 in their social environments (Walmsley et al., 2023).

489 Our findings also contrasted with previous research on northern bottlenose whales, revealing more social
490 complexity overall, and especially for female-female relationships. Instead of forming loose networks of
491 weak associations, females displayed a range of relationship types. These included the strongest
492 relationships found across sex classes (based on mixture models with 3 classes), as well as absent or
493 potentially avoidant dynamics between specific pairs (Figure 2). Thus, both males and females in the
494 population form a diversity of relationships. This contrast with previous findings likely stems from the
495 much larger and longer-term dataset (previous published analyses were based on 9 years of data spanning
496 1988-1997), which was likely important for detecting rarer, stronger female relationships. The
497 contribution of new analytic techniques (e.g., social mixture models) may also be important, providing a
498 quantitative approach to categorizing relationships. Given evidence of three or more general “types” of
499 relationships in northern bottlenose whales, we hypothesize that different relationship types may offer
500 different benefits, as predicted by the “Adaptive Relationships Framework” (De Moor & Brent, 2025).
501 Though strong relationships may be more likely to involve high-risk help or cooperative behaviour, weak
502 ties have also been shown to promote biological fitness in some species, potentially providing distinct

503 benefits (McFarland et al., 2017). For example, weak relationships in this population could hypothetically
504 provide benefits such as information about foraging opportunities (though we have no evidence of this to
505 date). Regarding female-female bonds, in toothed whales with stable social units (e.g., sperm whales),
506 strong female relationships allow for the shared care and defense of vulnerable offspring. It is possible
507 that similar benefits underlie the formation of preferred relationships among females. A female with
508 several strong relationships within the population may have relatively predictable access to help when
509 necessary.

510 Demography appears to play some role in determining social relationships, particularly among males,
511 which were more likely to form strong relationships with one another if they were more similar in
512 estimated (minimum) age. This aligns with findings from male bottlenose dolphins that tend to form
513 alliances within their age cohort as young animals, rather than bonding with relatives (Gerber et al.,
514 2020). This suggests that familiarity with social partners may be important for the function(s) of male-
515 male relationships in northern bottlenose whales. For example, male elephants also form relationships
516 within age cohorts, which is thought to support “practice” for competitive behaviour (Chiyo et al., 2011).
517 A greater capacity to form intergenerational relationships in females may also contribute to patterns of
518 social ageing in the population. Older males, but not females, are less socially connected (Walmsley et al.,
519 2024), which may in part be driven by the loss of preferred partners in a similar age cohort. It’s not
520 obvious that these long-lasting male relationships are coalitions or alliances as seen in some populations
521 of bottlenose dolphins, however. While observations of jousting-like headbutting rituals raise the
522 possibility of sexual conflict among males (Gowans & Rendell, 1999), preferred male-male relationships
523 in northern bottlenose whales do not appear to be limited to one or two close partners (as in dolphins).
524 Furthermore, male alliances are thought to be most beneficial when sexual size dimorphism is low, and
525 when there is high local density. Neither of these seems to apply to northern bottlenose whales (O’Brien,
526 2013), which are sexually dimorphic (males are approximately 1.16 times as large as females), and
527 densities, though likely higher in the Gully compared to other regions, aren’t especially high compared to
528 many other smaller cetaceans.

529 We found preliminary evidence that residency patterns influenced how northern bottlenose whales formed
530 social relationships. More specifically, absent or possibly avoidant relationships were less likely to occur
531 among residents (detected across multiple years) when compared to dyads involving “transient” whales.
532 This was not unsurprising. For example, the finding that strong male-male relationships occurred among
533 long-term residents aligns with our finding that they can last 15 or more years (Figure 3). Covariance
534 between social relationships and a simple measure of residency supports the idea that social-spatial
535 behaviour is not homogenous across the Scotian Shelf population. It also raises new questions regarding

536 the social perceptions of the whales. Moffett argues that “societies” are based on mutual recognition of
537 social membership (Moffett, 2024) – does the fact that resident whales may be less likely to interact with
538 transient whales overall indicate a society of residents within the population? It is important to consider
539 how our definition of “transient” behaviour might impact estimates of social association, however. For
540 example, given that we only considered demographically possible associations, resident-transient dyads
541 would necessarily have a single year of potential observations to draw from and may include years during
542 which the resident was known to be alive but was not observed. We also found evidence that transient
543 whales were detected across shorter timespans within years, meaning less opportunity for repeated
544 interactions with preferred partners. While this is still a biologically meaningful indication of the lack of
545 social association, it suggests that structural factors (e.g., broader-scale movements in and out of the
546 Gully) could also be shaping the absence of relationships between residents and transients. Of course,
547 these structural factors may themselves be a consequence (not cause) of the absence of a relationship.

548 Theory suggests that habitat configurations can play a major role in how animals form social relationships
549 (He et al., 2019). The Gully – a localized and highly productive submarine canyon creates predictable
550 access to potential social partners. Passive acoustic monitoring has revealed that northern bottlenose
551 whales are effectively always present in the Gully, with less predictable presence in adjacent areas of the
552 Scotian Shelf (Feyrer et al., 2024). Though the previous thinking was that this predictability may alleviate
553 the need for females to form stronger relationships, new evidence suggests that females are socially
554 selective about a smaller number of strong relationships. Additional long-term studies from other
555 populations of northern bottlenose whales may help to identify the role of habitat in structuring beaked
556 whale social structure, as other populations may have less localized habitats and individuals can travel
557 long distances (Lefort et al., 2025). A study of northern bottlenose whales found between Jan Mayen
558 Island and Iceland from 4 years of data identified preferred associations between males, but no
559 preferences among a female-juvenile class of individuals (Jakobsdóttir, 2021).

560 The modularity of a social network and its social differentiation are expected to correlate, by definition, as
561 the division into groups implies variability between within- and between-group relationships. There are
562 also mechanistic reasons that social differentiation might promote modularity. A well-described strategy
563 for forming new relationships is to adopt “friends of friends” – often referred to as triadic closure in
564 network terminology (as a triangle of associations forms). Triadic closure is important in the social
565 networks of humans and other species (e.g., hyenas, *Crocuta Crocuta*; Ilany et al., 2015), and has been
566 proposed as a baseline mechanism influencing the formation of relationships (Davidsen et al., 2002).
567 Crucially, closing social triangles may result in the formation of distinct groups (Asikainen et al., 2020),
568 i.e., a more modular network. While simulation models would help to explore this further, the

569 combination of differentiated relationships with limited modularity raises the question of whether simple
570 social networking strategies like triadic closure are important for northern bottlenose whale relationships.
571 More broadly, the lack of clear structural factors such as kinship determining “who associates with who”
572 suggests that northern bottlenose whales may be forming relationships on subtler or more idiosyncratic
573 factors, such compatibility between individual personalities, or perhaps the success of specific histories of
574 cooperative exchange. For example, vampire bats (*Desmodus rotundus*) appear to “raise the stakes” to
575 form new relationships, i.e., expanding from tolerance and grooming to higher-investment forms of
576 interaction like food-sharing (Carter et al., 2020).

577 Understanding the social structure of offshore and deep-diving species like northern bottlenose whales is
578 challenging, and as our findings have demonstrated, can require decades of consistent, long-term
579 research. Nevertheless, our findings reinforce the idea that cetaceans provide compelling case studies for
580 understanding the ecology and evolution of social relationships.

581

582 **Data Availability**

583 Data and analysis scripts are available [here](#).

584 **Acknowledgements**

585 We thank all research assistants, students, volunteers, and skippers involved in collecting data for the
586 Northern Bottlenose Whale Project since 1988. This includes many graduate students who collected and
587 processed photo-identification data, including Annick Faucher, Shannon Gowans, Tonya Wimmer, Hilary
588 Moors-Murphy, and Kristin O'Brien. We also thank Kristin O'Brien for her analyses and thesis work on
589 similar questions in 2013, as well as Christine Konrad and Tim Frasier for advice on analyzing genetic
590 data. We are grateful to Tony Einfeldt and Ian Paterson who conducted genetic analyses.

591 **Funding Statement**

592 Field research was funded by the Canadian Wildlife Federation, Natural Sciences and Engineering
593 Research Council of Canada, Dalhousie University, the World Wildlife Fund Canada–Environment
594 Canada Endangered Species Recovery Fund, the Canadian Whale Institute, the Island Foundation, the
595 Whale and Dolphin Conservation Society, the National Geographic Society and the Department of
596 Fisheries and Oceans Canada. Data analysis relevant to this paper was supported by the Department of
597 Fisheries and Oceans Canada, the Natural Sciences and Engineering Research Council of Canada.

598

599 **References**

600

601 Alcázar-Treviño, J., Johnson, M., Arranz, P., Warren, V. E., Pérez-González, C. J., Marques, T., Madsen,
602 P. T., & Aguilar de Soto, N. (2021). Deep-diving beaked whales dive together but forage apart.
603 *Proceedings of the Royal Society B: Biological Sciences*, 288(1942), 20201905.
604 <https://doi.org/10.1098/rspb.2020.1905>

605 Archie, E. A., Moss, C. J., & Alberts, S. C. (2006). The ties that bind: Genetic relatedness predicts the
606 fission and fusion of social groups in wild African elephants. *Proceedings of the Royal Society B:
607 Biological Sciences*, 273(1586), 513–522. <https://doi.org/10.1098/rspb.2005.3361>

608 Asikainen, A., Iñiguez, G., Ureña-Carrión, J., Kaski, K., & Kivelä, M. (2020). Cumulative effects of
609 triadic closure and homophily in social networks. *Science Advances*, 6(19), eaax7310.
610 <https://doi.org/10.1126/sciadv.aax7310>

611 Baird, R. W. (2019). Behavior and ecology of not-so-social odontocetes: Cuvier's and Blainville's beaked
612 whales. In B. Würsig (Ed.), *Ethology and Behavioral Ecology of Odontocetes* (pp. 305–329).
613 Springer International Publishing. https://doi.org/10.1007/978-3-030-16663-2_14

614 Bürkner, P.-C. (2021). Bayesian item response modeling in *R* with *brms* and *Stan*. *Journal of Statistical
615 Software*, 100(5). <https://doi.org/10.18637/jss.v100.i05>

616 Cantor, M., Wedekin, L., Guimarães, P., Daura-Jorge, F., Rossi-Santos, M., & Simões-Lopes, P. C.
617 (2012). Disentangling social networks from spatiotemporal dynamics: The temporal structure of a
618 dolphin society. *Animal Behaviour*. <https://doi.org/10.1016/j.anbehav.2012.06.019>

619 Carter, G. G., Farine, D. R., Crisp, R. J., Vrtilek, J. K., Ripperger, S. P., & Page, R. A. (2020).
620 Development of new food-sharing relationships in vampire bats. *Current Biology*, 30(7), 1275–
621 1279.e3. <https://doi.org/10.1016/j.cub.2020.01.055>

622 Carter, G. G., Farine, D. R., & Wilkinson, G. S. (2017). Social bet-hedging in vampire bats. *Biology
623 Letters*, 13, 1–4. <https://doi.org/10.1098/rsbl.2017.0112>

624 Cheng, Z., Pereira, A., Na, C. B. R. U., Negron-Del Valle, J., Phillips, D., De Moor, D., Siracusa, E., &
625 Brent, L. (2024). *Social bonds between non-kin are common, but less stable, in a mixed-related*
626 *society*. <https://doi.org/10.32942/X26P8D>

627 Chiyo, P. I., Archie, E. A., Hollister-Smith, J. A., Lee, P. C., Poole, J. H., Moss, C. J., & Alberts, S. C.
628 (2011). Association patterns of African elephants in all-male groups: The role of age and genetic
629 relatedness. *Animal Behaviour*, 81(6), 1093–1099. <https://doi.org/10.1016/j.anbehav.2011.02.013>

630 Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
631 *InterJournal*.

632 Davidsen, J., Ebel, H., & Bornholdt, S. (2002). Emergence of a small world from local interactions:
633 Modeling acquaintance networks. *Physical Review Letters*, 88(12), 128701.
634 <https://doi.org/10.1103/PhysRevLett.88.128701>

635 De Moor, D., & Brent, L. J. N. (2025). Quality, quantity, and the adaptive function of social relationships.
636 *Trends in Ecology & Evolution*. <https://doi.org/10.1016/j.tree.2025.09.004>

637 Ellis, S., Croft, D. P., Nielsen, M. L. K., Franks, D. W., & Weiss, M. N. (2025). Bayesian inference of
638 toothed whale lifespans. *Biological Journal of the Linnean Society*.
639 <https://doi.org/10.1101/2023.02.22.529527>

640 Ellis, S., Franks, D. W., Weiss, M. N., Cant, M. A., Domenici, P., Balcomb, K. C., Ellifrit, D. K., &
641 Croft, D. P. (2021). Mixture models as a method for comparative sociality: Social networks and
642 demographic change in resident killer whales. *Behavioral Ecology and Sociobiology*, 75(4).
643 <https://doi.org/10.1007/s00265-021-03006-3>

644 Fedutin, I. D., Filatova, O. A., Mamaev, E. G., Burdin, A. M., & Hoyt, E. (2015). Occurrence and social
645 structure of Baird's beaked whales, *Berardius bairdii*, in the Commander Islands, Russia. *Marine*
646 *Mammal Science*, 31(3), 853–865. <https://doi.org/10.1111/mms.12204>

647 Feyrer, L. J., Einfeldt, A., Bentzen, P., Whitehead, H., & Paterson, I. G. (2019). Evolutionary impacts
648 differ between two exploited populations of northern bottlenose whale (*Hyperoodon ampullatus*).
649 *Ecology and Evolution*, 9, 13567–13584. <https://doi.org/10.1002/ece3.5813>

650 Feyrer, L. J., Stanistreet, J. E., Gomez, C., Adams, M., Lawson, J. W., Ferguson, S. H., Heaslip, S. G.,
651 Lefort, K. J., Davidson, E., Hussey, N. E., Whitehead, H., & Moors-Murphy, H. (2024).
652 Identifying important habitat for northern bottlenose and Sowerby's beaked whales in the western
653 North Atlantic. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 34(1), e4064.
654 <https://doi.org/10.1002/aqc.4064>

655 Feyrer, L. J., & Walmsley, S. F. (2024). A guide to northern bottlenose whale photo ID: Version 4.0.
656 *Open Science Framework*. <https://osf.io/pcfs3>

657 Feyrer, L. J., Zhao, S. T., Whitehead, H., & Matthews, C. J. D. (2020). Prolonged maternal investment in
658 northern bottlenose whales alters our understanding of beaked whale reproductive life history.
659 *PLoS ONE*, 15(6 June), 1–19. <https://doi.org/10.1371/journal.pone.0235114>

660 Filatova, O. A., Fedutin, I. D., Meschersky, I. G., Mamaev, E. G., & Hoyt, E. (2024). Unusual use of
661 shallow habitats may be evidence of a cultural tradition in Baird's beaked whales. *Animal
662 Behaviour*, 209, 121–128. <https://doi.org/10.1016/j.anbehav.2023.12.021>

663 Frank, S. A. (2007). All of life is social. *Current Biology*, 17(16), R648–R650.
664 <https://doi.org/10.1016/j.cub.2007.06.005>

665 Frasier, T. R., Wang, J., Muir, P. H., & Pew, Jack. (2014). related: An R package for analysing pairwise
666 relatedness from codominant molecular markers. *Molecular Ecology Resources*.
667 <https://doi.org/10.1111/1755-0998.12323>

668 Gerber, L., Connor, R. C., King, S. L., Allen, S. J., Wittwer, S., Bizzozzero, M. R., Friedman, W. R.,
669 Kalberer, S., & Sherwin, W. B. (2020). *Affiliation history and age similarity predict alliance
670 formation in adult male bottlenose dolphins*. 31, 361–370. <https://doi.org/10.1093/beheco/arz195>

671 Gowans, S. (1999). *Social organization and population structure of northern bottlenose whales in the
672 Gully*. [Dalhousie University]. <https://DalSpace.library.dal.ca//handle/10222/55641>

673 Gowans, S., & Rendell, L. (1999). Head-butting in northern bottlenose whales (*Hyperoodon ampullatus*):
674 A possible function for big heads? *Marine Mammal Science*, 15, 1342–1350.
675 <https://doi.org/10.1111/j.1748-7692.1999.tb00896.x>

676 Gowans, S., & Whitehead, H. (2001). Photographic identification of northern bottlenose whales

677 (*Hyperoodon ampullatus*): Sources of heterogeneity from natural marks. *Marine Mammal*
678 *Science*, 17, 76–93. <https://doi.org/10.1111/j.1748-7692.2001.tb00981.x>

679 Gowans, S., Whitehead, H., & Hooker, S. K. (2001). Social organization in northern bottlenose whales,

680 *Hyperoodon ampullatus*: Not driven by deep-water foraging? *Animal Behaviour*, 62(2), 369–377.
681 <https://doi.org/10.1006/anbe.2001.1756>

682 Gray, D. (1882). Notes on the characters and habits of the bottlenose whale (*Hyperoodon rostratus*).
683 *Proceedings of the Zoological Society of London*, 50(4), 726–731.

684 Hart, J. D. A., Weiss, M. N., Brent, L. J. N., & Franks, D. W. (2022). Common permutation methods in
685 animal social network analysis do not control for non-independence. *Behavioral Ecology and*
686 *Sociobiology*, 76(11), 151. <https://doi.org/10.1007/s00265-022-03254-x>

687 He, P., Maldonado-Chaparro, A. A., & Farine, D. R. (2019). The role of habitat configuration in shaping
688 social structure: A gap in studies of animal social complexity. *Behavioral Ecology and*
689 *Sociobiology*, 73(1). <https://doi.org/10.1007/s00265-018-2602-7>

690 Hooker, S. K., Baird, R. W., Al-Omari, S., Gowans, S., & Whitehead, H. (2001). Behavioral reactions of
691 northern bottlenose whales (*Hyperoodon ampullatus*) to biopsy darting and tag attachment
692 procedures. *Fishery Bulletin*. <http://hdl.handle.net/10222/29954>

693 Ilany, A., Booms, A. S., & Holekamp, K. E. (2015). Topological effects of network structure on long-
694 term social network dynamics in a wild mammal. *Ecology Letters*, 18(7), 687–695.
695 <https://doi.org/10.1111/ele.12447>

696 Jakobsdóttir, H. (2021). *Group size and composition of northern bottlenose whales (Hyperoodon*
697 *ampullatus) between Iceland and Jan Mayen* [Thesis, University of Iceland].
698 <https://skemman.is/handle/1946/38491>

699 Konrad, C. M., Gero, S., Frasier, T., & Whitehead, H. (2018). Kinship influences sperm whale social
700 organization within, but generally not among, social units. *Royal Society Open Science*, 5(8).
701 <https://doi.org/10.1098/rsos.180914>

702 Landau, W. M. (2021). The targets R package: A dynamic Make-like function-oriented pipeline toolkit
703 for reproducibility and high-performance computing. *Journal of Open Source Software*, 6(57),
704 2959.

705 Lefort, K. J., Storrie, L., Hussey, N. E., & Ferguson, S. H. (2025). A seasonal migration of a northern
706 bottlenose whale provides support for the skin molt migration hypothesis. *Ecology and Evolution*,
707 15(2), e70921. <https://doi.org/10.1002/ece3.70921>

708 Lukas, D., & Clutton-Brock, T. (2018). Social complexity and kinship in animal societies. *Ecology*
709 *Letters*, 21(8), 1129–1134. <https://doi.org/10.1111/ele.13079>

710 McFarland, R., Murphy, D., Lusseau, D., Henzi, S. P., Parker, J. L., Pollet, T. V., & Barrett, L. (2017).
711 The ‘strength of weak ties’ among female baboons: Fitness-related benefits of social bonds.
712 *Animal Behaviour*, 126, 101–106. <https://doi.org/10.1016/j.anbehav.2017.02.002>

713 Moffett, M. W. (2024). What is a society? Building an interdisciplinary perspective and why that’s
714 important. *Behavioral and Brain Sciences*, 1–72. <https://doi.org/10.1017/S0140525X24000037>

715 Moors-Murphy, H. B. (2018). Bottlenose Whales: *Hyperoodon ampullatus* and *H. planifrons*. In
716 *Encyclopedia of Marine Mammals* (3rd ed.). https://web-p.ebscohost.com.ezproxy.library.dal.ca/ehost/ebookviewer/ebook/ZTAwMHhuYV9fMTUxMzE5OF9fQU41?sid=dee4d37b-17e6-4d95-a045-d60fb4b96812@redis&vid=0&format=EB&lpid=lp_130&rid=0

719 Newman, M. E. J. (2006). Modularity and community structure in networks. *Proceedings of the National
720 Academy of Sciences*, 103(23), 8577–8582. <https://doi.org/10.1073/pnas.0601602103>

721 Nielsen, M. L. K., Ellis, S., Weiss, M. N., Towers, J. R., Doniol-Valcroze, T., Franks, D. W., Cant, M. A.,
722 Ellis, G. M., Ford, J. K. B., Malleson, M., Sutton, G. J., Shaw, T. J. H., Balcomb, K. C., Ellifrit,
723 D. K., & Croft, D. P. (2023). Temporal dynamics of mother–offspring relationships in Bigg’s
724 killer whales: Opportunities for kin-directed help by post-reproductive females. *Proceedings of
725 the Royal Society B: Biological Sciences*, 290(2000), 20230139.
726 <https://doi.org/10.1098/rspb.2023.0139>

727 O'Brien, K. (2013). *MSc Thesis: Population status and social structure of northern bottlenose whales*
728 (Hyperoodon ampullatus) *on the Scotian Shelf* [Thesis, Dalhousie University].
729 <https://dalspace.library.dal.ca/handle/10222/35342>

730 O'Corry-Crowe, G., Suydam, R., Quakenbush, L., Smith, T. G., Lydersen, C., Kovacs, K. M., Orr, J.,
731 Harwood, L., Litovka, D., & Ferrer, T. (2020). Group structure and kinship in beluga whale
732 societies. *Scientific Reports*, 10(1), Article 1. <https://doi.org/10.1038/s41598-020-67314-w>

733 Patel, S., Thompson, K. F., Santure, A. W., Constantine, R., & Millar, C. D. (2017). Genetic kinship
734 analyses reveal that gray's beaked whales strand in unrelated groups. *Journal of Heredity*, 108(4),
735 456–461. <https://doi.org/10.1093/jhered/esx021>

736 Pereira, A. S., De Moor, D., Casanova, C., & Brent, L. J. N. (2023). Kinship composition in mammals.
737 *Royal Society Open Science*, 10(7), 230486. <https://doi.org/10.1098/rsos.230486>

738 R Core Development Team. (2022). *R: A language and environment for statistical computing*. [Computer
739 software]. R Foundation for Statistical Computing.

740 Rendell, L., Cantor, M., Gero, S., Whitehead, H., & Mann, J. (2019). Causes and consequences of female
741 centrality in cetacean societies. *Philosophical Transactions of the Royal Society B: Biological
742 Sciences*, 374(1780). <https://doi.org/10.1098/rstb.2018.0066>

743 Riehl, C. (2013). Evolutionary routes to non-kin cooperative breeding in birds. *Proceedings of the Royal
744 Society B: Biological Sciences*, 280(1772). <https://doi.org/10.1098/rspb.2013.2245>

745 Smith, J. E. (2014). Hamilton's legacy: Kinship, cooperation and social tolerance in mammalian groups.
746 *Animal Behaviour*, 92, 291–304. <https://doi.org/10.1016/j.anbehav.2014.02.029>

747 Snyder-Mackler, N., Burger, J. R., Gaydosh, L., Belsky, D. W., Noppert, G. A., Campos, F. A.,
748 Bartolomucci, A., Yang, Y. C., Aiello, A. E., O'Rand, A., Harris, K. M., Shively, C. A., Alberts,
749 S. C., & Tung, J. (2020). Social determinants of health and survival in humans and other animals.
750 *Science*, 368(6493), eaax9553. <https://doi.org/10.1126/science.aax9553>

751 Walmsley, S. F., Boutin, S., Dantzer, B., Lane, J. E., Coltman, D. W., & McAdam, A. G. (2023). Benefits
752 of living closer to kin vary by genealogical relationship in a territorial mammal. *Proceedings of*

753 the Royal Society B: Biological Sciences, 290(1990), 20221569.
754 <https://doi.org/10.1098/rspb.2022.1569>

755 Walmsley, S. F., Feyrer, L. J., Girard, C., Zwamborn, E. M. J., & Whitehead, H. (2024). *Social ageing*
756 *varies within a population of bottlenose whales*. EcoEvoRxiv. <https://doi.org/10.32942/X2MW52>

757 Walmsley, S. F., Ringen, E., Gero, S., Jaeggi, A., & Whitehead, H. (2025). *Coevolution of social network*
758 *structure and life history in toothed whales*. EcoEvoRxiv.
759 <https://ecoevrxiv.org/repository/view/11198/>

760 Wang, J. (2002). An estimator for pairwise relatedness using molecular markers. *Genetics*, 160(3), 1203–
761 1215. <https://doi.org/10.1093/genetics/160.3.1203>

762 Wang, J. (2017). Estimating pairwise relatedness in a small sample of individuals. *Heredity*, 119(5), 302–
763 313. <https://doi.org/10.1038/hdy.2017.52>

764 Webster, M. M., & Rutz, C. (2020). How STRANGE are your study animals? *Nature*, 582(7812), 337–
765 340. <https://doi.org/10.1038/d41586-020-01751-5>

766 Weiss, M. N., Ellis, S., & Croft, D. P. (2021). Diversity and consequences of social network structure in
767 toothed whales. *Frontiers in Marine Science*, 8, 921. <https://doi.org/10.3389/fmars.2021.688842>

768 Weiss, M. N., Franks, D. W., Croft, D. P., & Whitehead, H. (2019). Measuring the complexity of social
769 associations using mixture models. *Behavioral Ecology and Sociobiology*, 73(1).
770 <https://doi.org/10.1007/s00265-018-2603-6>

771 Whitehead, H. (1996). Babysitting, dive synchrony, and indications of alloparental care in sperm whales.
772 *Behavioral Ecology and Sociobiology*, 38, 237–244.

773 Whitehead, H. (2003). *Sperm whales: Social evolution in the ocean*. University of Chicago Press.

774 Whitehead, H. (2008). *Analyzing animal societies: Quantitative methods for vertebrate social analysis*.
775 University of Chicago Press.

776 Whitehead, H. (2009). SOCPROG programs: Analysing animal social structures. *Behavioral Ecology and*
777 *Sociobiology*, 63(5), 765–778. <https://doi.org/10.1007/s00265-008-0697-y>

778 Whitehead, H., & Dufault, S. (1999). Techniques for analyzing vertebrate social structure using identified
779 individuals: Review and recommendations. *Advances in the Study of Behavior*, 28, 33–74.
780 [https://doi.org/10.1016/s0065-3454\(08\)60215-6](https://doi.org/10.1016/s0065-3454(08)60215-6)

781 Wimmer, T., & Whitehead, H. (2005). Movements and distribution of northern bottlenose whales,
782 *Hyperoodon ampullatus*, on the Scotian Slope and in adjacent waters. *Canadian Journal of*
783 *Zoology*, 82(11), 1782–1794. <https://doi.org/10.1139/z04-168>

784