

1 **Operationalising resilience-based management at scale: a meta-
2 adaptive blueprint from the Great Barrier Reef Crown-of-Thorns
3 Starfish Control Program**

4

5 Samuel A Matthews^{1,2}, Michael Bode³, Roger Beeden¹, Mary C. Bonin⁴, Cameron S Fletcher⁵, Isobel
6 Ryan¹, Jennifer Wilmes¹, David H Williamson¹

7 ¹Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia

8 ²Australian Institute of Marine Science, Townsville, QLD, Australia

9 ³School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.

10 ⁴Great Barrier Reef Foundation, Brisbane, QLD, Australia

11 ⁵CSIRO, Townsville, QLD, Australia

12

13 Corresponding Author: Samuel Matthews, s.matthews@aims.gov.au

14

15 **ABSTRACT**

16 Resilience-based management (RBM) has been widely adopted as a future focused extension of
17 adaptive management to address mounting climate change impacts on coral reef ecosystems, yet there
18 are few demonstrated examples of RBM operating effectively at large spatial and institutional scales.
19 The Crown-of-Thorns Starfish (COTS) Control Program on the Great Barrier Reef illustrates how RBM
20 can be operationalised by incrementally building new dimensions of the Program onto a simple
21 foundation of direct management action. We term this approach meta-adaptive management: a
22 deliberate process in which an intervention program incrementally expands its scope, sophistication and
23 its capacity to adapt over time through stakeholder engagement, technical refinement, and effective
24 governance. Rather than assuming a fully mature adaptive framework is in place from the outset, meta-
25 adaptive programs build the institutional, social, and technical capacity required for RBM to function
26 at scale while continuing to deliver operational outcomes. We describe how this approach has been
27 applied in the COTS Control Program, with a specific focus on recent advances in reef prioritisation.
28 We also distil eight transferable enabling components that are built over time—foundational research,
29 systematic monitoring, technical efficacy, stakeholder and political support, governance and strategy,
30 secure funding, decision-support systems, and robust prioritisation—and show how recurring decision
31 points (e.g., annual prioritisation) create incentives for applied research and stakeholder alignment. This

32 perspective offers a practical blueprint for conservation programs facing dynamic threats and uncertain
33 futures.

34 Keywords: Resilience-based management, adaptive management, conservation prioritisation, coral
35 reef resilience, Crown-of-Thorns Starfish, Great Barrier Reef, iterative decision-making

36 INTRODUCTION

37 **Conservation management in the Anthropocene**

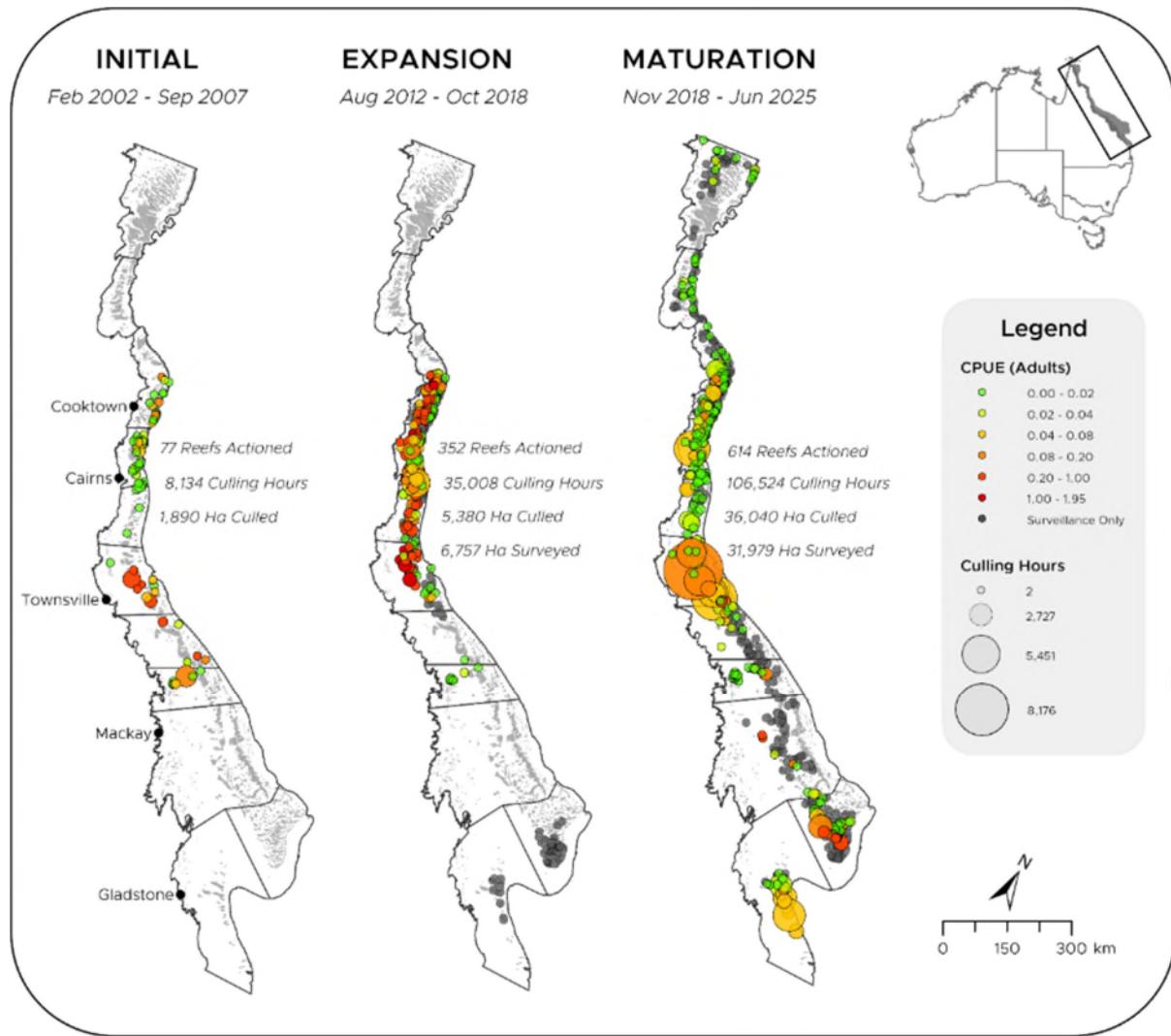
38 Ecosystems worldwide are experiencing profound transformations driven by climate change, habitat
39 degradation, and intensified human activities (Crutzen, 2002; Hughes et al., 2017a). Coral reefs are
40 among the first to confront existential versions of these challenges, facing recurrent and cumulative
41 disturbances that threaten ecosystem resilience and functions (Bozec et al., 2025; Hoegh-Guldberg et
42 al., 2018; Hughes et al., 2017b). Conservation managers must increasingly allocate limited resources
43 under complex and uncertain future conditions, prompting the need for frameworks capable of
44 anticipating, absorbing, and adapting to change (Anthony et al., 2015; Game et al., 2014; Wilson et al.,
45 2006).

46 Adaptive Management (AM) (Holling, 1978; Williams and Brown, 2014), and, more recently
47 Resilience-Based Management (RBM) (Anthony et al., 2015; Mcleod et al., 2019), have iteratively
48 developed in recent decades as frameworks for addressing uncertainty and complexity. While AM
49 emphasises structured experimentation and iterative learning, RBM extends this approach, placing
50 greater emphasis on anticipating future disturbances and explicitly managing for socio-ecological
51 resilience (i.e. the ability of a system to both resist and recover from disturbances; Holling, 1973;
52 Hughes et al., 2005). Despite their theoretical appeal, and notable examples (e.g. AM - 2004 rezoning
53 of the Great Barrier Reef Marine Park; Day, 2002; Fernandes et al., 2005; McCook et al., 2010; RBM
54 - NOAA Coral Reef Conservation Program; NOAA, 2018) there remain significant challenges to
55 overcome when attempting to operationalise AM and RBM interventions at large spatial or
56 institutional scales (Walters, 2007). Such interventions may include reducing local stressors (e.g.
57 Crown-of-Thorns Starfish (COTS) predation, land-based pollution, overfishing), implementing
58 climate smart Marine Protected Areas, or emerging coral restoration and assisted-evolution (Mcleod et
59 al., 2019). Programs attempting comprehensive, fully developed adaptive frameworks from the outset
60 often stall, as complexity and resistance overwhelm institutional capacities and social acceptance (Rist
61 et al., 2013). Moreover, a persistent research-implementation gap means even well-developed
62 methods often fail to influence on-ground management actions (Dubois et al., 2020; Knight et al.,
63 2008; Toomey et al., 2017).

64 **Operationalising resilience-based management: from theory to practice**

65 Despite recent shifts in overarching governance to incorporate RBM in long term frameworks
66 (Commonwealth of Australia, 2021; GBRMPA, 2024, 2017; NOAA, 2018) and growing scientific
67 consensus, there remains a critical gap in successful operational implementation of RBM at large spatial
68 scales (Shaver et al., 2022). We argue that a key missing step is to explicitly foster the enabling
69 conditions for a program to adapt and to embed clear, operational decision points that incentivise applied
70 research and cooperative governance. In this manner program-level adaptiveness can emerge, scale and
71 adequately respond to dynamic environmental conditions.

72 Managing for uncertain futures is modern necessity and any operational implementation of RBM must
73 be willing to start in an unoptimized state and progressively evolve alongside the compounding
74 stressors that managers aim to mitigate. Moreover, the adaptiveness of the program cannot be
75 expected to work “out of the box” and the most suitable approaches must be learnt and scaled over
76 time. We use the term “meta-adaptive” to denote an extension of double-loop learning (Argyris and
77 Schön, 1978; Williams and Brown, 2014) and deutero-learning or learning about learning (Argyris
78 and Schön, 1978; Fabricius and Cundill, 2014) that focuses on building the program’s capacity to
79 learn and adapt over time. Where double-loop learning leads to new approaches and challenges to
80 existing methods, we posit that the meta-adaptive approach adds the deliberate buildup of enabling
81 and operational capacity (i.e. funding stability, foundational research and monitoring, institutional
82 processes, stakeholder and political buy-in, and recurring decision points) as the program and its
83 adaptive capability expands. This extension of existing frameworks explicitly acknowledges that
84 adaptiveness is an emergent property cultivated through cumulative iterative actions through which
85 the decision points, planning cycles and culture of the program and partner organisations are aligned
86 towards a shared approach and common goals (Kingsford and Biggs, 2012; Roux et al., 2022) . This
87 approach is particularly important for RBM, where the objective is not only to manage adaptively, but
88 to do so in ways that actively build long-term system resilience in the face of uncertain
89 futures(Anthony et al., 2015; Mcleod et al., 2019)


90 **Crown-of-thorns starfish control: a model of meta-adaptive management at scale**

91 The Crown-of-Thorns Starfish (COTS) Control Program on Australia’s Great Barrier Reef (GBR)
92 provides a rare operational case study of an effective application of adaptive management to enhance
93 ecosystem resilience (Matthews et al., 2024). The Program’s successes were realised incrementally, and
94 progressively increased stakeholder buy-in, funding stability, research collaboration and institutional
95 capacity. Outbreaks of the Crown-of-Thorns Starfish (*Acanthaster cf. solaris*, COTS) significantly
96 threaten coral reef resilience in the Indo-Pacific, particularly on the GBR. Although COTS are a natural
97 component of reef ecosystems, COTS outbreaks, amplified by their high fecundity (Pratchett et al.,
98 2021b), nutrient enrichment of coastal waters (Fabricius et al., 2010), and depletion of key predators

99 (Kroon et al., 2021; Motti et al., 2022), can drive severe coral loss (De'ath et al., 2012; Kayal et al.,
100 2012; Pratchett, 2010). Concern about the impact of these outbreaks motivated the establishment of the
101 GBR's first systematic Long-term Monitoring Program (Emslie et al., 2020) in 1985, delivered by the
102 Australian Institute of Marine Science. Analysis of that monitoring data has revealed that COTS
103 outbreaks are estimated to account for up to 40% of historical coral decline on the GBR (De'ath et al.,
104 2012; Emslie et al., 2024; Osborne et al., 2011) and remain one of the few major reef threats amenable
105 to direct intervention at ecologically meaningful scales (Matthews et al., 2024; Pratchett et al., 2017;
106 Westcott et al., 2020). The GBR COTS Control Program is one of the world's largest active coral reef
107 interventions. Supported by federal policy and investment (GBRMPA 2017, 2024a; Commonwealth of
108 Australia 2021, DCCEEW 2022), implementation of the program is guided by adaptive operational
109 frameworks (Fletcher et al., 2020), integrated decision support systems (Matthews et al., 2025), and
110 applied research programs (e,g., Fletcher et al. 2021, Bonin et al. 2022). This has enabled delivery of
111 broadscale coral protection and ecosystem resilience benefits across the GBR with up to 6-fold
112 reductions in COTS densities and 44% increases in live coral cover (compared 37% loss in previous
113 outbreaks) across entire regions where timely and sufficient culling effort was applied (Matthews et al.
114 2024).

115

116

117

118 Figure 1 Evolution of the GBR COTS Control Program across three phases of maturity (2002–2025).
 119 Geographic expansion of control and surveillance effort (measured as CPUE: catch-per-unit-effort) across three
 120 operational phases: Initial (2002–2007), Expansion (2012–2018), and Maturation (2019–2025). Points represent
 121 reefs surveyed and culled, with symbol size and colour indicating culling effort starfish density (CPUE)
 122 respectively. Grey circles indicate reefs surveyed by both the COTS Control Program and the COTS Response
 123 Program operated by Queensland Parks and Wildlife Service where no culling has taken place.

124 The COTS Control Program illustrates how adaptiveness can be cultivated over time. Rather than
 125 attempting to implement a comprehensive framework from the outset, the Program evolved through
 126 successive iterations: reactive beginnings focusing on high value tourism sites (Matthews et al., 2024),
 127 early operational wins (Westcott et al., 2020), and gradual institutional embedding (GBRMPA, 2024,
 128 2020, 2017). This enabled the incremental accumulation of the components that we contend are required
 129 for successful and durable RBM at scale: foundational research; systematic monitoring; technical
 130 efficacy; stakeholder support and political will; governance and strategy, secure funding, decision
 131 support and robust prioritisation (i.e. rigorous, practical and resistant to uncertainty; Fletcher et al.,
 132 2024; Hemming et al., 2022; Regan et al., 2005)).

133 In this paper, we present the COTS Control Program as a mature example of meta-adaptive management
134 in action and offer a new paradigm for successful RBM via meta-adaptive principles. Specifically, we:

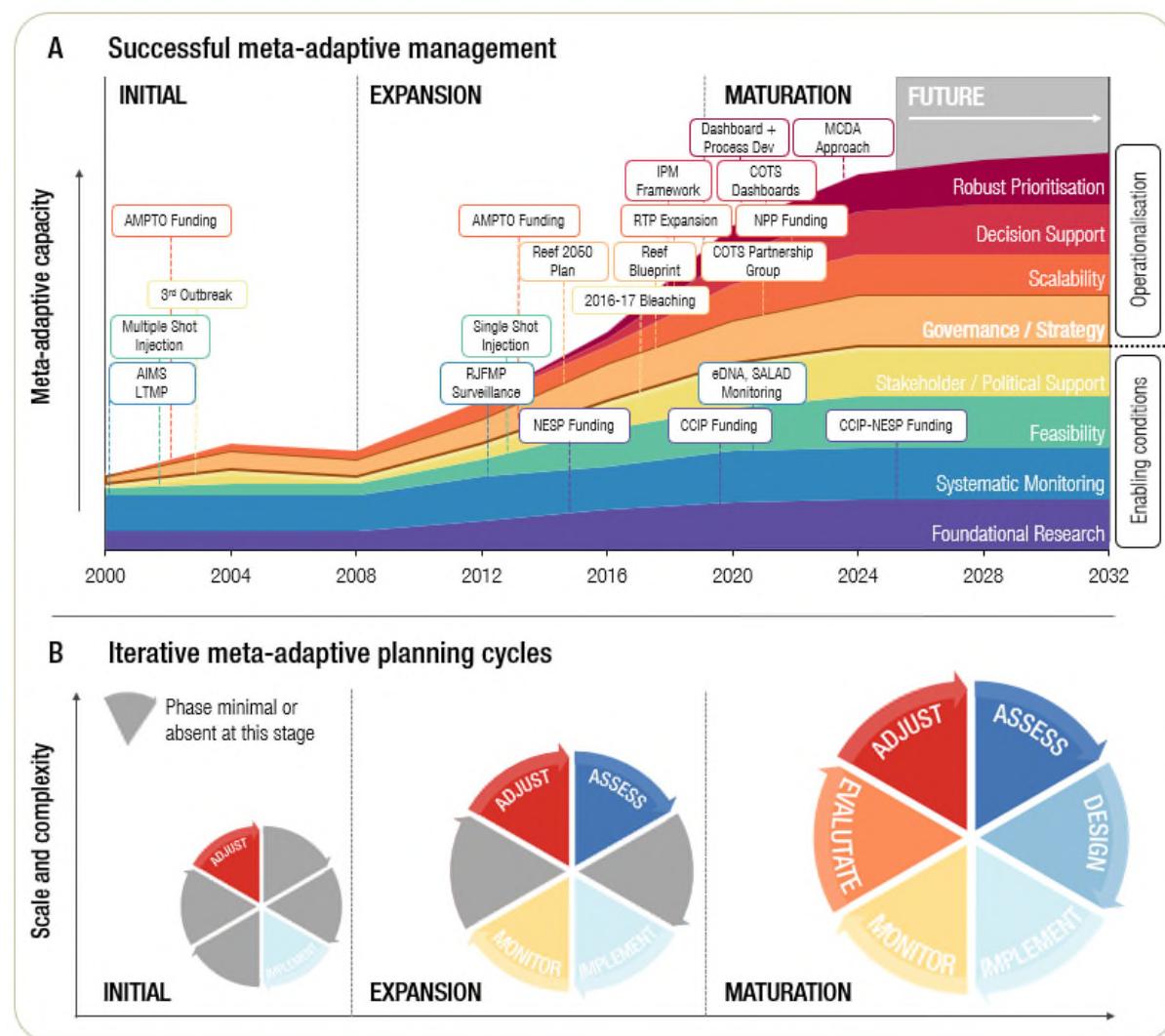
- 135 1. Trace the Program's evolution from small-scale tourism site stewardship actions to ecosystem-
136 scale intervention, highlighting how incremental improvements laid the foundation for long-
137 term adaptiveness and success.
- 138 2. Describe this evolution in terms of the core components for successful RBM and mark the key
139 advancements
- 140 3. Detail the prioritisation framework that underpins where and when interventions occur,
141 highlighting how adaptive decisions are made in an operational program.
- 142 4. Extract general lessons and recommendations for conservation initiatives seeking to build
143 successful large scale adaptive programs under uncertainty.

144 By dissecting how the GBR COTS Control Program has become both adaptive and durable, we offer a
145 rare, pragmatic model for other large-scale conservation and RBM efforts facing intensifying pressures
146 and an uncertain future as climate change progresses.

147 **COTS CONTROL PROGRAM: FROM HUMBLE BEGINNINGS TO LARGE 148 SCALE RESILIENCE-BASED MANAGEMENT**

149 Numerous small scale control efforts throughout the 1970s and foundational research into COTS
150 outbreaks through a Cooperative Research Centre (CRC) for the GBR paved the way for the
151 establishment of the first formal COTS Control Program in 2002 during the third recorded outbreak
152 wave (Figure 1) (Woodley et al., 2006). Delivered by industry through the Association of Marine Park
153 Tourism Operators (AMPTO), this initial control program focusing on manual culling via multi-shot
154 sodium bisulphate injections of starfish at key tourism sites across 77 reefs (Figure 1). While effective
155 in reducing starfish densities, these early interventions were not scalable due to program resource
156 limitations and the time-intensive nature of the multi-shot method (Pratchett et al. 2017; Westcott et al.
157 2020). Despite their limitations, these early iterations developed key relationships between the tourism
158 industry, government bodies and research groups, effectively setting the trajectory for increased
159 stakeholder buy-in and social license for COTS control on the GBR (Bartelet et al., 2025; Lockie et al.,
160 2024). In 2012, the Program was remobilised with increased resources in response to the emergence of
161 the fourth outbreak wave and the devastating impact of a series of severe tropical cyclones (De'ath et
162 al. 2012, GBRMPA, 2020). This marked the beginning of a more systematic and coordinated approach
163 geared towards protecting ecosystem resilience in the face of mounting cumulative pressures. Critically,
164 foundational research and iterative testing led to the development of 'single-shot' injection techniques
165 using ox bile salts and later household vinegar, dramatically increasing diver efficiency and making

166 large-scale control operations feasible (Rivera-Posada et al. 2014; Boström-Einarsson & Rivera-Posada
167 2016) (Figure 2, Table 2).


168 Initial responses to COTS outbreaks, while effective at smaller scales (e.g. individual sites on reefs),
169 still followed a reactive cycle of crisis-driven attention and reactive intervention funding, a pattern
170 consistent with the “issue-attention” cycle commonly observed in pest management with operational
171 surges occurring only during acute outbreaks (Babcock et al., 2020; Downs, 1972; Hoey et al., 2016).
172 However, these modest early successes were strategically designed to demonstrate effectiveness at
173 smaller scales and were pivotal in garnering institutional support and providing the evidence base to
174 attract sustained increases in operational capacity and targeted research investment. This included
175 funding for the first dedicated COTS research program through Australia’s National Environmental
176 Science Program (NESP) that developed a new Integrated Pest Management (IPM) strategy to inform
177 the effective scale-up of control efforts (Westcott et al., 2016). At the same time increasing management
178 and political concerns around mounting climate change impacts and the urgent need for direct protective
179 actions that could buy time for climate adaptation at seascape scales had been building in the lead up to
180 the back-to-back coral bleaching events in 2016 and 2017 (GBRMPA, 2017).

181 Together, these developments underpinned substantially increased investment in COTS control in 2018
182 and marked the formal adoption of the IPM framework (Fletcher et al., 2020; Westcott et al., 2016) that
183 was deployed to guide the program’s research integration and operational processed. This
184 transformative shift toward strategically targeted systematic COTS control on the GBR resulting in
185 substantial funding uplift, a tripling of culling effort, a 60% increase in culling efficiency (Westcott et
186 al., 2020) and consolidated shift from protecting small scale tourism sites, to protecting ecosystem
187 resilience at broad spatial scales (GBRMPA, 2020; Matthews et al., 2024). Growing confidence in the
188 Control Program’s potential for scalable impact paved the way for ongoing sustainable funding through
189 the Reef Trust Partnership (RTP), and the establishment of the COTS Control Innovation Program
190 (CCIP) to sustain the research-management feedback loop (Bonin et al., 2022; DCCEEW, 2022;
191 Fletcher et al., 2021; Great Barrier Reef Foundation, 2019; Pratchett et al., 2021a). Together, these
192 investments enabled the expansion of a systematic monitoring toolbox (Chandler et al., 2023; Uthicke
193 et al., 2024), further development and integration of ecological modelling, including larval dispersal
194 and connectivity estimates (Choukroun et al., 2024; Rogers et al., 2024; Skinner et al., 2025) and
195 ongoing improvements to decision support systems to enable RBM (Matthews 2019, Matthews et al
196 2025).

197 Today, the COTS Control Program operates across the 2,300 km length of the Great Barrier Reef,
198 making it one of the largest-scale coral reef interventions in the world (Figures 1,2). It operates with
199 longer term dedicated funding out to 2030 and is recognised as a foundational component of GBR
200 management with the express purpose of protecting coral from COTS predation to support the Reef’s

201 resilience and adaptive capacity (GBRMPA, 2024, 2020, 2017). While significant resilience and coral
 202 protection benefits have been realised (Matthews et al., 2024), several studies have highlighted that
 203 much more benefit could be derived by increasing the scale, strategic targeting and complementarity of
 204 the Program with other emerging reef interventions (Babcock et al., 2020; Castro-Sanguino et al., 2023;
 205 Condie et al., 2021; Skinner et al., 2025). Furthermore, the current development of a bespoke monitoring
 206 program for COTS (Lawrence et al., 2025) alongside advancement of early warning systems within the
 207 Decision Support System (Matthews et al., 2025), will increase the ability of the Program to be
 208 responsive to changes in the system. These continual and incremental improvements underscore the
 209 benefits of the meta-adaptive approach embedded within the Program and among research and industry
 210 partners.

211

212

213 Figure 2 Panel A shows the cumulative development of eight core components underpinning successful meta-
 214 adaptive management of the GBR COTS Control Program, highlighting how capacity and complexity were built
 215 incrementally over time. Panel B illustrates how adaptive planning cycles (Assess → Design → Implement →

216 Monitor → Evaluate → Adjust) were repeated and expanded through time (Adapted from Matthews et al, 2025).
217 Each cycle increases in size to reflect greater institutional capacity, integration of research, and decision
218 complexity, and greyed segments indicates how different phases of the AM cycle were incrementally improved /
219 included. This conceptual framework contrasts with traditional adaptive management models by emphasizing
220 iterative scaling and emergent adaptiveness.

221 The evolution of the GBR COTS Control Program reflects a structured sequence through which the
222 size, complexity, effectiveness and adaptiveness of the Program is being progressively enhanced via
223 cumulative, reinforcing components (Figure 2). The cumulative layering of enabling conditions
224 (Foundational Research through to Stakeholder and Political Support; Figure 2) has been catalysed into
225 an operational program via strategic planning and effective governance. Rather than a static framework
226 implemented wholesale, adaptiveness emerged through repeated decision cycles in which operational,
227 institutional, and technical capacity were incrementally layered. These components, each contributed
228 to building the conditions under which program adaptation could be sustained at scale (Figure 2). Each
229 of these components were built up over the course of decades and sustained through tight integration
230 between management and research, undergoing their own iterative cycle of inner loop learning and
231 development. Some of the notable breakthroughs and promising new developments are depicted in
232 Figure 2 and detailed in Table 2. Importantly, the meta-adaptive evolution and of the COTS Control
233 Program and its sub-components, is consistent with broader climate adaptation planning where risks
234 are identified based on future projections then iteratively improved based on empirical observations and
235 continual model enhancements.

236 Table 1 Key examples of inner loop learning within each component of meta-adaptive management from the
237 GBR Crown-of-Thorns Starfish Control Program. Each core component of the program's meta-adaptive
238 trajectory (as shown in Figure 3) is supported by specific examples from the COTS Control Program.

Type	Meta-adaptive component	COTS Control Program example
Enabling Condition	Foundational research	Decades of foundational COTS research (see Pratchett et al. 2014, 2017, 2021a) was continuously leveraged and refined over time in successive structured research programs (i.e. CRC, NESP, CCIP). Reef-scale connectivity and ecosystem models now guide where and when to intervene; network analyses identify source reefs and outbreak-risk pathways, while system modelling and monitoring show that sustained, large-scale COTS control can delay regional coral decline (Castro-Sanguino et al., 2023; De'ath et al., 2012; Matthews et al., 2024).

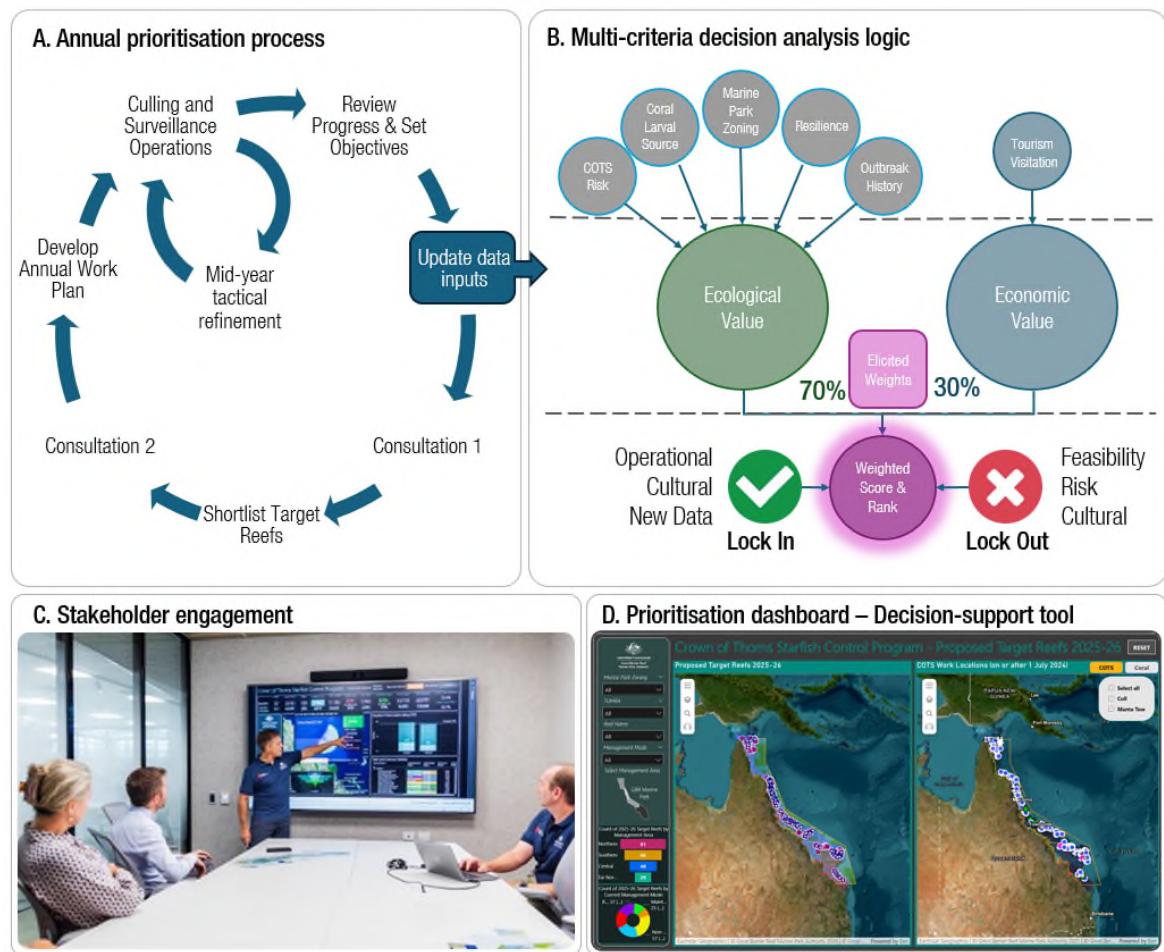
	Systematic monitoring	<p>The AIMS LTMP time series revealed the magnitude and causes of coral loss on the GBR and quantified COTS' contribution, establishing thresholds and priorities used by the Control Program (De'ath 2003, De'ath et al. 2012, Emslie et al. 2020). Current development in robotics and AI platforms for automated detection and monitoring (Bainbridge et al., 2025) alongside newer fine scale (Chandler et al., 2023) and eDNA (Uthicke et al., 2024) techniques are rapidly evolving the ability to detect emerging outbreaks and are part of an emerging bespoke COTS monitoring program (Lawrence et al., 2025).</p>
	Technical Efficacy	<p>Single-shot injections achieved high, rapid COTS mortality (first with ox-bile/bile salts; then widely available vinegar), providing a scalable, diver-deployable technique that underpins the modern program (Bostrom-Einarsson and Rivera-Posada, 2015; Rivera-Posada et al., 2014). New techniques of semiochemical attractants / dispersants are also being developed further increase the efficacy and efficiency of control methods (Harris et al., 2025).</p>
	Stakeholder and Political Support	<p>Early intervention was inspired by community awareness and demand for action, with initial Control Program efforts led by the GBR tourism industry. Today, national surveys demonstrate strong public support for large-scale COTS control on the GBR, reinforcing the Program's social legitimacy and political mandate (Bartelet et al., 2025; Lockie et al., 2024). This strong tourism and stakeholder support has underpinned the willingness of governments to invest significant public funds in ecosystem-scale culling efforts. Political will has been further reinforced by growing participation from Traditional Owner groups in both operational control and strategic governance, including through the expansion of Traditional Use of Marine Resource Agreements (TUMRAs) and increased participation in program decision-making.</p>
Operationalisation	Strategy and Governance	<p>The Program's strategic foundations matured through time with publication of the COTS Strategic Management Framework (GBRMPA, 2020) being a key milestone aligning COTS management within the overarching RBM policy set by the Reef 2050 Plan and Blueprint for Resilience (Commonwealth of Australia, 2021; GBRMPA, 2024, 2017). At the same time, 2020 saw the establishment of a two-tiered governance model to provide robust oversight and coordination across strategic and operational levels. The COTS Partnership Group (CPG) provides strategic direction, setting Key Performance Indicators, approving Annual Work Plans, and managing partnerships. The COTS Operations Group coordinates safe and effective on-water activities during</p>

		implementation of Annual Work Plans and facilitates rapid knowledge sharing across delivery providers and stakeholders.
Sustained funding		COTS control is now recognised as a core priority of both the Reef 2050 Plan and the Blueprint for Resilience (Commonwealth of Australia, 2021; GBRMPA, 2024, 2017) and has secured \$161.4m Australian government investment in the Program from 2022 to 2030 (DCCEEW, 2022) as a direct reflection of the Australian Government's commitment to fund actions that support Reef resilience and climate adaptation. Ecosystem modelling indicates that only sustained, large-scale COTS control maintained over years meaningfully delays reef-wide coral decline, supporting further investment in the Program with potential expansion of fleet capacity (Castro-Sanguino et al., 2023).
Decision support systems		An underpinning integrated pest management framework leverages surveillance to guide the effective allocation of culling effort during day-to-day operations so that efforts over months and years can achieve Program ecological outcomes, while collecting and interpreting program data to adaptively refine the efficiency of operations (Fletcher et al., 2020). Recent work validated operational density thresholds that underpin when to intervene (Rogers et al., 2024). These framework and rulesets are automated within the COTS Dashboard decision support system to support RBM decision making (Matthews et al., 2025).
Robust prioritisation		Longer-term regional decision-making relies on long term projections assessing the relative efficacy of various control strategies under uncertainty (Castro-Sanguino et al., 2023; Skinner et al., 2025, 2024). Connectivity and spatiotemporal models identify source reefs and outbreak corridors and map dynamic risk, directly informing the Program's reef-level targeting and seasonal scheduling (Choukroun et al., 2024; Matthews et al., 2020). The annual selection of reefs is the key decision point for ensuring regional scale coral benefits are derived from the Program under uncertain futures. This prioritisation process is described in detail in the following section and supplementary information (S1. Annual Reef Prioritisation Procedure, Figure S1, Table S1)

240 COTS CONTROL PRIORITISATION PROCESS: AN EXEMPLAR OF
241 META-ADAPTIVE MANAGEMENT PRINCIPLES

242 The GBR is vast (> 3,000 reefs, ~344,400 km²) and complex (GBRMPA, 2025). In any given year, only
243 some reefs on the GBR are at risk from COTS outbreaks, and the resources available for COTS control
244 mean that only a proportion of these can be actioned for surveillance and culling operations. The
245 prioritisation of reefs for control carries profound ecological, operational, and reputational implications.
246 Poor prioritisation could result in severe coral loss, heightened operational risk, or eroded political
247 support, stakeholder trust and social license (Lockie et al. 2024). Consequently, the process to select
248 target reefs for COTS control has evolved progressively from informal expert-driven decisions toward
249 a structured, transparent, and repeatable approach. Here we detail the evolution of the process as an
250 example of the meta-adaptive approach and highlight its importance as the COTS Control Program's
251 central decision process.

252 **Current prioritisation process**


253 Each year, the COTS Control Program applies a structured, transparent process to identify and rank
254 target reefs for intervention. The prioritisation framework integrates ecological, economic, logistical,
255 and stakeholder considerations through a two-stage multi-criteria decision analysis (MCDA, swing-
256 weighting and linear additive models; Fletcher et al., 2024), underpinned by a decision-support
257 dashboard and annual consultation cycle (Figure S1; see Supplementary Information S1 for full details).

258 Ecological value for each reef is derived from five normalised layers, COTS outbreak risk, coral source
259 strength, marine park zoning, resilience, and outbreak history, while economic value is based on tourism
260 visitation data. These scores are combined via additive utility, using stakeholder-informed swing-
261 weighting (Fletcher et al., 2024). Median weights typically assign twice the influence on ecological
262 over economic value. Resulting reef rankings are then reviewed and filtered through an operational
263 feasibility lens (e.g. safe anchorage, crocodile risk). Traditional Owners are consulted on the target reef
264 list to understand their views and identify any areas of cultural significance where activity should be
265 prioritised or avoided. Finally, manual amendments to the reef list are permitted in response to emerging
266 threats not accounted for by current data (e.g. primary outbreak risk; Chandler et al., 2023; Uthicke et
267 al., 2024). Additional decision layers, such as reef workability and additional estimates of tourism value
268 (Spalding et al., 2017), are in development for future planning cycles. The full process and criteria
269 definitions are summarised in Figure S1 and Table S1.

270 While the Program has a rigorous prioritisation and annual planning process, it also has embedded
271 flexibility evidenced by its responsiveness to emergent threats. For example, in 2021 early signals of a
272 fifth outbreak wave detected using advanced fine-scale monitoring methods (Chandler et al., 2023;

273 Pratchett et al., 2022; Uthicke et al., 2024) triggered resource reallocation of COTS Control Program
 274 vessels to affected regions. Similar rapid adaptations occurred in response to outbreaks being detected
 275 in the remote Far Northern Management Area, where Traditional Owner-led teams were mobilised and
 276 repositioned, demonstrating operational adaptability informed by updated intelligence. Increasingly the
 277 Control Program has had to adapt its strategic and tactical targeting of reefs and regions of the GBR in
 278 response to wide scale disturbance events such as coral bleaching and cyclones.

GBRMPA ANNUAL PRIORITISATION PROCESS – CYCLE & DECISION LOGIC

279 Figure 1 GBRMPA annual prioritisation process—cycle and decision logic. (A) Annual adaptive cycle linking
 280 operations, objective review, data updates, two consultation rounds, and short-listing of candidate reefs. This
 281 process involved a mid-cycle workshop to assess how the implementation is progressing and making tactical
 282 refinements. A more detailed description of this process is given in Figure S1 (B) Multi-criteria decision analysis
 283 (MCDA) used to rank reefs: Ecological and Economic values are first scored and ranked separately from their
 284 component indicators (Stage 1), then combined using swing-weighted preferences elicited during stakeholder
 285 workshops (Stage 2; current weights shown as 70/30). Post-scoring constraints implement operational and
 286 Traditional Owner considerations via lock-in (e.g. cultural significance) and lock-out (infeasible or unsuitable)
 287 gates. (C) Stakeholder engagement during annual workshops and bi-monthly operations meetings. (D) Decision-
 288 support dashboard that visualises candidate targets and current work locations, enabling stakeholder engagement

290 a workshop and intra annual updates. Images reproduced with permission of GBRMPA; example weights are
291 illustrative and may vary by year.

292 **Evolution and meta-adaptations of the prioritisation process**

293 Early prioritisation (2012–2018) relied predominantly on expert opinion, targeting high-value tourism
294 reefs. Between 2014–2018, the Program expanded target zones beyond tourism reefs, incorporating
295 initial larval connectivity estimates (Hock et al., 2014). From 2018 onward, the Program pivoted to a
296 formal, transparent process aligned to its annual planning cycle. Between 2018–2020 threshold rules
297 and initial weighting schemes were introduced; by 2021–2023 this matured into a multi-stage MCDA
298 approach that (i) ranks reefs on ecological value (outbreak risk, coral source strength, resilience,
299 zoning), and economic value (tourism visitation/value), then (ii) combines them via stakeholder-
300 informed swing-weighting and (iii) applies a logistical feasibility filter (Fletcher et al. 2024).
301 Importantly this process is conducted to identify both strategic Priority Reefs (long-term: ~500 reefs)
302 and tactical Target Reefs (short-term: ~200 reefs). During this period prioritisation workshops were
303 formalised and operationalised, providing a clear pathway for input from stakeholders, including
304 Traditional Owners, tourism operators, and field teams to influence reef selection. Alongside these
305 process-based improvements, advancements to decision-support tools were ongoing, enabling more
306 complex approaches to be implemented in subsequent years and ensuring that results could be clearly
307 shared among stakeholder groups to gain support for the process and its decision outcomes (Matthews
308 et al. 2025). These improvements and evolutions of the prioritisation process are summarised in Table
309 3 to highlight their linkages with the eight core components of meta-adaptive management.

310 Table 2 Evolution and meta-adaptations of the Great Barrier Reef COTS Control Program reef prioritisation
311 process, showing how eight core components of meta-adaptive management have been progressively embedded
312 into the annual reef selection framework (see also Fletcher et al. 2024).

Meta-Adaptive Component	Integration within the Prioritisation Process
1. Foundational Research	Decades of foundational research underpins models of COTS risk and connectivity which enabled a shift from expert opinion to structured, data-driven prioritisation.
2. Systematic Monitoring	Long-term monitoring datasets are integrated to identify both regional strategies and specific reefs / sites for control. Emerging tools like eDNA and fine-scale surveys were rapidly adopted to enhance detection and responsiveness.

3. Technical Efficacy	Operational constraints (e.g. anchorage, crocodile risk, workability) have been increasingly integrated from 2020 onward to ensure field efficacy and safety.
4. Stakeholder & Political Support	Prioritisation workshops grew from ~6 experts to >30 participants (2012–2023), incorporating Traditional Owners, tourism operators, and delivery partners to build legitimacy and trust. This increased participations and robust governance (below) has grown in recent years and has helped build cross-institutional and political support.
5. Governance & Strategy	Prioritisation has become the core component of the COTS Control Program's formal Annual Work Plan, which is guided by the COTS Strategic Management Framework, endorsed by the COTS Partnership Group and enacted by control vessels and the COTS Operations Group.
6. Sustained Funding	Transparent prioritisation logic supported successful cases for funding to 2030 by demonstrating measurable outcomes, inclusivity and cost-effectiveness. In turn the sustained funding allows the Program to tackle COTS populations with longer term strategic objectives.
7. Decision Support Systems	A dynamic MCDA dashboard integrates datasets, applies weights and constraints, and enables near real-time updates and stakeholder consultation.
8. Robust Prioritisation	The current system balances long-term strategic and short-term tactical targets, serving as a central mechanism for research integration and adaptive learning.

313

314 Of particular importance is how the prioritisation process has become the primary entry point for
 315 scientific information into strategic and tactical decision-making, creating a positive feedback loop
 316 between research and management. As the process matured, explicit decision points were established
 317 where new data could be trialled and incorporated. This has incentivised researchers to align their work
 318 with management needs and enabled managers to rapidly adopt advances such as improved connectivity
 319 models (Choukroun et al., 2024; Skinner et al., 2025, 2024), regional-scale outbreak simulations
 320 (Skinner et al., 2025, 2024), and novel monitoring methods (Chandler et al., 2023; Uthicke et al., 2022).
 321 This deliberate integration and alignment of research into decision-making processes reduces the
 322 research–implementation gap (Knight et al., 2008), and is a pragmatic and replicable template for large
 323 scale conservation programs with concurrent research initiatives.

324

325

326 TRANSFERABLE LESSONS FOR ADAPTIVE MANAGEMENT AT SCALE

327 To support transferability, we distil these components into a set of eight generalisable lessons, each
328 grounded in an operational principle derived from peer-reviewed evidence from the COTS Control
329 Program (Table 2). Foundational research and long-term monitoring established the empirical base for
330 action; early technical breakthroughs demonstrated efficacy and enabled scaling; strong stakeholder
331 and public support enhanced political appetite and sustainable funding ensured continuity; and
332 structured decision-support systems and prioritisation frameworks formalised learning and directed
333 effort toward system-level gains. Together, these lessons highlight how adaptiveness can be cultivated
334 deliberately through sequencing, institutional alignment, and iterative refinement.

335 The success of the GBR COTS Control Program highlights key principles for how adaptive capacity
336 can be systematically built through the accumulation of core meta-adaptive components for large
337 scale conservation programs. These components are split into categories of enabling conditions and
338 operationalisation.

339 **Enabling Conditions:**

- 340 • **Foundational research** - Invest early in research that reduces key uncertainties and yields
341 tools directly usable by managers.
- 342 • **Systematic monitoring** - Long-term, standardised monitoring provides baselines, detects
343 change, and attributes causes—ensuring adaptive decisions are grounded in evidence, not
344 anecdotes.
- 345 • **Technical efficacy** - Start with simple, robust, field-proven methods to build capacity and
346 trust; scale up in size and complexity only as readiness increases.
- 347 • **Stakeholder and political support** – Build legitimacy and durable mandate through
348 alignment with public values, industry needs, and Traditional Owner engagement. Broad
349 societal support underpins sustained political commitment and large-scale public investment.

350 **Operationalisation:**

- 351 • **Governance and strategy** - Establish enduring, cross-institutional governance arrangements
352 to coordinate delivery, ensure accountability, and embed adaptation into broader policy

353 frameworks. Define clear objectives and establish durable coordination to connect daily
354 operations to long-term goals. Without this, even well-resourced programs risk failure.

- 355 • **Sustained funding** - Multi-year, predictable investment is essential for delivering measurable
356 benefits at scale and for compounding gains across disturbance cycles and breaking the
357 “issue-attention cycle”.
- 358 • **Decision support systems** - Formalise choices using transparent, data-driven rules
359 (thresholds, trade-offs, conservation logic), enabling field teams to act decisively. Concurrent
360 development of decision support systems can act as research catalysing endpoints to both
361 utilise and incentivise emerging research.
- 362 • **Robust prioritisation** - Target locations that maximally reduce system-level risk (e.g. highly
363 connected reefs) and timepoints that maximise return on investment (e.g. neither too early or
364 too late). Update priorities as new data become available and align research to reduce the
365 research-implementation gap.

366 This synthesis complements and extends existing resilience-based management and adaptive
367 management theory, offering a pragmatic, operational pathway for its realisation under conditions of
368 uncertainty, complexity, scale, and contested values. Rather than treating adaptation as a prerequisite,
369 it is shown here to be an emergent outcome, one that can be built, tested, and expanded through
370 structured, evidence-informed practice (Figure 2; Table 2).

371 As climate change accelerates and ecosystems confront increasing variability, compounding
372 disturbances, and uncertain tipping points, adaptive, resilience-based approaches are essential
373 (Anthony et al., 2015; Mcleod et al., 2019; Shaver et al., 2022). Yet in practice, even robust RBM
374 frameworks can falter if the enabling conditions for adaptiveness are absent. Meta-adaptive
375 approaches to these problems are critical: they recognise that adaptiveness is not static or assumed but
376 must be intentionally built, nurtured and iteratively expanded over time. Meta-adaptive systems
377 cultivate the institutional, technical, and social architecture required for RBM to function embedding
378 flexibility, formalising learning cycles, and aligning incentives between science and management.
379 While such approaches cannot alone reverse the effects of climate change, they provide a useful and
380 practical approach for climate adaptation planning. By fostering a culture of learning-by-doing,
381 revisiting assumptions, and continually refining decision processes, meta-adaptive conservation
382 programs can remain responsive, evidence-based, and durable in the face of accelerating change.

383 CONCLUSION

384 The Great Barrier Reef COTS Control Program illustrates not only effective resilience-based
385 management, but also exemplifies the concept of meta-adaptive management where the Program has

386 incrementally learned how to become adaptive over time. Unlike many conservation programs that
387 attempt to launch fully formed frameworks and stall due to complexity, resistance or an inability to
388 demonstrate specific real-world impacts in the short term, the COTS Control Program began with
389 simple, reactive processes implemented at appropriate spatial and temporal scales, and evolved
390 iteratively through stakeholder input, empirical research feedback, and co-designed decision tools. This
391 approach has gradually built institutional capacity, stakeholder and political buy-in, and technical
392 sophistication, proving that large-scale adaptive management is often best achieved through sustained,
393 practical improvements rather than grand initial designs. Critically, this model also helps close the
394 persistent research-implementation gap. The initial design of the Program identified clear ecological
395 objectives and leveraged the ecological insights available at the time to adapt into a program that has
396 generated significant real-world outcomes. In turn, by providing researchers with clear, operationally
397 influential decision points such as how to prioritise reefs or evaluate control thresholds, the Program
398 creates tangible opportunities for further scientific input. This clarity incentivises researchers to align
399 their work with practical needs, ensuring investment delivers usable knowledge, tools and outputs. In
400 turn, management becomes more evidence-based, enhancing credibility and unlocking sustained
401 support. The resulting co-evolution of science, operations, and governance exemplifies a meta-adaptive
402 pathway for managing complex conservation challenges under uncertainty.

403 As coral reefs and other ecosystems face accelerating pressures, conservation programs must
404 increasingly adopt frameworks that allow management practice to emerge, adapt and strengthen over
405 time. The COTS Control Program demonstrates that iterative refinement through well-defined decision
406 points and the gradual inclusion of more sophisticated research that aligns with operational and social
407 capacity is key to conservation efforts remaining durable and effective. The success of the Program
408 however has been hard won and will be easily lost and thus there needs to be continued demonstration
409 of progress and coral protection to ensure the Program's future. This model offers a pragmatic approach:
410 start simple, stay flexible, and build adaptiveness over time through collaborative decision-making,
411 trusted partnerships, and iterative refinement. More importantly however, the COTS Control Program
412 provides an important global case study of the successful application of RBM and climate adaptation
413 planning in a complex conservation setting.

414

415

416 **SUPPLEMENTARY INFORMATION**

417 **S1. Annual Reef Prioritisation Procedure**

418 The Reef Authority (i.e. GBRMPA) annual reef prioritisation is an operational, multi-phase workflow
419 that integrates modelled and empirical datasets with partner consultation and feasibility checks to
420 produce a defensible list of target reefs for COTS control (Figures 2, S1). The process is run each
421 planning year (July-June) and includes two consultation rounds, a shortlist, a consensus building
422 “Prioritisation” workshop (April) and feedback loops to incorporate new field intelligence at a mid-year
423 “Pre-Summer” workshop (November).

424 The prioritisation framework integrates ecological, economic, logistical, and stakeholder considerations
425 through a two-stage multi-criteria decision analysis (MCDA), underpinned by a decision-support
426 dashboard and annual consultation cycle. The prioritisation considers two value types at present—
427 Ecological and Economic—with additional cultural value pathways under active development (Table
428 S1). Ecological value is represented by five normalised layers: predicted COTS outbreak risk, coral
429 source strength, zoning, resilience, and recent outbreak history. Economic value is currently represented
430 by tourism visitation data using GBRMPA Environmental Management Charge data.

431 **Normalisation and aggregation**

432 Each criterion is either normalised to [0,1] or in some cases, such as visitation data, expressed as ranks
433 to mitigate skew. Ecological scores are combined with equal weighting to create a single ecological
434 score to be combined with the economic score. Rank transformation was explicitly adopted to
435 standardise utilities and reduce outlier effects.

436 Ecological (E) and economic (B) scores are combined via an additive utility:

437
$$U_i = w_E E_i + w_B B_i$$

438
$$w_E + w_B = 1$$

439 Weights were estimated in two complementary ways:

- 440 1. **Swing-weighting survey (indirect elicitation).** Stakeholders rank and score scenario “swings”
441 between worst/best cases for ecological vs economic benefits via an online instrument;
442 responses are converted to weight distributions.
- 443 2. **Retrospective statistical inference (revealed preferences).** An additive benefit function is
444 fitted to previous years’ prioritisation decisions using repeated multi-start optimisation over
445 ranked criteria. This yields weight distributions consistent with realised decisions.

446 Across analyses, ecological and economic contributions are approximately 2:1: a back-cast yielded w_E
447 ≈ 0.62 and $w_B \approx 0.38$, while stakeholder medians typically fall near two-thirds ecological and one-
448 third economic (with 95% ranges: ecological 0.58–0.90; economic 0.10–0.42).

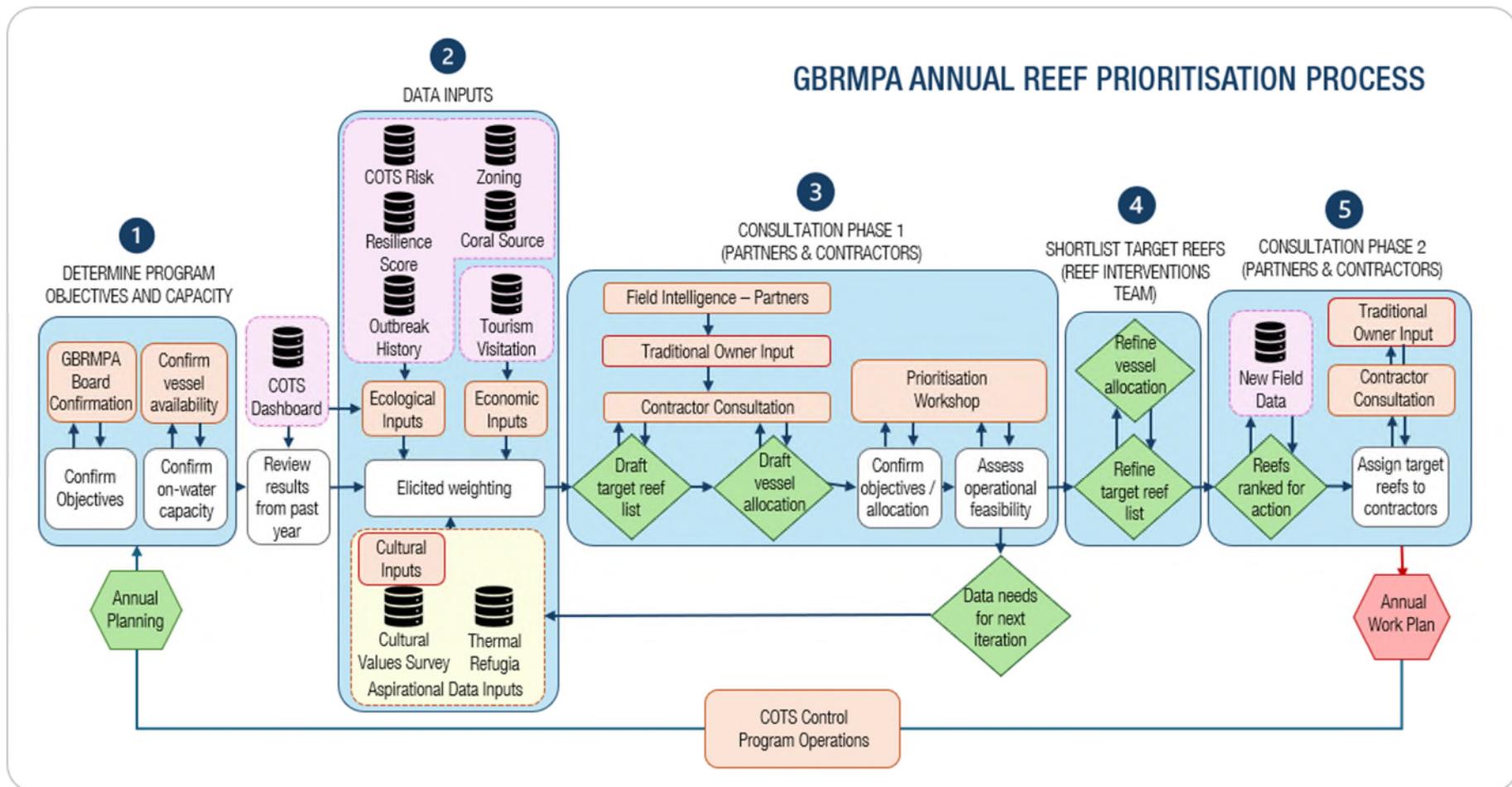
449 **Guardrails, feasibility, and mid-year adjustments**

450 Before finalising annual targets, post-scoring “guardrails” apply feasibility and rights-holder
451 considerations: (i) threshold filters (e.g., distance to port, crocodile risk, safe anchorage/staging), (ii)
452 lock-in/lock-out decisions made in workshops (e.g., cultural significance; infeasible sites), and (iii) mid-
453 year reviews that allow manual amendments when new surveillance or operational information
454 indicates emerging priorities or logistical constraints. These manual steps are documented in workshops
455 and fed back to improve subsequent cycles and identify areas where new data layers may be able to
456 incorporate considerations into the formal MCDA part of the process.

457 The cycle institutionalises two consultation phases each year, anchored by March–April prioritisation
458 workshops (and a mid-year review). Engagement includes managers, on-water contractors, researchers,
459 and increasingly Traditional Owners; 2023–2024 workshops also focused on formalising logistics data,
460 connectivity use, effort prediction, and manual steps.

461 **Future improvements**

462 Future refinements to the GBR COTS Control Program should be understood through the lens of meta-
463 adaptiveness, learning how to become adaptive through implementation itself. Improvements span
464 technical, ecological, social, and institutional domains, but not all changes are equally beneficial or
465 adoptable. Strategic focus is needed to prioritise improvements that offer high value while reinforcing
466 legitimacy, stakeholder buy-in and research integration and is guided by overarching governance
467 frameworks (Commonwealth of Australia, 2021; GBRMPA, 2024, 2020, 2017).


468 (1) Technically, the prioritisation framework could benefit from more advanced optimisation
469 methods, refined MCDA techniques, and integration of sensitivity analyses and formal
470 feasibility metrics (Bode et al., 2024; Esmail and Geneletti, 2018; Yazdani et al., 2019).
471 Emerging high-resolution monitoring tools and improved larval connectivity models
472 (Choukroun et al., 2024) also provide important opportunities to strengthen the technical
473 robustness of the process.

474 (2) Ecologically, incorporating projected bleaching risk and persistent thermal and cyclone refugia
475 (Bozec et al., 2025; Cheung et al., 2025; Mellin et al., 2025; Sun et al., 2024) is increasingly
476 critical to ensure gains of the control program can be preserved. Aligning COTS control with
477 broader resilience goals, including coordination with the Reef Restoration and Adaptation
478 Program (RRAP), will allow mutual reinforcement of protection and recovery efforts (Condie
479 et al., 2021) and likely increase broad stakeholder support.

480 (3) Institutionally, priorities include a two-fold expansion of the operational program to reach
481 optimal benefits (Castro-Sanguino et al., 2023), expanding engagement with Traditional
482 Owners and local communities, more accessible decision-support (Artelle et al., 2018; Ban et
483 al., 2018) and considerations of data sovereignty (Cannon et al., 2024; Reyes-García et al.,
484 2022) as well as increased documentation and publication of outcomes (Fletcher et al., 2024).
485 Governance structures should remain flexible enough to continue to accommodate iteration and
486 avoid ossification, while robust enough to maintain confidence across partner agencies and
487 funding bodies.

488 Ultimately, enhancements should be assessed for their ecological impact, adoptability, and ability to
489 reinforce institutional legitimacy. Uncoordinated or overly complex changes risk eroding stakeholder
490 buy-in and undermining operational delivery. Sustained success will depend on pacing innovation with
491 organisational capacity, a core tenet of meta-adaptiveness.

492

493

494 **Figure S1.** GBRMPA Annual Reef Prioritisation Process (diagram). The figure shows (1) program objectives and capacity; (2) data inputs; (3) consultation phase 1; (4) shortlisting by the reef interventions team; and (5) consultation phase 2 and assignment. (Image supplied with permission.)

495

496 **Table S3** Criteria and descriptions currently included within the COTS prioritisation process. Rows marked with * are in active development and to be
 497 included in 2026 decision processes

Category	Criteria	Description	Weighted vs Threshold	Reference
Ecological	COTS Risk	Composite metric of ensemble weighted out-degree (as a percentile per sector) multiplied by predicted COTS density (scaled 0-1). Represents how well connected a reef is and how likely the reef is to have problematic COTS densities.	Weighted	(Choukroun et al., 2024; Hock et al., 2014; Matthews et al., 2020)
	Coral Source	Composite metric of coral weighted out-degree (as a percentile per sector) multiplied by predicted Coral Cover. Represents how well connected a reef is and how much coral is available to supply surrounding reefs.	Weighted	(Hock et al., 2017; Mumby et al., 2021)
	Zoning	Scored (0-1) for four categories of protection (Pink = 0; Blue = 0.5; Yellow = 0.75; Green = 1). Green zones are slightly upweighted to 1) uplift reefs that should be easier to control due to enhanced fish predators amplifying zoning protection; and 2) balance the implicit upweighting of blue zones through their more prevalent COTS outbreaks.	Weighted	(GBRMPA, 2004; Kroon et al., 2021; Sweatman, 2008)
	Resilience	Calculated as: Recovery Potential + (1-Disturbance Exposure). Included to give weighting to reefs that have avoided recent disturbances and have a higher chance of recovery.	Weighted	(Liu et al., 2017; Matthews et al., 2019; Puotinen et al., 2016)
	COTS Outbreak History	Scored 0-1 in five outbreak categories from previous 2 years of data (Severe = 1; Established = 0.75, Potential = 0.5; No Outbreak = 0.25; No COTS = 0).	Weighted	(AIMS, 2015; Emslie et al., 2024; GBRMPA, 2025a)

		Designed to upweight places where COTS outbreaks are known and thus give slight preference to empirical observations over modelled estimates.		
Economic	Tourism Visitation	Number of visits, scaled (0-1), from the GBRMPA Environmental Management Charge (EMC) data 2019-2022. Best available proxy for tourism value.	Weighted	(GBRMPA, 2025b)
	Tourism Value	Estimated value (on reef and reef-adjacent) of coral reefs to the tourism sector. These values are taken from the combined value of on reef values and reef adjacent values, the former including recreational diving and snorkelling and the latter including the provision of calm waters, coral sand beaches, views and seafood.	*In progress	(Spalding et al., 2017)
Logistical Feasibility	Distance to major Port	Depending on the ports available to the current fleet, distance cut-offs are applied to ensure operational efficiency	Threshold	(GBRMPA, 2022)
	Crocodile Risk	Area deemed “high risk” (by proximity to the coast and high crocodile density areas) are automatically excluded and “medium risk” are flagged for individual risk assessments by operators	Threshold	(Queensland Government, 2019)
	Anchorage, Safe harbour, Staging Post	Some reefs offer significant advantages in terms of safe anchorage, shelter and work opportunities during bad weather or as a staging post to reach remote areas of the GBR. Some of these factors are known only to on-water operators and these reefs may be included via consensus at planning workshops.	Lock in/out via workshop consensus	-
	Workability	Derived from monthly trends in wave exposure data and dive success / cancellations to estimate workability at reef / site scales	*In progress	Bode et al (2025)

Traditional Owner Perspectives	Cultural significance	Some reefs may be locked in or out of the target list via consensus during workshops due to the cultural significance of a reef. This may result in a reef being prioritised to protect the cultural values or to be left un-managed to keep the reef free from human intervention.	Lock in/out via workshop consensus	-
--------------------------------	-----------------------	---	------------------------------------	---

499 REFERENCES

500 AIMS, 2015. AIMS Long-term Monitoring Program: Crown-of-thorns starfish and benthos Manta
501 Tow Data (Great Barrier Reef) [WWW Document]. URL
502 <https://doi.org/10.25845/5c09b0abf315a> (accessed 8.25.25).

503 Anthony, K.R.N., Marshall, P.A., Abdulla, A., Beeden, R., Bergh, C., Black, R., Eakin, C.M., Game,
504 E.T., Gooch, M., Graham, N.A.J., Green, A., Heron, S.F., van Hooidonk, R., Knowland, C.,
505 Mangubhai, S., Marshall, N., Maynard, J.A., McGinnity, P., McLeod, E., Mumby, Peter.J.,
506 Nyström, M., Obura, D., Oliver, J., Possingham, H.P., Pressey, R.L., Rowlands, G.P.,
507 Tamelander, J., Wachenfeld, D., Wear, S., 2015. Operationalizing resilience for adaptive coral
508 reef management under global environmental change. *Glob Chang Biol* 21, 48–61.
509 <https://doi.org/10.1111/gcb.12700>

510 Argyris, C., Schön, D., 1978. Organizational learning: A theory of action perspective. *Rev Esp Invest
511 Sociol* 77/78, 345–348. <https://doi.org/10.2307/40183951>

512 Artelle, K., Stephenson, J., Bragg, C., Housty, J., Housty, W., Kawharu, M., Turner, N., 2018. Values-
513 led management: the guidance of place-based values in environmental relationships of the past,
514 present, and future. *Ecology and Society* 23, 35. <https://doi.org/10.5751/ES-10357-230335>

515 Babcock, R.C., Plagányi, É.E., Condie, S.A., Westcott, D.A., Fletcher, C.S., Bonin, M.C., Cameron,
516 D., 2020. Suppressing the next crown-of-thorns outbreak on the Great Barrier Reef. Springer 39,
517 1233–1244. <https://doi.org/10.1007/S00338-020-01978-8>

518 Bainbridge, S., Armin, M., Page, G., Tychsen-Smith, L., Coleman, G., Oorloff, J., Harvey, D., Do, B.,
519 Marsh, B., Lawrence, E., Kusy, B., 2025. The crown-of-thorns starfish (COTS) Surveillance
520 System (CSS): end-to-end technology for the detection of reef pests. A report to the Australian
521 Government by the COTS Control Innovation Program (85 pp).

522 Ban, N.C., Frid, A., Reid, M., Edgar, B., Shaw, D., Siwallace, P., 2018. Incorporate Indigenous
523 perspectives for impactful research and effective management. *Nat Ecol Evol* 2, 1680–1683.
524 <https://doi.org/10.1038/s41559-018-0706-0>

525 Bartelet, H.A., Paxton, G., Lockie, S., Backhaus, V., Brooksbank, L., 2025. A social license to operate
526 theory for lethal control of crown-of-thorns starfish on the Great Barrier Reef. *People and
527 Nature* 7, 2838–2851. <https://doi.org/10.1002/PAN3.70159;ISSUE:ISSUE:DOI>

528 Bode, M., Stewart, O., Choukroun, S., 2024. Incorporating biophysical larval dispersal simulations
529 into coral reef conservation decision-making, in: *Oceanographic Processes of Coral Reefs*. CRC
530 Press, pp. 272–281. <https://doi.org/10.1201/9781003320425-21>

531 Bonin, M., Robillot, C., Brinkman, R., Taylor, B., Burrows, D., Mumby, P., Morris, S., Beeden, R.,
532 Fisher, E., Johnson, M., Schaffelke, B., Morgan, C., 2022. COTS Control Innovation Program
533 Investment Plan. A report to the Australian Government by the COTS Control Innovation
534 Program.

535 Bostrom-Einarsson, L., Rivera-Posada, J., 2015. Controlling outbreaks of the coral-eating crown-of-
536 thorns starfish using a single injection of common household vinegar. *Coral Reefs*.
537 <https://doi.org/10.1007/s00338-015-1351-6>

538 Bozec, Y.-M., Adam, A.A.S., Arellano-Navia, B., Cresswell, A.K., Haller-Bull, V., Iwanaga, T., Lachs,
539 Matthews, S.A., McWhorter, J.K., Anthony, K.R.N., Condie, S.A., Halloran, P.R., Ortiz, J.-
540 C., Riginos, C., Mumby, P.J., 2025. A rapidly closing window for coral persistence under global
541 warming. *Nat Commun* 16, 9704-. <https://doi.org/10.1038/s41467-025-65015-4>

542 Cannon, S.E., Moore, J.W., Adams, M.S., Degai, T., Griggs, E., Griggs, J., Marsden, T., Reid, A.J.,
543 Sainsbury, N., Stirling, K.M., Barnes, A.A.Y.S., Benson, R., Burrows, D., Chamberlin, G.R.,
544 Charley, B., Dick, D., Duncan, A.T., Liddle, K.K.M., Paul, M., Prince, N.P., Scotnicki, C.,
545 Speck, K., Squakin, J., Van Der Minne, C., Walkus, J., West, K., Wilson, K.B., 2024. Taking care
546 of knowledge, taking care of salmon: towards Indigenous data sovereignty in an era of climate
547 change and cumulative effects. *FACETS* 9, 1–21. <https://doi.org/10.1139/FACETS-2023-0135>

548 Castro-Sanguino, C., Bozec, Y.M., Condie, S.A., Fletcher, C.S., Hock, K., Roelfsema, C., Westcott,
549 D.A., Mumby, P.J., 2023. Control efforts of crown-of-thorns starfish outbreaks to limit future
550 coral decline across the Great Barrier Reef. *Wiley Online Library* 14, 4580.
551 <https://doi.org/10.1002/ECS2.4580>

552 Chandler, J., Burn, D., Caballes, C., Doll, P., 2023. Increasing densities of Pacific crown-of-thorns
553 starfish (*Acanthaster cf. solaris*) at Lizard Island, northern Great Barrier Reef, resolved using a
554 novel survey method. *Sci Rep* 13, 19306. <https://doi.org/10.1038/s41598-023-46749-x>

555 Cheung, M., Chaloupka, M., Mumby, P., Callaghan, D., 2025. The spatial risk of cyclone wave
556 damage across the Great Barrier Reef. *Ecol Inform* 89.
557 <https://doi.org/10.1016/j.ecoinf.2025.103175>

558 Choukroun, S., Stewart, O.B., Mason, L.B., Bode, M., 2024. Larval dispersal predictions are highly
559 sensitive to hydrodynamic modelling choices. *Coral Reefs* 44, 1–13.
560 <https://doi.org/10.1007/S00338-024-02563-Z/TABLES/4>

561 Commonwealth of Australia, 2021. *Reef 2050 Long-Term Sustainability Plan 2021–2025*.

562 Condie, S.A., Anthony, K.R.N., Babcock, R.C., Baird, M.E., Beeden, R., Fletcher, C.S., Gorton, R.,
563 Harrison, D., Hobday, A.J., Plagányi, É.E., Westcott, D.A., 2021. Large-scale interventions may

564 delay decline of the Great Barrier Reef. [royalsocietypublishing.org](https://royalsocietypublishing.org/doi/10.1098/RSOS.201296) 8.
565 <https://doi.org/10.1098/RSOS.201296>

566 Crutzen, P., 2002. Geology of mankind—The Anthropocene. *Nature* 415, 23.

567 Day, J.C., 2002. Zoning—lessons from the Great Barrier Reef Marine Park. *Ocean Coast Manag* 45,
568 139–156. [https://doi.org/10.1016/S0964-5691\(02\)00052-2](https://doi.org/10.1016/S0964-5691(02)00052-2)

569 DCCEEW, 2022. Environment Budget Overview 2022–23: Reef Protection Package [WWW
570 Document]. Australian Government. URL
571 <https://www.dcceew.gov.au/sites/default/files/documents/env-reef.pdf> (accessed 8.21.25).

572 De'ath, G., 2003. Analyses of crown-of-thorns starfish data from the fine-scale surveys and the long-
573 term monitoring program manta tow surveys. CRC Reef Research Centre Technical Report.
574 CRC Reef Research Centre, Townsville.

575 De'ath, G., Fabricius, K.E., Sweatman, H., Puotinen, M., 2012. The 27-year decline of coral cover on
576 the Great Barrier Reef and its causes. *Proc Natl Acad Sci U S A* 109, 17995–17999.
577 <https://doi.org/10.2307/41829796>

578 Downs, A., 1972. Up and down with ecology — the “issue-attention cycle.” *National Affairs* 28, 38–
579 52.

580 Dubois, N.S., Gomez, A., Carlson, S., Russell, D., 2020. Bridging the research-implementation gap
581 requires engagement from practitioners. *Conserv Sci Pract* 2. <https://doi.org/10.1111/CSP2.134>

582 Emslie, M., Bray, P., Cheal, A., Johns, K., Osbornc, K., Sinclair-Taylor, T., Thompson, C., 2020.
583 Decades of monitoring have informed the stewardship and ecological understanding of
584 Australia's Great Barrier Reef. *Biol Conserv* 252, 108854.
585 <https://doi.org/10.1016/j.biocon.2020.108854>

586 Emslie, M.J., Logan, M., Bray, P., Ceccarelli, D.M., Cheal, A.J., Hughes, T.P., Johns, K.A., Jonker,
587 M.J., Kennedy, E. V., Kerry, J.T., Mellin, C., Miller, I.R., Osborne, K., Puotinen, M., Sinclair-
588 Taylor, T., Sweatman, H., 2024. Increasing disturbance frequency undermines coral reef
589 recovery. *Ecol Monogr* 94. <https://doi.org/10.1002/ECM.1619>

590 Esmail, B.A., Geneletti, D., 2018. Multi-criteria decision analysis for nature conservation: A review of
591 20 years of applications. *Methods Ecol Evol* 9, 42–53. <https://doi.org/10.1111/2041-210X.12899>

592 Fabricius, C., Cundill, G., 2014. Learning in adaptive management: Insights from published practice.
593 *Ecology and Society* 19. <https://doi.org/10.5751/ES-06263-190129>

594 Fabricius, K.E., Okaji, K., De'ath, G., 2010. Three lines of evidence to link outbreaks of the crown-
595 of-thorns seastar *Acanthaster planci* to the release of larval food limitation. *Coral Reefs* 29, 593–
596 605. <https://doi.org/10.1007/s00338-010-0628-z>

597 GBRMPA, 2025. Fascinating facts about the Great Barrier Reef [WWW Document]. URL
598 <https://www2.gbrmpa.gov.au/learn/fascinating-facts-about-great-barrier-reef#> (accessed
599 12.19.25).

600 Fernandes, L., Day, J., Lewis, A., Slegers, S., Kerrigan, B., Breen, D., Cameron, D., Jago, B., Hall, J.,
601 Lowe, D., Innes, J., Tanzer, J., Chadwick, V., Thompson, L., Gorman, K., Simmons, M., Barnett,
602 B., Sampson, K., De'ath, G., Mapstone, B., Marsh, H., Possingham, H., Ball, I., Ward, T.,
603 Dobbs, K., Aumend, J., Slater, D., Stapleton, K., 2005. Establishing representative no-take areas
604 in the Great Barrier Reef: large-scale implementation of theory on marine protected areas. *Wiley*
605 Online LibraryL Fernandes, JON Day, A Lewis, S Slegers, B Kerrigan, DAN Breen, D Cameron,
606 B JagoConservation biology, 2005•Wiley Online Library 19, 1733–1744.
607 <https://doi.org/10.1111/j.1523-1739.2005.00302.x>

608 Fletcher, C., Bode M, Stewart O, Matthews S, 2024. Multi-criteria decision-making for balancing
609 management priorities under resource constraints. A report to the Australian Government by the
610 COTS Control Innovation Program.

611 Fletcher, C.S., Bonin, M.C., Caballes, C.F., del Carmen Gómez-Cabrera, M., Kroon, F.J., Mankad, A.,
612 Pratchett, M.S., Westcott, D.A., 2021. COTS Control Innovation Program Design of the COTS
613 Control Innovation Program: a technical report and recommendations. A report to the Australian
614 Government by the COTS Control Innovation Program.

615 Fletcher, C.S., Westcott, D.A., Bonin, M.C., 2020. An ecologically-based operational strategy for
616 COTS Control: integrated decision-making from the site to the regional scale. Report to the
617 National Environmental Science Programme. Reef and Rainforest Research Centre Limited,
618 Cairns.

619 Game, E.T., Meijaard, E., Sheil, D., McDonald-Madden, E., 2014. Conservation in a Wicked Complex
620 World; Challenges and Solutions. *Conserv Lett* 7, 271–277.
621 <https://doi.org/10.1111/CONL.12050>

622 GBRMPA, 2025a. Crown-of-thorns starfish program dashboard [WWW Document]. URL
623 <https://www2.gbrmpa.gov.au/our-work/programs-and-projects/crown-thorns-starfish-management/crown-thorns-starfish-project-dashboard> (accessed 8.25.25).

625 GBRMPA, 2025b. GBRMPA - Tourism visitation data [WWW Document]. URL
626 <https://www2.gbrmpa.gov.au/help/tourism-visitation-data> (accessed 8.25.25).

627 GBRMPA, 2024. Reef Blueprint 2030-Great Barrier Reef Blueprint for Climate Resilience and
628 Adaptation.

629 GBRMPA, 2022. Great Barrier Reef Features [WWW Document]. URL https://geohub-gbrmpa.hub.arcgis.com/datasets/f75e9091c06e463e8b78b9c7825fca20_64/explore (accessed
630 8.25.25).

631

632 GBRMPA, 2020. Crown-of-thorns starfish Strategic Management Framework. Townsville.

633 GBRMPA, 2017. Great Barrier Reef: Blueprint for Resilience. Townsville, Australia.

634 GBRMPA, 2004. Great barrier reef marine park zoning plan 2003. Great Barrier Reef Marine Park
635 Authority, Townsville, Australia.

636 Great Barrier Reef Foundation, 2019. Reef Trust Partnership Investment Strategy.

637 Harris, R.J., Barnard, d'Artagnan L., Paxton, G., Lockie, S., Craik, D.J., Cummins, S.F., Wang, C.K.,
638 Motti, C.A., 2025. The future of utilising semiochemical pest control methods to manage the
639 destructive crown-of-thorns starfish outbreaks on coral reefs. *Biol Conserv* 302, 110984.
640 <https://doi.org/10.1016/J.BIOCON.2025.110984>

641 Hemming, V., Camaclang, A.E., Adams, M.S., Burgman, M., Carbeck, K., Carwardine, J., Chadès, I.,
642 Chalifour, L., Converse, S.J., Davidson, L.N.K., Garrard, G.E., Finn, R., Fleri, J.R., Huard, J.,
643 Mayfield, H.J., Madden, E.M.D., Naujokaitis-Lewis, I., Possingham, H.P., Rumpff, L., Runge,
644 M.C., Stewart, D., Tulloch, V.J.D., Walshe, T., Martin, T.G., 2022. An introduction to decision
645 science for conservation. *Wiley Online Library* 36, 36. <https://doi.org/10.1111/COBI.13868>

646 Hock, K., Wolff, N.H., Condie, S.A., Anthony, K.R.N., Mumby, P.J., 2014. Connectivity networks
647 reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. *Journal of
648 Applied Ecology* 51, 1188–1196. <https://doi.org/10.1111/1365-2664.12320>

649 Hock, K., Wolff, N.H., Ortiz, J.C., Condie, S.A., Anthony, K.R.N., Blackwell, P.G., Mumby, P.J.,
650 2017. Connectivity and systemic resilience of the Great Barrier Reef. *PLoS Biol* 15, e2003355.
651 <https://doi.org/10.1371/journal.pbio.2003355>

652 Hoegh-Guldberg, O., Kennedy, E., Beyer, H., McClenen, C., Possingham, H., 2018. Securing a long-
653 term future for coral reefs. *Trends Ecol Evol* 33, 936–944.
654 <https://doi.org/10.1016/j.tree.2018.09.006>

655 Hoey, J., Campbell, M.L., Hewitt, C.L., Gould, B., Bird, R., 2016. Acanthaster planci invasions:
656 Applying biosecurity practices to manage a native boom and bust coral pest in Australia.
657 Management of Biological Invasions 7, 213–220. <https://doi.org/10.3391/mbi.2016.7.3.01>

658 Holling, C.S., 1978. Adaptive environmental assessment and management. John Wiley & Sons, New
659 York, New York, USA.

660 Holling, C.S., 1973. Resilience and stability of ecological systems.

661 Hughes, T.P., Barnes, M.L., Bellwood, D.R., Cinner, J.E., Cumming, G.S., Jackson, J.B.C., Kleypas,
662 J., Van De Leemput, I.A., Lough, J.M., Morrison, T.H., Palumbi, S.R., Van Nes, E.H., Scheffer,
663 M., 2017a. Coral reefs in the Anthropocene. *Nature* 546, 82–90.
664 <https://doi.org/10.1038/nature22901>

665 Hughes, T.P., Bellwood, D.R., Folke, C., Steneck, R.S., Wilson, J., 2005. New paradigms for
666 supporting the resilience of marine ecosystems. *Trends Ecol Evol*.
667 <https://doi.org/10.1016/j.tree.2005.03.022>

668 Hughes, T.P., Kerry, J.T., Álvarez-Noriega, M., Álvarez-Romero, J.G., Anderson, K.D., Baird, A.H.,
669 Babcock, R.C., Beger, M., Bellwood, D.R., Berkelmans, R., Bridge, T.C., Butler, I.R., Byrne,
670 M., Cantin, N.E., Comeau, S., Connolly, S.R., Cumming, G.S., Dalton, S.J., Diaz-Pulido, G.,
671 Eakin, C.M., Figueira, W.F., Gilmour, J.P., Harrison, H.B., Heron, S.F., Hoey, A.S., Hobbs,
672 J.P.A., Hoogenboom, M.O., Kennedy, E. V., Kuo, C.Y., Lough, J.M., Lowe, R.J., Liu, G.,
673 McCulloch, M.T., Malcolm, H.A., McWilliam, M.J., Pandolfi, J.M., Pears, R.J., Pratchett, M.S.,
674 Schoepf, V., Simpson, T., Skirving, W.J., Sommer, B., Torda, G., Wachenfeld, D.R., Willis, B.L.,
675 Wilson, S.K., 2017b. Global warming and recurrent mass bleaching of corals. *Nature* 543, 373–
676 377. <https://doi.org/10.1038/nature21707>

677 Kayal, M., Vercelloni, J., Lison de Loma, T., Bosserelle, P., Chancerelle, Y., Geoffroy, S., Stievenart,
678 C., Michonneau, F., Penin, L., Planes, S., Adjeroud, M., 2012. Predator Crown-of-Thorns
679 Starfish (*Acanthaster planci*) Outbreak, Mass Mortality of Corals, and Cascading Effects on
680 Reef Fish and Benthic Communities. *PLoS One* 7, e47363.
681 <https://doi.org/10.1371/journal.pone.0047363>

682 Kingsford, R., Biggs, H., 2012. Strategic adaptive management guidelines for effective conservation
683 of freshwater ecosystems in and around protected areas of the world. IUCN WCPA Freshwater
684 Taskforce, Australian Wetlands and Rivers Centre, Sydney.
685 <https://doi.org/10.1016/j.biocon.2010.09.022>

686 Knight, A.T., Cowling, R.M., Rouget, M., Balmford, A., Lombard, A.T., Campbell, B.M., 2008.
687 Knowing but not doing: selecting priority conservation areas and the research–implementation
688 gap. *Conservation Biology* 22, 610–617. <https://doi.org/10.1111/J.1523-1739.2008.00914.X>

689 Kroon, F., Barneche, D., Emslie, M., 2021. Fish predators control outbreaks of Crown-of-Thorns
690 Starfish. *Nat Commun* 12, 6986. <https://doi.org/10.1038/s41467-021-26786-8>

691 Lawrence, E., Foster, S., Gladish, D., Matthews, S., Williamson, D., Uthicke, S., Doyle, J., Pratchett,
692 M., Bainbridge, S., Armin, A., Crosswell, J., 2025. Crown-of-thorns starfish (COTS) Monitoring
693 Design: sample design for science and management decisions. A report to the Australian
694 Government by the COTS Control Innovation Program 52pp.

695 Liu, G., Skirving, W.J., Geiger, E.F., De La Cour, J.L., Marsh, B.L., Heron, S.F., Tirak, K. V, Strong,
696 A.E., Eakin, C.M., 2017. NOAA Coral Reef Watch's 5km Satellite Coral Bleaching Heat Stress
697 Monitoring Product Suite Version 3 and Four-Month Outlook Version 4. *Reef Encounter* 32, 39–
698 45.

699 Lockie, S., Bartelet, H.A., Ritchie, B.W., Sie, L., Paxton, G., 2024. Quantifying public support for
700 culling crown-of-thorns starfish (*Acanthaster* spp.) on the Great Barrier Reef. *Conserv Sci Pract*
701 6, e13252. <https://doi.org/10.1111/CSP2.13252>

702 Matthews, S.A., Beeden, R., Bonin, M., Mellin, C., Pratchett, M., Ryan, I., Wilmes, J., Williamson,
703 D., 2025. From Business Intelligence to Conservation Intelligence: Operationalising adaptive
704 pest control to protect the resilience of the Great Barrier Reef. *EcoEvoRxiv*.
705 <https://doi.org/10.32942/X2HD3J>

706 Matthews, S.A., Mellin, C., MacNeil, A., Heron, S.F., Skirving, W., Puotinen, M., Devlin, M.J.,
707 Pratchett, M., 2019. High-resolution characterization of the abiotic environment and disturbance
708 regimes on the Great Barrier Reef, 1985–2017. *Ecology* 100. <https://doi.org/10.1002/ecy.2574>

709 Matthews, S.A., Mellin, C., Pratchett, M.S., 2020. Larval connectivity and water quality explain
710 spatial distribution of Crown-of-thorns Starfish outbreaks across the Great Barrier Reef. *Adv
711 Mar Biol* 87. <https://doi.org/10.1016/bs.amb.2020.08.007>

712 Matthews, S.A., Williamson, D.H., Beeden, R., Emslie, M.J., Abom, R.T.M., Beard, D., Bonin, M.,
713 Bray, P., Campili, A.R., Ceccarelli, D.M., Fernandes, L., Fletcher, C.S., Godoy, D., Hemingson,
714 C.R., Jonker, M.J., Lang, B.J., Morris, S., Mosquera, E., Phillips, G.L., Sinclair-Taylor, T.H.,
715 Taylor, S., Tracey, D., Wilmes, J.C., Quincey, R., 2024. Protecting Great Barrier Reef resilience
716 through effective management of crown-of-thorns starfish outbreaks. *PLoS One* 19.
717 <https://doi.org/10.1371/JOURNAL.PONE.0298073>

718 McCook, L.J., Ayling, T., Cappo, M., Choat, J.H., Evans, R.D., De Freitas, D.M., Heupel, M.,
719 Hughes, T.P., Jones, G.P., Mapstone, B., 2010. Adaptive management of the Great Barrier Reef:
720 a globally significant demonstration of the benefits of networks of marine reserves. *Proceedings
721 of the National Academy of Sciences* 107, 18278–18285.

722 Mcleod, E., Anthony, K.R.N., Mumby, P.J., Maynard, J., Beeden, R., Graham, N.A.J., Heron, S.F.,
723 Hoegh-Guldberg, O., Jupiter, S., MacGowan, P., Mangubhai, S., Marshall, N., Marshall, P.A.,

724 McClanahan, T.R., Mcleod, K., Nyström, M., Obura, D., Parker, B., Possingham, H.P., Salm, R.
725 V., Tamelander, J., 2019. The future of resilience-based management in coral reef ecosystems. *J*
726 *Environ Manage* 233, 291–301. <https://doi.org/10.1016/J.JENVMAN.2018.11.034>

727 Mellin, C., Brown, S., Heron, S.F., Fordham, D.A., 2025. CoralBleachRisk—Global Projections of
728 Coral Bleaching Risk in the 21st Century. *Wiley Online Library*C Mellin, S Brown, SF Heron,
729 DA FordhamGlobal Ecology and Biogeography, 2025•Wiley Online Library 34, e13955.
730 <https://doi.org/10.1111/GEB.13955>

731 Motti, C.A., Cummins, S.F., Hall, M.R., 2022. A Review of the Giant Triton (*Charonia tritonis*), from
732 Exploitation to Coral Reef Protector? *Diversity (Basel)* 14, 961.
733 <https://doi.org/10.3390/D14110961>

734 Mumby, P.J., Mason, R.A.B., Hock, K., 2021. Reconnecting reef recovery in a world of coral
735 bleaching. *Limnol Oceanogr Methods* 19, 702–713. <https://doi.org/10.1002/LOM3.10455>

736 NOAA, 2018. Coral Reef Conservation Program: Strategic Plan. repository.library.noaa.gov.

737 Osborne, K., Dolman, A.M., Burgess, S.C., Johns, K.A., 2011. Disturbance and the dynamics of coral
738 cover on the Great Barrier Reef (1995–2009). *PLoS One* 6, e17516.
739 <https://doi.org/10.1371/journal.pone.0017516>

740 Pratchett, M., Caballes, C., Wilmes, J., Matthews, S., Mellin, C., Sweatman, H., Nadler, L., Brodie, J.,
741 Thompson, C., Hoey, J., Bos, A., Byrne, M., Messmer, V., Fortunato, S., Chen, C., Buck, A.,
742 Babcock, R., Uthicke, S., 2017. Thirty Years of Research on Crown-of-Thorns Starfish (1986–
743 2016): Scientific Advances and Emerging Opportunities. *Diversity (Basel)* 9, 41.
744 <https://doi.org/10.3390/d9040041>

745 Pratchett, M.S., 2010. Changes in coral assemblages during an outbreak of *Acanthaster planci* at
746 Lizard Island, northern Great Barrier Reef (1995–1999). *Coral Reefs* 29, 717–725.
747 <https://doi.org/10.1007/s00338-010-0602-9>

748 Pratchett, M.S., Caballes, C.F., Burn, D., Doll, P.C., Chandler, J.F., Doyle, J.R., Uthicke, S., 2022.
749 Scooter-assisted large area diver-based (SALAD) visual surveys to test for renewed outbreaks of
750 crown-of-thorns starfish (*Acanthaster cf. solaris*) in the northern Great Barrier Reef. A report to
751 the Australian Government by the COTS Control Innovation Program 32pp.

752 Pratchett, M.S., Caballes, C.F., Cvitanovic, C., Raymundo, M.L., Babcock, R.C., Bonin, M.C., Bozec,
753 Y.M., Burn, D., Byrne, M., Castro-Sanguino, C., Chen, C.C.M., Condie, S.A., Cowan, Z.L.,
754 Deaker, D.J., Desbiens, A., Devantier, L.M., Doherty, P.J., Doll, P.C., Doyle, J.R., Dworjanyn,
755 S.A., Fabricius, K.E., Haywood, M.D.E., Hock, K., Hoggett, A.K., Høj, L., Keesing, J.K.,
756 Kenchington, R.A., Lang, B.J., Ling, S.D., Matthews, S.A., McCallum, H.I., Mellin, C., Mos,

757 B., Motti, C.A., Mumby, P.J., Stump, R.J.W., Uthicke, S., Vail, L., Wolfe, K., Wilson, S.K.,
758 2021a. Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-
759 Thorns Sea Star *Acanthaster* sp. on Australia's Great Barrier Reef. *Biological Bulletin* 241, 330–
760 346. <https://doi.org/10.1086/717026>

761 Pratchett, M.S., Caballes, C.F., Rivera-Posada, J.A., Sweatman, H.P.A., 2014. Limits to understanding
762 and managing outbreaks of Crown Of Thorns Starfish (*Acanthaster* Spp.). *Ocean and Marine*
763 *Biology: An Annual Review* 52, 133–200. <https://doi.org/10.1201/b17143-4>

764 Pratchett, M.S., Nadler, L.E., Burn, D., Lang, B.J., Messmer, V., Caballes, C.F., 2021b. Reproductive
765 investment and fecundity of Pacific crown-of-thorns starfish (*Acanthaster* cf. *solaris*) on the
766 Great Barrier Reef. *Marine Biology* 2021 168:6 168, 1–8. <https://doi.org/10.1007/S00227-021-03897-W>

768 Puotinen, M., Maynard, J.A., Beeden, R., Radford, B., Williams, G.J., 2016. A robust operational
769 model for predicting where tropical cyclone waves damage coral reefs. *Sci Rep* 6, 26009.
770 <https://doi.org/10.1038/srep26009>

771 Queensland Government, 2019. Queensland Estuarine Crocodile Monitoring Program 2016–2019 key
772 findings report.

773 Regan, H.M., Ben-Haim, Y., Langford, B., Wilson, W.G., Lundberg, P., Andelman, S.J., Burgman,
774 M.A., 2005. Robust decision-making under severe uncertainty for conservation management.
775 Wiley Online Library 15, 1471–1477. <https://doi.org/10.1890/03-5419>

776 Reyes-García, V., Tofiqhi-Niaki, A., Austin, B.J., Benyei, P., Danielsen, F., Fernández-Llamazares, Á.,
777 Sharma, A., Soleymani-Fard, R., Tengö, M., 2022. Data sovereignty in community-based
778 environmental monitoring: toward equitable environmental data governance. *Bioscience* 72.
779 <https://doi.org/10.1093/biosci/biac048>

780 Rist, L., Felton, A., Samuelsson, L., Sundstrom, S.M., Rosvall, O., 2013. A New Paradigm for
781 Adaptive Management. *Ecology and Society* 18, 63.
782 <https://doi.org/http://dx.doi.org/10.5751/ES-06183-180463>

783 Rivera-Posada, J., Pratchett, M.S., Aguilar, C., Grand, A., Caballes, C.F., 2014. Bile salts and the
784 single-shot lethal injection method for killing crown-of-thorns sea stars (*Acanthaster planci*).
785 *Ocean Coast Manag* 102, 383–390. <https://doi.org/10.1016/j.occoaman.2014.08.014>

786 Rogers, J.G.D., Plagányi, É.E., Blamey, L.K., Desbiens, A.A., 2024. Validating effectiveness of
787 crown-of-thorns starfish control thresholds to limit coral loss throughout the Great Barrier Reef.
788 *Coral Reefs* 43, 1611–1626. <https://doi.org/10.1007/S00338-024-02560-2/TABLES/4>

789 Roux, D.J., Novellie, P., Smit, I.P.J., de Kraker, J., Culloch-Jones, S.M., Dziba, L.E., Freitag, S.,
790 Pienaar, D.J., 2022. Appraising strategic adaptive management as a process of organizational
791 learning. *J Environ Manage* 301, 113920. <https://doi.org/10.1016/J.JENVMAN.2021.113920>

792 Shaver, E.C., McLeod, E., Hein, M.Y., Palumbi, S.R., Quigley, K., Vardi, T., Mumby, P.J., Smith, D.,
793 Montoya-Maya, P., Muller, E.M., Banaszak, A.T., McLeod, I.M., Wachenfeld, D., 2022. A
794 roadmap to integrating resilience into the practice of coral reef restoration. *Glob Chang Biol* 28,
795 4751–4764. <https://doi.org/10.1111/GCB.16212>

796 Skinner, C., Bozec, Y., Fletcher, C., Mumby, P., 2025. Maximising the benefits of local management
797 for coral reefs amidst near-term environmental change. *J Environ Manage* 392, 126627.
798 <https://doi.org/10.1016/j.jenvman.2025.126627>

799 Skinner, C., Bozec, Y., Matthews, S., Williamson, D., Beeden, R., Mumby, P., 2024. Advancing
800 projections of crown-of-thorns starfish to support management interventions. *Science of the
801 Total Environment* 950, 175282. <https://doi.org/10.1016/j.scitotenv.2024.175282>

802 Spalding, M., Burke, L., Wood, S., Ashpole, J., Hutchison, J., Ergassen, P., 2017. Mapping the global
803 value and distribution of coral reef tourism. *Mar Policy* 82, 104–113.
804 <https://doi.org/10.1016/j.marpol.2017.05.014>

805 Sun, C., Steinberg, C., Salas, E.K., Mellin, C., Babcock, R.C., Schiller, A., Cantin, N.E., Stella, J.S.,
806 Baird, M.E., Condie, S.A., Hobday, A.J., Herzfeld, M., Jones, N.L., Zhang, X., Chamberlain,
807 M.A., Fiedler, R., Green, C., Steven, A.D.L., 2024. Climate refugia in the Great Barrier Reef
808 may endure into the future. *Sci Adv* 10. <https://doi.org/10.1126/SCIADV.ADO6884>

809 Sweatman, H., 2008. No-take reserves protect coral reefs from predatory starfish. *Current Biology* 18,
810 598–599. <https://doi.org/10.1016/j.cub.2008.05.033>

811 Toomey, A.H., Knight, A.T., Barlow, J., 2017. Navigating the space between research and
812 implementation in conservation. *Conserv Lett* 10, 619–625.
813 <https://doi.org/10.1111/CONL.12315>

814 Uthicke, S., Doyle, J.R., Gomez Cabrera, M., Patel, F., McLatchie, M.J., Doll, P.C., Chandler, J.F.,
815 Pratchett, M.S., 2024. eDNA monitoring detects new outbreak wave of corallivorous seastar
816 (Acanthaster cf. solaris) at Lizard Island, Great Barrier Reef. *Coral Reefs* 43, 857–866.
817 <https://doi.org/10.1007/S00338-024-02506-8>

818 Uthicke, S., Robson, B., Doyle, J., Logan, M., Pratchett, M., Lamare, M., 2022. Developing an
819 effective marine eDNA monitoring: eDNA detection at pre-outbreak densities of corallivorous
820 seastar (Acanthaster cf. solaris). *Science of the Total Environment* 851, 158143.
821 <https://doi.org/10.1016/j.scitotenv.2022.158143>

822 Walters, C., 2007. Is adaptive management helping to solve fisheries problems? *AMBIO: A journal of*
823 *the human environment* 36, 304–307. [https://doi.org/10.1579/0044-7447\(2007\)36\[304:IAMHTS\]2.0.CO;2](https://doi.org/10.1579/0044-7447(2007)36[304:IAMHTS]2.0.CO;2)

825 Westcott, D., Fletcher, C.S., Babcock, R., Plaganyi-Lloyd, E., 2016. A Strategy to Link Research and
826 Management of Crown-of-Thorns Starfish on the Great Barrier Reef: An Integrated Pest
827 Management Approach. Report to the National Environmental Science Programme. Reef and
828 Rainforest Research Centre Limited, Cairns.

829 Westcott, D.A., Fletcher, C.S., Kroon, F.J., Babcock, R.C., Plagányi, E.E., Pratchett, M.S., Bonin,
830 M.C., 2020. Relative efficacy of three approaches to mitigate Crown-of-Thorns Starfish
831 outbreaks on Australia's Great Barrier Reef 10, 12594. <https://doi.org/10.1038/s41598-020-69466-1>

833 Williams, B.K., Brown, E.D., 2014. Adaptive management: from more talk to real action. *Environ*
834 *Manage* 53, 465–479. <https://doi.org/10.1007/s00267-013-0205-7>

835 Wilson, K., McBride, M., Bode, M., Possingham, H., 2006. Prioritizing global conservation efforts.
836 *Nature* 440, 337–340. <https://doi.org/10.1038/nature04366>

837 Woodley, S., Williams, D., Harvey, T., Jones, A., 2006. World heritage research: making a difference.
838 CRC Reef Research, Education and Capacity Building 1999-2006. CRC Reef Research Centre,
839 Townsville, Australia.

840 Yazdani, M., Zarate, P., Zavadskas, E.K., Turskis, Z., 2019. A combined compromise solution
841 (CoCoSo) method for multi-criteria decision-making problems. *Management Decision* 57,
842 2501–2519. <https://doi.org/10.1108/MD-05-2017-0458/FULL/HTML>

843 ACKNOWLEDGEMENTS

844 Acknowledgements We acknowledge the Traditional Owners of the Great Barrier Reef and pay our
845 respects to their Elders past, present and emerging, recognising their enduring custodianship and
846 spiritual connection to sea country. The Crown-of-Thorns Starfish Control Program is delivered
847 through a partnership between the Great Barrier Reef Marine Park Authority, the Great Barrier Reef
848 Foundation, and the Reef and Rainforest Research Centre. We thank the Program's delivery partners
849 and contractors, including the Queensland Parks and Wildlife Service, Blue Planet Marine, Pacific
850 Marine Group, INLOC, Lamu Ventures and the AIMS Long-Term Monitoring Program, whose field
851 operations and data underpin this work. We are particularly grateful to Daniel Shultz and Jo Baker for
852 many years of collaboration in iterating and improving the prioritisation process, and to Darren
853 Cameron for supporting and enabling the early development of process. We also acknowledge Takuya
854 Iwanage for final reviews and support from AIMS.

855 **Author Contributions**

856 S.A.M., C.S.F, M.B. conceived the study, and designed the MCDA approach. S.A.M implemented and
857 iterated the decision support tool and wrote the first draft of the manuscript, R.B., M.C.B. and D.H.W.
858 guided the design and implementation of the prioritisation process. I.R. and J.W. further developed the
859 decision support tool and contributed to figure preparation. All authors contributed to drafting and
860 editing the paper.

861 **Competing Interests**

862 The authors declare no competing interests

863 **Material and correspondence**

864 Correspondence and requests for materials should be addressed to S A Matthews
865 (s.matthews@aims.gov.au)

866