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ABSTRACT

Resilience-based management (RBM) has been widely adopted as a future focused extension of
adaptive management to address mounting climate change impacts on coral reef ecosystems, yet there
are few demonstrated examples of RBM operating effectively at large spatial and institutional scales.
The Crown-of-Thorns Starfish (COTS) Control Program on the Great Barrier Reef illustrates how RBM
can be operationalised by incrementally building new dimensions of the Program onto a simple
foundation of direct management action. We term this approach meta-adaptive management: a
deliberate process in which an intervention program incrementally expands its scope, sophistication and
its capacity to adapt over time through stakeholder engagement, technical refinement, and effective
governance. Rather than assuming a fully mature adaptive framework is in place from the outset, meta-
adaptive programs build the institutional, social, and technical capacity required for RBM to function
at scale while continuing to deliver operational outcomes. We describe how this approach has been
applied in the COTS Control Program, with a specific focus on recent advances in reef prioritisation.
We also distil eight transferable enabling components that are built over time—foundational research,
systematic monitoring, technical efficacy, stakeholder and political support, governance and strategy,
secure funding, decision-support systems, and robust prioritisation—and show how recurring decision

points (e.g., annual prioritisation) create incentives for applied research and stakeholder alignment. This
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perspective offers a practical blueprint for conservation programs facing dynamic threats and uncertain

futures.

Keywords: Resilience-based management, adaptive management, conservation prioritisation, coral

reef resilience, Crown-of-Thorns Starfish, Great Barrier Reef, iterative decision-making

INTRODUCTION

Conservation management in the Anthropocene

Ecosystems worldwide are experiencing profound transformations driven by climate change, habitat
degradation, and intensified human activities (Crutzen, 2002; Hughes et al., 2017a). Coral reefs are
among the first to confront existential versions of these challenges, facing recurrent and cumulative
disturbances that threaten ecosystem resilience and functions (Bozec et al., 2025; Hoegh-Guldberg et
al., 2018; Hughes et al., 2017b). Conservation managers must increasingly allocate limited resources
under complex and uncertain future conditions, prompting the need for frameworks capable of
anticipating, absorbing, and adapting to change (Anthony et al., 2015; Game et al., 2014; Wilson et al.,
2006).

Adaptive Management (AM) (Holling, 1978; Williams and Brown, 2014), and, more recently
Resilience-Based Management (RBM) (Anthony et al., 2015; Mcleod et al., 2019), have iteratively
developed in recent decades as frameworks for addressing uncertainty and complexity. While AM
emphasises structured experimentation and iterative learning, RBM extends this approach, placing
greater emphasis on anticipating future disturbances and explicitly managing for socio-ecological
resilience (i.e. the ability of a system to both resist and recover from disturbances; Holling, 1973;
Hughes et al., 2005). Despite their theoretical appeal, and notable examples (e.g. AM - 2004 rezoning
of the Great Barrier Reef Marine Park; Day, 2002; Fernandes et al., 2005; McCook et al., 2010; RBM
- NOAA Coral Reef Conservation Program; NOAA, 2018) there remain significant challenges to
overcome when attempting to operationalise AM and RBM interventions at large spatial or
institutional scales (Walters, 2007). Such interventions may include reducing local stressors (e.g.
Crown-of-Thorns Starfish (COTS) predation, land-based pollution, overfishing), implementing
climate smart Marine Protected Areas, or emerging coral restoration and assisted-evolution (Mcleod et
al., 2019). Programs attempting comprehensive, fully developed adaptive frameworks from the outset
often stall, as complexity and resistance overwhelm institutional capacities and social acceptance (Rist
et al., 2013). Moreover, a persistent research—implementation gap means even well-developed
methods often fail to influence on-ground management actions (Dubois et al., 2020; Knight et al.,
2008; Toomey et al., 2017).
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Operationalising resilience-based management: from theory to practice

Despite recent shifts in overarching governance to incorporate RBM in long term frameworks
(Commonwealth of Australia, 2021; GBRMPA, 2024, 2017; NOAA, 2018) and growing scientific
consensus, there remains a critical gap in successful operational implementation of RBM at large spatial
scales (Shaver et al., 2022). We argue that a key missing step is to explicitly foster the enabling
conditions for a program to adapt and to embed clear, operational decision points that incentivise applied
research and cooperative governance. In this manner program-level adaptiveness can emerge, scale and

adequately respond to dynamic environmental conditions.

Managing for uncertain futures is modern necessity and any operational implementation of RBM must
be willing to start in an unoptimized state and progressively evolve alongside the compounding
stressors that managers aim to mitigate. Moreover, the adaptiveness of the program cannot be
expected to work “out of the box” and the most suitable approaches must be learnt and scaled over
time. We use the term “meta-adaptive” to denote an extension of double-loop learning (Argyris and
Schdn, 1978; Williams and Brown, 2014) and deutero-learning or learning about learning (Argyris
and Schon, 1978; Fabricius and Cundill, 2014) that focuses on building the program’s capacity to
learn and adapt over time. Where double-loop learning leads to new approaches and challenges to
existing methods, we posit that the meta-adaptive approach adds the deliberate buildup of enabling
and operational capacity (i.e. funding stability, foundational research and monitoring, institutional
processes, stakeholder and political buy-in, and recurring decision points) as the program and its
adaptive capability expands. This extension of existing frameworks explicitly acknowledges that
adaptiveness is an emergent property cultivated through cumulative iterative actions through which
the decision points, planning cycles and culture of the program and partner organisations are aligned
towards a shared approach and common goals (Kingsford and Biggs, 2012; Roux et al., 2022) . This
approach is particularly important for RBM, where the objective is not only to manage adaptively, but
to do so in ways that actively build long-term system resilience in the face of uncertain
futures(Anthony et al., 2015; Mcleod et al., 2019)

Crown-of-thorns starfish control: a model of meta-adaptive management at scale

The Crown-of-Thorns Starfish (COTS) Control Program on Australia’s Great Barrier Reef (GBR)
provides a rare operational case study of an effective application of adaptive management to enhance
ecosystem resilience (Matthews et al., 2024). The Program’s successes were realised incrementally, and
progressively increased stakeholder buy-in, funding stability, research collaboration and institutional
capacity. Outbreaks of the Crown-of-Thorns Starfish (Acanthaster cf. solaris, COTS) significantly
threaten coral reef resilience in the Indo-Pacific, particularly on the GBR. Although COTS are a natural
component of reef ecosystems, COTS outbreaks, amplified by their high fecundity (Pratchett et al.,

2021b), nutrient enrichment of coastal waters (Fabricius et al., 2010), and depletion of key predators
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(Kroon et al., 2021; Motti et al., 2022), can drive severe coral loss (De’ath et al., 2012; Kayal et al.,
2012; Pratchett, 2010). Concern about the impact of these outbreaks motivated the establishment of the
GBR’s first systematic Long-term Monitoring Program (Emslie et al., 2020) in 1985, delivered by the
Australian Institute of Marine Science. Analysis of that monitoring data has revealed that COTS
outbreaks are estimated to account for up to 40% of historical coral decline on the GBR (De’ath et al.,
2012; Emslie et al., 2024; Osborne et al., 2011) and remain one of the few major reef threats amenable
to direct intervention at ecologically meaningful scales (Matthews et al., 2024; Pratchett et al., 2017,
Westcott et al., 2020). The GBR COTS Control Program is one of the world’s largest active coral reef
interventions. Supported by federal policy and investment (GBRMPA 2017, 2024a; Commonwealth of
Australia 2021, DCCEEW 2022), implementation of the program is guided by adaptive operational
frameworks (Fletcher et al., 2020), integrated decision support systems (Matthews et al., 2025), and
applied research programs (e,g., Fletcher et al. 2021, Bonin et al. 2022). This has enabled delivery of
broadscale coral protection and ecosystem resilience benefits across the GBR with up to 6-fold
reductions in COTS densities and 44% increases in live coral cover (compared 37% loss in previous
outbreaks) across entire regions where timely and sufficient culling effort was applied (Matthews et al.
2024).
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Figure 1 Evolution of the GBR COTS Control Program across three phases of maturity (2002-2025).
Geographic expansion of control and surveillance effort (measured as CPUE: catch-per-unit-effort) across three
operational phases: Initial (2002-2007), Expansion (2012-2018), and Maturation (2019-2025). Points represent
reefs surveyed and culled, with symbol size and colour indicating culling effort starfish density (CPUE)
respectively. Grey circles indicate reefs surveyed by both the COTS Control Program and the COTS Response

Program operated by Queensland Parks and Wildlife Service where no culling has taken place.

The COTS Control Program illustrates how adaptiveness can be cultivated over time. Rather than
attempting to implement a comprehensive framework from the outset, the Program evolved through
successive iterations: reactive beginnings focusing on high value tourism sites (Matthews et al., 2024),
early operational wins (Westcott et al., 2020), and gradual institutional embedding (GBRMPA, 2024,
2020, 2017). This enabled the incremental accumulation of the components that we contend are required
for successful and durable RBM at scale: foundational research; systematic monitoring; technical
efficacy; stakeholder support and political will; governance and strategy, secure funding, decision
support and robust prioritisation (i.e. rigorous, practical and resistant to uncertainty; Fletcher et al.,
2024; Hemming et al., 2022; Regan et al., 2005)).
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In this paper, we present the COTS Control Program as a mature example of meta-adaptive management
in action and offer a new paradigm for successful RBM via meta-adaptive principles. Specifically, we:

1. Trace the Program’s evolution from small-scale tourism site stewardship actions to ecosystem-
scale intervention, highlighting how incremental improvements laid the foundation for long-

term adaptiveness and success.

2. Describe this evolution in terms of the core components for successful RBM and mark the key

advancements

3. Detail the prioritisation framework that underpins where and when interventions occur,

highlighting how adaptive decisions are made in an operational program.

4. Extract general lessons and recommendations for conservation initiatives seeking to build

successful large scale adaptive programs under uncertainty.

By dissecting how the GBR COTS Control Program has become both adaptive and durable, we offer a
rare, pragmatic model for other large-scale conservation and RBM efforts facing intensifying pressures

and an uncertain future as climate change progresses.

COTS CONTROL PROGRAM: FROM HUMBLE BEGINNINGS TO LARGE
SCALE RESILENCE-BASED MANAGEMENT

Numerous small scale control efforts throughout the 1970s and foundational research into COTS
outbreaks through a Cooperative Research Centre (CRC) for the GBR paved the way for the
establishment of the first formal COTS Control Program in 2002 during the third recorded outbreak
wave (Figure 1) (Woodley et al., 2006). Delivered by industry through the Association of Marine Park
Tourism Operators (AMPTO), this initial control program focusing on manual culling via multi-shot
sodium bisulphate injections of starfish at key tourism sites across 77 reefs (Figure 1). While effective
in reducing starfish densities, these early interventions were not scalable due to program resource
limitations and the time-intensive nature of the multi-shot method (Pratchett et al. 2017; Westcott et al.
2020). Despite their limitations, these early iterations developed key relationships between the tourism
industry, government bodies and research groups, effectively setting the trajectory for increased
stakeholder buy-in and social license for COTS control on the GBR (Bartelet et al., 2025; Lockie et al.,
2024). In 2012, the Program was remobilised with increased resources in response to the emergence of
the fourth outbreak wave and the devastating impact of a series of severe tropical cyclones (De’ath et
al. 2012, GBRMPA, 2020). This marked the beginning of a more systematic and coordinated approach
geared towards protecting ecosystem resilience in the face of mounting cumulative pressures. Critically,
foundational research and iterative testing led to the development of ‘single-shot’ injection techniques

using ox bile salts and later household vinegar, dramatically increasing diver efficiency and making
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large-scale control operations feasible (Rivera-Posada et al. 2014; Bostrom-Einarsson & Rivera-Posada
2016) (Figure 2, Table 2).

Initial responses to COTS outbreaks, while effective at smaller scales (e.g. individual sites on reefs),
still followed a reactive cycle of crisis-driven attention and reactive intervention funding, a pattern
consistent with the “issue-attention” cycle commonly observed in pest management with operational
surges occurring only during acute outbreaks (Babcock et al., 2020; Downs, 1972; Hoey et al., 2016).
However, these modest early successes were strategically designed to demonstrate effectiveness at
smaller scales and were pivotal in garnering institutional support and providing the evidence base to
attract sustained increases in operational capacity and targeted research investment. This included
funding for the first dedicated COTS research program through Australia’s National Environmental
Science Program (NESP) that developed a new Integrated Pest Management (IPM) strategy to inform
the effective scale-up of control efforts (Westcott et al., 2016). At the same time increasing management
and political concerns around mounting climate change impacts and the urgent need for direct protective
actions that could buy time for climate adaptation at seascape scales had been building in the lead up to
the back-to-back coral bleaching events in 2016 and 2017 (GBRMPA, 2017).

Together, these developments underpinned substantially increased investment in COTS control in 2018
and marked the formal adoption of the IPM framework (Fletcher et al., 2020; Westcott et al., 2016) that
was deployed to guide the program’s research integration and operational processed. This
transformative shift toward strategically targeted systematic COTS control on the GBR resulting in
substantial funding uplift, a tripling of culling effort, a 60% increase in culling efficiency (Westcott et
al., 2020) and consolidated shift from protecting small scale tourism sites, to protecting ecosystem
resilience at broad spatial scales (GBRMPA, 2020; Matthews et al., 2024). Growing confidence in the
Control Program’s potential for scalable impact paved the way for ongoing sustainable funding through
the Reef Trust Partnership (RTP), and the establishment of the COTS Control Innovation Program
(CCIP) to sustain the research-management feedback loop (Bonin et al., 2022; DCCEEW, 2022;
Fletcher et al., 2021; Great Barrier Reef Foundation, 2019; Pratchett et al., 2021a). Together, these
investments enabled the expansion of a systematic monitoring toolbox (Chandler et al., 2023; Uthicke
et al., 2024), further development and integration of ecological modelling, including larval dispersal
and connectivity estimates (Choukroun et al., 2024; Rogers et al., 2024; Skinner et al., 2025) and
ongoing improvements to decision support systems to enable RBM (Matthews 2019, Matthews et al
2025).

Today, the COTS Control Program operates across the 2,300 km length of the Great Barrier Reef,
making it one of the largest-scale coral reef interventions in the world (Figures 1,2). It operates with
longer term dedicated funding out to 2030 and is recognised as a foundational component of GBR
management with the express purpose of protecting coral from COTS predation to support the Reef’s



201  resilience and adaptive capacity (GBRMPA, 2024, 2020, 2017). While significant resilience and coral
202  protection benefits have been realised (Matthews et al., 2024), several studies have highlighted that
203  much more benefit could be derived by increasing the scale, strategic targeting and complementarity of
204  the Program with other emerging reef interventions (Babcock et al., 2020; Castro-Sanguino et al., 2023;
205  Condieetal., 2021; Skinner et al., 2025). Furthermore, the current development of a bespoke monitoring
206  program for COTS (Lawrence et al., 2025) alongside advancement of early warning systems within the
207  Decision Support System (Matthews et al., 2025), will increase the ability of the Program to be
208  responsive to changes in the system. These continual and incremental improvements underscore the
209  benefits of the meta-adaptive approach embedded within the Program and among research and industry

210  partners.
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212

213 Figure 2 Panel A shows the cumulative development of eight core components underpinning successful meta-
214  adaptive management of the GBR COTS Control Program, highlighting how capacity and complexity were built

215 incrementally over time. Panel B illustrates how adaptive planning cycles (Assess — Design — Implement —
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Monitor — Evaluate — Adjust) were repeated and expanded through time (Adapted from Matthews et al, 2025).
Each cycle increases in size to reflect greater institutional capacity, integration of research, and decision
complexity, and greyed segments indicates how different phases of the AM cycle were incrementally improved /
included. This conceptual framework contrasts with traditional adaptive management models by emphasizing

iterative scaling and emergent adaptiveness.

The evolution of the GBR COTS Control Program reflects a structured sequence through which the
size, complexity, effectiveness and adaptiveness of the Program is being progressively enhanced via
cumulative, reinforcing components (Figure 2). The cumulative layering of enabling conditions
(Foundational Research through to Stakeholder and Political Support; Figure 2) has been catalysed into
an operational program via strategic planning and effective governance. Rather than a static framework
implemented wholesale, adaptiveness emerged through repeated decision cycles in which operational,
institutional, and technical capacity were incrementally layered. These components, each contributed
to building the conditions under which program adaptation could be sustained at scale (Figure 2). Each
of these components were built up over the course of decades and sustained through tight integration
between management and research, undergoing their own iterative cycle of inner loop learning and
development. Some of the notable breakthroughs and promising new developments are depicted in
Figure 2 and detailed in Table 2. Importantly, the meta-adaptive evolution and of the COTS Control
Program and its sub-components, is consistent with broader climate adaptation planning where risks
are identified based on future projections then iteratively improved based on empirical observations and

continual model enhancements.

Table 1 Key examples of inner loop learning within each component of meta-adaptive management from the
GBR Crown-of-Thorns Starfish Control Program. Each core component of the program’s meta-adaptive

trajectory (as shown in Figure 3) is supported by specific examples from the COTS Control Program.

Type | Meta-adaptive | COTS Control Program example

component
Foundational Decades of foundational COTS research (see Pratchett et al. 2014, 2017, 2021a)
research was continuously leveraged and refined over time in successive structured

research programs (i.e. CRC, NESP, CCIP). Reef-scale connectivity and

Enabling Condition

2024).

ecosystem models now guide where and when to intervene; network analyses
identify source reefs and outbreak-risk pathways, while system modelling and
monitoring show that sustained, large-scale COTS control can delay regional
coral decline (Castro-Sanguino et al., 2023; De’ath et al., 2012; Matthews et al.,




Systematic

monitoring

The AIMS LTMP time series revealed the magnitude and causes of coral loss on
the GBR and quantified COTS’ contribution, establishing thresholds and
priorities used by the Control Program (De’ath 2003, De’ath et al. 2012, Emslie
et al. 2020). Current development in robotics and Al platforms for automated
detection and monitoring (Bainbridge et al., 2025) alongside newer fine scale
(Chandler et al., 2023) and eDNA (Uthicke et al., 2024) techniques are rapidly
evolving the ability to detect emerging outbreaks and are part of an emerging

bespoke COTS monitoring program (Lawrence et al., 2025).

Technical
Efficacy

Single-shot injections achieved high, rapid COTS mortality (first with ox-
bile/bile salts; then widely available vinegar), providing a scalable, diver-
deployable technique that underpins the modern program (Bostrom-Einarsson
and Rivera-Posada, 2015; Rivera-Posada et al., 2014). New techniques of
semiochemical attractants / dispersants are also being developed further increase
the efficacy and efficiency of control methods (Harris et al., 2025).

Stakeholder and
Political Support

Early intervention was inspired by community awareness and demand for
action, with initial Control Program efforts led by the GBR tourism industry.
Today, national surveys demonstrate strong public support for large-scale COTS
control on the GBR, reinforcing the Program’s social legitimacy and political
mandate (Bartelet et al., 2025; Lockie et al., 2024). This strong tourism and
stakeholder support has underpinned the willingness of governments to invest
significant public funds in ecosystem-scale culling efforts. Political will has
been further reinforced by growing participation from Traditional Owner groups
in both operational control and strategic governance, including through the
expansion of Traditional Use of Marine Resource Agreements (TUMRAS) and

increased participation in program decision-making.

Operationalisation

Strategy and

Governance

The Program’s strategic foundations matured through time with publication of
the COTS Strategic Management Framework (GBRMPA, 2020) being a key
milestone aligning COTS management within the overarching RBM policy set
by the Reef 2050 Plan and Blueprint for Resilience (Commonwealth of
Australia, 2021; GBRMPA, 2024, 2017). At the same time, 2020 saw the
establishment of a two-tiered governance model to provide robust oversight and
coordination across strategic and operational levels. The COTS Partnership
Group (CPG) provides strategic direction, setting Key Performance Indicators,
approving Annual Work Plans, and managing partnerships. The COTS

Operations Group coordinates safe and effective on-water activities during
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implementation of Annual Work Plans and facilitates rapid knowledge sharing
across delivery providers and stakeholders.

Sustained

funding

COTS control is now recognised as a core priority of both the Reef 2050 Plan
and the Blueprint for Resilience (Commonwealth of Australia, 2021; GBRMPA,
2024, 2017) and has secured $161.4m Australian government investment in the
Program from 2022 to 2030 (DCCEEW, 2022) as a direct reflection of the
Australian Government’s commitment to fund actions that support Reef
resilience and climate adaptation. Ecosystem modelling indicates that only
sustained, large-scale COTS control maintained over years meaningfully delays
reef-wide coral decline, supporting further investment in the Program with

potential expansion of fleet capacity (Castro-Sanguino et al., 2023).

Decision support

systems

An underpinning integrated pest management framework leverages surveillance
to guide the effective allocation of culling effort during day-to-day operations so
that efforts over months and years can achieve Program ecological outcomes,
while collecting and interpreting program data to adaptively refine the efficiency
of operations (Fletcher et al., 2020). Recent work validated operational density
thresholds that underpin when to intervene (Rogers et al., 2024). These
framework and rulesets are automated within the COTS Dashboard decision

support system to support RBM decision making (Matthews et al., 2025).

Robust

prioritisation

Longer-term regional decision-making relies on long term projections assessing
the relative efficacy of various control strategies under uncertainty (Castro-
Sanguino et al., 2023; Skinner et al., 2025, 2024). Connectivity and
spatiotemporal models identify source reefs and outbreak corridors and map
dynamic risk, directly informing the Program’s reef-level targeting and seasonal
scheduling (Choukroun et al., 2024; Matthews et al., 2020). The annual selection
of reefs is the key decision point for ensuring regional scale coral benefits are
derived from the Program under uncertain futures. This prioritisation process is
described in detail in the following section and supplementary information (S1.

Annual Reef Prioritisation Procedure, Figure S1, Table S1)
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COTS CONTROL PRIORITISATION PROCESS: AN EXEMPLAR OF
META-ADAPTIVE MANAGEMENT PRINCIPLES

The GBR is vast (> 3,000 reefs, ~344,400 km?2) and complex (GBRMPA, 2025). In any given year, only
some reefs on the GBR are at risk from COTS outbreaks, and the resources available for COTS control
mean that only a proportion of these can be actioned for surveillance and culling operations. The
prioritisation of reefs for control carries profound ecological, operational, and reputational implications.
Poor prioritisation could result in severe coral loss, heightened operational risk, or eroded political
support, stakeholder trust and social license (Lockie et al. 2024). Consequently, the process to select
target reefs for COTS control has evolved progressively from informal expert-driven decisions toward
a structured, transparent, and repeatable approach. Here we detail the evolution of the process as an
example of the meta-adaptive approach and highlight its importance as the COTS Control Program’s

central decision process.

Current prioritisation process

Each year, the COTS Control Program applies a structured, transparent process to identify and rank
target reefs for intervention. The prioritisation framework integrates ecological, economic, logistical,
and stakeholder considerations through a two-stage multi-criteria decision analysis (MCDA, swing-
weighting and linear additive models; Fletcher et al., 2024), underpinned by a decision-support

dashboard and annual consultation cycle (Figure S1; see Supplementary Information S1 for full details).

Ecological value for each reef is derived from five normalised layers, COTS outbreak risk, coral source
strength, marine park zoning, resilience, and outbreak history, while economic value is based on tourism
visitation data. These scores are combined via additive utility, using stakeholder-informed swing-
weighting (Fletcher et al., 2024). Median weights typically assign twice the influence on ecological
over economic value. Resulting reef rankings are then reviewed and filtered through an operational
feasibility lens (e.g. safe anchorage, crocodile risk). Traditional Owners are consulted on the target reef
list to understand their views and identify any areas of cultural significance where activity should be
prioritised or avoided. Finally, manual amendments to the reef list are permitted in response to emerging
threats not accounted for by current data (e.g. primary outbreak risk; Chandler et al., 2023; Uthicke et
al., 2024). Additional decision layers, such as reef workability and additional estimates of tourism value
(Spalding et al., 2017), are in development for future planning cycles. The full process and criteria

definitions are summarised in Figure S1 and Table S1.

While the Program has a rigorous prioritisation and annual planning process, it also has embedded
flexibility evidenced by its responsiveness to emergent threats. For example, in 2021 early signals of a

fifth outbreak wave detected using advanced fine-scale monitoring methods (Chandler et al., 2023;
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Pratchett et al., 2022; Uthicke et al., 2024) triggered resource reallocation of COTS Control Program
vessels to affected regions. Similar rapid adaptations occurred in response to outbreaks being detected
in the remote Far Northern Management Area, where Traditional Owner-led teams were mobilised and
repositioned, demonstrating operational adaptability informed by updated intelligence. Increasingly the
Control Program has had to adapt its strategic and tactical targeting of reefs and regions of the GBR in

response to wide scale disturbance events such as coral bleaching and cyclones.

Figure 1 GBRMPA annual prioritisation process—cycle and decision logic. (A) Annual adaptive cycle linking
operations, objective review, data updates, two consultation rounds, and short-listing of candidate reefs. This
process involved a mid-cycle workshop to assess how the implementation is progressing and making tactical
refinements. A more detailed description of this process is given in Figure S1 (B) Multi-criteria decision analysis
(MCDA) used to rank reefs: Ecological and Economic values are first scored and ranked separately from their
component indicators (Stage 1), then combined using swing-weighted preferences elicited during stakeholder
workshops (Stage 2; current weights shown as 70/30). Post-scoring constraints implement operational and
Traditional Owner considerations via lock-in (e.g. cultural significance) and lock-out (infeasible or unsuitable)
gates. (C) Stakeholder engagement during annual workshops and bi-monthly operations meetings. (D) Decision-

support dashboard that visualises candidate targets and current work locations, enabling stakeholder engagement
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a workshop and intra annual updates. Images reproduced with permission of GBRMPA; example weights are

illustrative and may vary by year.

Evolution and meta-adaptations of the prioritisation process

Early prioritisation (2012-2018) relied predominantly on expert opinion, targeting high-value tourism
reefs. Between 2014-2018, the Program expanded target zones beyond tourism reefs, incorporating
initial larval connectivity estimates (Hock et al., 2014). From 2018 onward, the Program pivoted to a
formal, transparent process aligned to its annual planning cycle. Between 2018-2020 threshold rules
and initial weighting schemes were introduced; by 2021-2023 this matured into a multi-stage MCDA
approach that (i) ranks reefs on ecological value (outbreak risk, coral source strength, resilience,
zoning), and economic value (tourism visitation/value), then (ii) combines them via stakeholder-
informed swing-weighting and (iii) applies a logistical feasibility filter (Fletcher et al. 2024).
Importantly this process is conducted to identify both strategic Priority Reefs (long-term: ~500 reefs)
and tactical Target Reefs (short-term: ~200 reefs). During this period prioritisation workshops were
formalised and operationalised, providing a clear pathway for input from stakeholders, including
Traditional Owners, tourism operators, and field teams to influence reef selection. Alongside these
process-based improvements, advancements to decision-support tools were ongoing, enabling more
complex approaches to be implemented in subsequent years and ensuring that results could be clearly
shared among stakeholder groups to gain support for the process and its decision outcomes (Matthews
et al. 2025). These improvements and evolutions of the prioritisation process are summarised in Table

3 to highlight their linkages with the eight core components of meta-adaptive management.

Table 2 Evolution and meta-adaptations of the Great Barrier Reef COTS Control Program reef prioritisation
process, showing how eight core components of meta-adaptive management have been progressively embedded

into the annual reef selection framework (see also Fletcher et al. 2024).

Meta-Adaptive Integration within the Prioritisation Process

Component

1. Foundational Decades of foundational research underpins models of COTS risk and
Research connectivity which enabled a shift from expert opinion to structured, data-

driven prioritisation.

2. Systematic Long-term monitoring datasets are integrated to identify both regional
Monitoring strategies and specific reefs / sites for control. Emerging tools like eDNA and
fine-scale surveys were rapidly adopted to enhance detection and

responsiveness.
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3. Technical
Efficacy

Operational constraints (e.g. anchorage, crocodile risk, workability) have been
increasingly integrated from 2020 onward to ensure field efficacy and safety.

4. Stakeholder &
Political Support

Prioritisation workshops grew from ~6 experts to >30 participants (2012-
2023), incorporating Traditional Owners, tourism operators, and delivery
partners to build legitimacy and trust. This increased participations and robust
governance (below) has grown in recent years and has helped build cross-

institutional and political support.

5. Governance &

Prioritisation has become the core component of the COTS Control Program’s

Prioritisation

Strategy formal Annual Work Plan, which is guided by the COTS Strategic
Management Framework, endorsed by the COTS Partnership Group and
enacted by control vessels and the COTS Operations Group.

6. Sustained Transparent prioritisation logic supported successful cases for funding to 2030

Funding by demonstrating measurable outcomes, inclusivity and cost-effectiveness. In
turn the sustained funding allows the Program to tackle COTS populations
with longer term strategic objectives.

7. Decision A dynamic MCDA dashboard integrates datasets, applies weights and

Support Systems | constraints, and enables near real-time updates and stakeholder consultation.

8. Robust The current system balances long-term strategic and short-term tactical

targets, serving as a central mechanism for research integration and adaptive

learning.

Of particular importance is how the prioritisation process has become the primary entry point for

scientific information into strategic and tactical decision-making, creating a positive feedback loop

between research and management. As the process matured, explicit decision points were established

where new data could be trialled and incorporated. This has incentivised researchers to align their work

with management needs and enabled managers to rapidly adopt advances such as improved connectivity

models (Choukroun et al., 2024; Skinner et al., 2025, 2024), regional-scale outbreak simulations
(Skinner et al., 2025, 2024), and novel monitoring methods (Chandler et al., 2023; Uthicke et al., 2022).

This deliberate integration and alignment of research into decision-making processes reduces the

research—implementation gap (Knight et al., 2008), and is a pragmatic and replicable template for large

scale conservation programs with concurrent research initiatives.
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TRANSFERABLE LESSONS FOR ADAPTIVE MANAGEMENT AT SCALE

To support transferability, we distil these components into a set of eight generalisable lessons, each
grounded in an operational principle derived from peer-reviewed evidence from the COTS Control
Program (Table 2). Foundational research and long-term monitoring established the empirical base for
action; early technical breakthroughs demonstrated efficacy and enabled scaling; strong stakeholder
and public support enhanced political appetite and sustainable funding ensured continuity; and
structured decision-support systems and prioritisation frameworks formalised learning and directed
effort toward system-level gains. Together, these lessons highlight how adaptiveness can be cultivated

deliberately through sequencing, institutional alignment, and iterative refinement.

The success of the GBR COTS Control Program highlights key principles for how adaptive capacity
can be systematically built through the accumulation of core meta-adaptive components for large
scale conservation programs. These components are split into categories of enabling conditions and

operationalisation.

Enabling Conditions:

Foundational research - Invest early in research that reduces key uncertainties and yields

tools directly usable by managers.

e Systematic monitoring - Long-term, standardised monitoring provides baselines, detects
change, and attributes causes—ensuring adaptive decisions are grounded in evidence, not

anecdotes.

e Technical efficacy - Start with simple, robust, field-proven methods to build capacity and

trust; scale up in size and complexity only as readiness increases.

o Stakeholder and political support — Build legitimacy and durable mandate through
alignment with public values, industry needs, and Traditional Owner engagement. Broad

societal support underpins sustained political commitment and large-scale public investment.
Operationalisation:

e Governance and strategy - Establish enduring, cross-institutional governance arrangements

to coordinate delivery, ensure accountability, and embed adaptation into broader policy
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frameworks. Define clear objectives and establish durable coordination to connect daily
operations to long-term goals. Without this, even well-resourced programs risk failure.

o Sustained funding - Multi-year, predictable investment is essential delivering measurable
benefits at scale and for compounding gains across disturbance cycles and breaking the

“issue-attention cycle”.

o Decision support systems - Formalise choices using transparent, data-driven rules
(thresholds, trade-offs, conservation logic), enabling field teams to act decisively. Concurrent
development of decision support systems can act as research catalysing endpoints to both

utilise and incentivise emerging research.

e Robust prioritisation - Target locations that maximally reduce system-level risk (e.g. highly
connected reefs) and timepoints that maximise return on investment (e.g. neither too early or
too late). Update priorities as new data become available and align research to reduce the

research-implementation gap.

This synthesis complements and extends existing resilience-based management and adaptive
management theory, offering a pragmatic, operational pathway for its realisation under conditions of
uncertainty, complexity, scale, and contested values. Rather than treating adaptation as a prerequisite,
it is shown here to be an emergent outcome, one that can be built, tested, and expanded through

structured, evidence-informed practice (Figure 2; Table 2).

As climate change accelerates and ecosystems confront increasing variability, compounding
disturbances, and uncertain tipping points, adaptive, resilience-based approaches are essential
(Anthony et al., 2015; Mcleod et al., 2019; Shaver et al., 2022). Yet in practice, even robust RBM
frameworks can falter if the enabling conditions for adaptiveness are absent. Meta-adaptive
approaches to these problems are critical: they recognise that adaptiveness is not static or assumed but
must be intentionally built, nurtured and iteratively expanded over time. Meta-adaptive systems
cultivate the institutional, technical, and social architecture required for RBM to function embedding
flexibility, formalising learning cycles, and aligning incentives between science and management.
While such approaches cannot alone reverse the effects of climate change, they provide a useful and
practical approach for climate adaptation planning. By fostering a culture of learning-by-doing,
revisiting assumptions, and continually refining decision processes, meta-adaptive conservation

programs can remain responsive, evidence-based, and durable in the face of accelerating change.

CONCLUSION

The Great Barrier Reef COTS Control Program illustrates not only effective resilience-based

management, but also exemplifies the concept of meta-adaptive management where the Program has
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incrementally learned how to become adaptive over time. Unlike many conservation programs that
attempt to launch fully formed frameworks and stall due to complexity, resistance or an inability to
demonstrate specific real-world impacts in the short term, the COTS Control Program began with
simple, reactive processes implemented at appropriate spatial and temporal scales, and evolved
iteratively through stakeholder input, empirical research feedback, and co-designed decision tools. This
approach has gradually built institutional capacity, stakeholder and political buy-in, and technical
sophistication, proving that large-scale adaptive management is often best achieved through sustained,
practical improvements rather than grand initial designs. Critically, this model also helps close the
persistent research—implementation gap. The initial design of the Program identified clear ecological
objectives and leveraged the ecological insights available at the time to adapt into a program that has
generated significant real-world outcomes. In turn, by providing researchers with clear, operationally
influential decision points such as how to prioritise reefs or evaluate control thresholds, the Program
creates tangible opportunities for further scientific input. This clarity incentivises researchers to align
their work with practical needs, ensuring investment delivers usable knowledge, tools and outputs. In
turn, management becomes more evidence-based, enhancing credibility and unlocking sustained
support. The resulting co-evolution of science, operations, and governance exemplifies a meta-adaptive

pathway for managing complex conservation challenges under uncertainty.

As coral reefs and other ecosystems face accelerating pressures, conservation programs must
increasingly adopt frameworks that allow management practice to emerge, adapt and strengthen over
time. The COTS Control Program demonstrates that iterative refinement through well-defined decision
points and the gradual inclusion of more sophisticated research that aligns with operational and social
capacity is key to conservation efforts remaining durable and effective. The success of the Program
however has been hard won and will be easily lost and thus there needs to be continued demonstration
of progress and coral protection to ensure the Program’s future. This model offers a pragmatic approach:
start simple, stay flexible, and build adaptiveness over time through collaborative decision-making,
trusted partnerships, and iterative refinement. More importantly however, the COTS Control Program
provides an important global case study of the successful application of RBM and climate adaptation

planning in a complex conservation setting.
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SUPPLEMENTARY INFORMATION

S1. Annual Reef Prioritisation Procedure

The Reef Authority (i.e. GBRMPA) annual reef prioritisation is an operational, multi-phase workflow
that integrates modelled and empirical datasets with partner consultation and feasibility checks to
produce a defensible list of target reefs for COTS control (Figures 2, S1). The process is run each
planning year (July-June) and includes two consultation rounds, a shortlist, a consensus building
“Prioritisation” workshop (April) and feedback loops to incorporate new field intelligence at a mid-year

“Pre-Summer” workshop (November).

The prioritisation framework integrates ecological, economic, logistical, and stakeholder considerations
through a two-stage multi-criteria decision analysis (MCDA), underpinned by a decision-support
dashboard and annual consultation cycle. The prioritisation considers two value types at present—
Ecological and Economic—with additional cultural value pathways under active development (Table
S1). Ecological value is represented by five normalised layers: predicted COTS outbreak risk, coral
source strength, zoning, resilience, and recent outbreak history. Economic value is currently represented

by tourism visitation data using GBRMPA Environmental Management Charge data.
Normalisation and aggregation

Each criterion is either normalised to [0,1] or in some cases, such as visitation data, expressed as ranks
to mitigate skew. Ecological scores are combined with equal weighting to create a single ecological
score to be combined with the economic score. Rank transformation was explicitly adopted to

standardise utilities and reduce outlier effects.
Ecological (E) and economic (B) scores are combined via an additive utility:
Ui = wEEi + wBBi
wE +wB =1
Weights were estimated in two complementary ways:

1. Swing-weighting survey (indirect elicitation). Stakeholders rank and score scenario “swings”
between worst/best cases for ecological vs economic benefits via an online instrument;

responses are converted to weight distributions.

2. Retrospective statistical inference (revealed preferences). An additive benefit function is
fitted to previous years’ prioritisation decisions using repeated multi-start optimisation over

ranked criteria. This yields weight distributions consistent with realised decisions.
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Across analyses, ecological and economic contributions are approximately 2:1: a back-cast yielded wy
~ 0.62 and wg = 0.38, while stakeholder medians typically fall near two-thirds ecological and one-
third economic (with 95% ranges: ecological 0.58-0.90; economic 0.10-0.42).

Guardrails, feasibility, and mid-year adjustments

Before finalising annual targets, post-scoring “guardrails” apply feasibility and rights-holder
considerations: (i) threshold filters (e.g., distance to port, crocodile risk, safe anchorage/staging), (ii)
lock-in/lock-out decisions made in workshops (e.qg., cultural significance; infeasible sites), and (iii) mid-
year reviews that allow manual amendments when new surveillance or operational information
indicates emerging priorities or logistical constraints. These manual steps are documented in workshops
and fed back to improve subsequent cycles and identify areas where new data layers may be able to

incorporate considerations into the formal MCDA part of the process.

The cycle institutionalises two consultation phases each year, anchored by March—April prioritisation
workshops (and a mid-year review). Engagement includes managers, on-water contractors, researchers,
and increasingly Traditional Owners; 2023—-2024 workshops also focused on formalising logistics data,

connectivity use, effort prediction, and manual steps.

Future improvements

Future refinements to the GBR COTS Control Program should be understood through the lens of meta-
adaptiveness, learning how to become adaptive through implementation itself. Improvements span
technical, ecological, social, and institutional domains, but not all changes are equally beneficial or
adoptable. Strategic focus is needed to prioritise improvements that offer high value while reinforcing
legitimacy, stakeholder buy-in and research integration and is guided by overarching governance
frameworks (Commonwealth of Australia, 2021; GBRMPA, 2024, 2020, 2017).

(1) Technically, the prioritisation framework could benefit from more advanced optimisation
methods, refined MCDA techniques, and integration of sensitivity analyses and formal
feasibility metrics (Bode et al., 2024; Esmail and Geneletti, 2018; Yazdani et al., 2019).
Emerging high-resolution monitoring tools and improved larval connectivity models
(Choukroun et al., 2024) also provide important opportunities to strengthen the technical
robustness of the process.

(2) Ecologically, incorporating projected bleaching risk and persistent thermal and cyclone refugia
(Bozec et al., 2025; Cheung et al., 2025; Mellin et al., 2025; Sun et al., 2024) is increasingly
critical to ensure gains of the control program can be preserved. Aligning COTS control with
broader resilience goals, including coordination with the Reef Restoration and Adaptation
Program (RRAP), will allow mutual reinforcement of protection and recovery efforts (Condie
et al., 2021) and likely increase broad stakeholder support.
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(3) Institutionally, priorities include a two-fold expansion of the operational program to reach
optimal benefits (Castro-Sanguino et al., 2023), expanding engagement with Traditional
Owners and local communities, more accessible decision-support (Artelle et al., 2018; Ban et
al., 2018) and considerations of data sovereignty (Cannon et al., 2024; Reyes-Garcia et al.,
2022) as well as increased documentation and publication of outcomes (Fletcher et al., 2024).
Governance structures should remain flexible enough to continue to accommodate iteration and
avoid ossification, while robust enough to maintain confidence across partner agencies and

funding bodies.

Ultimately, enhancements should be assessed for their ecological impact, adoptability, and ability to
reinforce institutional legitimacy. Uncoordinated or overly complex changes risk eroding stakeholder
buy-in and undermining operational delivery. Sustained success will depend on pacing innovation with

organisational capacity, a core tenet of meta-adaptiveness.
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494  Figure S1. GBRMPA Annual Reef Prioritisation Process (diagram). The figure shows (1) program objectives and capacity; (2) data inputs; (3) consultation

495  phase 1; (4) shortlisting by the reef interventions team; and (5) consultation phase 2 and assignment. (Image supplied with permission.)



496  Table S3 Criteria and descriptions currently included within the COTS prioritisation process. Rows marked with * are in active development and to be

497  included in 2026 decision processes

Category Criteria Description Weighted vs | Reference
Threshold
COTS Risk Composite metric of ensemble weighted out-degree (as a percentile per sector) Weighted (Choukroun et al., 2024;
multiplied by predicted COTS density (scaled 0-1). Represents how well Hock et al., 2014;
connected a reef is and how likely the reef is to have problematic COTS Matthews et al., 2020)
densities.
Coral Source Composite metric of coral weighted out-degree (as a percentile per sector) Weighted (Hock et al., 2017;
multiplied by predicted Coral Cover. Represents how well connected a reef is Mumby et al., 2021)
and how much coral is available to supply surrounding reefs.
_ Zoning Scored (0-1) for four categories of protection (Pink = 0; Blue = 0.5; Yellow = Weighted (GBRMPA, 2004; Kroon
% 0.75; Green = 1). Green zones are slightly upweighted to 1) uplift reefs that et al., 2021; Sweatman,
E should be easier to control due to enhanced fish predators amplifying zoning 2008)

protection; and 2) balance the implicit upweighting of blue zones through their

more prevalent COTS outbreaks.

Resilience Calculated as: Recovery Potential + (1-Disturbance Exposure). Included to give | Weighted (Liu et al., 2017;
weighting to reefs that have avoided recent disturbances and have a higher Matthews et al., 2019;
chance of recovery. Puotinen et al., 2016)

COTS Outbreak Scored 0-1 in five outbreak categories from previous 2 years of data (Severe = 1; | Weighted (AIMS, 2015; Emslie et

History Established = 0.75, Potential = 0.5; No Outbreak = 0.25; No COTS = 0). al., 2024; GBRMPA,

2025a)




Designed to upweight places where COTS outbreaks are known and thus give

slight preference to empirical observations over modelled estimates.

Tourism Visitation

Number of visits, scaled (0-1), from the GBRMPA Environmental Management
Charge (EMC) data 2019-2022. Best available proxy for tourism value.

Weighted

(GBRMPA, 2025b)

Tourism Value

Estimated value (on reef and reef-adjacent) of coral reefs to the tourism sector.

*In progress

(Spalding et al., 2017)

these reefs may be included via consensus at planning workshops.

o)
§ These values are taken from the combined value of on reef values and reef
u?j adjacent values, the former including recreational diving and snorkelling and the
latter including the provision of calm waters, coral sand beaches, views and
seafood.
Distance to major | Depending on the ports available to the current fleet, distance cut-offs are Threshold (GBRMPA, 2022)
Port applied to ensure operational efficiency
Crocodile Risk Area deemed “high risk” (by proximity to the coast and high crocodile density Threshold (Queensland
E‘ areas) are automatically excluded and “medium risk” are flagged for individual Government, 2019)
% risk assessments by operators
§ Anchorage, Safe Some reefs offer significant advantages in terms of safe anchorage, shelter and Lock in/out -
g harbour, Staging work opportunities during bad weather or as a staging post to reach remote areas | via workshop
E” Post of the GBR. Some of these factors are known only to on-water operators and consensus

Workability

Derived from monthly trends in wave exposure data and dive success /

cancellations to estimate workability at reef / site scales

*In progress

Bode et al (2025)




Cultural Some reefs may be locked in or out of the target list via consensus during Lock in/out
significance workshops due to the cultural significance of a reef. This may result in a reef via workshop

being prioritised to protect the cultural values or to be left un-managed to keep consensus

Traditional
Owner
Perspectives

the reef free from human intervention.

498
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