

1

Evolving on two fronts: 2 Oak species and syngameons

3

4 Andrew L. Hipp

5 Herbarium and Center for Tree Science, The Morton Arboretum, Lisle IL 60532, USA
6 ahipp@mortonarb.org

7

8

9 **Abstract**

10 William 'Bill' Burger wrote in 1975, "I believe that the classical species-concept in *Quercus* defines a very
11 real population system and that it evolves on two fronts. One is that of continuing to adapt to a niche
12 that differs slightly from its close relations. The second is in sharing the broader evolutionary advances
13 of these same close relations that together comprise the genetically isolated biological species."

14 Burger's view of oak species reflected morphological study going back at least to 1947, but since
15 Burger's time, ecological and genomic data have accrued to further support his hypothesis: oak species
16 are distinctive ecologically, morphologically, and genomically, but interspecific gene flow moves alleles
17 (gene copies) between species. This movement of alleles between species is called introgression.

18 Introgression increases genetic variation within species and shuffles alleles into new ecological contexts,
19 where they may shape the evolution of the species they enter. Thus natural selection working on a
20 single population does so by grabbing hold of innovations (alleles) that evolved in many species—the
21 suite of interbreeding species that constitute an oak syngameon. In this essay, I discuss Bill Burger's
22 species concept and ask how it aligns with what we know about oak species today.

23

24 **Keywords:** Adaptation, genomics, hybridization, introgression, species concepts, syngameon

25

26

27

28

29 Plant taxonomist William ‘Bill’ Burger started his graduate studies in Botany at Cornell University in
30 1956. As a student, he read Karl Wiegand’s (1935) “A taxonomist’s experience with hybrids in the wild.”
31 In this article, Wiegand, the former head of Cornell’s botany department and early director of their
32 herbarium, noted how botanists’ impressions of the prevalence of hybrids had changed over time, from
33 the first edition of Gray’s *Manual of the Botany of the Northern United States*, in which two hybrids were
34 listed in the genus *Quercus*, to the growing realization that spontaneous (natural) hybrids were common
35 in many genera, particularly oaks. But Wiegand viewed hybrids “like swarms of bees, buzzing around for
36 a time, only to disappear” (pp. 165–166), of little importance to the evolution of species. Wiegand’s
37 view would turn out to be a hybrid itself, between 19th-century and 21st-century understandings of
38 species.

39 Wiegand referred to two hybridizing oak species in his lecture: *Quercus macrocarpa* and *Q. bicolor*.
40 Just three years later, Edgar Anderson would introduce the term “introgression” to describe the
41 movement of genes between species (Anderson and Hubricht 1938), arguing that genetic variation due
42 to introgression is important fodder for evolution. Anderson spoke little if at all about oaks in his
43 published work, but he noted hybrids between *Q. macrocarpa* and *Q. bicolor* and mentioned them to
44 colleagues (pers. comm. in Stebbins 1950 p. 64). William Trelease discussed the possibility of
45 hybridization between *Quercus macrocarpa* and *Q. bicolor* in his foundational (1924) taxonomic
46 treatment of the American oaks, and hybrids between them were noted in Ernest Palmer’s (1948)
47 review of oak hybrids. Burger was thus in good company when he began his graduate studies of
48 hybridization in *Q. macrocarpa* and *Q. bicolor*.

49 Burger selected for his graduate work four natural areas near Ithaca where Wiegand and others had
50 collected *Q. bicolor*. Two sites were of particular interest: herbarium specimens suggested hybrids as
51 early as 1915 at South Hill Swamp and 1895 at Renwick Woods. At each site, Burger identified and
52 mapped all *Q. macrocarpa* and *Q. bicolor* taller than 1 m and sampled leaves from about 10% of them.
53 From each of 12 leaves per tree, he measured petiole length, leaf length and width, depth of the second
54 and third sinus, and the distance from the midvein to the base of the sinus. He plotted values of these
55 traits against each other to see how individuals clustered morphologically. He expected that individuals
56 of a single species would cluster together and that hybrid individuals would cluster at or beyond the
57 margin of a species cluster.

58 Burger found ecological and morphological distinctions between *Q. macrocarpa* and *Q. bicolor*, but
59 minimal reproductive barriers between them: morphological intermediates were present at both of the
60 sites where hybrids had previously been found. He inferred from this that the two species could
61 interbreed freely under natural conditions. The presumed hybrids seemed as healthy as the presumed
62 “pure” species, and acorns from hybrids germinated as readily as acorns from the pure species. Burger
63 suspected, in fact, that genes from local *Q. macrocarpa* were likelier to find their way into local *Q.*
64 *bicolor* than into *Q. macrocarpa* from more distant counties (Burger 1959 pp. 66–67).

65 Burger nonetheless maintained that the entities we call oak species were real. He felt, as Verne
66 Grant had written a few years earlier, that interbreeding oaks were “not good species in the usual sense,
67 because they interbreed freely with each other,” but that the morphology of relatively pure individuals
68 was “equivalent to that of good species” (Grant 1957, in Burger 1959 p. 64). Hybridization alone was not
69 enough to undermine centuries of taxonomic work. For Burger, classical oak species were real. He was
70 not yet able, however, to express why or even precisely how classical oak species were real, except that
71 they were recognizable.

72

*

73 Burger was working against the backdrop of the “Biological Species Concept,” a reproductive
74 definition of species that was introduced by Edward Poulton, an early apologist for Darwinian natural
75 selection, 120 years ago; updated in modern genetic and evolutionary terms by Theodosius Dobzhansky
76 30 years later; then placed into a more explicit geographic and taxonomic context and dubbed “The
77 Biological Species Concept” by Ernst Mayr in 1942. According to Mayr’s Biological Species Concept,
78 “species are groups of actually or potentially interbreeding natural populations, which are
79 reproductively isolated from other such groups.” Species are species according to the Biological Species
80 Concept because they don’t hybridize with one another readily in nature. For Burger, the Biological
81 Species Concept was difficult to reconcile with the frequent hybridization he observed between
82 traditional oak species.

83 In 1975, Burger revisited his thesis in a paper entitled “The species concept in *Quercus*” (Burger
84 1975). In this paper, he described “classical” oak species: “An example of a typical classical species-
85 concept is *Quercus macrocarpa* Michaux of eastern North America. This species is readily recognized by
86 its deeply lobed lyrate leaves, the acorn cup with fringed edge, and a host of more subtle characters
87 such as tree-form, bark of trunk, and bark of the smaller stems. In addition, *Q. macrocarpa* can often be
88 characterized by its habitat in a given region. The species is easily recognized throughout its large range
89 but it does contain considerable geographic variation. It is a species so well known that its most
90 common name, the bur oak, has been used as a name for counties and towns” (Burger 1975 p. 46).
91 Classical oak species were ecologically and morphologically recognizable entities, despite the fact that
92 they often covered wide geographic ranges.

93 But what appeared to Burger to be pretty free mating between *Q. macrocarpa* and *Q. bicolor* raised
94 the question of what kind of biological entity classical oak species were. Burger believed that if you are

95 serious about the Biological Species Concept, you'd have to consider all or nearly all of the white oaks
96 (*Quercus* sect. *Quercus*) as one “biological species,” because they appear to all be interfertile. In fact, if
97 we follow Burger’s reasoning, we’d have to toss in at least some of the live oaks and deer oaks, *Q.* sections
98 *Virentes* and *Ponticae*, as well, as they interbreed with members of sect. *Quercus*. Then we could keep
99 the intermediate oaks (sect. *Protobalanus*) and the red oaks (sect. *Lobatae*) as separate biological
100 species. That would consolidate the roughly 250–300 classical oak species of the Americas into perhaps
101 three biological species.

102 This would certainly make taxonomy easier, but at the cost of throwing away a lot of information.
103 “We continue to function taxonomically with our classical concepts and they continue to perform their
104 duties of identifying morphological and ecological correlations for the purposes of storing and retrieving
105 information” (Burger 1975 p. 46). Even if they aren’t good “Biological Species” in Mayr’s sense, we
106 recognize classical oak species on our walks and in our herbaria. What, then, are they?

107 Burger offered an answer: “I believe that the classical species-concept in *Quercus* defines a very real
108 population system and that it evolves on two fronts. One is that of continuing to adapt to a niche that
109 differs slightly from its close relations. The second is in sharing the broader evolutionary advances of
110 these same close relations that together comprise the genetically isolated biological species. Both the
111 classical and biological concepts represent real population systems in *Quercus*” (Burger 1975 p. 48). This
112 description of the “classical species concept” in oaks contains three elements that together comprise
113 what I take to be Burger’s view of oak species:

114 **1. Groups of interbreeding classical oak species form “genetically isolated biological species.” The**
115 **classical species we recognize are nested within these larger “biological species.”**

116 There are groups of species in oaks that constitute reproductively interconnected “population
117 systems” that are isolated from other such groups. Burger calls out *Quercus* sect. *Quercus*, which

118 contains *Q. macrocarpa* and *Q. bicolor* and is reproductively isolated from other such groups, such as the
119 red oaks (*Q. sect. Lobatae*). Nested within “biological species” such as *Q. sect. Quercus* are “classical”
120 oak species, the ones that we recognize and name: *Q. macrocarpa*, *Q. bicolor*, and all the others.

121 **2. The “classical species-concept in *Quercus* defines a very real population” that “continues to adapt**
122 **to a niche that differs slightly from its close relations.”**

123 Burger uses the term “population” variously to refer to three different kinds of entities: (a) local
124 groups of individual plants that all derive from a single classical species or represent a hybrid mix of
125 more than one, as in “occasional problematic populations of mixed origin” (p. 45); (b) “classical species,”
126 groups of populations that evolve collectively and are, in oaks at least, “generally easy of recognition
127 and not genetically isolated” (p. 49); and (c) “biological species,” groups of interbreeding populations
128 that may comprise two or more “classical species.”

129 In sense (a), individuals of a population share geography, habitat, and the landscape history of the
130 place where they currently grow. In sense (b), individuals of a population share an ecological and
131 morphological “recognizability” and evolutionary trajectory. In sense (c), individuals of a population can
132 cross-pollinate and fertilize each other’s ovules. For Burger, “biological species” (e.g., *Quercus* sect.
133 *Quercus*) are populations in sense (c). The “classical species” contained within them (e.g., *Q. macrocarpa*
134 and *Q. bicolor*) are populations in sense (b). These come together to form reproductively interconnected
135 groups of individuals in single forests, populations in sense (a).

136 Ecological niche is central to Burger’s view of classical oak species. Classical oak species in his view
137 have unique “morphological and ecological correlations” (p. 46). They are “defined by different
138 ecological parameters” (p. 47). They form “functioning ecological unit[s] in nature” (p. 48). Each classical
139 oak species is, for Burger, defined and maintained by its unique niche (cf. Van Valen 1976).

140 **3. Classical oak species “shar[e] the broader evolutionary advances of these same close relations that**
141 **together comprise the genetically isolated biological species.”**

142 For Burger, classical oak species “share... evolutionary advances” by passing them around within the
143 larger “biological species.” In other words, classical species share the adaptations they have evolved in
144 their separate niches through interspecific hybridization.

145 Put these three elements together, and you get Burger’s view of oak species. When we use the
146 names *Q. macrocarpa*, *Q. bicolor*, or any of the hundreds of other classical oak species names, we are
147 talking about ecologically and morphologically distinct populations that evolve collectively through
148 introgression. Oak species, Burger tells us, evolve on two fronts: each classical species evolves
149 adaptations to its own niche, and sets of classical species are embedded within “biological species,”
150 allowing classical species to share evolved adaptations by hybridization and introgression with others in
151 their “biological species.”

152 *

153 Was Burger right? Are the entities we call “species” in oaks reproductively intertwined with one
154 another, “classical species” nested within “biological species”? Are they uniquely adapted, each to its
155 own niche, differentiated from close relatives? Do they exchange adaptive alleles? At the time that
156 Burger was writing, there was some evidence for all of these claims, particularly the first two. But the
157 advent of genomic data has given us the ability to rigorously test claims one and three, and ecological
158 work over the past two decades demonstrates numerous tradeoffs that shape niche partitioning among
159 close oak relatives (claim 2). Burger’s views have been largely borne out.

160 **1. Oak species form syngameons.**

161 Oaks hybridize while also remaining distinct morphologically, ecologically, and genomically (Kremer
162 and Hipp 2020, Hipp 2024 chaps. 3, 6 and refs therein), even over the course of hundreds of generations
163 of interbreeding (Stebbins et al. 1947). Thus natural hybridization in oaks does not appear to undermine
164 species distinctions (Hipp 2015).

165 Oaks often grow in multispecies communities (Cavender-Bares et al. 2018) in which classical species
166 can hybridize and their hybrid offspring can backcross to one parent species or the other (e.g., Ribicoff
167 et al. 2025). This phenomenon has the effect of producing offspring that, after several generations of
168 backcrossing, look like one parental species but carry many alleles of the other due to the initial
169 hybridization. Hybridization and introgression of alleles among numerous co-occurring species produces
170 what we call a syngameon. The term syngameon refers to *a group of species that interbreed but*
171 *nonetheless remain distinct as species* (Grant 1971, Hardin 1975, Cannon and Petit 2020, Hipp 2024 pp.
172 224–5, Cavender-Bares 2025). Syngameons are well studied in several tree groups, including pines,
173 spruces, rhododendrons, willows, birches, and tropical trees (e.g., Cannon and Lerdau 2019, Whittemore
174 and Miller 2023, Guo et al. 2025). They are known across the tree of life, in clades that range from corals
175 to beetles and butterflies to humans (reviewed in Boecklen 2017, Buck and Flores-Rentería 2022).
176 Burger’s network of interbreeding “classical” oak species within a larger “biological species” is a
177 syngameon.

178 Oaks around the world have tended to evolve low to moderate barriers to interspecific reproduction
179 (Abadie et al. 2012, Lepais et al. 2013). As a consequence, many species can cross with distantly related
180 oak species, the most recent common ancestors between hybridizing species being 20 million years old
181 or older in some cases (Zhou et al. 2022). Introgression in multispecies oak communities is moderated
182 by pollen competition, which results in reduced hybridization as the number of individuals per species in
183 a forest stand becomes more balanced (Klein et al. 2017). Introgression is also counteracted in part by
184 ecological selection, which tends to maintain genetic distinctions between ecological distinct species

185 (Muller 1952, Swenson et al. 2008, Wu et al. 2024, Zimmermann et al. 2025). The result is that each oak
186 syngameon is patchy on the landscape, shaped by demography (Lepais et al. 2009), ecological conditions
187 (Reutimann et al. 2023), and attenuation of population sizes or shifting ecological conditions at range
188 margins (Nagamitsu et al. 2020, Ribicoff et al. 2025, Parker et al. n.d.).

189 We do not know the relative importance of physiological reproductive barriers (both prezygotic and
190 postzygotic) compared to ecological selection against F1s in maintaining oak syngameons. We also don't
191 know whether oak syngameons are an outcome of selection favoring porous species boundaries
192 (Barraclough 2024). Whatever we learn about these issues and others in the coming years, Burger's first
193 point holds: "classical oak species"—the ones we've been recognizing for centuries if not millennia—are
194 maintained within broader "biological species," syngameons.

195 **2. Oak species are adapted to ecological niches that are distinct from those of their close relatives.**

196 Closely related oaks tend to differ in habitat, at least slightly (Muller 1952, Bourdeau 1954). Thus
197 niche differentiation shapes the diversity and composition of oak-dominated communities along
198 gradients of soil type, moisture availability, vegetation, climate, and elevation (e.g., Whittaker 1969,
199 Spellenberg et al. 1998). Research by IOS member Jeannine Cavender-Bares beginning in the early 2000s
200 showed that niche differentiation in oaks is strongly shaped by evolutionary history, particularly in the
201 Americas: closely related white and red oak species have diverged to occupy different areas of niche
202 space, while distantly related species in the red and white oak sections have converged to live in similar
203 habitats (e.g., Cavender-Bares et al. 2004, 2018).

204 These niche differences are the adaptations that Burger wrote about. Oak species have evolved
205 trade-offs between fire-tolerance and growth rate that differentiate closely related species of Florida
206 (Cavender-Bares et al. 2004) and the Chihuahuan sky islands in Texas (Schwilke et al. 2013). Evolved
207 variation in drought and freezing tolerance separates closely related species along temperature and

208 water-availability gradients (Kaproth et al. 2023, Fontes et al. 2025). Evolved differences in fine root
209 architecture (McCormack et al. 2021), leaf morphology (Ramírez-Valiente et al. 2020), and the balance
210 between desiccation resistance and drought avoidance (Fallon and Cavender-Bares 2018) differentiate
211 oak species along drought gradients.

212 It remains to be seen how distantly related oak species co-occur without excluding each other
213 competitively (Cavender-Bares 2019), and we still do not know how important niche differentiation is to
214 the maintenance of species boundaries. But Burger's impression that oak species "adapt to a niche that
215 differs slightly from its close relations" is supported by contemporary research.

216 **3. Oak species share adaptive alleles with one another through introgression.**

217 Long before genome sequencing, Cornelius Muller hypothesized that interspecific gene flow could
218 drive oak speciation and species migration (Muller 1952 fig. 3). It turns out he was right for at least some
219 species: genomic evidence suggests that the *Quercus petraea* migrated northward as the glaciers
220 receded by means of pollen, introgressing into *Q. robur* populations that established first (Petit et al.
221 2003). Selective maintenance or introgression of *Q. robur* alleles into *Q. petraea* then allowed *Q.*
222 *petraea* to persist in cool climates (Leroy et al. 2020). Edgar Anderson argued that the slightest "trickle
223 of genes" between species might be of profound importance to the genetic diversity of species
224 (Anderson 1949 ch. 5 [esp. p. 62]). It turns out he was correct, as well: gene flow from *Q. berberidifolia*
225 into *Q. engelmannii* increased genetic diversity of the latter and may have allowed *Q. engelmannii* to
226 adapt to the Mediterranean climate of southern California (O'Donnell et al. 2021).

227 Adaptive introgression appears to be widespread in *Quercus*. Genomic data show signals of adaptive
228 introgression between lineages in Eurasia and the southeastern U.S. (Zhou et al. 2022). Across several
229 species, introgressed regions of the genome are associated with climate and local environments,
230 suggesting a role for introgression in local adaptation (Nagamitsu et al. 2020, Fu et al. 2022, Liang et al.

231 2025). It seems likely that wherever we find introgression (Burger's point 1) and ecological specialization
232 (Burger's point 2 in a context of high sympatric oak species diversity (Cavender-Bares et al. 2018), we
233 will find that Burger's final point was right: oak species share evolutionary innovations, the "broader
234 evolutionary advances" of their respective syngameons (Burger's point 3).

235 We have much to learn about the importance of oak introgression, as studies to date fall short of
236 experimentally connecting success (fitness) of oak populations to the presence of particular genes or
237 genomic regions they have gained from other species by introgression. It nonetheless seems safe to say
238 that Burger was right about the adaptive significance of oak introgression. Each oak syngameon is a
239 system of populations in which numerous species contribute to each other's evolution. The syngameon
240 is "more than the sum of the parts" in the words of Chuck Cannon and Rémy Petit (2020), and oak
241 species as a consequence evolve "on two fronts," both individually and as part of a syngameon.

242 *

243 For Burger, species are the populations of individuals we find on the landscape that are ecologically,
244 genomically, and (hopefully) morphologically similar to one another and more or less discontinuous with
245 others. They are the kinds of species referenced in the genomic cluster species concept (Mallet 1995)
246 and Rieseberg's (2006) classic investigation of the nature of plant species. They are the genotypic or
247 phenotypic clusters we mean when we talk about species and speciation. When we say *Quercus*
248 *macrocarpa*, most of us don't track pollen flow in our minds; instead, we imagine individual trees that
249 look like, grow in the same habitats as, and are genetically similar to the other individual trees we call
250 *Quercus macrocarpa*. Species are distinct from, or discontinuous with, other species (Whittemore 1993).
251 This discontinuity is what the researchers of the Modern Synthesis were trying to explain as they laid out
252 a response to the question, "what is a species?" (Stebbins 1950 and references therein). Without having

253 access to the genome, Burger was nonetheless clear that evolved ecological discontinuities build the
254 fences by which we recognize species.

255 Bill Burger sent me an email in April 2019, 60 years after depositing his Master's thesis, about some
256 of the things we were learning about the oak phylogeny at the time. He wrote, "ZOWEEE! Yes, the
257 'species' do remain 'coherent' despite their improper behavior!... Nature (every part of it) seems to be
258 much more complex than we had at first thought. Of course, all your efforts carry a 'carbon footprint'
259 that is contributing to the certain collapse of our completely unsustainable culture (I figure well before
260 the end of the century). Don't worry about our species; we will be there with the rats and roaches (only
261 not many of us). But getting on a Jet Aircraft to visit more distant OAK populations identifies YOU as a
262 significant contributor to Global Storming... But isn't it one helluva blast! What we are learning about
263 our planet and its biota is mind-boggling."

264 After a career researching tropical plant taxonomy and plant biodiversity, Bill Burger spent the last
265 decades of his life photographing the natural world and writing popular science books that exude his
266 passion for the natural world. He died the Sunday after Thanksgiving, 2022, leaving us a vivid example of
267 what it looks like to evolve on two fronts, both as a human and as a scientist.

268

269

270 **Acknowledgments**

271 This essay is based in part on the unpublished thesis work of William Burger, digitized by Rita
272 Hassert and staff and volunteers of the Morton Arboretum's Sterling Morton library. This essay is
273 informed by conversations with Kieran Althaus, Jeannine Cavender-Bares, M. Socorro González Elizondo,
274 Marlene Hahn, Antoine Kremer, Paul Manos, Rebekah Mohn, and Alan Whittemore. References are

275 heavily pruned in this essay for reasons of space; for a fuller reference list, see version 1 of this
276 manuscript on EcoEvoRxiv (<https://doi.org/10.32942/X2M64S>;
277 <https://ecoevorxiv.org/repository/object/11178/download/20330/>).

278

279 **References cited**

280 Abadie, P., G. Roussel, B. Dencausse, C. Bonnet, E. Bertocchi, J.-M. Louvet, A. Kremer, and P. Garnier-
281 Géré. 2012. Strength, diversity and plasticity of postmating reproductive barriers between two
282 hybridizing oak species (*Quercus robur* L. and *Quercus petraea* (Matt) Liebl.). *Journal of*
283 *Evolutionary Biology* 25:157–173.

284 Anderson, E. 1949. Introgressive hybridization. John Wiley & Sons, Inc., New York.

285 Anderson, E., and L. Hubricht. 1938. Hybridization in *Tradescantia*. III. The Evidence for Introgressive
286 Hybridization. *American Journal of Botany* 25:396–402.

287 Barracough, T. G. 2024. Does selection favour the maintenance of porous species boundaries? *Journal*
288 *of Evolutionary Biology* 37:616–627.

289 Boecklen, W. J. 2017. Topology of syngameons. *Ecology and Evolution* 7:10486–10491.

290 Bourdeau, P. 1954. Oak Seedling Ecology Determining Segregation of Species in Piedmont Oak-Hickory
291 Forests. *Ecological Monographs* 24:297–320.

292 Buck, R., and L. Flores-Rentería. 2022. The Syngameon Enigma. *Plants* 11:895.

293 Burger, W. C. 1959. A study of *Quercus bicolor*, *Quercus macrocarpa*, and their presumed hybrids in the
294 Cayuga Lake basin, New York. M.S. thesis, Cornell University, [Ithaca, N. Y.].

295 Burger, W. C. 1975. The species concept in *Quercus*. *Taxon* 24:45–50.

296 Cannon, C. H., and M. T. Lerdau. 2019. Demography and destiny: The syngameon in hyperdiverse
297 systems. *Proceedings of the National Academy of Sciences* 116:8105–8105.

298 Cannon, C. H., and R. J. Petit. 2020. The oak syngameon: more than the sum of its parts. *New Phytologist*
299 226:978–983.

300 Cavender-Bares, J. 2019. Diversification, adaptation, and community assembly of the American oaks
301 (*Quercus*), a model clade for integrating ecology and evolution. *New Phytologist* 221:669–692.

302 Cavender-Bares, J. 2025. Oak Origins and the Pharaoh’s Dance: whither the syngameon concept?
303 *Evolution*:qpaf195.

304 Cavender-Bares, J., D. Ackerly, D. Baum, and F. Bazzaz. 2004. Phylogenetic overdispersion in Floridian
305 oak communities. *American Naturalist* 163:823–843.

306 Cavender-Bares, J., S. Kothari, J. E. Meireles, M. A. Kiproth, P. S. Manos, and A. L. Hipp. 2018. The role of
307 diversification in community assembly of the oaks (*Quercus* L.) across the continental U.S.
308 *American Journal of Botany* 105:565–586.

309 Fallon, B., and J. Cavender-Bares. 2018. Leaf-level trade-offs between drought avoidance and
310 desiccation recovery drive elevation stratification in arid oaks. *Ecosphere* 9:e02149.

311 Fontes, C. G., J. E. Meireles, A. L. Hipp, and J. Cavender-Bares. 2025. Adaptive Evolution of Freezing
312 Tolerance in Oaks Is Key to Their Dominance in North America. *Ecology Letters* 28:e70084.

313 Fu, R., Y. Zhu, Y. Liu, Y. Feng, R.-S. Lu, Y. Li, P. Li, A. Kremer, M. Lascoux, and J. Chen. 2022. Genome-wide
314 analyses of introgression between two sympatric Asian oak species. *Nature Ecology & Evolution*
315 6:924–935.

316 Grant, V. 1971. *Plant Speciation*. First. Columbia University Press, New York.

317 Guo, M., N. Hu, G. Feng, L. Wang, D. Gambhir, A. Khanal, B. Hyden, L. B. Smart, B. J. Sanderson, and M. S.
318 Olson. 2025. Divergence, hybridization, and diversification in an eastern North American willow
319 syngameon. *New Phytologist* 248:1044–1057.

320 Hardin, J. W. 1975. Hybridization and introgression in *Quercus alba*. *Journal of the Arnold Arboretum*
321 56:336–363.

322 Hipp, A. L. 2015. Should hybridization make us skeptical of the oak phylogeny? International Oaks: The
323 Journal of the International Oak Society 26:9–18.

324 Hipp, A. L. 2024. Oak Origins: From Acorns to Species and the Tree of Life. University of Chicago Press,
325 Chicago, IL.

326 Kaproth, M. A., B. W. Fredericksen, A. González-Rodríguez, A. L. Hipp, and J. Cavender-Bares. 2023.
327 Drought response strategies are coupled with leaf habit in 35 evergreen and deciduous oak
328 (*Quercus*) species across a climatic gradient in the Americas. *New Phytologist* 239:888–904.

329 Klein, E. K., L. Lagache-Navarro, and R. J. Petit. 2017. Demographic and spatial determinants of
330 hybridization rate. *Journal of Ecology* 105:29–38.

331 Kremer, A., and A. L. Hipp. 2020. Oaks: an evolutionary success story. *New Phytologist* 226:987–1011.

332 Lepais, O., R. Petit, E. Guichoux, J. Lavabre, F. Alberto, A. Kremer, and S. Gerber. 2009. Species relative
333 abundance and direction of introgression in oaks. *Molecular Ecology* 18:2228–2242.

334 Lepais, O., G. Roussel, F. Hubert, A. Kremer, and S. Gerber. 2013. Strength and variability of postmating
335 reproductive isolating barriers between four European white oak species. *Tree Genetics &*
336 *Genomes* 9:841–853.

337 Leroy, T., J.-M. Louvet, C. Lalanne, G. L. Provost, K. Labadie, J.-M. Aury, S. Delzon, C. Plomion, and A.
338 Kremer. 2020. Adaptive introgression as a driver of local adaptation to climate in European
339 white oaks. *New Phytologist* 226:1171–1182.

340 Liang, Y.-Y., H. Liu, Q.-Q. Lin, Y. Shi, B.-F. Zhou, J.-S. Wang, X.-Y. Chen, Z. Shen, L.-J. Qiao, J.-W. Niu, S.-J.
341 Ling, W.-J. Luo, W. Zhao, J.-F. Liu, Y.-W. Kuang, P. K. Ingvarsson, Y.-L. Guo, and B. Wang. 2025.
342 Pan-Genome Analysis Reveals Local Adaptation to Climate Driven by Introgression in Oak
343 Species. *Molecular Biology and Evolution* 42:msaf088.

344 Mallet, J. 1995. A species definition for the modern synthesis. *Trends in Ecology & Evolution* 10:294–
345 299.

346 McCormack, M. L., M. A. Kaproth, J. Cavender-Bares, E. Carlson, A. L. Hipp, Y. Han, and P. G. Kennedy.

347 2021. Climate and phylogenetic history structure morphological and architectural trait variation

348 among fine-root orders. *New Phytologist* 228:1824–1834.

349 Muller, C. H. 1952. Ecological control of hybridization in *Quercus*: a factor in the mechanism of

350 evolution. *Evolution* 6:147–161.

351 Nagamitsu, T., K. Uchiyama, A. Izuno, H. Shimizu, and A. Nakanishi. 2020. Environment-dependent

352 introgression from *Quercus dentata* to a coastal ecotype of *Q. mongolica* var. *crispula* in

353 northern Japan. *New Phytologist* 226:1018–1028.

354 O'Donnell, S. T., S. T. Fitz-Gibbon, and V. L. Sork. 2021. Ancient Introgression Between Distantly Related

355 White Oaks (*Quercus* sect. *Quercus*) Shows Evidence of Climate-Associated Asymmetric Gene

356 Exchange. *Journal of Heredity* 112:663–670.

357 Palmer, E. J. 1948. Hybrid oaks of North America. *Journal of the Arnold Arboretum* 29:1–48.

358 Parker, J. B., S. Hoban, L. M. Thompson, and S. E. Schlarbaum. (n.d.). Evaluating the Central–Marginal

359 Hypothesis: Introgression and Genetic Variation at the Trailing Edge of *Quercus bicolor*.

360 Molecular Ecology n/a:e70185.

361 Petit, R. J., C. Bodenes, A. Ducouso, G. Roussel, and A. Kremer. 2003. Hybridization as a mechanism of

362 invasion in oaks. *New Phytologist* 161:151–164.

363 Ramírez-Valiente, J. A., R. López, A. L. Hipp, and I. Aranda. 2020. Correlated evolution of morphology,

364 gas exchange, growth rates and hydraulics as a response to precipitation and temperature

365 regimes in oaks (*Quercus*). *New Phytologist* 227:794–809.

366 Reutimann, O., B. Dauphin, A. Baltensweiler, F. Gugerli, A. Kremer, and C. Rellstab. 2023. Abiotic factors

367 predict taxonomic composition and genetic admixture in populations of hybridizing white oak

368 species (*Quercus* sect. *Quercus*) on regional scale. *Tree Genetics & Genomes* 19:22.

369 Ribicoff, G., M. Garner, K. Pham, K. N. Althaus, J. Cavender-Bares, A. A. Crowl, S. Gray, P. Gugger, M.
370 Hahn, S. Liao, P. S. Manos, R. A. Mohn, I. S. Pearse, N. R. Steichmann, A. L. Tuffin, A. T.
371 Whittemore, and A. L. Hipp. 2025. Introgression, Phylogeography, and Genomic Species
372 Cohesion in the Eastern North American White Oak Syngameon. *Molecular Ecology* n/a:e17822.
373 Rieseberg, L. H., T. E. Wood, and E. J. Baack. 2006. The nature of plant species. *Nature (London)*
374 440:524–527.
375 Schwilk, D. W., M. S. Gaetani, and H. M. Poulos. 2013. Oak Bark Allometry and Fire Survival Strategies in
376 the Chihuahuan Desert Sky Islands, Texas, USA. *PLOS ONE* 8:e79285.
377 Spellenberg, R., J. R. Bacon, and M. S. González Elizondo. 1998. Los encinos (*Quercus*, Fagaceae) en un
378 transecto sobre la Sierra Madre Occidental. *Boletín del Instituto de Botánica de la Universidad
379 de Guadalajara* 5:357–387.
380 Stebbins, G. L. 1950. Variation and Evolution in Plants. Columbia University Press, New York.
381 Stebbins, G. L., E. G. Matzke, and C. Epling. 1947. Hybridization in a population of *Quercus marilandica*
382 and *Quercus ilicifolia*. *Evolution* 1:79–88.
383 Swenson, N. G., J. M. Fair, and J. Heikoop. 2008. Water Stress and Hybridization between *Quercus*
384 *gambelii* and *Quercus grisea*. *Western North American Naturalist* 68:498–507.
385 Trelease, W. 1924. The American oaks. *Memoirs of the National Academy of Sciences* 20:1–255.
386 Van Valen, L. 1976. Ecological species, multispecies, and oaks. *Taxon* 25:233–239.
387 Whittaker, R. H. 1969. Evolution of diversity in plant communities. In: *Diversity and stability in ecological
388 systems*. *Brookhaven Symposium in Biology* 22:178–195.
389 Whittemore, A. T. 1993. Species concepts: a reply to Ernst Mayr. *TAXON* 42:573–583.
390 Whittemore, A. T., and R. E. Miller. 2023. Dynamic properties of the pinyon pine syngameon. *New
391 Phytologist* 237:1943–1945.
392 Wiegand, K. M. 1935. A taxonomist's experience with hybrids in the wild. *Science* 81:161–166.

393 Wu, Y., A. G. Linan, S. Hoban, A. L. Hipp, and R. E. Ricklefs. 2024. Divergent ecological selection maintains
394 species boundaries despite gene flow in a rare endemic tree, *Quercus acerifolia* (maple-leaf
395 oak). *Journal of Heredity* 115:575–587.

396 Zhou, B.-F., S. Yuan, A. A. Crowl, Y.-Y. Liang, Y. Shi, X.-Y. Chen, Q.-Q. An, M. Kang, P. S. Manos, and B.
397 Wang. 2022. Phylogenomic analyses highlight innovation and introgression in the continental
398 radiations of Fagaceae across the Northern Hemisphere. *Nature Communications* 13:1320.

399 Zimmermann, F., O. Reutimann, A. Baltensweiler, L. Walthert, J. K. Olofsson, and C. Rellstab. 2025. Fine-
400 Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species
401 (*Quercus* spp.). *Evolutionary Applications* 18:e70076.

402