

1 **Deciphering the patterns and drivers of tardigrade diversity along altitudinal gradients**

2 Bartłomiej Surmacz¹, Diego Fontaneto^{2,3}, Grzegorz Vončina^{4,5}, Daniel Stec^{1*}

3 ¹*Institute of Systematics and Evolution of Animals of the Polish Academy of Sciences (ISEA-PAS), Kraków, Poland*

4 ²*Molecular Ecology Group (MEG), National Research Council of Italy, Water Research Institute (CNR-IRSA),
5 Verbania Pallanza, Italy*

6 ³*National Biodiversity Future Center (NBFC), Palermo, Italy*

7 ⁴*Pieniny National Park, Krościenko nad Dunajcem, Poland*

8 ⁵*Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture in Kraków, Kraków, Poland*

9 BS: bartek9865@gmail.com; <https://orcid.org/0000-0002-1593-6552>

10 DF: diego.fontaneto@cnr.it; <https://orcid.org/0000-0002-5770-0353>

11 GV: gvoncina@poczta.onet.pl; <https://orcid.org/0000-0002-7660-7365>

12 DS: daniel_stec@interia.eu; <https://orcid.org/0000-0001-6876-0717>

13 *Correspondence

15 **Abstract**

16 Altitudinal gradients offer a unique opportunity to understand the drivers of species richness, as
17 mountain regions cover vast areas and contribute disproportionately to global terrestrial biodiversity.
18 However, most studies have focused on larger organisms, often neglecting microscopic animals such as
19 meiofauna also in mountain biodiversity research. In this study, we investigated patterns of tardigrade
20 diversity and distribution in the Western Alps (Northern Italy) by compiling an extensive inventory of
21 taxa inhabiting bryophytes. We analyzed 546 bryophyte samples collected across a broad altitudinal
22 gradient and used DNA metabarcoding to characterize tardigrade communities. For each taxon, we
23 gathered functional trait data to assess how species characteristics influence distribution. We then
24 evaluated the effects of macroenvironmental variables (altitude, vegetation type, slope exposition) and
25 microhabitat-level traits (bryophyte biological and structural features) using spatially explicit statistical
26 modeling. We found that species richness decreased with altitude, whereas standardized phylogenetic
27 and functional diversity increased, indicating higher redundancy at lower elevations. Community
28 composition was not driven by specific bryophyte species but rather by general bryophyte functional
29 traits. Our results reveal that tardigrade communities in bryophyte microhabitats are highly
30 heterogeneous, with strong species turnover and prevalent phylogenetic and functional underdispersion.
31 Despite the influence of stochastic processes in shaping their distributions, we show that
32 macroenvironmental variables such as altitude and geographic location drive species turnover, while
33 microhabitat traits govern trait-based community structure. These findings suggest that
34 macroenvironmental gradients shape species distributions, whereas trait-based environmental filtering
35 operates primarily at the microhabitat scale.

36 **Running title:** Tardigrade diversity in mountain ecosystems

38 **Keywords:** Alps, altitudinal gradient, biodiversity, bryophytes, invertebrates, meiofauna,
39 metabarcoding, Tardigrada.

41 This is the pre-peer reviewed version of the following article: **Surmacz, B., D. Fontaneto, G. Vončina,
42 and D. Stec. 2025. “Deciphering the Patterns and Drivers of Tardigrade Diversity Along
43 Altitudinal Gradients.” *Molecular Ecology* e70196**, which has been published in final form at
44 <https://doi.org/10.1111/mec.70196>. This article may be used for non-commercial purposes in accordance
45 with Wiley Terms and Conditions for Use of Self-Archived Versions.

47 **Introduction**

48 Altitudinal gradients offer an opportunity to disentangle the causes of broad-scale biodiversity patterns,
49 thanks to their globally replicated nature, and to better understand the threats posed to biodiversity by
50 climate change. Importantly, identifying the main drivers of species richness is a critical task, especially
51 now, in the era of the sixth mass extinction and global environmental change. Biodiversity studies along
52 altitudinal gradients have a long history of research, from the pioneering explorations by renowned
53 scientists such as Alexander von Humboldt; yet, the environmental variables shaping biodiversity
54 remain far from fully understood. A clear interpretation of the biotic and abiotic variables influencing
55 how species richness varies with altitude continues to elude researchers, mostly due to idiosyncratic
56 taxon-specific unique responses (Antonelli *et al.*, 2018; Rahbek *et al.*, 2019a; Dolson & Kharouba,
57 2024); thus, exploring the drivers of diversity in previously unstudied groups of organisms may provide
58 unexpected and useful insights. Understanding these dynamics is particularly important because
59 mountains cover approximately 25% of the Earth's land area and contribute disproportionately to
60 terrestrial biodiversity. Mountain regions harbor more than three-quarters of the world's vertebrate taxa,
61 many of which are exclusive to these environments (Rahbek *et al.*, 2019b). Therefore, it is not surprising
62 that most studies on the role of altitudinal gradients in shaping biodiversity have focused on relatively
63 large organisms (Rahbek *et al.*, 2019b,a; Dolson & Kharouba, 2024). Comparable research on
64 microscopic animals, such as meiofauna (organisms with body sizes up to 1 mm), remains scarce
65 (Obertegger & Flaim, 2018; Fontaneto, 2019; Morek *et al.*, 2021).

66 Studies on microscopic animals have long been dominated by the ubiquity paradigm,
67 encapsulated in the 'everything is everywhere' hypothesis (Fenchel & Finlay, 2004; Foissner, 2006).
68 However, recent research has challenged this view, revealing that microscopic animals are not as
69 universally widespread as previously assumed (e.g., Fontaneto, 2019; Morek *et al.*, 2021). Moreover,
70 even if organisms are widely distributed geographically, the 'everything is everywhere' hypothesis
71 suggests that it is the environment that determines which species thrive - 'the environment selects'
72 (O'Malley, 2008). This opens the door for altitudinal gradients in diversity to emerge as a result of
73 environmental variation, also for microscopic animals. Yet, the mechanisms and extent to which
74 environmental predictors select for specific communities or traits in microscopic animals remain largely
75 overlooked (Fontaneto, 2019). While many general ecological patterns, such as species-area and
76 species-energy relationships, are well-established (Andrew *et al.*, 2003; Fontaneto, 2019), their
77 applicability to meiofauna remains unclear (Fontaneto *et al.*, 2006, 2008; Obertegger & Flaim, 2018).
78 Because the community composition of large organisms is easier to characterize than that of microscopic
79 animals, most studies have prioritized research on larger organisms (Green & Bohannan, 2006;
80 Nemergut *et al.*, 2011). Currently, the availability of comprehensive data on the functional traits of
81 microscopic animals, including meiofauna, is extremely limited (Obertegger & Flaim, 2018; Martínez
82 *et al.*, 2025). This issue is further exacerbated by the poorly resolved taxonomy of many microscopic
83 taxa, which are often highly cryptic (Fontaneto *et al.*, 2015; Schenk & Fontaneto, 2020).

84 Regarding altitudinal gradients, the largely linear relationship between altitude and temperature
85 has led to the consideration of altitudinal gradients as convenient approximations of global biodiversity
86 patterns across latitudes, particularly for understanding the effects of climate change on organisms
87 (Høye *et al.*, 2018). This subject can be approached from a relatively straightforward and widely used
88 perspective: species richness and species composition, defined as the count and identification of species
89 within a given area. However, these measures should be complemented by a careful examination of
90 (phylo)genetic diversity, which accounts for the evolutionary relationships among taxa (Webb *et al.*,
91 2002), as well as detailed ecological features of the (micro)environment and the functional traits of
92 species within a community (Mace *et al.*, 2003). Mountainous areas, with their altitudinal gradients,
93 provide a highly heterogeneous environment on a small spatial scale, making them ideal for designing
94 natural experiments (Albrecht *et al.*, 2021). The complex climatic characteristics, such as thermal
95 variability, of rugged mountain regions differ fundamentally from those of lowland areas, offering an
96 exceptional setting for high-resolution studies of the distribution patterns of microscopic animals (Bale
97 *et al.*, 2002; Erschbamer *et al.*, 2009; Zawierucha *et al.*, 2015).

98 One of the most charismatic groups of meiofauna is tardigrades. These aquatic microscopic
99 metazoans range in size from approximately 50 to 1,200 μm (Nelson *et al.*, 2019), with more than 1,400
100 species described worldwide (Degma & Guidetti, 2024). They can colonize terrestrial environments,
101 living in the thin film of water surrounding soil particles, especially in mosses and lichens (Nelson *et*
102 *al.*, 2019). In addition, their ability to enter cryptobiosis (a temporary and reversible suspension of
103 metabolism that allows them to enter a diapause stage and resist unfavorable conditions) enables some
104 species to survive extreme stressors such as desiccation and frost (cryptobiosis; Wright, 2001; Guidetti
105 *et al.*, 2011b). Thanks to their small size and unique metabolic adaptations, tardigrades can inhabit a
106 wide range of environments and climatic conditions (Nelson *et al.*, 2019). These microscopic animals
107 also exhibit diverse morphologies, egg-laying strategies, and diets. Moreover, most known species are
108 found in mosses or lichens, which makes them relatively easy to collect in the field. Despite these
109 attributes, tardigrades have long been neglected or superficially addressed in ecological studies of
110 meiofauna. This neglect stems from limited taxonomic and ecological knowledge, insufficient
111 understanding of their general biology, and the labor-intensive process of analyzing large numbers of
112 samples and individuals. However, these challenges are now being mitigated by advancements in high-
113 throughput approaches, such as DNA metabarcoding. This revolutionary tool for biodiversity studies
114 has recently been demonstrated to be both effective and efficient for tardigrade inventories (Topstad *et*
115 *al.*, 2021; He *et al.*, 2024; Surmacz *et al.*, 2025).

116 Although a considerable number of studies on mountainous tardigrades have been conducted,
117 only a few inventories explicitly tested the effect of altitudinal gradients on diversity (e.g., Dastych,
118 1980, 1988; Guidetti *et al.*, 1999; Guil *et al.*, 2009; Kaczmarek *et al.*, 2011; Zawierucha *et al.*, 2015,
119 2019). Much of the remaining research on this topic consists of descriptive faunistic investigations of
120 mountainous regions (e.g., Beasley, 1988; Bertolani & Rebecchi, 1996). Importantly, the more robust

121 studies have demonstrated relationships between altitude and tardigrade richness, community structure,
122 and/or abundance, though the direction of these relationships varies (e.g., positive or negative;
123 Zawierucha *et al.*, 2015). These discrepancies may stem from inadequate sampling designs and/or
124 insufficient altitudinal gradients. Moreover, with recent advances in integrative taxonomy that have
125 helped disentangle cryptic species complexes within meiofauna, many of these earlier studies are likely
126 biased in species identification, as none employed integrative approaches or used genetic data
127 (Obertegger *et al.*, 2014). This suggests that tardigrade ecology, particularly in mountainous
128 environments, requires more comprehensive and detailed studies that account for various confounding
129 biotic and abiotic variables (Zawierucha *et al.*, 2015; Nelson *et al.*, 2020). Additionally, while most
130 studies on tardigrade diversity have focused on mosses and lichens, few have investigated the degree to
131 which tardigrade taxa exhibit substrate specificity (Jönsson, 2003; Meyer, 2006; Young *et al.*, 2018;
132 Nelson *et al.*, 2020; Ramsay *et al.*, 2021). It remains unclear whether certain tardigrade taxa are strongly
133 associated with specific mosses or lichens or if most species are generalists. Rare tardigrade species
134 may, for example, be tied to particular substrates, but the extent of such associations is poorly
135 understood. Studies exploring these relationships have yielded inconsistent and sometimes contradictory
136 results, with associations either absent (Meyer, 2006; Zawierucha *et al.*, 2017) or present (Ramsay *et*
137 *al.*, 2021).

138 To elucidate the patterns of tardigrade diversity and distribution in a heterogeneous mountain
139 environment, we employed DNA metabarcoding to compile an extensive inventory of taxa from over
140 500 bryophyte samples collected in the Italian Alps. We gathered trait data for the identified tardigrade
141 taxa, including (i) body size, (ii) buccal tube width (proxy for diet), (iii) egg-laying strategy, and (iv)
142 pigmentation presence or absence, to assess their influence on species distribution. We investigated the
143 impact of macroenvironmental variables, such as altitude, vegetation type, and slope exposition, on
144 tardigrade diversity. Additionally, we examined the extent to which microecological variables,
145 characterized by the biological and ecological traits of bryophytes, shape the composition of tardigrade
146 communities. Our study provides a comprehensive approach to understanding the drivers of tardigrade
147 diversity in mountainous ecosystems by integrating taxonomic, phylogenetic, ecological, and macro-
148 and microclimatic perspectives.

149

150 **Materials and Methods**

151 *Sample collection and processing*

152 A total of 546 bryophyte samples were collected, each with a diameter of approximately 15 cm. The
153 samples were gathered from a mountainous region in northern Italy (Piemonte) across seven localities
154 (transects), which were distributed between 1.4 and 47.5 km apart. Each transect spanned an altitudinal
155 range of 500 to 1063 m, in total covering altitudes from 305 to 2,486 m asl (Figure 1, Table S1).
156 Fieldwork was conducted during one vegetative season in 2023. During collection, samples were placed
157 in paper envelopes, and relevant data for each sample were recorded in a spreadsheet. These records

158 included GPS coordinates, sample exposition, vegetation type, and the substrate from which the sample
159 was taken. Detailed collection data for each sample are provided in Supplementary Materials SM1. After
160 field collection, the samples were transported to the CNR-IRSA facility in Verbania, Italy, where they
161 were dried at room temperature if necessary. Subsequently, the samples were transferred to the ISEA
162 PAS laboratory in Kraków, Poland for further analysis.

163 We followed the recently described tardigrade metabarcoding protocol (Surmacz *et al.*, 2025),
164 which includes sieving the soaked cryptogam sample, isolating DNA from sediment using an extraction
165 kit dedicated to soil, amplifying a fragment of Cytochrome C Oxidase I (COI) gene using highly
166 degenerated primers and deep sequencing of the libraries to mitigate the low primer specificity. In brief,
167 before processing, each bryophyte sample was carefully fragmented by hand and soaked overnight in
168 water in a 0.5-liter plastic beaker. The following day, the samples were sieved through a set of metal
169 sieves with mesh sizes of 500 µm, 250 µm, and 36 µm. Approximately 0.25 g of sediment collected in
170 the finest sieve of each sample was transferred into 1.5 ml Eppendorf tubes using a sterile metal spatula,
171 labelled, and stored in a freezer until further processing. The exact weight of each portion was measured
172 with a laboratory scale. The remaining sediment was washed into a 50 ml Falcon tube using a wash
173 bottle and stored frozen as a backup. After washing, the bryophyte material was dried at room
174 temperature, repacked into new paper envelopes, and used for taxonomic identification. Between the
175 processing of different samples, gloves were changed, and all equipment and the sink were sterilized
176 with 20% bleach.

177

178 *DNA extraction and library preparation*

179 DNA was extracted from a portion of the frozen sample of about 0.25 g using the DNeasy® PowerSoil®
180 Pro Kit (Qiagen). To transfer the sediment from the Eppendorf tube, the first kit solution was added to
181 the tube, mixed with an automatic pipette, and transferred to the bead-beating tube. Then the
182 manufacturer's protocol was followed with a modification involving preincubation with proteinase K,
183 as described in (Surmacz *et al.*, 2025). Extraction blank samples were included to monitor for potential
184 contamination. The final DNA was eluted in 100 µl of elution buffer and stored in a freezer. For
185 metabarcoding, a fragment of the COI gene was used as the target, amplified using primers optimized
186 for tardigrades (BF2_TardF_2 and BR2; Surmacz *et al.*, 2025). Library preparation was performed using
187 a two-step PCR method. The first PCR amplified the target region using region-specific primers with
188 Illumina overhangs. This reaction involved an initial denaturation step of 5 minutes at 95°C, followed
189 by 30 cycles of 30 seconds of denaturation at 95°C, 90 seconds of annealing at 55°C, and 20 seconds of
190 elongation at 72°C, with a final elongation step of 10 minutes at 72°C. The product of the first reaction
191 was then used in a second, indexing PCR to produce uniquely barcoded libraries. This step employed
192 primer sets containing flow-cell binding domains and unique indices from the Nextera XT Index Kit
193 (FC-131-1001/FC-131-1002) and followed the Illumina protocol (Illumina, 2013). The resulting
194 libraries were sequenced on an AVITI instrument (Element Biosciences, San Diego, CA) using 300-bp

195 paired-end mode. Both library preparation and sequencing were conducted by a commercial provider,
196 IGA Technology, based in Udine, Italy. The raw sequence reads are deposited in NCBI SRA under
197 accession number PRJNA1216760.

198

199 *Bioinformatic analysis*

200 The demultiplexed reads were analyzed using a custom pipeline based on vsearch (Rognes *et al.*, 2016).
201 The paired reads were assembled into contigs and quality-filtered using PEAR v0.9.11 (Zhang *et al.*,
202 2014), using default parameters. Then, the primer sequences were trimmed using Cutadapt 4.6 (Martin,
203 2011) with default parameters, and contigs without both primer sequences or of incorrect length after
204 trimming (419-424 base pairs) were discarded. The trimmed contigs were dereplicated, denoised, and
205 screened for chimeras using the USEARCH- UCHIME (Edgar *et al.*, 2011). The resulting denoised
206 zero-radius Operational Taxonomic Units were clustered into OTUs with a 97% similarity threshold
207 (Surmacz *et al.*, 2025) to remove potential erroneous variants and the effects of intraspecific variability.
208 Then, the post-clustering curation of the OTU table was done using the R package ‘lulu’ (Frøslev *et al.*,
209 2017) with default parameters to remove potential erroneous OTUs. The OTUs’ representative
210 sequences were translated into amino acids using the R package ‘Biostrings’ (Pagès *et al.*, 2023) using
211 translation table 5, and those containing stop codons or indels were removed from the analysis.

212 To classify the tardigrade sequences, as well as the other eukaryotes, we used the ‘Tardi-COI’
213 database (v.02; Surmacz *et al.*, 2025) merged with ‘MIDORI2’ database (v. GB260; Leray *et al.*, 2022)
214 to achieve a reliable classification of tardigrades and high coverage of outgroups, reducing the
215 probability of false positive classifications as Tardigrada. The taxonomy was assigned by classifying the
216 representative sequences of each OTU by a local BLAST search with parameters *eval* = 0.00001,
217 *pident* = 85 (Altschul *et al.*, 1990; Camacho *et al.*, 2009) using a top-hit classification method (Hleap *et*
218 *al.*, 2021) with a widely accepted threshold of 85% sequence identity for phylum-level classification
219 (Clarke *et al.*, 2021; Macher *et al.*, 2024; Surmacz *et al.*, 2025). For OTUs classified as Tardigrada the
220 species-level taxonomy was assigned to OTUs with at least 97% similarity to the reference sequence
221 representing a described species, while in cases when the reference sequence belong to unnamed species
222 or similarity to the reference sequence is lower (85-97%) only genus-level taxonomy was considered
223 (Surmacz *et al.*, 2025). The complete bioinformatics pipeline is provided in Supplementary Material 2.

224 To analyze the phylogenetic diversity, a phylogenetic tree was constructed based on the
225 representative sequences of recovered tardigrade OTUs, which were aligned using MAFFT v7.520
226 (Katoh & Standley, 2013). Before partitioning, the alignment was divided into three data blocks,
227 constituting three codon positions in the COI data set. Using PartitionFinder (Lanfear *et al.*, 2017) under
228 the Akaike Information Criterion (AIC), the best scheme of partitioning and substitution models was
229 chosen for Bayesian phylogenetic analysis. Bayesian inference (BI) marginal posterior probabilities
230 were calculated for the COI data set using MrBayes v3.2 (Ronquist & Huelsenbeck, 2003). Random
231 starting trees were used, and the analysis was run for fifteen million generations, sampling the Markov

232 chain every 1,000 generations. An average standard deviation of split frequencies of <0.01 was used as
233 a guide to ensure the two independent analyses had converged. The program Tracer v1.7 (Rambaut *et*
234 *al.*, 2018) was then used to ensure Markov chains had reached stationarity and to determine the correct
235 ‘burn-in’ for the analysis, which was the first 10% of generations. The ESS values were greater than
236 200, and the consensus tree was obtained after summarizing the resulting topologies and discarding the
237 ‘burn-in’. The raw tree is provided in Supplementary Material 3.

238

239 *Explanatory variables*

240 To examine the variables influencing tardigrade diversity and distribution in mountainous regions, we
241 selected a range of explanatory variables associated with each bryophyte sample, which can be
242 categorized into macroenvironmental and microhabitat variables. The first group pertains to broader
243 environmental conditions and includes altitude, vegetation type, slope orientation, and geographic
244 coordinates. The slope orientation values were derived from the Digital Elevation Model
245 (OpenTopography, 2013) using the R package ‘whitebox’ (Lindsay, 2016), as aspect values (degrees)
246 converted to the values of eastness and northness, ranging from -1 to +1 by sine and cosine
247 transformations of slope orientation, respectively. The second group of explanatory variables is related
248 to the tardigrade microhabitats (bryophytes) – exposition, substratum, bryophyte species, and their
249 characteristics from the Bryophytes of Europe Traits (BET) dataset (van Zuijlen *et al.*, 2023). The
250 identified bryophytes follow the standardized nomenclature of The World Flora Online Plant List
251 (<http://www.worldfloraonline.org/>, accessed 2025-01-25). A complete list of the predictors is provided
252 in Table 1, while the list of samples, along with the corresponding data, is available in Supplementary
253 Materials SM.1.

254 *Tardigrade trait data*

255 To examine how functional traits of tardigrades relate to environmental variables, we coded each final
256 OTU for four specific traits: two continuous morphometric traits: (i) body size (maximum body length,
257 BL) and (ii) buccal tube width (BTW, maximum value); and two binary traits: (iii) body pigmentation
258 (presence = 1, absence = 0), and (iv) egg-laying strategy (eggs laid within exuviae = 1; eggs laid freely
259 in the environment = 0). Maximum values were used for morphometric traits to better represent adult
260 morphology and minimize bias from immature individuals in source datasets. For OTUs confidently
261 assigned to nominal species ($\geq 95\%$ sequence similarity to described species), BL and BTW values were
262 taken from original descriptions, redescriptions, or taxonomic revisions. In case of trait assignment, we
263 selected a 95% similarity threshold instead of the more commonly used 97% because tardigrade species
264 exhibiting such genetic divergence (between 5–10 % in COI) are often morphologically and
265 morphometrically indistinguishable (Morek *et al.*, 2019; Stec *et al.*, 2022; Brandoli *et al.*, 2024). In such
266 cases, trait values derived from the named species are likely to more accurately reflect the focal OTUs
267 than genus-level means. For OTUs identified only to the genus level, we imputed BL and BTW using
268 genus-level means calculated from up to five species, prioritizing descriptions from similar climatic

269 regions. BTW values are typically unavailable for heterotardigrades due to the frequent dissolution of
270 their buccal apparatus in mounting media. To overcome this, we selected samples containing the five
271 representative heterotardigrade genera detected in our metabarcoding data. For each genus, we located
272 target taxa and measured the BTW of five large individuals under a microscope. The maximum observed
273 value was then assigned to all OTUs representing that genus. Supplementary Materials SM.4 include (i)
274 a list of all OTUs assigned to described species with their coded traits, (ii) species and values used to
275 estimate genus-level BL and BTW, and (iii) heterotardigrade genera with BTW that was measured de
276 novo. A list of all trait data sources is provided in Appendix 1.

277

278 *Hypotheses testing*

279 All the statistical procedures, data processing, and visualization were performed using R 4.3.2 (R Core
280 Team, 2023). To check if our sampling was sufficient to describe the regional tardigrade fauna, we
281 visualize a sample-based species accumulation curve calculated using the ‘specaccum’ function from
282 the R package *vegan* version 2.6-8 (Oksanen *et al.*, 2025). In further analyses, we aimed to test how our
283 predictors shape tardigrade communities along altitudinal gradients at the taxonomic, phylogenetic, and
284 functional levels, including both within-community alpha diversity and beta diversity patterns.
285 Regarding the bryophyte traits, due to the rarity of dendroid life form, the category ‘dendroid’ of the
286 variable ‘life form’ was merged with ‘weft’, forming a category ‘weft or dendroid’, as both groups have
287 a multi-layer structure and indicate shady habitats (Mägdefrau, 1982). We did not include the selected
288 ecological indicator values (EIVs) for bryophytes in the models because of the large share of missing
289 data (10-30%). Instead, we analyzed Spearman’s correlation coefficient between the selected EIVs and
290 bryophyte growth form, binary coded to support the potential ecological findings. After explanatory
291 analyses, we chose a set of independent variables with low multicollinearity (VIF<10), discarding the
292 variable ‘eastness’. To test the joint and individual effects of microhabitat and macroenvironmental
293 variables on tardigrade diversity patterns, we created separate models for the two variable groups (for
294 variable explanation, see Table 1).

295

296 *Alpha diversity:*

297 We tested the effect of environmental predictors along altitudinal gradients on the three levels of alpha
298 diversity (taxonomic, phylogenetic, and functional). As taxonomic diversity, we refer to OTU richness
299 (number of OTUs detected in a sample). For the analysis of phylogenetic diversity, we used the
300 standardized effect size of Faith’s Phylogenetic Diversity (Faith, 1992) (standardized phylogenetic
301 diversity) calculated using the R package *picante* version 1.8.2 (Kembel *et al.*, 2010) using 999
302 permutations. To quantify the functional diversity, we calculated Rao’s Q diversity index using the R
303 package *FD* version 1.0-12.3 (Laliberté & Legendre, 2010). The values of BL and BTW were log-
304 transformed due to the skewness and standardized to zero mean and unit variance before the analyses of
305 functional diversity. In addition, to overcome the dependence of functional diversity on taxonomic

306 diversity, we analyzed the standardized effect size of Rao's Q diversity index (Ricotta *et al.*, 2022),
307 calculated as the difference between the observed Rao's Q and the mean value of the index calculated
308 using randomly permuted communities of the same size, divided by the standard deviation of null
309 models' Rao's Q values, using 999 permutations (standardized functional diversity). The significance of
310 the departures from random assembly was tested using one-tailed Monte Carlo tests: when the observed
311 Rao's Q or Faith's PD were higher or lower than 95% of null communities, we indicated a significant
312 under- or overdispersion.

313 Firstly, to directly test for the existence of altitudinal trends of the three diversity aspects, we
314 used univariate generalized linear models with altitude as the only predictor. For taxonomic diversity
315 we used a model with negative binomial error structure while for standardized phylogenetic and
316 functional diversity we used models with Gaussian error structure. To get a deeper insight into ecological
317 effects of tardigrade diversity, we fitted generalized linear models with a series of different predictors
318 on microhabitat and on macroenvironmental variables using the R package *spaMM* version 4.5.0
319 (Rousset & Ferdy, 2014). To model the effect of microhabitat, we used nonspatial models using the
320 formula: $Y \sim \text{substratum} + \text{rK} + \text{gform} + \text{lform} + \text{size} + \text{sample exposition}$. To model the
321 macroenvironmental variables, we used a spatially autocorrelated model using the formula: $Y \sim \text{altitude}$
322 + northness + vegetation type + Matern(1 | Latitude + Longitude). The full models included all
323 microhabitat and macroenvironmental variables and spatial autocorrelation. In the functional and
324 phylogenetic diversity models, we included the OTU richness as an additional predictor to disentangle
325 the effect of environmental predictors from the effect of taxonomic richness on these diversity metrics.
326 Taxonomic diversity was modelled using generalized linear models with negative binomial distribution
327 and all samples ($n=546$), while standardized phylogenetic and functional diversity were analyzed using
328 generalized linear models with Gaussian distributions, keeping only the samples with at least two OTUs
329 ($n=500$). We tested the relations between the three levels of alpha diversity using the three formulas
330 (microhabitat model, macroenvironment model, and full model). For all the models, we calculated 95%
331 confidence intervals of models' effects using the 'confint' function from R package *spaMM*. We
332 compared the pseudo- R^2 calculated using the 'pseudoR2' function from the R package *spaMM* and
333 conditional AIC values (cAIC) to evaluate goodness of fit. For taxonomic diversity, we calculated
334 pseudo- R^2 values to evaluate the total variance explained by the models. For phylogenetic and functional
335 diversity, we used pseudo- R^2 to investigate the increase of variance explained relative to the model
336 including OTU richness as the predictor to test the effects of environmental variables, accounting for
337 the confounding effect of taxonomic richness. We also checked all the models for zero-inflation and
338 overdispersion using the 'testZeroInflation' and 'testDispersion' functions from the R package *DHARMA*
339 version 0.4.7 (Hartig *et al.*, 2024), which indicated no significant overdispersion and no evidence that a
340 zero-inflated term was necessary ($p>0.05$).

341

342 *Beta diversity and trait-environment associations:*

343 We investigated the beta diversity patterns of the three diversity aspects (taxonomic, phylogenetic and
344 functional). For taxonomic diversity, we used Jaccard dissimilarities, for phylogenetic beta diversity we
345 used unweighted Unifrac distances, and for trait dissimilarities, we used Euclidean distances between
346 community means (Lengyel & Botta-Dukát, 2023), as more complex methods would likely be biased
347 due to overrepresented imputed values for means for the genera and the low OTU richness in many
348 samples. To check whether species replacement or nestedness contribute to the observed beta-diversity
349 patterns, we calculated the Jaccard beta diversity and its nestedness and turnover components for
350 taxonomic beta diversity and Unifrac distances for phylogenetic beta diversity using the R package
351 *betapart* version 1.6 (Baselga & Orme, 2012). We did not perform such analysis for the functional beta
352 diversity, as due to the limitations of the trait dataset, we analyzed only patterns of community means.
353 To investigate the overall beta-diversity patterns, we tested the relationships between taxonomic,
354 phylogenetic, and trait dissimilarities using distance-based redundancy analysis (db-RDA) using the
355 ‘dbrda’ function from the R package *vegan*. Firstly, we created models with altitude as the only predictor,
356 to simply test the effect of altitude on beta diversity. Then, we separately analyzed microhabitat and
357 macro-environmental variables in separate db-RDA models. To include the spatial components in beta-
358 diversity models, we included the distance-based Moran’s eigenvector maps as predictors (dbMEM1
359 and dbMEM2), calculated using the R package *adespatial* version 0.3-24 (Dray *et al.*, 2025) based on
360 the distance matrix calculated using the R package *geodist* version 0.1.0 (Padgham *et al.*, 2025),
361 representing large-scale geographical patterns. To model the effect of microhabitats, we used the model
362 formula $Y \sim \text{substratum} + rK + gform + lform + \text{size} + \text{sample exposition}$. For macroenvironment
363 models, we used the formula $Y \sim \text{altitude} + \text{northness} + \text{vegetation type} + \text{dbMEM1} + \text{dbMEM2}$. The
364 full models included all the microhabitat and macroenvironmental predictors and the spatial predictors.
365 We tested the significance of the predictors in all models (altitude-only, microhabitat,
366 macroenvironment, and full model), performing a permutation test using ‘anova.cca’ function from the
367 R package *vegan* using 999 permutations. We checked the relative explanatory power of microhabitat
368 and macroenvironmental variables by comparing the values of R^2_{adj} of the three models.

369 To verify the significant variables shaping tardigrade communities indicated by db-RDA, we
370 investigated the relationships between tardigrade occurrence data and environmental predictors using a
371 multivariate model-based analysis, fitting the generalized linear models with binomial distribution using
372 the ‘manyglm’ function from the R package *mvabund* (Wang *et al.*, 2012) and testing the significance
373 of the effect of all the predictors (both microhabitat and macroenvironmental) on OTU distribution using
374 ‘anova.manyglm’ function from *mvabund* R package calculating likelihood ratio deviance, using 999
375 iterations via probability integral transform residual bootstrap resampling (PIT-trap). We also used the
376 ‘anova.manyglm’ function to test whether bryophyte species would better predict the tardigrade
377 communities than the general bryophyte trait categories. We achieved this by comparing the two models.
378 In the first model we used the same formula as one used in db-RDA ($Y \sim \text{substratum} + rK + gform +$
379 $lform + \text{size} + \text{sample exposition} + \text{altitude} + \text{northness} + \text{vegetation type} + \text{dbMEM1} + \text{dbMEM2}$). In

380 the second model, instead of bryophyte traits (rK, gform, lform, size), we included bryophyte species
381 (Y ~ substratum + bryophyte species + sample exposition + altitude + northness + vegetation type +
382 dbMEM1 + dbMEM2). We also aimed to investigate the relationships between specific tardigrade taxa
383 and environmental covariates (at first, without linking the responses to tardigrade species traits). Due to
384 a high total OTU richness and prevalence of rare taxa, we did not model the response of each OTU
385 separately, but instead, we tested and visualized the responses of tardigrades with genus-level resolution
386 (presence-absence data of tardigrade genera, based on the respective classification of metabarcoding
387 OTUs). To achieve this, we tested the genus-level tardigrade-environment associations using a single
388 predictive model (multivariate species distribution model) with binomial distribution with L1 (LASSO)
389 penalty, which automatically sets terms in the model that do not explain any variation in species
390 composition to zero by ‘traitglm’ function from the *mvabund* R package.

391 Finally, we applied the predictive fourth-corner approach (Brown *et al.*, 2014) to construct a
392 regression model for OTUs’ presence as a function of interaction terms between tardigrade trait and
393 environmental variables, using the ‘traitglm’ function from the *mvabund* R package with a binomial
394 response and LASSO penalty, including all the microhabitat and macro-environmental variables and
395 dbMEMs. To visualize the altitudinal patterns of common species belonging to the most widespread
396 genus, we plotted the spline smoothing functions of univariate logistic generalized additive models
397 (GAM) in the R package *mgcv* version 1.9-0 (Wood, 2011) to model different shapes of altitudinal
398 distributions.

399

400 **Results**

401 *Data summary*

402 The collection of 546 samples from seven transects included 103 bryophyte species representing 62
403 genera and 11 orders. The most common substrates for the collected bryophytes were rocks (78% of
404 samples), soil (7%), wood (10%), and anthropogenic surfaces (4%). The analysis of ecological indicator
405 values (EIVs) revealed that bryophyte growth form was associated with specific indicator values.
406 Specifically, acrocarpous species were positively correlated with EIVs for light (Spearman’s rank
407 correlation test, $n = 471$, $\rho = 0.31$, $p < 0.001$) and negatively correlated with EIVs for reaction/ acidity
408 ($n = 470$, $\rho = -0.43$, $p < 0.001$) indicating their preferences for sun-exposed and acidic substrates.

409 The sequencing of metabarcoding libraries for all the samples generated a total of 204.75 million
410 read pairs, with an average of 375,000 per sample. Among these, 29.33 million read pairs passed all the
411 filtering steps, and 3.23 million were classified as Eukaryotes based on an 85% sequence identity
412 threshold. Among the classified OTUs, the most common phyla (in terms of the number of reads) were
413 Tardigrada (43.77%), Ascomycota (33.37%), Chlorophyta (5.62%), Basidiomycota (4.22%), and
414 Arthropoda (3.55%). The final tardigrade OTU table contained 1.41 million reads, clustered into 169
415 OTUs representing 11 families of limnoterrestrial tardigrades: Acutuncidae, Adorybiotidae,
416 Calohypsibiidae, Echiniscidae, Isohypsibiidae, Itaquasconidae, Macrobiotidae, Milnesiidae,

417 Murrayidae, Pilatobiidae, and Ramazzottiidae. None of the OTUs revealed stop codons or indels.
418 Among tardigrade OTUs, 99 OTUs (58.58%) confidently matched reference sequences ($\geq 97\%$ identity)
419 while 70 OTUs (41.48%) matched the reference sequences with lower similarity (85-97% identity). The
420 results suggest no apparent bias in taxa recovery since all the major taxonomic groups of limnoterrestrial
421 tardigrades were successfully detected (Figure 2a), and no sequences representing marine or obligate
422 freshwater tardigrade taxa were found. The blank samples were negative for tardigrades, indicating no
423 contamination. The species accumulation curve (Figure S2.1) reached a plateau, indicating that our
424 sampling intensity was sufficient to characterize the tardigrade fauna in the studied region. Of the
425 detected OTUs, 136 (80.47%) occurred in more than one sample. The most widespread were
426 *Macrobiotus hufelandi* (found in 47.99% of samples), *Dianeae sattleri*, and both *Echiniscus merokensis*
427 and *Macrobiotus* aff. *hufelandi* (OTU2 in this study; reference sequence HQ876589), each present in
428 26.74% of samples. The trait dataset was compiled using raw morphometric values extracted from 97
429 publications (Appendix 1). In total, we used 169 measurements of body length (BL) and 136
430 measurements of buccal tube width (BTW), while five maximum BTW values for five heterotardigrade
431 genera were obtained *de novo*. We obtained species-specific trait values only for 54 OTUs assigned to
432 described species by at least 95% similarity, whereas for other OTUs (either assigned to putative species
433 or to sequences not identified to species level), we imputed the genus-specific means. Of all OTUs, 54
434 (32%) were classified as pigmented tardigrades, while 115 (68%) were scored as lacking pigmentation.
435 Regarding the egg-laying strategy, 105 OTUs (62%) were identified as tardigrades that oviposit eggs in
436 exuviae, and 64 OTUs represented species that lay eggs freely in the environment. The trait dataset
437 revealed three distinct clusters of tardigrade taxa representing three different orders (Figure 2b),
438 indicating a clear link between traits and phylogeny.

439
440 *Patterns of alpha diversity*

441 The metabarcoding results identified 531 samples (97.25% of the dataset) as positive for tardigrades.
442 The mean taxonomic richness was 6.70 tardigrade OTUs per sample (SD = 4.34). A univariate model
443 with altitude as the sole predictor indicated a negative effect of altitude on taxonomic diversity,
444 expressed as species richness (negative binomial GLM: $p < 0.001$; Figure 3, Table S2.1). In contrast, both
445 phylogenetic and functional diversity were positively affected by altitude (LM: $p < 0.001$ and LM:
446 $p = 0.004$, respectively; Figure 3, Tables S2.2-3).

447 The GLM results indicated that both microhabitat and macroenvironmental variables affected
448 taxonomic alpha diversity (microhabitat model: pseudo- $R^2 = 0.206$, cAIC = 2955.4, Table S2.4;
449 macroenvironment model: pseudo- $R^2 = 0.282$, cAIC = 2839.2, Table S2.5; full model: pseudo- $R^2 =$
450 0.388, cAIC = 2721.9). In the full model, taxonomic diversity was negatively affected by altitude and
451 positively affected by rock substrate, shoot size, and pleurocarpous growth form (Figure 4, Table S2.6).

452 Phylogenetic clustering was significant in 166 of the 500 samples with at least two OTUs
453 (33.2%; one-tailed Monte Carlo test, $p < 0.05$), while phylogenetic overdispersion was detected in six

454 samples (1.2%; one-tailed Monte Carlo test, $p < 0.05$). Standardized phylogenetic diversity was also
455 influenced by environmental variables, particularly those related to the microhabitat (microhabitat
456 model: pseudo- $R^2 = 0.107$, cAIC = 1513.1, Table S2.7; macroenvironment model: pseudo- $R^2 = 0.043$,
457 cAIC = 1531.8, Table S2.8; full model: pseudo- $R^2 = 0.136$, cAIC = 1501.1, Table S2.9). In the full
458 model, phylogenetic diversity was negatively affected by northness, soil substrate, r-selected bryophyte
459 strategy, pleurocarpous growth form and mat and turf life forms (Figure 4). In all the models,
460 standardized phylogenetic diversity was negatively affected by species richness.

461 Functional underdispersion was significant in 224 samples (one-tailed Monte Carlo test, $p <$
462 0.05), while functional overdispersion was observed in four samples (0.8%). Standardized functional
463 diversity was more strongly affected by microhabitat than by macroenvironmental variables
464 (microhabitat model: pseudo- $R^2 = 0.111$, cAIC = 1344.5, Table S2.10; macroenvironment model:
465 pseudo- $R^2 = 0.030$, cAIC = 1375.1, Table S2.11; full model: pseudo- $R^2 = 0.130$, cAIC = 1342.8, Table
466 S2.12). In the full model, functional diversity was negatively affected by altitude, pleurocarpous growth
467 form, shoot size, shaded microhabitats, and turf life form (Figure 4). In all the models, standardized
468

469 *Patterns of beta diversity*

470 The mean pairwise Jaccard turnover index was 0.862 (SD = 0.198), with complete turnover (i.e., no
471 shared OTUs) observed between 49.94% of sample pairs. The overall variation in tardigrade
472 communities was primarily driven by the turnover component of beta diversity rather than the nestedness
473 component, with turnover accounting for 99.90% of total taxonomic beta diversity. Thus, we did not run
474 separate analyses for the negligible nestedness component and performed only the analyses on the
475 overall Jaccard beta diversity for taxonomic diversity. The univariate db-RDA models revealed a
476 significant effect of altitude on all the three beta-diversity aspects: taxonomic ($R^2_{adj} = 0.035$),
477 phylogenetic ($R^2_{adj} = 0.049$) and functional ($R^2_{adj} = 0.022$), which was confirmed by permutation tests
478 ($n=999$), ($p=0.001$ in all three models).

479 In the full models, the analyzed predictors explained a small proportion of total beta diversity
480 in db-RDA results: taxonomic ($R^2_{adj} = 0.107$), phylogenetic ($R^2_{adj} = 0.149$), and functional dissimilarity
481 ($R^2_{adj} = 0.176$; Figure 4). Permutation tests using *anova.cca* ($n = 999$) showed that all terms in the db-
482 RDA models were significant ($p < 0.05$), except for the effect of dbMEM1 ($p=0.218$), r/K strategy
483 ($p=0.218$), and bryophyte size ($p = 0.337$) on functional dissimilarity (Tables S2.13-15).

484 In the taxonomic and phylogenetic datasets, the first db-RDA axes captured the altitudinal
485 gradient and large-scale spatial structure, explaining 4.29% of the constrained variance of the taxonomic
486 diversity and 5.82% of the constrained variance of phylogenetic diversity. For trait-based beta diversity,
487 the first db-RDA axis explained 14.04% of the constrained variance and was associated with
488 microhabitat light and moisture conditions. Positive axis values corresponded to shady microhabitats,
489 turf life form, and north-facing slopes (Figure 4). Model comparison revealed that macroenvironmental
490 variables were stronger predictors than microhabitat-related variables for explaining taxonomic and

491 phylogenetic beta diversity (Figure 4). In contrast, microhabitat variables explained more variance in
492 functional dissimilarity (Figure 4). These findings suggest that large-scale variables, including the
493 altitudinal gradient, primarily influence taxonomic community composition, while species traits are
494 more closely linked to local-scale (microhabitat) conditions such as bryophyte life form, substrate type,
495 and sample exposition.

496 An analysis of deviance from multivariate GLMs indicated that including bryophyte species
497 identity did not significantly improve model performance ($p = 0.076$, Table S2.16). Consequently, we
498 focused further analyses on models incorporating bryophyte trait predictors ($\sum \text{AIC} = 22,754.9$) and
499 discarded the species-level model ($\sum \text{AIC} = 49,845.42$), as species-level patterns could be accounted for
500 by general trait categories. The final analysis of deviance showed that all remaining predictors
501 significantly explained variation in OTU distributions (Table S2.17).

502

503 *Taxon-environment and trait-environment relationships*

504 The genus-level multivariate model indicated that several environmental predictors significantly
505 influenced the distribution of tardigrade taxa (Figure 5). The genera *Mesobiotus*, *Ramazzottius*, and
506 *Minibiotus* were strongly associated with lower altitudes, whereas *Milnesium* exhibited a weak opposite
507 trend. Different taxonomic groups also displayed preferences for distinct microhabitat conditions.
508 Several genera were clearly linked to more humid or shaded microhabitats (characterized by tall/long
509 shoots, pleurocarpous mosses, turf/weft/dendroid life forms, north-facing slopes, or overall shade),
510 including *Degmion*, *Dianeae*, *Diphascon*, and *Guidettion*. In contrast, genera such as *Echiniscus*,
511 *Milnesium*, and *Ramazzottius* were associated with more xerothermic conditions, including cushion-
512 forming mosses and exposed environments. Spatial variables (dbMEM1 and dbMEM2) revealed
513 multiple significant associations, indicating variation in community composition across localities.
514 Vegetation type and substrate-related variables also showed specific associations, for example, *Adropion*
515 was linked to bryophytes growing on soil, while *Degmion* was associated with samples from coniferous
516 forests.

517 The fourth-corner analysis further revealed numerous trait–environment relationships (Figure
518 6). Among the strongest associations were those between tardigrade body length and both pleurocarpous
519 growth form and north-facing (negative northness) microhabitats. Oviposition in exuviae was positively
520 associated with both altitude and pleurocarpous bryophytes. Buccal tube width showed negative
521 associations with several variables, including pleurocarpous bryophytes, exposed samples, and meadow
522 habitats. Pigmentation was negatively associated with microhabitats that received less light (e.g.,
523 pleurocarpous bryophytes, wefts or dendroid life forms, shaded environments, north-facing slopes, and
524 soil substrates), and positively associated with sun-exposed microhabitats, including those with
525 acrocarpous and cushion mosses, as well as anthropogenic or tree bark substrates.

526

527 **Discussion**

528 *Overview and key findings*

529 Our results indicate that multiple mechanisms influence the distribution and diversity of tardigrade
530 communities across altitudinal gradients. However, macroenvironmental- and microhabitat-related
531 variables explain only a small fraction of the observed patterns. This limited explanatory power seems
532 to align with broader theories of community assembly, which emphasize the role of stochastic processes
533 in shaping communities of small, highly dispersive taxa (Jenkins *et al.*, 2007; De Bie *et al.*, 2012;
534 Farjalla *et al.*, 2012; Soininen *et al.*, 2013). Such processes likely result from frequent colonization-
535 extinction cycles driven by the ephemeral nature of their microhabitats, disrupting the tight coupling
536 between habitat conditions and community composition. In contrast, larger, more actively mobile taxa
537 tend to exhibit more stable hierarchically structured communities shaped by competitive interactions
538 and habitat selection (Van Allen & Rudolf, 2015; Boyce *et al.*, 2019; Martin & Ghalambor, 2023; Chen
539 & Lewis, 2024), underlying difference in the mechanisms driving diversity across size scales.
540 Tardigrade communities in bryophyte microhabitats are highly diverse, with rapid species turnover
541 across landscapes, and tend to show high redundancy and low functional and phylogenetic diversity.
542 While the altitude and geographical location are the primary variables shaping compositional turnover
543 in tardigrade communities, microhabitat conditions primarily drive community trait patterns. This
544 indicates that macroenvironmental variables shape species distributions, but trait-driven environmental
545 filtering operates at the microhabitat scale. In the following sections, we discuss the effects of
546 environmental variables and trait-environment associations in detail.

547

548 *Altitudinal gradient of tardigrade diversity*

549 Our study reveals a shift in tardigrade communities along the altitudinal gradient: from species-rich,
550 functionally redundant, and phylogenetically underdispersed communities at lower altitudes to less
551 diverse communities comprising phylogenetically and functionally more distant species at higher
552 altitudes. The altitudinal decline in species richness observed in our study reflects a well-documented
553 pattern across diverse taxa, including plants, vertebrates, and invertebrates (Rahbek, 1995; McCain &
554 Grytnes, 2010). This pattern seems also to be the most prevalent in tardigrades, supported directly by
555 several studies (e.g., Dastych, 1985; Collins & Bateman, 2001; Zawierucha *et al.*, 2015, 2019). Other
556 studies suggest a unimodal distribution, with species richness peaking at mid-altitudes (Rodríguez-Roda,
557 1951; Beasley, 1988; Dastych, 1988; Guil *et al.*, 2009; Kaczmarek *et al.*, 2011). Among other
558 meiofauna, such as rotifers and nematodes, similar taxonomic richness patterns in mountain
559 environments have been reported. Specifically, Fontaneto & Ricci (2006) and Obertegger *et al.*, (2010)
560 found that rotifer species richness decreases at higher altitudes, a pattern also observed in soil nematodes
561 (e.g., Afzal *et al.*, 2021; Kashyap *et al.*, 2022; Li *et al.*, 2024).

562 While altitudinal patterns of tardigrade taxonomic diversity have been extensively studied,
563 phylogenetic and functional diversity have received far less attention. Previous studies have not
564 explicitly tested phylogenetic diversity in tardigrades along altitudinal gradients, and functional

565 diversity has generally shown weak or no altitudinal effect (Zawierucha *et al.*, 2019). Our findings,
566 however, suggest that standardized phylogenetic and functional diversity is higher at higher altitudes,
567 though this trend is largely driven by microhabitat variation (Figure 3) and potentially biased by reduced
568 species richness. This pattern aligns with observations that extreme environments tend to support
569 communities of fewer specialized species (e.g., Swenson *et al.*, 2012; Stuart-Smith *et al.*, 2013; Siefert
570 *et al.*, 2015). Tardigrades that are better competitors in extreme environments are typically those with
571 enhanced cryptobiotic capabilities, allowing them to survive prolonged unfavorable conditions while
572 other organisms perish (Jönsson, 2001, 2005). In the harsh localities at high altitude, we detected
573 specialized taxa representing the clades of Parachela, Apochela, and Echiniscoidea, which represent
574 divergent clusters in both phylogenetic and functional trait space (Figures 2 and 7a). This well
575 corresponds with previous studies which observed Echiniscoidea and Apochela more frequently at high
576 altitudes (e.g., Ramazzotti & Maucci, 1983; Dastych, 1985, 1988; Guil *et al.*, 2009; Zawierucha *et al.*,
577 2015, 2016, 2019). Notably, Heterotardigrada and Eutardigrada independently evolved cryptobiotic
578 adaptations to survive desiccation (Fleming *et al.*, 2024), but despite their long evolutionary history
579 which led to morphological, physiological, and phylogenetic distinctiveness, both lineages include
580 exceptionally resilient extremophiles capable of occupying similar niches. It suggests that phylogenetic
581 distance is not necessarily a proxy for the difference in habitat preferences among tardigrade taxa.

582 Despite the covarying effects of altitude and microhabitat features, our results reveal a
583 compositional shift along the altitudinal gradient, highlighting the predominant role of macro-
584 environmental variables, including altitude, in shaping taxonomic beta diversity. This is exemplified by
585 the genus *Macrobiotus* (Figure 6b), which includes multiple co-occurring species at lower altitudes (e.g.,
586 *M. sandrae*, *M. vladimiri*, *M. hufelandi*) that are morphologically and phylogenetically similar
587 (Bertolani *et al.*, 2011; Stec *et al.*, 2021). In contrast, at higher altitudes, only *Macrobiotus* aff. *hufelandi*
588 (OTU2) tends to dominate, possibly due to competitive exclusion. Notably, this altitude-related pattern
589 mirrors that observed in the original study describing these haplogroups: *M. aff. hufelandi* was
590 predominantly found at higher altitudes (Bertolani *et al.*, 2011). At lower altitudes, multiple closely
591 related species often coexist, leading to higher taxonomic richness but lower phylogenetic and functional
592 diversity, while higher altitudes typically support taxonomically poorer but more functionally and
593 phylogenetically dispersed communities (Figures 2 and 7a). This pattern likely reflects a shift in
594 microhabitat conditions along the altitudinal gradient, which, despite not being captured in full models
595 (Figure 4), contributes to the observed higher values of standardized phylogenetic and functional
596 diversity at higher altitudes. This divergence may result from stronger selection favoring stress-tolerant
597 species in extreme, high-altitude environments.

598

599 *Microhabitat effect on tardigrade diversity*

600 Our results highlight the importance of microhabitat variables in shaping tardigrade diversity,
601 particularly functional diversity (Figure 4). We found that large, pleurocarpous mosses and bryophytes

602 growing on rocks host species-rich communities, while short, acrocarpous mosses in exposed habitats
603 support fewer but more functionally and phylogenetically diverse species. This pattern is consistent with
604 island biogeography models, where larger, more structurally complex habitats support higher species
605 richness and stronger phylogenetic underdispersion (Zhang *et al.*, 2023). In our dataset, pleurocarpous
606 moss mats or carpets at lower altitudes supported diverse but functionally underdispersed communities
607 dominated by Parachela (Figures 3, 4, and 7a), while smaller patches of acrocarpous mosses in exposed
608 habitats hosted fewer, more specialized taxa. This finding aligns with previous studies, such as (Guil &
609 Sanchez-Moreno, 2013), which demonstrated that habitat structure has a stronger influence on
610 tardigrade diversity than altitude, with more complex substrates supporting more species. Similarly,
611 (Jönsson, 2003) found that pleurocarpous mosses (e.g., wefts) host more abundant and diverse tardigrade
612 assemblages, a pattern also observed in Norwegian forests (Guidetti *et al.*, 2024). More broadly, the
613 positive relationship between habitat complexity and species diversity is well established (MacArthur
614 & MacArthur, 1961) and well documented also for macro- and microinvertebrate taxa (e.g., Dean &
615 Connell, 1987; Rantalainen *et al.*, 2005; Nielsen *et al.*, 2010; Ossola *et al.*, 2015; Loke & Todd, 2016;
616 Ramsay *et al.*, 2021). Beyond habitat structure, the substrate on which a bryophyte grows can influence
617 community composition. We found a positive effect of rock substrate on taxonomic richness, with lower
618 standardized phylogenetic diversity in soil samples, consistent with previous studies reporting more
619 speciose communities in these substrates (Dastych, 1988; Guil & Sanchez-Moreno, 2013). However,
620 this effect is likely influenced by other microhabitat variables, such as substrate pH and nutrient content.
621 For example, species-rich tardigrade assemblages have been reported in more alkaline and nutrient-rich
622 substrates (Dastych, 1988; Guil *et al.*, 2009). While our study did not directly assess these factors, the
623 correlation analysis (Supplementary Figure S2.2) suggests that pleurocarpous mosses in our dataset are
624 associated with higher nutrient content and alkaline conditions, potentially supporting these patterns.
625 However, it remains unclear whether these effects reflect direct influences on tardigrades or simply
626 reflect the traits of their bryophyte hosts, which provide complex, moisture-retentive microhabitats.
627

628 *Community assembly and trait-environment interactions*

629 Our results show no significant association between specific bryophyte and tardigrade species,
630 consistent with previous studies on tardigrades (Nelson, 1975; Ramazzotti & Maucci, 1983; Kathman
631 & Cross, 1991; Meyer, 2006; Guidetti *et al.*, 2024) and other microinvertebrates (e.g., Burger, 1948;
632 Kaya *et al.*, 2010; Božanić *et al.*, 2013; Jattupan *et al.*, 2024). Instead, our findings suggest that broader
633 categories of moss structure shape tardigrade communities, reflecting a gradient of moisture and light
634 availability: from pleurocarpous mosses with long shoots in shaded environments, to short, acrocarpous
635 mosses in exposed habitats. These microhabitat effects likely interact with macroenvironmental factors,
636 including altitude and slope exposition, creating complex, spatially structured patterns of community
637 composition. The altitudinal gradient was the primary driver of taxonomic composition, while
638 phylogenetic and functional beta-diversity were more closely linked to microhabitat conditions. For

example, pigmentation was positively associated with short, acrocarpous mosses, cushion growth forms, anthropogenic substrates, and exposed environments, reflecting the strong cryptobiotic capabilities of pigmented taxa like *Milnesium*, *Echiniscus*, and *Ramazzottius* (Guidetti *et al.*, 2011a; Roszkowska *et al.*, 2021, 2023). In contrast, unpigmented tardigrades were more common in moist, shaded habitats, often associated with pleurocarpous mosses, weft or dendroid growth forms, and north-facing slopes, which retain more moisture and thus provide stable microhabitats (Stec *et al.*, 2025). Oviposition strategy was also related to altitude, with more species depositing eggs in exuviae at higher altitudes, potentially reflecting the dominance of high-altitude taxa belonging to Echiniscoidea and Apochela (Figure 7a). However, this strategy is likely a phylogenetically conserved trait rather than a direct response to environmental conditions, as some species that also lay eggs in exuviae (e.g., *Degmion*, *Dianeae*) are found in shaded, while *Astatumen* is more common at low altitudes. Body length showed positive associations with mosses having long shoots and pleurocarpous growth forms, but negative associations with north-facing slopes and short-lived mosses (r-strategy). This pattern may reflect the influence of nutrient availability or links between body size and desiccation performance (Jönsson & Rebecchi, 2002; Zawierucha *et al.*, 2015, 2018; Nagwani *et al.*, 2024), though the large size variation among different clades (e.g., large-bodied Apochela vs. small-bodied Echiniscoidea) may obscure these relationships. A general pattern known from established ecological theory states that trait-based environmental filtering favors stress-tolerant species in harsh conditions, while more competitive species dominate in milder environments, reflecting trade-offs between stress tolerance and competitive ability (Belyea & Lancaster, 1999; Ackerly, 2003). Our results only partially align with these patterns, as we observed trait-based environmental filtering under harsh conditions, but in milder environments, we did not detect clear effects of competitive interactions (instead, we observed species-rich, functionally and phylogenetically underdispersed communities). This suggests that in milder microhabitats, multiple species with similar ecological preferences coexist without obvious signs of competitive exclusion. This pattern might be explained by the frequent colonization-extinction cycles driven by the environmental fluctuations typical of bryophyte microhabitats. Overall, our findings are consistent with previous studies on the role of moss moisture retention in shaping tardigrade diversity (Morgan, 1977; Horning *et al.*, 1978; Ramazzotti & Maucci, 1983; Dastych, 1988) and the role of desiccation dynamics in determining cryptobiotic efficiency (Vecchi *et al.*, 2024; Stec *et al.*, 2025). This suggests that desiccation tolerance, alongside habitat complexity and patch size, is a critical factor in structuring tardigrade communities in mountain ecosystems.

670

671 **Conclusions**

672 Our study provides one of the most extensive assessments of environmental effects on tardigrade
673 communities and reveals several patterns that seem to reflect general rules of microscopic animal
674 community assembly. Tardigrade communities are not strictly shaped by the taxonomic identity of their
675 bryophyte hosts but rather by their functional traits, suggesting that microhabitat characteristics, rather

676 than host specificity, shape meiofaunal diversity. Apart from that, we documented the effect of macro-
677 environmental factors on the communities, especially the altitude, which shapes the compositional
678 turnover and general diversity patterns. We conclude that the patterns commonly observed in larger taxa,
679 such as niche-based habitat sorting and interspecific competition, may be less relevant for bryophyte-
680 dwelling meiofauna, which seem to be ruled by dynamic community assembly processes, where
681 ecological drift is stronger than deterministic selection. This may explain why, despite the clear habitat
682 preferences of tardigrade species, their distribution remains enigmatic. Nonetheless, understanding the
683 relative roles of different factors shaping the distributions of microscopic taxa, together with transferable
684 methods for monitoring their diversity, is a major contribution towards including the ‘neglected’ phyla
685 into conservation and biomonitoring programs.

686

687 **Acknowledgements**

688 We are grateful to Daniel Bajorek and Matteo Vecchi for their invaluable help with sample collection. This research
689 was funded by the Sonatina program of the National Science Centre, Poland (grant no. 2022/44/C/NZ8/00050 to
690 DS). DF is supported by the National Biodiversity Future Centre (NBFC) funded by the Italian Ministry of
691 University and Research, PNRR, Missione 4 Componente 2, “Dalla ricerca all’impresa”, Investimento 1.4, Project
692 CN00000033, CUP B83C22002930006. We thank the protected areas that provided us with sampling permits:
693 National Park Valgrande (Permit n. 32/2023), Regional Parks Alta Valsesia (Permit n. 641/2023) and Aree Protette
694 dell’Ossola (Permit n. 0001592/2023).

695

696

697 **References**

698 Ackerly, D.D. (2003) Community Assembly, Niche Conservatism, and Adaptive Evolution in Changing
699 Environments. *International Journal of Plant Sciences*, **164**, S165–S184.

700 Afzal, S., Nesar, H., Imran, Z. & Ahmad, W. (2021) Altitudinal gradient affect abundance, diversity and
701 metabolic footprint of soil nematodes in Banihal-Pass of Pir-Panjal mountain range. *Scientific
702 Reports*, **11**, 16214.

703 Albrecht, J., Peters, M.K., Becker, J.N., Behler, C., Classen, A., Ensslin, A., Ferger, S.W., Gebert, F.,
704 Gerschlauer, F., Helbig-Bonitz, M., Kindeketa, W.J., Kühnel, A., Mayr, A.V., Njovu, H.K., Pabst,
705 H., Pommer, U., Röder, J., Rutten, G., Schellenberger Costa, D., Sierra-Cornejo, N., Vogeler, A.,
706 Vollstädt, M.G.R., Dulle, H.I., Eardley, C.D., Howell, K.M., Keller, A., Peters, R.S., Kakengi, V.,
707 Hemp, C., Zhang, J., Manning, P., Mueller, T., Bogner, C., Böhning-Gaese, K., Brandl, R., Hertel,
708 D., Huwe, B., Kiese, R., Kleyer, M., Leuschner, C., Kuzyakov, Y., Nauss, T., Tschapka, M., Fischer,
709 M., Hemp, A., Steffan-Dewenter, I. & Schleuning, M. (2021) Species richness is more
710 important for ecosystem functioning than species turnover along an elevational gradient.
711 *Nature Ecology & Evolution*, **5**, 1582–1593.

712 Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool.
713 *Journal of Molecular Biology*, **215**, 403–410.

714 Andrew, N.R., Rodgerson, L. & Dunlop, M. (2003) Variation in invertebrate–bryophyte community
715 structure at different spatial scales along altitudinal gradients. *Journal of Biogeography*, **30**,
716 731–746.

717 Antonelli, A., Kissling, W.D., Flantua, S.G.A., Bermúdez, M.A., Mulch, A., Muellner-Riehl, A.N., Kreft,
718 H., Linder, H.P., Badgley, C., Fjeldså, J., Fritz, S.A., Rahbek, C., Herman, F., Hooghiemstra, H. &
719 Hoorn, C. (2018) Geological and climatic influences on mountain biodiversity. *Nature
720 Geoscience*, **11**, 718–725.

721 Bale, J.S., Masters, G.J., Hodgkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse,
722 A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L.,
723 Press, M.C., Symrnioudis, I., Watt, A.D. & Whittaker, J.B. (2002) Herbivory in global climate
724 change research: direct effects of rising temperature on insect herbivores. *Global Change
725 Biology*, **8**, 1–16.

726 Baselga, A. & Orme, C.D.L. (2012) betapart: an R package for the study of beta diversity. *Methods in
727 Ecology and Evolution*, **3**, 808–812.

728 Beasley, C.W. (1988) Altitudinal Distribution of Tardigrada of New Mexico with the Description of a
729 New Species. *The American Midland Naturalist*, **120**, 436–440.

730 Belyea, L.R. & Lancaster, J. (1999) Assembly Rules within a Contingent Ecology. *Oikos*, **86**, 402–416.

731 Bertolani, R. & Rebecchi, L. (1996) The tardigrades of Emilia (Italy). II. Monte Rondinaio. A
732 multihabitat study on a high altitude valley of the northern Apennines. *Zoological Journal of
733 the Linnean Society*, **116**, 3–12.

734 Bertolani, R., Rebecchi, L., Giovannini, I. & Cesari, M. (2011) DNA barcoding and integrative taxonomy
735 of *Macrobiotus hufelandi* C.A.S. Schultze 1834, the first tardigrade species to be described,
736 and some related species. *Zootaxa*, **2997**, 19–36.

737 Boyce, A.J., Shakya, S., Sheldon, F.H., Moyle, R.G. & Martin, T.E. (2019) Biotic interactions are the
738 dominant drivers of phylogenetic and functional structure in bird communities along a
739 tropical elevational gradient. *The Auk*, **136**, ukz054.

740 Božanić, B., Hradílek, Z., Machač, O., Pižl, V., Štáhlavský, F., Tufová, J. & Véle, A. (2013) Factors
741 Affecting Invertebrate Assemblages in Bryophytes of the Litovelské Luhy National Nature
742 Reserve, Czech Republic. *Acta Zoologica Bulgarica*, **65**, 197–206.

743 Brandoli, S., Cesari, M., Massa, E., Vecchi, M., Rebecchi, L. & Guidetti, R. (2024) Diverse eggs,
744 diverse species? Production of two egg morphotypes in *Paramacrobiotus bifrons*, a new
745 eutardigrade species within the areolatus group. *The European Zoological Journal*, **91**, 274–
746 297.

747 Brown, A.M., Warton, D.I., Andrew, N.R., Binns, M., Cassis, G. & Gibb, H. (2014) The fourth-corner
748 solution – using predictive models to understand how species traits interact with the
749 environment. *Methods in Ecology and Evolution*, **5**, 344–352.

750 Burger, A. (1948) Studies on the Moss Dwelling Bdelloids (Rotifera) of Eastern Massachusetts.
751 *Transactions of the American Microscopical Society*, **67**, 111–142.

752 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. & Madden, T.L. (2009)
753 BLAST+: architecture and applications. *BMC Bioinformatics*, **10**, 421.

754 Chen, J. & Lewis, O.T. (2024) Limits to species distributions on tropical mountains shift from high
755 temperature to competition as elevation increases. *Ecological Monographs*, **94**, e1597.

756 Clarke, L.J., Suter, L., Deagle, B.E., Polanowski, A.M., Terauds, A., Johnstone, G.J. & Stark, J.S. (2021)
757 Environmental DNA metabarcoding for monitoring metazoan biodiversity in Antarctic
758 nearshore ecosystems. *PeerJ*, **9**, e12458.

759 Collins, M. & Bateman, L. (2001) The Ecological Distribution of Tardigrades in Newfoundland.
760 *Zoologischer Anzeiger - A Journal of Comparative Zoology*, **240**, 291–297.

761 Dastych, H. (1980) *Niesporczaki (Tardigrada) Tatrzanskiego Parku Narodowego*, Państwowe
762 Wydawnictwo Naukowe.

763 Dastych, H. (1988) *The Tardigrada of Poland*, Państwowe Wydawnictwo Naukowe.

764 Dastych, H. (1985) West Spitsbergen Tardigrada. *Acta Zoologica Cracoviensia*, **28**, 169–214.

765 De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L.,
766 Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W. & Declerck, S. a. J. (2012)
767 Body size and dispersal mode as key traits determining metacommunity structure of aquatic
768 organisms. *Ecology Letters*, **15**, 740–747.

769 Dean, R.L. & Connell, J.H. (1987) Marine invertebrates in an algal succession. III. Mechanisms linking
770 habitat complexity with diversity. *Journal of Experimental Marine Biology and Ecology*, **109**,
771 249–273.

772 Degma, P. & Guidetti, R. (2024) Actual checklist of Tardigrada species.

773 Degma, P., Šimurka, M. & Gulánová, S. (2005) Community structure and ecological macrodistribution
774 of moss-dwelling water bears (Tardigrada) in Central European oak-hornbeam forests (SW
775 Slovakia). *Ekológia (Bratislava)*, **24**, 59–75.

776 Dolson, S.J. & Kharouba, H.M. (2024) 30 years of terrestrial insect richness patterns across elevation:
777 What have we learned? A global meta-analysis. *Journal of Animal Ecology*, **93**, 1819–1829.

778 Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G.,
779 Legendre, P., Madi, N., Wagner, H.H., Siberchicot, A. & SoDA), J.C. (Original author of two
780 functions from package (2025) adespatial: Multivariate Multiscale Spatial Analysis.

781 Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C. & Knight, R. (2011) UCHIME improves sensitivity and
782 speed of chimaera detection. *Bioinformatics*, **27**, 2194–2200.

783 Erschbamer, B., Kiebacher, T., Mallaun, M. & Unterluggauer, P. (2009) Short-term signals of climate
784 change along an altitudinal gradient in the South Alps. *Plant Ecology*, **202**, 79–89.

785 Faith, D.P. (1992) Conservation evaluation and phylogenetic diversity. *Biological Conservation*, **61**, 1–
786 10.

787 Farjalla, V.F., Srivastava, D.S., Marino, N.A.C., Azevedo, F.D., Dib, V., Lopes, P.M., Rosado, A.S., Bozelli,
788 R.L. & Esteves, F.A. (2012) Ecological determinism increases with organism size. *Ecology*, **93**,
789 1752–1759.

790 Fenchel, T. & Finlay, B.J. (2004) The Ubiquity of Small Species: Patterns of Local and Global Diversity.
791 *BioScience*, **54**, 777–784.

792 Fleming, J.F., Pisani, D. & Arakawa, K. (2024) The Evolution of Temperature and Desiccation-Related
793 Protein Families in Tardigrada Reveals a Complex Acquisition of Extremotolerance. *Genome
794 Biology and Evolution*, **16**, evad217.

795 Foissner, W. (2006) Biogeography and Dispersal of Micro-organisms: A Review Emphasizing Protists.
796 *Acta Protozoologica*, **45**, 111–136.

797 Fontaneto, D. (2019) Long-distance passive dispersal in microscopic aquatic animals. *Movement
798 Ecology*, **7**, 10.

799 Fontaneto, D., Barraclough, T.G., Chen, K., Ricci, C. & Herniou, E.A. (2008) Molecular evidence for
800 broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things
801 are very widespread. *Molecular Ecology*, **17**, 3136–3146.

802 Fontaneto, D., Ficetola, G.F., Ambrosini, R. & Ricci, C. (2006) Patterns of diversity in microscopic
803 animals: are they comparable to those in protists or in larger animals? *Global Ecology and*
804 *Biogeography*, **15**, 153–162.

805 Fontaneto, D., Flot, J.-F. & Tang, C.Q. (2015) Guidelines for DNA taxonomy, with a focus on the
806 meiofauna. *Marine Biodiversity*, **45**, 433–451.

807 Fontaneto, D. & Ricci, C. (2006) Spatial gradients in species diversity of microscopic animals: the case
808 of bdelloid rotifers at high altitude. *Journal of Biogeography*, **33**, 1305–1313.

809 Frøslev, T.G., Kjøller, R., Bruun, H.H., Ejrnæs, R., Brønbjerg, A.K., Pietroni, C. & Hansen, A.J. (2017)
810 Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity
811 estimates. *Nature Communications*, **8**, 1188.

812 Green, J. & Bohannan, B.J.M. (2006) Spatial scaling of microbial biodiversity. *Trends in Ecology &*
813 *Evolution*, **21**, 501–507.

814 Guidetti, R., Altiero, T., Bertolani, R., Grazioso, P. & Rebecchi, L. (2011a) Survival of freezing by
815 hydrated tardigrades inhabiting terrestrial and freshwater habitats. *Zoology*, **114**, 123–128.

816 Guidetti, R., Altiero, T. & Rebecchi, L. (2011b) On dormancy strategies in tardigrades. *Journal of Insect*
817 *Physiology*, **57**, 567–576.

818 Guidetti, R., Bertolani, R. & Nelson, D.R. (1999) Ecological and Faunistic Studies on Tardigrades.
819 *Zoologischer Anzeiger*, **238**, 215–223.

820 Guidetti, R., Ingemar Jönsson, K., Kaczmarek, Ł., Meier, T., Speed, J.D.M., Prestø, T., Stur, E., Topstad,
821 L., Cesari, M., Roszkowska, M., Zawierucha, K., Hassel, K. & Ekrem, T. (2024) Tardigrade
822 diversity and community composition across Norwegian boreal forests. *Zoological Journal of*
823 *the Linnean Society*, **200**, 156–171.

824 Guil, N., Hortal, J., Sánchez-Moreno, S. & Machordom, A. (2009) Effects of macro and micro-
825 environmental factors on the species richness of terrestrial tardigrade assemblages in an
826 Iberian mountain environment. *Landscape Ecology*, **24**, 375–390.

827 Guil, N. & Sanchez-Moreno, S. (2013) Fine-scale patterns in micrometazoans: tardigrade diversity,
828 community composition and trophic dynamics in leaf litter. *Systematics and Biodiversity*, **11**,
829 181–193.

830 Hartig, F., Lohse, L. & leite, M. de S. (2024) DHARMA: Residual Diagnostics for Hierarchical (Multi-
831 Level / Mixed) Regression Models.

832 He, Z.-Y., Hu, H.-W., Thi Nguyen, B.-A., Chen, Q.-L., Weatherley, A., Nash, M., Bi, L., Wu, K. & He, J.-Z.
833 (2024) Distribution of soil tardigrades as revealed by molecular identification across a large-
834 scale area of Australia. *Soil Biology and Biochemistry*, **196**, 109506.

835 Hleap, J.S., Littlefair, J.E., Steinke, D., Hebert, P.D.N. & Cristescu, M.E. (2021) Assessment of current
836 taxonomic assignment strategies for metabarcoding eukaryotes. *Molecular Ecology*
837 *Resources*, **21**, 2190–2203.

838 Horning, D.S., Schuster, R.O. & Grigarick, A.A. (1978) Tardigrada of New Zealand. *New Zealand Journal*
839 *of Zoology*, **5**, 185–280.

840 Høye, T.T., Bowden, J.J., Hansen, O.L.P., Hansen, R.R., Henriksen, T.N., Niebuhr, A. & Skytte, M.G.
841 (2018) Elevation modulates how Arctic arthropod communities are structured along local
842 environmental gradients. *Polar Biology*, **41**, 1555–1565.

843 Illumina (2013) 16s Metagenomic Sequencing Library Preparation.

844 Jattupan, S., Jaturapruet, R., Sa-ardrit, P., Inuthai, J., Ngernsaengsaruay, C. & Maiphae, S. (2024)
845 Diversity and habitat preferences of bdelloid rotifers in mosses and liverworts from beach
846 forest along sand dunes in Thailand. *PeerJ*, **12**, e18721.

847 Jenkins, D.G., Brescacin, C.R., Duxbury, C.V., Elliott, J.A., Evans, J.A., Grablow, K.R., Hillegass, M., Lyon,
848 B.N., Metzger, G.A., Olandese, M.L., Pepe, D., Silvers, G.A., Suresch, H.N., Thompson, T.N.,
849 Trexler, C.M., Williams, G.E., Williams, N.C. & Williams, S.E. (2007) Does size matter for
850 dispersal distance? *Global Ecology and Biogeography*, **16**, 415–425.

851 Jönsson, K.I. (2003) Population density and species composition of moss-living tardigrades in a boreo-
852 nemoral forest. *Ecography*, **26**, 356–364.

853 Jönsson, K.I. (2005) The Evolution of Life Histories in Holo-anhydrobiotic Animals: A First Approach1.
854 *Integrative and Comparative Biology*, **45**, 764–770.

855 Jönsson, K.I. (2001) The Nature of Selection on Anhydrobiotic Capacityin Tardigrades. *Zoologischer
856 Anzeiger - A Journal of Comparative Zoology*, **240**, 409–417.

857 Jönsson, K.I. & Rebecchi, L. (2002) Experimentally induced anhydrobiosis in the tardigrade *Richtersius
858 coronifer*: phenotypic factors affecting survival. *Journal of Experimental Zoology*, **293**, 578–
859 584.

860 Kaczmarek, Ł., Gołdyn, B., Wełnicz, W. & Michalczyk, Ł. (2011) Ecological factors determining
861 Tardigrada distribution in Costa Rica. *Journal of Zoological Systematics and Evolutionary
862 Research*, **49**, 78–83.

863 Kashyap, P., Afzal, S., Rizvi, A.N., Ahmad, W., Uniyal, V.P. & Banerjee, D. (2022) Nematode community
864 structure along elevation gradient in high altitude vegetation cover of Gangotri National Park
865 (Uttarakhand), India. *Scientific Reports*, **12**, 1428.

866 Kathman, R.D. & Cross, S.F. (1991) Ecological distribution of moss-dwelling tardigrades on Vancouver
867 Island, British Columbia, Canada. *Canadian Journal of Zoology*, **69**, 122–129.

868 Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7:
869 Improvements in Performance and Usability. *Molecular Biology and Evolution*, **30**, 772–780.

870 Kaya, M., De Smet, W.H. & Fontaneto, D. (2010) Survey of moss-dwelling bdelloid rotifers from middle
871 Arctic Spitsbergen (Svalbard). *Polar Biology*, **33**, 833–842.

872 Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P. &
873 Webb, C.O. (2010) Picante: R tools for integrating phylogenies and ecology. *Bioinformatics*,
874 **26**, 1463–1464.

875 Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity
876 from multiple traits. *Ecology*, **91**, 299–305.

877 Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: New
878 Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological
879 Phylogenetic Analyses. *Molecular Biology and Evolution*, **34**, 772–773.

880 Lengyel, A. & Botta-Dukát, Z. (2023) A guide to between-community functional dissimilarity
881 measures. *Ecography*, **2023**, e06718.

882 Leray, M., Knowlton, N. & Machida, R.J. (2022) MIDORI2: A collection of quality controlled,
883 preformatted, and regularly updated reference databases for taxonomic assignment of
884 eukaryotic mitochondrial sequences. *Environmental DNA*, **4**, 894–907.

885 Li, X., Liu, Z., Zhang, C., Zheng, L. & Li, H. (2024) Altitudinal variation in soil nematode communities in
886 an alpine mountain region of the eastern Tibetan plateau. *European Journal of Soil Biology*,
887 **121**, 103617.

888 Lindsay, J.B. (2016) Whitebox GAT: A case study in geomorphometric analysis. *Computers &
889 Geosciences*, **95**, 75–84.

890 Loke, L.H.L. & Todd, P.A. (2016) Structural complexity and component type increase intertidal
891 biodiversity independently of area. *Ecology*, **97**, 383–393.

892 MacArthur, R.H. & MacArthur, J.W. (1961) On Bird Species Diversity. *Ecology*, **42**, 594–598.

893 Mace, G.M., Gittleman, J.L. & Purvis, A. (2003) Preserving the Tree of Life. *Science*, **300**, 1707–1709.

894 Macher, J., Martínez, A., Çakir, S., Cholley, P., Christoforou, E., Curini Galletti, M., Van Galen, L., García-
895 Cobo, M., Jondelius, U., De Jong, D., Leasi, F., Lemke, M., Rubio Lopez, I., Sánchez, N.,
896 Sørensen, M.V., Todaro, M.A., Renema, W. & Fontaneto, D. (2024) Enhancing metabarcoding
897 efficiency and ecological insights through integrated taxonomy and DNA reference barcoding:
898 A case study on beach meiofauna. *Molecular Ecology Resources*, **24**, e13997.

899 Mägdefrau, K. (1982) *Life-forms of Bryophytes*. *Bryophyte Ecology* (ed. by A.J.E. Smith), pp. 45–58.
900 Springer Netherlands, Dordrecht.

901 Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads.
902 *EMBnet.journal*, **17**, 10–12.

903 Martin, P.R. & Ghalambor, C.K. (2023) A Case for the “Competitive Exclusion–Tolerance Rule” as a
904 General Cause of Species Turnover along Environmental Gradients. *The American Naturalist*,
905 **202**, 1–17.

906 Martínez, A., Bonaglia, S., Di Domenico, M., Fonseca, G., Ingels, J., Jörger, K.M., Laumer, C., Leasi, F.,
907 Zeppilli, D., Baldrighi, E., Bik, H., Cepeda, D., Curini-Galletti, M., Cutter, A.D., Dos Santos, G.,
908 Fattorini, S., Frisch, D., Gollner, S., Jondelius, U., Kerbl, A., Kocot, K.M., Majdi, N., Mammola,
909 S., Martín-Durán, J.M., Menegotto, A., Montagna, P.A., Nascimento, F.J.A., Puillandre, N.,
910 Rognant, A., Sánchez, N., Santos, I.R., Schmidt-Rhaesa, A., Schratzberger, M., Semprucci, F.,
911 Shimabukuro, M., Sommerfield, P.J., Struck, T.H., Sørensen, M.V., Wallberg, A., Worsaae, K.,
912 Yamasaki, H. & Fontaneto, D. (2025) Fundamental questions in meiofauna research highlight
913 how small but ubiquitous animals can improve our understanding of Nature. *Communications
914 Biology*, **8**, 449.

915 McCain, C.M. & Grytnes, J.-A. (2010) *Elevational Gradients in Species Richness*. eLS, John Wiley &
916 Sons, Ltd.

917 Meyer, H.A. (2006) Interspecific Association and Substrate Specificity in Tardigrades from Florida,
918 Southeastern United States. *Hydrobiologia*, **558**, 129–132.

919 Morek, W., Stec, D., Gąsiorek, P., Surmacz, B. & Michalczyk, Ł. (2019) *Milnesium tardigradum* Doyère,
920 1840: The first integrative study of interpopulation variability in a tardigrade species. *Journal
921 of Zoological Systematics and Evolutionary Research*, **57**, 1–23.

922 Morek, W., Surmacz, B., López-López, A. & Michalczyk, Ł. (2021) “Everything is not everywhere”:
923 Time-calibrated phylogeography of the genus *Milnesium* (Tardigrada). *Molecular Ecology*, **30**,
924 3590–3609.

925 Morgan, C.I. (1977) Population Dynamics of two Species of Tardigrada, *Macrobiotus hufelandii*
926 (Schultze) and *Echiniscus (Echiniscus) testudo* (Doyère), in Roof Moss from Swansea. *Journal
927 of Animal Ecology*, **46**, 263–279.

928 Nagwani, A.K., Melosik, I., Kaczmarek, Ł. & Kmita, H. (2024) Recovery from anhydrobiosis in the
929 tardigrade *Paramacrobiotus experimentalis*: Better to be young than old and in a group than
930 alone. *Helixon*, **10**, e26807.

931 Nelson, D.R. (1975) *Ecological distribution of tardigrades on Roan Mountain, Tennessee – North
932 Carolina. International Symposium on Tardigrades* Memorie dell’Instituto Italiano di
933 Idrobiologia., pp. 225–276. Pallanza, Italy.

934 Nelson, D.R., Bartels, P.J. & Fegley, S.R. (2020) Environmental correlates of tardigrade community
935 structure in mosses and lichens in the Great Smoky Mountains National Park (Tennessee and
936 North Carolina, USA). *Zoological Journal of the Linnean Society*, **188**, 913–924.

937 Nelson, D.R., Guidetti, R. & Rebecchi, L. (2019) *Chapter 15 - Phylum Tardigrada. Thorp and Covich’s
938 Freshwater Invertebrates (Fourth Edition)* (ed. by D.C. Rogers) and J.H. Thorp), pp. 533–548.
939 Academic Press, Boston.

940 Nemergut, D.R., Costello, E.K., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S.K., Fierer, N.,
941 Townsend, A.R., Cleveland, C.C., Stanish, L. & Knight, R. (2011) Global patterns in the
942 biogeography of bacterial taxa. *Environmental Microbiology*, **13**, 135–144.

943 Nielsen, U.N., Osler, G.H.R., Campbell, C.D., Neilson, R., Burslem, D.F.R.P. & Wal, R. van der (2010) The
944 Enigma of Soil Animal Species Diversity Revisited: The Role of Small-Scale Heterogeneity.
945 *PLOS ONE*, **5**, e11567.

946 Obertegger, U. & Flaim, G. (2018) Taxonomic and functional diversity of rotifers, what do they tell us
947 about community assembly? *Hydrobiologia*, **823**, 79–91.

948 Obertegger, U., Flaim, G. & Fontaneto, D. (2014) Cryptic diversity within the rotifer *Polyarthra
949 dolichoptera* along an altitudinal gradient. *Freshwater Biology*, **59**, 2413–2427.

950 Obertegger, U., Thaler, B. & Flaim, G. (2010) Rotifer species richness along an altitudinal gradient in
951 the Alps. *Global Ecology and Biogeography*, **19**, 895–904.

952 Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos,
953 P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D.,
954 Carvalho, G., Chirico, M., Caceres, M.D., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly,

955 M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E.R.,
956 Smith, T., Stier, A., Braak, C.J.F.T., Weedon, J. & Borman, T. (2025) vegan: Community Ecology
957 Package.

958 O'Malley, M.A. (2008) 'Everything is everywhere: but the environment selects': ubiquitous
959 distribution and ecological determinism in microbial biogeography. *Studies in History and*
960 *Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical*
961 *Sciences*, **39**, 314–325.

962 OpenTopography (2013) Shuttle Radar Topography Mission (SRTM) Global.

963 Ossola, A., Nash, M.A., Christie, F.J., Hahs, A.K. & Livesley, S.J. (2015) Urban habitat complexity affects
964 species richness but not environmental filtering of morphologically-diverse ants. *PeerJ*, **3**,
965 e1356.

966 Padgham, M., Sumner, M.D. & distances), C.F.F.K. (Original author of included code for geodesic
967 (2025) geodist: Fast, Dependency-Free Geodesic Distance Calculations.

968 Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. (2023) Package 'Biostrings.'

969 R Core Team (2023) R: A Language and Environment for Statistical Computing.

970 Rahbek, C. (1995) The elevational gradient of species richness: a uniform pattern? *Ecography*, **18**,
971 200–205.

972 Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen,
973 C.M.Ø., Richardson, K., Rosing, M.T., Whittaker, R.J. & Fjeldså, J. (2019a) Building mountain
974 biodiversity: Geological and evolutionary processes. *Science*, **365**, 1114–1119.

975 Rahbek, C., Borregaard, M.K., Colwell, R.K., Dalsgaard, B., Holt, B.G., Morueta-Holme, N., Nogues-
976 Bravo, D., Whittaker, R.J. & Fjeldså, J. (2019b) Humboldt's enigma: What causes global
977 patterns of mountain biodiversity? *Science*, **365**, 1108–1113.

978 Ramazzotti, G. & Maucci, M. (1983) *II Phylum Tardigrada*, Memorie dell'Istituto Italiano di
979 Idrobiologia, Verbania Pallanza.

980 Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior Summarization in
981 Bayesian Phylogenetics Using Tracer 1.7. *Systematic Biology*, **67**, 901–904.

982 Ramsay, B.P.L., Marley ,Nigel J., Bilton ,David T., Rundle ,Simon D. & and Ramsay, P.M. (2021) The
983 structure of tardigrade communities at fine spatial scales in an Andean Polylepis forest.
984 *Neotropical Biodiversity*, **7**, 443–454.

985 Rantalainen, M.-L., Fritze, H., Haimi, J., Pennanen, T. & Setälä, H. (2005) Species richness and food
986 web structure of soil decomposer community as affected by the size of habitat fragment and
987 habitat corridors. *Global Change Biology*, **11**, 1614–1627.

988 Ricotta, C., Bacaro, G., Maccherini, S. & Pavoine, S. (2022) Functional imbalance not functional
989 evenness is the third component of community structure. *Ecological Indicators*, **140**, 109035.

990 Rodríguez-Roda, J. (1951) Algunos datos sobre la distribución de los tardígrados españoles. *Boletín de*
991 *la Real Sociedad Española de Historia Natural. Actas*, 75–83.

992 Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. (2016) VSEARCH: a versatile open source tool
993 for metagenomics. *PeerJ*, **4**, e2584.

994 Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed
995 models. *Bioinformatics*, **19**, 1572–1574.

996 Roszkowska, M., Gołdyn, B., Wojciechowska, D., Kosicki, J.Z., Fiałkowska, E., Kmita, H. & Kaczmarek, Ł.
997 (2021) Tolerance to Anhydrobiotic Conditions Among Two Coexisting Tardigrade Species
998 Differing in Life Strategies. *Zoological Studies*, **60**, e74.

999 Roszkowska, M., Gołdyn, B., Wojciechowska, D., Księckiewicz, Z., Fiałkowska, E., Pluskota, M., Kmita,
1000 H. & Kaczmarek, Ł. (2023) How long can tardigrades survive in the anhydrobiotic state? A
1001 search for tardigrade anhydrobiosis patterns. *PLOS ONE*, **18**, e0270386.

1002 Rousset, F. & Ferdy, J.-B. (2014) Testing environmental and genetic effects in the presence of spatial
1003 autocorrelation. *Ecography*, **37**, 781–790.

1004 Schenk, J. & Fontaneto, D. (2020) Biodiversity analyses in freshwater meiofauna through DNA
1005 sequence data. *Hydrobiologia*, **847**, 2597–2611.

1006 Siefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., Aarssen, L.W., Baraloto,
1007 C., Carlucci, M.B., Cianciaruso, M.V., de L. Dantas, V., de Bello, F., Duarte, L.D.S., Fonseca, C.R.,
1008 Freschet, G.T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V., Kamiyama, C.,
1009 Katabuchi, M., Kembel, S.W., Kichenin, E., Kraft, N.J.B., Lagerström, A., Bagousse-Pinguet, Y.L.,
1010 Li, Y., Mason, N., Messier, J., Nakashizuka, T., Overton, J.McC., Peltzer, D.A., Pérez-Ramos, I.M.,
1011 Pillar, V.D., Prentice, H.C., Richardson, S., Sasaki, T., Schamp, B.S., Schöb, C., Shipley, B.,
1012 Sundqvist, M., Sykes, M.T., Vandewalle, M. & Wardle, D.A. (2015) A global meta-analysis of
1013 the relative extent of intraspecific trait variation in plant communities. *Ecology Letters*, **18**,
1014 1406–1419.

1015 Soininen, J., Korhonen, J.J. & Luoto, M. (2013) Stochastic species distributions are driven by organism
1016 size. *Ecology*, **94**, 660–670.

1017 Stec, D., Vecchi, M., Budzik, K., Matsko, Y. & Miler, K. (2025) Distribution of tardigrade cryptobiotic
1018 abilities across a fine-scale habitat gradient. *Organisms Diversity & Evolution*, **25**, 43–54.

1019 Stec, D., Vecchi, M., Calhim, S. & Michalczyk, Ł. (2021) New multilocus phylogeny reorganises the
1020 family Macrobiotidae (Eutardigrada) and unveils complex morphological evolution of the
1021 *Macrobiotus hufelandi* group. *Molecular Phylogenetics and Evolution*, **160**, 106987.

1022 Stec, D., Vončina, K., Møbjerg Kristensen, R. & Michalczyk, Ł. (2022) The *Macrobiotus ariekammensis*
1023 species complex provides evidence for parallel evolution of claw elongation in macrobiotid
1024 tardigrades. *Zoological Journal of the Linnean Society*, **195**, 1067–1099.

1025 Stuart-Smith, R.D., Bates, A.E., Lefcheck, J.S., Duffy, J.E., Baker, S.C., Thomson, R.J., Stuart-Smith, J.F.,
1026 Hill, N.A., Kininmonth, S.J., Airoldi, L., Becerro, M.A., Campbell, S.J., Dawson, T.P., Navarrete,
1027 S.A., Soler, G.A., Strain, E.M.A., Willis, T.J. & Edgar, G.J. (2013) Integrating abundance and
1028 functional traits reveals new global hotspots of fish diversity. *Nature*, **501**, 539–542.

1029 Surmacz, B., Vecchi, M., Fontaneto, D., Budzik, K., Godziek, J., Matsko, Y. & Stec, D. (2025) COI
1030 Metabarcoding With a Curated Reference Database and Optimized Protocol Provides a
1031 Reliable Species-Level Diversity Assessment of Tardigrades. *Integrative Zoology*.

1032 Swenson, N.G., Erickson, D.L., Mi, X., Bourg, N.A., Forero-Montaña, J., Ge, X., Howe, R., Lake, J.K., Liu,
1033 X., Ma, K., Pei, N., Thompson, J., Uriarte, M., Wolf, A., Wright, S.J., Ye, W., Zhang, J.,
1034 Zimmerman, J.K. & Kress, W.J. (2012) Phylogenetic and functional alpha and beta diversity in
1035 temperate and tropical tree communities. *Ecology*, **93**, S112–S125.

1036 Topstad, L., Guidetti, R., Majaneva, M. & Ekrem, T. (2021) Multi-marker DNA metabarcoding reflects
1037 tardigrade diversity in different habitats. *Genome*, **64**, 217–231.

1038 Van Allen, B.G. & Rudolf, V.H.W. (2015) Habitat-mediated carry-over effects lead to context-dependent
1039 outcomes of species interactions. *Journal of Animal Ecology*, **84**, 1646–1656.

1040 Vecchi, M., Stec, D., Rebecchi, L., Michalczyk, Ł. & Calhim, S. (2024) Ecology explains anhydrobiotic
1041 performance across tardigrades, but the shared evolutionary history matters more. *The
1042 Journal of Animal Ecology*, **93**, 307–318.

1043 Wang, Y., Naumann, U., Wright, S.T. & Warton, D.I. (2012) mvabund—an R package for model-based
1044 analysis of multivariate abundance data. *Methods in Ecology and Evolution*, **3**, 471–474.

1045 Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and Community
1046 Ecology. *Annual Review of Ecology, Evolution, and Systematics*, **33**, 475–505.

1047 Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of
1048 semiparametric generalized linear models. *Journal of the Royal Statistical Society: Series B
1049 (Statistical Methodology)*, **73**, 3–36.

1050 Wright, J.C. (2001) Cryptobiosis 300 Years on from van Leuwenhoek: What Have We Learned about
1051 Tardigrades? *Zoologischer Anzeiger - A Journal of Comparative Zoology*, **240**, 563–582.

1052 Young, A.R., Miller, J.E.D., Villella, J., Carey, G. & Miller, W.R. (2018) Epiphyte type and sampling height
1053 impact mesofauna communities in Douglas-fir trees. *PeerJ*, **6**, e5699.

1054 Zawierucha, K., Podkowa, P., Marciniak, M., Gąsiorek, P., Zmudczyńska-Skarbek, K., Janko, K. &
1055 Włodarska-Kowalcuk, M. (2018) Temperature (latitude) and nutrient (seabird guano) effects
1056 on limno-terrestrial Tardigrada (*Testechiniscus spitsbergensis* and *Pilatobius recamieri*) body
1057 size. *Polar Research*, **37**.

1058 Zawierucha, K., Smykla, J., Michalczyk, Ł., Gołdyn, B. & Kaczmarek, Ł. (2015) Distribution and diversity
1059 of Tardigrada along altitudinal gradients in the Hornsund, Spitsbergen (Arctic). *Polar*
1060 *Research*, **34**, 24168.

1061 Zawierucha, K., Węgrzyn, M., Ostrowska, M. & Wietrzyk, P. (2017) Tardigrada in Svalbard lichens:
1062 diversity, densities and habitat heterogeneity. *Polar Biology*, **40**, 1385–1392.

1063 Zawierucha, K., Zmudczyńska-Skarbek, K., Guil, N. & Bogdziewicz, M. (2019) Seabirds modify trophic
1064 groups, while altitude promotes xeric-tolerant species of Tardigrada in the high Arctic tundra
1065 (Svalbard archipelago). *Acta Oecologica*, **98**, 50–58.

1066 Zawierucha, K., Zmudczyńska-Skarbek, K., Kaczmarek, Ł. & Wojczulanis-Jakubas, K. (2016) The
1067 influence of a seabird colony on abundance and species composition of water bears
1068 (Tardigrada) in Hornsund (Spitsbergen, Arctic). *Polar Biology*, **39**, 713–723.

1069 Zhang, A., Cadotte, M.W., Wu, D. & Yu, M. (2023) What drives phylogenetic and trait clustering on
1070 islands? *Landscape Ecology*, **38**, 1339–1350.

1071 Zhang, J., Kober, K., Flouri, T. & Stamatakis, A. (2014) PEAR: a fast and accurate Illumina Paired-End
1072 reAd mergeR. *Bioinformatics*, **30**, 614–620.

1073 van Zuijlen, K., Nobis, M.P., Hedenäs, L., Hodgetts, N., Calleja Alarcón, J.A., Albertos, B., Bernhardt-
1074 Römermann, M., Gabriel, R., Garilleti, R., Lara, F., Preston, C.D., Simmel, J., Urmi, E., Bisang, I.
1075 & Bergamini, A. (2023) Bryophytes of Europe Traits (BET) data set: A fundamental tool for
1076 ecological studies. *Journal of Vegetation Science*, **34**, e13179.

1077

1078

1079 **Data availability statement:** The raw sequence reads are deposited in NCBI SRA under accession number
1080 PRJNA1216760 (<https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1216760>).
1081 All data and code are provided as supplementary materials associated with this submission. The data is also
1082 deposited in FigShare under the reference number: <https://doi.org/10.6084/m9.figshare.29153042>.

1083 **Benefit-Sharing Statement:** Benefits from this research accrue from the sharing of our data and results on public
1084 databases as described above.

1085 **Funding statement:** This research was funded by the Sonatina program of the National Science Centre, Poland
1086 (grant no. 2022/44/C/NZ8/00050 to DS)

1087 **Conflict of interest disclosure:** Not applicable.

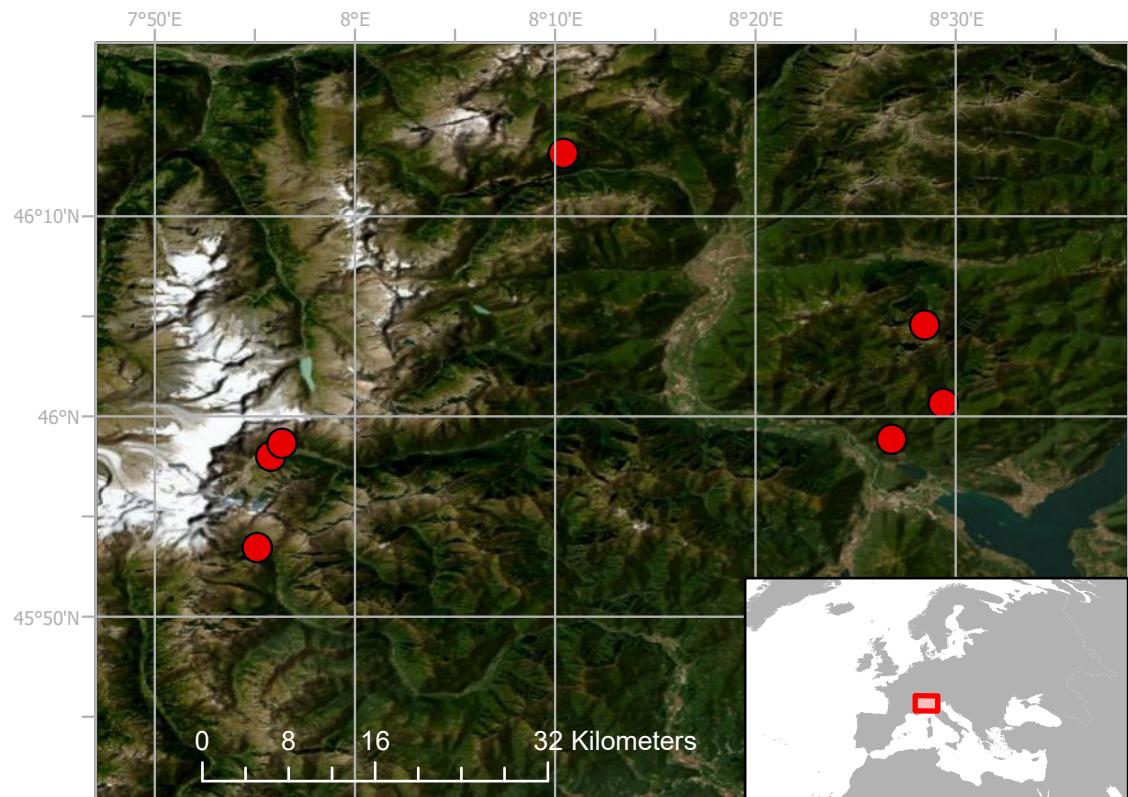
1088 **Ethics approval statement:** Not applicable.

1089 **Patient consent statement:** Not applicable.

1090 **Permission to reproduce material from other sources:** Not applicable.

1091 **Clinical trial registration:** Not applicable.

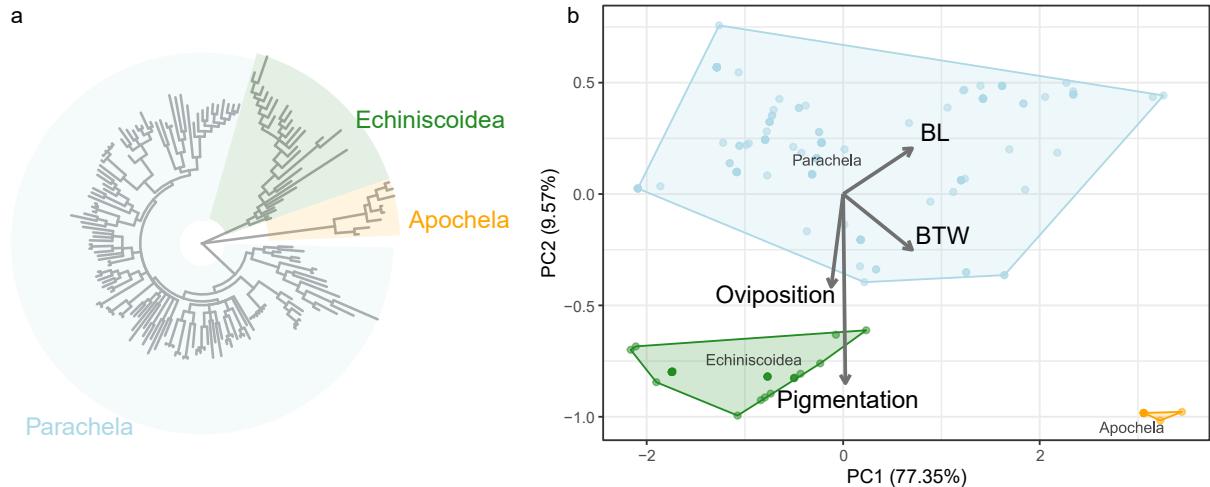
1092 **Authors contribution:** DS conceived and designed the study; DS and DF design and participate in field works;
1093 DS and DF provided resources; DS performed wet-lab part of research; GV identified bryophytes; BS, DS, DF
1094 analyzed data; DS and BS wrote the paper with contributions from DF and GV;


1095 **Tables**

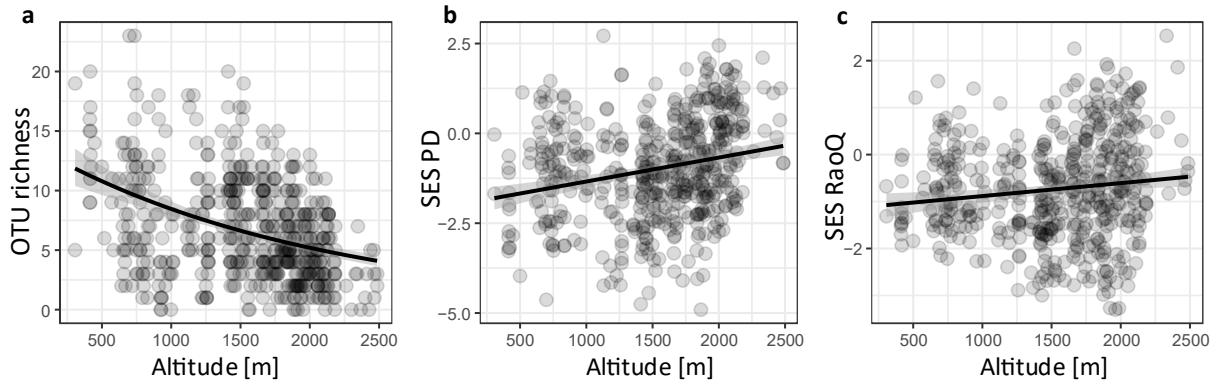
1096 **Table 1.** Summary of explanatory variables tested in our study. DEM - Digital Elevation Model (OpenTopography, 2013); BET - Bryophytes of Europe Traits (van Zuijlen *et*
 1097 *al.*, 2023)

N	Variable	Source	Values	Description
Macroenvironmental predictors				
1	Altitude	field data	305 – 2486 [m asl]	Elevation at which the sample was collected
2	Vegetation type	field data	meadow/mixed_forest/deciduous_forest/coniferous_forest/shrubs	Vegetation-related environment in which the sample was collected
3	Northness	extracted from DEM	[-1 – 1]	Slope orientation at which the sample was collected; cosine-transformed aspect
4	Eastness	extracted from DEM	[-1 – 1]	Slope orientation at which the sample was collected; sine-transformed aspect
5	Geographical coordinates	field data		In the analyses of beta-diversity transformed to dbMEMs
Microhabitat predictors				
6	Sample exposition	field data	shady/exposed	samples were classified as shady if they were collected from beneath a tree, shrub, or rock overhang, where direct sunlight and exposure to open space were obstructed; otherwise scored as exposed
7	Substratum	field data	rock/soil/tree_bark/man_made	substrate on which the bryophyte sample was growing
8	Bryo_species	identification made in this study	103 binominal species names	bryophyte species constituting the sample; each name associated with respective higher taxonomic levels (genus, family, etc.)
9	Size	BET	10.00 – 166.67 mm	mean size of shoot/gametophyte as a proxy for microhabitat size

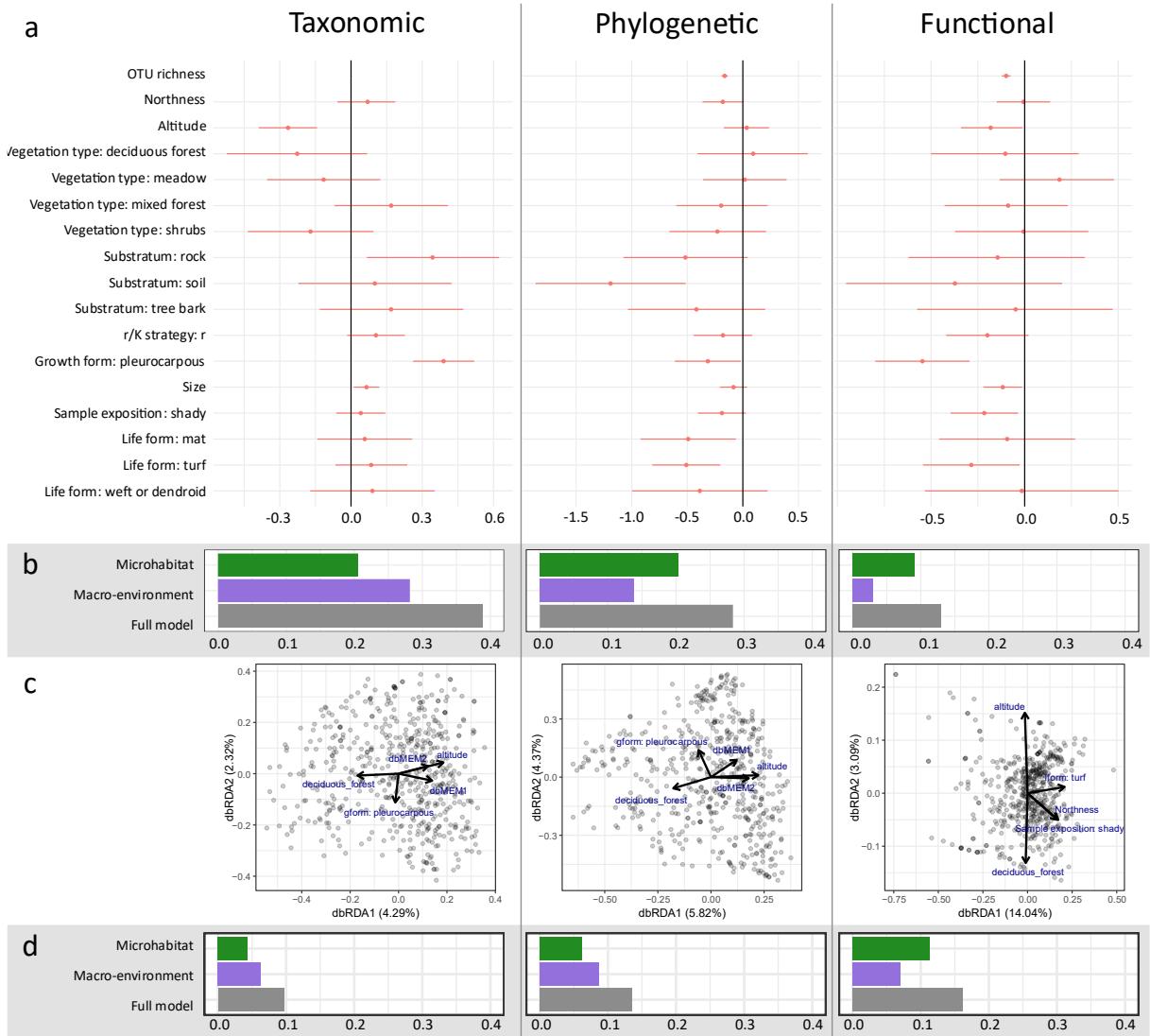
10	Gform	BET	acr (acrocarpous)/ple (pleurocarpous)	bryophyte growth form
11	Lform	BET	cushion/dendroid/mat/turf/weft	bryophyte life form
12	rK	BET	r or K strategy, derived from life strategy: r (lstrat = a/c/f/s), K (lstrat = l/p); a (annual shuttle), c (colonist), f (fugitive), l (long-lived shuttle), p (perennial), s (short-lived shuttle)	bryophyte life strategy – referring mostly to long- (K) and short-lived (r) life strategies
13	indL	BET	1 (deep shade) to 9 (full light), x (indifferent)	indicator value L (light)
14	indT	BET	1 (cold indicator, alpine-nival) to 9 (extreme warmth indicator), x (indifferent)	indicator value T (temperature)
15	indF	BET	1 (extreme dryness) to 9 (wet-site indicator), x (indifferent)	indicator value F (moisture)
16	indR	BET	1 (extreme acidity) to 9 (high pH soils), x (indifferent)	indicator value R (reaction/ acidity)
17	indN	BET	1 (nutrient poorest) to 9 (nutrient richest), x (indifferent)	indicator value N (nutrients)


1099 **Figure legends and embedded figures**

1100

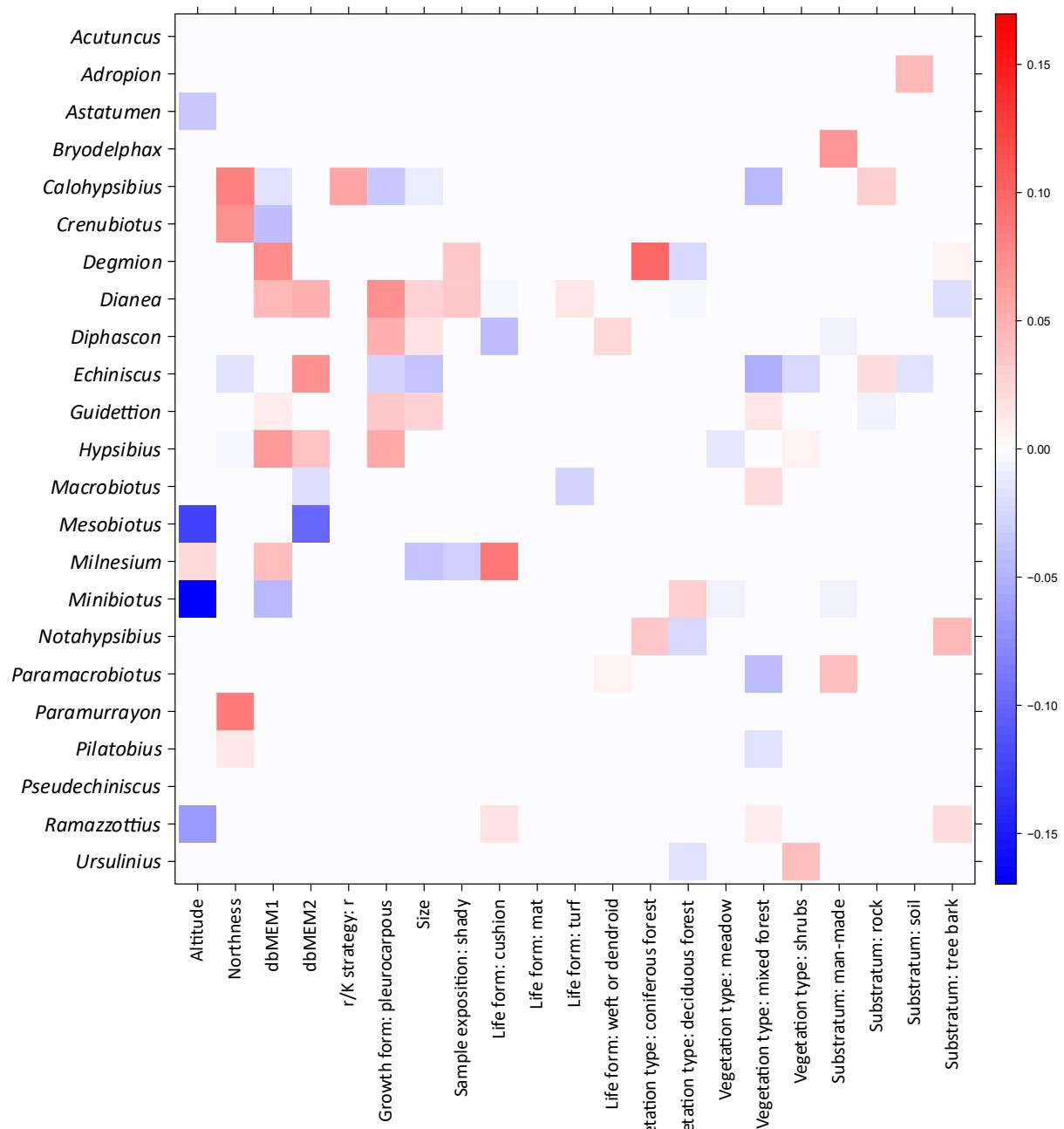

1101 **Figure 1.** Study area. Red dots correspond to the locations of the seven transects. Source of background satellite
1102 imagery: Earthstar Geographics.

1103



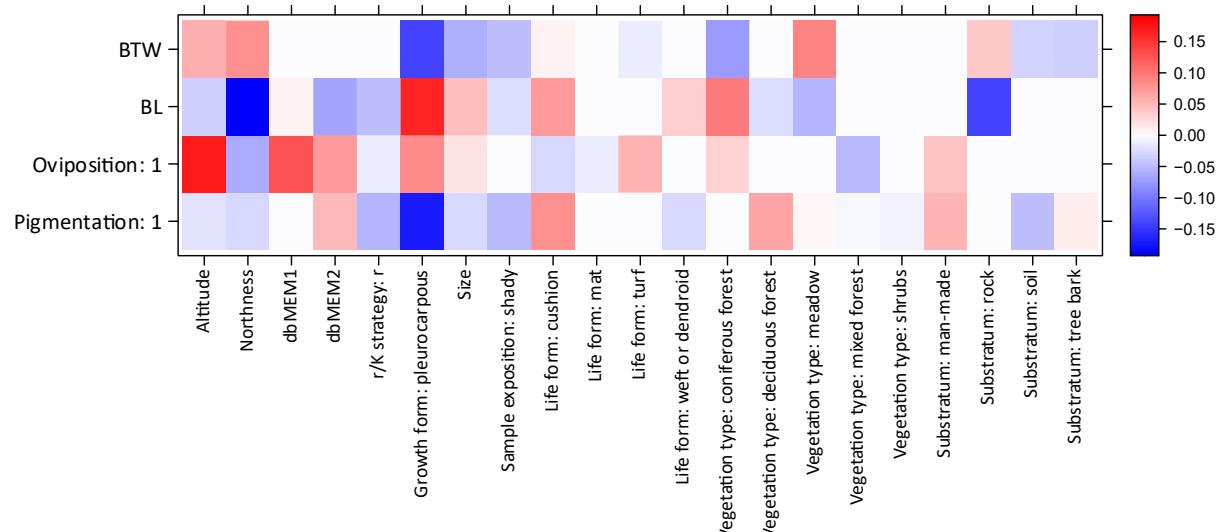
1104
1105
1106
1107
1108

Figure 2. Overview of the datasets: (a) phylogenetic tree of OTU reference sequences classified as Tardigrada detected in the metabarcoding data; (b) PCA biplot of the trait dataset. Colors in both panels correspond to OTU taxonomic classification to the order level.


1109
 1110 **Figure 3.** Patterns of three aspects of tardigrade diversity along the altitudinal gradient: (a) taxonomic diversity
 1111 (OTU richness); (b) standardized phylogenetic diversity; and (c) standardized functional diversity. The regression
 1112 lines and 95% confidence intervals represent the coefficients of univariate models with altitude as the sole predictor
 1113 (a negative binomial GLM for taxonomic diversity and linear models for phylogenetic and functional diversity).
 1114

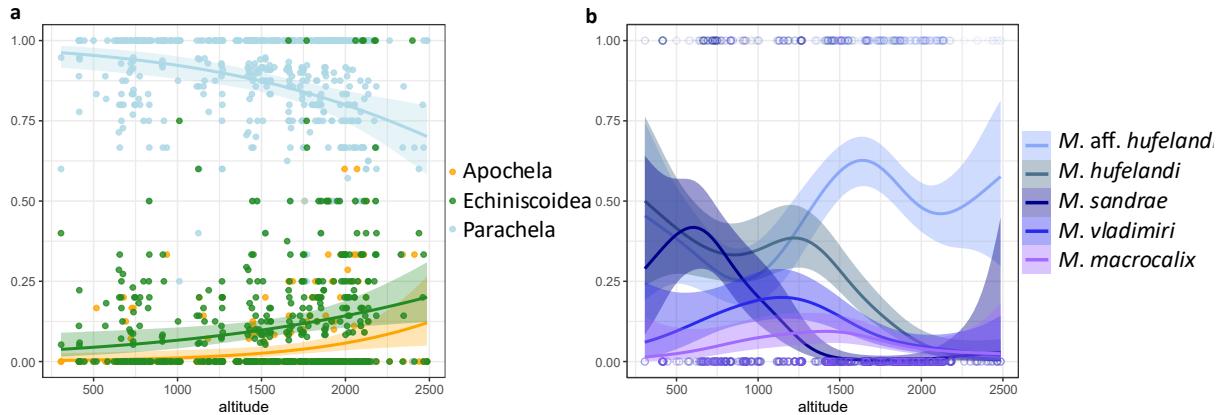
1115

1116 **Figure 4.** Summary of models linking alpha and beta diversity of tardigrade communities with
 1117 macroenvironmental and microhabitat variables using taxonomic, phylogenetic, and functional diversity measures.
 1118 Panel **a** shows the coefficients from the full models for alpha diversity. Points represent model estimates, with
 1119 horizontal bars indicating 95% confidence intervals. Panel **b** compares pseudo- R^2 values for microhabitat,
 1120 macroenvironment, and full models explaining alpha diversity patterns. Panel **c** presents dbRDA biplots illustrating
 1121 beta diversity patterns (five variables with the highest vector length are displayed in each plot), and panel **d**
 1122 compares adjusted R^2 values (R^2_{adj}) for microhabitat, macroenvironment, and full models explaining beta diversity
 1123 patterns.


1124

1125

1126 **Figure 5.** Responses of tardigrade genera (presence–absence data) to environmental covariates, as revealed by a
 1127 multivariate species distribution model with LASSO penalty. Values represent model coefficients, with colors
 1128 indicating the effect sizes on the occurrence probabilities of each genus. Shaded cells denote positive (red) or
 1129 negative (blue) associations between taxa and environmental variables, with shading intensity corresponding to
 1130 the strength of the association.


1131

1132

1133 **Figure 6.** Results of the fourth-corner analysis of tardigrade traits, showing standardized coefficients for all
 1134 environment-trait interaction terms from generalized linear models with LASSO regularization. Shaded cells
 1135 represent positive (red) or negative (blue) associations between traits and environmental predictors, with shading
 1136 intensity indicating the strength of the association.

1137

1138

1139 **Figure 7.** Altitudinal patterns of selected tardigrade taxa, illustrating the overall taxonomic and phylogenetic
 1140 diversity trends found in the study. (a) trends of the relative share of tardigrade orders within communities: logistic
 1141 regression curves with 95% confidence bands; (b) altitudinal distribution of the five most common *Macrobiotus*
 1142 OTUs: GAM splines with 95% confidence intervals.

1143

1144

1145 **Supporting information**
1146
1147 **SM.1:** Sample information: collection data and all tested variables
1148
1149 **SM.2:** Models' results and additional figures supporting the analyses:
1150 **Figure S2.1** – Species accumulation curve showing the total number of tardigrade OTUs in random subsets
1151 of samples of a given size from a study area, calculated using 999 permutations.
1152 **Figure S2.2** – Left panel - Correlation analysis of indicator values and moss growth forms, right panel -
1153 comparison of indicator values for reaction (indR) and moss growth forms.
1154 **Table S2.1** – Summary of the regression model of tardigrade taxonomic diversity (OTU richness) –
1155 negative binomial GLM.
1156 **Table S2** – Summary of the regression model of tardigrade phylogenetic diversity (standardized Faith's
1157 PD).
1158 **Table S2.3** – Summary of the regression model of tardigrade functional diversity (standardized Rao's Q).
1159 **Table S2.4** – Model results for taxonomic alpha diversity (microhabitat model, spaMM::fitme). Model
1160 formula: OTU_Richness ~ substratum + rK + gform + size + Sample_exposition + lform, family:
1161 negbin2(shape=1e+06)(link = log), N=546, Conditional AIC: 2955.434.
1162 **Table S2.5** – Model results for taxonomic alpha diversity (macroenvironment model - spatial,
1163 spaMM::fitme). Model formula: OTU_Richness ~ Northness + altitude + Vegetation type +
1164 Matern(1|latitude + longitude), family: negbin2(shape=1e+06)(link = log), N=546, Conditional AIC:
1165 2839.242. Random effect correlation parameters: nu=0.373 rho = 375.64, random effect variance
1166 parameter 'lambda'=0.116.
1167 **Table S2.6** – Model results for taxonomic alpha diversity (full model - spatial, spaMM::fitme). Model
1168 formula: OTU_Richness ~ Northness + altitude + Vegetation type + substratum + rK + gform + size +
1169 Sample_exposition + lform + Matern(1|latitude + longitude), family: negbin2(shape=1e+06)(link = log
1170), N=546, Conditional AIC: 2721.869. Random effect correlation parameters: nu=0.22 rho =563.6,
1171 random effect variance parameter 'lambda'=0.1384
1172 **Table S2.7** – Model results for the standardized effect size of Faith's Phylogenetic Diversity – SES_PD
1173 (microhabitat model, spaMM::fitme). Model formula: SES_PD ~ substratum + rK + gform + size +
1174 Sample_exposition + lform, family: gaussian, N=500, Conditional AIC: 1513.089.
1175 **Table S2.8** – Model results for the standardized effect size of Faith's Phylogenetic Diversity – SES_PD
1176 (macroenvironment model - spatial, spaMM::fitme). Model formula: SES_PD ~ Northness + altitude +
1177 Vegetation type + Matern(1|latitude + longitude), family: gaussian, N=500, Conditional AIC: 1531.841.
1178 Random effect correlation parameters: nu=16.66 rho =2818.9, random effect variance parameter
1179 'lambda' = 0.066.
1180 **Table S2.9** – Model results for the standardized effect size of Faith's Phylogenetic Diversity – SES_PD
1181 (full model - spatial, spaMM::fitme). Model formula: SES_PD~ Northness + altitude + Vegetation type
1182 + substratum + rK + gform + size + Sample_exposition + lform + Matern(1|latitude + longitude), family:
1183 gaussian, N=500, Conditional AIC: 1501.146. Random effect correlation parameters: nu=16.66 rho
1184 =2955.3, random effect variance parameter 'lambda'=0.0514.
1185 **Table S2.10** – Model results for the standardized effect size of Rao's Quadratic Entropy – Rao_Q
1186 (microhabitat model, spaMM::fitme). Model formula: Rao_Q ~ substratum + rK + gform + size +
1187 Sample_exposition + lform, family: gaussian, N=500, Conditional AIC: 1344.479.
1188 **Table S2.11** – Model results for the standardized effect size of Rao's Quadratic Entropy – Rao_Q
1189 (macroenvironment model - spatial, spaMM::fitme). Model formula: Rao_Q ~ Northness + altitude +
1190 Vegetation type + Matern(1|latitude + longitude), family: gaussian, N=500, Conditional AIC: 1375.112.
1191 Random effect correlation parameters: nu=2.926 rho =17290.2, random effect variance parameter
1192 'lambda'=0.070.
1193 **Table S2.12** – Model results for the standardized effect size of Rao's Quadratic Entropy – Rao_Q (full
1194 model - spatial, spaMM::fitme). Model formula: Rao_Q~ Northness + altitude + Vegetation type +
1195 substratum + rK + gform + size + Sample_exposition + lform + Matern(1|latitude + longitude), family:
1196 gaussian, N=500, Conditional AIC: 1342.810. Random effect correlation parameters: nu=16.66 rho
1197 =6370.2, random effect variance parameter 'lambda'=0.050

Table S2.13 – Results of the permutation test for the db-RDA model using 999 permutations for taxonomic beta diversity (Jaccard dissimilarities).

Table S2.14 – Results of the permutation test for the db-RDA model using 999 permutations for phylogenetic beta diversity (unweighted Unifrac distances).

Table S2.15 – Results of the permutation test for the db-RDA model using 999 permutations for functional beta diversity (Euclidean distances between community-weighted means).

Table S2.16 – Analysis of deviance table for multivariate generalized model fits comparing the model including bryophyte species

(Y~altitude+Northness+dbMEM1+dbMEM2+Vegetation type+Sample exposition+substratum +Bryophyte species) to the model with bryophyte traits only (Y~altitude+Northness+dbMEM1+dbMEM2+Vegetation type+Sample exposition+Growth form+Size+Life form+r/K strategy+substratum) calculated using 999 iterations of PIT-trap resampling.

Table S2.17 – Analysis of deviance for the multivariate generalized linear model (GLM) linking environmental variables to tardigrade OTU distributions. Test statistics were calculated using 999 iterations of PIT-trap resampling using likelihood ratio test with a multivariate GLM explaining the deviance as a measure of the quality-of-fit as well as the residual degree of freedom (Res.Df).

SM.3: Archive including pipelines and raw data used for the analysis (Metabarcoding_pipeline.html, Statistical_procedures.html, Phylogenetic_tree.tre, OTU_table.xlsx, OTU_x_trait_matrix.xlsx, Sample_data.xlsx, Metadata.xlsx).

SM.4: Tardigrade traits data.

1220
1221
1222