
 1 

Title: Business as usual will commit biodiversity to genetic erosion: parallels from 1 

climate change for proactive conservation 2 

 3 

Running title: Committed genetic erosion and climate parallels 4 

 5 

Contact Information 6 

Corresponding author: Robyn E. Shaw, robyn.shaw@canberra.edu.au  7 

 8 

Authors 9 

Robyn E. Shaw1, Carole P. Elliott2, Joachim Mergeay3,4, Gernot Segelbacher5, Robert Blasiak6, 10 

David J. Coates2,7, Jessica M. da Silva8,9, Katherine A. Farquharson10,11, Sean Hoban12,13, Albert 11 

Norström6,14, Kym Ottewell2, Sibelle T. Vilaça15, Peter Bridgewater16, Ancuta Fedorca17, 12 

Christina Hvilsom18, T. Hefin Jones19, Francine Kershaw20, Sarah Kirkpatrick21,22, Linda 13 

Laikre23, Anna J. MacDonald24, Alicia Mastretta-Yanes25, Mariah Meek26, Cinnamon Mittan-14 

Moreau27, Isa-Rita M. Russo19, Catherine E. Grueber10 15 

 16 

Institutional affiliations 17 

1. Centre for Conservation Ecology and Genomics, University of Canberra, Canberra, Australian Capital Territory, 18 

Australia. 19 

2. Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, 20 

Western Australia, Australia. 21 

3. Research Institute for Nature and Forest, Belgium. 22 

4. Ecology, Evolution and conservation, KU Leuven, Belgium. 23 

mailto:robyn.shaw@canberra.edu.au


 2 

5. Wildlife Ecology and Management, University Freiburg, Germany. 24 

6. Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden. 25 

7. School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia. 26 

8. South African National Biodiversity Institute, Kirstenbosch Research Centre, Newlands, Cape Town, South 27 

Africa. 28 

9. Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of 29 

Johannesburg, Auckland Park, Johannesburg, South Africa. 30 

10. School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New 31 

South Wales, Australia. 32 

11. Koala Conservation Australia, Port Macquarie, New South Wales, Australia. 33 

12. The Morton Arboretum, Lisle, USA. 34 

13. The University of Chicago, Chicago, USA. 35 

14. Future Earth Secretariat, Stockholm, Sweden. 36 

15. Vale Institute of Technology, Belém, PA, Brazil. 37 

16. Institute for Applied Ecology, University of Canberra, Australia. 38 

17. National Institute for Research and Development in Forestry, Romania. 39 

18. Globe Institute, University of Copenhagen, Denmark. 40 

19. School of Biosciences, Sir Martin Evans Building, Cardiff University, Wales, United Kingdom. 41 

20. Natural Resources Defense Council, 40 W. 20th St., New York, NY, USA. 42 

21. ARC Centre of Excellence for 21st Century Weather, Australian National University, Acton, Canberra, 43 

Australia. 44 

22. Fenner School of Environment and Society Australian National University, Acton, Canberra, Australia. 45 

23. Department of Zoology, Stockholm University, Sweden. 46 

24. Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, 47 

Tasmania, Australia. 48 

25. Royal Botanic Gardens, Kew, Richmond, United Kingdom. 49 

26. The Wilderness Society, Bozeman, MT, USA. 50 

27. Michigan State University, Kellogg Biological Station, Hickory Corners, MI, USA. 51 



 3 

 52 

Abstract 53 

Biodiversity and climate resilience are tightly linked. Genetic diversity enables species to adapt 54 

in a rapidly changing world, yet its loss (genetic erosion) remains the least visible dimension of 55 

the biodiversity crisis. Although climate science has long recognised that past emissions can lock 56 

in future climate impacts (“committed climate change”), the idea that biodiversity also faces 57 

future, lagged losses is less embedded in policy and public discourse. Past and ongoing habitat 58 

loss, fragmentation, and population declines have, however, already committed many species to 59 

future genetic erosion, with losses that may be undetectable today being capable of precipitating 60 

species extinctions and ecosystem collapse. To highlight the urgency of this issue, we 61 

conceptualise “committed genetic erosion” using four climate science parallels. First, just as the 62 

climate system is showing clear signals of change, genetic erosion is already occurring across 63 

regions and taxa, including non-threatened species. Second, like inertia in the climate system, 64 

biological inertia creates time lags between demographic decline and genetic erosion, effectively 65 

locking in further loss under business as usual. Third, just as climate science relies on indicators 66 

and forecasting tools, genetic indicators and forward-looking simulations can identify risk, 67 

quantify committed genetic erosion, and project future trajectories under alternative management 68 

pathways. Fourth, both the climate and biodiversity crises require ambitious action that addresses 69 

root causes. Proactively maintaining large, connected populations, and enabling carefully 70 

designed genetic rescue, provide proven, effective interventions for maintaining species’ 71 

resilience, unlike reactive strategies or speculative technological fixes. Because genetic inertia 72 

operates locally, the lag period offers a critical window for intervention. This is a strategic 73 
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advantage we cannot afford to miss: acting early and placing genetic diversity at the centre of 74 

biodiversity management can safeguard the adaptive potential of life on Earth. 75 

Keywords 76 

Adaptive capacity, biodiversity crisis, biodiversity policy, climate crisis, climate policy, 77 

extinction debt, extinction vortex, fragmentation, genetic rescue, tipping points 78 

 79 

Introduction: Biodiversity and climate, two interlinked crises 80 

A rapidly changing world is increasing the need for resilient species that can adapt to new 81 

environments. Climate change and biosphere integrity, encompassing genetic diversity, are 82 

recognised as key dimensions of planetary stability, and current trends indicate that both are 83 

operating beyond safe limits for humanity (Richardson et al., 2023). Genetic diversity provides 84 

the foundation for adaptive capacity, enabling species and the ecosystems they comprise to 85 

persist through change. Yet despite being highlighted for decades (Frankel, 1974), genetic 86 

diversity remains the least visible dimension in biodiversity policy and public discourse, and is 87 

the domain most recently integrated into global biodiversity frameworks. For example, the 88 

United Nations (UN) Convention on Biological Diversity (CBD) Kunming-Montreal Global 89 

Biodiversity Framework (GBF) now explicitly includes maintaining the adaptive potential of all 90 

species’ populations as part of its goals and targets (Convention on Biological Diversity, 2022), 91 

marking unprecedented political recognition of genetic processes in nature.  92 

Recognition of the importance of genetic diversity has come after decades of addressing global 93 

environmental change through separate climate and biodiversity agendas (Pettorelli et al., 2021; 94 

Richardson et al., 2023). The UN CBD and the UN Framework Convention on Climate Change 95 



 5 

(UNFCCC) were signed in 1992 as sister conventions (ratified in 1993 and 1994, respectively, 96 

ipbes.net). Yet, their trajectories have diverged. The UNFCCC gained momentum through strong 97 

scientific leadership (e.g., Bolin, 1991) and a clear global narrative shaped by the 98 

Intergovernmental Panel on Climate Change (IPCC). In contrast, scientific input into biodiversity 99 

policy evolved more slowly through the CBD Subsidiary Body on Scientific, Technical and 100 

Technological Advice (SBSTTA; Koetz et al., 2008; Laikre et al., 2008), and later through the 101 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES; 102 

established 2012, first global assessment 2019), which has broadened the information available to 103 

the CBD. This imbalance has contributed to less public attention and weaker implementation of 104 

biodiversity policy than of climate policy (Mace et al., 2018; Pörtner et al., 2021). Today, calls to 105 

enhance coherence among these frameworks, and recent collaborations between IPBES and the 106 

IPCC, signal renewed recognition that the solutions to climate and biodiversity loss are 107 

inseparable (IPBES, 2024; Pörtner et al., 2021).  108 

Climate science offers important lessons for biodiversity policy, including the mechanistic 109 

concept of commitment: the idea that past emissions and the inertia of the Earth system 110 

predetermine aspects of future change. This does not mean that global temperature will keep 111 

rising indefinitely if emissions cease; rather, it refers to impacts already locked in by past 112 

warming, such as ongoing sea level rise, ice-sheet melt, and thawing permafrost (Abram et al., 113 

2025; IPCC, 2023; Schuur et al., 2015). Components of the climate system are also thought to 114 

include critical thresholds that, if breached, would trigger large, irreversible changes (Armstrong 115 

McKay et al., 2022). Whether “committed climate change” will force the Earth system beyond 116 

these tipping points is the subject of intense concern and scholarship (Steffen et al., 2018). 117 
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A clear parallel exists for biodiversity. Habitat loss, fragmentation, and over-exploitation have 118 

driven elevated extinction rates and reduced many remaining species to small, isolated 119 

populations (Pimm et al., 2014; Ralls et al., 2018). Persistent small population sizes set in motion 120 

an extinction vortex: a reinforcing cycle of genetic loss and population decline (Figure 1; Gilpin 121 

& Soulé, 1986). In this feedback loop, stochastic effects (genetic drift) and inbreeding can result 122 

in an accumulation of harmful mutations and lowered individual reproductive fitness and survival 123 

(inbreeding depression), in turn driving further declines in population size. Genetic diversity can 124 

continue to erode even after threats are mitigated or population numbers appear stable (Figure 1 – 125 

maintenance trajectory; Gargiulo et al., 2025; Mualim et al., 2025; Pinto et al., 2024). Indeed, 126 

even if a population grows in size, some life-history traits (e.g., long generation length) create 127 

biological inertia, producing a lag in which past impacts continue to define the future state of 128 

populations long after disturbance (Gargiulo et al., 2025; Kurland et al., 2023). Over generations, 129 

these processes can intensify, leading to irreversible loss of genetic variation and, ultimately, 130 

species extinction (Frankham et al., 2017). This “genetic extinction debt” represents the first 131 

stage of a broader extinction trajectory, reflecting similar time-lagged dynamics that underlie 132 

“extinction debt”: situations in which species are likely to go extinct in the future because 133 

environmental conditions can no longer support long-term persistence (Hanski & Ovaskainen, 134 

2002; Tilman et al., 1994).  135 

The concept of committed climate change has mobilised consensus and action by underscoring a 136 

critical insight: delayed action locks in future impacts. Therefore, to motivate policy discussions 137 

and communicate urgency in the biodiversity sphere, we propose the term “committed genetic 138 

erosion” to describe the future loss of genetic diversity already set in motion by past demographic 139 

and landscape change. Like committed climate change, committed genetic erosion arises from 140 
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inertia and time lags, rather than inevitable global outcomes (Gargiulo et al., 2025); however, it 141 

differs from the climate concept in two critical respects. Climate inertia locks in regional to 142 

global impacts that are largely irreversible on human timescales (King et al., 2024; Perkins-143 

Kirkpatrick et al., 2025), whereas genetic inertia operates at the local scale and can, to a certain 144 

degree, still be altered through timely intervention (Box 1). These attributes offer a window of 145 

opportunity: targeted interventions can often attenuate the realisation of committed genetic 146 

erosion. In this sense, the outcomes of ambitious action for biodiversity can be more immediate 147 

and tangible than in climate systems. This tractability is a strategic advantage that conservation 148 

policy and planning must now embrace.  149 

Here we use climate science as a scaffold to re-frame conservation of genetic diversity and 150 

explore the idea of committed genetic erosion through four parallels: (1) multiple lines of 151 

evidence show change is already occurring; (2) time lags mean that further change is committed 152 

under business as usual; (3) we can measure, track, and forecast risk to guide early action; and (4) 153 

proactive measures are needed that address root causes. The need for action is supported by 154 

strong evidence, broad consensus, and increasingly sobering predictions for the future (Exposito-155 

Alonso et al., 2022; Gargiulo et al., 2025; Hoban et al., 2021; Shaw et al., 2025). Business as 156 

usual, primarily reactive conservation (acting only after loss is observed; Figure 1), could lead to 157 

a future of ongoing genetic loss that cascades into species extinction, triggering broader 158 

biodiversity collapse. By recognising the scale of this challenge and the importance of early 159 

action, we hope to catalyse the long-called-for paradigm shift in conservation practice (Ralls et 160 

al., 2018), placing genetic diversity at the core of biodiversity conservation strategies.  161 
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 162 

Parallel 1: Change is happening now 163 

Human-caused climate change is now undeniable. Human activities have unequivocally warmed 164 

the planet, with the long-term global surface temperature trend now estimated at 1.34–1.41 °C 165 

above the 1850–1900 baseline (WMO, 2025). Continued greenhouse gas emissions are driving 166 

widespread and rapid changes across the atmosphere, ocean, cryosphere, and biosphere, and 167 

climate change is influencing weather and climate extremes in every region of the world (IPCC, 168 

2023). 169 

Like climate change, multiple lines of evidence show that major genetic erosion of species is 170 

underway. This is true for a wide range of taxa and regions, even over just a few generations, and 171 

even for species not currently considered threatened (Mastretta-Yanes et al., 2024; Schmidt et al., 172 

2023; Shaw et al., 2025). This trend aligns with recent studies on North American birds and 173 

mammals (Schmidt et al., 2020), global plant populations (González et al., 2020), and global 174 

predictions suggesting more than 10 % of genetic diversity may already be lost (Exposito-Alonso 175 

et al., 2022). The widespread signal of genetic erosion, even over short time frames, suggests that 176 

substantial population size declines are driving this loss.  177 

Shaw et al. (2025) found that genetic diversity loss was most pronounced where land use change, 178 

disease, abiotic disturbances (e.g., wildfire, floods), and harvesting or harassment (e.g., hunting, 179 

logging, stressing) occurred. Many species now persist in small, fragmented populations 180 

(Frankham, 2022). These conditions are expected to erode genome-wide diversity and increase 181 

inbreeding (Soulé, 1980); predictions well-supported by experimental data (Montgomery et al., 182 

2000; Rich et al., 1979), and real-world observations (e.g., Figure 2; Hoelzel et al., 2024; Ralls et 183 



 9 

al., 2018). A recent global assessment of genetic indicators across 5,271 populations also found 184 

that while the majority of species maintain most of their historic populations (for now), for 58 % 185 

of species assessed, all populations were too small to sustain genetic diversity over time; thus 186 

reducing their adaptive capacity (Mastretta-Yanes et al., 2024). Massive population losses could 187 

follow in the near-term, even triggering extinction vortices for many taxa (Figure 1; Gilpin & 188 

Soulé, 1986).  189 

Human-induced changes can create conditions for rapid evolutionary responses (IPBES, 2019), 190 

but the capacity for such adaptation depends largely on existing (standing) genetic variation 191 

(Allendorf et al., 2024; Mergeay, 2024). The kelp (Ecklonia radiata) forests of Western 192 

Australia, where the interdisciplinary study of marine heatwaves emerged (e.g., Hobday et al., 193 

2016), provides a well-documented example. In 2011, a marine heatwave caused widespread kelp 194 

canopy loss. Populations with higher genetic diversity were more likely to persist through the 195 

event, while low-diversity stands collapsed (Wernberg et al., 2018). In the following years, 196 

recovery was aided by recolonisation from nearby forests, with high connectivity enabling the 197 

gene flow needed to maintain diversity and support adaptation to warming conditions (Vranken 198 

et al., 2025). These studies show that genetic diversity and gene flow are essential for persistence 199 

and resilience under accelerating change. Genetic diversity thus comprises the within-species 200 

component of “response diversity”, a key aspect of ecological resilience that reflects the capacity 201 

of populations to respond differently to environmental change (Nadeau & Urban, 2019; Walker et 202 

al., 2023). Managing diversity and connectivity is central to maintaining such flexibility and is a 203 

cornerstone of “resilience thinking” in ecosystem management (Biggs et al., 2012). Thus, 204 

conserving genetic diversity is fundamental to conserving species and ecosystems, and ensuring 205 

their long-term resilience (Figure 1). Because the recovery of diversity through mutation often 206 



 10 

requires hundreds or thousands of generations (Lande & Barrowclough, 1987), preventing 207 

genetic erosion is critical (Figure 2).  208 

 209 

Parallel 2: Change will continue under business as usual 210 

Many human-driven climate change impacts are locked in for decades to millennia, even under 211 

rapid emissions reduction scenarios (Abrams et al., 2023; IPCC, 2023). Because of the thermal 212 

inertia of the climate system, global temperatures are expected to continue rising for several 213 

decades even if greenhouse gas concentrations were stabilised today (Abrams et al., 2023). Some 214 

scenarios even involve a temporary “overshoot”, where temperatures exceed 1.5–2 °C before 215 

later declining through mitigation, yet many ecosystems will not return to their prior states once 216 

thresholds are crossed (Abrams et al., 2023; Armstrong McKay et al., 2022). Under current 217 

national commitments (business as usual), critical thresholds for several major tipping elements 218 

are likely to be crossed this century, including the loss of Greenland and West Antarctic ice 219 

sheets, the Amazon rainforest, permafrost carbon stores, and tropical coral reefs (Abram et al., 220 

2025; Abrams et al., 2023; Armstrong McKay et al., 2022; IPCC, 2023; Steffen et al., 2018). 221 

Once these thresholds are transgressed, self-reinforcing feedbacks could drive cascading and 222 

irreversible impacts (Armstrong McKay et al., 2022; IPCC, 2023; Schuur et al., 2015; 223 

Wunderling et al., 2023). 224 

Similar lagged responses also occur in biological systems, including in population-level genetic 225 

processes. The effective population size (Ne) is the genetic analogue of census size (Nc); where 226 

Nc shapes the ecological dynamics of a population, Ne captures its evolutionary dimensions, 227 

determining the strength of genetic drift and the resulting rates of inbreeding accumulation and 228 
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genetic diversity loss (Waples, 2025). Theoretical models predict that the time it takes for genetic 229 

diversity loss to manifest fully after a demographic decline is on the order of 2Ne generations 230 

(Crow & Aoki, 1984). For many populations and species, this corresponds to hundreds to 231 

thousands of generations. This means that genetic erosion may go undetected long after 232 

populations begin to decline, potentially giving the false impression that genetic diversity is 233 

stable (Lande, 1988). Global genetic diversity losses of 13–22 % have been estimated relative to 234 

a recent (~50-year) baseline, and long-term losses are forecast to reach 41–76 %, even if 235 

population numbers stabilise (Mualim et al., 2025).  236 

Species with large populations and broad distributions can hold a reservoir of genetic diversity 237 

that masks local losses, and seed banks and dormant life stages can retain genetic signatures of 238 

past conditions (Plue et al., 2017; Staude et al., 2020). For example, genetic diversity was 239 

apparently maintained over time in taxa with historically large and/or widely distributed 240 

populations, such as insects (including bees and flies), ray-finned fishes (pelagic and migratory), 241 

and dicotyledonous plants (Shaw et al. 2025). But these groups may still be at risk - now or in the 242 

future - if large demographic changes occur. Similarly, in long-lived species, even substantial risk 243 

of genetic erosion may not be detectable over relatively short-term sampling periods (Gargiulo et 244 

al., 2025), potentially leading to underestimates of extinction risk.  245 

These lagged genetic responses mirror climate dynamics, where gradual change can culminate in 246 

abrupt, often irreversible shifts. As resilience declines, stressors may tip an already vulnerable 247 

system into collapse. For example, long-term climatic “presses” (e.g., gradual warming or drying) 248 

interacting with short-term “pulses” (e.g., droughts or fires) can trigger abrupt transitions, as seen 249 

in population collapses and regime shifts worldwide (Biggs et al., 2018; Harris et al., 2018). 250 

Similar dynamics may have contributed to the extinction of the woolly mammoth (Mammuthus 251 
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primigenius) on Wrangel Island, which lacked human occupation (Dehasque et al., 2024). 252 

Ancient DNA revealed a severe population bottleneck followed by demographic recovery, but 253 

eventual collapse. Hundreds of generations of inbreeding and the accumulation of mildly 254 

deleterious mutations may have left the population close to a tipping point (Dehasque et al., 255 

2024). Such processes also occur in agriculture, where selective breeding reduces genetic 256 

diversity and heightens disease vulnerability, as seen in the devastating effects of southern corn 257 

leaf blight on maize in the USA (Strange & Scott, 2005). 258 

The consequences of genetic erosion can also feed back into, and exacerbate, climate and 259 

ecosystem processes. Increasing evidence shows that transgressing key planetary boundaries, 260 

whether related to climate change or to the wider biosphere, can amplify risks across domains 261 

(Richardson et al., 2023). Genetic diversity is a key component of biosphere function, and its 262 

erosion can weaken both ecological and climate resilience. For example, black spruce (Picea 263 

mariana) is projected to experience slower growth due to warming, threatening its carbon 264 

sequestration capacity. Genetic diversity may enable local adaptation to these conditions (Robert 265 

et al., 2024), but loss of this adaptive capacity may have cascading effects for carbon 266 

sequestration and climate dynamics. 267 

While some committed climate change impacts will play out over centuries to millennia, giving 268 

society the opportunity to plan and adapt, others are likely in the coming decades (Abrams et al., 269 

2023; IPCC, 2023). Similarly, committed genetic erosion represents an imminent and 270 

compounding hazard (Exposito-Alonso et al., 2022; Shaw et al., 2025). Acting early and within 271 

this lag period, can prevent irreversible losses of adaptive potential before they cascade into 272 

species extinctions, disruptions to agriculture, ecosystem collapse, and broader climate 273 

instability. 274 
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 275 

Parallel 3: We can forecast risk to guide early action 276 

By the time genetic erosion is measurable, species are already at heightened risk of extinction, 277 

even if demographic recovery occurs (Figure 2). Once genetic variants (alleles) are lost from all 278 

populations, they are effectively irrecoverable on management timescales and long-term adaptive 279 

potential is permanently reduced (Allendorf et al., 2024; Lande & Barrowclough, 1987). 280 

Preventing committed genetic erosion means identifying at-risk species before loss occurs, and 281 

intervening while genetic diversity can still be restored. Preventing further erosion once it has 282 

begun also remains an important and often necessary goal (Figure 1). 283 

Detecting the warning signs of committed genetic erosion requires monitoring both genetic and 284 

demographic indicators. Ecological evidence, such as population decline, habitat fragmentation, 285 

or reduced dispersal, signals that genetic extinction debt is accumulating (O’Brien et al., 2022). 286 

Such trends are already reflected in major extinction-risk frameworks, including the IUCN Red 287 

List. However, a population’s genetic diversity does not always align with Red List status 288 

(Mastretta-Yanes et al., 2024; McLaughlin et al., 2025; Schmidt et al., 2023). This mismatch may 289 

be consistent with the expected lag between population decline and detectable genetic erosion. 290 

Where genetic or genomic data exist, genetic metrics (Box 1) can reveal reduced gene flow, 291 

bottlenecks, recent inbreeding or other early signals that genetic erosion is already underway, 292 

even when overall diversity appears superficially stable (Gargiulo et al., 2025; McLaughlin et al., 293 

2025).  294 

Correctly interpreting genetic statistics as rates of loss, and thus measures of risk, requires clear 295 

baselines. Without this, we risk accepting current, degraded conditions as the new norm 296 



 14 

(“shifting-baseline syndrome”; Lotze & Worm, 2009; Pauly, 1995). Establishing consistent, 297 

globally comparable reference points is therefore critical for detecting the consequences of 298 

demographic stress early and enabling more proactive, targeted responses. Inspired by Essential 299 

Climate Variables (ECVs; GCOS, 2010), biodiversity scientists developed Essential Biodiversity 300 

Variables (EBVs; Pereira et al., 2013) to quantify and report biological change worldwide. In the 301 

genetic domain, EBVs formalise key population genetic measures (Hoban et al., 2022), 302 

translating heterogeneous datasets into comparable metrics and providing a common language for 303 

monitoring across species and regions. As with ECVs, some EBVs have been translated into 304 

simplified indicators, with clear thresholds for decision-makers. Genetic diversity indicators, 305 

such as the proportion of populations within a species that are sufficiently large to maintain 306 

genetic diversity (Ne > 500), and the proportion of populations maintained (Hoban et al., 2021), 307 

provide a simple yet powerful way to track genetic extinction debt and the extent to which 308 

populations have already fallen below levels needed to sustain adaptive potential. These 309 

indicators are already being implemented in policy under the CBD (Convention on Biological 310 

Diversity, 2022) and the EU Habitats Directive (O’Brien et al., 2025), although genetic diversity 311 

remains absent from major restoration frameworks (Ngeve, 2025). Although thresholds in other 312 

EBVs such as heterozygosity and habitat fragmentation have been proposed and are the focus of 313 

active discussion (Andersson et al., 2022; Kurland et al., 2024), these are not yet established as 314 

critical tipping points and remain less operationalised than Ne thresholds. Further work to 315 

formalise these thresholds is urgently needed. 316 

Forecasting future genetic change is equally vital for guiding proactive interventions. Simulations 317 

underpinned by physical climate models have been critical in climate science, projecting likely 318 

outcomes under different emissions and socio-economic scenarios (IPCC, 2023). In population 319 
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genetics, computational simulations serve a similar purpose: they help characterise tipping points, 320 

lags, and thresholds for genetic erosion, and forecast how demographic trends and landscape 321 

change will influence future diversity (Hoban, 2014; Pinto et al., 2024). These tools also enable 322 

biodiversity managers to evaluate the consequences of various strategic options (e.g., population 323 

translocations) before losses occur, enabling them to identify when populations are likely to fall 324 

below viable thresholds, where gene flow must be maintained, and where early intervention can 325 

prevent committed genetic erosion. 326 

Forecasting is critical in landscapes where economic development and biodiversity conservation 327 

are in direct tension, facilitating decisions on whether natural populations remain viable or are 328 

pushed toward irreversible genetic decline through disturbance. Examples include the Pilbara 329 

region of Western Australia, where mining removes cave roosts of threatened bat populations and 330 

fragments the roost network needed to maintain gene flow (Umbrello et al., 2022), and Brazil’s 331 

Atlantic Forest, where agriculture, logging, and urban expansion fragment habitats (Galán-Acedo 332 

et al., 2023). Simulations built to model such systems can help determine which areas or 333 

corridors must remain intact to avoid committed genetic erosion, and where limited development 334 

may still be compatible with maintaining connectivity (e.g., Dutcher et al., 2023; Haller & 335 

Messer, 2023). In many cases, avoiding genetic decline will require leaving some land or 336 

resources unexploited, analogous to the climate concept of “unburnable carbon”, in which 337 

meeting climate targets requires leaving fossil-fuel reserves untapped (Griffin et al., 2015; Pye et 338 

al., 2020). Like these fuel reserves, land set aside for biodiversity objectives would become what 339 

climate governance terms a “stranded asset”: economically valuable on paper, but unusable in 340 

practice without committing populations to long-term genetic decline (Caldecott et al., 2021; 341 

Österblom & Blasiak, 2021; Ploeg & Rezai, 2020). As in climate governance, implementing 342 
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these limits depends on political will and overcoming resistance from actors who stand to lose 343 

economically, while explicitly addressing trade-offs to prevent conflict and ensure equitable 344 

outcomes (Ferns & Amaeshi, 2021; Meyfroidt et al., 2022; Wright & Nyberg, 2024).  345 

 346 

Parallel 4: We need proactive and ambitious action now 347 

Just as climate and biological systems exhibit inertia, so too do political, institutional, and 348 

economic systems. Overcoming societal inertia requires systemic change in governance and 349 

finance, not just scientific clarity, as climate governance has shown. Mechanisms such as the 350 

Task Force on Climate-Related Financial Disclosures (TCFD) and the Science-Based Targets 351 

Initiative (SBTi) evolved from voluntary commitments into widely adopted frameworks that now 352 

inform mandatory reporting and incentivise corporate leadership (Ben-Amar et al., 2024). 353 

Biodiversity reporting is beginning to follow suit through initiatives such as the Nature Positive 354 

Initiative, the Task Force on Nature-related Financial Disclosures (TNFD), and the Global 355 

Reporting Initiative’s biodiversity standard, but genetic diversity remains largely absent from 356 

these frameworks (O’Brien et al., 2025). Nevertheless, promising examples exist in the private 357 

sector of companies recognising the value of assessing and maintaining genetic diversity (e.g., 358 

commercial wild salmon fisheries; Connors et al., 2022). 359 

Challenges do, however, remain. Climate change is perceived as a global phenomenon with 360 

standardised metrics (e.g., tonnes of CO₂), whereas biodiversity loss is inherently local, context-361 

dependent, and lacks a universally accepted measurement unit (Wauchope et al., 2024). This 362 

imbalance contributes to “carbon tunnel vision”, where emissions dominate sustainability 363 

reporting while biodiversity metrics are overlooked (Jouffray et al., 2025), despite emerging 364 
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quantitative thresholds for ecosystem resilience. For example, when semi-natural habitat area 365 

falls below roughly 20–25 % (at a 1 km² scale), critical ecosystem functions collapse. 366 

Alarmingly, about two-thirds of agricultural and urban areas globally fall below this threshold 367 

(Mohamed et al., 2024). Genetic diversity offers a complementary and quantifiable dimension of 368 

resilience, providing standardised, scalable measures that link local biological processes to global 369 

monitoring and forecasting frameworks (Henry, 2025; Mastretta-Yanes et al., 2024). Embedding 370 

these metrics within global monitoring, finance, and policy systems is increasingly feasible, and 371 

supported by a growing number of tools and case studies (Hoban et al., 2021; Mastretta-Yanes et 372 

al., 2024). 373 

Genetic diversity is declining across both threatened and non-threatened species (Mastretta-374 

Yanes et al., 2024; Shaw et al., 2025), yet conservation policies and subsequent actions are often 375 

triggered only after a species’ total population has declined to critical levels, typically in response 376 

to legal obligations or political pressure (Drechsler et al., 2011). This reflects a reactive mindset, 377 

intervening only once risk is clear, and far more difficult (or impossible) to reverse. Resilience 378 

science stresses that acting early, before thresholds are crossed, is far more effective (Folke et al., 379 

2004). Furthermore, the costs associated with re-establishing depleted populations can be much 380 

higher than those required to maintain them above critical thresholds, despite the latter being 381 

needed over longer periods (Drechsler et al., 2011). Proactive management is therefore cost-382 

effective and more likely to prevent irreversible loss.  383 

The belief that emerging technologies can compensate for inaction can reinforce a reactive 384 

mindset and entrench the status quo, diverting attention from root causes and delaying 385 

meaningful change (Anderson & Peters, 2016; Gifford et al., 2018). Despite decades of warnings, 386 

the world continues to rely on technological promises such as large-scale carbon capture, which 387 
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the IPCC (2022) judges unlikely to deliver substantial emission reductions by 2030. If these 388 

technologies fail to perform as expected, society will be locked into a high-temperature trajectory 389 

(Anderson & Peters, 2016). Biodiversity conservation faces similar risks. Advances such as 390 

CRISPR and cloning cannot recreate the evolutionary potential lost through extinction, which 391 

relies on large, diverse, self-sustaining populations. De-extinction efforts inevitably begin with 392 

extremely low genetic diversity, exposing “resurrected” populations to a re-extinction vortex 393 

(Steeves et al., 2017). While these technologies may have legitimate applications in targeted 394 

management, they remain limited. The urgent need to reduce emissions and to protect and restore 395 

genetic diversity in existing species, will rest primarily on investment in existing, proven actions. 396 

Time lags offer a critical opportunity: the chance to intervene before losses become irreversible, 397 

and proactive management offers reason for hope (Figure 1). Because genetic diversity often 398 

declines more slowly than population size, detecting demographic problems and restoring 399 

populations before genetic erosion becomes committed, offers a window for action. For example, 400 

the Eastern North Pacific population of fin whales (Balaenoptera physalus) suffered a 99 % 401 

reduction in Ne during twentieth century whaling, yet retained relatively high diversity. This was 402 

likely because the bottleneck lasted about 70 years, a short period relative to the species’ long 403 

generation time (~25.9 years), corresponding to three generations (Nigenda-Morales et al., 2023). 404 

A moratorium on commercial whaling was implemented within this window for action, enabling 405 

demographic recovery before genetic erosion was committed. 406 

Species and populations face many different kinds of genetic threats, and discriminating among 407 

these helps determine the most effective management actions (O’Brien et al., 2022). A global 408 

meta-analysis suggests that several interventions can stabilise or improve genetic diversity, 409 

including supplementation (Shaw et al., 2025). Supplementation spans a continuum from 410 
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facilitating natural gene flow via restored connectivity to more intensive translocations among 411 

isolated or captive populations to effect genetic rescue. Given how widespread habitat 412 

fragmentation has become, restoring gene flow is now essential in many systems (Frankham et 413 

al., 2017). Once approached with hesitantly, well-planned genetic rescue is increasingly 414 

recognised as a powerful tool for reversing inbreeding depression and restoring adaptive potential 415 

(Frankham et al., 2017; Hoffmann et al., 2021; Ralls et al., 2018). Such approaches also facilitate 416 

climate-resilient assisted gene flow, identifying and moving adaptive variation to help 417 

populations track rapidly changing environments (Meek et al., 2025). When implemented early in 418 

recovery planning and conservation management, these approaches are low-risk, relatively 419 

inexpensive, and capable of sustaining adaptive potential before genetic erosion becomes 420 

committed (da Silva et al., 2026; Fitzpatrick et al., 2023; Frankham et al., 2017; Ralls et al., 421 

2018).  422 

 423 

Conclusion 424 

Conserving genetic diversity is not a niche concern; it is central to long-term ecological resilience 425 

and must become a core component of biodiversity planning. Genetic erosion is widespread, can 426 

lag behind demographic losses, and becomes committed unless proactive steps are taken to 427 

maintain and restore the evolutionary processes that sustain life on Earth. Doing so requires a 428 

shift in thinking: from reacting only after genetic erosion is detected, to also proactively 429 

safeguarding the raw material of resilience before it disappears. 430 

Drawing from climate science, the concept of committed genetic erosion underscores the urgency 431 

of action. Just as past greenhouse gas emissions have committed the planet to future climate 432 
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change impacts and potential tipping points, past and ongoing habitat loss, fragmentation, and 433 

other consequent impacts on population decline, have committed many species to future genetic 434 

erosion. The critical difference is that, unlike climate inertia, genetic inertia is tractable: erosion 435 

unfolds population by population and can be prevented if action occurs during the lag period. We 436 

cannot afford to miss this window for strategic intervention. Integrating genetic considerations 437 

into planning and policy early maximises the capacity for adaptation and recovery. To help 438 

achieve this, scientists, policymakers, practitioners, the private sector, and broader society all 439 

play a role in ensuring that genetic considerations are communicated clearly, embedded early in 440 

decisions, and underpinned by rigorous thresholds and terminology. 441 

The solutions are well tested. In addition to monitoring, we must also apply genetic principles to 442 

management: ecological strategies that achieve genetic outcomes. Established conservation 443 

strategies, such as maintaining or improving connectivity, effecting carefully designed genetic 444 

rescue, and supporting large, viable populations, sustain the evolutionary processes that maintain 445 

genetic diversity. As such, they carry explicit genetic benefits that are too often overlooked. 446 

Recognising these genetic outcomes gives renewed urgency to implementing these strategies 447 

effectively. In much of the world, this will require applying genetic principles without direct 448 

genetic data, and prioritising large-scale actions such as habitat protection and restoration. By 449 

doing so, we intervene earlier in the extinction trajectory, acting before species are on the brink 450 

of extinction. These approaches align with major international biodiversity and development 451 

goals, supported by technical indicators that identify where losses are occurring, and which 452 

species are most at risk. Now, bold, resilience-focused biodiversity action that embeds genetic 453 

considerations into governance, finance, planning, and on-ground management is essential for 454 

maintaining adaptive potential in a rapidly changing world. The choices made today will shape 455 
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the evolutionary futures of species and the ecological systems on which we depend, for 456 

generations to come. 457 
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Boxes and Figures 473 

Box 1: Signals of committed genetic erosion 

Measurable changes in a population’s genetic diversity are rarely the earliest warning of risk. 

The first indications that genetic extinction debt is accumulating are habitat loss, fragmentation 

and demographic decline, detectable through field monitoring or even remotely via satellite 

imagery (Hoban et al., 2024). These ecological signals indicate that declines in effective 

population size (Ne) and subsequent genetic erosion are likely. 

Genetic diversity analyses reveal erosion already underway. Because components of genetic 

diversity respond to perturbation at different rates (Nei et al., 1975), comprehensive analysis 

can help quantify the severity, timing and trajectory of committed genetic erosion and 

highlight where intervention is most urgent (Frankham et al., 2010; Hoban et al., 2024). 

Like species richness and diversity in ecology (Hu et al., 2006), alpha-level genetic diversity is 

commonly summarised using richness (e.g., allelic richness, AR; Watterson’s theta, θW) and 

evenness (gene diversity, also called expected heterozygosity, He; nucleotide diversity, π) 

metrics. Richness captures how many genetic variants (alleles) are present and is informative 

for long-term adaptive potential, while evenness reflects how allele frequencies are distributed 

and reflects short-term evolutionary responses (Allendorf et al., 2024; Caballero & García-

Dorado, 2013; Mergeay, 2024). 

While ongoing genetic monitoring is the gold standard, genetic erosion can also be detected 

from a single genetic snapshot. For example, following a population bottleneck, rare alleles are 

lost first, so richness declines rapidly. Evenness declines more slowly because it is 
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predominantly determined by common alleles. During or shortly after demographic decline, 

these properties manifest as a mismatch between metrics, indicating that the population is not 

at mutation–drift equilibrium (Cornuet & Luikart, 1996). 

Reduced connectivity can generate similar mismatches: when gene flow drops below roughly 

one effective migrant per generation, subpopulations rapidly lose rare alleles even without 

detectable demographic decline (Broquet et al., 2010). This mismatch indicates a genetic 

extinction debt for evenness, as further loss of He or π is inevitable unless population size or 

connectivity increases. More generally, reduced gene flow increases genetic drift and 

inbreeding within each subpopulation, lowering Ne at the species level (Ryman et al., 2019). 

These non-equilibrium dynamics can unfold unevenly across a species’ range, especially if 

subpopulations are permanently lost (Kurland et al., 2023). 

Tests for identifying genetic erosion from a single snapshot include Bottleneck (Cornuet & 

Luikart, 1996), Tajima’s D (Tajima, 1989), runs of homozygosity (ROH; Kardos et al., 2018), 

linkage disequilibrium (Santiago et al., 2025), or site-frequency spectrum analyses 

(Gutenkunst et al., 2009). 

 474 

  475 
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 476 

 477 

Figure 1. Conceptual diagram of biodiversity trajectories under alternative genetic 478 

management pathways. The top panel illustrates the population-level timeline occurring within 479 

the strategic window for action (grey dotted box): the period in which we can intervene before 480 

the realisation of committed genetic erosion pushes many species toward extinction. 481 

Fragmentation and population decline initiate genetic erosion, causing some immediate loss, and 482 

resulting in a lag period in which genetic extinction debt accumulates. If genetic variants persist 483 

in nearby populations, diversity at the species level can be restored through early intervention, 484 
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such as by mixing populations (supplementation). After a tipping point, however, genetic erosion 485 

accelerates and becomes irreversible, reducing adaptive capacity and fitness, and reinforcing 486 

small-population processes in a feedback loop (the “extinction vortex”). As systems move 487 

through these stages, management shifts from proactive (preventing loss) to reactive (preventing 488 

further loss) and finally to crisis management. At this stage, saving the species becomes 489 

extremely difficult and/or costly, and extinction risk is elevated due to severely depleted genetic 490 

diversity, even if demographic recovery is achieved. These often unseen genetic processes 491 

underpin three potential biodiversity futures (bottom panel: represented by species diversity on 492 

the y-axis and time on the x-axis), including: (1, green) recovery: proactive intervention to 493 

maintain adaptive capacity before genetic erosion is measurable (e.g., restoring connectivity/gene 494 

flow and sustaining large, viable population sizes), combined with threat abatement and reactive 495 

responses where needed; (2, blue) maintenance: halting current threats (e.g., no further habitat 496 

loss) alongside reactive management, reducing, but not preventing, future biodiversity loss; and 497 

(3, black) losses under business as usual, where action is delayed until genetic erosion is 498 

measurable (reactive management), resulting in biodiversity declining towards extinction, with 499 

cascading losses across ecosystems.   500 
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 501 

 502 

Figure 2. Global examples of realised committed genetic erosion in bird species - in all four 503 

cases substantial genetic erosion has occurred despite demographic recovery. Historical 504 

baselines derived from 19th-century specimens reveal that four well-studied bird species (the 505 

whooping crane, crested ibis, Seychelles paradise flycatcher and kākāpō) have each lost 506 

substantial proportions of their historical genetic diversity following severe population declines. 507 

Conservation actions such as translocations, captive breeding, predator control and habitat 508 

protection were essential for securing or maintaining demographic recovery and, in several cases, 509 

preventing extinction of the species. However, these efforts occurred after committed genetic 510 
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erosion had been realised. The irreversible loss of genetic diversity means that these species now 511 

persist with reduced adaptive capacity and elevated long-term extinction risk. Demographic 512 

recovery is a genuine conservation success, but genetic erosion persists even after numbers 513 

rebound. Data sources: whooping crane: Fontsere et al., 2025; crested ibis: Feng et al., 2019; 514 

Seychelles paradise flycatcher: Femerling et al., 2023; kākāpō: Bergner et al., 2016; Dussex et 515 

al., 2021.  516 
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