

1 **Title:** Business as usual will commit biodiversity to genetic erosion: parallels from
2 climate change for proactive conservation

3

4 **Running title:** Committed genetic erosion and climate parallels

5

6 **Contact Information**

7 Corresponding author: Robyn E. Shaw, robyn.shaw@canberra.edu.au

8

9 **Authors**

10 Robyn E. Shaw¹, Carole P. Elliott², Joachim Mergeay^{3,4}, Gernot Segelbacher⁵, Robert Blasiak⁶,
11 David J. Coates^{2,7}, Jessica M. da Silva^{8,9}, Katherine A. Farquharson^{10,11}, Sean Hoban^{12,13}, Albert
12 Norström^{6,14}, Kym Ottewell², Sibelle T. Vilaça¹⁵, Peter Bridgewater¹⁶, Ancuta Fedorca¹⁷,
13 Christina Hvilsom¹⁸, T. Hefin Jones¹⁹, Francine Kershaw²⁰, Sarah Kirkpatrick^{21,22}, Linda
14 Laikre²³, Anna J. MacDonald²⁴, Alicia Mastretta-Yanes²⁵, Mariah Meek²⁶, Cinnamon Mittan-
15 Moreau²⁷, Isa-Rita M. Russo¹⁹, Catherine E. Grueber¹⁰

16

17 **Institutional affiliations**

18 1. Centre for Conservation Ecology and Genomics, University of Canberra, Canberra, Australian Capital Territory,
19 Australia.
20 2. Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington,
21 Western Australia, Australia.
22 3. Research Institute for Nature and Forest, Belgium.
23 4. Ecology, Evolution and conservation, KU Leuven, Belgium.

24 5. Wildlife Ecology and Management, University Freiburg, Germany.

25 6. Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.

26 7. School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia.

27 8. South African National Biodiversity Institute, Kirstenbosch Research Centre, Newlands, Cape Town, South

28 Africa.

29 9. Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of

30 Johannesburg, Auckland Park, Johannesburg, South Africa.

31 10. School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New

32 South Wales, Australia.

33 11. Koala Conservation Australia, Port Macquarie, New South Wales, Australia.

34 12. The Morton Arboretum, Lisle, USA.

35 13. The University of Chicago, Chicago, USA.

36 14. Future Earth Secretariat, Stockholm, Sweden.

37 15. Vale Institute of Technology, Belém, PA, Brazil.

38 16. Institute for Applied Ecology, University of Canberra, Australia.

39 17. National Institute for Research and Development in Forestry, Romania.

40 18. Globe Institute, University of Copenhagen, Denmark.

41 19. School of Biosciences, Sir Martin Evans Building, Cardiff University, Wales, United Kingdom.

42 20. Natural Resources Defense Council, 40 W. 20th St., New York, NY, USA.

43 21. ARC Centre of Excellence for 21st Century Weather, Australian National University, Acton, Canberra,

44 Australia.

45 22. Fenner School of Environment and Society Australian National University, Acton, Canberra, Australia.

46 23. Department of Zoology, Stockholm University, Sweden.

47 24. Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston,

48 Tasmania, Australia.

49 25. Royal Botanic Gardens, Kew, Richmond, United Kingdom.

50 26. The Wilderness Society, Bozeman, MT, USA.

51 27. Michigan State University, Kellogg Biological Station, Hickory Corners, MI, USA.

53 **Abstract**

54 Biodiversity and climate resilience are tightly linked. Genetic diversity enables species to adapt
55 in a rapidly changing world, yet its loss (genetic erosion) remains the least visible dimension of
56 the biodiversity crisis. Although climate science has long recognised that past emissions can lock
57 in future climate impacts (“committed climate change”), the idea that biodiversity also faces
58 future, lagged losses is less embedded in policy and public discourse. Past and ongoing habitat
59 loss, fragmentation, and population declines have, however, already committed many species to
60 future genetic erosion, with losses that may be undetectable today being capable of precipitating
61 species extinctions and ecosystem collapse. To highlight the urgency of this issue, we
62 conceptualise “committed genetic erosion” using four climate science parallels. First, just as the
63 climate system is showing clear signals of change, genetic erosion is already occurring across
64 regions and taxa, including non-threatened species. Second, like inertia in the climate system,
65 biological inertia creates time lags between demographic decline and genetic erosion, effectively
66 locking in further loss under business as usual. Third, just as climate science relies on indicators
67 and forecasting tools, genetic indicators and forward-looking simulations can identify risk,
68 quantify committed genetic erosion, and project future trajectories under alternative management
69 pathways. Fourth, both the climate and biodiversity crises require ambitious action that addresses
70 root causes. Proactively maintaining large, connected populations, and enabling carefully
71 designed genetic rescue, provide proven, effective interventions for maintaining species’
72 resilience, unlike reactive strategies or speculative technological fixes. Because genetic inertia
73 operates locally, the lag period offers a critical window for intervention. This is a strategic

74 advantage we cannot afford to miss: acting early and placing genetic diversity at the centre of
75 biodiversity management can safeguard the adaptive potential of life on Earth.

76 **Keywords**

77 Adaptive capacity, biodiversity crisis, biodiversity policy, climate crisis, climate policy,
78 extinction debt, extinction vortex, fragmentation, genetic rescue, tipping points

79

80 **Introduction: Biodiversity and climate, two interlinked crises**

81 A rapidly changing world is increasing the need for resilient species that can adapt to new
82 environments. Climate change and biosphere integrity, encompassing genetic diversity, are
83 recognised as key dimensions of planetary stability, and current trends indicate that both are
84 operating beyond safe limits for humanity (Richardson et al., 2023). Genetic diversity provides
85 the foundation for adaptive capacity, enabling species and the ecosystems they comprise to
86 persist through change. Yet despite being highlighted for decades (Frankel, 1974), genetic
87 diversity remains the least visible dimension in biodiversity policy and public discourse, and is
88 the domain most recently integrated into global biodiversity frameworks. For example, the
89 United Nations (UN) Convention on Biological Diversity (CBD) Kunming-Montreal Global
90 Biodiversity Framework (GBF) now explicitly includes maintaining the adaptive potential of all
91 species' populations as part of its goals and targets (Convention on Biological Diversity, 2022),
92 marking unprecedented political recognition of genetic processes in nature.

93 Recognition of the importance of genetic diversity has come after decades of addressing global
94 environmental change through separate climate and biodiversity agendas (Pettorelli et al., 2021;
95 Richardson et al., 2023). The UN CBD and the UN Framework Convention on Climate Change

96 (UNFCCC) were signed in 1992 as sister conventions (ratified in 1993 and 1994, respectively,
97 ipbes.net). Yet, their trajectories have diverged. The UNFCCC gained momentum through strong
98 scientific leadership (e.g., Bolin, 1991) and a clear global narrative shaped by the
99 Intergovernmental Panel on Climate Change (IPCC). In contrast, scientific input into biodiversity
100 policy evolved more slowly through the CBD Subsidiary Body on Scientific, Technical and
101 Technological Advice (SBSTTA; Koetz et al., 2008; Laikre et al., 2008), and later through the
102 Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES;
103 established 2012, first global assessment 2019), which has broadened the information available to
104 the CBD. This imbalance has contributed to less public attention and weaker implementation of
105 biodiversity policy than of climate policy (Mace et al., 2018; Pörtner et al., 2021). Today, calls to
106 enhance coherence among these frameworks, and recent collaborations between IPBES and the
107 IPCC, signal renewed recognition that the solutions to climate and biodiversity loss are
108 inseparable (IPBES, 2024; Pörtner et al., 2021).

109 Climate science offers important lessons for biodiversity policy, including the mechanistic
110 concept of commitment: the idea that past emissions and the inertia of the Earth system
111 predetermine aspects of future change. This does not mean that global temperature will keep
112 rising indefinitely if emissions cease; rather, it refers to impacts already locked in by past
113 warming, such as ongoing sea level rise, ice-sheet melt, and thawing permafrost (Abram et al.,
114 2025; IPCC, 2023; Schuur et al., 2015). Components of the climate system are also thought to
115 include critical thresholds that, if breached, would trigger large, irreversible changes (Armstrong
116 McKay et al., 2022). Whether “committed climate change” will force the Earth system beyond
117 these tipping points is the subject of intense concern and scholarship (Steffen et al., 2018).

118 A clear parallel exists for biodiversity. Habitat loss, fragmentation, and over-exploitation have
119 driven elevated extinction rates and reduced many remaining species to small, isolated
120 populations (Pimm et al., 2014; Ralls et al., 2018). Persistent small population sizes set in motion
121 an extinction vortex: a reinforcing cycle of genetic loss and population decline (Figure 1; Gilpin
122 & Soulé, 1986). In this feedback loop, stochastic effects (genetic drift) and inbreeding can result
123 in an accumulation of harmful mutations and lowered individual reproductive fitness and survival
124 (inbreeding depression), in turn driving further declines in population size. Genetic diversity can
125 continue to erode even after threats are mitigated or population numbers appear stable (Figure 1 –
126 maintenance trajectory; Gargiulo et al., 2025; Mualim et al., 2025; Pinto et al., 2024). Indeed,
127 even if a population grows in size, some life-history traits (e.g., long generation length) create
128 biological inertia, producing a lag in which past impacts continue to define the future state of
129 populations long after disturbance (Gargiulo et al., 2025; Kurland et al., 2023). Over generations,
130 these processes can intensify, leading to irreversible loss of genetic variation and, ultimately,
131 species extinction (Frankham et al., 2017). This “genetic extinction debt” represents the first
132 stage of a broader extinction trajectory, reflecting similar time-lagged dynamics that underlie
133 “extinction debt”: situations in which species are likely to go extinct in the future because
134 environmental conditions can no longer support long-term persistence (Hanski & Ovaskainen,
135 2002; Tilman et al., 1994).

136 The concept of committed climate change has mobilised consensus and action by underscoring a
137 critical insight: delayed action locks in future impacts. Therefore, to motivate policy discussions
138 and communicate urgency in the biodiversity sphere, we propose the term “committed genetic
139 erosion” to describe the future loss of genetic diversity already set in motion by past demographic
140 and landscape change. Like committed climate change, committed genetic erosion arises from

141 inertia and time lags, rather than inevitable global outcomes (Gargiulo et al., 2025); however, it
142 differs from the climate concept in two critical respects. Climate inertia locks in regional to
143 global impacts that are largely irreversible on human timescales (King et al., 2024; Perkins-
144 Kirkpatrick et al., 2025), whereas genetic inertia operates at the local scale and can, to a certain
145 degree, still be altered through timely intervention (Box 1). These attributes offer a window of
146 opportunity: targeted interventions can often attenuate the realisation of committed genetic
147 erosion. In this sense, the outcomes of ambitious action for biodiversity can be more immediate
148 and tangible than in climate systems. This tractability is a strategic advantage that conservation
149 policy and planning must now embrace.

150 Here we use climate science as a scaffold to re-frame conservation of genetic diversity and
151 explore the idea of committed genetic erosion through four parallels: (1) multiple lines of
152 evidence show change is already occurring; (2) time lags mean that further change is committed
153 under business as usual; (3) we can measure, track, and forecast risk to guide early action; and (4)
154 proactive measures are needed that address root causes. The need for action is supported by
155 strong evidence, broad consensus, and increasingly sobering predictions for the future (Exposito-
156 Alonso et al., 2022; Gargiulo et al., 2025; Hoban et al., 2021; Shaw et al., 2025). Business as
157 usual, primarily reactive conservation (acting only after loss is observed; Figure 1), could lead to
158 a future of ongoing genetic loss that cascades into species extinction, triggering broader
159 biodiversity collapse. By recognising the scale of this challenge and the importance of early
160 action, we hope to catalyse the long-called-for paradigm shift in conservation practice (Ralls et
161 al., 2018), placing genetic diversity at the core of biodiversity conservation strategies.

162

163 **Parallel 1: Change is happening now**

164 Human-caused climate change is now undeniable. Human activities have unequivocally warmed
165 the planet, with the long-term global surface temperature trend now estimated at 1.34–1.41 °C
166 above the 1850–1900 baseline (WMO, 2025). Continued greenhouse gas emissions are driving
167 widespread and rapid changes across the atmosphere, ocean, cryosphere, and biosphere, and
168 climate change is influencing weather and climate extremes in every region of the world (IPCC,
169 2023).

170 Like climate change, multiple lines of evidence show that major genetic erosion of species is
171 underway. This is true for a wide range of taxa and regions, even over just a few generations, and
172 even for species not currently considered threatened (Mastretta-Yanes et al., 2024; Schmidt et al.,
173 2023; Shaw et al., 2025). This trend aligns with recent studies on North American birds and
174 mammals (Schmidt et al., 2020), global plant populations (González et al., 2020), and global
175 predictions suggesting more than 10 % of genetic diversity may already be lost (Exposito-Alonso
176 et al., 2022). The widespread signal of genetic erosion, even over short time frames, suggests that
177 substantial population size declines are driving this loss.

178 Shaw et al. (2025) found that genetic diversity loss was most pronounced where land use change,
179 disease, abiotic disturbances (e.g., wildfire, floods), and harvesting or harassment (e.g., hunting,
180 logging, stressing) occurred. Many species now persist in small, fragmented populations
181 (Frankham, 2022). These conditions are expected to erode genome-wide diversity and increase
182 inbreeding (Soulé, 1980); predictions well-supported by experimental data (Montgomery et al.,
183 2000; Rich et al., 1979), and real-world observations (e.g., Figure 2; Hoelzel et al., 2024; Ralls et

184 al., 2018). A recent global assessment of genetic indicators across 5,271 populations also found
185 that while the majority of species maintain most of their historic populations (for now), for 58 %
186 of species assessed, all populations were too small to sustain genetic diversity over time; thus
187 reducing their adaptive capacity (Mastretta-Yanes et al., 2024). Massive population losses could
188 follow in the near-term, even triggering extinction vortices for many taxa (Figure 1; Gilpin &
189 Soulé, 1986).

190 Human-induced changes can create conditions for rapid evolutionary responses (IPBES, 2019),
191 but the capacity for such adaptation depends largely on existing (standing) genetic variation
192 (Allendorf et al., 2024; Mergeay, 2024). The kelp (*Ecklonia radiata*) forests of Western
193 Australia, where the interdisciplinary study of marine heatwaves emerged (e.g., Hobday et al.,
194 2016), provides a well-documented example. In 2011, a marine heatwave caused widespread kelp
195 canopy loss. Populations with higher genetic diversity were more likely to persist through the
196 event, while low-diversity stands collapsed (Wernberg et al., 2018). In the following years,
197 recovery was aided by recolonisation from nearby forests, with high connectivity enabling the
198 gene flow needed to maintain diversity and support adaptation to warming conditions (Vranken
199 et al., 2025). These studies show that genetic diversity and gene flow are essential for persistence
200 and resilience under accelerating change. Genetic diversity thus comprises the within-species
201 component of “response diversity”, a key aspect of ecological resilience that reflects the capacity
202 of populations to respond differently to environmental change (Nadeau & Urban, 2019; Walker et
203 al., 2023). Managing diversity and connectivity is central to maintaining such flexibility and is a
204 cornerstone of “resilience thinking” in ecosystem management (Biggs et al., 2012). Thus,
205 conserving genetic diversity is fundamental to conserving species and ecosystems, and ensuring
206 their long-term resilience (Figure 1). Because the recovery of diversity through mutation often

207 requires hundreds or thousands of generations (Lande & Barrowclough, 1987), preventing
208 genetic erosion is critical (Figure 2).

209

210 **Parallel 2: Change will continue under business as usual**

211 Many human-driven climate change impacts are locked in for decades to millennia, even under
212 rapid emissions reduction scenarios (Abrams et al., 2023; IPCC, 2023). Because of the thermal
213 inertia of the climate system, global temperatures are expected to continue rising for several
214 decades even if greenhouse gas concentrations were stabilised today (Abrams et al., 2023). Some
215 scenarios even involve a temporary “overshoot”, where temperatures exceed 1.5–2 °C before
216 later declining through mitigation, yet many ecosystems will not return to their prior states once
217 thresholds are crossed (Abrams et al., 2023; Armstrong McKay et al., 2022). Under current
218 national commitments (business as usual), critical thresholds for several major tipping elements
219 are likely to be crossed this century, including the loss of Greenland and West Antarctic ice
220 sheets, the Amazon rainforest, permafrost carbon stores, and tropical coral reefs (Abram et al.,
221 2025; Abrams et al., 2023; Armstrong McKay et al., 2022; IPCC, 2023; Steffen et al., 2018).
222 Once these thresholds are transgressed, self-reinforcing feedbacks could drive cascading and
223 irreversible impacts (Armstrong McKay et al., 2022; IPCC, 2023; Schuur et al., 2015;
224 Wunderling et al., 2023).

225 Similar lagged responses also occur in biological systems, including in population-level genetic
226 processes. The effective population size (N_e) is the genetic analogue of census size (N_c); where
227 N_c shapes the ecological dynamics of a population, N_e captures its evolutionary dimensions,
228 determining the strength of genetic drift and the resulting rates of inbreeding accumulation and

229 genetic diversity loss (Waples, 2025). Theoretical models predict that the time it takes for genetic
230 diversity loss to manifest fully after a demographic decline is on the order of $2Ne$ generations
231 (Crow & Aoki, 1984). For many populations and species, this corresponds to hundreds to
232 thousands of generations. This means that genetic erosion may go undetected long after
233 populations begin to decline, potentially giving the false impression that genetic diversity is
234 stable (Lande, 1988). Global genetic diversity losses of 13–22 % have been estimated relative to
235 a recent (~50-year) baseline, and long-term losses are forecast to reach 41–76 %, even if
236 population numbers stabilise (Mualim et al., 2025).

237 Species with large populations and broad distributions can hold a reservoir of genetic diversity
238 that masks local losses, and seed banks and dormant life stages can retain genetic signatures of
239 past conditions (Plue et al., 2017; Staude et al., 2020). For example, genetic diversity was
240 apparently maintained over time in taxa with historically large and/or widely distributed
241 populations, such as insects (including bees and flies), ray-finned fishes (pelagic and migratory),
242 and dicotyledonous plants (Shaw et al. 2025). But these groups may still be at risk - now or in the
243 future - if large demographic changes occur. Similarly, in long-lived species, even substantial risk
244 of genetic erosion may not be detectable over relatively short-term sampling periods (Gargiulo et
245 al., 2025), potentially leading to underestimates of extinction risk.

246 These lagged genetic responses mirror climate dynamics, where gradual change can culminate in
247 abrupt, often irreversible shifts. As resilience declines, stressors may tip an already vulnerable
248 system into collapse. For example, long-term climatic “presses” (e.g., gradual warming or drying)
249 interacting with short-term “pulses” (e.g., droughts or fires) can trigger abrupt transitions, as seen
250 in population collapses and regime shifts worldwide (Biggs et al., 2018; Harris et al., 2018).
251 Similar dynamics may have contributed to the extinction of the woolly mammoth (*Mammuthus*

252 *primigenius*) on Wrangel Island, which lacked human occupation (Dehasque et al., 2024).
253 Ancient DNA revealed a severe population bottleneck followed by demographic recovery, but
254 eventual collapse. Hundreds of generations of inbreeding and the accumulation of mildly
255 deleterious mutations may have left the population close to a tipping point (Dehasque et al.,
256 2024). Such processes also occur in agriculture, where selective breeding reduces genetic
257 diversity and heightens disease vulnerability, as seen in the devastating effects of southern corn
258 leaf blight on maize in the USA (Strange & Scott, 2005).

259 The consequences of genetic erosion can also feed back into, and exacerbate, climate and
260 ecosystem processes. Increasing evidence shows that transgressing key planetary boundaries,
261 whether related to climate change or to the wider biosphere, can amplify risks across domains
262 (Richardson et al., 2023). Genetic diversity is a key component of biosphere function, and its
263 erosion can weaken both ecological and climate resilience. For example, black spruce (*Picea*
264 *mariana*) is projected to experience slower growth due to warming, threatening its carbon
265 sequestration capacity. Genetic diversity may enable local adaptation to these conditions (Robert
266 et al., 2024), but loss of this adaptive capacity may have cascading effects for carbon
267 sequestration and climate dynamics.

268 While some committed climate change impacts will play out over centuries to millennia, giving
269 society the opportunity to plan and adapt, others are likely in the coming decades (Abrams et al.,
270 2023; IPCC, 2023). Similarly, committed genetic erosion represents an imminent and
271 compounding hazard (Exposito-Alonso et al., 2022; Shaw et al., 2025). Acting early and within
272 this lag period, can prevent irreversible losses of adaptive potential before they cascade into
273 species extinctions, disruptions to agriculture, ecosystem collapse, and broader climate
274 instability.

276 **Parallel 3: We can forecast risk to guide early action**

277 By the time genetic erosion is measurable, species are already at heightened risk of extinction,
278 even if demographic recovery occurs (Figure 2). Once genetic variants (alleles) are lost from all
279 populations, they are effectively irrecoverable on management timescales and long-term adaptive
280 potential is permanently reduced (Allendorf et al., 2024; Lande & Barrowclough, 1987).

281 Preventing committed genetic erosion means identifying at-risk species *before* loss occurs, and
282 intervening while genetic diversity can still be restored. Preventing further erosion once it has
283 begun also remains an important and often necessary goal (Figure 1).

284 Detecting the warning signs of committed genetic erosion requires monitoring both genetic and
285 demographic indicators. Ecological evidence, such as population decline, habitat fragmentation,
286 or reduced dispersal, signals that genetic extinction debt is accumulating (O'Brien et al., 2022).

287 Such trends are already reflected in major extinction-risk frameworks, including the IUCN Red
288 List. However, a population's genetic diversity does not always align with Red List status
289 (Mastretta-Yanes et al., 2024; McLaughlin et al., 2025; Schmidt et al., 2023). This mismatch may
290 be consistent with the expected lag between population decline and detectable genetic erosion.

291 Where genetic or genomic data exist, genetic metrics (Box 1) can reveal reduced gene flow,
292 bottlenecks, recent inbreeding or other early signals that genetic erosion is already underway,
293 even when overall diversity appears superficially stable (Gargiulo et al., 2025; McLaughlin et al.,
294 2025).

295 Correctly interpreting genetic statistics as rates of loss, and thus measures of risk, requires clear
296 baselines. Without this, we risk accepting current, degraded conditions as the new norm

297 (“shifting-baseline syndrome”; Lotze & Worm, 2009; Pauly, 1995). Establishing consistent,
298 globally comparable reference points is therefore critical for detecting the consequences of
299 demographic stress early and enabling more proactive, targeted responses. Inspired by Essential
300 Climate Variables (ECVs; GCOS, 2010), biodiversity scientists developed Essential Biodiversity
301 Variables (EBVs; Pereira et al., 2013) to quantify and report biological change worldwide. In the
302 genetic domain, EBVs formalise key population genetic measures (Hoban et al., 2022),
303 translating heterogeneous datasets into comparable metrics and providing a common language for
304 monitoring across species and regions. As with ECVs, some EBVs have been translated into
305 simplified indicators, with clear thresholds for decision-makers. Genetic diversity indicators,
306 such as the proportion of populations within a species that are sufficiently large to maintain
307 genetic diversity ($Ne > 500$), and the proportion of populations maintained (Hoban et al., 2021),
308 provide a simple yet powerful way to track genetic extinction debt and the extent to which
309 populations have already fallen below levels needed to sustain adaptive potential. These
310 indicators are already being implemented in policy under the CBD (Convention on Biological
311 Diversity, 2022) and the EU Habitats Directive (O’Brien et al., 2025), although genetic diversity
312 remains absent from major restoration frameworks (Ngeve, 2025). Although thresholds in other
313 EBVs such as heterozygosity and habitat fragmentation have been proposed and are the focus of
314 active discussion (Andersson et al., 2022; Kurland et al., 2024), these are not yet established as
315 critical tipping points and remain less operationalised than Ne thresholds. Further work to
316 formalise these thresholds is urgently needed.

317 Forecasting future genetic change is equally vital for guiding proactive interventions. Simulations
318 underpinned by physical climate models have been critical in climate science, projecting likely
319 outcomes under different emissions and socio-economic scenarios (IPCC, 2023). In population

320 genetics, computational simulations serve a similar purpose: they help characterise tipping points,
321 lags, and thresholds for genetic erosion, and forecast how demographic trends and landscape
322 change will influence future diversity (Hoban, 2014; Pinto et al., 2024). These tools also enable
323 biodiversity managers to evaluate the consequences of various strategic options (e.g., population
324 translocations) before losses occur, enabling them to identify when populations are likely to fall
325 below viable thresholds, where gene flow must be maintained, and where early intervention can
326 prevent committed genetic erosion.

327 Forecasting is critical in landscapes where economic development and biodiversity conservation
328 are in direct tension, facilitating decisions on whether natural populations remain viable or are
329 pushed toward irreversible genetic decline through disturbance. Examples include the Pilbara
330 region of Western Australia, where mining removes cave roosts of threatened bat populations and
331 fragments the roost network needed to maintain gene flow (Umbrello et al., 2022), and Brazil's
332 Atlantic Forest, where agriculture, logging, and urban expansion fragment habitats (Galán-Acedo
333 et al., 2023). Simulations built to model such systems can help determine which areas or
334 corridors must remain intact to avoid committed genetic erosion, and where limited development
335 may still be compatible with maintaining connectivity (e.g., Dutcher et al., 2023; Haller &
336 Messer, 2023). In many cases, avoiding genetic decline will require leaving some land or
337 resources unexploited, analogous to the climate concept of "unburnable carbon", in which
338 meeting climate targets requires leaving fossil-fuel reserves untapped (Griffin et al., 2015; Pye et
339 al., 2020). Like these fuel reserves, land set aside for biodiversity objectives would become what
340 climate governance terms a "stranded asset": economically valuable on paper, but unusable in
341 practice without committing populations to long-term genetic decline (Caldecott et al., 2021;
342 Österblom & Blasiak, 2021; Ploeg & Rezai, 2020). As in climate governance, implementing

343 these limits depends on political will and overcoming resistance from actors who stand to lose
344 economically, while explicitly addressing trade-offs to prevent conflict and ensure equitable
345 outcomes (Ferns & Amaeshi, 2021; Meyfroidt et al., 2022; Wright & Nyberg, 2024).

346

347 **Parallel 4: We need proactive and ambitious action now**

348 Just as climate and biological systems exhibit inertia, so too do political, institutional, and
349 economic systems. Overcoming societal inertia requires systemic change in governance and
350 finance, not just scientific clarity, as climate governance has shown. Mechanisms such as the
351 Task Force on Climate-Related Financial Disclosures (TCFD) and the Science-Based Targets
352 Initiative (SBTi) evolved from voluntary commitments into widely adopted frameworks that now
353 inform mandatory reporting and incentivise corporate leadership (Ben-Amar et al., 2024).

354 Biodiversity reporting is beginning to follow suit through initiatives such as the Nature Positive
355 Initiative, the Task Force on Nature-related Financial Disclosures (TNFD), and the Global
356 Reporting Initiative's biodiversity standard, but genetic diversity remains largely absent from
357 these frameworks (O'Brien et al., 2025). Nevertheless, promising examples exist in the private
358 sector of companies recognising the value of assessing and maintaining genetic diversity (e.g.,
359 commercial wild salmon fisheries; Connors et al., 2022).

360 Challenges do, however, remain. Climate change is perceived as a global phenomenon with
361 standardised metrics (e.g., tonnes of CO₂), whereas biodiversity loss is inherently local, context-
362 dependent, and lacks a universally accepted measurement unit (Wauchope et al., 2024). This
363 imbalance contributes to “carbon tunnel vision”, where emissions dominate sustainability
364 reporting while biodiversity metrics are overlooked (Jouffray et al., 2025), despite emerging

365 quantitative thresholds for ecosystem resilience. For example, when semi-natural habitat area
366 falls below roughly 20–25 % (at a 1 km² scale), critical ecosystem functions collapse.
367 Alarmingly, about two-thirds of agricultural and urban areas globally fall below this threshold
368 (Mohamed et al., 2024). Genetic diversity offers a complementary and quantifiable dimension of
369 resilience, providing standardised, scalable measures that link local biological processes to global
370 monitoring and forecasting frameworks (Henry, 2025; Mastretta-Yanes et al., 2024). Embedding
371 these metrics within global monitoring, finance, and policy systems is increasingly feasible, and
372 supported by a growing number of tools and case studies (Hoban et al., 2021; Mastretta-Yanes et
373 al., 2024).

374 Genetic diversity is declining across both threatened and non-threatened species (Mastretta-
375 Yanes et al., 2024; Shaw et al., 2025), yet conservation policies and subsequent actions are often
376 triggered only after a species' total population has declined to critical levels, typically in response
377 to legal obligations or political pressure (Drechsler et al., 2011). This reflects a reactive mindset,
378 intervening only once risk is clear, and far more difficult (or impossible) to reverse. Resilience
379 science stresses that acting early, before thresholds are crossed, is far more effective (Folke et al.,
380 2004). Furthermore, the costs associated with re-establishing depleted populations can be much
381 higher than those required to maintain them above critical thresholds, despite the latter being
382 needed over longer periods (Drechsler et al., 2011). Proactive management is therefore cost-
383 effective and more likely to prevent irreversible loss.

384 The belief that emerging technologies can compensate for inaction can reinforce a reactive
385 mindset and entrench the status quo, diverting attention from root causes and delaying
386 meaningful change (Anderson & Peters, 2016; Gifford et al., 2018). Despite decades of warnings,
387 the world continues to rely on technological promises such as large-scale carbon capture, which

388 the IPCC (2022) judges unlikely to deliver substantial emission reductions by 2030. If these
389 technologies fail to perform as expected, society will be locked into a high-temperature trajectory
390 (Anderson & Peters, 2016). Biodiversity conservation faces similar risks. Advances such as
391 CRISPR and cloning cannot recreate the evolutionary potential lost through extinction, which
392 relies on large, diverse, self-sustaining populations. De-extinction efforts inevitably begin with
393 extremely low genetic diversity, exposing “resurrected” populations to a re-extinction vortex
394 (Steeves et al., 2017). While these technologies may have legitimate applications in targeted
395 management, they remain limited. The urgent need to reduce emissions and to protect and restore
396 genetic diversity in existing species, will rest primarily on investment in existing, proven actions.

397 Time lags offer a critical opportunity: the chance to intervene before losses become irreversible,
398 and proactive management offers reason for hope (Figure 1). Because genetic diversity often
399 declines more slowly than population size, detecting demographic problems and restoring
400 populations before genetic erosion becomes committed, offers a window for action. For example,
401 the Eastern North Pacific population of fin whales (*Balaenoptera physalus*) suffered a 99 %
402 reduction in N_e during twentieth century whaling, yet retained relatively high diversity. This was
403 likely because the bottleneck lasted about 70 years, a short period relative to the species’ long
404 generation time (~25.9 years), corresponding to three generations (Nigenda-Morales et al., 2023).
405 A moratorium on commercial whaling was implemented within this window for action, enabling
406 demographic recovery before genetic erosion was committed.

407 Species and populations face many different kinds of genetic threats, and discriminating among
408 these helps determine the most effective management actions (O’Brien et al., 2022). A global
409 meta-analysis suggests that several interventions can stabilise or improve genetic diversity,
410 including supplementation (Shaw et al., 2025). Supplementation spans a continuum from

411 facilitating natural gene flow via restored connectivity to more intensive translocations among
412 isolated or captive populations to effect genetic rescue. Given how widespread habitat
413 fragmentation has become, restoring gene flow is now essential in many systems (Frankham et
414 al., 2017). Once approached with hesitantly, well-planned genetic rescue is increasingly
415 recognised as a powerful tool for reversing inbreeding depression and restoring adaptive potential
416 (Frankham et al., 2017; Hoffmann et al., 2021; Ralls et al., 2018). Such approaches also facilitate
417 climate-resilient assisted gene flow, identifying and moving adaptive variation to help
418 populations track rapidly changing environments (Meek et al., 2025). When implemented early in
419 recovery planning and conservation management, these approaches are low-risk, relatively
420 inexpensive, and capable of sustaining adaptive potential before genetic erosion becomes
421 committed (da Silva et al., 2026; Fitzpatrick et al., 2023; Frankham et al., 2017; Ralls et al.,
422 2018).

423

424 **Conclusion**

425 Conserving genetic diversity is not a niche concern; it is central to long-term ecological resilience
426 and must become a core component of biodiversity planning. Genetic erosion is widespread, can
427 lag behind demographic losses, and becomes committed unless proactive steps are taken to
428 maintain and restore the evolutionary processes that sustain life on Earth. Doing so requires a
429 shift in thinking: from reacting only after genetic erosion is detected, to also proactively
430 safeguarding the raw material of resilience before it disappears.

431 Drawing from climate science, the concept of committed genetic erosion underscores the urgency
432 of action. Just as past greenhouse gas emissions have committed the planet to future climate

433 change impacts and potential tipping points, past and ongoing habitat loss, fragmentation, and
434 other consequent impacts on population decline, have committed many species to future genetic
435 erosion. The critical difference is that, unlike climate inertia, genetic inertia is tractable: erosion
436 unfolds population by population and can be prevented if action occurs during the lag period. We
437 cannot afford to miss this window for strategic intervention. Integrating genetic considerations
438 into planning and policy early maximises the capacity for adaptation and recovery. To help
439 achieve this, scientists, policymakers, practitioners, the private sector, and broader society all
440 play a role in ensuring that genetic considerations are communicated clearly, embedded early in
441 decisions, and underpinned by rigorous thresholds and terminology.

442 The solutions are well tested. In addition to monitoring, we must also apply genetic principles to
443 management: ecological strategies that achieve genetic outcomes. Established conservation
444 strategies, such as maintaining or improving connectivity, effecting carefully designed genetic
445 rescue, and supporting large, viable populations, sustain the evolutionary processes that maintain
446 genetic diversity. As such, they carry explicit genetic benefits that are too often overlooked.
447 Recognising these genetic outcomes gives renewed urgency to implementing these strategies
448 effectively. In much of the world, this will require applying genetic principles without direct
449 genetic data, and prioritising large-scale actions such as habitat protection and restoration. By
450 doing so, we intervene earlier in the extinction trajectory, acting before species are on the brink
451 of extinction. These approaches align with major international biodiversity and development
452 goals, supported by technical indicators that identify where losses are occurring, and which
453 species are most at risk. Now, bold, resilience-focused biodiversity action that embeds genetic
454 considerations into governance, finance, planning, and on-ground management is essential for
455 maintaining adaptive potential in a rapidly changing world. The choices made today will shape

456 the evolutionary futures of species and the ecological systems on which we depend, for
457 generations to come.

458

459 **Acknowledgments**

460 We thank J. Ward-Jones from the Centre for Biodiversity Analysis and S. Beaver from the
461 Institute for Climate, Energy & Disaster Solutions for connecting us to their networks and
462 supporting collaboration. A.F. acknowledges support from GENOA COST Action (CA23121).
463 C.S.M. is supported by the Smith Conservation Research Fellowship Program. L.L.
464 acknowledges support from FORMAS (2020-01290) and VR (201905503). R.B. received
465 support from FORMAS (2020-01048). S.E.P.K. is funded by ARC grant number CE230100012.
466 S.H. is partly supported by a Biota Award from the Walder Foundation.

467

468 **Conflicts of Interest**

469 The authors declare no conflict of interest.

470

471 **Data Availability Statement**

472 No new data were generated or analysed in support of this article.

Box 1: Signals of committed genetic erosion

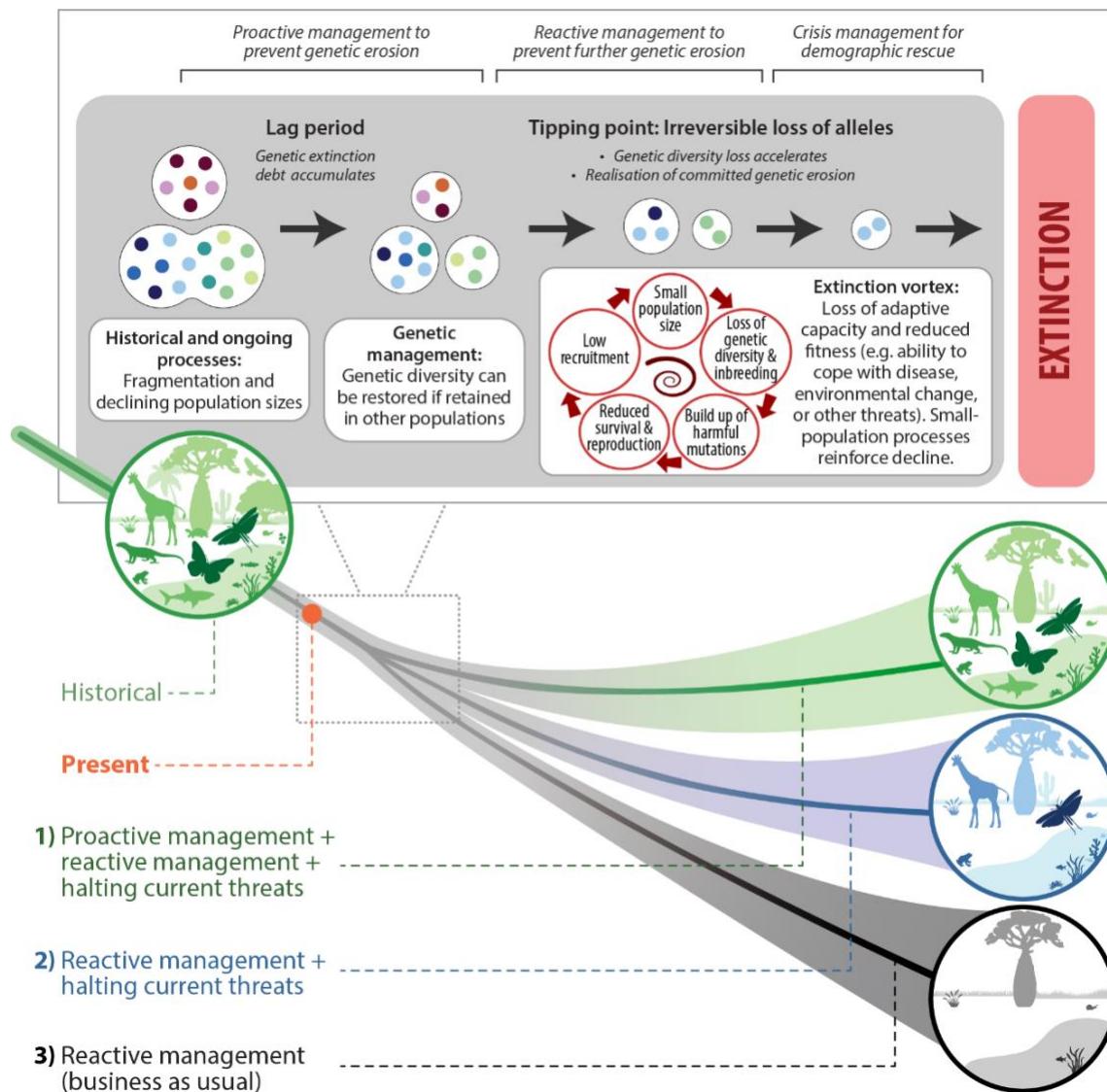
Measurable changes in a population's genetic diversity are rarely the earliest warning of risk.

The first indications that genetic extinction debt is accumulating are habitat loss, fragmentation and demographic decline, detectable through field monitoring or even remotely via satellite imagery (Hoban et al., 2024). These ecological signals indicate that declines in **effective population size (Ne)** and subsequent **genetic erosion** are likely.

Genetic diversity analyses reveal erosion already underway. Because components of genetic diversity respond to perturbation at different rates (Nei et al., 1975), comprehensive analysis can help quantify the severity, timing and trajectory of committed genetic erosion and highlight where intervention is most urgent (Frankham et al., 2010; Hoban et al., 2024).

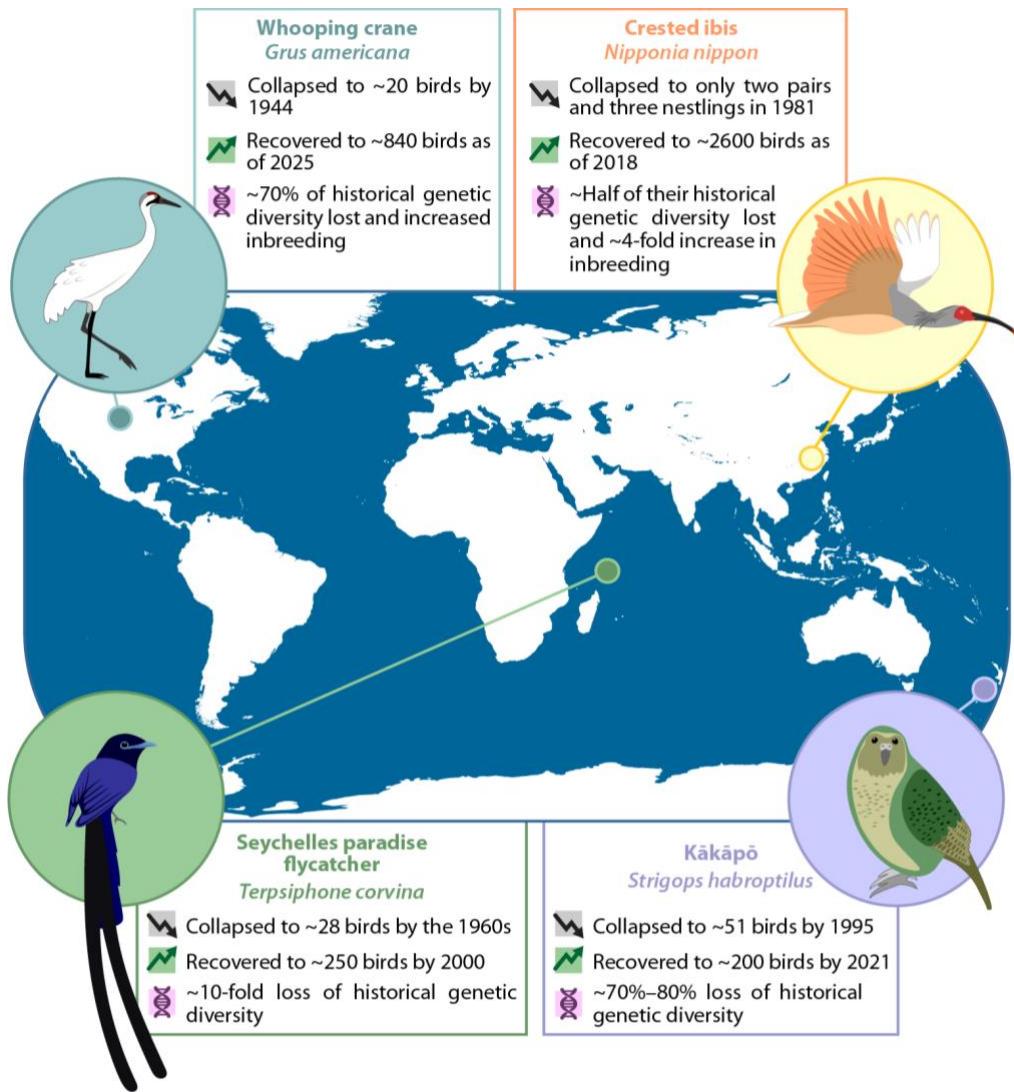
Like species richness and diversity in ecology (Hu et al., 2006), alpha-level genetic diversity is commonly summarised using **richness** (e.g., **allelic richness, AR; Watterson's theta, θ_w**) and **evenness (gene diversity, also called expected heterozygosity, He; nucleotide diversity, π)** metrics. Richness captures how many genetic variants (alleles) are present and is informative for long-term adaptive potential, while evenness reflects how allele frequencies are distributed and reflects short-term evolutionary responses (Allendorf et al., 2024; Caballero & García-Dorado, 2013; Mergeay, 2024).

While ongoing genetic monitoring is the gold standard, genetic erosion can also be detected from a single genetic snapshot. For example, following a population bottleneck, rare alleles are lost first, so richness declines rapidly. Evenness declines more slowly because it is


predominantly determined by common alleles. During or shortly after demographic decline, these properties manifest as a mismatch between metrics, indicating that the population is not at mutation–drift equilibrium (Cornuet & Luikart, 1996).

Reduced connectivity can generate similar mismatches: when gene flow drops below roughly one effective migrant per generation, subpopulations rapidly lose rare alleles even without detectable demographic decline (Broquet et al., 2010). This mismatch indicates a genetic extinction debt for evenness, as further loss of H_e or π is inevitable unless population size or connectivity increases. More generally, reduced gene flow increases genetic drift and inbreeding within each subpopulation, lowering N_e at the species level (Ryman et al., 2019). These non-equilibrium dynamics can unfold unevenly across a species' range, especially if subpopulations are permanently lost (Kurland et al., 2023).

Tests for identifying genetic erosion from a single snapshot include Bottleneck (Cornuet & Luikart, 1996), Tajima's D (Tajima, 1989), runs of homozygosity (ROH; Kardos et al., 2018), linkage disequilibrium (Santiago et al., 2025), or site-frequency spectrum analyses (Gutenkunst et al., 2009).


474

475

478 **Figure 1. Conceptual diagram of biodiversity trajectories under alternative genetic**
479 **management pathways.** The top panel illustrates the population-level timeline occurring within
480 the strategic window for action (grey dotted box): the period in which we can intervene before
481 the realisation of committed genetic erosion pushes many species toward extinction.
482 Fragmentation and population decline initiate genetic erosion, causing some immediate loss, and
483 resulting in a lag period in which genetic extinction debt accumulates. If genetic variants persist
484 in nearby populations, diversity at the species level can be restored through early intervention,

485 such as by mixing populations (supplementation). After a tipping point, however, genetic erosion
486 accelerates and becomes irreversible, reducing adaptive capacity and fitness, and reinforcing
487 small-population processes in a feedback loop (the “extinction vortex”). As systems move
488 through these stages, management shifts from proactive (preventing loss) to reactive (preventing
489 further loss) and finally to crisis management. At this stage, saving the species becomes
490 extremely difficult and/or costly, and extinction risk is elevated due to severely depleted genetic
491 diversity, even if demographic recovery is achieved. These often unseen genetic processes
492 underpin three potential biodiversity futures (bottom panel: represented by species diversity on
493 the y-axis and time on the x-axis), including: (1, green) recovery: proactive intervention to
494 maintain adaptive capacity before genetic erosion is measurable (e.g., restoring connectivity/gene
495 flow and sustaining large, viable population sizes), combined with threat abatement and reactive
496 responses where needed; (2, blue) maintenance: halting current threats (e.g., no further habitat
497 loss) alongside reactive management, reducing, but not preventing, future biodiversity loss; and
498 (3, black) losses under business as usual, where action is delayed until genetic erosion is
499 measurable (reactive management), resulting in biodiversity declining towards extinction, with
500 cascading losses across ecosystems.

501

502

503 **Figure 2. Global examples of realised committed genetic erosion in bird species - in all four**
 504 **cases substantial genetic erosion has occurred despite demographic recovery.** Historical
 505 baselines derived from 19th-century specimens reveal that four well-studied bird species (the
 506 whooping crane, crested ibis, Seychelles paradise flycatcher and kākāpō) have each lost
 507 substantial proportions of their historical genetic diversity following severe population declines.
 508 Conservation actions such as translocations, captive breeding, predator control and habitat
 509 protection were essential for securing or maintaining demographic recovery and, in several cases,
 510 preventing extinction of the species. However, these efforts occurred after committed genetic

511 erosion had been realised. The irreversible loss of genetic diversity means that these species now
512 persist with reduced adaptive capacity and elevated long-term extinction risk. Demographic
513 recovery is a genuine conservation success, but genetic erosion persists even after numbers
514 rebound. *Data sources:* whooping crane: Fontseré et al., 2025; crested ibis: Feng et al., 2019;
515 Seychelles paradise flycatcher: Femerling et al., 2023; kākāpō: Bergner et al., 2016; Dussex et
516 al., 2021.

517 **References**

518 Abram, N. J., Purich, A., England, M. H., McCormack, F. S., Strugnell, J. M., Bergstrom, D. M., Vance, T. R., Stål,
519 T., Wienecke, B., Heil, P., Doddridge, E. W., Sallée, J.-B., Williams, T. J., Reading, A. M., Mackintosh, A.,
520 Reese, R., Winkelmann, R., Klose, A. K., Boyd, P. W., ... Robinson, S. A. (2025). Emerging evidence of
521 abrupt changes in the Antarctic environment. *Nature*, 644(8077), 621–633. <https://doi.org/10.1038/s41586-025-09349-5>

522 Abrams, J. F., Huntingford, C., Williamson, M. S., Armstrong McKay, D. I., Boulton, C. A., Buxton, J. E.,
523 Sakschewski, B., Loriani, S., Zimm, C., Winkelmann, R., & Lenton, T. M. (2023). Committed global
524 warming risks triggering multiple climate tipping points. *Earth's Future*, 11(11), e2022EF003250.
525 <https://doi.org/10.1029/2022EF003250>

526 Allendorf, F. W., Hössjer, O., & Ryman, N. (2024). What does effective population size tell us about loss of allelic
527 variation? *Evolutionary Applications*, 17(6), e13733. <https://doi.org/10.1111/eva.13733>

528 Anderson, K., & Peters, G. (2016). The trouble with negative emissions. *Science*, 354(6309), 182–183.
529 <https://doi.org/10.1126/science.aah4567>

530 Andersson, A., Karlsson, S., Ryman, N., & Laikre, L. (2022). Monitoring genetic diversity with new indicators
531 applied to an alpine freshwater top predator. *Molecular Ecology*, 31(24), 6422–6439.
532 <https://doi.org/10.1111/mec.16710>

533 Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell,
534 S. E., Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5°C global warming could trigger multiple
535 climate tipping points. *Science*, 377(6611), eabn7950. <https://doi.org/10.1126/science.abn7950>

536 Ben-Amar, W., Herrera, D. C., & Martinez, I. (2024). Do climate risk disclosures matter to financial analysts?
537 *Journal of Business Finance & Accounting*, 51(7–8), 2153–2180. <https://doi.org/10.1111/jbfa.12778>

538 Bergner, L. M., Dussex, N., Jamieson, I. G., & Robertson, B. C. (2016). European colonization, not Polynesian
539 arrival, impacted population size and genetic diversity in the critically endangered New Zealand Kākāpō.
540 *Journal of Heredity*, 107(7), 593–602. <https://doi.org/10.1093/jhered/esw065>

541 Biggs, R., Peterson, G. D., & Rocha, J. C. (2018). The Regime Shifts Database: A framework for analyzing regime
542 shifts in social-ecological systems. *Ecology and Society*, 23(3), 9. <https://doi.org/10.5751/ES-10264-230309>

543 Biggs, R., Schlüter, M., Biggs, D., Bohensky, E. L., BurnSilver, S., Cundill, G., Dakos, V., Daw, T. M., Evans, L. S.,
544 Kotschy, K., Leitch, A. M., Meek, C., Quinlan, A., Raudsepp-Hearne, C., Robards, M. D., Schoon, M. L.,
545 Schultz, L., & West, P. C. (2012). Toward principles for enhancing the resilience of ecosystem services.
546 *Annual Review of Environment and Resources*, 37(Volume 37, 2012), 421–448.
547 <https://doi.org/10.1146/annurev-environ-051211-123836>

548 Bolin, B. (1991). Man-induced global change of climate: The IPCC findings and continuing uncertainty regarding
549 preventive action. *Environmental Conservation*, 18(4), 297–303.
550 <https://doi.org/10.1017/S0376892900022542>

551 Broquet, T., Angelone, S., Jaquière, J., Joly, P., Lena, J.-P., Lengagne, T., Plenet, S., Luquet, E., & Perrin, N. (2010).
552 Genetic bottlenecks driven by population disconnection. *Conservation Biology*, 24(6), 1596–1605.
553 <https://doi.org/10.1111/j.1523-1739.2010.01556.x>

554 Caballero, A., & García-Dorado, A. (2013). Allelic Diversity and Its Implications for the Rate of Adaptation.
555 *Genetics*, 195(4), 1373–1384. <https://doi.org/10.1534/genetics.113.158410>

556 Caldecott, B., Clark, A., Koskelo, K., Mulholland, E., & Hickey, C. (2021). Stranded assets: Environmental drivers,
557 societal challenges, and supervisory responses. *Annual Review of Environment and Resources*, 46(Volume
558 46, 2021), 417–447. <https://doi.org/10.1146/annurev-environ-012220-101430>

559 Connors, B. M., Siegle, M. R., Harding, J., Rossi, S., Staton, B. A., Jones, M. L., Bradford, M. J., Brown, R.,
560 Bechtol, B., Doherty, B., Cox, S., & Sutherland, B. J. G. (2022). Chinook salmon diversity contributes to
561 fishery stability and trade-offs with mixed-stock harvest. *Ecological Applications*, 32(8), e2709.
562 <https://doi.org/10.1002/eaap.2709>

563 Convention on Biological Diversity. (2022). *Decision adopted by the Conference of the Parties to the Convention on
564 Biological Diversity: 15/5 Monitoring framework for the Kunming–Montreal Global Biodiversity*

566 Framework. United Nations Environment Programme. <https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-05-en.pdf>

567

568 Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population
569 bottlenecks from allele frequency data. *Genetics*, 144(4), 2001–2014.
570 <https://doi.org/10.1093/genetics/144.4.2001>

571 Crow, J. F., & Aoki, K. (1984). Group selection for a polygenic behavioral trait: Estimating the degree of population
572 subdivision. *Proceedings of the National Academy of Sciences*, 81(19), 6073–6077.
573 <https://doi.org/10.1073/pnas.81.19.6073>

574 da Silva, J. M., Bertola, L. D., DeWoody, J. A., Steeves, T., Sunnucks, P., Vilaça, S. T., & Hoban, S. (2026).
575 Conserving genetic and genomic diversity in accordance with the Global Biodiversity Framework. *Annual
576 Review of Animal Biosciences*, 14. <https://doi.org/10.1146/annurev-animal-030424-070756>

577 Dehasque, M., Morales, H. E., Díez-del-Molino, D., Pečnerová, P., Chacón-Duque, J. C., Kanellidou, F., Muller, H.,
578 Plotnikov, V., Protopopov, A., Tikhonov, A., Nikolskiy, P., Danilov, G. K., Gianni, M., Sluis, L. van der,
579 Higham, T., Heintzman, P. D., Oskolkov, N., Gilbert, M. T. P., Götherström, A., ... Dalén, L. (2024).
580 Temporal dynamics of woolly mammoth genome erosion prior to extinction. *Cell*, 187(14), 3531–3540.e13.
581 <https://doi.org/10.1016/j.cell.2024.05.033>

582 Drechsler, M., Eppink, F. V., & Wätzold, F. (2011). Does proactive biodiversity conservation save costs?
583 *Biodiversity and Conservation*, 20(5), 1045–1055. <https://doi.org/10.1007/s10531-011-0013-4>

584 Dussex, N., Valk, T. van der, Morales, H. E., Wheat, C. W., Díez-del-Molino, D., Seth, J. von, Foster, Y., Kutschera,
585 V. E., Guschanski, K., Rhie, A., Phillippe, A. M., Korlach, J., Howe, K., Chow, W., Pelan, S., Damas, J. D.
586 M., Lewin, H. A., Hastie, A. R., Formenti, G., ... Dalén, L. (2021). Population genomics of the critically
587 endangered kākāpō. *Cell Genomics*, 1(1). <https://doi.org/10.1016/j.xgen.2021.100002>

588 Dutcher, K. E., Nussear, K. E., Heaton, J. S., Esque, T. C., & Vandergast, A. G. (2023). Move it or lose it: Predicted
589 effects of culverts and population density on Mojave desert tortoise (*Gopherus agassizii*) connectivity.
590 *PLOS ONE*, 18(9), e0286820. <https://doi.org/10.1371/journal.pone.0286820>

591 Exposito-Alonso, M., Booker, T. R., Czech, L., Gillespie, L., Hateley, S., Kyriazis, C. C., Lang, P. L. M., Leventhal,
592 L., Nogues-Bravo, D., Pagowski, V., Ruffley, M., Spence, J. P., Toro Arana, S. E., Weiß, C. L., & Zess, E.
593 (2022). Genetic diversity loss in the Anthropocene. *Science*, 377(6613), 1431–1435.
594 <https://doi.org/10.1126/science.abn5642>

595 Femerling, G., van Oosterhout, C., Feng, S., Bristol, R. M., Zhang, G., Groombridge, J., P. Gilbert, M. T., &
596 Morales, H. E. (2023). Genetic load and adaptive potential of a recovered avian species that narrowly
597 avoided extinction. *Molecular Biology and Evolution*, 40(12), msad256.
598 <https://doi.org/10.1093/molbev/msad256>

599 Feng, S., Fang, Q., Barnett, R., Li, C., Han, S., Kuhlwilm, M., Zhou, L., Pan, H., Deng, Y., Chen, G., Gamauf, A.,
600 Woog, F., Prys-Jones, R., Marques-Bonet, T., Gilbert, M. T. P., & Zhang, G. (2019). The genomic
601 footprints of the fall and recovery of the crested ibis. *Current Biology*, 29(2), 340–349.e7.
602 <https://doi.org/10.1016/j.cub.2018.12.008>

603 Ferns, G., & Amaeshi, K. (2021). Fueling climate (in)Action: How organizations engage in hegemonization to avoid
604 transformational action on climate change. *Organization Studies*, 42(7), 1005–1029.
605 <https://doi.org/10.1177/0170840619855744>

606 Fitzpatrick, S. W., Mittan-Moreau, C., Miller, M., & Judson, J. M. (2023). Genetic rescue remains underused for
607 aiding recovery of federally listed vertebrates in the United States. *Journal of Heredity*, 114(4), 354–366.
608 <https://doi.org/10.1093/jhered/esad002>

609 Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmquist, T., Gunderson, L., & Holling, C. S. (2004). Regime
610 shifts, resilience, and biodiversity in ecosystem management. *Annual Review of Ecology, Evolution, and
611 Systematics*, 35(Volume 35, 2004), 557–581. <https://doi.org/10.1146/annurev.ecolsys.35.021103.105711>

612 Fontsere, C., Speak, S. A., Caven, A. J., Rodríguez, J. A., Wang, X., Pacheco, C., Cassatt-Johnstone, M., Femerling,
613 G., Maloney, B., Balacco, J., Collins, J., Sims, Y., Abueg, L., Fedrigo, O., Jarvis, E. D., Hartup, B. K.,
614 Shapiro, B., Gilbert, M. T. P., van Oosterhout, C., & Morales, H. E. (2025). Persistent Genomic Erosion in

615 whooping cranes despite demographic recovery. *Molecular Ecology*, e70088.
 616 <https://doi.org/10.1111/mec.70088>

617 Frankel, O. H. (1974). Genetic conservation: Our evolutionary responsibility. *Genetics*, 78(1), 53–65.
 618 <https://doi.org/10.1093/genetics/78.1.53>

619 Frankham, R. (2022). Evaluation of proposed genetic goals and targets for the Convention on Biological Diversity.
 620 *Conservation Genetics*, 23(5), 865–870. <https://doi.org/10.1007/s10592-022-01459-1>

621 Frankham, R., Ballou, J. D., & Briscoe, D. A. (2010). *Introduction to conservation genetics* (2nd ed.). Cambridge
 622 University Press.

623 Frankham, R., Ballou, J. D., Ralls, K., Eldridge, M. D. B., Dudash, M. R., Fenster, C. B., Lacy, R. C., & Sunnucks,
 624 P. (2017). *Genetic management of fragmented animal and plant populations*. Oxford University Press.

625 Galán-Acedo, C., Arasa-Gisbert, R., Arroyo-Rodríguez, V., Martínez-Ruiz, M., Rosete-Vergés, F. A., & Villalobos,
 626 F. (2023). Effects of habitat loss on Brazilian primates: Assessing extinction thresholds in the Amazon and
 627 Atlantic Forest. *Perspectives in Ecology and Conservation*, 21(2), 189–195.
 628 <https://doi.org/10.1016/j.pecon.2023.05.001>

629 Gargiulo, R., Budde, K. B., & Heuertz, M. (2025). Mind the lag: Understanding genetic extinction debt for
 630 conservation. *Trends in Ecology & Evolution*, 40(3), 228–237. <https://doi.org/10.1016/j.tree.2024.10.008>

631 GCOS. (2010). *Implementation plan for the Global Observing System for Climate in support of the UNFCCC (2010
 632 Update)*. World Meteorological Organization, Geneva. <https://eprints.soton.ac.uk/162953/>

633 Gifford, R., Lacroix, K., & Chen, A. (2018). Psychology and climate change: Human perceptions, impacts, and
 634 responses. In *Understanding responses to climate change: Psychological barriers to mitigation and a new
 635 theory of behavioral choice* (pp. 161–183). <https://doi.org/10.1016/B978-0-12-813130-5.00006-0>

636 Gilpin, M. E., & Soulé, M. E. (1986). Minimum viable populations: Processes of species extinction. In *Conservation
 637 biology: The science of scarcity and diversity* (pp. 19–34). Sinauer Associates, Sunderland, Massachusetts.

638 González, A. V., Gómez-Silva, V., Ramírez, M. J., & Fontúrbel, F. E. (2020). Meta-analysis of the differential
 639 effects of habitat fragmentation and degradation on plant genetic diversity. *Conservation Biology*, 34(3),
 640 711–720. <https://doi.org/10.1111/cobi.13422>

641 Griffin, P. A., Jaffe, A. M., Lont, D. H., & Dominguez-Faus, R. (2015). Science and the stock market: Investors'
 642 recognition of unburnable carbon. *Energy Economics*, 52, 1–12.
 643 <https://doi.org/10.1016/j.eneco.2015.08.028>

644 Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring the joint
 645 demographic history of multiple populations from multidimensional SNP frequency data. *PLOS Genetics*,
 646 5(10), e1000695. <https://doi.org/10.1371/journal.pgen.1000695>

647 Haller, B. C., & Messer, P. W. (2023). SLiM 4: Multispecies eco-evolutionary modeling. *The American Naturalist*,
 648 201(5), E127–E139. <https://doi.org/10.1086/723601>

649 Hanski, I., & Ovaskainen, O. (2002). Extinction debt at extinction threshold. *Conservation Biology*, 16(3), 666–673.
 650 <https://doi.org/10.1046/j.1523-1739.2002.00342.x>

651 Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A., Perkins-Kirkpatrick, S. E., Mitchell,
 652 P. J., Nicotra, A. B., McGregor, S., Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B.,
 653 Chambers, L. E., Fletcher, M.-S., Keatley, M. R., Woodward, C. A., Williamson, G., ... Bowman, D. M. J.
 654 S. (2018). Biological responses to the press and pulse of climate trends and extreme events. *Nature Climate
 655 Change*, 8(7), 579–587. <https://doi.org/10.1038/s41558-018-0187-9>

656 Henry, R. C. (2025). Future projections of biodiversity under global change need to include genetic diversity. *Global
 657 Change Biology*, 31(8), e70477. <https://doi.org/10.1111/gcb.70477>

658 Hoban, S. (2014). An overview of the utility of population simulation software in molecular ecology. *Molecular
 659 Ecology*, 23(10), 2383–2401. <https://doi.org/10.1111/mec.12741>

660 Hoban, S., Archer, F. I., Bertola, L. D., Bragg, J. G., Breed, M. F., Bruford, M. W., Coleman, M. A., Ekblom, R.,
 661 Funk, W. C., Grueber, C. E., Hand, B. K., Jaffé, R., Jensen, E., Johnson, J. S., Kershaw, F., Liggins, L.,
 662 MacDonald, A. J., Mergeay, J., Miller, J. M., ... Hunter, M. E. (2022). Global genetic diversity status and

663 trends: Towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. *Biological*
 664 *Reviews*, 97(4), 1511–1538. <https://doi.org/10.1111/brv.12852>

665 Hoban, S., Bruford, M. W., Funk, W. C., Galbusera, P., Griffith, M. P., Grueber, C. E., Heuertz, M., Hunter, M. E.,
 666 Hvilsom, C., Stroil, B. K., Kershaw, F., Khoury, C. K., Laikre, L., Lopes-Fernandes, M., MacDonald, A. J.,
 667 Mergeay, J., Meek, M., Mittan, C., Mukassabi, T. A., ... Vernesi, C. (2021). Global commitments to
 668 conserving and monitoring genetic diversity are now necessary and feasible. *BioScience*, 71(9), 964–976.
 669 <https://doi.org/10.1093/biosci/biab054>

670 Hoban, S., Paz-Vinas, I., Shaw, R. E., Castillo-Reina, L., da Silva, J. M., DeWoody, J. A., Ekblom, R., Fedorca, A.,
 671 Forester, B. R., Funk, W. C., Geue, J. C., Heuertz, M., Hollingsworth, P. M., Hughes, A. C., Hunter, M. E.,
 672 Hvilsom, C., Ishihama, F., Jordan, R., Kalamujić Stroil, B., ... Grueber, C. E. (2024). DNA-based studies
 673 and genetic diversity indicator assessments are complementary approaches to conserving evolutionary
 674 potential. *Conservation Genetics*, 25(6), 1147–1153. <https://doi.org/10.1007/s10592-024-01632-8>

675 Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A.,
 676 Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Sen Gupta, A., &
 677 Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. *Progress in Oceanography*,
 678 141, 227–238. <https://doi.org/10.1016/j.pocean.2015.12.014>

679 Hoelzel, A. R., Gkafas, G. A., Kang, H., Sarigol, F., Le Boeuf, B., Costa, D. P., Beltran, R. S., Reiter, J., Robinson,
 680 P. W., McInerney, N., Seim, I., Sun, S., Fan, G., & Li, S. (2024). Genomics of post-bottleneck recovery in
 681 the northern elephant seal. *Nature Ecology & Evolution*, 8(4), 686–694. <https://doi.org/10.1038/s41559-024-02337-4>

683 Hoffmann, A. A., Miller, A. D., & Weeks, A. R. (2021). Genetic mixing for population management: From genetic
 684 rescue to provenancing. *Evolutionary Applications*, 14(3), 634–652. <https://doi.org/10.1111/eva.13154>

685 Hu, X.-S., He, F., & Hubbell, S. P. (2006). Neutral theory in macroecology and population genetics. *Oikos*, 113(3),
 686 548–556. <https://doi.org/10.1111/j.2006.0030-1299.14837.x>

687 IPBES. (2019). *Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services* (S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, ... C. N. Zayas, Eds.). IPBES secretariat, Bonn, Germany.

688 IPBES. (2024). *IPBES Nexus Assessment: Summary for policymakers* (P. D. McElwee, P. A. Harrison, T. L. van
 689 Huysen, V. Alonso Roldán, E. Barrios, P. Dasgupta, F. DeClerck, Z. Harmáčková, D. T. S. Hayman, M.
 690 Herrero, R. Kumar, D. Ley, D. Mangalagiu, R. A. McFarlane, C. Paukert, W. A. Pengue, P. R. Prist, T. H.
 691 Ricketts, M. D. A. Rounsevell, ... D. Obura, Eds.). IPBES secretariat, Bonn, Germany.
 692 <https://doi.org/10.5281/zenodo.15673657>

693 IPCC. (2022). *Summary for policymakers in: Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change* (P. R. Shukla, J. Skea, A. R. Reisinger, R. Slade, R. Fradera, M. Pathak, A. Al Khourdajie, M. Belkacemi, R. van Diemen, A. Hasija, G. Lisboa, S. Luz, J. Malley, D. McCollum, S. Some, & P. Vyas, Eds.). IPCC, Cambridge University Press, Cambridge, UK and New York, NY, USA.

694 IPCC. (2023). *Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the Intergovernmental Panel on Climate Change* (H. Lee & J. Romero, Eds.; First). Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland.
 695 <https://doi.org/10.59327/IPCC/AR6-9789291691647>

696 Jouffray, J.-B., Virdin, J., Bebbington, J., Blasiak, R., Dunchus, A., Lo Presti, M., Pare, J., Prosi, D., Quintero, J. P.,
 697 Rosenthal, R., Tortora, P., & Vermeer, D. (2025). Identifying and closing gaps in corporate reporting of
 698 ocean impacts. *Nature Sustainability*, 8(11), 1371–1380. <https://doi.org/10.1038/s41893-025-01631-8>

699 Kardos, M., Åkesson, M., Fountain, T., Flagstad, Ø., Liberg, O., Olason, P., Sand, H., Wabakken, P., Wikenros, C.,
 700 & Ellegren, H. (2018). Genomic consequences of intensive inbreeding in an isolated wolf population.
 701 *Nature Ecology & Evolution*, 2(1), 124–131. <https://doi.org/10.1038/s41559-017-0375-4>

702 King, A. D., Ziehn, T., Chamberlain, M., Borowiak, A. R., Brown, J. R., Cassidy, L., Dittus, A. J., Grose, M.,
 703 Maher, N., Paik, S., Perkins-Kirkpatrick, S. E., & Sengupta, A. (2024). Exploring climate stabilisation at
 704

714 different global warming levels in ACCESS-ESM-1.5. *Earth System Dynamics*, 15, 1353–1383.
715 <https://doi.org/10.5194/esd-15-1353-2024>

716 Koetz, T., Bridgewater, P., van den Hove, S., & Siebenhüner, B. (2008). The role of the Subsidiary Body on
717 Scientific, Technical and Technological Advice to the Convention on Biological Diversity as science–policy
718 interface. *Environmental Science & Policy*, 11(6), 505–516. <https://doi.org/10.1016/j.envsci.2008.05.001>

719 Kurland, S., Ryman, N., Hössjer, O., & Laikre, L. (2023). Effects of subpopulation extinction on effective size (N_e)
720 of metapopulations. *Conservation Genetics*, 24(4), 417–433. <https://doi.org/10.1007/s10592-023-01510-9>

721 Kurland, S., Saha, A., Keehnen, N., de la Paz Celorio-Mancera, M., Díez-del-Molino, D., Ryman, N., & Laikre, L.
722 (2024). New indicators for monitoring genetic diversity applied to alpine brown trout populations using
723 whole genome sequence data. *Molecular Ecology*, 33(2), e17213. <https://doi.org/10.1111/mec.17213>

724 Laikre, L., Jonsson, B.-G., Ihse, M., Marissink, M., Gustavsson, A.-M. D., Ebenhard, T., Hagberg, L., Stål, P.-O.,
725 Von Walter, S., & Wramner, P. (2008). Wanted: Scientists in the CBD process. *Conservation Biology*,
726 22(4), 814–815. <https://doi.org/10.1111/j.1523-1739.2008.00991.x>

727 Lande, R. (1988). Genetics and demography in biological conservation. *Science*, 241(4872), 1455–1460.
728 <https://doi.org/10.1126/science.3420403>

729 Lande, R., & Barrowclough, G. F. (1987). Effective population size, genetic variation, and their use in population
730 management. In M. E. Soulé (Ed.), *Viable populations for conservation* (pp. 87–123). Cambridge
731 University Press.

732 Lotze, H. K., & Worm, B. (2009). Historical baselines for large marine animals. *Trends in Ecology & Evolution*,
733 24(5), 254–262. <https://doi.org/10.1016/j.tree.2008.12.004>

734 Mace, G. M., Barrett, M., Burgess, N. D., Cornell, S. E., Freeman, R., Grooten, M., & Purvis, A. (2018). Aiming
735 higher to bend the curve of biodiversity loss. *Nature Sustainability*, 1(9), 448–451.
736 <https://doi.org/10.1038/s41893-018-0130-0>

737 Mastretta-Yanes, A., da Silva, J. M., Grueber, C. E., Castillo-Reina, L., Köppä, V., Forester, B. R., Funk, W. C.,
738 Heuertz, M., Ishihama, F., Jordan, R., Mergeay, J., Paz-Vinas, I., Rincon-Parra, V. J., Rodriguez-Morales,
739 M. A., Arredondo-Amezcuia, L., Brahy, G., DeSaix, M., Durkee, L., Hamilton, A., ... Hoban, S. (2024).
740 Multinational evaluation of genetic diversity indicators for the Kunming-Montreal Global Biodiversity
741 Framework. *Ecology Letters*, 27(7), e14461. <https://doi.org/10.1111/ele.14461>

742 McLaughlin, C. M., Hinshaw, C., Sandoval-Arango, S., Zavala-Paez, M., & Hamilton, J. A. (2025). Redlisting
743 genetics: Towards inclusion of genetic data in IUCN Red List assessments. *Conservation Genetics*, 26(2),
744 213–223. <https://doi.org/10.1007/s10592-024-01671-1>

745 Meek, M. H., Mamoozadeh, N. R., Glaubitz, J. C., Hare, M. P., & Kraft, C. E. (2025). Range-wide climate risk and
746 adaptive potential in a cold-water fish species. *Nature Communications*, 16(1), 7514.
747 <https://doi.org/10.1038/s41467-025-62811-w>

748 Mergeay, J. (2024). Population size in evolutionary biology is more than the effective size. *Evolutionary
749 Applications*, 17(10), e70029. <https://doi.org/10.1111/eva.70029>

750 Meyfroidt, P., de Bremond, A., Ryan, C. M., Archer, E., Aspinall, R., Chhabra, A., Camara, G., Corbera, E.,
751 DeFries, R., Diaz, S., Dong, J., Ellis, E. C., Erb, K.-H., Fisher, J. A., Garrett, R. D., Golubiewski, N. E.,
752 Grau, H. R., Grove, J. M., Haberl, H., ... zu Ermgassen, E. K. H. J. (2022). Ten facts about land systems for
753 sustainability. *Proceedings of the National Academy of Sciences*, 119(7), e2109217118.
754 <https://doi.org/10.1073/pnas.2109217118>

755 Mohamed, A., DeClerck, F., Verburg, P. H., Obura, D., Abrams, J. F., Zafra-Calvo, N., Rocha, J., Estrada-Carmona,
756 N., Fremier, A., Jones, S. K., Meier, I. C., & Stewart-Koster, B. (2024). Securing Nature's Contributions to
757 People requires at least 20%–25% (semi-)natural habitat in human-modified landscapes. *One Earth*, 7(1),
758 59–71. <https://doi.org/10.1016/j.oneear.2023.12.008>

759 Montgomery, M. E., Woodworth, L. M., Nurthen, R. K., Gilligan, D. M., Briscoe, D. A., & Frankham, R. (2000).
760 Relationships between population size and loss of genetic diversity: Comparisons of experimental results
761 with theoretical predictions. *Conservation Genetics*, 1(1), 33–43. <https://doi.org/10.1023/A:1010173401557>

762 Mualim, K. S., Spence, J. P., Weiß, C., Selmoni, O., Lin, M., & Exposito-Alonso, M. (2025). *Large future genetic*
763 *diversity losses are predicted even with habitat protection* (No. 619096). bioRxiv [Preprint].
764 <https://doi.org/10.1101/2024.10.21.619096>

765 Nadeau, C. P., & Urban, M. C. (2019). Eco-evolution on the edge during climate change. *Ecography*, 42(7), 1280–
766 1297. <https://doi.org/10.1111/ecog.04404>

767 Nei, M., Maruyama, T., & Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations.
768 *Evolution*, 29(1), 1–10.

769 Ngeve, M. N. (2025). Genetic diversity must be explicitly recognized in ecological restoration. *Nature Climate*
770 *Change*, 15(9), 908–909. <https://doi.org/10.1038/s41558-025-02405-y>

771 Nigenda-Morales, S. F., Lin, M., Nuñez-Valencia, P. G., Kyriazis, C. C., Beichman, A. C., Robinson, J. A.,
772 Ragsdale, A. P., Urbán R., J., Archer, F. I., Viloria-Gómora, L., Pérez-Álvarez, M. J., Poulin, E.,
773 Lohmueller, K. E., Moreno-Estrada, A., & Wayne, R. K. (2023). The genomic footprint of whaling and
774 isolation in fin whale populations. *Nature Communications*, 14(1), 5465. <https://doi.org/10.1038/s41467-023-40052-z>

775

776 O'Brien, D., Aavik, T., Fedorca, A., Fischer, M. C., Goffaux, R., Hoban, S., Hollingsworth, P., Hvilsom, C., Jehle,
777 R., Stroil, B. K., Kershaw, F., Klinga, P., Kopatz, A., Leigh, D. M., Paz-Vinas, I., Robuchon, M.,
778 Segelbacher, G., Takacs, V., Vernesi, C., & Laikre, L. (2025). Restoring genetic diversity to facilitate the
779 implementation of the EU Nature Restoration Law. *Biological Conservation*, 303, 110995.
780 <https://doi.org/10.1016/j.biocon.2025.110995>

781 O'Brien, D., Laikre, L., Hoban, S., Bruford, M. W., Ekblom, R., Fischer, M. C., Hall, J., Hvilsom, C.,
782 Hollingsworth, P. M., Kershaw, F., Mittan, C. S., Mukassabi, T. A., Ogden, R., Segelbacher, G., Shaw, R.
783 E., Vernesi, C., & MacDonald, A. J. (2022). Bringing together approaches to reporting on within species
784 genetic diversity. *Journal of Applied Ecology*, 59(9), 2227–2233. <https://doi.org/10.1111/1365-2664.14225>

785 Österblom, H., & Blasiak, R. (2021). Oil licences undermine Norway's ocean leadership. *Nature*, 590(7847), 551–
786 551. <https://doi.org/10.1038/d41586-021-00445-w>

787 Pauly, D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. *Trends in Ecology & Evolution*, 10(10),
788 430. [https://doi.org/10.1016/S0169-5347\(00\)89171-5](https://doi.org/10.1016/S0169-5347(00)89171-5)

789 Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J., Bruford, M. W., Brummitt,
790 N., Butchart, S. H. M., Cardoso, A. C., Coops, N. C., Dulloo, E., Faith, D. P., Freyhof, J., Gregory, R. D.,
791 Heip, C., Höft, R., Hurt, G., Jetz, W., ... Wegmann, M. (2013). Essential Biodiversity Variables. *Science*,
792 339(6117), 277–278. <https://doi.org/10.1126/science.1229931>

793 Perkins-Kirkpatrick, S. E., Selvey, L., Aglas-Leitner, P., Lansbury, N., Hundessa, S., Stone, D., Ebi, K. L., &
794 Osborne, N. J. (2025). Attributing heatwave-related mortality to climate change: A case study of the 2009
795 Victorian heatwave in Australia. *Environmental Research: Climate*, 4(1), 015004.
796 <https://doi.org/10.1088/2752-5295/ada8cd>

797 Pettorelli, N., Graham, N. A. J., Seddon, N., Maria da Cunha Bustamante, M., Lowton, M. J., Sutherland, W. J.,
798 Koldewey, H. J., Prentice, H. C., & Barlow, J. (2021). Time to integrate global climate change and
799 biodiversity science-policy agendas. *Journal of Applied Ecology*, 58(11), 2384–2393.
800 <https://doi.org/10.1111/1365-2664.13985>

801 Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., &
802 Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection.
803 *Science*, 344(6187), 1246752. <https://doi.org/10.1126/science.1246752>

804 Pinto, A. V., Hansson, B., Patramanis, I., Morales, H. E., & van Oosterhout, C. (2024). The impact of habitat loss
805 and population fragmentation on genomic erosion. *Conservation Genetics*, 25(1), 49–57.
806 <https://doi.org/10.1007/s10592-023-01548-9>

807 Ploeg, F. van der, & Rezai, A. (2020). Stranded assets in the transition to a carbon-free economy. *Annual Review of*
808 *Resource Economics*, 12(Volume 12, 2020), 281–298. <https://doi.org/10.1146/annurev-resource-110519-040938>

810 Plue, J., Vandepitte, K., Honnay, O., & Cousins, S. A. O. (2017). Does the seed bank contribute to the build-up of a
811 genetic extinction debt in the grassland perennial *Campanula rotundifolia*? *Annals of Botany*, 120(3), 373–
812 385. <https://doi.org/10.1093/aob/mcx057>

813 Pörtner, H.-O., Scholes, R. J., Agard, J., Archer, E., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W. L.
814 (William), Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C.,
815 Hickler, T., Hoegh-Guldberg, O., Ichii, K., ... Ngo, H. (2021). *IPBES-IPCC co-sponsored workshop report
816 on biodiversity and climate change* (Version 2). IPBES and IPCC.
817 <https://doi.org/10.5281/ZENODO.4782538>

818 Pye, S., Bradley, S., Hughes, N., Price, J., Welsby, D., & Ekins, P. (2020). An equitable redistribution of unburnable
819 carbon. *Nature Communications*, 11(1), 3968. <https://doi.org/10.1038/s41467-020-17679-3>

820 Ralls, K., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Sunnucks, P., & Frankham,
821 R. (2018). Call for a paradigm shift in the genetic management of fragmented populations. *Conservation
822 Letters*, 11(2), e12412. <https://doi.org/10.1111/conl.12412>

823 Rich, S. S., Bell, A. E., & Wilson, S. P. (1979). Genetic drift in small populations of *Tribolium*. *Evolution*, 33(2),
824 579–584.

825 Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drüke, M., Fetzer, I., Bala, G.,
826 von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M.,
827 Mohan, C., Nogués-Bravo, D., ... Rockström, J. (2023). Earth beyond six of nine planetary boundaries.
828 *Science Advances*, 9(37), eadh2458. <https://doi.org/10.1126/sciadv.adh2458>

829 Robert, E., Lenz, P., Bergeron, Y., de Lafontaine, G., Bouriaud, O., Isabel, N., & Girardin, M. P. (2024). Future
830 carbon sequestration potential in a widespread transcontinental boreal tree species: Standing genetic
831 variation matters! *Global Change Biology*, 30(6), e17347. <https://doi.org/10.1111/gcb.17347>

832 Ryman, N., Laikre, L., & Hössjer, O. (2019). Do estimates of contemporary effective population size tell us what we
833 want to know? *Molecular Ecology*, 28(8), 1904–1918. <https://doi.org/10.1111/mec.15027>

834 Santiago, E., Köpke, C., & Caballero, A. (2025). Accounting for population structure and data quality in
835 demographic inference with linkage disequilibrium methods. *Nature Communications*, 16(1), 6054.
836 <https://doi.org/10.1038/s41467-025-61378-w>

837 Schmidt, C., Domaratzki, M., Kinnunen, R. P., Bowman, J., & Garroway, C. J. (2020). Continent-wide effects of
838 urbanization on bird and mammal genetic diversity. *Proceedings of the Royal Society B: Biological
839 Sciences*, 287(1920), 20192497. <https://doi.org/10.1098/rspb.2019.2497>

840 Schmidt, C., Hoban, S., Hunter, M., Paz-Vinas, I., & Garroway, C. J. (2023). Genetic diversity and IUCN Red List
841 status. *Conservation Biology*, 37(4), e14064. <https://doi.org/10.1111/cobi.14064>

842 Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D.,
843 Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R.,
844 Treat, C. C., & Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. *Nature*, 520(7546),
845 171–179. <https://doi.org/10.1038/nature14338>

846 Shaw, R. E., Farquharson, K. A., Bruford, M. W., Coates, D. J., Elliott, C. P., Mergeay, J., Ottewell, K. M.,
847 Segelbacher, G., Hoban, S., Hvilsom, C., Pérez-España, S., Ruñgis, D., Aravanopoulos, F., Bertola, L. D.,
848 Cotrim, H., Cox, K., Cubric-Curik, V., Ekblom, R., Godoy, J. A., ... Grueber, C. E. (2025). Global meta-
849 analysis shows action is needed to halt genetic diversity loss. *Nature*, 638(8051), 704–710.
850 <https://doi.org/10.1038/s41586-024-08458-x>

851 Soulé, M. E. (1980). Thresholds for survival: Maintaining fitness and evolutionary potential. In *Conservation
852 biology: An evolutionary-ecological perspective* (pp. 151–169).

853 Staude, I. R., Navarro, L. M., & Pereira, H. M. (2020). Range size predicts the risk of local extinction from habitat
854 loss. *Global Ecology and Biogeography*, 29(1), 16–25. <https://doi.org/10.1111/geb.13003>

855 Steeves, T. E., Johnson, J. A., & Hale, M. L. (2017). Maximising evolutionary potential in functional proxies for
856 extinct species: A conservation genetic perspective on de-extinction. *Functional Ecology*, 31(5), 1032–
857 1040. <https://doi.org/10.1111/1365-2435.12843>

858 Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., & Schellnhuber, H. J. (2018). Trajectories of the earth system in the anthropocene. *Proceedings of the National Academy of Sciences*, 115(33), 8252–8259. <https://doi.org/10.1073/pnas.1810141115>

862 Strange, R. N., & Scott, P. R. (2005). Plant disease: A threat to global food security. *Annual Review of Phytopathology*, 43, 83–116. <https://doi.org/10.1146/annurev.phyto.43.113004.133839>

864 Tajima, F. (1989). The effect of change in population size on DNA polymorphism. *Genetics*, 123(3), 597–601. <https://doi.org/10.1093/genetics/123.3.597>

866 Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. *Nature*, 371(6492), 65–66. <https://doi.org/10.1038/371065a0>

868 Umbrello, L. S., Bullen, R., Shaw, R. E., McArthur, S., Byrne, M., van Leeuwen, S., & Ottewell, K. M. (2022). Extensive gene flow in a threatened bat (*Rhinonicteris aurantia*) in an arid landscape. *Global Ecology and Conservation*, 37, e02154. <https://doi.org/10.1016/j.gecco.2022.e02154>

871 Vranken, S., Wernberg, T., Scheben, A., Pessarrodona, A., Batley, J., & Coleman, M. A. (2025). Connectivity enhances resilience of marine forests after an extreme event. *Scientific Reports*, 15(1), 5019. <https://doi.org/10.1038/s41598-025-87449-y>

874 Walker, B., Crépin, A.-S., Nyström, M., Andersson, J. M., Andersson, E., Elmquist, T., Queiroz, C., Barrett, S., Bennett, E., Cardenas, J. C., Carpenter, S. R., Chapin, F. S., de Zeeuw, A., Fischer, J., Folke, C., Levin, S., Nyborg, K., Polasky, S., Segerson, K., ... Vincent, J. R. (2023). Response diversity as a sustainability strategy. *Nature Sustainability*, 6(6), 621–629. <https://doi.org/10.1038/s41893-022-01048-7>

878 Waples, R. S. (2025). The idiot's guide to effective population size. *Molecular Ecology*, 34(23), e17670. <https://doi.org/10.1111/mec.17670>

880 Wauchope, H. S., zu Ermgassen, S. O. S. E., Jones, J. P. G., Carter, H., Schulte to Bühne, H., & Milner-Gulland, E. J. (2024). What is a unit of nature? Measurement challenges in the emerging biodiversity credit market. *Proceedings of the Royal Society B: Biological Sciences*, 291(2036), 20242353. <https://doi.org/10.1098/rspb.2024.2353>

884 Wernberg, T., Coleman, M. A., Bennett, S., Thomsen, M. S., Tuya, F., & Kelaher, B. P. (2018). Genetic diversity and kelp forest vulnerability to climatic stress. *Scientific Reports*, 8(1), 1851. <https://doi.org/10.1038/s41598-018-20009-9>

887 WMO. (2025). *State of the global climate 2024*. World Meteorological Organization.

888 Wright, C., & Nyberg, D. (2024). Corporations and climate change: An overview. *Wiley Interdisciplinary Reviews: Climate Change*, 15(6), e919.

890 Wunderling, N., Winkelmann, R., Rockström, J., Loriani, S., Armstrong McKay, D. I., Ritchie, P. D. L., Sakschewski, B., & Donges, J. F. (2023). Global warming overshoots increase risks of climate tipping cascades in a network model. *Nature Climate Change*, 13(1), 75–82. <https://doi.org/10.1038/s41558-022-01545-9>

894