

1 **From Business Intelligence to Conservation Intelligence: Operationalising
2 adaptive pest control to protect the resilience of the Great Barrier Reef**

3 Samuel A Matthews^{1,2}, Roger Beeden¹, Mary C. Bonin³, Camille Mellin⁴, Morgan Pratchett⁵, Isobel
4 Ryan¹, Jennifer Wilmes¹, David H Williamson¹

5 ¹Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia

6 ²Australian Institute of Marine Science, Townsville, QLD, Australia

7 ³Great Barrier Reef Foundation, Brisbane, QLD, Australia

8 ⁴The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South
9 Australia, Australia

10 ⁵College of Science and Engineering, James Cook University, Townsville, QLD , Australia

11

12 Corresponding Author: Samuel Matthews, s.matthews@aims.gov.au

13

14 ABSTRACT

15 Resilience-Based Management (RBM) is crucial for enhancing outcomes in conservation interventions
16 as the climate changes. To be effective it requires continuous modelling, assessment, evaluation and
17 adjustment. Here, we adapt established Business Intelligence software into Conservation Intelligence
18 tools to provide the near real-time analytics and a decision support system necessary for effective RBM.
19 This approach is demonstrated using the Crown-of-Thorns Starfish Control Program on Australia's
20 Great Barrier Reef where integrated visual dashboards were developed to assess outbreak severity,
21 prioritize control actions, evaluate effectiveness and incorporate emerging research to close the
22 research-implementation gap. The flexibility of Business Intelligence software allows these
23 Conservation Intelligence tools to be built and maintained 'in-house', meeting the Reef Authority's
24 explicit needs and reducing dependency on external developers or researchers. Conservation
25 Intelligence tools can synthesize complex spatial-temporal data into flexible, user-friendly platforms
26 specifically targeting stages of the RBM cycle that enable rapid iterations as programs and ecosystems
27 adapt to climate change. This approach is readily transferable to other conservation challenges,
28 particularly in government-led programs where enterprise software licenses may already exist and is
29 particularly useful in ecologically complex but data rich environments.

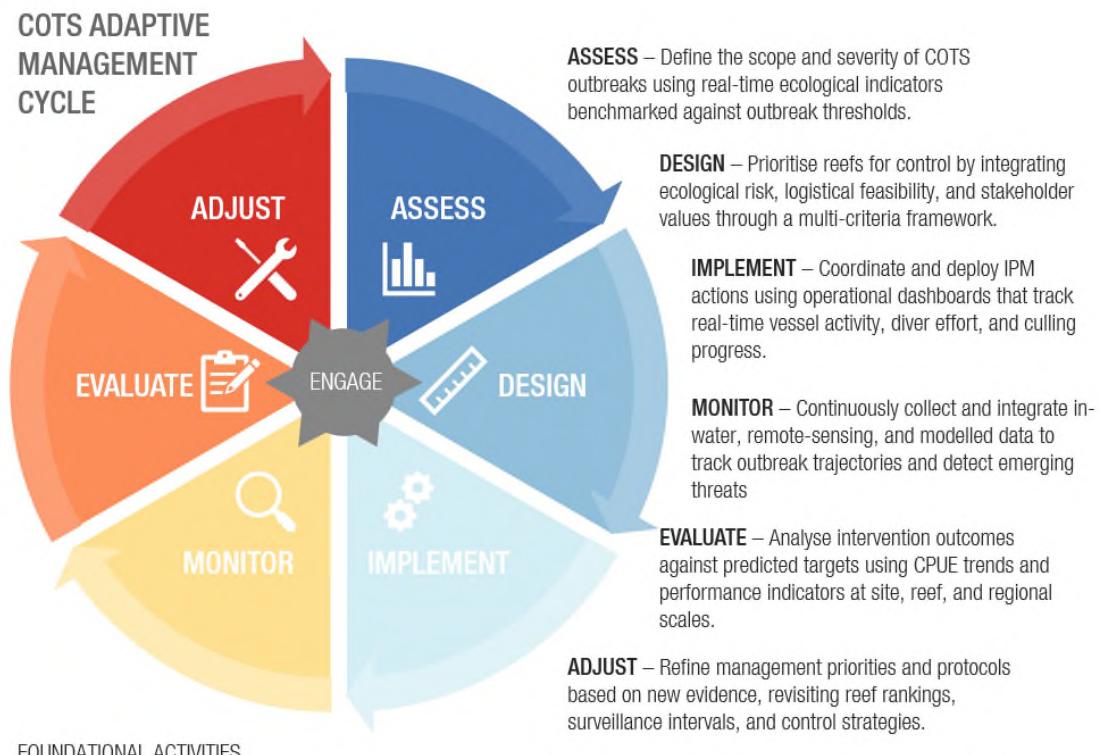
30 RESILIENCE-BASED MANAGEMENT AND CONSERVATION INTELLIGENCE

31 Resilience-based management is increasingly recognised as best practice for conservation in rapidly
32 changing environments, offering an iterative framework of forecasting, planning, action, monitoring,
33 and adjustment specifically aimed at preserving and enhancing ecosystem resilience (i.e. the ability of
34 a system to both resist and recover from disturbances (Holling, 1973; Hughes et al., 2005)) under
35 uncertainty (Anthony et al., 2015; Holling, 1978; Mcleod et al., 2019; Schuurman et al., 2022; Walters,
36 1986; Westgate et al., 2013). The adaptive management framework typically involves six cyclical
37 stages: (1) assessing the state of the system and extent of the problem; (2) designing management
38 actions; (3) implementation; (4) monitoring of outcomes; (5) evaluation and institutional learning; and
39 (6) adjusting future actions based on predictive insights and emerging conditions (Gregory et al., 2006;
40 Måansson et al., 2023; Rist et al., 2013). By continuously integrating new information about ecosystem
41 states, processes, and future scenarios (e.g. climate change), managers can proactively refine
42 interventions to better anticipate and respond to disturbances (Gunderson and Holling, 2002; Walters,
43 2007). Extending this framework to RBM requires greater focus on planning for uncertain futures, and
44 application of intervention strategies that boost resilience by mitigating disturbance impacts or
45 enhancing recovery (Anthony et al., 2015)

46 Operationalising RBM however remains challenging. The burden of continual evaluation, stakeholder
47 engagement and re-assessment of ecosystem state and resilience often slows or halts conservation
48 outcomes (Anthony et al., 2015; Gregory et al., 2006; Rist et al., 2013). Financial and logistical lags

49 commonly delay the acquisition of monitoring data or delivery of interventions (Downs, 1972; Hoey et
50 al., 2016), and the substantial effort required to process, analyse, and communicate results creates
51 bottlenecks that undermine the practical implementation of RBM (Anthony et al., 2015; Måansson et
52 al., 2023; Mcleod et al., 2019; Rist et al., 2013; Williams and Brown, 2014).

53 Conservation interventions in complex ecosystems demand tools that can synthesise diverse data
54 streams to successfully support resilience-oriented actions and stakeholder engagement throughout the
55 RBM process (National Academies of Sciences Engineering and Medicine 2019; Mcleod et al. 2019).
56 Decision-support software, such as Marxan, have been developed explicitly for tasks like designing
57 marine reserves and have contributed significantly to spatial conservation planning globally, including
58 the rezoning of the Great Barrier Reef Marine Park (Ball et al., 2009; Day, 2002; GBRMPA, 2004).
59 While such purpose-built tools are invaluable for specific applications, their task specific-design limits
60 their scope and flexibility to new decision-contexts. Bespoke, research-led decision support tools are
61 often built to address emerging questions but suffer from a lack of long-term support once project-
62 specific funding ends, or the mis-alignment with objectives of end users (Gibson et al., 2017; McIntosh
63 et al., 2011). These issues often stem not from the software's immediate functionality, but from
64 organizational constraints, a lack of personnel and funding to support long-term technical maintenance,
65 or strict organizational IT policies (Curtice et al., 2012; Pınarbaşı et al., 2017) thereby hindering their
66 long-term application and integration into practical RBM programs. There is a clear need for decision-
67 support tools that are flexible enough to continuously adapt alongside the iterative cycles inherent to
68 RBM frameworks and that help close the gap between researchers, conservation planners and decision-
69 makers (Ferraz et al., 2021; Knight et al., 2008; Walsh et al., 2019). Addressing this challenge requires
70 either substantial ongoing funding and collaboration for maintenance and development, or the use of
71 platforms that conservation practitioners can sustainably manage themselves.


72 Here we describe 'Conservation Intelligence' as the adaptation of enterprise Business Intelligence
73 tailored specifically for RBM decision-making, providing a robust alternative for decision support in
74 conservation. Interactive and informative data visualisations create active engagement and knowledge
75 generation amongst stakeholder groups (Keller and Tergan, 2005); improving decision quality (Howard,
76 1988; Spetzler et al., 2016) and speed (Eberhard, 2023); and provide a vehicle for knowledge transfer
77 between science, management and policy (McInerny et al., 2014). Originally developed for finance and
78 enterprise analytics, BI systems can ingest disparate data sources, automate data refreshes, and generate
79 interactive visualisations without extensive programming skills (Gonçalves et al., 2023; Murugesan and
80 Karthikeyan, 2016; Ul-Ain et al., 2019). Critically, these business intelligence systems benefit from
81 sustained commercial development, cloud scalability, and user support which can enhance the
82 sustainability and ongoing development of tools as conservation interventions and management needs
83 evolve. Importantly, these attributes substantially lower barriers to entry, enabling in-house

84 development of decision-support tools that are fit for their given purpose, resilient to research funding
85 shortfalls, and adaptable to the iterative requirements of RBM frameworks (Figure 1).

86 COTS CONTROL AND CONSERVATION INTELLIGENCE ON THE GBR

87 The Great Barrier Reef (GBR) illustrates both the promise and the challenge of implementing RBM at
88 scale (Day, 2022). Over recent decades, pioneering management measures, including extensive zoning
89 (GBRMPA, 2004; McCook et al., 2010), strong legislative protections, and systematic and
90 comprehensive ecological monitoring (Emslie et al., 2020) have strengthened local stewardship of the
91 GBR. Nevertheless, the GBR continues to experience an increasingly severe and cumulative
92 disturbance regime, driven by mass coral bleaching, cyclones, and recurrent eruptions of the coral-
93 eating crown-of-thorns starfish (CoTS) (Emslie et al., 2024; Hughes et al., 2017; Mellin et al., 2019;
94 Ortiz et al., 2018). Eruptions of CoTS alone account for approximately 40 percent of historical (1985-
95 2012) coral loss on the GBR, and remains the only major and persistent cause of coral mortality that is
96 amenable to direct and immediate intervention (De'ath et al., 2012; Matthews et al., 2024; Pratchett et
97 al., 2017; Rivera-Posada et al., 2011).

98 Since 2012, the Great Barrier Reef Marine Park Authority's (GBRMPA) CoTS Control Program has
99 scaled from localised demonstrations of a proof-of-concept (Westcott et al., 2016, 2020) to a
100 comprehensive resilience-focussed operation to protect coral habitats across the Reef, employing
101 multiple vessels and trained dive teams to cull CoTS across a network of highly connected reefs with
102 high ecological and economic value (Fletcher et al., 2024; Matthews et al., 2024; Westcott et al., 2016,
103 2020). Over a decade, this program has shifted towards an integrated RBM approach, driven by
104 continuous collaboration between GBRMPA, industry, researchers, on-water operators, and Traditional
105 Owners, in order to deliver an increasingly integrated and innovative pest management approach to
106 CoTS Control (Fletcher et al., 2024, 2020; Westcott et al., 2021). Since tripling its operational capacity
107 in 2018, the program has produced unprecedented spatial and temporal data on CoTS outbreak severity,
108 culling effort, operational efficiency, and coral health and recovery (GBRMPA, 2025). The program has
109 delivered significant coral protection and resilience benefits (Matthews et al., 2024), by directly
110 removing a major vector of coral mortality and thereby promoting faster recovery on reefs affected by
111 other disturbances. The growing scale and inherent complexity of CoTS dynamics necessitate
112 sophisticated data tools capable of: (1) synthesising these datasets into actionable resilience-focused
113 management insights; (2) adapting flexibly to integrate emerging scientific research and evolving
114 management priorities; and (3) actively engaging stakeholders throughout the RBM process. These
115 tools need to be able to serve operational and strategic planning concerns as well as stakeholder
116 engagement and public communications.

FOUNDATIONAL ACTIVITIES

STAKEHOLDER ENGAGEMENT – Maintain transparency and trust through interactive visualisations, tailored reporting and engagement

QUALITY CONTROL – Ensure data and operational integrity through automated validation routines and protocol compliance checks

STRATEGY AND GOVERNANCE – Enable decision makers to track progress against long-term and short-term Reef protection objectives

117

118 Figure 1 Adaptive management cycle for the GBR Crown-of-Thorns Starfish Control Program and its alignment
 119 with Conservation Intelligence decision-support tools. The cycle iterates through six phases—assess, design,
 120 implement, monitor, evaluate and adjust—centred on ongoing engagement and underpinned by stakeholder
 121 participation, data quality control, and strategy and governance to enable timely, transparent and evidence-based
 122 response to COTS outbreaks.

123 RBM explicitly focuses on delivering coral protection and enhancing recovery from disturbances. To
 124 this end, the CoTS Dashboard suite was developed as a visualisation and reporting tool to track outbreak
 125 severity and extent in near real-time and to monitor the progress of interventions against stated resilience
 126 goals. This tool was initiated in late 2017, growing as the program scaled and is now firmly embedded
 127 within GBRMPA's operational workflows and infrastructure. The dashboard integrates and synthesises
 128 monitoring and operational data from the program and its partners (Queensland Parks and Wildlife
 129 Services, Australia Institute of Science Long Term Monitoring Program, Marine Monitoring Program),
 130 early detection data, environmental data, prioritisation-specific measures (connectivity and resilience
 131 metrics), on-vessel reporting and quality assurance data into a unified interface that supports all phases
 132 of the adaptive cycle. Interactive visualisation, analysis and exploration capabilities, and automation of
 133 data workflows, enable managers to detect emerging irritations, evaluate the efficacy of culling
 134 interventions in near real time, adjust actions, and generate customised reports and visualisations for
 135 diverse stakeholder groups. Crucially, embedding the dashboard within the agency's information
 136 infrastructure ensures long-term maintenance, fosters institutional learning, and enhances transparency

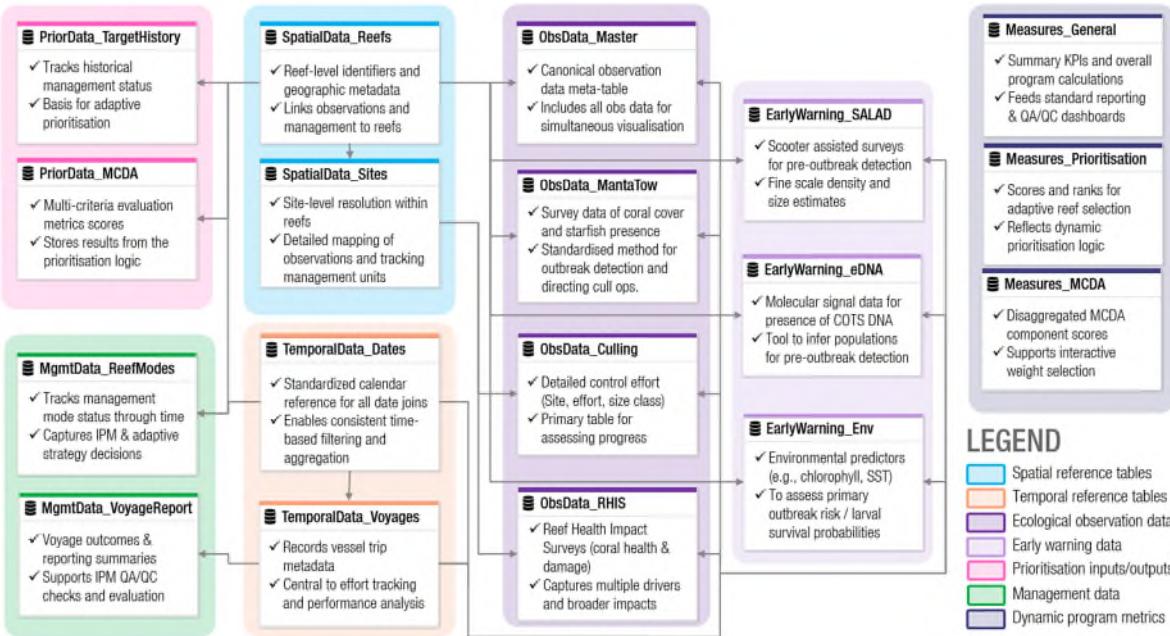
137 and engagement among stakeholders. At a strategic level, the dashboard suite underpins Program
138 governance, enabling decision makers to track progress against long-term and short-term Reef
139 protection objectives, and evaluate and adjust the Program strategy as required. The strategic and
140 tactical adjustment opportunities provided by the dashboard suite of tools also enable integration with
141 other Reef protection initiatives consistent with the overarching goals of the Reef 2050 long-term
142 sustainability plan (Commonwealth of Australia, 2021).

143 In this paper, we describe the design, implementation, and operational impact of the CoTS Dashboard.
144 We highlight how the development of user-driven dashboards can support each stage of the RBM cycle,
145 reducing decision lag, improving resource allocation, data quality, research collaboration and
146 strengthening stakeholder engagement. This case study illustrates the potential for Conservation
147 Intelligence platforms to be more widely used in conservation programs, and to act as a crucial enabler
148 of climate adaptation through adaptive management in complex ecological systems.

149 DESIGN AND GROWTH OF THE COTS DASHBOARDS

150 ***Data collection and sources***

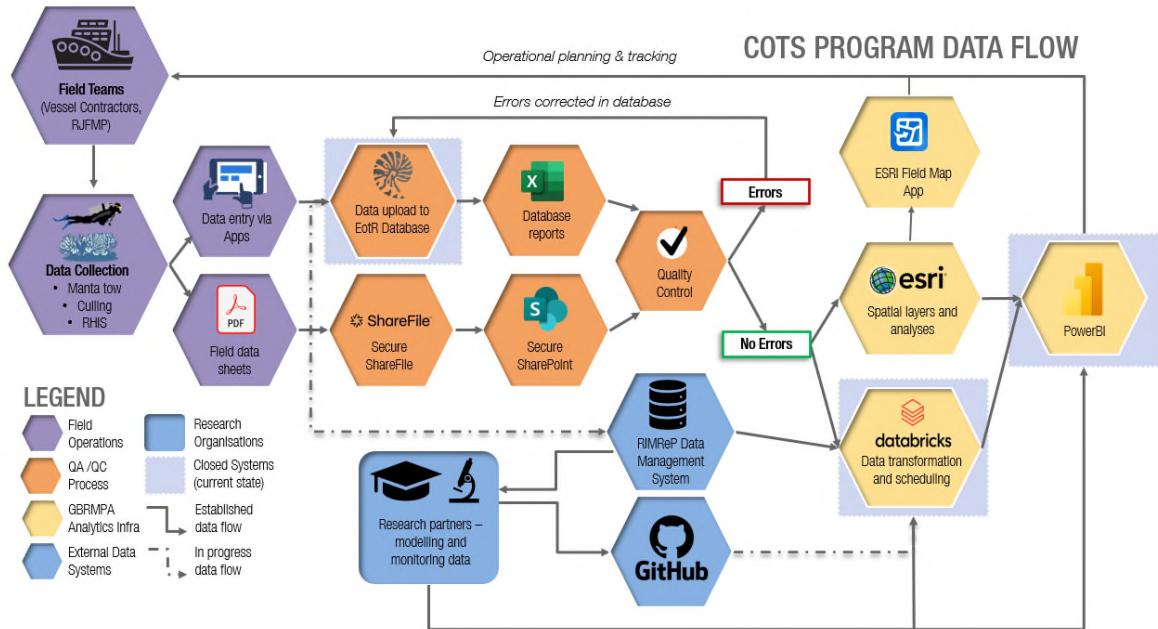
151 The CoTS Control Program integrates multiple streams of field data collected by dedicated control
152 vessels and monitoring teams (Figures 2,3). Each reef visit involves three distinct activities that yield
153 different types of data and information. (1) *Manta Tow Surveys*: an observer is towed around the reef
154 perimeter to assess coral cover and CoTS presence at broad spatial scales. Under the Integrated Pest
155 Management protocol (Fletcher et al., 2020; Westcott et al., 2021), detection of adult CoTS or feeding
156 scars triggers active culling. (2) *Culling Operations*: divers lethally inject CoTS and record counts by
157 size class alongside diver effort (minutes). Reefs are subdivided into ~8–10 ha culling sites, which are
158 “opened” when CoTS are detected and “closed” once catch-per-unit-effort (CPUE) falls below 0.04
159 CoTS per diver-minute (Babcock et al., 2014; Plagányi et al., 2020). Sites may be re-opened if
160 subsequent manta tows (every 3–6 months) detect resurgence. (3) *Reef Health and Impact Surveys*
161 (*RHIS*): divers assess fine-scale coral condition and CoTS impacts at culling sites through 5 m radius
162 spot checks (Beeden et al., 2014). Together, these methods provide complementary broad- and site-level
163 data to support targeted and adaptive intervention.


164 Additional monitoring data from partner agencies are integrated into the CoTS Dashboards to support
165 strategic decision-making. The Reef Joint Field Management Program (RJFMP), led by GBRMPA and
166 QPWS, conducts independent manta tow and RHIS surveys, while the AIMS Long Term Monitoring
167 Program (LTMP) provides long-term reef condition data (including data on CoTS abundance from
168 comprehensive manta tows conducted annually at subset of reefs) that contextualise current and
169 historical CoTS dynamics (Emslie et al., 2020, 2024). These datasets are combined with Control
170 Program data to inform tactical and strategic objectives, prioritise reefs for intervention, and evaluate
171 program effectiveness. Recent research initiatives, including the CoTS Control Innovation Program

172 (Bonin et al., 2022; Fletcher et al., 2021; Great Barrier Reef Foundation, 2019) ongoing investments
173 from the National Environmental Science Program, have added novel data streams aimed at improving
174 outbreak detection and refining prioritisation. For example, eDNA sampling (Uthicke et al., 2024) and
175 Scooter-Assisted Large-Area Diver (SALAD) surveys (Chandler et al., 2023; Pratchett et al., 2022)
176 enable early detection of low-density CoTS populations, facilitating more efficient control responses.
177 Environmental variables such as chlorophyll, temperature anomalies, salinity, (e.g. eReefs (Steven et
178 al., 2019), NOAA Coral Reef Watch (Liu et al., 2017; Skirving et al., 2020)) and larval connectivity
179 outputs (Choukroun et al., 2024; Hock et al., 2017, 2014) are also integrated into the early warning
180 component to further guide timely and targeted interventions (Figure 2).

181 ***Data integration and dashboard architecture***

182 One of the most important features of CI tools like the CoTS Dashboard suite is the capability for
183 flexible data Extraction, Transformation, and Loading (ETL). The CoTS Dashboard was built using
184 Microsoft Power BI, which provides robust data connectivity, automation and preparation capabilities
185 (via Power Query) to integrate numerous data sources and reshape them for analysis and visualisation.
186 Within the platform, data from the various monitoring and culling activities are automatically cleaned,
187 merged, and loaded into a relational data model, allowing different survey methods (manta tow, culling,
188 RHIS, etc.) to be linked by common spatial and temporal identifiers (e.g. Reef ID, date) (Figure 3). This
189 relational database approach ensures that all dashboards in the suite share a consistent, up-to-date data
190 model and relationship structure. Importantly, data cleaning and merging are handled within the ETL
191 pipeline with additional visual Quality Assurance / Checking (QA/QC) checks enabled via dedicated
192 dashboard pages. These processes ensure that anomalies or errors in incoming data can be flagged and
193 corrected before analysis and reporting (Figure 3).


COTS DASHBOARD RELATIONAL MODEL

194

195 Figure 2 Simplified representation of the relational database structure constructed within the CoTS Dashboard.
 196 Data tables are linked to spatial and temporal references tables to enable the interactivity of the Dashboard.
 197 Colours represent groupings of tables reflecting their use. The vast majority of the program data is collected and
 198 stored through the Reef Authority's Eye-on-the-Reef system which also includes large amounts of tourism
 199 collected surveys used within the Dashboard model for early detection of outbreaks

200 As the system has expanded, a cloud-based data pipeline has been implemented to enhance automation
 201 and scalability (Figure 3). Newly developed Application Programming Interfaces (APIs) facilitate direct
 202 retrieval of raw data from Progressive Web Apps (PWAs) in the Eye on the Reef (EotR; GBRMPA,
 203 2025) system (including broader EotR network tourism and citizen surveys used in early detection of
 204 outbreaks and external data systems (i.e. RIMRep DMS; (Australian Government and Queensland
 205 Government, 2023). These feeds are processed through automated routines using Databricks to avoid
 206 manual handling and enable quality control checks to ensure data is updated in near-real time to decision
 207 makers and on-water operators. This shared data infrastructure produces five distinct interfaces to
 208 support various components of the adaptive management cycle: Quality assurance/checking, Outbreak
 209 and Coral Cover Status, Early Warning, Prioritisation, Operations, Reporting and Evaluation (Figure 4)
 210 meaning improvements to data processing or new data streams are immediately available across the
 211 suite.

212

213 Figure 3 Overview of the CoTS Control Program data flow architecture, from field collection through
 214 validation, transformation, and delivery of analytics products. Field operations (purple) collect ecological data
 215 via in-water surveys and app-based tools, which are uploaded into the EoR database (orange) and subjected to
 216 QA/QC processes. Following verification, data are passed into analytics pipelines hosted in Databricks (yellow)
 217 and visualised through Power BI dashboards. External data systems (blue), contribute to proposed researcher led
 218 model integration and code management. Solid arrows denote active data pipelines; dashed arrows represent
 219 integration points under development.


220 ENABLING AND ACCELERATING ADAPTIVE MANAGEMENT

221 *Assess – Severity, Extent and Early Detection*

222 Adaptive management begins with a rigorous assessment of the ecological problem and the explicit
 223 formulation of objectives (Walters 1986; Gregory et al. 2006). In the context of CoTS control, this stage
 224 centres on quantifying outbreak and coral status across GBR reefs and articulating measurable
 225 objectives. The CoTS Control Program aims to maintain CoTS densities below the ecological threshold
 226 at which coral growth can outpace predation (Plagányi et al., 2020), at reefs conferring the highest
 227 ecological and economic value to the system (Matthews et al. 2025, Fletcher et al. 2024). Manta-tow
 228 densities, diver culling counts and feeding-scar prevalence are compared against accepted outbreak
 229 thresholds (De'ath, 2003; Miller et al., 2009) to deliver assessments of the current state of CoTS and
 230 coral cover across the Marine Park (Figure 4a). Providing the historical and current context of the
 231 severity and extent of CoTS outbreaks and coral trends gives spatial and temporal bounds to the
 232 ecological problem to help set and refine objectives and reporting metrics. Moreover, the early detection
 233 components help visualise and assess the build-up of CoTS populations at finer scale resolution to
 234 provide forward guidance around imminent populations eruptions in key regions of the Marine Park.

235 *Design – Prioritisation for resilience based intervention*

236 Once strategic and tactical objectives are specified and available resources are known, the CoTS Control
237 Program sets specific target reefs each year. The long-term strategic objective is to protect a network
238 of coral reefs that will optimise for protecting live coral cover, suppressing CoTS density and outbreak
239 propagation and boosting overall resilience of the GBR. The Prioritisation Dashboard (Figure 4b) offers
240 an interactive a multi-criteria decision analysis (MCDA) interface that integrates ecological value (i.e.
241 coral health, resilience metrics, connectivity, outbreak severity), tourism value and logistical feasibility
242 into a dynamic ranking of reefs for control via swing-weighting and Weighted Linear Combination
243 (Fletcher et al., 2024, Matthews et al., 2025). Importantly, the MCDA process runs within the data
244 model, so any change in the system or user defined changes to weightings can update the draft
245 prioritisation list. The results of this initial process are presented at stakeholder workshops using the
246 Prioritisation Dashboard to refine the target reef list for the annual work plan. Managers and
247 stakeholders can adjust the weightings of these criteria, and the MCDA algorithm updates the ranking
248 of reefs enabling the exploration of different management scenarios in a workshop setting. The MCDA
249 process aims to identify reefs that represent the best compromise solutions across multiple objectives
250 and under deep uncertainty (Matthews et al. 2025). This process proposes which reefs are to be actioned
251 for culling operations under the established and structured Integrated Pest Management framework
252 (Fletcher et al., 2020) and are refined during annual planning workshops (Fletcher et al., 2024). The
253 Prioritisation Dashboard equips managers with a rigorous yet flexible decision-support system for
254 designing conservation actions, bridging the gap between knowing where problems exist and deciding
255 where to act for optimal impact.

256

257 Figure 4 CoTS Dashboard modules mapped to each phase of the adaptive management cycle, supported by
258 foundational elements of stakeholder engagement and quality assurance.

259 ***Implement – On-water operations***

260 Effective implementation of the CoTS Control Program's Integrated Pest Management framework
261 requires precise coordination and oversight across a large, spatially distributed fleet. The Operations
262 Dashboard (Figure 4c) supports this by serving as a central interface to track progress toward tactical
263 objectives, guide field teams, and ensure adherence to the defined Integrated Pest Management
264 sequence: initial surveillance, targeted culling, and post-intervention verification. Managers and QA
265 officers can select any reef to view its current status, whether manta tow surveys have been completed,

266 which sites are open for culling, CoTS removal counts, and follow-up survey outcomes. Visual
267 indicators and maps display site-level metrics such as CPUE and effort, providing a near real-time
268 overview of operational progress. For contractors, the dashboard highlights outstanding tasks and trends
269 in CoTS densities, facilitating daily decision-making and allowing efficient prioritisation of resurveys
270 or additional effort. The interface also streamlines reporting by aggregating operational data, reducing
271 administrative overhead and error. This system tightens the feedback loop between on-water operators,
272 program managers and researchers to ensure on-water operations are continuously being fine-tuned and
273 effectively implemented.

274 ***Monitor – Tracking progress***

275 The CoTS Dashboard consolidates multiple data streams from various monitoring programs to provide
276 a unified view of CoTS and coral dynamics and culling interventions. Decision makers, operational
277 managers and cull-vessel operators can interrogate time series data, aggregated by voyage, month,
278 quarter, or year, to monitor the trends of CoTS densities, coral cover and culling effort at varying spatial
279 scales (individual sites, whole reefs, or across regions) (Figure 4d). Outcome monitoring is strengthened
280 by the integration of manta-tow surveys collected by the Control Program, the AIMS Long-Term
281 Monitoring Program, and the Reef Joint Field Management Program, together with Reef Health and
282 Impact Surveys (RHIS), allowing concurrent evaluation of coral-cover trajectories pre and post CoTS
283 control, on controlled and non-controlled reefs. Crucially, there are an increasing suite of additional
284 survey methods, including eDNA (Uthicke et al., 2024) , fine scale SALAD Surveys (Chandler et al.,
285 2023; Pratchett et al., 2022), ReefScan (AI) surveys (Bainbridge et al., 2025), and additional manta-tow
286 data currently being integrated in the CoTS Dashboards. Importantly these new methods are being
287 incorporated into a bespoke monitoring program designed to yield statistically robust, spatially explicit
288 assessments of both CoTS suppression and coral protection (Lawrence et al., 2025)

289 ***Evaluate – Automated reporting and analysis***

290 The Reporting and Evaluation Dashboard enables evaluation of observed outcomes against the
291 objectives and reporting metrics defined during the Assess phase. Automated visualisations track
292 catch-per-unit-effort (CPUE) over time at site, reef, and regional scales, benchmarked against
293 ecological thresholds to determine whether control targets are being achieved (Figure 4e). Reefs with
294 unexpected CPUE trends are flagged for further investigation, facilitating targeted diagnosis of drivers
295 such as post-cull recruitment, habitat complexity, or gaps in control effort. These summaries also
296 incorporate coral-cover trajectories based on all available monitoring data, supporting ongoing
297 evaluation of the program's impact on coral protection. As the monitoring program matures, these
298 evaluations will expand to include more statistically robust, spatially explicit assessments which are
299 currently limited without a spatially balanced monitoring program.

300 The Reporting and Evaluation dashboard serves multiple audiences, including the overarching
301 governance bodies (CoTS Partnership Group, GBRMP board), and the public, through tailored
302 reporting products to enhance transparency and accountability (GBRMPA, 2025). Critically, the
303 dashboard also tracks delivery performance, enabling routine analysis of cost-effectiveness (e.g., cost
304 per hectare treated or per diver hour). By integrating outcome and performance data within the same
305 interface, the system ensures that efficacy and efficiency are reviewed regularly, during 6-monthly
306 program workshops, 6-weekly operations meetings and via ongoing QA oversight allowing timely and
307 evidence-based adjustments to the control strategy and integration with the broader suite of
308 interventions that are being deployed to protect the Reef and enable climate adaptation under the Reef
309 2050 long-term sustainability plan.

310 ***Adjust – Institutional Learning and refinement***

311 Institutional learning is consolidated through two program-wide workshops that translate evaluation
312 findings into strategic and operational adjustments. The Annual Prioritisation Workshop integrates
313 newly delivered scenario model outputs, updated trends in CoTS density and coral cover, and
314 operational performance indicators such as the number of reefs/sites successfully closed and total diver
315 hours expended. These insights inform reef rankings and objectives for the upcoming control season.
316 For example, comparing actual effort (e.g., dive hours or visits required to achieve suppression) against
317 initial expectations allows managers to identify “effort sinks” or identify areas where modelled
318 predictions had performed poorly. Mid-season, a Pre-Spawning Workshop enables further adaptation
319 based on interim CPUE trends, and delivery metrics in order to guide the repositioning of fleet resources
320 ahead of spawning (e.g. towards hot spots of CoTS activity or “initiation zones”). The CoTS
321 Dashboards are central to both adjustment cycles, providing the automated analyses that aggregate
322 monitoring and effort data and serving as the shared visual platform through which results are
323 communicated and decisions are negotiated during these workshops (Figure 4g). The tight adaptive
324 management cycle deployed in the Program also enables potential adjustments to reef prioritisation in
325 response to other disturbances including coral bleaching events and tropical cyclones. This climate
326 adaptation opportunity is an increasingly important priority.

327 ***Foundational Activities – quality assurance and stakeholder engagement***

328 The CoTS Dashboards also greatly enhance the capacity for QA/QC processing, informed stakeholder
329 engagement and research collaboration, which are foundational activities required throughout the
330 adaptive management cycle. A dedicated quality-assurance interface screens data against Integrated
331 Pest Management rules, flags anomalies, and provides visualisations to monitor error rates and types
332 over time, ensuring that subsequent analyses and decision-making rest on high quality data (Figure 4i).
333 The Dashboards also underpin a wide range of stakeholder engagement activities with operators,
334 traditional owners, managers and tourism industry. For example, the Dashboards are foundational tools

335 for the prioritisation pre-spawning workshops where progress is reviewed, and strategic adjustments
336 are planned and confirmed. The Dashboards are a powerful communication tool which builds the
337 understanding of the ecosystem and data literacy of all partners within the Control Program (Figure 4h).
338 This produces greater stakeholder buy-in and informed involvement in decision making throughout the
339 adaptive management process. Moreover, GBRMPA has developed a public-facing reporting tool,
340 providing stakeholders and the general public an overview of the program's achievements and the
341 current status of CoTS and coral on the GBR. This enhances transparency and keeps the broader
342 community informed about progress of the Program. The Dashboards enable meaningful engagement
343 with stakeholders and strong QA/QC processes, which underpin the delivery of a large scale adaptively
344 managed conservation program. The transparency and clarity of communication provided by the
345 dashboards also serve to reinforce the case for ongoing and potentially enhanced Program capacity.

346 ***Recent Management Shifts Enabled by Conservation Intelligence***

347 Beyond supporting the adaptive management cycle conceptually, the CoTS Dashboards have catalysed
348 tangible changes in operational workflows, contract management, and institutional processes within the
349 CoTS Control Program. For instance, visualising contract delivery metrics such as dive hours, on-water
350 days, and effort by reef, highlighted gaps in operational delivery. This prompted updates to contractor
351 work orders, introducing new deliverables such as “number of divers per voyage” and “dive hours per
352 diver per day,” which have since improved capacity estimates and enabled more precise workforce
353 planning. The move towards automating QA processes and streamlining reporting also revealed
354 ambiguities in how IPM rules were operationalised. This led to formalisation of decision rules, such as
355 when a reef is considered “closed,” when revisits are required, or when surveillance qualifies as
356 reconnaissance thereby improving consistency and reducing subjectivity in management decisions.

357 Integration of contract and ecological data has also enhanced strategic flexibility. Managers now
358 routinely monitor delivery performance in near real-time, allowing dynamic reallocation of fleet
359 resources to high-priority areas based on evolving outbreak conditions. The growing use of vessel-based
360 satellite internet connectivity has further accelerated this shift. In one recent case, surveillance data
361 collected by a partner program (RJFMP) collected on the outer Far Northern GBR was uploaded while
362 at sea; by the following day, the data was accessed by the local contractor and initiated control at the
363 same reef, minimising delays and improving outbreak suppression. These examples demonstrate that
364 the implementation of Conservation Intelligence has extended beyond simple visualisation, enabling
365 deeper integration between data systems, contractors, and institutional workflows. As a result, the
366 program has matured into a more responsive, transparent, and analytically driven operation, hallmarks
367 of effective RBM. The transparency and clarity of communication provided by the dashboards also
368 serve to reinforce the case for ongoing and potentially enhanced Program capacity.

369 **FUTURE DEVELOPMENT AND LIMITATIONS**

370 The CoTS Dashboards were developed to support the RBM goals of the Reef Authority as an adaptation
371 response to increasing coral losses driven by rapid climate change. The dashboards address the
372 research–implementation gap in conservation, whereby scientific insights often fail to influence on-
373 ground management (Knight et al., 2008). By ingesting emerging research outputs including larval-
374 connectivity matrices, early-warning indicators (eDNA, SALAD, EotR), revised culling thresholds, and
375 simulation model predictions into a unified tool, the dashboards enable emerging research to be
376 operationalised for strategic decision-making. The next phase of development will integrate a shared
377 orchestration and data layer to support co-development with research partners (Figure 3). By leveraging
378 cloud-based notebooks and computing environments, researchers and analysts will be able to
379 collaborate to execute models at scale, generating and updating outputs (e.g., updated CoTS risk layers,
380 predictive effort estimates) that feed directly into the dashboards and drive decision making. This
381 tightened integration of research code, data, and outputs will further enhance reproducibility, reduce
382 latency between research and action, and strengthen the program’s adaptive, evidence-based approach
383 to protecting coral habitats from preventable CoTS losses on the Great Barrier Reef.

384 However, this approach is not without limitations. While powerful and commercially supported,
385 platforms such as Power BI are not open-source and may present cost barriers for conservation programs
386 operating in low-resource settings, despite the availability of a limited free version. Enterprise solutions
387 also are prone to vendor lock in risk, where users are at the mercy of large corporations. Scoping the
388 long-term planning developmental support for any enterprise solution is therefore essential. The
389 platform also imposes constraints on customisation: it lacks the flexibility of bespoke decision-support
390 tools and is not designed to perform advanced statistical modelling, which must instead occur upstream
391 in the data pipeline. Nonetheless, the trade-offs are often justified particularly as many large
392 organisations already have enterprise licensing agreements. Bespoke systems typically require
393 specialised expertise and long-term maintenance budgets that many conservation programs cannot
394 sustain. These tools may be developed in lieu of or as a complement to other bespoke decision support
395 tools allowing bespoke solutions to focus on tasks that cannot be delivered by Conservation Intelligence
396 tools. BI platforms like Power BI offer a pragmatic alternative allowing programs to rapidly
397 operationalise complex data streams and focus limited resources on conservation outcomes rather than
398 software development.

399 CONCLUSION

400 The development and implementation of the CoTS Dashboards has significantly advanced adaptive,
401 resilience-based management of crown-of-thorns starfish (CoTS) on the Great Barrier Reef by
402 transforming complex raw field data into actionable insights. These dashboards automate previously
403 manual processes, providing managers with near real-time analytics essential during rapidly evolving
404 outbreaks and/or mass bleaching events. Their modular architecture allows seamless integration of

405 emerging data sources and research findings, ensuring flexibility and responsiveness. By supporting all
406 phases of RBM, from outbreak assessment and early warnings to outcome tracking and stakeholder
407 communication, the dashboards have enhanced transparency and fostered more meaningful
408 engagement. Built upon widely accessible Business Intelligence platforms like Power BI, this cost-
409 effective and easily maintainable system exemplifies how commercial tools can sustainably address
410 common data management challenges faced in conservation. As the Reef 2050 Integrated Monitoring
411 and Reporting Program (RIMReP) progresses, the CoTS Dashboards represent a replicable model for
412 large-scale, integrated, real-time ecological reporting. The CoTS Dashboards demonstrates that
413 Conservation Intelligence may be an important emerging paradigm for conservation management,
414 addressing some of the foremost challenges to adaptive management in complex systems and enabling
415 more nimble, transparent, and informed conservation actions.

416

417 REFERENCES

418 Anthony, K.R.N., Marshall, P.A., Abdulla, A., Beeden, R., Bergh, C., Black, R., Eakin, C.M., Game,
419 E.T., Gooch, M., Graham, N.A.J., Green, A., Heron, S.F., van Hooidonk, R., Knowland, C.,
420 Mangubhai, S., Marshall, N., Maynard, J.A., McGinnity, P., McLeod, E., Mumby, Peter.J.,
421 Nyström, M., Obura, D., Oliver, J., Possingham, H.P., Pressey, R.L., Rowlands, G.P.,
422 Tamelander, J., Wachenfeld, D., Wear, S., 2015. Operationalizing resilience for adaptive coral
423 reef management under global environmental change. *Glob Chang Biol* 21, 48–61.
424 <https://doi.org/10.1111/gcb.12700>

425 Australian Government and Queensland Government, 2023. Reef 2050 Integrated Monitoring and
426 Reporting Program annual business plan 2023-24. Townsville.

427 Babcock, R., Plaganyi, E., Morello, B., Hoey, J., Pratchett, M., 2014. What are the important
428 ecological thresholds and relationships to inform the management of COTS? Draft Report.
429 CSIRO.

430 Bainbridge, S., Armin, M., Page, G., Tychsen-Smith, L., Coleman, G., Oorloff, J., Harvey, D., Do, B.,
431 Marsh, B., Lawrence, E., Kusy, B., 2025. The crown-of-thorns starfish (COTS) Surveillance
432 System (CSS): end-to-end technology for the detection of reef pests. A report to the Australian
433 Government by the COTS Control Innovation Program (85 pp).

434 Ball, I.R., Possingham, H.P., Watts, M., 2009. Marxan and relatives: software for spatial conservation
435 prioritisation. *Spatial conservation prioritisation: Quantitative methods and computational tools*
436 185–195.

437 Beeden, R.J., Turner, M.A., Dryden, J., Merida, F., Goudkamp, K., Malone, C., Marshall, P.A.,
438 Birtles, A., Maynard, J.A., 2014. Rapid survey protocol that provides dynamic information on
439 reef condition to managers of the Great Barrier Reef. *Environ Monit Assess* 186, 8527–8540.
440 <https://doi.org/10.1007/s10661-014-4022-0>

441 Bonin, M., Robillot, C., Brinkman, R., Taylor, B., Burrows, D., Mumby, P., Morris, S., Beeden, R.,
442 Fisher, E., Johnson, M., Schaffelke, B., Morgan, C., 2022. COTS Control Innovation Program
443 Investment Plan. A report to the Australian Government by the COTS Control Innovation
444 Program.

445 Chandler, J., Burn, D., Caballes, C., Doll, P., 2023. Increasing densities of Pacific crown-of-thorns
446 starfish (*Acanthaster cf. solaris*) at Lizard Island, northern Great Barrier Reef, resolved using a
447 novel survey method. *Sci Rep* 13, 19306. <https://doi.org/10.1038/s41598-023-46749-x>

448 Choukroun, S., Stewart, O.B., Mason, L.B., Bode, M., 2024. Larval dispersal predictions are highly
449 sensitive to hydrodynamic modelling choices. *Coral Reefs* 44, 1–13.
450 <https://doi.org/10.1007/S00338-024-02563-Z/TABLES/4>

451 Commonwealth of Australia, 2021. Reef 2050 Long-Term Sustainability Plan 2021–2025.

452 Curtice, C., Dunn, D.C., Roberts, J.J., Carr, S.D., Halpin, P.N., 2012. Why Ecosystem-Based
453 Management May Fail without Changes to Tool Development and Financing. *Bioscience* 62,
454 508–515. <https://doi.org/10.1525/bio.2012.62.5.13>

455 Day, J., 2022. Key principles for effective marine governance, including lessons learned after decades
456 of adaptive management in the Great Barrier Reef. *Front Mar Sci* 9.
457 <https://doi.org/10.3389/FMARS.2022.972228/FULL>

458 Day, J.C., 2002. Zoning—lessons from the Great Barrier Reef Marine Park. *Ocean Coast Manag* 45,
459 139–156. [https://doi.org/10.1016/S0964-5691\(02\)00052-2](https://doi.org/10.1016/S0964-5691(02)00052-2)

460 De'ath, G., 2003. Analyses of crown-of-thorns starfish data from the fine-scale surveys and the long-
461 term monitoring program manta tow surveys. CRC Reef Research Centre Technical Report.
462 CRC Reef Research Centre, Townsville.

463 De'ath, G., Fabricius, K.E., Sweatman, H., Puotinen, M., 2012. The 27-year decline of coral cover on
464 the Great Barrier Reef and its causes. *Proc Natl Acad Sci U S A* 109, 17995–17999.
465 <https://doi.org/10.2307/41829796>

466 Downs, A., 1972. Up and down with ecology — the “issue-attention cycle.” *National Affairs* 28, 38–
467 52.

468 Eberhard, K., 2023. The effects of visualization on judgment and decision-making: a systematic
469 literature review. Springer 73, 167–214. <https://doi.org/10.1007/S11301-021-00235-8>

470 Emslie, M., Bray, P., Cheal, A., Johns, K., Osbornc, K., Sinclair-Taylor, T., Thompson, C., 2020.
471 Decades of monitoring have informed the stewardship and ecological understanding of
472 Australia's Great Barrier Reef. Biol Conserv 252, 108854.
473 <https://doi.org/10.1016/j.biocon.2020.108854>

474 Emslie, M.J., Logan, M., Bray, P., Ceccarelli, D.M., Cheal, A.J., Hughes, T.P., Johns, K.A., Jonker,
475 M.J., Kennedy, E. V., Kerry, J.T., Mellin, C., Miller, I.R., Osborne, K., Puotinen, M., Sinclair-
476 Taylor, T., Sweatman, H., 2024. Increasing disturbance frequency undermines coral reef
477 recovery. Ecol Monogr 94. <https://doi.org/10.1002/ECM.1619>

478 GBRMPA, 2025. Eye on the Reef [WWW Document]. URL <https://www2.gbrmpa.gov.au/our->
479 [work/programs-and-projects/eye-on-the-reef](https://www2.gbrmpa.gov.au/our-work/programs-and-projects/eye-on-the-reef) (accessed 12.3.25).

480 Ferraz, K.M.P.M. de B., Morato, R.G., Bovo, A.A.A., da Costa, C.O.R., Ribeiro, Y.G.G., de Paula,
481 R.C., Desbiez, A.L.J., Angelieri, C.S.C., Traylor-Holzer, K., 2021. Bridging the gap between
482 researchers, conservation planners, and decision makers to improve species conservation
483 decision-making. Conserv Sci Pract 3. <https://doi.org/10.1111/CSP2.330>

484 Fletcher, C., Bode M, Stewart O, Matthews S, 2024. Multi-criteria decision-making for balancing
485 management priorities under resource constraints. A report to the Australian Government by the
486 COTS Control Innovation Program.

487 Fletcher, C.S., Bonin, M.C., Caballes, C.F., del Carmen Gómez-Cabrera, M., Kroon, F.J., Mankad, A.,
488 Pratchett, M.S., Westcott, D.A., 2021. COTS Control Innovation Program Design of the COTS
489 Control Innovation Program: a technical report and recommendations. A report to the Australian
490 Government by the COTS Control Innovation Program.

491 Fletcher, C.S., Westcott, D.A., Bonin, M.C., 2020. An ecologically-based operational strategy for
492 COTS Control: integrated decision-making from the site to the regional scale. Report to the
493 National Environmental Science Programme. Reef and Rainforest Research Centre Limited,
494 Cairns.

495 GBRMPA, 2025. Crown-of-thorns starfish program dashboard [WWW Document]. URL
496 <https://www2.gbrmpa.gov.au/our-work/programs-and-projects/crown-thorns-starfish->
497 [management/crown-thorns-starfish-project-dashboard](https://www2.gbrmpa.gov.au/our-work/programs-and-projects/crown-thorns-starfish-project-dashboard) (accessed 8.25.25).

498 GBRMPA, 2004. Great barrier reef marine park zoning plan 2003. Great Barrier Reef Marine Park
499 Authority, Townsville, Australia.

500 Gibson, F.L., Rogers, A.A., Smith, A.D.M., Roberts, A., Possingham, H., McCarthy, M., Pannell, D.J.,
501 2017. Factors influencing the use of decision support tools in the development and design of
502 conservation policy. *Environ Sci Policy* 70, 1–8. <https://doi.org/10.1016/j.envsci.2017.01.002>

503 Gonçalves, C., Gonçalves, M., Campante, M., 2023. Developing Integrated Performance Dashboards
504 Visualisations Using Power BI as a Platform. *Information* 14, 614.
505 <https://doi.org/10.3390/info14110614>

506 Great Barrier Reef Foundation, 2019. Reef Trust Partnership Investment Strategy.

507 Gregory, R., Ohlson, D., Arvai, J., 2006. Deconstructing adaptive management: Criteria for
508 applications to environmental management. *Ecological Applications* 16, 2411–2425.
509 [https://doi.org/10.1890/1051-0761\(2006\)016\[2411:DAMCFA\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2006)016[2411:DAMCFA]2.0.CO;2)

510 Gunderson, L.H., Holling, C.S., 2002. Panarchy: understanding transformations in systems of humans
511 and nature.

512 Hock, K., Wolff, N.H., Condie, S.A., Anthony, K.R.N., Mumby, P.J., 2014. Connectivity networks
513 reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. *Journal of
514 Applied Ecology* 51, 1188–1196. <https://doi.org/10.1111/1365-2664.12320>

515 Hock, K., Wolff, N.H., Ortiz, J.C., Condie, S.A., Anthony, K.R.N., Blackwell, P.G., Mumby, P.J.,
516 2017. Connectivity and systemic resilience of the Great Barrier Reef. *PLoS Biol* 15, e2003355.
517 <https://doi.org/10.1371/journal.pbio.2003355>

518 Hoey, J., Campbell, M.L., Hewitt, C.L., Gould, B., Bird, R., 2016. Acanthaster planci invasions:
519 Applying biosecurity practices to manage a native boom and bust coral pest in Australia.
520 *Management of Biological Invasions* 7, 213–220. <https://doi.org/10.3391/mbi.2016.7.3.01>

521 Holling, C.S., 1978. Adaptive environmental assessment and management. John Wiley & Sons, New
522 York, New York, USA.

523 Holling, C.S., 1973. Resilience and stability of ecological systems.

524 Hughes, T.P., Bellwood, D.R., Folke, C., Steneck, R.S., Wilson, J., 2005. New paradigms for
525 supporting the resilience of marine ecosystems. *Trends Ecol Evol*.
526 <https://doi.org/10.1016/j.tree.2005.03.022>

527 Hughes, T.P., Kerry, J.T., Álvarez-Noriega, M., Álvarez-Romero, J.G., Anderson, K.D., Baird, A.H.,
528 Babcock, R.C., Beger, M., Bellwood, D.R., Berkelmans, R., Bridge, T.C., Butler, I.R., Byrne,
529 M., Cantin, N.E., Comeau, S., Connolly, S.R., Cumming, G.S., Dalton, S.J., Diaz-Pulido, G.,
530 Eakin, C.M., Figueira, W.F., Gilmour, J.P., Harrison, H.B., Heron, S.F., Hoey, A.S., Hobbs,
531 J.P.A., Hoogenboom, M.O., Kennedy, E. V., Kuo, C.Y., Lough, J.M., Lowe, R.J., Liu, G.,

532 McCulloch, M.T., Malcolm, H.A., McWilliam, M.J., Pandolfi, J.M., Pears, R.J., Pratchett, M.S.,
533 Schoepf, V., Simpson, T., Skirving, W.J., Sommer, B., Torda, G., Wachenfeld, D.R., Willis, B.L.,
534 Wilson, S.K., 2017. Global warming and recurrent mass bleaching of corals. *Nature* 543, 373–
535 377. <https://doi.org/10.1038/nature21707>

536 Keller, T., Tergan, S.-O., 2005. Visualizing Knowledge and Information: An Introduction, in:
537 Knowledge and Information Visualization. Springer, pp. 1–23.
538 https://doi.org/10.1007/11510154_1

539 Knight, A.T., Cowling, R.M., Rouget, M., Balmford, A., Lombard, A.T., Campbell, B.M., 2008.
540 Knowing but not doing: selecting priority conservation areas and the research–implementation
541 gap. *Conservation Biology* 22, 610–617. <https://doi.org/10.1111/J.1523-1739.2008.00914.X>

542 Lawrence, E., Foster, S., Gladish, D., Matthews, S., Williamson, D., Uthicke, S., Doyle, J., Pratchett,
543 M., Bainbridge, S., Armin, A., Crosswell, J., 2025. Crown-of-thorns starfish (COTS) Monitoring
544 Design: sample design for science and management decisions. A report to the Australian
545 Government by the COTS Control Innovation Program 52pp.

546 Liu, G., Skirving, W.J., Geiger, E.F., De La Cour, J.L., Marsh, B.L., Heron, S.F., Tirak, K. V, Strong,
547 A.E., Eakin, C.M., 2017. NOAA Coral Reef Watch’s 5km Satellite Coral Bleaching Heat Stress
548 Monitoring Product Suite Version 3 and Four-Month Outlook Version 4. *Reef Encounter* 32, 39–
549 45.

550 Måansson, J., Eriksson, L., Hodgson, I., Elmberg, J., Bunnefeld, N., Hessel, R., Johansson, M.,
551 Liljebäck, N., Nilsson, L., Olsson, C., Pärt, T., Sandström, C., Tombre, I., Redpath, S.M., 2023.
552 Understanding and overcoming obstacles in adaptive management. *cell.com*J Måansson, L
553 Eriksson, I Hodgson, J Elmberg, N Bunnefeld, R Hessel, M JohanssonTrends in ecology &
554 evolution, 2023•cell.com 38, 55–71. <https://doi.org/10.1016/j.tree.2022.08.009>

555 Matthews, S.A., Williamson, D.H., Beeden, R., Emslie, M.J., Abom, R.T.M., Beard, D., Bonin, M.,
556 Bray, P., Campili, A.R., Ceccarelli, D.M., Fernandes, L., Fletcher, C.S., Godoy, D., Hemingson,
557 C.R., Jonker, M.J., Lang, B.J., Morris, S., Mosquera, E., Phillips, G.L., Sinclair-Taylor, T.H.,
558 Taylor, S., Tracey, D., Wilmes, J.C., Quincey, R., 2024. Protecting Great Barrier Reef resilience
559 through effective management of crown-of-thorns starfish outbreaks. *PLoS One* 19.
560 <https://doi.org/10.1371/JOURNAL.PONE.0298073>

561 McCook, L.J., Ayling, T., Cappo, M., Choat, J.H., Evans, R.D., De Freitas, D.M., Heupel, M.,
562 Hughes, T.P., Jones, G.P., Mapstone, B., Marsh, H., Mills, M., Molloy, F.J., Pitcher, C.R.,
563 Pressey, R.L., Russ, G.R., Sutton, S., Sweatman, H., Tobin, R., Wachenfeld, D.R., Williamson,
564 D.H., 2010. Adaptive management of the Great Barrier Reef: A globally significant

565 demonstration of the benefits of networks of marine reserves. *Proc Natl Acad Sci U S A* 107,
566 18278–18285. <https://doi.org/10.1073/pnas.0909335107>

567 McInerny, G.J., Chen, M., Freeman, R., Gavaghan, D., Meyer, M., Rowland, F., Spiegelhalter, D.J.,
568 Stefaner, M., Tessarolo, G., Hortal, J., 2014. Information visualisation for science and policy:
569 Engaging users and avoiding bias. *Trends Ecol Evol* 29, 148–157.
570 <https://doi.org/10.1016/j.tree.2014.01.003>

571 McIntosh, B.S., Ascough, J.C., Twery, M., Chew, J., Elmahdi, A., Haase, D., Harou, J.J., Hepting, D.,
572 Cuddy, S., Jakeman, A.J., Chen, S., Kassahun, A., Lautenbach, S., Matthews, K., Merritt, W.,
573 Quinn, N.W.T., Rodriguez-Roda, I., Sieber, S., Stavenga, M., Sulis, A., Ticehurst, J., Volk, M.,
574 Wrobel, M., van Delden, H., El-Sawah, S., Rizzoli, A., Voinov, A., 2011. Environmental decision
575 support systems (EDSS) development – Challenges and best practices. *Environmental
576 Modelling & Software* 26, 1389–1402. <https://doi.org/10.1016/J.ENVSOFT.2011.09.009>

577 Mcleod, E., Anthony, K.R.N., Mumby, P.J., Maynard, J., Beeden, R., Graham, N.A.J., Heron, S.F.,
578 Hoegh-Guldberg, O., Jupiter, S., MacGowan, P., Mangubhai, S., Marshall, N., Marshall, P.A.,
579 McClanahan, T.R., Mcleod, K., Nyström, M., Obura, D., Parker, B., Possingham, H.P., Salm, R.
580 V., Tamelander, J., 2019. The future of resilience-based management in coral reef ecosystems. *J
581 Environ Manage* 233, 291–301. <https://doi.org/10.1016/J.JENVMAN.2018.11.034>

582 Mellin, C., Matthews, S., Anthony, K.R.N., Brown, S.C., Caley, M.J., Johns, K.A., Osborne, K.,
583 Puotinen, M., Thompson, A., Wolff, N.H., Fordham, D.A., MacNeil, M.A., 2019. Spatial
584 resilience of the Great Barrier Reef under cumulative disturbance impacts. *Glob Chang Biol* 25,
585 2431–2445. <https://doi.org/10.1111/gcb.14625>

586 Miller, I.R., Jonker, M., Coleman, G., 2009. Crown-of-thorns starfish and coral surveys using the
587 manta tow and SCUBA search techniques. *Long-term Monitoring of the Great Barrier Reef
588 Standard Operation Procedure Number 9 Edition 3, Standard Operation Procedure, AIMS.*

589 Murugesan, M., Karthikeyan, K., 2016. Business Intelligence Market Trends and Growth in
590 Enterprise Business. *International Journal on Recent and Innovation Trends in Computing and
591 Communication* 4, 188–192. <https://doi.org/10.17762/ijritcc.v4i3.1858>

592 Ortiz, J.C., Wolff, N.H., Anthony, K.R.N., Devlin, M., Lewis, S., Mumby, P.J., 2018. Impaired
593 recovery of the great barrier reef under cumulative stress. *Sci Adv* 4, e6127.
594 <https://doi.org/10.1126/sciadv.aar6127>

595 Pinarbaşı, K., Galparsoro, I., Borja, Á., Stelzenmüller, V., Ehler, C.N., Gimpel, A., 2017. Decision
596 support tools in marine spatial planning: Present applications, gaps and future perspectives. *Mar
597 Policy* 83, 83–91. <https://doi.org/10.1016/j.marpol.2017.05.031>

598 Plagányi, É.E., Babcock, R.C., Rogers, J., Bonin, M., Morello, E.B., 2020. Ecological analyses to
599 inform management targets for the culling of crown-of-thorns starfish to prevent coral decline.
600 *Coral Reefs* 39, 1483–1499. <https://doi.org/10.1007/S00338-020-01981-Z>

601 Pratchett, M., Caballes, C., Wilmes, J., Matthews, S., Mellin, C., Sweatman, H., Nadler, L., Brodie, J.,
602 Thompson, C., Hoey, J., Bos, A., Byrne, M., Messmer, V., Fortunato, S., Chen, C., Buck, A.,
603 Babcock, R., Uthicke, S., 2017. Thirty Years of Research on Crown-of-Thorns Starfish (1986–
604 2016): Scientific Advances and Emerging Opportunities. *Diversity (Basel)* 9, 41.
605 <https://doi.org/10.3390/d9040041>

606 Pratchett, M.S., Caballes, C.F., Burn, D., Doll, P.C., Chandler, J.F., Doyle, J.R., Uthicke, S., 2022.
607 Scooter-assisted large area diver-based (SALAD) visual surveys to test for renewed outbreaks of
608 crown-of-thorns starfish (*Acanthaster cf. solaris*) in the northern Great Barrier Reef. A report to
609 the Australian Government by the COTS Control Innovation Program 32pp.

610 Rist, L., Felton, A., Samuelsson, L., Sundstrom, S.M., Rosvall, O., 2013. A New Paradigm for
611 Adaptive Management. *Ecology and Society* 18, 63.
612 <https://doi.org/http://dx.doi.org/10.5751/ES-06183-180463>

613 Rivera-Posada, J.A., Pratchett, M., Owens, L., 2011. Injection of *Acanthaster planci* with thiosulfate-
614 citrate-bile-sucrose agar (TCBS). II. Histopathological changes. *Dis Aquat Organ* 97, 95–102.
615 <https://doi.org/10.3354/dao02400>

616 Schuurman, G.W., Cole, D.N., Cravens, A.E., Covington, S., Crausbay, S.D., Hoffman, C.H.,
617 Lawrence, D.J., Magness, D.R., Morton, J.M., Nelson, E.A., O'malley, R., 2022. Navigating
618 ecological transformation: Resist–accept–direct as a path to a new resource management
619 paradigm. *Bioscience* 72. <https://doi.org/10.1093/biosci/biab067>

620 Howard, R., 1988. Decision analysis: Practice and promise. *Manage Sci* 34, 679–695.
621 <https://doi.org/10.1287/MNSC.34.6.679>

622 Skirving, W., Marsh, B., De La Cour, J., Liu, G., Harris, A., Maturi, E., Geiger, E., Eakin, C., 2020.
623 CoralTemp and the coral reef watch coral bleaching heat stress product suite version 3.1.
624 mdpi.com 12, 3856. <https://doi.org/10.3390/rs12233856>

625 Spetzler, C., Winter, H., Meyer, J., 2016. Decision quality, Decision Quality: Value Creation from
626 Better Business Decisions. John Wiley & Sons, Inc., Hoboken, New Jersey.
627 <https://doi.org/10.1002/9781119176657>

628 Steven, A.D.L., Baird, M.E., Brinkman, R., Car, N.J., Cox, S.J., Herzfeld, M., Hodge, J., Jones, E.,
629 King, E., Margvelashvili, N., Robillot, C., Robson, B., Schroeder, T., Skerratt, J., Tickell, S.,
630 Tuteja, N., Wild-Allen, K., Yu, J., 2019. eReefs: An operational information system for

631 managing the Great Barrier Reef. *researchgate.net* 12, s12–s28.
632 <https://doi.org/10.1080/1755876X.2019.1650589>

633 Ul-Ain, N., Vaia, G., DeLone, W., 2019. Business Intelligence System Adoption, Utilization and
634 Success - A Systematic Literature Review. *Proceedings of the 52nd Hawaii International*
635 *Conference on System Sciences.* <https://doi.org/10.24251/hicss.2019.710>

636 Uthicke, S., Doyle, J.R., Gomez Cabrera, M., Patel, F., McLatchie, M.J., Doll, P.C., Chandler, J.F.,
637 Pratchett, M.S., 2024. eDNA monitoring detects new outbreak wave of corallivorous seastar
638 (*Acanthaster cf. solaris*) at Lizard Island, Great Barrier Reef. *Coral Reefs* 43, 857–866.
639 <https://doi.org/10.1007/S00338-024-02506-8>

640 Walsh, J.C., Dicks, L. V., Raymond, C.M., Sutherland, W.J., 2019. A typology of barriers and enablers
641 of scientific evidence use in conservation practice. *J Environ Manage* 250.
642 <https://doi.org/10.1016/j.jenvman.2019.109481>

643 Walters, C., 2007. Is adaptive management helping to solve fisheries problems? *AMBIO: A journal of*
644 *the human environment* 36, 304–307. [https://doi.org/10.1579/0044-7447\(2007\)36\[304:IAMHTS\]2.0.CO;2](https://doi.org/10.1579/0044-7447(2007)36[304:IAMHTS]2.0.CO;2)

645 Walters, C.J., 1986. *Adaptive management of renewable resources.* Macmillan Publishers Ltd, New
646 York, New York, USA.

647 Westcott, D., Fletcher, C., Gladish, D., MacDonald, S., Condie, S., 2021. Integrated pest management
648 crown-of-thorns starfish control program on the Great Barrier Reef: current performance and
649 future potential. *Report to the National Environmental Science Program. Reef and Rainforest*
650 *Research Centre Limited, Cairns* 36pp.

651 Westcott, D., Fletcher, C.S., Babcock, R., Plaganyi-Lloyd, E., 2016. *A Strategy to Link Research and*
652 *Management of Crown-of-Thorns Starfish on the Great Barrier Reef: An Integrated Pest*
653 *Management Approach. Report to the National Environmental Science Programme. Reef and*
654 *Rainforest Research Centre Limited, Cairns.*

655 Westcott, D.A., Fletcher, C.S., Kroon, F.J., Babcock, R.C., Plagányi, E.E., Pratchett, M.S., Bonin,
656 M.C., 2020. Relative efficacy of three approaches to mitigate Crown-of-Thorns Starfish
657 outbreaks on Australia's Great Barrier Reef 10, 12594. <https://doi.org/10.1038/s41598-020-69466-1>

658 Westgate, M., Likens, G., Lindenmayer, D., 2013. Adaptive management of biological systems: a
659 review. *Biol Conserv* 158, 128–139. <https://doi.org/10.1016/j.biocon.2012.08.016>

662 Williams, B.K., Brown, E.D., 2014. Adaptive management: from more talk to real action. Environ
663 Manage 53, 465–479. <https://doi.org/10.1007/s00267-013-0205-7>

664

665 **Acknowledgements**

666 Acknowledgements We acknowledge the Traditional Owners of the Great Barrier Reef and pay our
667 respects to their Elders past, present and emerging, recognising their enduring custodianship and
668 spiritual connection to sea country. The Crown-of-Thorns Starfish Control Program is delivered
669 through a partnership between the Great Barrier Reef Marine Park Authority, the Great Barrier Reef
670 Foundation, and the Reef and Rainforest Research Centre. We thank the Program's delivery partners
671 and contractors, including the Queensland Parks and Wildlife Service, Blue Planet Marine, Pacific
672 Marine Group, INLOC, Lamu Ventures and the AIMS Long-Term Monitoring Program, whose field
673 operations and data underpin this work. We are particularly grateful to Daniel Shultz and Jo Baker for
674 many years of collaboration in iterating and improving the dashboards, and to Darren Cameron for
675 supporting and enabling the early development of these decision-support tools. We also acknowledge
676 Cameron Fletcher for his guidance in the development of the decision-support capability and Takuya
677 Iwanage for final reviews and support from AIMS.

678 **Author Contributions**

679 S.A.M. conceived the study, designed and implemented the Dashboard tool and wrote the first draft of
680 the manuscript, R.B., M.C.B. and D.H.W. guided the design and implementation of the tool. I.R. and
681 J.W. developed the Dashboard tool, contributed to figure preparation. All authors contributed to
682 drafting and editing the paper.

683 **Competing Interests**

684 The authors declare no competing interests

685 **Material and correspondence**

686 Correspondence and requests for materials should be addressed to S A Matthews
687 (s.matthews@aims.gov.au)

688