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ABSTRACT

Ecosystems around the world are anticipated to undergo regime shifts as temperatures rise and other
climatic and anthropogenic perturbations erode the resilience of present-day states. Forecasting these
nonlinear ecosystem dynamics can help stakeholders to prepare for the associated rapid changes. One
major challenge is that regime shifts can be difficult to predict when they are driven by unobserved
factors. In this paper, we advance scientific machine learning methods, specifically universal dynamic
equations (UDEs), to identify changes in an unobserved bifurcation parameter and predict ecosystem
regime shifts. We demonstrate this approach using simulated data created from a dynamic model
of a species population experiencing loss due to unobserved extraction or harvest. This could be,
for example, illegal fishing from a fishery or unreported poaching in a game reserve. We show
that UDEs can accurately identify changes in the unobserved bifurcation parameter, in our case the
slowly increasing harvest rate, and predict when a regime shift might occur. Compared to alternative
forecasting methods, our UDE approach provides more reliable short-term predictions with fewer
data. This approach provides a new set of methods for ecosystem stakeholders and managers to
identify unobserved changes in key parameters that drive nonlinear change.

Keywords harvest rate, nonlinear dynamics, regime shift, population dynamics, neural networks, UDE · scientific ML

1 Introduction

Ecological forecasting can provide ecosystem stakeholders and policymakers vital actionable information on how to
adapt to changing environmental conditions Dietze [2017a], Dietze et al. [2024]. Predictive models play a crucial role
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Figure 1: Bifurcation diagram illustrating the existence of three regimes in the deterministic dynamical system, where
environmental state x is a function of the harvest rate c. Solid splines indicate stable states, and dotted splines show
unstable states. Vertical lines mark the regime boundaries at the equilibrium harvest rates c∗ with regime II (shaded
box) exhibiting bistability. Modified from Tilman et al. [2024]

in ecological forecasting, as they can help us to understand and prepare for often large and abrupt changes in ecosystem
states Clark et al. [2001], Kickert et al. [1999], Griffith and Fulton [2014]. Examples include predicting species
population dynamics in response to climate change Urban et al. [2016], forecasting harmful algal blooms for effective
water resource management Anderson et al. [2012], and estimating wildfire risk based on vegetation and atmospheric
conditions Abatzoglou and Williams [2016]. However, one major challenge in ecological forecasting is accounting for
unobserved drivers of change. This is a common problem in many scientific domains such as epidemiology, where
asymptomatic carriers and unreported cases alter the dynamics of disease transmission Fraser et al. [2004]; economics,
where latent variables such as consumer confidence impact macroeconomic outcomes Stock and Watson [2016]; and
neuroscience, where unobserved neural states influence observed behavior and brain activity patterns Paninski et al.
[2010]. This challenge is particularly critical when the unobserved quantity is a bifurcation parameter that governs
rapid and large shifts in the qualitative properties of ecosystem dynamics.

Here, we consider populations that exhibit regime shifts caused by a hidden source of loss, such as illegal harvest from
a fishery or poaching from a game reserve. In these systems, the harvest rate can be a bifurcation parameter May and
Oster [1976] leading to unanticipated regime shifts. In such a scenario, an ecosystem with high abundance biomass (i.e.,
a stable regime, Fig. 1 Regime I) could pass through a transient regime (i.e., a flickering regime, Fig. 1 Regime II)
to low biomass (i.e., the second stable regime, Fig. 1 Regime III). This presents an extreme challenge for ecosystem
managers because these hidden drivers can push systems past critical thresholds without warning, often resulting in
sudden ecosystem collapse that occurs too rapidly for conventional management interventions to prevent Scheffer et al.
[2009], Biggs et al. [2009]. Forecasting methods that identify the unobserved parameters could improve forecasting
accuracy, improving the management of ecosystems as they undergo rapid changes.

A wide variety of mathematical and computational methods have been developed to forecast ecosystem regime shifts,
including approaches based on dynamical systems, machine learning, and statistical modeling Dakos et al. [2015],
Ghadami and Epureanu [2022], Panahi et al. [2024]. Dynamical models are key tools for forecasting regime shifts,
as they offer a framework for predicting critical transitions between stable states in ecosystems based on an explicit
representation of key processes. These models use discrete-time difference and continuous-time differential equations
to represent the underlying mechanisms driving the dynamics of the system, allowing researchers to identify early
warning signals of tipping points and to improve our understanding of why these changes occur Barnosky et al. [2012],
Kéfi et al. [2014]. By formally representing interactions among system components and their responses to external
perturbations, dynamical models offer information on the conditions that precipitate abrupt changes, such as shifts in
ecosystem states, climatic patterns, or disease outbreaks Biggs et al. [2015], May [1977].

Despite their relevance, these models have notable limitations when it comes to forecasting regime shifts. The
parametrization process in dynamical models is crucial, but it can be challenging because multiple parameter sets can
produce dynamics that are consistent with the data. In addition, the complexity of ecological systems characterized by
numerous abiotic and biotic components, as well as direct and indirect interactions, introduces significant uncertainty
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Figure 2: Workflow diagram showing the process to identify the unobserved parameter and predict regime shifts using
a universal dynamic equation (UDE) model. The state-space UDE model can identify the unobserved (bifurcation)
parameter and predict regime shifts in a simulated ecological population experiencing some form of harvest. We
simulated 50 time-series as observed data and modeled the data using a neural network embedded in a mechanistic
model of the known dynamics of the system. The UDE contains the neural network as a universal function approximator,
and optimized the formulated loss function (green box). Then, the UDE model was used to estimate the unobserved
harvest rate, which changes over time. Finally, we generated forecasts with different harvest values to identify potential
regime shifts in the ecological population.

in the predictions of dynamical models Dietze [2017b]. Furthermore, existing parametric models used for ecological
forecasting often assume predefined functional forms, which may not capture the full breadth of complexity and
nonlinearity in ecosystems Clark et al. [2001]. These models are also prone to overfitting (as are most models),
especially with sparse or high-dimensional data, and struggle with the uncertainty and stochastic nature of ecological
processes Turchin [2013].

In contrast, data-driven "equation-free" methods are also commonly used to make ecological forecasts. They differ
from equation-based approaches in that they do not rely on predefined functional forms or assumptions about the
underlying processes. One such approach, empirical dynamical modeling (EDM), uses time series data to reconstruct
and infer system dynamics without assuming explicit equations Sugihara et al. [2012], Perretti et al. [2013], Munch
and Brias [2024]. In addition, numerous machine learning approaches have been developed to provide predictions
of ecosystem dynamics. Advanced neural network (NN) architectures, such as the recurrent neural network (RNN)
and long short-term memory (LSTM) models, have shown great potential in overcoming the limitations of traditional
equation-based methods Hochreiter and Schmidhuber [1997]. However, the lack of mechanistic interpretability in
these methods remains a key drawback that limits their broader applicability Lipton et al. [2015]. Similarly, by not
having explicit functional forms, these equation-free approaches often overlook valuable mechanistic insights that could
improve forecasts, particularly when data are limited or have observation biases Perretti and Munch [2015], Greff et al.
[2017].

Recently, Rackauckas et al. [2020a], Bonnaffé et al. [2021], Arroyo-Esquivel et al. [2024], Buckner et al. [2024]
demonstrated the potential of scientific machine learning (SciML) methods, which combine theoretical knowledge,
often represented by differential and difference equations, with data-driven neural networks to model nonlinear
ecosystem dynamics. Using mathematical representations of known interactions and dynamics, in conjunction with
deep neural networks, SciML bridges the gap between equation-based mechanistic approaches and equation-free data-
driven approaches, offering improved forecasting skills while maintaining interpretability. Building on this foundation,
we have extended the application of SciML to address two key challenges in ecosystem management: (1) identifying
unobserved parameters that influence ecosystem behavior, and (2) making accurate forecasts based on this information.
We note that here we focus on social-ecological systems, but this application of SciML is generalizable to other complex
systems with nonlinear dynamics driven by changes in an unobserved parameter.
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In this study, we use a specific form of SciML called state-space universal dynamic equations (UDEs) Buckner et al.
[2024], which can embed neural networks within difference equations that represent the discrete-time dynamics of an
ecosystem. The neural networks are trained on noisy time series data using a state-space modeling framework. Here
we extend this approach by using the neural network component of the UDEs to estimate the unobserved bifurcation
parameter of a social-ecological system and forecast a regime shift. We test this approach on simulated data from a
social-ecological model of a harvested population that exhibits flickering between alternative stable states and a regime
change as the harvest rate increases past a critical threshold. We assessed the UDE’s ability to classify dynamic regimes
by treating the predicted unobserved harvest parameter as an indicator of regime shifts and evaluated prediction accuracy
using transition thresholds. We also compared the model’s forecasting skill with various modern-day ecosystem
forecasting methods.

2 Materials & Methods

2.1 Modeling Social-Ecological Dynamics

We generated synthetic data following the social-ecological model introduced by Tilman et al. [2024]. Although this
model is simple, it effectively represents the nonlinear dynamics of many social-environmental systems, accounting
for environmental stochasticity, such as the collapse of fisheries due to overfishing or kelp forests affected by sea otter
populations Nicholson et al. [2024]. In the model, x represents the abundance of the target species. Population growth
is modeled as logistic growth with an intrinsic growth rate r and carrying capacity K, and multiplicative shocks to
the growth rate. Animals are harvested from the population at a rate that depends on a nonlinear function of their
abundance xt, a parameter ct that determines the intensity of harvest, and a parameter h, which determines the strength
of nonlinearity. Population abundances update in discrete time as follows:

xt+1 = rxt

(
1− xt

K

)
− c

(
x2
t

x2
t + h2

)
+ (1 + it)xt (1)

Where, time-correlated red noise that models environmental shocks is represented by it, with T as the time scale over
which noise becomes uncorrelated, and ηt ∼ N (0, β2) as an additive element of a series of independent and identically
distributed normal errors. This type of noise characterizes scenarios where random environmental fluctuations are not
completely independent over time or space, but instead exhibit a certain pattern of correlation, which is common in
nature Allen [2010].

it =

(
1− 1

T

)
it−1 + ηt (2)

For example, Figure 1 illustrates that for low harvest rates c, the system settles on a single high-abundance equilibrium
point. In contrast, at high values of c, the system moves to a lower abundance stable state. For intermediate c values,
bistability occurs, and the presence of noise induces flickering dynamics, causing the system to frequently transition
between the high and low abundance basins of attraction Tilman et al. [2024], Dakos et al. [2012].

To explore the ability of state-space UDEs to identify changes in an unobserved parameter (i.e., the harvest rate c) and
to predict regime shifts in abundance, we generated 50 simulated time series yt of 1000 length, simulating sequences of
population abundance xt and noise terms it from equation 1. Throughout the simulations, we increased the harvest
intensity ct linearly from [0, 4], which caused the system to pass from the high abundance regime, through the bistable
flickering regime, to the low abundance regime (Fig. 3). We used the set of base parameters for the social-ecological
model discussed in Tilman et al. [2024] for each simulation (Table 2). We incorporated observation noise into the
synthetic data by simulating data points yt from a normal distribution truncated from below at zero with mean xt and
standard deviation 1.0.

2.2 Scientific Machine Learning of Regime Shifts

We developed a SciML method to identify the unobserved bifurcation parameter c, and to forecast state variables
(i.e., abundance) into the future, and anticipate potential ecosystems regime shifts (see Fig. 2 for an overview). This
framework uses state-space universal dynamic equations to forecast the dynamics (indexed with t) of a system with
state variables xt and predicts the slowly changing bifurcation parameter ct. Importantly, we assume that we have a
noisy set of observations yt, which are equal to the observed state variable xt plus the observation error εt ∼ N (0, 1).
Changes in the bifurcation parameter ct are not observed directly.
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Figure 3: An example simulated time series of the environmental state (xt) and harvest rate (ct). The harvest rate is a
monotonically increasing function with time, and its effects can be observed on the environmental state through the
dynamical model of Tilman et al. [2024].

The dynamics of the system were modeled using estimates of the state variable x̂t. We assume that the dynamics of the
observed variable can be described by a known function f . However, the dynamics of the unobserved parameter ct
are unknown. Therefore, we modeled changes in the estimates of unobserved state variable ĉ with universal function
approximator N.

x̂t+1 = f(x̂t, ĉt), ĉt+1 = N(x̂t; θ) (3)

We used the known functional form of Tilman et al. [2024] to incorporate additional biological information to predict
the change in system state (i.e., dynamics of xt). We implemented an artificial neural network N(x̂t; θ) as a universal
function approximator with a fully connected five-layer architecture designed to capture complex nonlinear relationships.
The network consists of a series of hidden layers, where the weights of each node in m-th layer are calculated from
the nodes in (m − 1)-th layer. Each node n undergoes a transformation through a nonlinear activation function an,
followed by a weighted summation using parameters θmn. This process is repeated through all layers until the output
layer is reached. The parameters θ are estimated by training on observed state variables and optimizing a composite
likelihood function, enabling the network to accurately approximate the functional form of the dynamical system.

We formulated a composite loss function that consists of three components: dynamic loss Ldyn, observational loss Lobs,
and the regularization term Lreg. Dynamic loss quantifies how well the model’s predictions align with the expected
outcomes based on the dynamical system model.

Ldyn = − 1

∆tτ2

Tf−1∑
t=1

(
(ĉt+1 − N (x̂t; θ))

2
+ (x̂t+1 − f(x̂t, ĉt))

2
)

(4)

The observational loss term measures how closely the estimated states match the data. This helps the model to capture
the relationship between the input features and the observed outputs accurately.

Lobs = − 1

σ2

Tf∑
t=1

(yt − x̂t)
2 (5)

We applied L2 regularization, which penalizes large weights by summing squared weights across the network layers
and discourages model overfitting.

Lreg =
∑
t=l

θ2l (6)
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Finally, the objective function was defined as:

Ltotal = Ldyn + Lobs + ζLreg (7)

Here, ζ is the weight parameter to optimize the significance of regularization. In our case, experimental observations
indicated that ζ = 0.4 provides the best performance.

2.3 SciML Model Training

We applied the state-space UDE framework (eqs. 3- 7) to the simulated data from the social-ecological population
model of Tilman et al. [2024]. We trained the models on the abundance time series yt and environmental noise term
it, and treated the harvest rate ct as an unobserved variable. We used the social-ecological model (eq. 1) to describe
changes in the estimated abundance

x̂t+1 = rx̂t

(
1− x̂t

K

)
− ĉt

(
x̂2
t

x̂2
t + h2

)
+ (1 + ît)xt (8)

We modeled changes in the environmental noise term and the unobserved harvest rate using a neural network.

ît+1 = Ni(x̂t, ît, ĉt) (9)

ĉt+1 = Nc(x̂t, ît, ĉt) (10)

Using these equations, we simultaneously estimated the weights and biases of the neural network and the state variables
x̂t, ît, and ĉt using the combined loss function (eq. 7).

Our UDE model was trained by optimizing the likelihood function described in Equation 7, which serves as the
objective function. In training we used Adam optimizer Kingma [2014], leveraging adaptive estimates of lower-order
moments for efficient convergence in stochastic objective functions. The optimization process was implemented using
the Optimizers.jl Ma et al. [2021] library in Julia, with a learning rate of 0.03, achieving a balanced trade-off between
the optimization time and the performance of the model. The loss function gradient was efficiently calculated using
automatic differentiation with the Zygote.jl Innes [2018] package, ensuring accurate and computationally efficient
updates.

The activation functions, including ReLU Nair and Hinton [2010], CELU Barron [2017], softsign Glorot and Bengio
[2010], and tanh LeCun et al. [2002], were evaluated on subsets of observed data to capture the best performance
to predict the unobserved parameters. Among these, the CELU activation function provided the best prediction
performance based on the root mean square error (RMSE) metric. During simulation, the model also predicted
abundance values and environmental noise, which were further evaluated for forecast capability.

To effectively manage neural network parameters and predict changes in the unobserved harvest rate parameter, ct, we
used the Julia packages Lux.jl Pal [2023] and Optimization.jl Dixit and Rackauckas [2023]. Lux.jl facilitated the design
of a scalable neural network architecture with explicit parameter handling, improving both flexibility and efficiency in
model development.

We perform training and evaluation 50 times randomly to ensure robustness and assess the stability of model performance
across different θ initializations and data permutations. This helps quantify uncertainty in parameter estimation and
forecasting skills under stochastic conditions.

2.4 Simulation tests

After training the model on simulated data with optimized NN parameters, we made forecasts of future population
abundances using the forward prediction process. Provided the current abundance of the ecological population xt, we
used trained UDE models to estimate future populations under different regimes, specifically high abundance (regime
I, starting at time step 204), intermediate flickering with bistability (regime II, starting at time step 530), and low
abundance (regime III, starting at time step 800). This approach allowed us to evaluate the predictive capabilities of the
models in stable and transient regimes. Once optimized, a UDE model can be used to anticipate potential regime shifts
by forecasting changes in abundance.

Our experiments included forecasting the states of the system and evaluating with observed data. In addition to the
methods mentioned above, we also evaluated forecasts from several benchmark approaches to provide comprehensive
performance comparisons. We included the auto-regressive integrated moving average (ARIMA) method Durbin
and Koopman [2012] as it represents the classical statistical approach to time series forecasting and serves as a
fundamental baseline in ecological applications. ARIMA models are particularly effective for capturing linear temporal
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dependencies and trends in stationary data, making them an essential comparison point for forecasting time series
data. We also compared performance with the random-walk null model. Long short-term memory (LSTM) networks
Hochreiter and Schmidhuber [1997] were selected to represent state-of-the-art deep learning approaches for sequential
data modeling. LSTMs are specifically designed to capture long-term temporal dependencies through their gating
mechanisms, addressing the vanishing-gradient problem that limits traditional recurrent networks. Their demonstrated
success in modeling complex nonlinear patterns in time series data makes them a natural benchmark for evaluating our
approach.

The predictive performances of the universal dynamic equation with a neural network (UDE-NN) and other comparative
models were evaluated using the root mean square error (RMSE) of forecasted abundances. Considering the unobserved
harvest rate parameter as an indicator of the system’s current regime, we also evaluated and compared classification
performance to identify the most effective prediction method. We used critical transition values c∗ (shown in Fig. 1)
from the simulated mechanistic model Tilman et al. [2024] as thresholds to categorize the simulated time series of xt

into three regimes. The categorized predicted values of the unobserved parameter were evaluated with the F-score—a
harmonic mean of precision (measures how many of the predicted positive results were actually correct for each regime)
and recall (measures how many of the actual positive cases were correctly identified for each regime), giving a balanced
metric that considers both measures.

2.5 Gaussian Processes as Surrogate Method

In addition to using neural networks as universal function approximators, we explored alternative approximation
methods within the state-space dynamic equation framework, including the Gaussian processes (GPs) approximation
technique Olivier et al. [2021]. GPs have been extensively validated for differential equation problems similar to
our UDE framework Medeiros et al. [2025], Raissi et al. [2019a, 2017], provide superior uncertainty quantification
capabilities that are critical for scientific applications Yang et al. [2020], and offer the flexibility to incorporate physical
constraints through specialized kernel design Solin and Särkkä [2020]. Furthermore, the theoretical equivalence between
infinitely wide neural networks and Gaussian processes Lee et al. [2017] makes this comparison particularly meaningful
for understanding the relative advantages of artificial neural networks and Bayesian methods in the scientific machine
learning literature.

We incorporated GPs into the difference equation (DE) framework (for brevity, we use the acronym DE-GP for this
method). This approach leverages the kernel-based framework of GPs to provide smooth, continuous, and locally
adaptive representations while maintaining computational tractability Turner et al. [2010].

The system evolves through interactions between current-state variables and hidden variables. The state variables
capture both the directly observed system conditions and the environmental noise influences. While the dynamics
governing the observable state variables follow a known mechanistic form, the evolution of the latent components
remains unknown and must be inferred from data. To model this hidden structure, we integrated GPs into the DE
framework, allowing the Gaussian process component to learn the unknown latent dynamics from the available state
information.

We used a likelihood function along with equations [4, 5], substituting the neural network with Gaussian processes as
the function approximator to ensure a well-calibrated probabilistic model. The model parameters were optimized using
a gradient-based technique. This formulation effectively combines physical system modeling and data-driven inference,
enabling data-adaptable predictions and offering a probabilistic framework to assess uncertainty in complex systems
with partially known dynamics. We implemented this approach using the AbstractGPs.jl Widmann et al. [2024] and
KernelFunction.jl Galy-Fajou et al. [2024] packages in the Julia programming language.

3 Results

3.1 Unobserved parameter identification

Our universal dynamic equation framework successfully recovered the linear increasing trend in the unobserved harvest
rate in the simulated examples (Fig. 4). The state-space UDE-NN method predicted the values of the unobserved
parameters with the lowest error compared to alternative methods, evaluated using the RMSE metric.

As the statistical properties of data change in different regimes, we evaluated the prediction performance of the UDE-NN
and DE-GP methods by training with different data sizes (N) in three different regimes. In Regime I (Fig. 5, N=204),
the UDE-NN approach achieved significantly lower RMSE values, demonstrating effective learning with limited data.
The UDE-NN approach also excelled in capturing unobserved parameters under flickering dynamics in Regime II (Fig.
5, N=530). Our approach also identified the unobserved parameter to outperform DE-GP in Regime III (Fig. 5, N=800),
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Figure 4: Identification of the unobserved parameter ct from one of the random experiments. The actual parameter
values (black) are compared with estimates from two methods: DE-Gaussian process (purple), and UDE-NN (olive).

Figure 5: Violin-boxplots of root mean square error (RMSE) values for the predicted unobserved parameter ĉt across
different regimes over 50 random experiments. Results are given for high abundance regime I (N=204), intermediate
flickering regime II (N=530), and low abundance regime III (N=800). The bottom and top of each box represent the
first and third quartiles, respectively. The horizontal line inside the box indicates the median. Whiskers extend to the
smallest and largest values within 1.5 times the interquartile range, and points beyond the whiskers represent outliers.
The olive boxes represent the universal dynamic equation with a neural network (UDE-NN), and the purple boxes
represent DE-Gaussian process (GP) models. Median RMSE values from UDE-NN are lowest across the regimes and
methods. Regime I has relatively lower RMSE values compared to other regimes.

highlighting the effectiveness of neural networks in approximating nonlinear relationships. The Mann-Whitney U-test
demonstrated a highly significant difference in RMSE performance between methods (U = 0.0, p < 1e− 17). The
UDE-NN method consistently achieved lower RMSE values compared to DE-GP, and the test results showed complete
separation between the two distributions.

In the classification context, the highest values of the F-score indicated that UDE-NN outperforms the DE-GP
approximation technique in identifying the correct regime influenced by unobserved parameters (harvest rates) in the
system (Fig. 6). This consistent prediction ability across different regimes highlights the robustness of UDE-NN in
accurately identifying critical transitions and making reliable predictions, even in complex and noisy environments.

However, the distribution of F-scores varies substantially between ecological regimes, reflecting differences in classifi-
cation ability under changing system dynamics (Fig. 6). In regime I (high abundance), the F-scores are tightly clustered,
with the first quartile exceeding 0.75 and the upper whiskers approaching 1.0, indicating consistently high precision and
recall. Regime II (flickering/bistable) exhibits moderate dispersion, with the first quartile around 0.75 and the upper
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Figure 6: Classification-based predictions for the unobserved parameter ĉt, identifying the current categorical regime of
the system (I, II, III) based on the predicted values. Boxplot shows F-score performance ranges (the higher, the better)
in different regimes. Box color indicates methods, DE-Gaussian process (GP) in purple, and our method, UDE-NN in
olive.

Figure 7: Comparative forecast performance using the root mean square error (RMSE) metric across different regimes
and forecast horizons. Blue, orange, green and purple boxes represent ARIMA, RandomWalk, LSTM, and DE-Gaussian
process methods, respectively, and olive boxes correspond to the UDE-NN method. Stacked boxplots of the performance
metric after training on 204 data points (Regime I), 530 data points (Regime II), and 800 data points (Regime III).

values still reaching 1.0, suggesting reasonable classification confidence despite transient dynamics. In regime III (low
abundance), the median F-score remains relatively high (∼ 0.75), but the whiskers extend fully from 0 to 1, highlighting
extreme variability and occasional misclassifications. This regime-dependent spread in F-score distributions underscores
the challenge of making reliable predictions under nonlinear transitions and ecological degradation.
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Table 1: Quantitative comparison of forecasts using root mean square error (RMSE). Median RMSE values are reported
across different training scenarios based on the number of training data points, approximation techniques within the
difference equation (DE) and universal dynamic equation (UDE) frameworks, and forecast horizons (1, 5, 10, or 15
time steps). The lowest RMSE values per training set are in bold.

Training datasize (N) Method RMSE-1 RMSE-5 RMSE-10 RMSE-15 Mean training time (s)
204 ARIMA 0.5234 0.9572 1.1842 1.4818 17.21
204 RandomWalk 0.5063 0.9003 1.1733 1.4685 1.05
204 LSTM 0.7487 1.1642 1.6540 2.2764 58.05
204 GP 0.1760 0.7787 1.3053 1.6314 533.11
204 UDE 0.1760 0.7886 1.2447 1.4871 246.34
530 ARIMA 0.3093 0.673 0.7556 0.7862 19.52
530 RandomWalk 0.3257 0.6564 0.7743 0.7918 1.13
530 LSTM 0.4090 1.0727 1.3187 1.6924 327.31
530 GP 0.1938 0.3799 0.3965 0.5121 3769.40
530 UDE 0.1938 0.3883 0.424 0.5269 617.21
800 ARIMA 0.1986 0.2903 0.2859 0.2968 20.73
800 RandomWalk 0.1982 0.2923 0.2941 0.2985 1.14
800 LSTM 0.1856 0.2541 0.2534 0.2614 785.05
800 GP 0.1405 0.2495 0.2442 0.2413 9330.91
800 UDE 0.1405 0.2451 0.2383 0.2353 904.33

3.2 Near-term forecasts of regime shifts

The forecast performance of the implemented approaches was evaluated for varying horizons (time-steps) {1, 5, 10,
15} using the RMSE metric (Fig. 7). Methods using known dynamics (UDE-NN and DE-GP) consistently showed the
best performance values for a one-step-ahead forecast (horizon = 1) and slightly improved performance with lower
median RMSE values for the forecast horizon of 5 time-steps (Fig. 7, N=530). Both methods showed relatively better
performance than the alternative methods in the flickering regime II. Mann-Whitney U-test shows significant differences
(p < 1e − 8) in RMSE performance between methods that use known dynamics (UDE-NN and DE-GP) and those
without known dynamics (ARIMA, Random-Walk, LSTM) for one-step forecasts under regime I and regime II. All the
methods performed poorly in forecasting at longer horizons, which was expected given the highly stochastic nature of
this system.

The median RMSE values of the experiment with more training data points (Table 1, N=800) indicate that the UDE-NN
method performed better than alternative methods, while the DE-GP method prevailed in performance with intermediate
data size (Table 1, N=530). Overall, the experiment suggested that methods using known dynamics outperform other
methods in short-term forecasting capabilities, and have potential for improvement in long-term forecasting capabilities.

4 Discussion

Predicting regime shifts in systems where there are unobserved drivers remains a significant challenge in many domains
Dakos et al. [2015], Hamilton [1989], Akbal [2024]. Our study demonstrates that UDEs (both based on neural
networks and Gaussian processes) can effectively predict unobserved driving parameters in social-environmental
systems experiencing regime shifts. The framework successfully estimated unobserved harvest rates from simulated
abundance data alone while incorporating governing equations, achieving three key outcomes: 1) more accurate
predictions of unobserved parameter changes (indicated by lower RMSE values), 2) successful regime identification
based on predicted parameters (with high F-scores), and 3) competitive short-term forecasting performance compared
to alternative approaches.

The UDE method excels when systems exhibit explicit environmental stochasticity, where random fluctuations and
unreported external forces create challenges for traditional forecasting approaches. By incorporating known mechanistic
dynamics, UDEs can distinguish between stochastic noise and meaningful signals, enabling more reliable predictions
even with noisy observations. The approach is particularly powerful when systems contain unknown or unreported
influencing parameters that are difficult to estimate through direct observation. These unobserved drivers can emerge
from multiple sources: technological and measurement limitations including sensor failures and analytical methodology
constraints Rocke et al. [2003], Decorte et al. [2024], microclimate heterogeneity creating fine-scale environmental
variations that influence species interactions Mislan and Helmuth [2008], temporal scale mismatches where ecological
processes operate over different timescales than monitoring programs Winkler et al. [2021], subsurface processes that
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remain largely unobservable Condon et al. [2021], legacy effects from historical disturbances that continue to influence
contemporary ecosystem dynamics Krause et al. [2020], economic and logistical constraints that limit monitoring
coverage Sparrow et al. [2020], and cryptic ecological processes such as undiscovered species interactions Bickford et al.
[2007], Uusitalo et al. [2018]. These unobserved drivers can also emerge from illegal activities such as unreported fishing
events, poaching, or other clandestine resource extraction activities that are deliberately concealed from monitoring
systems. Crucially, when such hidden parameters significantly influence system regime transitions, UDEs can capture
these effects within a mechanistic framework that maintains biological and physical realism.

The incorporation of known dynamics provides several advantages over purely data-driven approaches. Combining
mechanistic models with data-driven approaches offers a powerful means of addressing regime shift predictions in
dynamical systems. These mechanistic constraints help the neural network components learn system behavior faster and
produce more reliable results by constraining the solution space to physically plausible outcomes. Furthermore, incor-
porating established ecological or physical principles enhances the interpretability of the model, allowing researchers
and managers to understand not only what the model predicts, but also why those predictions make sense within known
theoretical frameworks.

Our UDE approach builds on and extends the valuable foundations established by current methods for predicting
unobserved parameters in complex systems. Empirical dynamic modeling Munch and Brias [2024] and statistical
approaches have demonstrated significant success in identifying patterns in observed data and have been instrumental in
advancing our understanding of complex system dynamics. Similarly, existing modeling approaches Agan et al. [2021],
Átilla Colombo Ferreguetti et al. [2018] to estimating unobserved harvest or poaching rates have made important
contributions to conservation science.

Sparse system identification methods such as SINDy Brunton et al. [2016] and non-parametric approaches including
Gaussian process methods Alvarez et al. [2012] have contributed valuable techniques to infer system dynamics
from limited observations. In parallel, scientific machine learning approaches have developed distinct paradigms for
discovering and modeling unobserved dynamics in complex systems. Physics-informed neural networks (PINNs) have
demonstrated success in incorporating known physical laws while learning unknown parameters from sparse data Raissi
et al. [2019b], Karniadakis et al. [2021]. Neural ordinary differential equations (NODEs) Chen et al. [2018] provide
powerful frameworks for learning continuous-time dynamics directly from observations, while universal differential
equation approaches Rackauckas et al. [2020b] have shown promise in combining mechanistic knowledge with machine
learning for scientific discovery. These methods have proven particularly effective either when the underlying system
structure is well-characterized or when sufficient data are available to learn complex mappings.

However, these approaches face inherent challenges when dealing with systems in which unobserved driving parameters
exhibit their own complex temporal dynamics. While traditional methods excel at pattern recognition and strategic
optimization, they typically rely on sparse and potentially biased observation data, making it difficult to model the
dynamic adversarial behaviors that characterize many social-environmental systems. Our UDE framework complements
these existing approaches by explicitly modeling and predicting the temporal evolution of hidden drivers within
a mechanistic context, offering a distinct methodological contribution that addresses scenarios where traditional
approaches may be limited.

Recent advances in reservoir computing for extracting slowly time-varying parameters Tokuda and Katori [2024] and
learning governing equations of unobserved states Grigorian et al. [2025] have demonstrated the feasibility of inferring
hidden dynamics from time series data. Our UDE framework extends these contributions through three key advances:
1) explicit incorporation of unobserved parameters within mechanistic model structures, 2) direct integration of known
mechanistic dynamics into the fast dynamics model, and 3) application to regime-shifting systems between stable
equilibrium points. The latter is a more challenging inference problem than the chaotic dynamics typically studied, as
stable phases provide fewer informative signals about underlying parameter changes.

The broader Scientific Machine Learning landscape has seen significant advances through symbolic regression Angelis
et al. [2023], physics-informed neural networks (PINNs) Cuomo et al. [2022], and Gaussian process-based modeling
Girard and Murray-Smith [2005]. Our UDE framework builds on these innovations while specifically targeting the
challenge of predicting the temporal evolution of unobserved driving forces. The neural network approximators
within UDEs leverage the universal approximation capabilities demonstrated by these previous works, extending their
application to high-dimensional systems with multiple interacting variables where complex nonlinear relationships
between observed and unobserved components can be captured within mechanistic frameworks.

Despite its effectiveness, the UDE approach faces limitations that define the boundaries of its application and highlight
areas for future development. The method relies heavily on a deep understanding of process-based or mechanistic
models, which may not always be readily available for complex systems. Researchers must have sufficient knowledge
of the dynamics of the underlying system to specify appropriate governing equations, which limits applicability in
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domains where the mechanistic understanding remains incomplete. The approach also requires robust approximation
techniques to effectively capture the intricacies of the nonlinear or chaotic dynamics characteristic of ecological
and stochastic systems Buckner et al. [2024]. Careful handling of feedback mechanisms proves crucial for accurate
modeling, as mismanagement of these interactions can lead to erroneous conclusions or unstable model behavior.
Current computational limitations become particularly pronounced when scaling to high-dimensional datasets with
hundreds of interacting components, where complexity and computational demands increase significantly.

While our results show that UDEs do not consistently outperform alternative approaches in short-term forecast accuracy,
this finding aligns with recent insights on the limitations of forecast-skill-based model selection. Boettiger [2022]
demonstrates that selecting models based solely on forecast accuracy can create a ‘forecast trap’, where seemingly
superior statistical performance leads to worse real-world management outcomes. This occurs because forecast accuracy
alone fails to capture the non-uniqueness of models and their differential impacts on management objectives. Our
UDE framework addresses this challenge by prioritizing mechanistic understanding and parameter interpretability
over pure forecast performance. By explicitly modeling unobserved driving parameters within established ecological
frameworks, UDEs provide actionable insights into the causal mechanisms underlying regime shifts, information
that may be more valuable for management intervention than marginally-improved forecast accuracy. This approach
aligns with recommendations to promote broader sets of models rather than selecting based on forecast skill alone,
emphasizing the importance of mechanistic insight for robust decision-making in social-environmental systems.

Future research should prioritize improving long-term forecasting ability, particularly for systems with regime shifts or
strong stochastic dynamics, where prediction accuracy typically degrades over extended time horizons. Developing
more efficient algorithms, advanced neural network architectures, and high-performance computing strategies will be
essential for scaling to complex real-world systems. Furthermore, incorporating uncertainty quantification methods
would enhance the reliability of the framework and provide confidence limits for management decisions based on the
mechanistic foundation that distinguishes UDEs from purely statistical approaches.

The UDE approach shows potential for addressing conservation challenges, though validation with real-world data
would be needed. In wildlife conservation, the method could potentially improve population assessments by estimating
illegal harvest rates from monitoring data. This capability might help wildlife managers better understand the true
impact of poaching on population dynamics and assess the effectiveness of existing conservation interventions.

For broader ecosystem management, the framework offers pathways toward early warning systems for regime shift
detection across multiple domains. The approach can be extended to predict regime shifts in other complex systems,
including political transitions, Earth system dynamics, and epidemiological patterns. Political regime shifts, often
driven by economic instability, social movements, or institutional breakdowns, exhibit nonlinear dynamics that could
be captured using hybrid mechanistic data-driven models. Similarly, regime shifts in the Earth system such as those
quantified in the planetary boundaries framework Rockström et al. [2009], Steffen et al. [2015] and research on cascading
tipping points Rocha et al. [2018]—highlight the interconnected nature of environmental thresholds. Furthermore,
epidemiological applications Brauer et al. [2019], such as predicting the spread of infectious diseases, could benefit
from this approach by integrating mechanistic models of disease transmission with real-time data assimilation.

However, realizing these applications requires several key advances. Scaling computational efficiency for high-
dimensional systems remains critical for handling the complexity of real-world scenarios. Developing robust methods
for uncertainty quantification would also provide essential confidence measures for management decisions.

This work provides a new method for quantifying hidden dynamics in complex systems by directly predicting changes
in unobserved parameters that drive regime shifts. This capability provides actionable information for management
interventions and would be of great potential use for effective governance of social-ecological systems. The ability to
predict not only what will happen but also the causal mechanisms of change can mean the difference between proactive
management and reactive crisis response. As global systems face unprecedented pressures and regime shifts become
increasingly common, tools that can peer into hidden mechanisms of change offer hope for more effective stewardship
of social-ecological systems. The UDE framework has the potential to provide policy makers and resource managers
with improved capabilities to design optimal control strategies. Future efforts could focus on scaling these methods to
high-dimensional systems and validating their performance across diverse real-world applications. Ultimately, through
new methods like SciML, we can improve our ability to predict and prepare for critical transitions in complex systems.
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Appendix

A Mechanistic model parameters and data pre-processing

We simulated the Tilman et al. [2024] model to generate time series data with different random initializations, by solving
the discrete state-space equation 1. We considered the harvest rate as an unobserved parameter that monotonically
increases between the suggested range [0,4] in Tilman et al. [2024]. This process provides time-series observations x̂, î
corresponding to the environmental state and the term of noise in the system. The parameter values are listed in table 2.

Table 2: Tilman et al. [2024] mechanistic model parameters

Variable Value Description
xt 0-20 Current environmental state (x0 = 10.0)
it Auto-correlated red noise
T 30 Timescale over which noise becomes uncorrelated
ηt 0 i.i.d. normal error term
β 0.07 The standard deviation of η’s
r 1 Resource growth rate
K 10 Resource carrying capacity
ct .0-4.0 harvest rate
h 1 harvest half-saturation constant

We used trained models to forecast changes in population abundances as a function of different harvest rates. Figure 8.
illustrates the predicted abundances, and the different colored lines corresponding to different harvest rate scenarios.
The results highlight the potential for recovery of the system with lower harvest rates [figure 8. Panel D.] regardless
of the current regime. It also highlights that adopting lower harvest rates can prevent irreversible collapse and enable
recovery, whereas higher harvest rates drive the system toward the unstable regime II or the low-abundance regime III.

Figure 8: Forecasts of population abundances under different harvest rates c in each regime. An example time series of
a noisy environmental state yt simulated for 1000 time steps (A). The dashed boxes show insets for regime I forecasts
(B), regime II forecasts (C), and regime III forecasts (D) under increasing harvest rates.

Figure 9 shows the comparisons of the forecast uncertainty between different methods. The UDE-NN model, with an
embedded neural network, demonstrates a narrower confidence interval, indicating reduced uncertainty in forecasting.
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Figure 9: Forecasts and confidence intervals for the environmental state x across different regimes using comparative
methods. Column 1 displays predictions for regime I, column 2 for regime II, and column 3 for regime III. Average
forecast values are represented as points and lines, with confidence intervals given as shaded regions. The methods are
Kernel-based parameter approximation, Gaussian process (GP) augmentation, and universal dynamic equation (UDE).
Note the different y-axis scales per column.

In contrast, other DE methods exhibit increasing uncertainty as the forecast horizon is extended. Additionally, the
results suggest that the algorithms had more uncertainty in Regime II, which is the system’s flickering regime.
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