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Abstract

Compared to the accelerated progress of environmental degradation in Amazonian
ecosystems, the development of studies to support conservation efforts is slow, because
it demands substantial financial and logistical investment. Intending to contribute to
stream monitoring with rapid analyses, this study aimed to test the feasibility of using
species composition for taxonomic families as biological surrogates of species and
functional diversity in stream fish assemblages in an impacted region of the Brazilian
Amazon during two seasonal periods. Sampling was conducted in 18 streams in northern
Brazil, in aregion heavily impacted by industrial activities and urbanization. We observed
a high potential for using families Acestrorhamphidae and Cichlidae as biological
surrogates. Overall, the family Cichlidae showed potential in representing species
composition and functional structure in stream fish across seasonal variation. The
congruence between Acestrorhamphidae, Cichlidae, and the fish assemblages was
particularly high during the rainy season, in both taxonomic and functional dimensions.

During the dry season, Acestrorhamphidae showed high congruence only with species
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abundance. These findings contribute to monitoring strategies for impacted streams in a

scenario of limited financial resources and expert availability.

Keywords: Biological surrogates, Congruence, Species diversity, Functional structure,

Rapid monitoring.

Statements and Declarations
Acknowledgements

The authors are grateful to B. E. Soares, F. Valente-Neto, G. L. Brejao, J. C. G.
Ortega, K. B. Machado, R. L. B. Santos, and T. M. S. Freitas for the constructive
comments on the manuscript. We also acknowledge the Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for the PhD scholarship of L.L.S
(protocol number 1840342/2019-4), the Alumina do Norte do Brasil for funding, logistic
support and scholarships for LLS, CMCL, LBS, NLB, the Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico (CNPq) for research scholarship of LFAM
(protocol number 302881/2022-0), and the Universidade do Estado de Minas Gerais for
the research scholarship to NLB ( PAPq/UEMG 15/2024).

Authors contributions

All authors contributed to the study conception and design. Fieldwork and sample
collection were performed by LLS, NLB, LBS, and CML. LLS conducted formal analysis
and wrote the first draft of the manuscript. LFAM supervised all stages of the project. All

authors critically reviewed, edited, and approved the final manuscript.

Ethical Approval

The collection and euthanasia of fish specimens were conducted under approval
from the Ethics Committee on Animal Use of the Universidade Federal do Para (CEUA
UFPA; protocol no. 8293020418).

Consent to Participate
This is not applicable
Consent to Publish
This is not applicable



68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

Data availability
All data and code used in this study are available in a curated dataset on Figshare

(https://doi.org/10.6084/m9.figshare.30862277).

Competing Interests

The authors declare no competing interests.

Introduction

The conservation of freshwater biodiversity is closely linked to human well-being
as environmental damages are converted into social losses through impacts on ecosystem
services (Cunha et al., 2022a; Pelicice et al., 2022; Lynch et al., 2023). However,
scientific evidence of these losses has not been sufficient to reduce anthropogenic impacts
on the environment, especially in streams, which are among the most threatened
ecosystems in the world (Graziano et al., 2022).

In the Brazilian Amazon, the intense modification of natural ecosystems due to
anthropogenic actions and the reduction in federal funding for conservation research are
alarming (Rodrigues, 2022). Around urban and/or industrial centers, there are several
streams impacted by fragmentation of water bodies or degradation of riparian vegetation
(Freitas et al., 2022; Albert et al., 2023). Currently, about 14% of the Brazilian
Amazonian forest has been converted for production activities, highlighting the threats to
which the aquatic biota is exposed (Albert et al., 2023).

In this scenario, the search for efficient, rapid, and inexpensive analyses has
become more important for monitoring and preventing the loss of ecosystem services
(Heino, 2010).

Biological surrogacy is a valid alternative, which consists of using diversity
patterns (e.g., abundance or incidence) of a group as indicators of local diversity, thereby
reducing time and effort needed in studies (Caro & O’Doherty, 1999). In situations where
the financial, logistics, and time resources are limited, the use of biological surrogates
may enable implementation of biomonitoring (Sato et al., 2019). Nonetheless, the
efficacy of this approach requires previous studies to test the potential of the target group
as a biological surrogate (Stewart et al., 2018; Sato et al., 2019). The most common way

to perform such tests is through the congruence analysis (Fattorini et al., 2012).
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Generally, low congruence has been found between taxonomic groups of
freshwater organisms (Stewart et al., 2018; Faquim et al., 2021). This results from the
divergence in the organism’s responses to spatial and environmental constraints.
However, if a more restricted taxon is considered, this divergent response is expected to
be higher between subgroups than within subgroups. Thus, congruence analysis using
subgroups of the same taxon has been more successful in identifying potential indicators
of biodiversity (Stewart et al., 2018). For instance, Slimani et al. (2019) suggested that
Coleoptera and Ephemeroptera are good indicators of species diversity in
macroinvertebrate communities. Additionally, high congruence was observed between
families and species of Odonata insects in Amazonian streams (Mendoza-Penagos et al.,
2021). In studies of stream fish assemblages, the congruence between taxonomic levels
(family and genus or species and genus) and taxonomic subsets (Characiformes order)
was tested and demonstrated high potential in representing species diversity (Faquim et
al., 2021; Martins et al., 2022; Valente-Neto et al., 2025).

The success of a biological surrogate group is related to its capacity to adapt to
various habitat types, occupy different niches, and have a significant contribution to the
community structure (Barbosa et al., 2019; Slimani et al., 2019; Santos et al., 2022).
Considering these aspects, analyses of potential biological surrogates should include
sources of natural and anthropogenic perturbations that alter the environment and the
availability of resources for the organisms (Borba et al., 2021; Cantanhéde & Montag,
2023). The effect of human impacts on the selection of indicators in stream ecosystems
can be exemplified by the study of Arimoro and Keke (2021), who analyzed communities
of aquatic macroinvertebrates and suggested different indicators for impacted and non-
impacted streams.

To the best of our knowledge, there have been no studies on the effects of seasonal
variations on biological surrogacy until now. However, the seasonal variation is
associated with important changes in stream structure and physicochemical properties of
water, which influence the stream biota (Brimacombe et al., 2021; Lafuente et al., 2023).
For example, solar incidence and water temperature decrease during the rainy season,
while water volume and turbidity increase (Brimacombe et al., 2021; Ferreira et al., 2021;
Resende et al., 2021). Additionally, the stream overflow and heavy rain during this season
increase the availability of terrestrial resources for aquatic organisms (Barreto et al., 2018;

Benone et al., 2020). Particularly in impacted streams, the quality of water is affected by
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seasonal changes, leading to the dilution of pollutants (Groh et al., 2019; Ferreira et al.,
2021).

The taxonomic and functional structure of ichthyofauna is closely related to the
environmental dynamics of streams and plays a key role in essential ecosystem processes
and services, such as nutrient cycling and providing food for human populations (Peressin
& Cetra, 2014; Dala-Corte et al., 2020; Torres-Bejarano et al., 2022). This close
relationship with the environment increases the potential of stream fish to be used as
indicators in biological surrogacy (Santos et al., 2022). Nevertheless, there are several
challenges linked to fish research in the Amazon biome, such as the difficulty in
identifying organisms at the species level (Jézéquel et al., 2020). The megadiversity of
fish in the Amazon is coupled with a significant knowledge gap (Freitas et al., 2021), and
these factors make fish identification lengthy and often require experts who are not always
available (Jézéquel et al., 2020; Freitas et al., 2021). To expedite the development of
studies, biological surrogacy can be used as an alternative to reduce the number of
individuals that need to be identified (Morais et al., 2018). This approach was tested in
conserved Amazonian streams where taxonomic families showed great potential as
indicators of the local species diversity (Santos et al., 2022).

This study aimed to test the feasibility of using species composition of taxonomic
families as biological surrogates of species and functional diversity of stream fish
assemblages in an impacted region in the eastern Brazilian Amazon during two seasonal
periods. We expect that the families Cichlidae and Lebiasinidae will exhibit high potential
as indicators due to their high plasticity in trophic habits and habitat occupation, which
allows them to tolerate environmental changes over time (Brejao ef al., 2013; Zuanon et
al., 2015; Soares et al., 2020). Furthermore, it is expected that seasonal variation will
influence the potential of families as biological surrogates, with the family Lebiasinidae
exhibiting higher potential during the rainy season because it is composed of fish species
that efficiently explore both the main channel and lateral pools formed during this period

(Espirito-Santo & Zuanon, 2017; Borba et al., 2021).

Material and Methods

Study area

Eighteen streams were sampled in the Itaporanga and Murucupi river basins,
located in Barcarena, Pard State, in northern Brazil (Fig. 1). The region's climate is

classified as tropical warm and humid, with an average temperature of 27 °C and low
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annual variability (Porfirio et al., 2020). The total annual rainfall is 2,532 mm. The dry
season occurs between June and November, while the rainy season extends from
December to May (Moraes et al., 2005). Barcarena is an important industrial center;
therefore, the local environment has been strongly altered by urbanization, industrial
activities, and port operations (Silveira et al., 2019).

Landscape transformation in the Barcarena region began in 1985 with the
establishment of international mining companies (Furtado et al., 2020). To meet the
demands of these industrial facilities, the local population grew rapidly, leading to the
simultaneous expansion of urban and peri-urban areas across the municipality
(Nascimento & Hazeu, 2015; Nahum, 2017).

The aquatic environments have also been affected by these anthropogenic
pressures, especially the Murucupi River basin, where most of the industrialized areas are
located (Furtado et al., 2020). In this basin, approximately 40% of the natural vegetation
has been deforested, and the lack of basic sanitation has led to illegal dumping sites and
the discharge of domestic sewage into tributaries draining the urbanized center (Almeida-
Junior et al., 2019; Furtado et al., 2020). Additionally, water quality in the Murucupi
River basin is frequently degraded by environmental accidents originating from the
industrialized region (Medeiros et al., 2017).

The Itaporanga River basin is located farther from urban areas, with vegetation
cover predominantly consisting of native forests. In this region, landscape alterations
mainly originate from traditional communities' farming lands, family farming, and small-
scale pastures (Da Silva Junior et al., 2023).

Previous analyses have shown that the studied streams share similar
environmental conditions, often exhibiting signs of degradation and eutrophication
(Bastos et al., 2021; Cunha et al., 2022b; Sousa et al., 2024). On average, the local
vegetation cover 1s 75%, and the water is acidic (average pH 5.35), with a conductivity
of 0.057 mS/cm and a temperature of 25.5 °C (Bastos et al., 2021; Cunha et al., 2022b;
Sousa et al., 2024). According to the standards established by the Brazilian Environmental
Council (CONAMA Resolution number 357/2005), these streams are classified as having
poor water quality due to exceeding the permissible limits of toxic metals such as

chromium, aluminum, barium, and manganese (Cunha et al., 2022b).
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Fig. 1 Localization of 18 streams sampled during the rainy seasons of 2018-2019,
the dry season of 2019, the dry season of 2023, and the rainy season of 2024 in Barcarena,

Para State, northern Brazil.

Sampling design

Sampling was conducted during five expeditions: three in the rainy seasons of
2018, 2019, and 2024, and two in the dry seasons of 2019 and 2023. In total, 18 streams
were sampled: two in the Murucupi basin and sixteen in the Itaporanga River basin. The
rainy season expeditions of 2018 and 2019 included eight streams; six streams were
sampled during the dry season of 2019; and thirteen streams were sampled during the dry
season of 2023, and the rainy season of 2024.

This uneven distribution reflects both the greater availability of accessible streams
in the Itaporanga basin and logistical limitations for repeated sampling in the
industrialized Murucupi basin. Notably, there was an interruption in field activities
between 2020 and 2022 due to the COVID-19 pandemic and associated logistical
restrictions.

In each stream, a 50-meter stretch was sampled, subdivided into five longitudinal

sections of 10 meters each. Each 50-meter stretch constitutes a sample unit. In the
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220  statistical analysis, the data from the five expeditions were analyzed separately. The
221  variation in the number of streams sampled across expeditions was due to a combination
222 of factors, including field access restrictions, stream conditions, and safety issues.

223

224 Sampling of fish specimens

225 The fish were captured using sieve nets and seine nets. First, circular sieve nets
226  measuring 55 cm in diameter and 3 mm mesh were used. The sampling effort was two
227  hours per 50-meter stretch, with the time divided among the collectors. Subsequently, a
228  seine net measuring 2 meters, a height of 1.5 meters, and a 3 mm mesh was used to sample
229  each 50-meter stretch 10 times.

230 After capture, the fish specimens were euthanized with a lethal dose of eugenol
231  anesthetic, fixed in 10% formalin, and then, after 48 hours, conserved in 70% alcohol. In
232 the laboratory, the specimens were identified using taxonomic keys and consultations
233 with specialists.

234 The expeditions were authorized by the Brazilian environmental agency Instituto
235  Chico Mendes de Conservagao da Biodiversidade, under license number 4681-1 and
236  SISBIO N°. 17070-3/2021. The procedures for capturing and conserving fish specimens
237  were approved by the Ethics Committee of the Universidade Federal do Parda (CEUA
238  UFPA protocol no. 8293020418). All the captured fish were deposited in the university
239  collection at the Museu de Zoologia do Instituto de Ciéncias Biolodgicas, in the city of

240  Belém, Para state, northern Brazil.

241
242 Functional traits
243 The description of the assemblage functional structure was based on seven

244  functional traits, comprising both qualitative and quantitative measures related to feeding,
245  habitat use, locomotion, and life history (Table 1). All traits were obtained from scientific
246  publications by searching for combinations of species names and specific trait terms, such
247 as 'feeding' or 'parental care,’ as keywords. When species-level information was
248  unavailable, data at the genus or family level were used.

249

250  Table 1 Type, values, ecological interpretation, and functional category of functional

251  traits used to describe the functional structure of fish assemblages.

Functional

Trait Type Values Ecological interpretation category

8



Autochthonous

Fish diets are related to nutrient

Diet Fuzzy invertivore cycling in the environment Feeding
Allochthonous (Villéger et al., 2017). In addition,
invertivore the food items consumed are
Carnivore influenced by local and regional
Algivore environmental characteristics
Herbivore (Zeni et al., 2019).
Detritivore
0 = absent; 1 = rarely
consumed; 2
=frequently
consumed; 3 =
dominant
Feeding Categorical Grazer Feeding habits indicate the fish's  Feeding,
habit Surface feeder strategy for food acquisition and ;¢ yse
the water layer in which feeding
Backwater feeder  vities occur (Brejio et al.,
Substrate speculators  2013).
Ambush predator
Active predator
Mouth Ordinal Inferior The mouth position indicates the Feeding,
position Superior type'of environment in which the  pr 00 1o
. species forages (Gatz Jr., 1979;
Terminal Watson & Balon, 1984).
Subterminal
Protactil
Vertical Ordinal Nektonic The main habitat used by the fish  Habitat use
position Nektobenthic species 1s related to species
coexistence, feeding habits, and
Benthic vertical translocation of nutrients
(Villéger et al., 2017).
. Fish body shape is related to Locomotion
Body Categorical Compressed swimming endurance and ’
form Depressed maneuverability capacity (Gatz  Habitat use
Fusiform Jr., 1979).
Elongated
Anguilliform
Body Quantitative ~ Standard length (cm) Fish body size affects its ability to  Habitat use,
size swim and prey size (Watson & [ Jooooion
Balon, 1984; Villéger et al.,
2017).
Parental Binary Careless The presence of parental care Life history
care Carefully indicates a high reproductive
investment, these species are

usually associated with highly
structured  habitats  (Espirito-
Santo et al., 2013).
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Our dataset includes information from the FishBase database (Froese & Pauly,
2025) and 85 relevant scientific articles (Supplementary Table S1). The diet trait
encompasses six trophic guilds: autochthonous invertivore, allochthonous invertivore,
carnivore, algivore, herbivore, and detritivore. Each species was assigned a value from 0
to 3 for each guild, where 0 indicates no affinity and 3 indicates a high degree of affinity.
These data were subsequently transformed using fuzzy logic (Chevene et al., 1994). The
parental care trait was converted into binary values, with 1 indicating the presence and 0

the absence of parental care behaviors.

Data analysis

To accurately represent the ichthyofauna, we selected families with at least three
species that occur in a minimum of six streams within the same sampling period.
Subsequently, the congruence between the patterns of species distribution and functional
structure organized per family and assemblage was analyzed.

The species abundance and incidence data were analyzed, with the abundance data
transformed using log (x+1) to reduce the influence of extreme values. To test the
congruence between the functional structure represented by families and assemblages,
community-weighted means (CWM) were calculated to determine the contribution of
each functional trait to each stream for both groups. Dissimilarity matrices were created
using the Bray-Curtis method for abundance data, Jaccard coefficients for incidence data,
and Gower distances for functional composition.

The data were then summarized using Principal Coordinate Analysis (PCoA,
Legendre & Legendre, 2012). The congruence between the distribution of taxonomic and
functional composition matrices for each family and the matrix of all species was assessed
using Procrustes analysis with 10,000 permutations (p < 0.05) (Rohlf & Bookstein, 1990).
In the Procrustes analysis, the abundance and incidence matrices of families were
compared to a matrix that included all species (family abundance vs. species abundance
and family incidence vs. species incidence). Additionally, the functional structure of
families and species was tested using the CWM matrices. Families showing congruence
higher than 50% in the comparisons were considered to have good potential as biological
surrogates.

All analyses were performed using the R program (R Core Team, 2024), with the
packages FD and vegan (Laliberté et al., 2014; Oksanen et al., 2024). CWM matrices

10
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were calculated using the functcomp function, dissimilarity matrices were computed
using the vegdist function, PCoA was conducted using the cmdscale function, and

Procrustes analysis was performed using the protest function.

Results

In total, 4,198 fish specimens were captured: 875 during the rainy season of 2018,
996 during the rainy season of 2019, 645 during the dry season of 2019, 1,159 during the
dry season of 2023, and 523 during the rainy season of 2024. These fish belong to eight
orders, 22 families, and 51 species (Supplementary Table S2). The most speciose families
were Cichlidae and Acestrorhamphidae, with nine and eight species, respectively. The
most abundant species was Hyphessobrycon heterorhabdus with 1,923 individuals,
representing 45.8% of the total catch.

During the rainy seasons of 2018 and 2019, H. heterorhabdus was the most
abundant species (426 and 478 individuals, respectively), followed by Copella arnoldi
(97 and 104, respectively). In the dry season of 2019, H. heterorhabdus was again the
most abundant (326 individuals), followed by Iguanodectes rachovii (88). In the dry
season of 2023, H. heterorhabdus (546 individuals) was followed by Apistogramma gr.
regani (209), and during the rainy season of 2024, H. heterorhabdus (147 individuals)
and Hemigrammus rodwayi (58) were the most abundant species (Supplementary Table
S2).

Only the families Acestrorhamphidae, Cichlidae, and Lebiasinidae met the
predefined requirements (containing at least three species and occurring in at least six
streams) in at least one of the analyzed periods. In the Procrustes analysis, the family
Acestrorhamphidae showed similarity with the species abundance matrix in all periods,
except for the dry season of 2019, with congruence varying from 73% to 94% (Table 2,
Fig.2). Regarding incidence and functional patterns, the family Cichlidae was congruent
with the species matrix during all periods, with congruence levels ranging from 64% to
84% for incidence and from 56% to 77% for functional data (Table 2, Fig.2).

However, when considering the three approaches used (family abundance vs.
species abundance, family incidence vs. species incidence, and family functional
structure vs. species functional structure), both Acestrorhamphidae and Cichlidae showed
consistent results during the rainy seasons of 2019 and 2024. During these periods, the

extreme congruence values were detected for Acestrorhamphidae: functional congruence
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319  reached 63% in rainy season of 2024, reaching up to 83% with abundance data from the
320  rainy season of 2019 (Table 2, Fig. 2).
321 In general, patterns for the family Lebiasinidae showed low congruence with the
322 species matrix, though isolated high concordance levels were detected using abundance
323  and incidence data (Table 2, Fig. 2).
324
325  Table 2 Results of the Procrustes analysis between families and assemblages of fish
326  captured at 18 streams sampled during the rainy seasons of 2018-2019, the dry season of
327 2019, the dry season of 2023, and the rainy season of 2024 in Barcarena, Para State,
328  northern Brazil.
Abundance Incidence Functional
Season Year Family Samples Species data data data
r p r p r p
Rainy 2018 Acestrorhamphidae 8 3 0.94 <0.001 0.68 0.054 0.59 0.104
Rainy 2018 Lebiasinidae 6 3 0.80 0.020 0.66 0.133  0.70 0.133
Rainy 2019 Acestrorhamphidae* 8 3 0.83 0.003 0.78 0.009 0.63 0.047
Rainy 2019 Cichlidae 6 4 0.77 0.080 0.84 0.030 0.77 0.047
Rainy 2019 Lebiasinidae 7 3 0.51 0407 0.79 0.012  0.39 0.692
Rainy 2024 Acestrorhamphidae 13 6 0.73 <0.001 0.59 0.012 0.17 0.920
Rainy 2024 Cichlidae* 11 6 0.64 0.021 0.64 0.017 0.66 0.047
Rainy 2024 Lebiasinidae 7 3 032 0.825 0.76  0.030  0.57 0.292
Dry 2019 Acestrorhamphidae 6 3 0.75 0.079 0.61 0.233  0.59 0.341
Dry 2023 Acestrorhamphidae 13 4 070 0.006 0.35 0409 047 0.131
Dry 2023 Cichlidae 12 5 0.50  0.096 0.79 0.002 0.56 0.032
Dry 2023 Lebiasinidae 12 3 0.66 0.030 049 0.124  0.50 0.077
329  *Congruence between the family and the assemblages was higher than 50% (p <0.05) in
330  all three comparisons.

12
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Fig. 2 Significant associations in the Procrustes analysis between families and
assemblages of fish captured at 18 streams sampled during the rainy seasons of 2018—
2019, the dry season of 2019, the dry season of 2023, and the rainy season of 2024 in
Barcarena, Pard State, northern Brazil. Colors represent the rainy (purple) and dry

(orange) seasons.

Discussion

In our search for biological surrogates, we identified the families
Acestrorhamphidae and Cichlidae as having particularly high potential to represent the
taxonomic and functional diversity of stream fish species in a region affected by
urbanization and industrial activities. Across seasonal variations, the Cichlidae family
consistently represented the species taxonomic composition and functional structure.

The congruence between Acestrorhamphidae, Cichlidae, and the fish assemblages
was particularly high during the rainy season, in both taxonomic and functional
dimensions. During the dry season, Acestrorhamphidae showed high congruence only
with species abundance. These patterns support our hypothesis that seasonal variations
influence the selection of indicators for use in biological surrogacy. Considering these

effects, this study’s suggestion of using families as indicators of species diversity is a
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valid approach for the rapid monitoring of impacted streams in the eastern Amazon
region.

Our results agree with studies that assessed the congruence between fish species
diversity and taxonomic subsets, which found that the order Characiformes serves as a
good surrogate for stream fish assemblages in a gradient of riparian deforestation (Martins
et al., 2022; Valente-Neto et al., 2025). In addition, findings from Amazonian conserved
streams suggest particularly the families Cichlidae and Acestrorhamphidae (previously
part of Characidae) as potential biological surrogates (Santos et al., 2022).

This potential attributed to both families, Acestrorhamphidae and Cichlidae, is a
result of their strong contribution to the structure of stream fish assemblages, combined
with high plasticity in feeding and functional traits of their component fish species (Barros
et al., 2017; Santos et al., 2019; Benone et al., 2020). The assemblage structure was also
a relevant factor for the selection of indicator families in this study. Cichlidae and
Acestrorhamphidae are the most speciose families among the captured fish. Nonetheless,
the family Lebiasinidae, despite its significant contribution to species richness and
abundance, did not show good potential as a biological surrogate, partially contradicting
our hypothesis.

Anthropogenic impacts on the studied streams are likely the reason for the low
potential as an indicator observed for the family Lebiasinidae, given its association with
heterogeneous habitats (Santos et al., 2019; Severo-Neto et al., 2023). This makes
Lebiasinidae fish less representative of the assemblages in impacted streams, where
environmental heterogeneity is low, and habitats are consequently favorable to
colonization by habitat-generalist fish species (Cantanhéde & Montag, 2023). In the
studied streams, human impacts promote an increase in the abundance of omnivorous
species, with opportunist habits and high trophic plasticity, such as species from the
genera Apistogramma (Cichlidae), Hyphessobrycon, and Hemigrammus (both
Acestrorhamphidae) (Gongalves et al., 2013; Barreto et al., 2018; Benone et al., 2020;
Virgilio et al., 2020), which are more tolerant to common environmental changes in
impacted streams, like reduction in riparian vegetation cover, siltation, and substrate
homogenization (Cantanhéde et al., 2021; Jacob et al., 2021).

The consistent potential of the Cichlidae family to represent both species
taxonomic composition and functional structure across seasonal changes is linked to its
capacity to sustain high diversity throughout all periods in Amazonian streams (van der

Sleen & Albert, 2017; Frois et al., 2021). Such stability is provided by the versatility of
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the family Cichlidae (Kuhn et al., 2020). For instance, species like Aequidens tetramerus
and Acaronia nassa are omnivorous, feed on heterogeneous substrates along stream
margins, and can change their diet according to the food items available in that habitat
through seasonal variations (Hawlitschek et al., 2013; Costa & Soares, 2015). Another
mechanism adopted by the family Cichlidae is active predation, exemplified by species
of the genus Saxatilia, which possess high swimming capacity and explore different
habitats during environmental fluctuations (Montaia & Winemiller, 2009, 2013).
Cichlids may also adopt these strategies in streams impacted by human activities (Costa
& Soares, 2015; Barbosa et al., 2020).

The effect of seasonal variation on the selection of biological surrogates was
particularly evident in changes in the congruence of the family Acestrorhamphidae with
the fish assemblage over time. Due to its ecological particularities, Acestrorhamphidae
fish showed particularly high congruence with the taxonomic and functional aspects
during the rainy season, a moment when the stream environment is favorable for the
exploration by nektonic fish species (Espirito-Santo et al., 2013; van der Sleen & Albert,
2017). During the rainy season, increased rainfall causes intense structural and
hydrological alterations in the streams (Espirito-Santo et al., 2009), especially through
stream overflow, which changes existing fish habitats and expands the area inhabited by
nektonic fish (Espirito-Santo & Zuanon, 2017; Benone et al., 2020). Additionally, the
stream characteristics during the rainy season also benefit tetras because of their
opportunistic feeding habitats, which may include a diet mainly composed of terrestrial
insects (Gongalves et al., 2013; Barreto et al., 2018). The diet, reproductive strategies,
and morphology of the family Acestrorhamphidae allow its species to adapt to seasonal
variation and intense habitat degradation (Lourenco et al., 2012; Zeni et al., 2020;
Cantanhéde et al., 2021).

During the dry season, the family Acestrorhamphidae demonstrated strong
potential as biological surrogates for the abundance, but not for the taxonomic
composition and functional structure of fish assemblages. This is largely due to their high
and consistent abundance across all seasons (Supplementary Table S2). In this period,
fish are restricted to the stream channel, where a balanced distribution of microhabitats
supports a diverse community of species with specialized traits (Espirito-Santo et al.,
2009). This condition makes Acestrorhamphids less representative of the fish assemblage

due to their low specialized features, characteristics of small tetras, such as those from
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the genera Hyphessobrycon and Hemigrammus (Brejao et al., 2013; van der Sleen &
Albert, 2017).

Conclusion

The selection of potential families to be used as biological surrogates in this study
represents an alternative to rapid biomonitoring in Amazonian streams. Considering
seasonal variations, it is valid to use the families Acestrorhamphidae and Cichlidae
surrogates in impacted streams to reduce the time and costs of ichthyofauna analysis.
Additionally, the congruence observed here between families and assemblages suggests
that responses of fish assemblage may also be represented by taxonomic families (Griffith
& McManus, 2020). Based on this principle, the applications of biological surrogacy
include, for example, the detection and monitoring of impacts caused by urbanization,
industrialization, and habitat fragmentation, which are commonly found in the
Amazonian biome (Peterson et al., 2011; Gardner et al., 2013; Griffith & McManus,
2020). Recently, the funding of Brazilian science has experienced severe decay, while the
environmental degradation due to human activities continues to accelerate and reach
notably high levels (Hallal, 2021; Rodrigues, 2022). The consequence of this imbalance
is expected to extend for several years. During this period, the planning of emergency
strategies, such as the use of biological surrogates, may be crucial to accelerate the

implementation of biodiversity monitoring.
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TABLE S1. Values of the functional traits of fish species captured in 18 streams sampled during the rainy seasons of 2018-2019, the dry season

of 2019, the dry season of 2023, and the rainy season of 2024 in Barcarena, Pard State, northern Brazil. Codes: Autolnv = Autochthonous

invertivore, AloInv = Allochthonous invertivore, Carn = Carnivore, Algi = Algivore, Herb = Herbivore, Det = Detritivore, FeedHab = Feeding

habit, MouthPos = Mouth position, VertPos = Vertical position, BodyForm = Body form, SL = Standard length, ParentCare = Parental care. Species

codes are available in Table 2.

Aloln

Species Autolnv Carn  Algi Herb Det FeedHab MouthPos VertPos BodyForm SL ParentCare

Aequtetr 0 3 0 1 (1] 1 [1] substrate speculator [1] terminal [21  nektobenthic [2]  compressed [2] 3.35 3] carefully 4
Anaburop 2 151 3 5] 0 0 surface feeder I5] superior I5] nektonic I5] fusiform 5] 3.46 [3] careless 6]
Ancispl 0 0 0 3 3] 2 5] grazer 7] inferior [5] benthic [5] depressed 81 577 31 carefully |4
Apisagas 2 9] 3 19 0 0 1 9] 0 substrate_speculator  [9] terminal [2] nektobenthic [2] compressed [2] 2.72 [3] carefully ([]1]

: 2 [1 . [1 . [1 [

Apisrega 3 1 0 0 0 0 1] substrate_speculator 1) terminal 2] nektobenthic 1) compressed 2 3.01 Bl carefully 4]
Apisspl 2 9] 3 9 0 0 1 9] 0 substrate_speculator  [9] terminal [2 nektobenthic [2] compressed [2] 2.72 [3] carefully ([]1]
Bracspl 3 1M 0 0 0 0 0 substrate_speculator  [7] terminal [4] nektobenthic [7] anguilliform [4] 11  [3] careless g]
Bracsp2 3171 0 0 0 0 0 substrate speculator  [7] terminal [41 nektobenthic [71 anguilliform [4] 11 [3] careless gll
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TABLE S2 Abundance of fish species captured in 18 streams sampled during the rainy seasons of 2018-2019, the dry season of 2019, the
dry season of 2023, and the rainy season of 2024 in Barcarena, Para State, northern Brazil. 'Removed from the Procrustes analysis due to containing

fewer than three species per expedition.

Rainy ~ Rainy Dry Dry Rainy .

Taxon/Authority Species code 2018 2019 2019 2023 2024
Beloniformes
Belonidae'
Pseudotylosurus microps (Giinther 1866) Pseumicr 1 1
Characiformes
Acestrorhamphidae
Hemigrammus cf. bellottii Hemibell 1 1
Hemigrammus cf. unilineatus (Gill 1858) Hemiunil 20 21 11 52
Hemigrammus collettii (Steindachner, 1882) Hemicoll 13 13
Hemigrammus rodwayi Durbin 1909 Hemirodw 68 12 33 58 171
Hyphessobrycon cf. moniliger Hyphmoni 35 35
Hyphessobrycon gr. agulha Hyphagul 86 58 144
Hyphessobrycon heterorhabdus (Ulrey 1894) Hyphhete 426 478 326 546 147 1923
Pristella maxillaris (Ulrey, 1894) Prismaxi 4 11 15
Crenuchidae'
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Characidium sp. 1
Erythrinidae’
Erythrinus erythrinus (Bloch & Schneider, 1801)
Hoplias malabaricus (Bloch 1794)
Gasteropelecidae'
Carnegiella sp. 1
Iguanodectidae’
Bryconops caudomaculatus (Glinther, 1864)
Bryconops melanurus (Bloch 1794)
Iguanodectes rachovii Regan 1912
Lebiasinidae
Copella arnoldi (Regan 1912)
Nannostomus eques Steindachner 1876
Pyrrhulina capim Vieira & Netto-Ferreira, 2019
Cichliformes
Cichlidae
Aequidens tetramerus (Heckel 1840)
Apistogramma agassizii (Steindachner, 1875)
Apistogramma gr. regani Kullander 1980
Apistogramma sp. 1
Heros sp. 1
Mesonauta acora (Castelnau 1855)
Nannacara taenia Regan 1912
Saxatilia gr. saxatilis
Saxatilia inpa Ploeg 1991
Polycentridae’
Polycentrus schomburgkii Miiller & Troschel 1849
Cyprinodontiformes

Charspl

Eryteryt
Hoplmala

Carnspl

Bryccaud
Brycmela
Iguarach

Copearno
Nanneque
Pyrrcapi

Aequtetr
Apisagas
Apisrega
Apisspl
Herospl
Mesoacor
Nanntaen
Saxasaxa
Saxainpa

Polyscho

95

13

16

12
100

104

101

41

88

34

28

43

24

84

(o))

209

17

39

20

17

51

45

20

41
20
329
326
19
138
33
439
45

22
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Fluviphylacidae'
Fluviphylax sp.
Poeciliidae’
Poecilia sp. 1
Rivulidae'
Anablepsoides urophthalmus (Giinther, 1866)
Laimosemion cf. strigatus
Gymnotiformes
Gymnotidae'
Gymnotus sp.
Hypopomidae'
Brachyhypopomus sp. 1
Brachyhypopomus sp. 2
Brachyhypopomus sp. 3
Microsternarchus bilineatus Fernandez-Y épez, 1968
Rhamphichthyidae'
Gymnorhamphichthys rondoni (Miranda Ribeiro 1920)
Hypopygus lepturus Hoedeman 1962
Perciformes
Polycentridae’
Polycentrus schomburgkii Miiller & Troschel 1849
Siluriformes
Auchenipteridae'
Tatia sp. 1
Callichthyidae'
Megalechis thoracata (Valenciennes 1840)
Cetopsidae’
Helogenes marmoratus Giinther 1863

Fluvisp1
Poecspl
Anaburop
Laimstri
Gymnsp
Bracspl
Bracsp2
Bracsp3
Micrbili
Gymnrond
Hypolept

Polyscho

Tatispl
Megathor

Helomarm

32

1
1
11 2
1
5
10
1
2
30 17
6 2
1

32

26

16

50
45

36
13

56

12
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Heptapteridae®

Gladioglanis sp. Gladspl 1 1 2
Pimelodella sp. 1 Pimespl 1 1
Loricariidae’
Ancistrus sp. 1 Ancispl 1 1 2
Hypostomus sp. Hyposp 1 1
Trichomycteridae'
Ituglanis amazonicus (Steindachner 1882) Itugamaz 4 3 2 9
Ttuglanis sp. 1 Itugsp1 1 1
Potamoglanis hasemani (Eigenmann 1914) Potahase 57 26 15 98
Synbranchiformes
Synbranchidae!
Synbranchus marmoratus Bloch 1795 Synbmarm 1 3 16 1 21

Total 875 996 645 1159 523 4198




