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Abstract 19 

Compared to the accelerated progress of environmental degradation in Amazonian 20 

ecosystems, the development of studies to support conservation efforts is slow, because 21 

it demands substantial financial and logistical investment. Intending to contribute to 22 

stream monitoring with rapid analyses, this study aimed to test the feasibility of using 23 

species composition for taxonomic families as biological surrogates of species and 24 

functional diversity in stream fish assemblages in an impacted region of the Brazilian 25 

Amazon during two seasonal periods. Sampling was conducted in 18 streams in northern 26 

Brazil, in a region heavily impacted by industrial activities and urbanization. We observed 27 

a high potential for using families Acestrorhamphidae and Cichlidae as biological 28 

surrogates. Overall, the family Cichlidae showed potential in representing species 29 

composition and functional structure in stream fish across seasonal variation. The 30 

congruence between Acestrorhamphidae, Cichlidae, and the fish assemblages was 31 

particularly high during the rainy season, in both taxonomic and functional dimensions. 32 

During the dry season, Acestrorhamphidae showed high congruence only with species 33 
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abundance. These findings contribute to monitoring strategies for impacted streams in a 34 

scenario of limited financial resources and expert availability. 35 

 36 

Keywords: Biological surrogates, Congruence, Species diversity, Functional structure, 37 
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Introduction 77 

The conservation of freshwater biodiversity is closely linked to human well-being 78 

as environmental damages are converted into social losses through impacts on ecosystem 79 

services (Cunha et al., 2022a; Pelicice et al., 2022; Lynch et al., 2023). However, 80 

scientific evidence of these losses has not been sufficient to reduce anthropogenic impacts 81 

on the environment, especially in streams, which are among the most threatened 82 

ecosystems in the world (Graziano et al., 2022).  83 

In the Brazilian Amazon, the intense modification of natural ecosystems due to 84 

anthropogenic actions and the reduction in federal funding for conservation research are 85 

alarming (Rodrigues, 2022). Around urban and/or industrial centers, there are several 86 

streams impacted by fragmentation of water bodies or degradation of riparian vegetation 87 

(Freitas et al., 2022; Albert et al., 2023). Currently, about 14% of the Brazilian 88 

Amazonian forest has been converted for production activities, highlighting the threats to 89 

which the aquatic biota is exposed (Albert et al., 2023). 90 

In this scenario, the search for efficient, rapid, and inexpensive analyses has 91 

become more important for monitoring and preventing the loss of ecosystem services 92 

(Heino, 2010).  93 

Biological surrogacy is a valid alternative, which consists of using diversity 94 

patterns (e.g., abundance or incidence) of a group as indicators of local diversity, thereby 95 

reducing time and effort needed in studies (Caro & O’Doherty, 1999). In situations where 96 

the financial, logistics, and time resources are limited, the use of biological surrogates 97 

may enable implementation of biomonitoring (Sato et al., 2019). Nonetheless, the 98 

efficacy of this approach requires previous studies to test the potential of the target group 99 

as a biological surrogate (Stewart et al., 2018; Sato et al., 2019). The most common way 100 

to perform such tests is through the congruence analysis (Fattorini et al., 2012). 101 

https://doi.org/10.6084/m9.figshare.30862277
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Generally, low congruence has been found between taxonomic groups of 102 

freshwater organisms (Stewart et al., 2018; Faquim et al., 2021). This results from the 103 

divergence in the organism’s responses to spatial and environmental constraints. 104 

However, if a more restricted taxon is considered, this divergent response is expected to 105 

be higher between subgroups than within subgroups. Thus, congruence analysis using 106 

subgroups of the same taxon has been more successful in identifying potential indicators 107 

of biodiversity (Stewart et al., 2018). For instance, Slimani et al. (2019) suggested that 108 

Coleoptera and Ephemeroptera are good indicators of species diversity in 109 

macroinvertebrate communities. Additionally, high congruence was observed between 110 

families and species of Odonata insects in Amazonian streams (Mendoza-Penagos et al., 111 

2021). In studies of stream fish assemblages, the congruence between taxonomic levels 112 

(family and genus or species and genus) and taxonomic subsets (Characiformes order) 113 

was tested and demonstrated high potential in representing species diversity (Faquim et 114 

al., 2021; Martins et al., 2022; Valente-Neto et al., 2025). 115 

The success of a biological surrogate group is related to its capacity to adapt to 116 

various habitat types, occupy different niches, and have a significant contribution to the 117 

community structure (Barbosa et al., 2019; Slimani et al., 2019; Santos et al., 2022). 118 

Considering these aspects, analyses of potential biological surrogates should include 119 

sources of natural and anthropogenic perturbations that alter the environment and the 120 

availability of resources for the organisms (Borba et al., 2021; Cantanhêde & Montag, 121 

2023). The effect of human impacts on the selection of indicators in stream ecosystems 122 

can be exemplified by the study of Arimoro and Keke (2021), who analyzed communities 123 

of aquatic macroinvertebrates and suggested different indicators for impacted and non-124 

impacted streams. 125 

To the best of our knowledge, there have been no studies on the effects of seasonal 126 

variations on biological surrogacy until now. However, the seasonal variation is 127 

associated with important changes in stream structure and physicochemical properties of 128 

water, which influence the stream biota (Brimacombe et al., 2021; Lafuente et al., 2023). 129 

For example, solar incidence and water temperature decrease during the rainy season, 130 

while water volume and turbidity increase (Brimacombe et al., 2021; Ferreira et al., 2021; 131 

Resende et al., 2021). Additionally, the stream overflow and heavy rain during this season 132 

increase the availability of terrestrial resources for aquatic organisms (Barreto et al., 2018; 133 

Benone et al., 2020). Particularly in impacted streams, the quality of water is affected by 134 
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seasonal changes, leading to the dilution of pollutants (Groh et al., 2019; Ferreira et al., 135 

2021). 136 

The taxonomic and functional structure of ichthyofauna is closely related to the 137 

environmental dynamics of streams and plays a key role in essential ecosystem processes 138 

and services, such as nutrient cycling and providing food for human populations (Peressin 139 

& Cetra, 2014; Dala‐Corte et al., 2020; Torres-Bejarano et al., 2022). This close 140 

relationship with the environment increases the potential of stream fish to be used as 141 

indicators in biological surrogacy (Santos et al., 2022). Nevertheless, there are several 142 

challenges linked to fish research in the Amazon biome, such as the difficulty in 143 

identifying organisms at the species level (Jézéquel et al., 2020). The megadiversity of 144 

fish in the Amazon is coupled with a significant knowledge gap (Freitas et al., 2021), and 145 

these factors make fish identification lengthy and often require experts who are not always 146 

available (Jézéquel et al., 2020; Freitas et al., 2021). To expedite the development of 147 

studies, biological surrogacy can be used as an alternative to reduce the number of 148 

individuals that need to be identified (Morais et al., 2018). This approach was tested in 149 

conserved Amazonian streams where taxonomic families showed great potential as 150 

indicators of the local species diversity (Santos et al., 2022). 151 

This study aimed to test the feasibility of using species composition of taxonomic 152 

families as biological surrogates of species and functional diversity of stream fish 153 

assemblages in an impacted region in the eastern Brazilian Amazon during two seasonal 154 

periods. We expect that the families Cichlidae and Lebiasinidae will exhibit high potential 155 

as indicators due to their high plasticity in trophic habits and habitat occupation, which 156 

allows them to tolerate environmental changes over time (Brejão et al., 2013; Zuanon et 157 

al., 2015; Soares et al., 2020). Furthermore, it is expected that seasonal variation will 158 

influence the potential of families as biological surrogates, with the family Lebiasinidae 159 

exhibiting higher potential during the rainy season because it is composed of fish species 160 

that efficiently explore both the main channel and lateral pools formed during this period 161 

(Espírito-Santo & Zuanon, 2017; Borba et al., 2021). 162 

 163 

Material and Methods 164 

Study area 165 

Eighteen streams were sampled in the Itaporanga and Murucupi river basins, 166 

located in Barcarena, Pará State, in northern Brazil (Fig. 1). The region's climate is 167 

classified as tropical warm and humid, with an average temperature of 27 °C and low 168 
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annual variability (Porfírio et al., 2020). The total annual rainfall is 2,532 mm. The dry 169 

season occurs between June and November, while the rainy season extends from 170 

December to May (Moraes et al., 2005). Barcarena is an important industrial center; 171 

therefore, the local environment has been strongly altered by urbanization, industrial 172 

activities, and port operations (Silveira et al., 2019).  173 

Landscape transformation in the Barcarena region began in 1985 with the 174 

establishment of international mining companies (Furtado et al., 2020). To meet the 175 

demands of these industrial facilities, the local population grew rapidly, leading to the 176 

simultaneous expansion of urban and peri-urban areas across the municipality 177 

(Nascimento & Hazeu, 2015; Nahum, 2017). 178 

The aquatic environments have also been affected by these anthropogenic 179 

pressures, especially the Murucupi River basin, where most of the industrialized areas are 180 

located (Furtado et al., 2020). In this basin, approximately 40% of the natural vegetation 181 

has been deforested, and the lack of basic sanitation has led to illegal dumping sites and 182 

the discharge of domestic sewage into tributaries draining the urbanized center (Almeida-183 

Junior et al., 2019; Furtado et al., 2020). Additionally, water quality in the Murucupi 184 

River basin is frequently degraded by environmental accidents originating from the 185 

industrialized region (Medeiros et al., 2017).  186 

The Itaporanga River basin is located farther from urban areas, with vegetation 187 

cover predominantly consisting of native forests. In this region, landscape alterations 188 

mainly originate from traditional communities' farming lands, family farming, and small-189 

scale pastures (Da Silva Junior et al., 2023). 190 

Previous analyses have shown that the studied streams share similar 191 

environmental conditions, often exhibiting signs of degradation and eutrophication 192 

(Bastos et al., 2021; Cunha et al., 2022b; Sousa et al., 2024). On average, the local 193 

vegetation cover is 75%, and the water is acidic (average pH 5.35), with a conductivity 194 

of 0.057 mS/cm and a temperature of 25.5 °C (Bastos et al., 2021; Cunha et al., 2022b; 195 

Sousa et al., 2024). According to the standards established by the Brazilian Environmental 196 

Council (CONAMA Resolution number 357/2005), these streams are classified as having 197 

poor water quality due to exceeding the permissible limits of toxic metals such as 198 

chromium, aluminum, barium, and manganese (Cunha et al., 2022b). 199 

 200 
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 201 

Fig. 1 Localization of 18 streams sampled during the rainy seasons of 2018–2019, 202 

the dry season of 2019, the dry season of 2023, and the rainy season of 2024 in Barcarena, 203 

Pará State, northern Brazil. 204 

 205 

Sampling design 206 

Sampling was conducted during five expeditions: three in the rainy seasons of 207 

2018, 2019, and 2024, and two in the dry seasons of 2019 and 2023. In total, 18 streams 208 

were sampled: two in the Murucupi basin and sixteen in the Itaporanga River basin. The 209 

rainy season expeditions of 2018 and 2019 included eight streams; six streams were 210 

sampled during the dry season of 2019; and thirteen streams were sampled during the dry 211 

season of 2023, and the rainy season of 2024.  212 

This uneven distribution reflects both the greater availability of accessible streams 213 

in the Itaporanga basin and logistical limitations for repeated sampling in the 214 

industrialized Murucupi basin. Notably, there was an interruption in field activities 215 

between 2020 and 2022 due to the COVID-19 pandemic and associated logistical 216 

restrictions.  217 

In each stream, a 50-meter stretch was sampled, subdivided into five longitudinal 218 

sections of 10 meters each. Each 50-meter stretch constitutes a sample unit. In the 219 
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statistical analysis, the data from the five expeditions were analyzed separately. The 220 

variation in the number of streams sampled across expeditions was due to a combination 221 

of factors, including field access restrictions, stream conditions, and safety issues.  222 

 223 

Sampling of fish specimens 224 

The fish were captured using sieve nets and seine nets. First, circular sieve nets 225 

measuring 55 cm in diameter and 3 mm mesh were used. The sampling effort was two 226 

hours per 50-meter stretch, with the time divided among the collectors. Subsequently, a 227 

seine net measuring 2 meters, a height of 1.5 meters, and a 3 mm mesh was used to sample 228 

each 50-meter stretch 10 times.  229 

After capture, the fish specimens were euthanized with a lethal dose of eugenol 230 

anesthetic, fixed in 10% formalin, and then, after 48 hours, conserved in 70% alcohol. In 231 

the laboratory, the specimens were identified using taxonomic keys and consultations 232 

with specialists.  233 

The expeditions were authorized by the Brazilian environmental agency Instituto 234 

Chico Mendes de Conservação da Biodiversidade, under license number 4681-1 and 235 

SISBIO N°. 17070-3/2021. The procedures for capturing and conserving fish specimens 236 

were approved by the Ethics Committee of the Universidade Federal do Pará (CEUA 237 

UFPA protocol no. 8293020418). All the captured fish were deposited in the university 238 

collection at the Museu de Zoologia do Instituto de Ciências Biológicas, in the city of 239 

Belém, Pará state, northern Brazil. 240 

 241 

Functional traits 242 

The description of the assemblage functional structure was based on seven 243 

functional traits, comprising both qualitative and quantitative measures related to feeding, 244 

habitat use, locomotion, and life history (Table 1). All traits were obtained from scientific 245 

publications by searching for combinations of species names and specific trait terms, such 246 

as 'feeding' or 'parental care,' as keywords. When species-level information was 247 

unavailable, data at the genus or family level were used.  248 

 249 

Table 1 Type, values, ecological interpretation, and functional category of functional 250 

traits used to describe the functional structure of fish assemblages. 251 

Trait Type Values Ecological interpretation 
Functional 

category 
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Diet Fuzzy 
Autochthonous 

invertivore 

Fish diets are related to nutrient 

cycling in the environment 

(Villéger et al., 2017). In addition, 

the food items consumed are 

influenced by local and regional 

environmental characteristics 

(Zeni et al., 2019). 

Feeding 

  
Allochthonous 

invertivore 
 

  Carnivore  

  Algivore  

  Herbivore  

  Detritivore  

    

0 = absent; 1 = rarely 

consumed; 2 

=frequently 

consumed; 3 = 

dominant 

    

Feeding Categorical Grazer Feeding habits indicate the fish's 

strategy for food acquisition and 

the water layer in which feeding 

activities occur (Brejão et al., 

2013). 

Feeding, 

habit  Surface feeder Habitat use 

  Backwater feeder  

  Substrate speculators   

  Ambush predator  

    Active predator   

Mouth Ordinal Inferior The mouth position indicates the 

type of environment in which the 

species forages (Gatz Jr., 1979; 

Watson & Balon, 1984). 

Feeding, 

position  Superior Habitat use 

  Terminal  

  Subterminal  

    Protactil   

Vertical Ordinal Nektonic The main habitat used by the fish 

species is related to species 

coexistence, feeding habits, and 

vertical translocation of nutrients 

(Villéger et al., 2017). 

Habitat use 

position  Nektobenthic  

    Benthic   

Body 

form  

Categorical Compressed 
Fish body shape is related to 

swimming endurance and 

maneuverability capacity (Gatz 

Jr., 1979). 

Locomotion

, 

 Depressed Habitat use 

  Fusiform  

  Elongated  

    Anguilliform   

Body 

size 

Quantitative Standard length (cm) Fish body size affects its ability to 

swim and prey size (Watson & 

Balon, 1984; Villéger et al., 

2017). 

Habitat use,  

  Locomotion 

       

Parental 

care 

Binary Careless The presence of parental care 

indicates a high reproductive 

investment, these species are 

usually associated with highly 

structured habitats (Espírito-

Santo et al., 2013). 

Life history 

 Carefully  

    

    

        



10 

 

 252 

Our dataset includes information from the FishBase database (Froese & Pauly, 253 

2025) and 85 relevant scientific articles (Supplementary Table S1). The diet trait 254 

encompasses six trophic guilds: autochthonous invertivore, allochthonous invertivore, 255 

carnivore, algivore, herbivore, and detritivore. Each species was assigned a value from 0 256 

to 3 for each guild, where 0 indicates no affinity and 3 indicates a high degree of affinity. 257 

These data were subsequently transformed using fuzzy logic (Chevene et al., 1994). The 258 

parental care trait was converted into binary values, with 1 indicating the presence and 0 259 

the absence of parental care behaviors. 260 

 261 

Data analysis 262 

To accurately represent the ichthyofauna, we selected families with at least three 263 

species that occur in a minimum of six streams within the same sampling period. 264 

Subsequently, the congruence between the patterns of species distribution and functional 265 

structure organized per family and assemblage was analyzed.  266 

The species abundance and incidence data were analyzed, with the abundance data 267 

transformed using log (x+1) to reduce the influence of extreme values. To test the 268 

congruence between the functional structure represented by families and assemblages, 269 

community-weighted means (CWM) were calculated to determine the contribution of 270 

each functional trait to each stream for both groups. Dissimilarity matrices were created 271 

using the Bray-Curtis method for abundance data, Jaccard coefficients for incidence data, 272 

and Gower distances for functional composition. 273 

The data were then summarized using Principal Coordinate Analysis (PCoA, 274 

Legendre & Legendre, 2012). The congruence between the distribution of taxonomic and 275 

functional composition matrices for each family and the matrix of all species was assessed 276 

using Procrustes analysis with 10,000 permutations (p < 0.05) (Rohlf & Bookstein, 1990). 277 

In the Procrustes analysis, the abundance and incidence matrices of families were 278 

compared to a matrix that included all species (family abundance vs. species abundance 279 

and family incidence vs. species incidence). Additionally, the functional structure of 280 

families and species was tested using the CWM matrices. Families showing congruence 281 

higher than 50% in the comparisons were considered to have good potential as biological 282 

surrogates. 283 

All analyses were performed using the R program (R Core Team, 2024), with the 284 

packages FD and vegan (Laliberté et al., 2014; Oksanen et al., 2024). CWM matrices 285 
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were calculated using the functcomp function, dissimilarity matrices were computed 286 

using the vegdist function, PCoA was conducted using the cmdscale function, and 287 

Procrustes analysis was performed using the protest function. 288 

 289 

Results 290 

In total, 4,198 fish specimens were captured: 875 during the rainy season of 2018, 291 

996 during the rainy season of 2019, 645 during the dry season of 2019, 1,159 during the 292 

dry season of 2023, and 523 during the rainy season of 2024. These fish belong to eight 293 

orders, 22 families, and 51 species (Supplementary Table S2). The most speciose families 294 

were Cichlidae and Acestrorhamphidae, with nine and eight species, respectively. The 295 

most abundant species was Hyphessobrycon heterorhabdus with 1,923 individuals, 296 

representing 45.8% of the total catch.  297 

During the rainy seasons of 2018 and 2019, H. heterorhabdus was the most 298 

abundant species (426 and 478 individuals, respectively), followed by Copella arnoldi 299 

(97 and 104, respectively). In the dry season of 2019, H. heterorhabdus was again the 300 

most abundant (326 individuals), followed by Iguanodectes rachovii (88). In the dry 301 

season of 2023, H. heterorhabdus (546 individuals) was followed by Apistogramma gr. 302 

regani (209), and during the rainy season of 2024, H. heterorhabdus (147 individuals) 303 

and Hemigrammus rodwayi (58) were the most abundant species (Supplementary Table 304 

S2). 305 

Only the families Acestrorhamphidae, Cichlidae, and Lebiasinidae met the 306 

predefined requirements (containing at least three species and occurring in at least six 307 

streams) in at least one of the analyzed periods. In the Procrustes analysis, the family 308 

Acestrorhamphidae showed similarity with the species abundance matrix in all periods, 309 

except for the dry season of 2019, with congruence varying from 73% to 94% (Table 2, 310 

Fig.2). Regarding incidence and functional patterns, the family Cichlidae was congruent 311 

with the species matrix during all periods, with congruence levels ranging from 64% to 312 

84% for incidence and from 56% to 77% for functional data (Table 2, Fig.2).  313 

However, when considering the three approaches used (family abundance vs. 314 

species abundance, family incidence vs. species incidence, and family functional 315 

structure vs. species functional structure), both Acestrorhamphidae and Cichlidae showed 316 

consistent results during the rainy seasons of 2019 and 2024. During these periods, the 317 

extreme congruence values were detected for Acestrorhamphidae: functional congruence 318 
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reached 63% in  rainy season of 2024, reaching up to 83% with abundance data from the 319 

rainy season of 2019 (Table 2, Fig. 2).  320 

In general, patterns for the family Lebiasinidae showed low congruence with the 321 

species matrix, though isolated high concordance levels were detected using abundance 322 

and incidence data (Table 2, Fig. 2). 323 

 324 

Table 2 Results of the Procrustes analysis between families and assemblages of fish 325 

captured at 18 streams sampled during the rainy seasons of 2018–2019, the dry season of 326 

2019, the dry season of 2023, and the rainy season of 2024 in Barcarena, Pará State, 327 

northern Brazil.  328 

Season Year Family Samples Species 

Abundance 

data 
  

Incidence 

data 
  

Functional 

data  

r p  r p  r p 

Rainy 2018 Acestrorhamphidae 8 3 0.94 < 0.001  0.68 0.054  0.59 0.104 

Rainy 2018 Lebiasinidae 6 3 0.80 0.020   0.66 0.133   0.70 0.133 

Rainy 2019 Acestrorhamphidae* 8 3 0.83 0.003  0.78 0.009  0.63 0.047 

Rainy 2019 Cichlidae 6 4 0.77 0.080  0.84 0.030  0.77 0.047 

Rainy 2019 Lebiasinidae 7 3 0.51 0.407   0.79 0.012   0.39 0.692 

Rainy 2024 Acestrorhamphidae 13 6 0.73 < 0.001  0.59 0.012  0.17 0.920 

Rainy 2024 Cichlidae* 11 6 0.64 0.021  0.64 0.017  0.66 0.047 

Rainy 2024 Lebiasinidae 7 3 0.32 0.825   0.76 0.030   0.57 0.292 

Dry 2019 Acestrorhamphidae 6 3 0.75 0.079   0.61 0.233   0.59 0.341 

Dry 2023 Acestrorhamphidae 13 4 0.70 0.006  0.35 0.409  0.47 0.131 

Dry 2023 Cichlidae 12 5 0.50 0.096  0.79 0.002  0.56 0.032 

Dry 2023 Lebiasinidae 12 3 0.66 0.030   0.49 0.124   0.50 0.077 

*Congruence between the family and the assemblages was higher than 50% (p < 0.05) in 329 

all three comparisons. 330 
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 331 

Fig. 2 Significant associations in the Procrustes analysis between families and 332 

assemblages of fish captured at 18 streams sampled during the rainy seasons of 2018–333 

2019, the dry season of 2019, the dry season of 2023, and the rainy season of 2024 in 334 

Barcarena, Pará State, northern Brazil. Colors represent the rainy (purple) and dry 335 

(orange) seasons. 336 

 337 

Discussion 338 

In our search for biological surrogates, we identified the families 339 

Acestrorhamphidae and Cichlidae as having particularly high potential to represent the 340 

taxonomic and functional diversity of stream fish species in a region affected by 341 

urbanization and industrial activities. Across seasonal variations, the Cichlidae family 342 

consistently represented the species taxonomic composition and functional structure.  343 

The congruence between Acestrorhamphidae, Cichlidae, and the fish assemblages 344 

was particularly high during the rainy season, in both taxonomic and functional 345 

dimensions. During the dry season, Acestrorhamphidae showed high congruence only 346 

with species abundance. These patterns support our hypothesis that seasonal variations 347 

influence the selection of indicators for use in biological surrogacy. Considering these 348 

effects, this study’s suggestion of using families as indicators of species diversity is a 349 
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valid approach for the rapid monitoring of impacted streams in the eastern Amazon 350 

region. 351 

Our results agree with studies that assessed the congruence between fish species 352 

diversity and taxonomic subsets, which found that the order Characiformes serves as a 353 

good surrogate for stream fish assemblages in a gradient of riparian deforestation (Martins 354 

et al., 2022; Valente-Neto et al., 2025). In addition, findings from Amazonian conserved 355 

streams suggest particularly the families Cichlidae and Acestrorhamphidae (previously 356 

part of Characidae) as potential biological surrogates (Santos et al., 2022).  357 

This potential attributed to both families, Acestrorhamphidae and Cichlidae, is a 358 

result of their strong contribution to the structure of stream fish assemblages, combined 359 

with high plasticity in feeding and functional traits of their component fish species (Barros 360 

et al., 2017; Santos et al., 2019; Benone et al., 2020). The assemblage structure was also 361 

a relevant factor for the selection of indicator families in this study. Cichlidae and 362 

Acestrorhamphidae are the most speciose families among the captured fish. Nonetheless, 363 

the family Lebiasinidae, despite its significant contribution to species richness and 364 

abundance, did not show good potential as a biological surrogate, partially contradicting 365 

our hypothesis. 366 

Anthropogenic impacts on the studied streams are likely the reason for the low 367 

potential as an indicator observed for the family Lebiasinidae, given its association with 368 

heterogeneous habitats (Santos et al., 2019; Severo-Neto et al., 2023). This makes 369 

Lebiasinidae fish less representative of the assemblages in impacted streams, where 370 

environmental heterogeneity is low, and habitats are consequently favorable to 371 

colonization by habitat-generalist fish species (Cantanhêde & Montag, 2023). In the 372 

studied streams, human impacts promote an increase in the abundance of omnivorous 373 

species, with opportunist habits and high trophic plasticity, such as species from the 374 

genera Apistogramma (Cichlidae), Hyphessobrycon, and Hemigrammus (both 375 

Acestrorhamphidae) (Gonçalves et al., 2013; Barreto et al., 2018; Benone et al., 2020; 376 

Virgilio et al., 2020), which are more tolerant to common environmental changes in 377 

impacted streams, like reduction in riparian vegetation cover, siltation, and substrate 378 

homogenization (Cantanhêde et al., 2021; Jacob et al., 2021). 379 

The consistent potential of the Cichlidae family to represent both species 380 

taxonomic composition and functional structure across seasonal changes is linked to its 381 

capacity to sustain high diversity throughout all periods in Amazonian streams (van der 382 

Sleen & Albert, 2017; Fróis et al., 2021). Such stability is provided by the versatility of 383 
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the family Cichlidae (Kuhn et al., 2020). For instance, species like Aequidens tetramerus 384 

and Acaronia nassa are omnivorous, feed on heterogeneous substrates along stream 385 

margins, and can change their diet according to the food items available in that habitat 386 

through seasonal variations (Hawlitschek et al., 2013; Costa & Soares, 2015). Another 387 

mechanism adopted by the family Cichlidae is active predation, exemplified by species 388 

of the genus Saxatilia, which possess high swimming capacity and explore different 389 

habitats during environmental fluctuations (Montaña & Winemiller, 2009, 2013). 390 

Cichlids may also adopt these strategies in streams impacted by human activities (Costa 391 

& Soares, 2015; Barbosa et al., 2020). 392 

The effect of seasonal variation on the selection of biological surrogates was 393 

particularly evident in changes in the congruence of the family Acestrorhamphidae with 394 

the fish assemblage over time. Due to its ecological particularities, Acestrorhamphidae 395 

fish showed particularly high congruence with the taxonomic and functional aspects 396 

during the rainy season, a moment when the stream environment is favorable for the 397 

exploration by nektonic fish species (Espírito-Santo et al., 2013; van der Sleen & Albert, 398 

2017). During the rainy season, increased rainfall causes intense structural and 399 

hydrological alterations in the streams (Espírito-Santo et al., 2009), especially through 400 

stream overflow, which changes existing fish habitats and expands the area inhabited by 401 

nektonic fish (Espírito-Santo & Zuanon, 2017; Benone et al., 2020). Additionally, the 402 

stream characteristics during the rainy season also benefit tetras because of their 403 

opportunistic feeding habitats, which may include a diet mainly composed of terrestrial 404 

insects (Gonçalves et al., 2013; Barreto et al., 2018). The diet, reproductive strategies, 405 

and morphology of the family Acestrorhamphidae allow its species to adapt to seasonal 406 

variation and intense habitat degradation (Lourenço et al., 2012; Zeni et al., 2020; 407 

Cantanhêde et al., 2021). 408 

During the dry season, the family Acestrorhamphidae demonstrated strong 409 

potential as biological surrogates for the abundance, but not for the taxonomic 410 

composition and functional structure of fish assemblages. This is largely due to their high 411 

and consistent abundance across all seasons (Supplementary Table S2). In this period, 412 

fish are restricted to the stream channel, where a balanced distribution of microhabitats 413 

supports a diverse community of species with specialized traits (Espírito-Santo et al., 414 

2009). This condition makes Acestrorhamphids less representative of the fish assemblage 415 

due to their low specialized features, characteristics of small tetras, such as those from 416 
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the genera Hyphessobrycon and Hemigrammus (Brejão et al., 2013; van der Sleen & 417 

Albert, 2017). 418 

 419 

Conclusion 420 

The selection of potential families to be used as biological surrogates in this study 421 

represents an alternative to rapid biomonitoring in Amazonian streams. Considering 422 

seasonal variations, it is valid to use the families Acestrorhamphidae and Cichlidae 423 

surrogates in impacted streams to reduce the time and costs of ichthyofauna analysis. 424 

Additionally, the congruence observed here between families and assemblages suggests 425 

that responses of fish assemblage may also be represented by taxonomic families (Griffith 426 

& McManus, 2020). Based on this principle, the applications of biological surrogacy 427 

include, for example, the detection and monitoring of impacts caused by urbanization, 428 

industrialization, and habitat fragmentation, which are commonly found in the 429 

Amazonian biome (Peterson et al., 2011; Gardner et al., 2013; Griffith & McManus, 430 

2020). Recently, the funding of Brazilian science has experienced severe decay, while the 431 

environmental degradation due to human activities continues to accelerate and reach 432 

notably high levels (Hallal, 2021; Rodrigues, 2022). The consequence of this imbalance 433 

is expected to extend for several years. During this period, the planning of emergency 434 

strategies, such as the use of biological surrogates, may be crucial to accelerate the 435 

implementation of biodiversity monitoring. 436 

 437 
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TABLE S1. Values of the functional traits of fish species captured in 18 streams sampled during the rainy seasons of 2018–2019, the dry season 

of 2019, the dry season of 2023, and the rainy season of 2024 in Barcarena, Pará State, northern Brazil. Codes: AutoInv = Autochthonous 

invertivore, AloInv = Allochthonous invertivore, Carn = Carnivore, Algi = Algivore, Herb = Herbivore, Det = Detritivore, FeedHab = Feeding 

habit, MouthPos = Mouth position, VertPos = Vertical position, BodyForm = Body form, SL = Standard length, ParentCare = Parental care. Species 

codes are available in Table 2. 

 

Species AutoInv 
AloIn

v 
Carn Algi Herb Det FeedHab MouthPos VertPos BodyForm SL ParentCare 

Aequtetr 0        3  [1] 0        0        1  [1] 1  [1] substrate_speculator [1] terminal [2] nektobenthic [2] compressed [2] 3.35 [3] carefully [4] 

Anaburop 2  [5] 3  [5] 0        0        0        0        surface_feeder [5] superior [5] nektonic [5] fusiform [5] 3.46 [3] careless [6]  

Ancisp1 0        0        0        3  [3] 0        2  [5] grazer [7] inferior [5] benthic [5] depressed [8] 5.77 [3] carefully [4]  

Apisagas 2  [9] 3  [9] 0        0        1  [9] 0        substrate_speculator [9] terminal [2] nektobenthic [2] compressed [2] 2.72 [3] carefully 
[1

0] 

Apisrega 3  [11] 
0        0        0        0        

2  
[11] 

substrate_speculator 
[1

1] 
terminal 

[1

2] 
nektobenthic 

[1

1] 
compressed 

[1

2] 
3.01 [3] carefully 

[4] 

Apissp1 2  [9] 3  [9] 0        0        1  [9] 0        substrate_speculator [9] terminal [2] nektobenthic [2] compressed [2] 2.72 [3] carefully 
[1

0] 

Bracsp1 3  [7] 0        0        0        0        0        substrate_speculator [7] terminal [4] nektobenthic [7] anguilliform [4] 11 [3] careless 
[1

3] 

Bracsp2 3  [7] 0        0        0        0        0        substrate_speculator [7] terminal [4] nektobenthic [7] anguilliform [4] 11 [3] careless 
[1

3] 
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Bracsp3 3  [7] 0        0        0        0        0        substrate_speculator [7] terminal [4] nektobenthic [7] anguilliform [4] 11 [3] careless 
[1

3] 

Bryccaud 1  [14] 3  [14] 
0        

1  
[14] 

1  
[14] 0        

surface_feeder 
[1

4] 
terminal 

[1

5] 
nektonic 

[1

4] 
fusiform 

[1

5] 
7.2 

[1

5] 
careless [1

6] 

Brycmela 1  [17] 3  [17] 
0        0        

2  
[17] 

1  
[17] 

surface_feeder [7] terminal 
[1

7] 
nektonic [7] fusiform 

[1

8] 
7.63 

[1

9] 
careless [2

0] 

Carnsp1 2  [21] 3  [21] 
0        0        

1  
[21] 

1  
[21] 

surface_feeder [7] superior [5] nektonic [7] compressed [5] 3.29 
[2

2] 
careless [2

3] 

Charsp1 3  [24] 
0        0        0        0        

1  
[24] 

predator [7] terminal 
[2

4]  
benthic [7] elongated [5] 3.37 

[2

2] 
careless [2

5] 

Copearno 
0        

2  [26] 
0        

1  
[26] 0        

3  
[26] 

surface_feeder [7] superior 
[2

7] 
nektonic [7] fusiform [5] 2.4 [3] carefully 

[4]  

Eryteryt 3  [5] 0        3  [5] 0   0        0        predator 
[2

8] 
terminal 

[2

9] 
nektobenthic [7] elongated [5] 7.98 [3] carefully 

[2

0] 

Fluvisp1 3  [4] 3  [4] 0        3  [4] 0        3  [4] surface_feeder [7] superior 
[3

0] 
nektonic [7] fusiform 

[3

0] 
2 [4] careless 

[2

3] 

Gladsp1 3  [31] 0        0        0        0        0        active_predator [7] terminal 
[3

2] 
benthic [7] elongated 

[3

2] 
2.65 [3] careless 

[5] 

Gymnrond 3  [33] 1  [33] 
0        0        0        

1  
[33] 

substrate_speculator [7] subterminal 
[3

4] 
nektobenthic [7] anguilliform [4] 

21.5

2 
[2

2] 
careless [3

5] 

Gymnsp 3  [36] 1  [36] 
1  

[36] 0        0        0        
active_predator [7] superior 

[3

7] 
nektobenthic [7] anguilliform [4] 12 [3] carefully [3

8] 

Helomarm 0        3  [39] 0        0        0        0        backwater_feeder [7] subterminal 
[4

0] 
nektonic [7] elongated [5] 5.7 

[2

2] 
careless 

[4

1] 

Hemibell 2  [42] 3  [42] 
0        0        

3  
[42] 0        

backwater_feeder [7] terminal 
[4

3] 
nektonic [7] compressed 

[4

3] 
2.64 

[4

3] 
careless [1

6] 

Hemicoll 1  [44] 3  [44] 
0        

1  
[44] 

2  
[44] 0        

backwater_feeder [7] terminal 
[4

3] 
nektonic [7] compressed 

[4

5] 
2.78 

[4

4] 
careless [1

6] 

Hemirodw 2  [34] 3  [34] 0        0        0        0        backwater_feeder [7] terminal 
[3

4] 
nektonic [7] compressed 

[4

6] 
2.82 [3] careless 

[2

3] 

Hemiunil 2  [34] 3  [34] 0        0        0        0        backwater_feeder [7] terminal 
[3

4] 
nektonic [7] compressed 

[4

6] 
3.88 

[4

7] 
careless 

[2

3] 

Herosp1 3  [48] 3  [48] 
0        0        

1  
[48] 0        

substrate_speculator [9] terminal [2] nektobenthic [2] compressed [2] 12 
[4

9] 
carefully [5

0] 

Hoplmala 
0        0         

3  
[51] 0        0        0        

predator [4] terminal 
[5

1] 
nektobenthic [7] elongated [5] 11.7 

[2

2] 
carefully [5

2] 

Hyphagul 1  [53] 1  [53] 
0        

3  
[53] 

3  
[53] 0        

backwater_feeder [7] terminal 
[5

4] 
nektonic [7] compressed 

[5

4] 
2.93 

[5

4] 
careless [5

5] 

Hyphhete 1  [34] 3  [5] 
0        

3  
[34] 0        0        

backwater_feeder [7] terminal 
[5

6] 
nektonic [7] compressed 

[5

6] 
2.99 [3] careless [5

5] 

Hyphmoni 1  [53] 1  [53] 
0        

3  [53] 
3  

[53] 0        
backwater_feeder [7] terminal 

[5

7] 
nektonic [7] compressed 

[5

7] 
2.59 

[5

7] 
careless [5

5] 
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Hypolept 3  [58] 1  [58] 0        0        0        0        substrate_speculator [7] subterminal [5] nektobenthic [7] anguilliform [5] 15 [4] careless 
[3

5] 

Hyposp 
0        

2  [59] 
0        

1  
[59] 0        

3  [59] grazer 
[5

9] 
inferior 

[5

9] 
benthic [7] depressed 

[6

0] 
5.78 

[6

1] 
carefully [5

5] 

Iguarach 
0        

2  [5] 
0        

3  
[62] 0        0        

surface_feeder [7] terminal 
[6

3] 
nektonic [7] fusiform [4] 4.76 [3] careless [2

0] 

Itugamaz 3  [64] 0        0        0        0        0        active_predator [7] subterminal 
[6

5] 
benthic [5] elongated [5] 4.11 

[2

2] 
careless 

[6

6] 

Itugsp1 3  [64] 0        0        0        0        0        active_predator [7] subterminal 
[6

5] 
benthic [5] elongated [5] 4.11 

[2

2] 
careless 

[6

6] 

Laimstri 2  [5] 3  [5] 0        0        0        0        surface_feeder [5] superior [5] nektonic [5] fusiform [5] 2.61 [3] careless 
[2

0] 

Megathor 3  [62] 
0        

1  
[62] 0        0        

2  
[62] 

substrate_speculator [7] subterminal [5] nektobenthic [7] elongated [5] 
11.1

3 
[3] carefully [6

7] 

Mesoacor 3  [68] 
0        

1  
[68] 

2  
[68] 0        

2  [68] substrate_speculator [7] terminal [2] nektobenthic [7] compressed [2] 7.1 
[6

9] 
carefully 

[5] 

Micrbili 3  [28] 3  [28] 0        0        0        0        substrate_speculator [7] terminal 
[7

0] 
nektobenthic [7] anguilliform 

[7

0] 
8.67 

[7

0] 
careless 

[1

3] 

Nanneque 
0        

3  [28] 
0        

2  [28] 
0        

2  
[28] 

surface_feeder [7] terminal [4] nektonic [7] fusiform [5] 2.69 [3] careless 
[4]  

Nanntaen 1  [71] 3  [71] 0        0        0        0        substrate_speculator [7] terminal [2] nektobenthic [7] compressed 
[7

1] 
2.95 [3] carefully 

[4] 

Pimesp1 3  [72]  1  [72]  
1  

[72]  0        
1  

[72]  
2  [72]  active_predator [7] terminal 

[3

4] 
benthic [7] elongated [4] 9 

[6

9] 
careless [5

5] 

Poecsp1 3  [4] 3  [4] 0        3  [4] 0        3  [4] surface_feeder [7] superior 
[3

0] 
nektonic [7] fusiform 

[3

0] 
2 [4] careless 

[2

3] 

Polyscho 3  [71] 1  [71] 
2  

[71] 0        0        0        
predator [4] protactil [4] nektonic [4] compressed [4] 5.5 

[6

9] 
carefully [7

3] 

Potahase 3  [74] 1  [59] 
2  

[59] 0        0        0        
active_predator [7] subterminal 

[6

5] 
benthic [7] elongated [4] 1.35 [3] careless [6

6] 

Prismaxi 3  [75] 0        0        0        0        0        backwater_feeder [7] terminal 
[7

6] 
nektonic 

[7

6] 
compressed 

[7

6] 
2.9 

[7

6] 
careless 

[5

5] 

Pseumicr 1  [77] 1  [77] 
3  

[77] 0        0        0        
surface_feeder 

[7

7] 
terminal [4] nektonic 

[7

7] 
elongated 

[7

7] 
29.8 

[7

8] 
careless [7

9] 

Pyrrcapi 
0        

3  [28] 
0        

2  
[28] 0        

2  
[28] 

surface_feeder [7] superior 
[8

0] 
nektonic [7] fusiform 

[8

0] 
4.04 

[8

0] 
careless 

[4] 

Saxainpa 3  [2] 0        2  [2] 0        0        0        active_predator [7] terminal [2] nektobenthic [7] elongated [2] 7.38 [3] carefully [5] 

Saxasaxa 3  [2] 0        2  [2] 0        0        0        active_predator [7] terminal [2] nektobenthic [7] elongated [2] 7.38 [3] carefully [5] 

Synbmarm 3  [81] 
0        

3  
[81] 0        0        0        

predator [4] terminal 
[8

2] 
nektobenthic [4] anguilliform [4] 16.5 

[8

2] 
carefully [8

2] 
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Tatisp1 2  [83] 3  [84] 0        0        0        0        surface_feeder 
[8

3] 
terminal 

[8

4] 
nektonic 

[8

3] 
elongated 

[8

4] 
3.88 

[8

4] 
careless 

[8

5] 
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TABLE S2 Abundance of fish species captured in 18 streams sampled during the rainy seasons of 2018–2019, the dry season of 2019, the 

dry season of 2023, and the rainy season of 2024 in Barcarena, Pará State, northern Brazil. 1Removed from the Procrustes analysis due to containing 

fewer than three species per expedition. 

Taxon/Authority Species code 
Rainy 

2018 

Rainy 

2019 

Dry 

2019 

Dry 

2023 

Rainy 

2024 
Total 

Beloniformes               

Belonidae¹        

Pseudotylosurus microps (Günther 1866) Pseumicr  1    1 

Characiformes               

Acestrorhamphidae        

Hemigrammus cf. bellottii  Hemibell     1 1 

Hemigrammus cf. unilineatus (Gill 1858) Hemiunil 20 21 11   52 

Hemigrammus collettii (Steindachner, 1882) Hemicoll     13 13 

Hemigrammus rodwayi Durbin 1909  Hemirodw 68 12 33  58 171 

Hyphessobrycon cf. moniliger  Hyphmoni    35  35 

Hyphessobrycon gr. agulha  Hyphagul    86 58 144 

Hyphessobrycon heterorhabdus (Ulrey 1894) Hyphhete 426 478 326 546 147 1923 

Pristella maxillaris (Ulrey, 1894) Prismaxi    4 11 15 

Crenuchidae¹        
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Characidium sp. 1  Charsp1     2 2 

Erythrinidae¹        

Erythrinus erythrinus (Bloch & Schneider, 1801) Eryteryt  3    3 

Hoplias malabaricus (Bloch 1794) Hoplmala 1 16  3  20 

Gasteropelecidae¹        

Carnegiella sp. 1  Carnsp1     1 1 

Iguanodectidae¹        

Bryconops caudomaculatus (Günther, 1864) Bryccaud    24 17 41 

Bryconops melanurus (Bloch 1794) Brycmela 5 12 3   20 

Iguanodectes rachovii Regan 1912 Iguarach 18 100 88 84 39 329 

Lebiasinidae        

Copella arnoldi (Regan 1912) Copearno 97 104 34 71 20 326 

Nannostomus eques Steindachner 1876 Nanneque 3 3 4 6 3 19 

Pyrrhulina capim Vieira & Netto-Ferreira, 2019 Pyrrcapi 2 101 28 4 3 138 

Cichliformes               

Cichlidae        

Aequidens tetramerus (Heckel 1840) Aequtetr  5 5 6 17 33 

Apistogramma agassizii (Steindachner, 1875) Apisagas    6 3 9 

Apistogramma gr. regani Kullander 1980 Apisrega 95 41 43 209 51 439 

Apistogramma sp. 1  Apissp1    1 1 2 

Heros sp. 1  Herosp1     45 45 

Mesonauta acora (Castelnau 1855)  Mesoacor 1     1 

Nannacara taenia Regan 1912 Nanntaen 13 1 8   22 

Saxatilia gr. saxatilis  Saxasaxa    1 7 8 

Saxatilia inpa Ploeg 1991 Saxainpa 1 2    3 

Polycentridae¹        

Polycentrus schomburgkii Müller & Troschel 1849 Polyscho    2  2 

Cyprinodontiformes               
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Fluviphylacidae¹        

Fluviphylax sp.  Fluvisp1 1  1   2 

Poeciliidae¹        

Poecilia sp. 1  Poecsp1     1 1 

Rivulidae¹        

Anablepsoides urophthalmus (Günther, 1866) Anaburop 1 1  32 16 50 

Laimosemion cf. strigatus  Laimstri 32 11 2   45 

Gymnotiformes               

Gymnotidae¹        

Gymnotus sp.  Gymnsp  1    1 

Hypopomidae¹        

Brachyhypopomus sp. 1  Bracsp1   5   5 

Brachyhypopomus sp. 2  Bracsp2 2 10    12 

Brachyhypopomus sp. 3  Bracsp3     1 1 

Microsternarchus bilineatus Fernández-Yépez, 1968 Micrbili    1  1 

Rhamphichthyidae¹        

Gymnorhamphichthys rondoni (Miranda Ribeiro 1920) Gymnrond 7 1  26 2 36 

Hypopygus lepturus Hoedeman 1962 Hypolept 6 2  4 1 13 

Perciformes               

Polycentridae¹        

Polycentrus schomburgkii Müller & Troschel 1849 Polyscho 9 30 17   56 

Siluriformes               

Auchenipteridae¹        

Tatia sp. 1  Tatisp1     1 1 

Callichthyidae¹        

Megalechis thoracata (Valenciennes 1840) Megathor 1 6 2   9 

Cetopsidae¹        

Helogenes marmoratus Günther 1863 Helomarm 4  1 7  12 
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Heptapteridae¹        

Gladioglanis sp.  Gladsp1  1 1   2 

Pimelodella sp. 1  Pimesp1     1 1 

Loricariidae¹        

Ancistrus sp. 1  Ancisp1    1 1 2 

Hypostomus sp.  Hyposp  1    1 

Trichomycteridae¹        

Ituglanis amazonicus (Steindachner 1882) Itugamaz 4 3 2   9 

Ituglanis sp. 1  Itugsp1     1 1 

Potamoglanis hasemani (Eigenmann 1914) Potahase 57 26 15   98 

Synbranchiformes               

Synbranchidae¹        

Synbranchus marmoratus Bloch 1795 Synbmarm 1 3 16  1 21 

Total   875 996 645 1159 523 4198 

 

 


