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Abstract

Land use and climate change are increasing the risk of spillover of zoonotic disease into human populations. 

However, we lack actionable information about the prevalence of pathogens in wildlife populations for most of 

the globe, challenging our ability to implement strategies to prevent zoonoses. Even when this data exists, it has 

historically been sampled opportunistically and without guidance based on known geographic distributions of 

hosts of zoonotic pathogens. Biosurveillance is essential to mitigating zoonotic spillover risk, but given the 

expensive nature of monitoring pathogens in wildlife, we need to be strategic about deciding where and what 

to sample to obtain as much useful information as possible. The field of biodiversity monitoring has established 

many practices that can directly inform optimal biosurveillance efforts. One such concept is the Biodiversity 

Observation Network (or BON), which aims to select monitoring locations that most effectively and efficiently 

capture the status and trends of biodiversity. We present a protocol for integrating data on host biodiversity 

into sampling priority for wildlife disease surveillance based on host species distribution models, with optional 

potential to integrate pathogen prevalence data (if available). This protocol has the flexibility to target different 

forms of sampling (collecting host occurrence vs pathogen prevalence data) to adapt to different levels of data 

availability, but still makes adaptive sampling recommendations based on a principled understanding of host 

distribution and pathogen biology. We illustrate this flexibility with two case studies, prioritizing sampling for 

Hanta- and Arenaviridae in rodents in India and South Korea, respectively representing data poor and data rich 

contexts. We view this framework as a basis for integrating long-term biosurveillance and biodiversity 

monitoring programs, and maximizing the useful information available for public health decision making.
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Introduction

Despite the well-established links between biodiversity and the potential for zoonotic pathogen 

spillover, wildlife disease surveillance programs rarely integrate biodiversity data to guide sampling 

efforts. The relationship between biodiversity and disease risk is complex, as both biodiversity itself 

and biodiversity loss can influence the presence of pathogens in context-dependent ways (Halliday 

et al. 2020, Keesing and Ostfeld 2021, Carlson et al. 2025). Host and pathogen diversity are entwined 

through ecological and evolutionary processes (Johnson et al. 2015, Stephens et al. 2016, Plowright et 

al. 2017, Carlson et al. 2025), which together shape zoonotic spillover risk by affecting the prevalence 

of pathogens among wildlife that humans may encounter and from which infections may arise. 

Climate and land use change exacerbate this risk by modifying the geographic ranges of hosts of 



zoonotic pathogens, leading to increased potential for cross-species transmission (Carlson et al. 

2022a), including spillover into human populations.

As a result, monitoring infectious diseases in wildlife is an important goal of several international 

agreements, which all fall under the One Health approach. The interlinkages between biodiversity 

and health are recognized in the Global Action Plan on Biodiversity and Health from the Convention 

on Biological Diversity (CBD) and the Pandemic Agreement of the World Health Organization 

(WHO). Specifically, the CBD encourages Parties to “[reinforce] planning and surveillance of 

biodiversity, including for wildlife habitats and zoonotic pathogen spillover risk, to better assess and 

address health and disease risks in order to manage wild species sustainably” (Convention on 

Biological Diversity 2024) and the each party to the WHO agreement must “[coordinate] 

multisectoral surveillance to detect and conduct risk assessment of emerging or re-emerging 

pathogens with pandemic potential” (WHO 2025). To meet this goal, countries must design 

monitoring systems that efficiently allocate resources to maximize their knowledge of zoonotic 

disease prevalence and spillover risk. Improving spillover risk estimation therefore requires a 

multifaceted approach that incorporates biodiversity surveillance with data on landscape change 

and host ecology — including shifts in reservoir species’ habitats, community composition, and 

geographic distributions (Bell et al. 2025).

The field of biodiversity monitoring has established many practices and tools that can directly 

inform biosurveillance efforts (Poisot et al. 2025a). One such core concept is the Biodiversity 

Observation Network (or BON): a set of monitoring locations designed to best capture the status and 

trends of biodiversity (Scholes et al. 2012). Ideally, BONs establish a set of spatial locations at which 

biodiversity data are collected in standardized formats, which can then be easily aggregated for the 

detection and attribution of biodiversity change (Gonzalez et al. 2023a) and be used to inform 

decision-making at local, regional, and ultimately global scales (Gonzalez et al. 2023b). Here, we 

explore how the BON perspective would be useful to prioritize locations for which wildlife disease 

surveillance could be maximally informative, particularly when disease data are scarce.

Given the cost of effective biosurveillance, strategic allocation of resources toward where, when, 

what, and how much to sample is imperative to ensure sampling effort yields new and useful 

information. Efforts have been made to think about biosurveillance sampling prioritization from 

both a statistical (Farver et al. 1985, Nusser et al. 2008) and spatially explicit perspective (Andrade-

Pacheco et al. 2020, Dumelle et al. 2022). Here, we develop a context-dependent protocol for adaptive 

sampling to maximize the reduction of our uncertainty of the status of a given pathogen or host. The 

type of data (i.e. disease prevalence among a population of susceptible hosts, or occurrence records 

of host species) useful for a particular context depends on existing data availability and what drives 

our uncertainty of the hazard level of zoonotic pathogen prevalence. To optimally allocate sampling 

effort, both for choosing sampling locations and the type of data sampled, it is necessary to prioritize 

resource allocation towards both improving estimates of host presence and pathogen prevalence 

within host species. However, the locations for efficient sampling for these two goals are 

intrinsically different: to improve host presence prediction we should go where we are most unsure 

about the host’s presence, whereas to improve prevalence estimation we should rather sample where 

we are already sure hosts are.

Here, we establish a set of guidelines to use biodiversity data to prioritize sampling locations for 

wildlife disease surveillance. Notably, we select these sampling locations by accounting both for the 

distribution of biodiversity and current uncertainty about this distribution, as well as utilizing 

existing prevalence data if available. As applying this framework requires numerous decisions, we 

provide guidance about where it can be adapted to reflect local priorities, sampling constraints, and 

the availability of existing data on species presence and the prevalence of pathogens among host 



species. We present case studies illustrative of this framework in both data-poor (no prevalence data) 

and data-rich (spatially explicit estimates of prevalence) contexts on Hanta- and Arenaviridae in 

rodents.

The Role of Biodiversity Data in Biosurveillance

Conceptualising zoonotic spillover requires distinguishing hazard — the active circulation of a 

pathogen in a host reservoir in a state conducive to transmission to humans — from risk, which is 

the probability of that hazard being realised via spillover (Hosseini et al. 2017; Gibb et al. 2020a, 

2025). The intensity of this hazard fluctuates with shifts in host distribution and abundance, 

infection prevalence, and pathogen biology, all of which occur independently of human presence, 

and thus the proximity of reservoir hosts to human populations does not alone constitute a 

significant risk.

Spillover risk is actualized when a susceptible human is exposed to a zoonotic disease hazard, 

through processes governed by sociological, behavioural, and economic drivers at the human-

wildlife interface (Gibb et al. 2024, Friant et al. 2025). For instance, domestic or agricultural activities 

in environments contaminated by animal excreta elevate risk, whereas mitigations like improved 

sanitation or hygiene can reduce it towards zero. Monitoring the underlying hazard is critical 

because the conditions for exposure are not static. Anthropogenic changes, such as urban 

encroachment or ecological shifts, like climate-driven species migration, can rapidly intensify 

human-wildlife contact, transforming a latent hazard into an immediate risk (Daszak et al. 2000, 

Gottdenker et al. 2014, Gibb et al. 2020b, Carlson et al. 2022a, Eby et al. 2023).

Biodiversity data is also critical — but underutilised — for predicting probable hosts and geographic 

ranges of as-yet-undescribed pathogens which may pose future threats to health. A small proportion 

of mammalian viruses have been identified (Carlson et al. 2019) and most mammalian species have 

been poorly sampled with respect to viruses, with current patterns of viral diversity largely reflect 

historical priorities in discovery effort (Gibb et al. 2022). This means that the zoonotic hazards posed 

by unknown viruses that circulate in wild animal populations cannot be directly estimated. 

However, as we describe below, using models to predict the likely hosts of zoonotic pathogens prior 

to their emergence (Han et al. 2015, Becker et al. 2022, Cummings et al. 2025) can help to alleviate 

the uncertainty created by this viral “dark matter”.

When is biodiversity data relevant to guiding disease surveillance?

The diversity of host communities is a central determinant of pathogen dynamics and prevalence 

(Dobson 2004, Keesing et al. 2006). One of the leading ecological determinants of spillover risk is the 

density of infected hosts in a given location across all possible host species (Plowright et al. 2017). 

Unfortunately, this itself is often not actionable because it relies on spatially explicit data about 

abundance of — and pathogen prevalence in — all relevant hosts, which is rarely (if ever) available. 

Therefore, estimates of spillover risk are limited both by lack of knowledge on disease dynamics and 

the distribution and abundance of host species.

To circumvent this common data limitation, we rely on a proxy that uses weighted estimates of local 

host species composition to prioritize locations for sampling and identify the type of sampling to 

conduct. While estimates based only on the predicted presence of host species do not fully capture 

the risk of disease transmission, they hint at the potential for pathogen presence, especially if 

different species can be weighted by their relative importance as reservoir hosts, i.e. accounting for 

intraspecific variation in host competence, population density, and probable role in pathogen 

maintenance.



By contrast with a situation where all species are assumed to be equally important, prior knowledge 

about the relevance of different hosts for pathogen transmission can be incorporated in these models 

as a relative weight of host sampling priority. This data can come from phylogenetic similarity to 

known hosts, existing records of infection, or expert knowledge on the system in question (Tseng et 

al. 2025). In the extreme case where there is no prior information to establish weights for host 

species, this approach lends itself to an adaptation of the well-established practice of estimating local 

host diversity by stacking predicted species distributions (Thuiller et al. 2015), which is particularly 

appropriate when using quantitative predictions of species presence (Grenié et al. 2020). Although 

stacking species distribution models (SDMs) is often biased towards higher estimates of local species 

richness (Calabrese et al. 2014), in our context this bias is unobjectionable as it leads towards more 

cautious recommendations that in the worst case overestimate the ranges of reservoirs, and the 

stacking of species-specific SDMs has been shown to produce better estimates of richness compared 

to joint (multi-species) SDMs (Zurell et al. 2020). For a full set of guidelines for interpreting the 

outputs of SDMs, see Box 1.

Box 1: Guidelines for the interpretation of Species Distribution Models

Species distribution models (SDMs) are widely used tools in ecology that relate species occurrences with 

environmental variables to identify how species are geographically constrained by different ecological 

factors (Elith et al. 2011). SDMs can then be used to estimate the realized ecological niche of a species — 

the environmental space (rather than geographic space) that is suitable for the species to occupy. Because 

occurrence data is often presence-only, meaning there are few/no records of the verified absence of a 

species, the maps generated from SDMs should be interpreted as the relative environmental suitability for 

a species in a given location compared to other sites, rather than a probability of occurrence at a particular 

site — though there are methods that allow for this translation (Smith and Levine 2025).

In disease ecology, SDMs are often used to understand the current (and future) distribution of wildlife 

hosts and vectors (e.g. Lippi et al. (2023), Kopsco et al. (2022), Bussières-Fournel and Poisot (2025)) and 

determine which areas have the potential to carry spillover risk. While SDMs can help in planning and 

management decisions (e.g., sampling prioritization), their interpretation can prove challenging for end 

users (Guisan et al. 2013). For example, predictions for each species (e.g. in a multi-host system) are 

frequently stacked (i.e. the suitability scores for each species are summed at each location) to understand 

their overlapping distribution. However, SDMs do not typically incorporate biotic interactions (for 

discussion of joint species distribution models, which incorporate co-occurrence data and are generally 

used to infer relationships rather than create spatially-explicit predictions, see Pollock et al. (2014) & 

Wilkinson et al. (2021)), which means they cannot predict species abundance or the definitive interactions 

between species within a pixel where species are predicted to co-occur (Blanchet et al. 2020). Without the 

influence of other species and other latent variables, SDMs likely overestimate the “true” suitable area 

(false positives) and overall number of co-occurring species. Additionally, SDMs typically use predictors 

that are treated as functionally static in time (e.g. WorldClim bioclimatic variables), which bakes in the 

assumption that species are in equilibrium with their environment (Milanesi et al. 2020). In reality, species 

distribution patterns likely shift through time, varying with seasonal patterns, ecosystem disturbance, and 

resource availability (Milanesi et al. 2020). Thus, when incorporating SDMs into a decision-making 

process, users must consider the plausibility of predictions and inherent uncertainty in the context of their 

particular expertise.

Further complicating the interpretation of SDMs are the many decisions made during data selection, 

pseudo-absence generation, model specification, and evaluation that proliferate through the outputs and 

generate errors (Barry and Elith 2006, Merow et al. 2013). Even a poorly designed model can successfully 

be trained and generate predictions that seem plausible, but are ultimately as unreliable as the underlying 

model (Fourcade et al. 2018). Thus, there’s no replacement for collaboration between modelers with 

technical expertise and local decision-makers, with a clearly defined purpose and standardized reporting 

and documentation (Guisan et al. 2013, Araújo et al. 2019).



What are host distribution models telling us about pathogens?

The circulation of pathogens (such as viruses or obligate intracellular bacterial infections) through 

an animal population can vary significantly over time and is influenced by host species behavior, 

immunology, and environmental factors, among other drivers. Over long time periods, pathogens 

are thought to circulate stably within their primary host populations throughout a landscape 

according to the contacts of individual members of a population. These pathogens can also circulate 

through other susceptible animal populations if the two competent animal populations overlap in 

the landscape and the pathogen is shared.

In places where no susceptible or potentially susceptible hosts are present, it is not possible to find 

infected individuals. Thus, the extent of a pathogen can be thought of as the aggregation of ranges 

for each host species, and a rough estimate of pathogen suitability can be obtained based on 

weighting host susceptibility to infection (Cao et al. 2023, Redding et al. 2024). The ensemble 

distribution then represents the landscape that the pathogen faces, which is not directly related to 

the physical environment, but is instead determined by the distribution of hosts in a landscape.

A Protocol for Biodiversity-informed Biosurveillance

Here we present a protocol for adaptive sampling of wildlife disease that adjusts sampling priority, 

both across space but also in terms of the type of data to collect (host occurrence vs disease 

prevalence), based on the availability of existing data. This provides a standardized framework for 

practitioners to decide where to sample, reevaluate priorities after data is collected, and design 

further samples to most efficiently inform the predicted status of zoonotic disease in wildlife.

Biodiversity dose, host weighting, and uncertainty

Throughout this manuscript, we refer to the estimate of local host composition that reflects both 

host richness and a priori estimates of host importance as the “biodiversity dose” — the ecological 

capacity for a location to maintain the pathogen (not a measure of the viral load in the 

environment). This is related to the existing concept of community competence, but distinct as the 

biodiversity dose is calculated as a weighted average of SDM habitat suitability scores. Dose 

therefore captures both the likely presence of host reservoirs and their relative importance in disease 

transmission. Biodiversity dose is defined for a group of hosts, ideally encompassing the full set of 

hosts for a given pathogen, but also accounting for the subset of hosts of interest for a given 

monitoring program.

This still leaves the task of assigning species weights. If no information is available about species 

importance, a naive assumption of equal weights can be applied. If the capacity of a species to serve 

as a reservoir for a given pathogen is predicted with a model (Becker et al. 2022), the relative 

confidence in the prediction can be used as a weight. Hosts for a particular pathogen identified 

through methods with higher false-negative rates (e.g. serology vs. PCR) can be given lower weights. 

When there is uncertainty about the capacity of a host to be infected by a pathogen, methods that 

assign weights based on phylogenetic proximity to known hosts (Elmasri et al. 2020) can also 

provide usable information. Ideally, all aspects of the competence and relevance of hosts for disease 

transmission can be aggregated by experts to establish species weighting — we discuss the use of 

sensitivity analyses to better understand the consequences of these choices on the recommended 

configuration of the monitoring network in the final subsection of the protocol.
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Figure 1: (a): The conceptual framework for optimizing sampling priority using host species distribution models, and 

pathogen prevalence data if available (left). (b): The type of sampling that is most informative (pathogen prevalence 

vs. host occurrence), depending on a location’s level of biodiversity dose (weighted host habitat suitability) and 

uncertainty about that dose.

Another crucial element for guiding sampling is the uncertainty about the distribution of the 

biodiversity dose, i.e. the weighted average of the uncertainty associated with the SDM for each 

host. There are several different ways to derive uncertainty from an SDM, and they tend to reflect 

different aspects of model fit — see Box 3 for more information on the various forms of SDM 

uncertainty that can be used. High uncertainty points to an increased priority for sampling host 

occurrence to better refine the prediction of host presence and overall biodiversity dose.

The information about biodiversity dose, dose uncertainty, and prevalence data (if available) can be 

used to make a map of sampling priority to decide where and what to sample — see Figure 1(b). It is 

critical to emphasize that while this diagram in Figure 1 is useful for planning the type of data to 

sample when prioritizing data collection, it cannot be used to infer risk or guide outbreak response. 

Instead, this protocol helps identify what type of sampling is most appropriate at a given stage of 

surveillance, based on host biodiversity distributions and assumptions about host importance. When 

the sampling objective is population surveillance or estimating pathogen prevalence within hosts, 

areas of high biodiversity dose (Figure 1(b), Quadrants A & B) should be prioritized. However, when 

the goal is to improve host occurrence data, sampling should focus on areas of high dose uncertainty 

(Figure 1(b), Quadrants B & D).

Based on the goal of sampling, we can combine dose and uncertainty predictions into an overall 

priority score 𝑃𝑥 at each location 𝑥 as



𝑃𝑥 =∑
𝑖
𝑤𝑖(𝑤𝑑𝑠𝑖𝑥 +𝑤𝑢𝑢𝑖𝑥)

where 𝑠𝑖𝑥 is the SDM score of species i at location 𝑥, 𝑢𝑖𝑥 is the uncertainty of this score, 𝑤𝑑 is the 

weight for the biodiversity dose, 𝑤𝑢 is the weight for the uncertainty such that 𝑤𝑢 +𝑤𝑑 = 1, and 

𝑤𝑖 is the weight for species i, such that ∑𝑖 𝑤𝑖 = 1.

Integration of prevalence data into the monitoring network design

When available, data on pathogen prevalence can refine sampling priorities, but the best way to use 

this information for sampling is contingent on the spatial and temporal scale of the prevalence data 

and the goals of sampling. For example, continued surveillance of populations known to have high 

prevalence may be useful if the goal is to determine if this population serves as a persistent reservoir 

for a given pathogen, or if it was undergoing a transient outbreak when the existing data was 

collected.

Alternatively, if existing prevalence data has high enough spatial coverage that it enables spatially 

explicit estimates of prevalence, sampling can most effectively improve spatial predictions of 

prevalence by targeting regions where the degree of prevalence is uncertain, but for which we are 

confident there is a high biodiversity dose (as we do in the second case study). This is useful for both 

precisely locating existing reservoirs across space to better map zoonotic hazard and spillover risk. 

For a full overview of potential methods to use depending on the scale of existing prevalence data 

see Supplemental Table 1, and for guidelines on how to target different forms of sampling regions 

based on their predicted dose, dose uncertainty, and predicted prevalence in Supplemental Table 2.

Another important consideration is the variability in what existing prevalence data is saying. For 

example, serological diagnostic tests indicate exposure to a pathogen at any point in the past, and do 

not directly indicate the individual’s ability to transmit that pathogen, whereas PCR can detect both 

active infection and viral load as a measure of transmissibility. Together, these can provide 

complementary forms of information about both historical infection dynamics and the active 

prevalence.Fully representative sampling of wildlife populations is rarely feasible, so estimates of 

prevalence are obtained from a small subsample of the entire population of unknown size. Both of 

these factors induce error in the resulting prevalence estimates; however, there are numerous 

methods from population ecology for estimating abundance with imperfect detection (e.g. with N-

Mixture Models Royle (2004)) and to infer population trends over time (Kéry et al. 2009). These can 

naturally be extended to the context of imperfect detection of both host abundance and pathogens 

within hosts in infectious disease modelling (DiRenzo et al. 2019).

Sampling Point Selection

Once we have a sampling priority map, we want to use it to guide sampling site selection. There are 

many options for point selection algorithms rooted in sampling theory, which itself has a well-

developed theory of spatial sampling. A full review of spatial sampling theory is outside of the scope 

of this paper, but see Wang et al. (2012) and Dumelle et al. (2022), and for a comprehensive review of 

the general theory of sampling, see Thompson (2012).

A crucial point here is that because we are interested in targeting areas of high priority, we are 

constrained to a set of point-selection methods for unequal probability sampling, meaning each 

location in space can have a distinct probability of being included in the sample. A naive approach 

would be to draw samples with probability directly proportional to priority value, but due to the 

autocorrelation associated with biodiversity dose and uncertainty, this would result in many 

sampling points clumped close together, which would likely provide redundant information, and be 

an inefficient use of sampling effort. This is a well-established issue in spatial sampling, and as a 



result there are many algorithms for selecting spatially balanced samples — for example: Generalized 

Random Tessellation Sampling (GRTS; Stevens and Olsen (2004)), the Pivotal Method (Grafström et 

al. 2012), and Balanced-Acceptance Sampling (BAS; Robertson et al. (2013)). These methods are all 

included in the BiodiversityObservationNetworks.jl package in Julia (which is maintained by the 

first author), which we utilize in the case studies.

Recent results suggest that most site selection algorithms achieve equivalent performance for the 

same problem (Norman and Poisot 2025), which allows users to pick an algorithm based on specific 

features, such as the support for auxiliary environmental data. For our purposes, we find BAS the 

most flexible method because it is both the most computationally efficient and achieves better spatial 

balance than the alternatives (Robertson et al. 2013).

In practice, algorithms for generating spatially balanced samples targeted toward regions of high 

priority may not be skewed “enough” toward regions of high priority for a given use case, so we also 

tend to tilt the distribution of priority scores to make the values of high priority even higher. This is 

done using a function 𝑇 (𝑃𝑥, 𝛼), defined as

𝑇 (𝑃𝑥, 𝛼) =
exp(𝛼𝑃𝑥)
1 + exp(𝑃𝑥)

where 𝑃𝑥 is the original priority at a given location 𝑥, and the parameter 𝛼 ∈ (0,∞) controls how 

much to tilt the adjusted map toward areas of high priority.

Another common method for designing samples is stratification. In the context of spatial sampling, 

stratification consists of splitting the spatial domain into discrete regions (corresponding with 

specific strata), which each contains a user-determined number of samples. In our case, stratification 

can be used to divide space into the different data collection regimes (sampling for host presences, 

prevalence or both; Figure 1(b)) and distribute sampling effort across these strata based on the goals 

of the monitoring program, with spatially balanced point selection methods being used within each 

stratum. For further guidelines for interpretation and practical considerations when using selected 

sampling points, see Box 3.

Sensitivity/Robustness Analysis

This protocol relies on several choices of weights based on the goals of sampling and a priori 

estimates of host relevance for the pathogen(s) of interest. Assessing the sensitivity of the priority 

map to weight choices is important to ensure the priority map is robust to small tweaks to the 

weights that do not reflect meaningful differences in host relevance.

For a given set of weights, 𝒘, a natural way to assess the sensitivity of the overall priority is to 

examine the mean absolute change in the priority map, 𝑃 , when a small random perturbation is 

applied to the weights. This gives us an interpretable metric of how sensitive the resulting priority 

map is at a given chosen weight value. We create a “nudged” version of the weights, 𝒘’ = 𝒘+ 𝜀, by 

adding noise 𝜀, which is a vector of i.i.d. Normal(0, 𝜎noise) of the same length as 𝒘, and then 

renormalized (so 𝒘′ also sums to 1). We then construct the priority map, 𝑃 , for the original weights, 

and the priority map 𝑃 ′ from the “nudged” weights. The overall sensitivity, 𝑆, of the priority map at 

a given weight value 𝒘 can be computed as the sum of the absolute difference across all locations x:

𝑆(𝒘) =∑
𝑥
|𝑃𝑥 − 𝑃 ′𝑥 |

If the selected weights for a given use case are close to high sensitivity regions in the space of 

possible weights, end users should consider the additional caveat that the selected weights are very 

sensitive to small changes, and ensure the selected weight values are reflective of meaningful 



biological differences in host relevance. We provide an example of this analysis in the Supplemental 

Material, assessing the sensitivity of weights for the first case study.

Box 2: Guidelines for the refinement of various methodological steps

The workflow described in this manuscript involves many steps, and most of them call for decisions made 

by end users. In this box, we go through the different steps, and highlight key methodological 

considerations.

List of hosts: the list of potentially competent hosts can be assembled from biodiversity data (IUCN range 

maps, in-country checklist, GBIF data), or from past wildlife disease data (e.g. from VIRION (Carlson et al. 

2022b), literature surveys, or previous surveillance programs). The list of hosts may be arbitrarily filtered 

or expanded to reflect local priorities.

Host weights: weights of hosts used in the biodiversity dose calculation should essentially serve as a 

quantification of their expected contribution to disease transmission, and will almost always be a 

compromise between strength of evidence (e.g. serology, PCR and pathogen isolation provide different 

levels of confidence in host species competence), and transmission risk (potentially estimated using 

phylogenetic similarity to well-known hosts). Weights can also ultimately attempt to capture the risk of 

transmission to human populations (e.g. by weighting synanthropic species higher).

Host SDMs: the usual recommendations about the training and validation for SDMs apply throughout this 

pipeline (see Zurell et al. (2020)), and in particular the choice of predictor data, spatial extent, the quality 

control of occurrences, and the selection of predictive variables are important.

Uncertainty: There are many ways to quantify SDM uncertainty. Some models (like Generalized Linear 

Models and the form of a Boosted Regression Tree we use in the case studies) have estimates of variance 

built into the model structure. Absent this, a common alternative is measuring the variance of the 

predicted suitability score at each site across many cross-validation folds, or methods using conformal 

prediction (Poisot 2024). An alternative is using Bayesian Additive Regression Trees (BART; Carlson 

(2020)), which directly obtains samples from parameters, and which can thereby be aggregated into 

uncertainty in predicted suitability.

Prevalence: Relevant factors for choosing what prevalence data to incorporate are the minimum number 

of individuals sampled, the time since data was collected, and the form of test used. These can each impact 

the reliability of the prevalence estimate, and therefore utility of prevalence data.

BON design: Many algorithms exist for spatially balanced sampling with unequal inclusion probabilities, 

and the ability of these algorithms to handle various forms of auxiliary data should be considered (see 

Norman and Poisot (2025)). It is necessary to make the typical considerations when planning sampling: the 

accessibility of a given site, the cost-effectiveness of sampling given how much time is required to reach a 

location, the ability to access private land, the sovereignty of indigenous land — these can all be used to 

further adjust the inclusion probability.

Sensitivity analysis: Assessing the sensitivity of the overall priority map to both selected species weights 

(as discussed in the section on sensitivity), as well as the weights toward uncertainty and dose are all key 

factors to ensure the priority map is robust to small changes in weighting. Further checks on the response 

of the overall priority map to the inclusion/exclusion of host species (particularly those for which there is 

no direct evidence they can host a particular pathogen) should also be considered.



Case Studies

To illustrate this approach, we consider two case studies on Arena- and Hantaviridae and their 

rodent hosts, using the global database compiled by (Simons et al. 2025). The first case study is on 

rodent hosts of Arenaviridae in India, and reflects the scenario where there is no prevalence data 

available. The second is for South Korea, where we have sufficient prevalence data on Hantaviridae 

to make spatially explicit predictions of prevalence and use this to guide sampling.

Creating Dose and Uncertainty Maps

For both case studies, we use the same SDM methodology outlined here. We emphasize that the 

specific approach to building SDMs is not the focus — sampling prioritization is only going to be as 

good as the SDM, and we present guidelines for the interpretation of SDM outputs in Box 1.

We obtain occurrence records for each rodent host species from the Global Biodiversity Information 

Facility (GBIF). As predictor variables, we use the 19 bioclimatic variables from CHELSA (Karger et 

al. 2017) at 1km x 1km resolution for South Korea, and from WorldClim (Fick and Hijmans 2017) at 

2.5 arcminute resolution (approximately 5km x 5km at the equator) for India (to keep the raster size 

reasonable). We generate pseudoabsences (Barbet-Massin et al. 2012) using background thickening 

(Vollering et al. 2019), with a buffer around each occurrence record where no pseudoabsences can go 

(25km for India, 8km for South Korea).

Models were trained using SpeciesDistributionToolkit.jl (Poisot et al. 2025b) and EvoTrees.jl 

(Desgagne-Bouchard et al. 2025) in Julia. Specifically, we use a Boosted Regression Tree (BRT; Elith 

et al. (2008)) with a Gaussian loss metric, meaning the value of each node in the tree is fit to a 

Gaussian using maximum-likelihood estimation. Therefore, the BRT provides both a suitability 

prediction score, and an uncertainty value associated with it, for each pixel.

In order to standardize the dose values for each species, we compute the empirical cumulative 

distribution function (ECDF) on raw output predictions, ensuring all prediction layers are on the 

same scale.

Case Study 1: Designing a network without prevalence data

Our first case study considers the situation where we are primarily limited by a lack of prevalence 

data. This case study was inspired by Rodrigues et al. (1978), published 9 years after Lassa virus 

(Mammarenavirus lassaense) was first identified in Nigeria. In the immediate aftermath of the 

discovery of a virus of severe public health importance that circulates in hosts with widespread 

distributions, Rodrigues et al. (1978) were the (self-identified) first to sample for Lassa virus outside 

of Africa. At the time, Lassa itself was difficult to distinguish in clinical settings from other 

infectious diseases present in India (e.g. typhoid fever, malaria), and therefore it was not 

unreasonable to suspect it may be present in rodent populations in India.

Today we know that Lassa is confined to Western Africa, but this case study serves as an example 

for how we use biodiversity data to prioritize sampling in the context of a recently identified virus 

without existing reliable information about its geographic extent, prevalence, or known reservoir 

species. We construct a priority map for sampling using the host rodents tested by Rodrigues et al. 

(1978) : Funambulus tristriatus, Hystrix indica, Rattus rattus, and Suncus murinus. To generate a 

priority map for sampling, we follow the SDM procedure outlined above, and for the sake of 

example assign species weights at random.

Figure 2(a) shows a bivariate map of both the dose and uncertainty aggregated across host species. 

This highlights three large-scale regions of interest: the south, where the model is confident that 

many host species are present; the northwest, where the model is uncertain about many or all 

species; and the northeast, where the model is also relatively confident that host species are present. 



We say a region in the top 50% of uncertainty for a given species is for “discovery sampling”, and a 

region in the top 50% of predicted suitability is for “prevalence sampling”. In Figure 2(b) we see the 

total number of species that fall into each of these categories across space. Figure 2(c) shows our 

priority map, with both 𝑤𝑢 and 𝑤𝑑 equal to 0.5 (reflecting equal priority toward discovery and 

surveillance). The white points reflect sampling locations generated using Balanced Acceptance 

Sampling applied to the logistically tilted priority map with 𝛼 = 5 (see Sampling Point Selection 

subsection above). The teal markers reflect the four historical sampling locations from Rodrigues et 

al. (1978). Finally, in Figure 2(d), we see the host species that contributed the most to the priority 

score across space (computed as the maximum value of 𝑤𝑖(𝑤𝑢𝑈𝑥 +𝑤𝑑𝑃𝑥) at location 𝑥 across 

species 𝑖).

Figure 2: The case study for India. (a) Biodiversity dose + uncertainty bivariate plot. (b) Number of hosts in 

prevalence-regime (top 50% of habitat suitability for that species) vs. discovery (top 50% of uncertainty for that 

species), (c) Sampling priority + BON. X’s are historical sampling locations from Rodrigues et al. (1978) (d) The largest 

host contributor to priority.



Case Study 2: Accounting for prevalence data in network design

In contrast to the prior example where very little is known about the prevalence of a given 

pathogen, we now demonstrate the protocol for the surveillance of two hantaviruses in South Korea 

(Orthohantavirus hantanense & Orthohantavirus seoulense), which are two of the main causative 

agents of hemorrhagic fever with renal syndrome (HFRS; Park et al. (2025)). Typically, the hosts of 

these viruses are rodents and shrews, and in our study we focus on three small-mammal hosts: 

Rattus norvegicus, Apodemus agrarius, and Crocidura lasiura. These host-virus pairs were selected as 

the database contained prevalence records across the country at a broad enough spatial scale to 

enable spatially explicit prediction of prevalence. The data comes from the following studies: Gu et 

al. (2011), Kim et al. (2017), Kim et al. (2007), Kim et al. (2020), Klein et al. (2015), Lee et al. (1978), Lee 

et al. (2017), No et al. (2016), Park et al. (2022), Ryou et al. (2011), Sames et al. (2009), Seo et al. (2022), 

and Song et al. (2009).

Prevalence across the extent is estimated using Gaussian Process regression (also known as kriging) 

for each host-virus pair with at least 5 populations sampled across space. This is done using a 

Squared-Exponential covariance kernel with a fixed length scale parameter using 

GaussianProcesses.jl (Fairbrother et al. 2022), and the hyperparameters for the model are optimized 

using the L-BFGS algorithm in Optim.jl (Mogensen and Riseth 2018). This provides both spatial 

estimates of prevalence, but crucially, spatially explicit uncertainty associated with this prevalence 

estimate.

Figure 3 shows both the bivariate plot of biodiversity dose and dose uncertainty (Figure 3A) and 

dose vs. prevalence uncertainty (Figure 3B). To isolate regions where we are confident hosts are 

present for prevalence sampling, and regions of high host presence uncertainty for discovery 

sampling, we stratify the spatial extent into discrete regions that prioritize prevalence sampling and 

occurrence sampling as follows: the region that is both in the top 50% of biodiversity dose and top 

50% of prevalence uncertainty is the stratum for prevalence sampling, and the region in the top 50% 

of dose uncertainty is the stratum for discovery sampling (Figure 3C). Spatial regions that fall into 

both categories are then targets for both forms of sampling. The choice of 50% quantiles is arbitrary 

for this example. The sampling priority within each of these strata can be seen in Figure 3D. The 

overall priority map can be seen in Figure 3E, along with the points sampled using Balanced 

Acceptance Sampling with a tilting value of 𝛼 = 2.0, and the type of sampling that should take place 

at each location.

This case study demonstrates how we can integrate host SDMs with existing prevalence information 

to design sampling strategies and split geographic space into discrete regions where each type of 

sampling (occurrence and prevalence) should take place.



Figure 3: The case study for South Korea. (A): Bivariate plot of dose (increasing green) and dose uncertainty 

(increasing blue). (B): Bivariate plot of dose (increasing green) and prevalence uncertainty (increasing orange; 

measured as the sum of estimated variance from kriging across each host-virus pair). (C): The spatial strata for which 

occurrence, prevalence, and both forms of sampling should occur (see main text for how these are computed). (D) The 

priority scores for regions where discovery sampling is a priority (increasingly blue) and prevalence sampling is the 

priority (increasingly purple) in their respective strata. (E) The total priority map with sites selected using Balanced 

Acceptance Sampling. The marker shape of each site corresponds to the type of sampling that should occur there, 

based on the stratum in (C) that each point falls within.

Box 3: Guidelines for the interpretation of recommended sampling locations

We want to emphasize that sampling points, though given as exact (longitude, latitude) coordinates, are 

not to be interpreted without critical thought. Since the grain at which the underlying SDMs are operating 

is often significantly larger than the scale at which one may have to decide where to place a sampling trap, 

selected points should be thought of as most useful as the centroids of “local” regions (where “local” 

corresponds to the pixel size of the SDMs used for prioritization) wherein sampling effect could best 

improve knowledge about the ecological settings of viral transmission. To make this point explicit, if the 

model suggests sampling for Mus musculus in an urban area and the coordinate itself is in the middle of 

the center of a highway, the model’s output should be interpreted as indicating the general area where 

sampling should be done (see below figure).

For example, Figure 4 shows three selected sampling sites for the second case study on South Korea, with 

the satellite imagery corresponding to the cell in the priority map that was selected. As the original 

climate layers have pixels that are approximately 1 km2, there is considerable heterogeneity within these 

pixels. Experts on particular taxa should assess the scope of the local region near each sampling point, and 

use it to guide the practical logistics of where effort (e.g. traps) are most likely to result in useful 

information.



Beyond just the spatial scale at which recommendations are made, temporal variation in both prevalence 

and host occurrence is a well-known driver of disease dynamics, often driven by environmental variation 

tied to seasonality (Altizer et al. 2004, Cosgrove et al. 2008). Factors like migration and birth rates can 

affect these within-year cycles (van Dijk et al. 2014). Between-year fluctuations, particularly in rodents, are 

both dramatic and can also counter-intuitively inverse effect on populations’ prevalence (Davis et al. 2005). 

Here, we do not consider temporal variation in host abundances in our sampling recommendation 

protocol, since to do so would require orders of magnitude more data than we consider available, and 

would likely require the use of a different class of models/approaches.

Figure 4: Three selected sites for the second case study (colored markers, left) overlayed on a map of South Korea with the 10 

most populous cities shown in dark grey dots, and the major highway network shown in light grey (to get a sense of the 

accessibility of these sites). Right: Satellite imagery, derived from OpenStreetMap, for each site.

Discussion

Here, we have presented a protocol for adaptive sampling of wildlife disease based on weighted 

predictions of host richness and uncertainty, and guidelines for integrating prevalence data into 

sampling prioritization if available. The strength of this approach is prioritizing sampling locations 

for wildlife disease surveillance by accounting for varying availability of prevalence and host 

competence data, allowing it to be tailored to any particular stage of developing biosurveillance 

programs. When enough prevalence data are known to allow the spatially explicit modelling of 

prevalence (Gras et al. 2018), relying on biodiversity data becomes a lower priority. Still, because 

spatially explicit modelling of prevalence is mostly feasible at small spatial scales, and because it is 

important to keep track of larger-scale changes in species distribution (Carlson et al. 2022a, Lawlor 

et al. 2024), we anticipate that the design of a biosurveillance network that is aligned with 

biodiversity data collection should become a standard practice. A direction for future work is to 

explicitly assess how good current biodiversity observation networks are for jointly supporting 

pathogen surveillance and biodiversity monitoring, both to assess their existing coverage and its 

relevance for wildlife disease monitoring, and to make recommendations for cost effective 

extensions to improve their utility for both biosurveillance and monitoring biodiversity change.

While this protocol relies on the spatial distribution of suitable habitat for pathogen reservoirs, our 

approach is not designed to capture temporal variance in virus prevalence or transmission dynamics, 

nor is it particularly suited for guiding time-series based optimization of surveillance efforts. Instead, 

this framework identifies areas with suitable environmental conditions for pathogen hosts, but does 

not predict when virus prevalence, or spillover risk, is increased within those areas. To fully 

maximize the effectiveness of sampling, users must integrate domain expertise regarding viral 



ecology, seasonal transmission patterns, and host-pathogen dynamics to interpret model outputs 

appropriately. Additionally, the static nature of SDMs may not adequately reflect rapidly changing 

environmental conditions, anthropogenic landscape modifications, or evolving host community 

structure that could influence reservoir distributions or pathogen prevalence in time and space.

There are numerous future directions for incorporating more sophisticated forms of SDMs to help 

alleviate these challenges: temporally-explicit SDMs are possible but require much more data at a 

high temporal resolution, which are typically not available for most species (Anselmetto et al. 2025). 

Similarly, mechanistic SDMs, which directly integrate biological processes into habitat suitability 

predictions, require far more data than is typically available. Another limitation of conventional 

correlative SDMs is that habitat suitability does not directly translate to species occupancy. Species 

may not be present in suitable habitat due to competition or dispersal limitation, and this can impact 

viral transmission if a host species is replaced by a less competent host (e.g. Lassa fever is reported 

less in cities where Mus musculus has displaced primary reservoir species). Joint SDMs (JSDMs), 

which model species composition across an entire species pool, thereby accounting for species 

interactions, are another possible frontier, but JSDMs require explicit co-occurrence data, typically 

not attainable from platforms like GBIF. Generally, these more informative SDMs are not possible 

without extensive, long-term monitoring, which is why the goal of this protocol is to get these long-

term monitoring programs off the ground with efficient sampling in the low data context.

However, an increasing amount of pathogen prevalence data is only actionable when individual test 

outcomes, both positive and negative, are shared in a way that is both standardized and 

interoperable with the commonly used representations of biodiversity data (Schwantes et al. 2025). 

Further integration of open biosurveillance and biodiversity monitoring systems is essential to meet 

our common goals (Poisot et al. 2025a). Better biosurveillance itself is not spillover prevention, but 

it’s a necessary component of it to make prevention possible — it’s the best we can do in the context 

of limited information on prevalence — but a full approach to prevention of zoonotic spillover is 

broader than this alone (Ramakrishnan 2023). This protocol represents a necessary first step toward 

widespread biosurveillance integrated with global biodiversity monitoring systems (Gonzalez et al. 

2023b) to ensure a just planetary future.

Software and Data Availability: The software and data used for this analysis is available in this GitHub 

repository.
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