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Abstract 33 

Plant physiological heat tolerance thresholds can acclimate rapidly in response to changing 34 

leaf temperature, which varies considerably across microclimatic space and time. How leaf 35 

temperatures trigger shifts in these heat thresholds has not been established. We aimed to 36 

determine the influence of temporally proximal leaf temperatures (Tleaf) on leaf photosystem 37 

heat tolerance thresholds (Tcrit) for two co-occurring plant species in situ in the Australian 38 

Alps. We measured Tcrit and Tleaf over five days at 16 sites, paired by aspect (northwest, 39 

southeast) across two locations: a cold air drainage valley and a high exposed ridgeline. To 40 

investigate how Tcrit was influenced by Tleaf in the days prior, we used traditional statistical 41 

approaches (linear mixed models) and a machine learning technique. While traditional 42 

models found that Tleaf parameters explained some variation in Tcrit, machine learning 43 

identified that 85% of the variation in Tcrit was explained by both maximum and minimum 44 

leaf temperatures in the four days prior to measurement. This finding illustrates that heat 45 

tolerance acclimation is driven by exposure to not only maximum, but also minimum leaf 46 

temperatures. To uncover complex relationships between fluctuating environmental 47 

conditions and plant acclimatory responses, we recommend integrating machine learning 48 

techniques with traditional statistical methods.  49 

  50 



Introduction  51 

Many of the critical physiological processes of plants, including photosynthesis, tissue repair 52 

and reproduction, are mediated by temperature (Wahid et al. 2007). Ascertaining the 53 

thermal limits to physiological function, or thermal tolerance thresholds, and how they shift 54 

with local temperature, is critical if plant vulnerability to climatic warming is to be 55 

characterised accurately (Cook et al. 2021). It is becoming increasingly clear that coarse 56 

gradient measures of climate do not predict significant variation in heat tolerance thresholds 57 

at a local scale (Curtis et al. 2016, Feeley et al. 2020, Perez and Feeley 2020, Danzey et al. 58 

2024).  Indeed, in common garden settings, differences in heat tolerance thresholds are 59 

reduced relative to in situ measurements (Knight and Ackerly 2002, Knight and Ackerly 2003, 60 

Harris et al. 2024, Alvarez et al. 2025), indicating acclimation to local conditions. Heat 61 

tolerance acclimation in plants broadly refers to the reversible physiological and 62 

morphological adjustments that enable plants to modify their thermal limits in according to 63 

prevailing environmental conditions (Wahid et al. 2007, Zhu et al. 2018). Further, leaf 64 

temperatures can strongly decouple from air, exceeding air temperatures by >10°C under 65 

hot conditions (Körner and Cochrane 1983, Blonder and Michaletz 2018, Fauset et al. 2018); 66 

the extent of this decoupling is mediated by morphological traits that influence leaf 67 

thermodynamics (Leigh et al. 2017, Arnold et al. 2025a). For these reasons, focus has shifted 68 

toward the influence of leaf temperature on thermal tolerance, particularly photosystem 69 

heat tolerance (Perez and Feeley 2020, Cook et al. 2021, Zhu et al. 2024). There is evidence 70 

to suggest that microclimate, through its influence on leaf temperatures, is a strong 71 

predictor of heat tolerance thresholds (Buchner and Neuner 2003, Curtis et al. 2016, Leon-72 

Garcia and Lasso 2019). This association is particularly important to investigate in places 73 

typified by high microclimatic heterogeneity and temporal variability, such as alpine 74 

environments (Körner 2003, Körner and Hiltbrunner 2021, Körner 2023). 75 

Average temperatures do not necessarily capture the extremes to which plants are exposed. 76 

Nor do they account for the influence of heat load, a function of temperature intensity and 77 

exposure duration, on heat tolerance (Neuner and Buchner 2023, Cook et al. 2024, Faber et 78 

al. 2024). While climate change is bringing warmer daytime temperatures, nighttime 79 

temperatures may be increasing at a greater rate (Easterling et al. 1997, Donat and 80 

Alexander 2012), which has implications on important aspects of plant physiology and 81 



reproduction (Willits and Peet 1998, Niu and Xiang 2018, Rahnama et al. 2024). Among 82 

these physiological processes, PSII acclimation is particularly important, as it reflects the 83 

ability of the photosynthetic apparatus to maintain function under increasingly stressful 84 

thermal conditions. This phenomenon has been observed as changes in PSII heat tolerance 85 

thresholds (Posch et al. 2022, Sumner et al. 2022, Andrew et al. 2023, Cook et al. 2024, 86 

Danzey et al. 2024). Research on heat tolerance thresholds typically focuses on the effect of 87 

increasing or maximum temperatures (Leon-Garcia and Lasso 2019, Perez and Feeley 2020, 88 

Vilas-Boas et al. 2024), while the effect of minimum temperatures has received far less 89 

attention. Further, diurnal temperature amplitude can exert a substantial effect on drought 90 

and freezing tolerance (Zhang et al. 2023). However, the effect of temperature across diurnal 91 

cycles on heat tolerance thresholds under natural conditions remains to be studied. 92 

Regarding the effect of temperature history on heat tolerance, some authors suggest that 93 

acclimation is influenced by mean and maximum daily temperatures in the days prior to 94 

measurement (Hüve et al. 2006, Curtis 2017, Bison and Michaletz 2024, Zhu et al. 2024). 95 

Conversely, others have found that acclimation of heat thresholds occurs over longer 96 

temporal scales, across months and seasons (Zhu et al. 2018, Leon-Garcia and Lasso 2019). 97 

It remains unclear as to what temporal scale acclimation of these thresholds occurs across 98 

and the magnitude of the cues that trigger threshold shifts. 99 

The thermal triggers for heat tolerance acclimation are complex. Relationships between 100 

heat tolerance and temperature are not linear, with discrepancies between threshold 101 

relaxation and leaf temperature documented in alpine environments (Buchner and Neuner 102 

2003, Neuner and Buchner 2012). Therefore, traditional statistical methods that rely on 103 

average temperatures to predict heat tolerance present clear limitations, particularly for 104 

data collected under field conditions, where environmental temperatures vary across 105 

microclimates and plants are exposed to rapid temperature fluctuations. Predicting thermal 106 

tolerance necessitates a more nuanced assessment of how temporally proximal 107 

temperatures lead to shifts in heat tolerance thresholds. Machine learning has recently 108 

been used to determine how leaf temperature series predict plant physiological processes 109 

like stomatal conductance (Gaur and Drewry 2024). Others have used such methods for 110 

predicting photosynthetic performance parameters from plant water status and spectral 111 

characteristics (Yang et al. 2022, Song and Wang 2023). A machine learning approach offers 112 



a potential path for ascertaining how leaf temperature profiles might cue changes in heat 113 

tolerance thresholds.  114 

Here we measured in situ leaf and air temperatures and critical heat tolerance thresholds of 115 

photosystem II (PSII) of two co-occurring morphologically and phylogenetically distinct 116 

Australian alpine plant species, Grevillea australis and Dracophyllum continentis, at 16 sites 117 

across two locations varying in elevation and landform. By contrasting the aspect and 118 

location of study sites, our design maximised the microclimatic variation in terms of the 119 

average time of day that maximum temperature occurred, the sum of temperatures across a 120 

day and the temperature range of the diurnal cycle. We compared two different approaches 121 

to investigate how leaf temperature affects acclimation of plant heat tolerance thresholds. 122 

First, representing a traditional statistical approach, we used linear mixed models to 123 

determine whether average temperature parameters could explain variations in heat 124 

tolerance thresholds. Second, we sought to explain variation in Tcrit by applying a machine 125 

learning (ML) approach, which used the full suite of raw temperature data, representing 126 

5,600 individual leaf temperature points. 127 

Methods 128 

Study site selection and study species 129 

All field and experimental work was conducted on Wolgalu and Monaro Ngarigo lands in 130 

Kosciuszko National Park, New South Wales, Australia. Study sites were situated in 131 

grasslands at two locations representing different topographies and elevations: Schlink Pass, 132 

a sub-alpine, cold air drainage valley along the Munyang River, at 1670 m a.s.l., and Mt 133 

Stilwell, an alpine site on the exposed mountain pass above Charlotte Pass Village, 1959 m 134 

a.s.l. Aspect, topography and elevation are design features that influence microclimatic 135 

conditions. There were 16 sites in total: at each location, eight sites were selected, four of 136 

NW aspect and four of SE aspect (Figure 1a; Figure S1; Table S1). Along with the contrasting 137 

landforms represented at the two locations, selecting sites with contrasting aspects 138 

maximised potential microclimatic variation, based on two factors: first, prevailing winds in 139 

the region are from the west to the northwest (AGBoM 2023) and second, incident sunlight 140 

is highest for equatorial-facing vegetation (Russell et al. 1989), i.e., north-northwest in the 141 

southern hemisphere (for more details, see Supporting Information 1).  142 



The two alpine species, Dracophyllum continentis B.L.Burtt (Ericaceae) and Grevillea australis 143 

R.Br. (Proteaceae), are found in both alpine and subalpine environments throughout South-144 

East Australia. These species were selected because they co-occur in moist alpine 145 

environments yet are phylogenetically and morphologically distinct. Dracophyllum 146 

continentis is a multi-branched shrub growing to 1 m, with thick, ovate to triangular leaves 147 

(2–4 cm long, 4–7 mm wide), densely packed around the stem; G. australis is a shrub 148 

growing to 1 m, with smaller, oblanceolate, linear, or narrow-elliptic leaves (0.5–3.5 cm long, 149 

0.5–5.5 mm wide) that are spread along its woody branches (PlantNET 2024). 150 

Air and leaf temperature measurements 151 

Site-specific air temperature and leaf temperatures of G. australis and D. continentis were 152 

measured at all 16 sites across Schlink Pass and Mt Stilwell from the start of February 2023 153 

(Figure S2a, b). Leaf temperature was logged in 5-minute intervals using fine-wire type-T 154 

thermocouples (gauge AWG 36, 0.13 mm diameter, Omega Engineering, Norwalk, CT, USA) 155 

connected to four-channel HOBO data loggers (UX120-014M, Onset HOBO® Dataloggers 156 

Onset, Bourne, USA). At each site, one thermocouple was attached to the underside of a D. 157 

continentis leaf and two were attached to G. australis leaves. Thermocouples were affixed to 158 

the leaves using a small piece of surgical tape, sized to one third of the leaf area to minimise 159 

disruption to the leaf boundary layer (Figure S2c, d). All thermocouples measuring leaf 160 

temperature were attached to leaves on the outer, sun-exposed north-facing side of the 161 

canopy. Another thermocouple measured ambient air temperature and was attached to a 162 

branch adjacent to the leaves being measured for temperature. A small white cap covered 163 

each air thermocouple to shield it from direct sunlight (Figure S2e, f). 164 

Collection of leaf material  165 

Sampling of leaves for heat tolerance thresholds took place during mid-summer, between 166 

9am and 12pm every day from 26 February to 2 March 2023. To determine the water status 167 

of the plants sampled for heat tolerance measurement, we also collected leaves RWC 168 

between 25 February and 1 March. The field sites were logistically very challenging to access 169 

on foot, so water potential measurements were not feasible. To ensure that heat tolerance 170 

measurements were not confounded by time of sampling, leaves were collected from all 16 171 

sites each day by two fieldwork teams concurrently, one at Mt Stilwell and the other at 172 

Schlink Pass. At each site, two mature, healthy leaves were collected from the outer sun-173 



exposed north side of the canopy for each species. Concurrently, a small stem bearing leaves 174 

of the same description was collected for relative water content (RWC) measurement. On 175 

each day of sampling, leaves were collected from the same plants at each site. After 176 

collection, leaves were placed in zip-lock bags lined with damp paper towels and kept in 177 

darkness until heat tolerance measurements were made in the laboratory the same day. 178 

Leaf samples were measured between five and eight hours after collection (Danzey et al. 179 

2024, Briceño et al. 2025). 180 

Measurement of heat tolerance thresholds 181 

Photosystem II heat tolerance thresholds were measured based on the method detailed by 182 

Arnold et al. (2021). Briefly, leaf samples were placed on a thermoelectrically controlled 183 

Peltier plate, with type-T thermocouples attached to the underside of each leaf sample for 184 

continuous leaf temperature measurements during a controlled heating ramp. The 185 

temperature ramp began at 25 °C, increasing at a rate of 0.5 °C per minute until reaching 186 

70 °C. A pulse amplitude modulated imaging fluorimeter (Maxi-Imaging-PAM; Heinz Walz 187 

GmbH, Effeltrich, Germany) took measurements of minimal chlorophyll fluorescence (F0) 188 

during heating after allowing 30 minutes for leaves to dark adapt. For each experimental 189 

run, 64 T- F0 curves (two replicates from the 16 sites for each species) were produced, from 190 

which the critical heat thresholds (Tcrit) were determined as the point of transition between 191 

slow-rise and fast-rise in F0 with increasing temperature (Figure S3).  192 

Meausrement of RWC 193 

For relative water content (RWC) determination, leaf samples with petioles removed were 194 

first weighed to obtain fresh weight (FW). Samples were then submerged in water-filled pill 195 

boxes for 3–4 hours to allow rehydration, after which the turgid weight (TW) was recorded. 196 

Subsequently, samples were transported to the laboratory and oven-dried for one week, 197 

after which they were re-weighed to obtain the dry weight (DW). RWC was calculated using 198 

the formula: 199 

RWC =  
FW − DW

TW − DW
 x 100 200 

Traditional statistical approach for ascertaining the effect of leaf temperature on Tcrit 201 



To characterise microclimatic variation in thermal profile across study sites, we calculated 202 

three temperature parameters that we expected to reflect the nature, intensity and timing 203 

of thermal load to which plants are exposed. These factors have been shown to influence 204 

plant heat tolerance (Blair et al. 2019, Grinevich et al. 2019, Laosuntisuk and Doherty 2022, 205 

Neuner and Buchner 2023, Cook et al. 2024). Heat stress intensity varies with aspect as it 206 

determines the timing and magnitude of maximum temperatures in each day (McCune and 207 

Keon 2002, Li et al. 2021). Thermal regimes differ markedly between mountain and valley 208 

environments. While air temperatures are typically higher in lower elevation environments 209 

at night, radiative cooling and cold-air drainage promote the formation of cold air pools, 210 

which tend to develop in valleys (Lundquist et al. 2008, Pepin et al. 2022). As such, we chose 211 

to calculate the time of day that maximum air temperature was reached (Ttime
air), the daily 212 

sum of degrees above 0°C (Tsum
air), and the diurnal cycle temperature range (Trange

air) at each 213 

of the 16 study sites for the four weeks prior to and coinciding with Tcrit measurement (Table 214 

S2). 215 

First, the temperature data for each site were cleaned to remove non-sensible values due to 216 

spurious electrical signals (below -25C and above 40C). For calculation of Tleaf values for G. 217 

australis, raw leaf temperature data collected by the two thermocouples were averaged.  To 218 

calculate Tsum values, the average temperatures above 0C were summed for each five-219 

minute interval across the 24 hours between 12 am and 11:59 pm for each day. For Ttime, the 220 

time at which the maximum temperature occurred on each day was converted into hour 221 

values for ease of analysis (e.g., a 24-hour time value of 13:30 became 13.5). Trange 222 

parameters were calculated by subtracting the minimum temperature occurring each night 223 

(between 7 pm and 6:59 am) from the maximum temperature occurring on the subsequent 224 

day (between 7 am and 6:59 pm). In addition to calculating 24-hour cumulative temperature 225 

above 0 °C (Tsum
leaf) on Tcrit, nightly (Tsum- night

leaf) and daily temperature (Tsum- day
leaf) sums 226 

were calculated separately so we could differentiate between the effects of day and 227 

nighttime heat load on Tcrit.  Tsum-day
leaf and Tsum-night 

leaf were calculated by summing the 228 

temperatures above 0C for each 5-minute interval between 7 am and 6:59 pm and 7 pm 229 

and 6:59 am respectively. Individual daily values for each Tair parameter at each site were 230 

averaged across all days of February, resulting in 16 levels of each microclimate parameter. 231 

Values for each Tleaf parameter were averaged at each site and for each species across the 232 



days preceding and coinciding with Tcrit sampling (22 Feb – 28 Feb) resulting in 32 levels of 233 

each leaf temperature parameter. 234 

To assess whether plants from these distinct microclimates differed in water status, we fitted 235 

an LMM with the same structure as above, but with RWC as the response variable and plant 236 

ID included as an additional random factor and species as an additional fixed factor. While 237 

RWC differed significantly between species (F1, 27 = 52.9, p < 0.001), it did not with location 238 

(F1, 27 = 0.43, p = 0.52) or aspect (F1, 27 = 0.0059, p = 0.0.94; Figure S4). This analysis enabled 239 

us to exclude variation in plant water status across sites as a factor potentially confounding 240 

microclimatic variation in Tcrit. 241 

Having established that Ttime
air, Tsum

air
 and Trange

air reflect the substantial microclimatic 242 

variation among sites (Table S3), we next sought to determine the influence of the 243 

equivalent leaf temperature versions of these parameters on heat tolerance thresholds. Leaf 244 

temperature parameters (Ttime
leaf, Tsum

leaf and Trange
leaf) were calculated using the measured 245 

leaf temperatures of G. australis and D. continentis spanning the four days prior to, and first 246 

three days of Tcrit sampling (Figure S5), which we expected to most closely reflect the 247 

temperature conditions likely to initiate changes in heat tolerance thresholds (Bison and 248 

Michaletz 2024, Zhu et al. 2024). In addition to calculating 24-hour cumulative temperature 249 

above 0 °C (Tsum
leaf) on Tcrit, nightly (Tsum- night

leaf) and daily temperature (Tsum- day
leaf) sums 250 

were calculated separately so we could differentiate between the effects of day and 251 

nighttime heat load on Tcrit.. All temperature parameters were averaged across the seven 252 

days for each of the 16 sites and the resulting values were included as fixed factors in three 253 

separately fitted LMMs, where Tcrit was the response variable. In each model, date was 254 

included as a random factor to account for weather variation across sampling days. To 255 

prevent boundary fit issues arising from including aspect and location separately, a 256 

categorical variable named ‘site type’ with four levels (SchlinkSE, SchlinkNW, StilwellNW, 257 

StilwellSE) was used as a random factor in these models. Where boundary fit issues 258 

persisted, ‘site type’ was removed from the model. An additional random effect was added 259 

to the models, Plant ID, of which there were 32 levels, to account for variability between leaf 260 

replicates. ‘Species’ was excluded from Tleaf ~ Tcrit models as a fixed term because 261 

preliminary analyses determined that Tcrit did not differ between species (F1, 286 = 0.087, p = 262 



0.77). Analyses were conducted using R Statistical Software (v 4.2.1: R Development Core 263 

Team 2024).  264 

Machine learning approach to ascertaining the effect of leaf temperature on Tcrit 265 

Boosting-based ensemble methods are a class of machine learning algorithms that combine 266 

multiple decision trees into a single strong predictive model. Each decision tree is trained 267 

sequentially, with each subsequent model attempting to correct the residual errors of its 268 

predecessor. This learning process allows boosting models to capture complex, nonlinear 269 

relationships between input, predictive features and response variables (Natekin and Knoll 270 

2013). We utilised the IBM Watson Machine Learning platform to train a Snap Boosting 271 

Machine Regressor model to identify key predictive temperature points leading up to Tcrit 272 

measurements. For the machine learning model (Python script) see Supplementary File 1. 273 

Five-minute interval leaf temperature data from both species and all sites were pooled 274 

together for training the model. This pooled model resulted in 153 Tcrit values with their 275 

respective temperature history, which initially encompassed 25 days prior to each Tcrit 276 

measurement (1 February 2023 – 1 March 2023; 8,532 time points and 267,264 leaf 277 

temperature points for each day of Tcrit measurement for the initial 29-day model). Based on 278 

this preliminary analysis, we narrowed this down to the four-day temperature history 279 

leading up to each Tcrit measurement (1,152 time points and 36,864 leaf temperatures points 280 

for each day of Tcrit measurement, Figure S6), as it provided the most relevant predictive 281 

features. This decision was supported by literature on the biochemical processes that govern 282 

heat tolerance; for example, decay of upregulated heat shock proteins has been shown to 283 

occur between 2 and 3 days after heat stress (Charng et al. 2006, Aspinwall et al. 2019). 284 

These findings align with the three days prior to Tcrit measurement being the best predictive 285 

window for shifts in heat tolerance (Bison and Michaletz 2024, Zhu et al. 2024).   286 

Results 287 

Tleaf parameters appear to predict little variation in Tcrit 288 

Three leaf temperature parameters (Ttime
leaf, Tsum

leaf and Trange
leaf) were included as fixed 289 

factors in separate LMMs where Tcrit was the response variable (Table 2). Accounting for site 290 

type (location-aspect combination: SchlinkNW, SchlinkSE, StilwellNW, StilwellSE), Tsum
leaf 291 

predicted significant variation in Tcrit, such that for a 313.5°C increase in Tsum
leaf, Tcrit increased 292 



by 1°C (Table 2, Figure 2b). No significant relationship of Ttime
leaf, Tsum-day

leaf, Tsum-night 
leaf  293 

Trange
leaf with Tcrit was found (Table 2, Figure 2c, d; Figure S7; Table S4). The reason that the 294 

positive Tsum
leaf ~ Tcrit relationship was relatively weak might be attributed to the nature of 295 

the variation in Tcrit across sampling days. Although date was a strong predictor of variation 296 

in Tcrit, the only day where Tcrit was significantly different from the rest was on 28 Feb. Tcrit 297 

values were on average 2.8 ± 0.9°C higher on 28 Feb than the rest but across all other days, 298 

Tcrit values were relatively uniform (Figure 2a). To assess whether these elevated 28 February 299 

values were driving the significant Tsum
leaf ~ Tcrit relationship, we re-ran the model with these 300 

values excluded. The relationship was no longer significant, indicating that the 28 February 301 

Tcrit values were indeed responsible for the original significance. 302 

Machine learning reveals that preceding high and low temperatures can predict Tcrit 303 

The machine learning results highlighted specific temperatures and times within the 304 

temperature histories that were critical for predicting Tcrit (coloured circles, Figure 3a). A 305 

total of 33 leaf temperature time points within the four-day temperature window, which 306 

were common to all leaves, were identified as collectively contributing 84.9% of the model's 307 

total predictive power. The identified times points were predominantly high and low leaf 308 

temperature values within the four-day period preceding Tcrit measurement. The strength of 309 

predictive power was distributed relatively uniformly across the 4-day period. Three leaf 310 

temperature points, however, one maximum and two minima occurring between 81 and 45 311 

h prior to Tcrit measurement, provided 36.8% of the total predictive power (grey ellipses, 312 

Figure 3b). 313 

Discussion 314 

The current study sought to determine how spatially and temporally varying leaf 315 

temperatures drive changes in Tcrit photosystem heat thresholds using two distinct 316 

approaches: linear mixed models (LMMs) and machine learning (ML). Specifically, we were 317 

interested in the insights that each method could provide about the role of prior leaf 318 

temperature history in determining these thresholds, a question that has been explored 319 

little to date. Temperature regimes show considerable spatial variation in alpine 320 

environments, especially as a function of elevation and aspect (Legates and Willmott 1990, 321 

McCune and Keon 2002). In our study, microclimatic variation with aspect and elevation was 322 



characterised by different times of day that maximum air temperatures were reached, the 323 

sum or load of temperature and the diurnal cycle temperature range. However, LMMs 324 

revealed that the only corresponding leaf temperature parameter that predicted variation in 325 

photosystem heat thresholds was average daily heat sum (Tsum
leaf) and that relationship was 326 

weak. Whereas leaf temperature parameters were not compelling predictors of Tcrit based 327 

on LMMs, the novel ML approach was able to account for the complexity of the entire 328 

thermal profile. Machine learning revealed that leaf temperature extremes, both high and 329 

low, within the four days preceding heat tolerance measurements explained nearly 85% of 330 

the variation in Tcrit. 331 

Increases in mean daily heat load weakly correlates with increases in Tcrit 332 

Mounting evidence suggests that photosystem heat tolerance thresholds respond to local 333 

thermal conditions, varying temporally (Neuner et al. 2000, Coast et al. 2022, Posch et al. 334 

2022) and spatially (Curtis et al. 2016, O'Sullivan et al. 2017, Cook et al. 2021, Danzey et al. 335 

2024, Kullberg and Feeley 2024). While averages of point leaf temperature measurements 336 

are typically used to characterise the conditions to which a plant is exposed, these metrics 337 

do not capture the complex range of thermal conditions, nor the cumulative nature of heat 338 

stress, which have important implications on measuring shifts in physiological tolerance 339 

(Neuner and Buchner 2023, Cook et al. 2024, Faber et al. 2024). The weak Tsum
leaf ~ Tcrit 340 

relationship was driven by high Tcrit values on 28 Feb. This relationship may have been 341 

weakened due to the relatively benign leaf temperatures in the week leading up to Tcrit 342 

measurement (22.5°C on average). Interestingly, no significant relationship of Tsum-day
leaf  or 343 

Tsum-night
leaf with Tcrit was observed. This finding suggests that thermal tolerance cannot be 344 

understood by examining daytime or nighttime conditions in isolation. Given that sites 345 

clearly had different microclimatic profiles through time, these findings suggest that LMM 346 

analytical approaches that average across substantial daily leaf temperature variation 347 

obscure biologically important information. 348 

Machine learning reveals preceding temperature extremes that predict shifts in Tcrit 349 

Using machine learning, we found compelling evidence that certain daily leaf temperature 350 

points prior to measurement predict subsequent shifts in Tcrit. The extremes of daily 351 

maximum and, importantly, nightly minimum temperatures up to four days prior to heat 352 

threshold measurement predicted a combined 85% of the variation in Tcrit. The field of 353 



cross-tolerance, where exposure to one kind of stress results in tolerance to another 354 

(Hossain et al. 2018), may explain this potentially counterintuitive pattern. Harris et al. 355 

(2024) found that the occurrence of a hot day in concert with a cold night increases heat 356 

tolerance more than a hot day and warm night, suggesting that exposure to cold stress 357 

improves tolerance to heat stress. Indeed, both types of thermal stress can activate similar 358 

response pathways (Mei and Song 2010, Li et al. 2014, Hossain et al. 2018). Heat shock 359 

proteins (HSPs) are known to upregulate in response to both heat and cold stress (Anderson 360 

et al. 1994, Wang et al. 2003), with small HSPs (common in plant chloroplasts) detectable 361 

for up to 72 h after a triggering event (Charng et al. 2006). Further, there is evidence to 362 

suggest that increases in reactive oxygen species and subsequent upregulation of 363 

antioxidant enzymes are involved in the deployment of cross-tolerance (Gong et al. 2001, 364 

Hossain et al. 2016, Hossain et al. 2018).   365 

In the current study, lower nightly temperatures followed by higher daily temperatures 366 

might have had an acclimatory effect on heat tolerance by activating similar response 367 

pathways, which manifested as increased Tcrit in the days following. Danzey et al. (2024) 368 

foundPSII cold tolerance thresholds of -10.8 °C for G. australis and -10.3 °C for D. 369 

continentis. In our study, the average of nightly leaf temperatures across the 7-day window 370 

preceding Tcrit measurements were –2.8 °C and –3.3 °C for G. australis and D. continentis, 371 

respectively, with leaf temperatures dropping as low as -6.9 °C across this period. While 372 

these temperatures did not surpass the reported cold tolerance thresholds, they 373 

approached this range. Repeated exposure to near cold thresholds likely contributed to the 374 

observed acclimation. Conversely, maximum temperatures approached heat tolerance 375 

thresholds measured in the current study much less closely; average maximum leaf 376 

temperature across sites and both species was 22.5 ± 0.26 °C, while average Tcrit was 47.8 ± 377 

0.2 °C. Such disparities between maximum temperatures and temperature thresholds have 378 

been observed by others, particularly in cooler climate species (Buchner and Neuner 2003, 379 

Kitudom et al. 2022, Cox et al. 2025). The stress induced by consistent low-grade stress can 380 

equate to that incurred by short, intense temperature stress (Neuner and Buchner 2023, 381 

Cook et al. 2024, Arnold et al. 2025b). In the context of the present study, it is plausible that 382 

the moderate maximum leaf temperatures observed maintained relatively high baseline Tcrit 383 

values. Further, plants from environments with high seasonal or interannual variability may 384 



maintain elevated Tcrit as a buffer against rare but damaging extremes. Although our 5-min 385 

averages showed mid-20 °C maxima, brief spikes (e.g., 30–35 °C) may have been missed yet 386 

sufficient to induce acclimation, especially because induction temperatures can lie well 387 

below damage thresholds (Knight and Ackerly 2002). As well as prior exposure to heat 388 

stress, increased heat tolerance in plants can be induced by priming with other abiotic 389 

stressors, such as drought exposure can also enhance heat tolerance (Ru et al. 2022, Sumner 390 

et al. 2022, Yadav et al. 2022, Kamran et al. 2025). In this study, drought stress was unlikely 391 

to be a confounding factor because relative water content remained consistent across site 392 

types (Figure S4) and rarely declined to levels indicative of water stress during the sampling 393 

period. An alternative explanation for why both maximum and minimum leaf temperature 394 

predict heat threshold shifts is rapid acclimation and subsequent de-acclimation, which 395 

frequently occur in thermally fluctuating alpine environments (Buchner and Neuner 2003). 396 

Rapid acclimatory responses maybe associated with diurnal alterations of sugar 397 

concentrations and osmotic potential (Seemann et al. 1986, Meyer and Santarius 1998, 398 

Coast et al. 2022). Average daily maximum temperatures in alpine environments may not 399 

seem stressful in absolute terms, but a sufficiently large diurnal swing between minima and 400 

maxima could be. In our study, leaf temperature maxima in the days prior to Tcrit 401 

measurements might have primed leaves for subsequent high temperatures, such that a 402 

cold night followed by another hot day would lead to an acclimatory shift in Tcrit. Plants may 403 

have de-acclimated when exposed to lower day time temperatures on 26 February (Figure 404 

S5). When temperatures rose on 27–28 February, plants likely re-acclimated, reflected in the 405 

higher Tcrit measured on 28 February. This sequence of de-acclimation and subsequent re-406 

acclimation over 27–28 February likely drove the significant Tsum ~ Tcrit relationship. 407 

Acclimation of Tcrit within a three-day window has recently been observed by others (Bison 408 

and Michaletz 2024), perhaps underpinned by upregulation of HSPs and changes in 409 

membrane fatty acid composition (Zhu et al. 2024) and/or by expression of genes or 410 

isoforms associated with photosynthesis and solute transport (Roces et al. 2022). Because 411 

the ability of machine learning to identify lag effects of temperature fluctuations on Tcrit is 412 

not predicated on linear relationships, the approach is well-suited for capturing these 413 

complex acclimation dynamics, especially in field conditions, where environmental 414 

conditions fluctuate frequently. 415 



Irrespective of how these extreme temperatures triggered shifts in heat tolerance, the same 416 

response was evident for both species. No differences in the predictive points were seen 417 

between species when separate machine-learning analyses were performed for them 418 

(results not shown). Likewise, when testing for the main effects of species using linear mixed 419 

models, no significant effect of species on Tcrit was found. Growth form and leaf traits, 420 

including but not limited to, leaf angle, leaf mass per area and leaf habit have been reported 421 

as being significant predictors of heat tolerance (Sklenář et al. 2016, Sastry and Barua 2017, 422 

Leon-Garcia and Lasso 2019, Middleby et al. 2025). Further, transpiration rates influence 423 

leaf energy balance and perhaps heat tolerance thresholds (Marchin et al. 2022, Valliere et 424 

al. 2023). It is, therefore, possible that because G. australis and D. continentis are both 425 

evergreen alpine shrubs of similar heights, differences in leaf temperature driven by leaf 426 

structural traits or transpiration (Bird et al. unpublished data) might not have been great 427 

enough to cause differences in Tcrit. We note, however, our restriction to just two species 428 

limits the ability to draw general conclusions about different species responses, something 429 

that warrants further research. 430 

Conclusions and future directions 431 

Our findings indicate that not only temporally proximal leaf temperature maxima, but also 432 

minima play a significant role in triggering shifts in heat tolerance thresholds. Our study also 433 

corroborated the importance of cumulative heat load in determining heat tolerance 434 

thresholds. However, this direct cumulative effect was small, highlighting that average leaf 435 

temperature parameters do not sufficiently capture the temporal variability in thermal 436 

conditions that influence physiological tolerance thresholds. By contrast, machine learning 437 

revealed patterns that traditional statistical methods could not, providing new insights into 438 

acclimatory triggers for shifts in thermal tolerance threshold. The observation that both high 439 

and low temperature extremes are important predictors of Tcrit underscores the importance 440 

of considering both ends of the temperature spectrum when predicting plant responses to 441 

heat stress. Future studies should investigate whether cross tolerance represents a 442 

competitive advantage for species from thermally variable environments. With a larger 443 

sample size and broader range of species, machine learning may reveal the requirements for 444 

thermal cues to induce cross-tolerance responses. Additionally, such an approach may clarify 445 



whether acclimation to temperatures in the four days preceding threshold measurement is a 446 

consistent and generalisable phenomenon. 447 

In summary, while statistical approaches are useful for understanding broad ecological 448 

patterns, machine learning could be particularly useful when dealing with spatially and 449 

temporally fluctuating environmental conditions and where their relationships with plant 450 

physiology are complex and non-linear. Combining machine learning with more traditional 451 

statistical approaches could enhance predictive accuracy, enabling the development of 452 

robust tools to guide ecosystem management, conservation strategies, and climate 453 

resilience efforts.  454 
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Figure legends 710 

 711 
Figure 1.  A schematic of the experimental design capturing microclimatic variation. a) site 712 
and aspect contrasts; both species (Grevillea australis and Dracophyllum continentis) at 713 
study sites contrasting in aspect throughout Schlink Pass and Mt Stilwell. The average 714 
elevation of sites at each location can be seen on the left. Black letters in green circles 715 
correspond with a site type, the air temperature parameters of which are indicated in panels 716 
b, c, d and e. Tsum

air (°C) represents the daily average sum of degrees above 0°C occurring at 717 
5-minute intervals across a 24-hr period (pink boxes, left); Ttime

air represents the time of day 718 
at which maximum air temperatures occurred (blue boxes, middle) and Trange

air (°C) 719 
represents the diurnal range of air temperature (green boxes, right). Daily values for all three 720 
parameters were averaged across the month of February 2023 and across the four replicates 721 
of each site type (SchlinkSE, SchlinkNW, StilwellNW and StilwellSE). For full details, see 722 
Tables S1 and S2.  723 



 724 

Table 1. The output of linear mixed models to determine the influence of aspect (NW v SE) 725 
and location (Schlink Pass v Mt Stilwell) on site-specific daily heat sum (Tsum

air), time of day 726 
that maximum temperatures were reached (Ttime

air) and diurnal temperature range (Trange
air ) 727 

across the month of February 2023.The model included the sampling date as a random 728 
factor to account for variation in heat sum caused by differences in weather across days 729 
(Figure S5). Bolded p-values indicate significance at  = 0.05. 730 

 

Response  

variable 

df Fixed effects F p-value 

Ttime
air 1, 415 Aspect 29.66 <0.001 

 1, 415 Location 0.293 0.589 

 

 

1, 415 Aspect x location 0.490 0.484 

 

 

 

Tsum
air 1, 415 Aspect 0.225 0.636 

 1, 415 Location 10.467 0.001 

 

 

1, 415 Aspect x location 4.971 0.026 

Trange
air 1, 425 Aspect 0.180 0.666 

 1, 425 Location 24.79 <0.001 

 

 

1, 425 Aspect x location 22.12 <0.001 

 731 

Table 2. The output of linear mixed models to determine the effect of leaf temperature 732 
parameters (Ttime

leaf, Tsum
leaf, and Trange

leaf; Figure 2) on photosystem heat thresholds (Tcrit). 733 
Bolded p-values indicate significance at a = 0.05.  734 

Leaf temperature 
parameter 

df F p-value 

Ttime
leaf 1, 33 0.129 0.72 

Tsum
leaf 1, 27 4.478 0.04 

Trange
leaf  1, 20 0.527 0.47 

  735 



 736 

Figure 2. a) Variation in heat tolerance thresholds (Tcrit) across five days of sampling in 737 
summer (26 Feb – 2 Mar). Letters represent significant differences in Tcrit between days of 738 
sampling. Error bars show the standard error of mean Tcrit. All daily Tleaf parameter values 739 
were averaged across the week of leaf temperatures leading up to and coinciding with Tcrit 740 
sampling (22 Feb – 28 Feb). b) The relationship between average time of maximum 741 
temperature (Ttime

leaf) and Tcrit. c) The relationship between average daily heat sum (Tsum
leaf) 742 

and Tcrit. d) The relationship between average diurnal temperature range (Trange
air) and Tcrit. 743 

Solid lines represent statistically significant relationships, and dashed lines represent non-744 
significant relationships from linear mixed models; conditional R2 values are shown above 745 
their corresponding relationship. 746 

 747 
  748 



Figure 3. Snap Boosting Machine Regressor model for predicting the effects of the historical 749 
leaf temperature profiles on heat tolerance thresholds (Tcrit) based on leaf temperatures 750 
averaged across two species and 16 sites recorded at 5-minute intervals (1,152 time points 751 
per day of Tcrit measurement). The data shown represent the leaf temperature profile within 752 
the four days preceding each of the five days of Tcrit measurement. Because Tcrit was 753 
measured on five consecutive days, a given time point prior to Tcrit measurement 754 
represented five sets of species-site combinations (32 plants per day totalling to 36,864 leaf 755 
temperatures for each day of Tcrit measurement, Figure S6). (a) Leaf temperature (°C) over 756 
the four-days, with individual timepoints shown in dark grey and the light grey shadow 757 
indicating the standard deviation for each time point. Machine learning (ML) predictive 758 
features are the 33 points highlighted in colours representing their temperature, with blue 759 
indicating lower and red indicating higher leaf temperatures. The ML predictive points 760 
indicate the times at which leaf temperature had the highest predictive power for Tcrit 761 
measured. (b) The individual predictive power of each of the 33 ML features, with the total 762 
predictive power of all points taken together explaining 84.9% of the variation in Tcrit, with 763 
three temperature points having between 10-15% predictive power each (marked with grey 764 
ellipses). 765 

 766 



Supplementary Materials 1 

 2 

Supporting Information 1. Selection of sites contrasting in aspect. 3 

Selection for each site pair was based on four criteria: 1) whether sites were reasonably 4 

matched in elevation (within 10 m), 2) whether their aspects were contrasting (North-West 5 

facing vs South-East facing), and 3) whether the distance between the target G. australis 6 

and D. continentis plants was more than 1 m apart. The latter criterion was to ensure that 7 

thermocouples were run only a short distance to the datalogger and that microclimatic 8 

conditions that the plants were exposed to were comparable.  9 

 10 

  11 
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Table S1. Coordinates, elevation, slope and aspect of study microsites across Schlink Pass 
and Mt Stilwell in Kosciuszko National Park of South-East New South Wales. Latitude and 
longitude values are formatted in decimal degrees. The nomenclature of the site names 
are as follows: the first two letters, ‘Sp’ and ‘St’ represent the site location, Schlink Pass 
and Stilwell, respectively and the last two letters of each abbreviated site name represent 
the aspect of the site. Although not all sites were directly NW/SE facing, a LMM where 
date was a random factor revealed highly significant variation in mean air temperatures 
between sites of opposing aspects across the year 2023 (p < 0.001, Bird et al., 
unpublished data). This justified the grouping of paired sites into NW and SE categories. 
 

 

Site Latitude  Longitude  Elevation 

(m a.s.l) 

Aspect  Slope  

Stilwell      

St1SE -36.44111 148.3239 1962 SE 175 ° 5 ° 

St1NW -36.44111 148.3225 1953 NW 300 ° 15 ° 

St2SE -36.44778 148.3322 1959 SE 125 ° 10 ° 

St2NW -36.44222 148.3264 1960 NW 332 ° 10 ° 

St3SE -36.44583 148.3328 1952 SE 117 ° 5 ° 

St3NW -36.44194 148.3278 1963 NW 322 ° 10 ° 

St4SE -36.44472 148.3344 1956 NE 27 ° 15 ° 

St4NW -36.4428 148.3297 1963 NW 322 ° 10 ° 

Schlink Pass      

Sp1SE -36.26444 148.3731 1690 E 120 ° 25 ° 

Sp1NW -36.26477 148.3733 1680 NW 330 ° 10 ° 

Sp2SE -36.26694 148.3714 1672 E 70 ° 20 ° 

Sp2NW -36.26719 148.3719 1672 W 270 ° 5 ° 

Sp3SE -36.26806 148.3711 1667 E 90 ° 20 ° 

Sp3NW -36.26843 148.3718 1660 SW 240 ° 15 ° 

Sp4SE -36.26861 148.3708 1665 SE 150 ° 5 ° 

Sp4NW -36.26889 148.3708 1664 NW 300 ° 5 ° 
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Figure S1: Sixteen study sites throughout Schlink Pass (top) and Mt Stilwell (bottom) in 
South-Eastern Australia on topographic maps. Red circles indicate N-NW facing sites; blue 
circles indicate S-SE facing sites. At each location, there were four site pairs, each pair 
matched in elevation but contrasted in aspect. Thin black lines indicate which sites are 
paired where unclear. Scale bars and north arrows are on each map. The map products 
were generated using the “ggmap” (Kahle & Wickham, 2013) and “ggplot2” (Wickham, 
2016) R packages. 
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a) b) 

  
c) d) 

  
e) f) 

  
Figure S2. In-field setup of temperature logging stations at study microsites in Kosciuszko National 

Park, New South Wales across two locations: a) Mount Stilwell and b) Schlink Pass. Thermocouples 

recording leaf temperature of c) D. continentis and d) G. australis. e) A Thermocouple recording 

air temperature protected by a white cap. f) Thermocouples were connected to dataloggers an kept 
in a waterproof esky, protected using plastic garden netting. 
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Figure S3. An example of a chlorophyll-fluorescence curve (T-Fo). The curve shows an 
increase in baseline chlorophyll fluorescence with an increase in temperature. The 
triangle indicates the Tcrit threshold. 
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Table S2. Average maximum and minimum air temperatures, Ttime
air,  Tsum

air and Trange
air for NW 

and SE aspects at both study locations. Values for each variable were averaged across the four 
replicates for each site type and the 28 days of February 2023.  
 

Location Aspect Mean maximum 
air 
temperature (°C) 

Mean minimum 
air 
temperature (°C) 

Ttime
air 

(hrs) 

Tsum
air 

(°C) 
Trange

air 

(°C) 

Schlink Pass NW 
 
 

22.5 ± 0.5 0.86 ± 0.3 15.1 ± 
0.2 

3269 ± 
93 

22.3 ± 
0.7 

SE 24.9 ± 0.6 0.4 ± 0.3 13.7 ± 
0.2 

3373 ± 
101 

23.0 ± 
0.6 

Mt Stilwell NW 
 
 

24.3 ± 0.8 3.1 ± 0.3 15.1 ± 
0.4 

3208 ± 
108 

21.3 ± 
0.8 

SE 20.6 ± 0.9 3.1 ± 0.3 13.3 ± 
0.4 

3047 ± 
128 

17.5 ± 
0.9 
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Table S3. The output of linear mixed models to determine the influence of aspect (NW 
v SE) and location (Schlink Pass v Mt Stilwell) on site-specific daily heat sum (Tsum

air), 
time of day that maximum temperatures were reached (Ttime

air) and diurnal 
temperature range (Trange

air ) across the month of February 2023.The model included 
the sampling date as a random factor to account for variation in heat sum caused by 
differences in weather across days (Figure S5). Bolded p-values indicate significance at 

 = 0.05. 

 

Response  
variable 

df Explanatory 
variables 

F p-value 

Ttime
air 1, 415 Aspect 29.66 <0.001 

 1, 415 Location 0.293 0.589 

 
 

1, 415 Aspect x location 0.490 0.484 
 
 
 

Tsum
air 1, 415 Aspect 0.225 0.636 

 1, 415 Location 10.467 0.001 

 
 

1, 415 Aspect x location 4.971 0.026 

Trange
air 1, 425 Aspect 0.180 0.666 

 1, 425 Location 24.79 <0.001 

 
 

1, 425 Aspect x location 22.12 <0.001 
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Table S4. The output of linear mixed models to determine the effect of leaf temperature 
parameters (Tsum-day

leaf, and Tsum-night
leaf; Figure 2) on photosystem heat thresholds (Tcrit).  

Leaf temperature parameter df F p-value 

Tsum-day
leaf 1, 27 3.07 0.99 

Tsum-night
leaf 1, 27 3.1 0.09 
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Figure S4. RWC for G. australis and D. continentis at the four site-types (SchlinkSE, 
SchlinkNW, StilwellNW, StilwellSE). All data were collected between the 25 Feb and 1 
March 2023, overlapping with the Tcrit sampling period.  
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Figure S5. Leaf temperatures (°C) of Dracophyllum continentis (purple lines) and Grevillea 
australis (yellow lines) across seven days (22–28 Feb) leading up to and coinciding with Tcrit 

sampling (26 Feb–2 Mar). Leaf temperatures were measured in situ at 16 sites across two alpine 
locations (Schlink Pass and Mt Stilwell) that contrasted in aspect (SW v NE). Tick marks on the x-
axis align with data recorded at 3 pm on that day. The dashed horizontal lines represent 0°C, 
and the grey shading represents the first three days of Tcrit sampling.   
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Figure S6. Number of time points and leaf temperatures included in the SnapBoosting 
Machine Regressor model used to predict the effects of historical leaf temperature 
profiles on heat tolerance thresholds (Tcrit). Time points for each four-day period 
preceding a day of Tcrit measurements are shown in rows 3–7. The darkest shade 
represents time points within the 24 hours preceding each day of Tcrit measurement, 
while the lightest shade represents time points 72–96 hours prior. Each time point 
corresponds to 32 unique leaf temperature measurements (recorded from two species 
across 16 sites). In total, 1,552 time points and 36,864 unique leaf temperature values 
were used to predict the 32 Tcrit values for each measurement day. Across all 32 plants 
and all five Tcrit measurement days, a total of 5,670 time points and 184,320 leaf 
temperature values were used to predict Tcrit in this four-day model. 
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a) b) 



Figure S7. Daily Tleaf parameters values were averaged across the week of leaf 
temperatures leading up to and coinciding with Tcrit sampling (22 Feb – 28 
Feb). a) The relationship between average day time heat sum (Tsum-night

leaf) and 
Tcrit. b) The relationship between average day time heat sum (Tsum-night

leaf) and 
Tcrit. Dashed lines represent non-significant relationships from linear mixed 
models. 
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