

1 **Title:** Machine learning reveals the effect of leaf temperature extremes on shifts in plant
2 photosystem heat tolerance thresholds

3

4 **Author names:** Catherine Pottinger¹, Pieter A. Arnold², Michelle Bird¹, Lisa M. Danzey¹,
5 Sonya R. Geange^{3,4}, Andrei Herdean⁵, Adrienne B. Nicotra², Andy Leigh¹

6 **Affiliations:**

7 ¹University of Technology Sydney, School of Life Sciences, Broadway, NSW 2007, Australia.

8 ² Division of Ecology and Evolution, Research School of Biology, The Australian National
9 University, Canberra, ACT 2600 Australia.

10 ³University of Bergen, Department of Biological Sciences, Bergen, 5008 Norway.

11 ⁴Bjerknes Centre for Climate Research, University of Bergen, Norway

12 ⁵University of Technology Sydney, Climate Change Cluster, Broadway, NSW 2007, Australia.

13

14 Catherine Pottinger (corresponding author): <https://orcid.org/0009-0001-2436-5069>
15 catie.a.pottinger@student.uts.edu.au

16 Pieter Arnold: <https://orcid.org/0000-0002-6158-7752>

17 Lisa Danzey: <https://orcid.org/0009-0005-0314-9075>

18 Sonya Geange: <https://orcid.org/0000-0001-5344-7234>

19 Andrei Herdean: <https://orcid.org/0000-0003-2143-0213>

20 Adrienne Nicotra: <https://orcid.org/0000-0001-6578-369X>

21 Andy Leigh: <https://orcid.org/0000-0003-3568-2606>

22 **Funding**

23 Australian Research Council Linkage Projects grant LP180100942, held by AN and AL;
24 Australian Government Research Training Program Scholarship, held by CP.

25 **Conflicts of Interest**

26 The authors declare no conflicts of interest.

27 **Data availability**

28 If accepted for publication, data will be made available on Dryad and the code used for
29 analyses, on GitHub.

30 **Keywords**

31 Heat tolerance, leaf temperature, microclimate, alpine, T_{crit} , cross tolerance, extreme
32 temperatures

33 **Abstract**

34 Plant physiological heat tolerance thresholds can acclimate rapidly in response to changing
35 leaf temperature, which varies considerably across microclimatic space and time. How leaf
36 temperatures trigger shifts in these heat thresholds has not been established. We aimed to
37 determine the influence of temporally proximal leaf temperatures (T^{leaf}) on leaf photosystem
38 heat tolerance thresholds (T_{crit}) for two co-occurring plant species *in situ* in the Australian
39 Alps. We measured T_{crit} and T^{leaf} over five days at 16 sites, paired by aspect (northwest,
40 southeast) across two locations: a cold air drainage valley and a high exposed ridgeline. To
41 investigate how T_{crit} was influenced by T^{leaf} in the days prior, we used traditional statistical
42 approaches (linear mixed models) and a machine learning technique. While traditional
43 models found that T^{leaf} parameters explained some variation in T_{crit} , machine learning
44 identified that 85% of the variation in T_{crit} was explained by both maximum and minimum
45 leaf temperatures in the four days prior to measurement. This finding illustrates that heat
46 tolerance acclimation is driven by exposure to not only maximum, but also minimum leaf
47 temperatures. To uncover complex relationships between fluctuating environmental
48 conditions and plant acclimatory responses, we recommend integrating machine learning
49 techniques with traditional statistical methods.

50

51 **Introduction**

52 Many of the critical physiological processes of plants, including photosynthesis, tissue repair
53 and reproduction, are mediated by temperature (Wahid et al. 2007). Ascertaining the
54 thermal limits to physiological function, or thermal tolerance thresholds, and how they shift
55 with local temperature, is critical if plant vulnerability to climatic warming is to be
56 characterised accurately (Cook et al. 2021). It is becoming increasingly clear that coarse
57 gradient measures of climate do not predict significant variation in heat tolerance thresholds
58 at a local scale (Curtis et al. 2016, Feeley et al. 2020, Perez and Feeley 2020, Danzey et al.
59 2024). Indeed, in common garden settings, differences in heat tolerance thresholds are
60 reduced relative to *in situ* measurements (Knight and Ackerly 2002, Knight and Ackerly 2003,
61 Harris et al. 2024, Alvarez et al. 2025), indicating acclimation to local conditions. Heat
62 tolerance acclimation in plants broadly refers to the reversible physiological and
63 morphological adjustments that enable plants to modify their thermal limits in according to
64 prevailing environmental conditions (Wahid et al. 2007, Zhu et al. 2018). Further, leaf
65 temperatures can strongly decouple from air, exceeding air temperatures by $>10^{\circ}\text{C}$ under
66 hot conditions (Körner and Cochrane 1983, Blonder and Michaletz 2018, Fauset et al. 2018);
67 the extent of this decoupling is mediated by morphological traits that influence leaf
68 thermodynamics (Leigh et al. 2017, Arnold et al. 2025a). For these reasons, focus has shifted
69 toward the influence of leaf temperature on thermal tolerance, particularly photosystem
70 heat tolerance (Perez and Feeley 2020, Cook et al. 2021, Zhu et al. 2024). There is evidence
71 to suggest that microclimate, through its influence on leaf temperatures, is a strong
72 predictor of heat tolerance thresholds (Buchner and Neuner 2003, Curtis et al. 2016, Leon-
73 Garcia and Lasso 2019). This association is particularly important to investigate in places
74 typified by high microclimatic heterogeneity and temporal variability, such as alpine
75 environments (Körner 2003, Körner and Hiltbrunner 2021, Körner 2023).

76 Average temperatures do not necessarily capture the extremes to which plants are exposed.
77 Nor do they account for the influence of heat load, a function of temperature intensity and
78 exposure duration, on heat tolerance (Neuner and Buchner 2023, Cook et al. 2024, Faber et
79 al. 2024). While climate change is bringing warmer daytime temperatures, nighttime
80 temperatures may be increasing at a greater rate (Easterling et al. 1997, Donat and
81 Alexander 2012), which has implications on important aspects of plant physiology and

82 reproduction (Willits and Peet 1998, Niu and Xiang 2018, Rahnama et al. 2024). Among
83 these physiological processes, PSII acclimation is particularly important, as it reflects the
84 ability of the photosynthetic apparatus to maintain function under increasingly stressful
85 thermal conditions. This phenomenon has been observed as changes in PSII heat tolerance
86 thresholds (Posch et al. 2022, Sumner et al. 2022, Andrew et al. 2023, Cook et al. 2024,
87 Danzey et al. 2024). Research on heat tolerance thresholds typically focuses on the effect of
88 increasing or maximum temperatures (Leon-Garcia and Lasso 2019, Perez and Feeley 2020,
89 Vilas-Boas et al. 2024), while the effect of minimum temperatures has received far less
90 attention. Further, diurnal temperature amplitude can exert a substantial effect on drought
91 and freezing tolerance (Zhang et al. 2023). However, the effect of temperature across diurnal
92 cycles on heat tolerance thresholds under natural conditions remains to be studied.

93 Regarding the effect of temperature history on heat tolerance, some authors suggest that
94 acclimation is influenced by mean and maximum daily temperatures in the days prior to
95 measurement (Hüve et al. 2006, Curtis 2017, Bison and Michaletz 2024, Zhu et al. 2024).
96 Conversely, others have found that acclimation of heat thresholds occurs over longer
97 temporal scales, across months and seasons (Zhu et al. 2018, Leon-Garcia and Lasso 2019).
98 It remains unclear as to what temporal scale acclimation of these thresholds occurs across
99 and the magnitude of the cues that trigger threshold shifts.

100 The thermal triggers for heat tolerance acclimation are complex. Relationships between
101 heat tolerance and temperature are not linear, with discrepancies between threshold
102 relaxation and leaf temperature documented in alpine environments (Buchner and Neuner
103 2003, Neuner and Buchner 2012). Therefore, traditional statistical methods that rely on
104 average temperatures to predict heat tolerance present clear limitations, particularly for
105 data collected under field conditions, where environmental temperatures vary across
106 microclimates and plants are exposed to rapid temperature fluctuations. Predicting thermal
107 tolerance necessitates a more nuanced assessment of how temporally proximal
108 temperatures lead to shifts in heat tolerance thresholds. Machine learning has recently
109 been used to determine how leaf temperature series predict plant physiological processes
110 like stomatal conductance (Gaur and Drewry 2024). Others have used such methods for
111 predicting photosynthetic performance parameters from plant water status and spectral
112 characteristics (Yang et al. 2022, Song and Wang 2023). A machine learning approach offers

113 a potential path for ascertaining how leaf temperature profiles might cue changes in heat
114 tolerance thresholds.

115 Here we measured *in situ* leaf and air temperatures and critical heat tolerance thresholds of
116 photosystem II (PSII) of two co-occurring morphologically and phylogenetically distinct
117 Australian alpine plant species, *Grevillea australis* and *Dracophyllum continentis*, at 16 sites
118 across two locations varying in elevation and landform. By contrasting the aspect and
119 location of study sites, our design maximised the microclimatic variation in terms of the
120 average time of day that maximum temperature occurred, the sum of temperatures across a
121 day and the temperature range of the diurnal cycle. We compared two different approaches
122 to investigate how leaf temperature affects acclimation of plant heat tolerance thresholds.

123 First, representing a traditional statistical approach, we used linear mixed models to
124 determine whether average temperature parameters could explain variations in heat
125 tolerance thresholds. Second, we sought to explain variation in T_{crit} by applying a machine
126 learning (ML) approach, which used the full suite of raw temperature data, representing
127 5,600 individual leaf temperature points.

128 **Methods**

129 *Study site selection and study species*

130 All field and experimental work was conducted on Wolgalu and Monaro Ngarigo lands in
131 Kosciuszko National Park, New South Wales, Australia. Study sites were situated in
132 grasslands at two locations representing different topographies and elevations: Schlink Pass,
133 a sub-alpine, cold air drainage valley along the Munyang River, at 1670 m a.s.l., and Mt
134 Stilwell, an alpine site on the exposed mountain pass above Charlotte Pass Village, 1959 m
135 a.s.l. Aspect, topography and elevation are design features that influence microclimatic
136 conditions. There were 16 sites in total: at each location, eight sites were selected, four of
137 NW aspect and four of SE aspect (Figure 1a; Figure S1; Table S1). Along with the contrasting
138 landforms represented at the two locations, selecting sites with contrasting aspects
139 maximised potential microclimatic variation, based on two factors: first, prevailing winds in
140 the region are from the west to the northwest (AGBoM 2023) and second, incident sunlight
141 is highest for equatorial-facing vegetation (Russell et al. 1989), i.e., north-northwest in the
142 southern hemisphere (for more details, see Supporting Information 1).

143 The two alpine species, *Dracophyllum continentis* B.L.Burtt (Ericaceae) and *Grevillea australis*
144 R.Br. (Proteaceae), are found in both alpine and subalpine environments throughout South-
145 East Australia. These species were selected because they co-occur in moist alpine
146 environments yet are phylogenetically and morphologically distinct. *Dracophyllum*
147 *continentis* is a multi-branched shrub growing to 1 m, with thick, ovate to triangular leaves
148 (2–4 cm long, 4–7 mm wide), densely packed around the stem; *G. australis* is a shrub
149 growing to 1 m, with smaller, oblanceolate, linear, or narrow-elliptic leaves (0.5–3.5 cm long,
150 0.5–5.5 mm wide) that are spread along its woody branches (PlantNET 2024).

151 *Air and leaf temperature measurements*

152 Site-specific air temperature and leaf temperatures of *G. australis* and *D. continentis* were
153 measured at all 16 sites across Schlink Pass and Mt Stilwell from the start of February 2023
154 (Figure S2a, b). Leaf temperature was logged in 5-minute intervals using fine-wire type-T
155 thermocouples (gauge AWG 36, 0.13 mm diameter, Omega Engineering, Norwalk, CT, USA)
156 connected to four-channel HOBO data loggers (UX120-014M, Onset HOBO® Dataloggers
157 Onset, Bourne, USA). At each site, one thermocouple was attached to the underside of a *D.*
158 *continentis* leaf and two were attached to *G. australis* leaves. Thermocouples were affixed to
159 the leaves using a small piece of surgical tape, sized to one third of the leaf area to minimise
160 disruption to the leaf boundary layer (Figure S2c, d). All thermocouples measuring leaf
161 temperature were attached to leaves on the outer, sun-exposed north-facing side of the
162 canopy. Another thermocouple measured ambient air temperature and was attached to a
163 branch adjacent to the leaves being measured for temperature. A small white cap covered
164 each air thermocouple to shield it from direct sunlight (Figure S2e, f).

165 *Collection of leaf material*

166 Sampling of leaves for heat tolerance thresholds took place during mid-summer, between
167 9am and 12pm every day from 26 February to 2 March 2023. To determine the water status
168 of the plants sampled for heat tolerance measurement, we also collected leaves RWC
169 between 25 February and 1 March. The field sites were logistically very challenging to access
170 on foot, so water potential measurements were not feasible. To ensure that heat tolerance
171 measurements were not confounded by time of sampling, leaves were collected from all 16
172 sites each day by two fieldwork teams concurrently, one at Mt Stilwell and the other at
173 Schlink Pass. At each site, two mature, healthy leaves were collected from the outer sun-

174 exposed north side of the canopy for each species. Concurrently, a small stem bearing leaves
175 of the same description was collected for relative water content (RWC) measurement. On
176 each day of sampling, leaves were collected from the same plants at each site. After
177 collection, leaves were placed in zip-lock bags lined with damp paper towels and kept in
178 darkness until heat tolerance measurements were made in the laboratory the same day.
179 Leaf samples were measured between five and eight hours after collection (Danzey et al.
180 2024, Briceño et al. 2025).

181 *Measurement of heat tolerance thresholds*

182 Photosystem II heat tolerance thresholds were measured based on the method detailed by
183 Arnold et al. (2021). Briefly, leaf samples were placed on a thermoelectrically controlled
184 Peltier plate, with type-T thermocouples attached to the underside of each leaf sample for
185 continuous leaf temperature measurements during a controlled heating ramp. The
186 temperature ramp began at 25 °C, increasing at a rate of 0.5 °C per minute until reaching
187 70 °C. A pulse amplitude modulated imaging fluorimeter (Maxi-Imaging-PAM; Heinz Walz
188 GmbH, Effeltrich, Germany) took measurements of minimal chlorophyll fluorescence (F_0)
189 during heating after allowing 30 minutes for leaves to dark adapt. For each experimental
190 run, 64 T- F_0 curves (two replicates from the 16 sites for each species) were produced, from
191 which the critical heat thresholds (T_{crit}) were determined as the point of transition between
192 slow-rise and fast-rise in F_0 with increasing temperature (Figure S3).

193 *Meausrement of RWC*

194 For relative water content (RWC) determination, leaf samples with petioles removed were
195 first weighed to obtain fresh weight (FW). Samples were then submerged in water-filled pill
196 boxes for 3–4 hours to allow rehydration, after which the turgid weight (TW) was recorded.
197 Subsequently, samples were transported to the laboratory and oven-dried for one week,
198 after which they were re-weighed to obtain the dry weight (DW). RWC was calculated using
199 the formula:

200
$$RWC = \frac{FW - DW}{TW - DW} \times 100$$

201 *Traditional statistical approach for ascertaining the effect of leaf temperature on T_{crit}*

202 To characterise microclimatic variation in thermal profile across study sites, we calculated
203 three temperature parameters that we expected to reflect the nature, intensity and timing
204 of thermal load to which plants are exposed. These factors have been shown to influence
205 plant heat tolerance (Blair et al. 2019, Grinevich et al. 2019, Laosuntisuk and Doherty 2022,
206 Neuner and Buchner 2023, Cook et al. 2024). Heat stress intensity varies with aspect as it
207 determines the timing and magnitude of maximum temperatures in each day (McCune and
208 Keon 2002, Li et al. 2021). Thermal regimes differ markedly between mountain and valley
209 environments. While air temperatures are typically higher in lower elevation environments
210 at night, radiative cooling and cold-air drainage promote the formation of cold air pools,
211 which tend to develop in valleys (Lundquist et al. 2008, Pepin et al. 2022). As such, we chose
212 to calculate the time of day that maximum air temperature was reached (T_{time}^{air}), the daily
213 sum of degrees above 0°C (T_{sum}^{air}), and the diurnal cycle temperature range (T_{range}^{air}) at each
214 of the 16 study sites for the four weeks prior to and coinciding with T_{crit} measurement (Table
215 S2).

216 First, the temperature data for each site were cleaned to remove non-sensible values due to
217 spurious electrical signals (below -25°C and above 40°C). For calculation of T^{leaf} values for *G.*
218 *australis*, raw leaf temperature data collected by the two thermocouples were averaged. To
219 calculate T_{sum} values, the average temperatures above 0°C were summed for each five-
220 minute interval across the 24 hours between 12 am and 11:59 pm for each day. For T_{time} , the
221 time at which the maximum temperature occurred on each day was converted into hour
222 values for ease of analysis (e.g., a 24-hour time value of 13:30 became 13.5). T_{range}
223 parameters were calculated by subtracting the minimum temperature occurring each night
224 (between 7 pm and 6:59 am) from the maximum temperature occurring on the subsequent
225 day (between 7 am and 6:59 pm). In addition to calculating 24-hour cumulative temperature
226 above 0 °C (T_{sum}^{leaf}) on T_{crit} , nightly ($T_{sum-night}^{leaf}$) and daily temperature ($T_{sum-day}^{leaf}$) sums
227 were calculated separately so we could differentiate between the effects of day and
228 nighttime heat load on T_{crit} . $T_{sum-day}^{leaf}$ and $T_{sum-night}^{leaf}$ were calculated by summing the
229 temperatures above 0°C for each 5-minute interval between 7 am and 6:59 pm and 7 pm
230 and 6:59 am respectively. Individual daily values for each T^{air} parameter at each site were
231 averaged across all days of February, resulting in 16 levels of each microclimate parameter.
232 Values for each T^{leaf} parameter were averaged at each site and for each species across the

233 days preceding and coinciding with T_{crit} sampling (22 Feb – 28 Feb) resulting in 32 levels of
234 each leaf temperature parameter.

235 To assess whether plants from these distinct microclimates differed in water status, we fitted
236 an LMM with the same structure as above, but with RWC as the response variable and plant
237 ID included as an additional random factor and species as an additional fixed factor. While
238 RWC differed significantly between species ($F_{1, 27} = 52.9$, $p < 0.001$), it did not with location
239 ($F_{1, 27} = 0.43$, $p = 0.52$) or aspect ($F_{1, 27} = 0.0059$, $p = 0.94$; Figure S4). This analysis enabled
240 us to exclude variation in plant water status across sites as a factor potentially confounding
241 microclimatic variation in T_{crit} .

242 Having established that T_{time}^{air} , T_{sum}^{air} and T_{range}^{air} reflect the substantial microclimatic
243 variation among sites (Table S3), we next sought to determine the influence of the
244 equivalent leaf temperature versions of these parameters on heat tolerance thresholds. Leaf
245 temperature parameters (T_{time}^{leaf} , T_{sum}^{leaf} and T_{range}^{leaf}) were calculated using the measured
246 leaf temperatures of *G. australis* and *D. continentis* spanning the four days prior to, and first
247 three days of T_{crit} sampling (Figure S5), which we expected to most closely reflect the
248 temperature conditions likely to initiate changes in heat tolerance thresholds (Bison and
249 Michaletz 2024, Zhu et al. 2024). In addition to calculating 24-hour cumulative temperature
250 above 0 °C (T_{sum}^{leaf}) on T_{crit} , nightly ($T_{sum-night}^{leaf}$) and daily temperature ($T_{sum-day}^{leaf}$) sums
251 were calculated separately so we could differentiate between the effects of day and
252 nighttime heat load on T_{crit} . All temperature parameters were averaged across the seven
253 days for each of the 16 sites and the resulting values were included as fixed factors in three
254 separately fitted LMMs, where T_{crit} was the response variable. In each model, date was
255 included as a random factor to account for weather variation across sampling days. To
256 prevent boundary fit issues arising from including aspect and location separately, a
257 categorical variable named ‘site type’ with four levels (SchlinkSE, SchlinkNW, StilwellNW,
258 StilwellSE) was used as a random factor in these models. Where boundary fit issues
259 persisted, ‘site type’ was removed from the model. An additional random effect was added
260 to the models, Plant ID, of which there were 32 levels, to account for variability between leaf
261 replicates. ‘Species’ was excluded from $T^{leaf} \sim T_{crit}$ models as a fixed term because
262 preliminary analyses determined that T_{crit} did not differ between species ($F_{1, 286} = 0.087$, $p =$

263 0.77). Analyses were conducted using R Statistical Software (v 4.2.1: R Development Core
264 Team 2024).

265 *Machine learning approach to ascertaining the effect of leaf temperature on T_{crit}*

266 Boosting-based ensemble methods are a class of machine learning algorithms that combine
267 multiple decision trees into a single strong predictive model. Each decision tree is trained
268 sequentially, with each subsequent model attempting to correct the residual errors of its
269 predecessor. This learning process allows boosting models to capture complex, nonlinear
270 relationships between input, predictive features and response variables (Natekin and Knoll
271 2013). We utilised the IBM Watson Machine Learning platform to train a Snap Boosting
272 Machine Regressor model to identify key predictive temperature points leading up to T_{crit}
273 measurements. For the machine learning model (Python script) see Supplementary File 1.
274 Five-minute interval leaf temperature data from both species and all sites were pooled
275 together for training the model. This pooled model resulted in 153 T_{crit} values with their
276 respective temperature history, which initially encompassed 25 days prior to each T_{crit}
277 measurement (1 February 2023 – 1 March 2023; 8,532 time points and 267,264 leaf
278 temperature points for each day of T_{crit} measurement for the initial 29-day model). Based on
279 this preliminary analysis, we narrowed this down to the four-day temperature history
280 leading up to each T_{crit} measurement (1,152 time points and 36,864 leaf temperatures points
281 for each day of T_{crit} measurement, Figure S6), as it provided the most relevant predictive
282 features. This decision was supported by literature on the biochemical processes that govern
283 heat tolerance; for example, decay of upregulated heat shock proteins has been shown to
284 occur between 2 and 3 days after heat stress (Charng et al. 2006, Aspinwall et al. 2019).
285 These findings align with the three days prior to T_{crit} measurement being the best predictive
286 window for shifts in heat tolerance (Bison and Michaletz 2024, Zhu et al. 2024).

287 **Results**

288 *T^{leaf} parameters appear to predict little variation in T_{crit}*

289 Three leaf temperature parameters (T_{time}^{leaf} , T_{sum}^{leaf} and T_{range}^{leaf}) were included as fixed
290 factors in separate LMMs where T_{crit} was the response variable (Table 2). Accounting for site
291 type (location-aspect combination: SchlinkNW, SchlinkSE, StilwellNW, StilwellISE), T_{sum}^{leaf}
292 predicted significant variation in T_{crit} , such that for a 313.5°C increase in T_{sum}^{leaf} , T_{crit} increased

293 by 1°C (Table 2, Figure 2b). No significant relationship of $T_{\text{time}}^{\text{leaf}}$, $T_{\text{sum-day}}^{\text{leaf}}$, $T_{\text{sum-night}}^{\text{leaf}}$
294 $T_{\text{range}}^{\text{leaf}}$ with T_{crit} was found (Table 2, Figure 2c, d; Figure S7; Table S4). The reason that the
295 positive $T_{\text{sum}}^{\text{leaf}} \sim T_{\text{crit}}$ relationship was relatively weak might be attributed to the nature of
296 the variation in T_{crit} across sampling days. Although date was a strong predictor of variation
297 in T_{crit} , the only day where T_{crit} was significantly different from the rest was on 28 Feb. T_{crit}
298 values were on average $2.8 \pm 0.9^\circ\text{C}$ higher on 28 Feb than the rest but across all other days,
299 T_{crit} values were relatively uniform (Figure 2a). To assess whether these elevated 28 February
300 values were driving the significant $T_{\text{sum}}^{\text{leaf}} \sim T_{\text{crit}}$ relationship, we re-ran the model with these
301 values excluded. The relationship was no longer significant, indicating that the 28 February
302 T_{crit} values were indeed responsible for the original significance.

303 *Machine learning reveals that preceding high and low temperatures can predict T_{crit}*
304 The machine learning results highlighted specific temperatures and times within the
305 temperature histories that were critical for predicting T_{crit} (coloured circles, Figure 3a). A
306 total of 33 leaf temperature time points within the four-day temperature window, which
307 were common to all leaves, were identified as collectively contributing 84.9% of the model's
308 total predictive power. The identified times points were predominantly high and low leaf
309 temperature values within the four-day period preceding T_{crit} measurement. The strength of
310 predictive power was distributed relatively uniformly across the 4-day period. Three leaf
311 temperature points, however, one maximum and two minima occurring between 81 and 45
312 h prior to T_{crit} measurement, provided 36.8% of the total predictive power (grey ellipses,
313 Figure 3b).

314 **Discussion**

315 The current study sought to determine how spatially and temporally varying leaf
316 temperatures drive changes in T_{crit} photosystem heat thresholds using two distinct
317 approaches: linear mixed models (LMMs) and machine learning (ML). Specifically, we were
318 interested in the insights that each method could provide about the role of prior leaf
319 temperature history in determining these thresholds, a question that has been explored
320 little to date. Temperature regimes show considerable spatial variation in alpine
321 environments, especially as a function of elevation and aspect (Legates and Willmott 1990,
322 McCune and Keon 2002). In our study, microclimatic variation with aspect and elevation was

323 characterised by different times of day that maximum air temperatures were reached, the
324 sum or load of temperature and the diurnal cycle temperature range. However, LMMs
325 revealed that the only corresponding leaf temperature parameter that predicted variation in
326 photosystem heat thresholds was average daily heat sum ($T_{\text{sum}}^{\text{leaf}}$) and that relationship was
327 weak. Whereas leaf temperature parameters were not compelling predictors of T_{crit} based
328 on LMMs, the novel ML approach was able to account for the complexity of the entire
329 thermal profile. Machine learning revealed that leaf temperature extremes, both high and
330 low, within the four days preceding heat tolerance measurements explained nearly 85% of
331 the variation in T_{crit} .

332 *Increases in mean daily heat load weakly correlates with increases in T_{crit}*

333 Mounting evidence suggests that photosystem heat tolerance thresholds respond to local
334 thermal conditions, varying temporally (Neuner et al. 2000, Coast et al. 2022, Posch et al.
335 2022) and spatially (Curtis et al. 2016, O'Sullivan et al. 2017, Cook et al. 2021, Danzey et al.
336 2024, Kullberg and Feeley 2024). While averages of point leaf temperature measurements
337 are typically used to characterise the conditions to which a plant is exposed, these metrics
338 do not capture the complex range of thermal conditions, nor the cumulative nature of heat
339 stress, which have important implications on measuring shifts in physiological tolerance
340 (Neuner and Buchner 2023, Cook et al. 2024, Faber et al. 2024). The weak $T_{\text{sum}}^{\text{leaf}} \sim T_{\text{crit}}$
341 relationship was driven by high T_{crit} values on 28 Feb. This relationship may have been
342 weakened due to the relatively benign leaf temperatures in the week leading up to T_{crit}
343 measurement (22.5°C on average). Interestingly, no significant relationship of $T_{\text{sum-day}}^{\text{leaf}}$ or
344 $T_{\text{sum-night}}^{\text{leaf}}$ with T_{crit} was observed. This finding suggests that thermal tolerance cannot be
345 understood by examining daytime or nighttime conditions in isolation. Given that sites
346 clearly had different microclimatic profiles through time, these findings suggest that LMM
347 analytical approaches that average across substantial daily leaf temperature variation
348 obscure biologically important information.

349 *Machine learning reveals preceding temperature extremes that predict shifts in T_{crit}*

350 Using machine learning, we found compelling evidence that certain daily leaf temperature
351 points prior to measurement predict subsequent shifts in T_{crit} . The extremes of daily
352 maximum and, importantly, nightly minimum temperatures up to four days prior to heat
353 threshold measurement predicted a combined 85% of the variation in T_{crit} . The field of

354 cross-tolerance, where exposure to one kind of stress results in tolerance to another
355 (Hossain et al. 2018), may explain this potentially counterintuitive pattern. Harris et al.
356 (2024) found that the occurrence of a hot day in concert with a cold night increases heat
357 tolerance more than a hot day and warm night, suggesting that exposure to cold stress
358 improves tolerance to heat stress. Indeed, both types of thermal stress can activate similar
359 response pathways (Mei and Song 2010, Li et al. 2014, Hossain et al. 2018). Heat shock
360 proteins (HSPs) are known to upregulate in response to both heat and cold stress (Anderson
361 et al. 1994, Wang et al. 2003), with small HSPs (common in plant chloroplasts) detectable
362 for up to 72 h after a triggering event (Charng et al. 2006). Further, there is evidence to
363 suggest that increases in reactive oxygen species and subsequent upregulation of
364 antioxidant enzymes are involved in the deployment of cross-tolerance (Gong et al. 2001,
365 Hossain et al. 2016, Hossain et al. 2018).

366 In the current study, lower nightly temperatures followed by higher daily temperatures
367 might have had an acclimatory effect on heat tolerance by activating similar response
368 pathways, which manifested as increased T_{crit} in the days following. Danzey et al. (2024)
369 found PSII cold tolerance thresholds of -10.8°C for *G. australis* and -10.3°C for *D.*
370 *continentis*. In our study, the average of nightly leaf temperatures across the 7-day window
371 preceding T_{crit} measurements were -2.8°C and -3.3°C for *G. australis* and *D. continentis*,
372 respectively, with leaf temperatures dropping as low as -6.9°C across this period. While
373 these temperatures did not surpass the reported cold tolerance thresholds, they
374 approached this range. Repeated exposure to near cold thresholds likely contributed to the
375 observed acclimation. Conversely, maximum temperatures approached heat tolerance
376 thresholds measured in the current study much less closely; average maximum leaf
377 temperature across sites and both species was $22.5 \pm 0.26^{\circ}\text{C}$, while average T_{crit} was $47.8 \pm$
378 0.2°C . Such disparities between maximum temperatures and temperature thresholds have
379 been observed by others, particularly in cooler climate species (Buchner and Neuner 2003,
380 Kitudom et al. 2022, Cox et al. 2025). The stress induced by consistent low-grade stress can
381 equate to that incurred by short, intense temperature stress (Neuner and Buchner 2023,
382 Cook et al. 2024, Arnold et al. 2025b). In the context of the present study, it is plausible that
383 the moderate maximum leaf temperatures observed maintained relatively high baseline T_{crit}
384 values. Further, plants from environments with high seasonal or interannual variability may

385 maintain elevated T_{crit} as a buffer against rare but damaging extremes. Although our 5-min
386 averages showed mid-20 °C maxima, brief spikes (e.g., 30–35 °C) may have been missed yet
387 sufficient to induce acclimation, especially because induction temperatures can lie well
388 below damage thresholds (Knight and Ackerly 2002). As well as prior exposure to heat
389 stress, increased heat tolerance in plants can be induced by priming with other abiotic
390 stressors, such as drought exposure can also enhance heat tolerance (Ru et al. 2022, Sumner
391 et al. 2022, Yadav et al. 2022, Kamran et al. 2025). In this study, drought stress was unlikely
392 to be a confounding factor because relative water content remained consistent across site
393 types (Figure S4) and rarely declined to levels indicative of water stress during the sampling
394 period. An alternative explanation for why both maximum and minimum leaf temperature
395 predict heat threshold shifts is rapid acclimation and subsequent de-acclimation, which
396 frequently occur in thermally fluctuating alpine environments (Buchner and Neuner 2003).
397 Rapid acclimatory responses maybe associated with diurnal alterations of sugar
398 concentrations and osmotic potential (Seemann et al. 1986, Meyer and Santarius 1998,
399 Coast et al. 2022). Average daily maximum temperatures in alpine environments may not
400 seem stressful in absolute terms, but a sufficiently large diurnal swing between minima and
401 maxima could be. In our study, leaf temperature maxima in the days prior to T_{crit}
402 measurements might have primed leaves for subsequent high temperatures, such that a
403 cold night followed by another hot day would lead to an acclimatory shift in T_{crit} . Plants may
404 have de-acclimated when exposed to lower day time temperatures on 26 February (Figure
405 S5). When temperatures rose on 27–28 February, plants likely re-acclimated, reflected in the
406 higher T_{crit} measured on 28 February. This sequence of de-acclimation and subsequent re-
407 acclimation over 27–28 February likely drove the significant $T_{sum} \sim T_{crit}$ relationship.
408 Acclimation of T_{crit} within a three-day window has recently been observed by others (Bison
409 and Michaletz 2024), perhaps underpinned by upregulation of HSPs and changes in
410 membrane fatty acid composition (Zhu et al. 2024) and/or by expression of genes or
411 isoforms associated with photosynthesis and solute transport (Roces et al. 2022). Because
412 the ability of machine learning to identify lag effects of temperature fluctuations on T_{crit} is
413 not predicated on linear relationships, the approach is well-suited for capturing these
414 complex acclimation dynamics, especially in field conditions, where environmental
415 conditions fluctuate frequently.

416 Irrespective of how these extreme temperatures triggered shifts in heat tolerance, the same
417 response was evident for both species. No differences in the predictive points were seen
418 between species when separate machine-learning analyses were performed for them
419 (results not shown). Likewise, when testing for the main effects of species using linear mixed
420 models, no significant effect of species on T_{crit} was found. Growth form and leaf traits,
421 including but not limited to, leaf angle, leaf mass per area and leaf habit have been reported
422 as being significant predictors of heat tolerance (Sklenář et al. 2016, Sastry and Barua 2017,
423 Leon-Garcia and Lasso 2019, Middleby et al. 2025). Further, transpiration rates influence
424 leaf energy balance and perhaps heat tolerance thresholds (Marchin et al. 2022, Valliere et
425 al. 2023). It is, therefore, possible that because *G. australis* and *D. continentis* are both
426 evergreen alpine shrubs of similar heights, differences in leaf temperature driven by leaf
427 structural traits or transpiration (Bird et al. unpublished data) might not have been great
428 enough to cause differences in T_{crit} . We note, however, our restriction to just two species
429 limits the ability to draw general conclusions about different species responses, something
430 that warrants further research.

431 *Conclusions and future directions*

432 Our findings indicate that not only temporally proximal leaf temperature maxima, but also
433 minima play a significant role in triggering shifts in heat tolerance thresholds. Our study also
434 corroborated the importance of cumulative heat load in determining heat tolerance
435 thresholds. However, this direct cumulative effect was small, highlighting that average leaf
436 temperature parameters do not sufficiently capture the temporal variability in thermal
437 conditions that influence physiological tolerance thresholds. By contrast, machine learning
438 revealed patterns that traditional statistical methods could not, providing new insights into
439 acclimatory triggers for shifts in thermal tolerance threshold. The observation that both high
440 and low temperature extremes are important predictors of T_{crit} underscores the importance
441 of considering both ends of the temperature spectrum when predicting plant responses to
442 heat stress. Future studies should investigate whether cross tolerance represents a
443 competitive advantage for species from thermally variable environments. With a larger
444 sample size and broader range of species, machine learning may reveal the requirements for
445 thermal cues to induce cross-tolerance responses. Additionally, such an approach may clarify

446 whether acclimation to temperatures in the four days preceding threshold measurement is a
447 consistent and generalisable phenomenon.

448 In summary, while statistical approaches are useful for understanding broad ecological
449 patterns, machine learning could be particularly useful when dealing with spatially and
450 temporally fluctuating environmental conditions and where their relationships with plant
451 physiology are complex and non-linear. Combining machine learning with more traditional
452 statistical approaches could enhance predictive accuracy, enabling the development of
453 robust tools to guide ecosystem management, conservation strategies, and climate
454 resilience efforts.

455 **Author contributions**

456 CP, AL, PA, SG, AN, AH and LD conceived of and designed the project; CP, MB and LD
457 conducted site selection and field work; CP conducted physiological measurements; CP, LD,
458 PA and AH carried out data analyses; CP and AL lead the writing; all authors contributed to
459 writing.

460 **Acknowledgements**

461 This work was conducted on the traditional lands and waters of the Ngarigo, Walgalu,
462 Ngunnawal, Ngambri and Gadigal; we acknowledge their Elders, past, present and emerging.
463 We are grateful for the help of field volunteers: Lisa Danzey, Jeanette Jeffreys, Finn Billaryd-
464 Currey, Jay Nicholson, Michelle Bird and Anne Pottinger. The research was conducted in
465 association with Australian Research Council Linkage Project grant: LP180100942.

466 **References**

467 AGBoM (2023) Rose of Wind direction versus Wind speed in km/h: Charlotte Pass (Kosciusko
468 Chalet).

469 Alvarez PR, Harris RJ, Cook AM, Briceño VF, Nicotra AB, Leigh A (2025) Native Australian
470 seedlings exhibit novel strategies to acclimate to repeated heatwave events.
471 *Oecologia* 207(6): 84

472 Anderson JV, Li QB, Haskell DW, Guy CL (1994) Structural organization of the spinach
473 endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and
474 expression of 70-kilodalton heat-shock genes during cold acclimation. *Plant
475 Physiology* 104(4): 1359–1370

476 Andrew SC, Arnold PA, Simonsen AK, Briceño VF (2023) Consistently high heat tolerance
477 acclimation in response to a simulated heatwave across species from the broadly
478 distributed *Acacia* genus. *Functional Plant Biology* 50(1): 71–83

479 Arnold PA, Briceño VF, Gowland KM, Catling AA, Bravo LA, Nicotra AB (2021) A high-
480 throughput method for measuring critical thermal limits of leaves by chlorophyll
481 imaging fluorescence. *Functional Plant Biology* 48(6): 634–646

482 Arnold PA, White MJ, Cook AM, Leigh A, Briceño VF, Nicotra AB (2025a) Plants originating
483 from more extreme biomes have improved leaf thermoregulation. *Annals of Botany*
484 136(1): 199–213

485 Arnold PA, Noble DWA, Nicotra AB, Kearney MR, Rezende EL, Andrew SC, Briceño VF,
486 Buckley LB, Christian KA, Clusella-Trullas S, Geange SR, Guja LK, Jiménez Robles O,
487 Kefford BJ, Kellermann V, Leigh A, Marchin RM, Mokany K, Bennett JM (2025b) A
488 Framework for Modelling Thermal Load Sensitivity Across Life. *Global Change
489 Biology* 31(7): e70315

490 Aspinwall MJ, Pfautsch S, Tjoelker MG, Vårhammar A, Possell M, Drake JE, Reich PB, Tissue
491 DT, Atkin OK, Rymer PD, Dennison S, Van Sluyter SC (2019) Range size and growth
492 temperature influence Eucalyptus species responses to an experimental heatwave.
493 *Global Change Biology* 25(5): 1665–1684

494 Bird M, Pottinger C, Arnold P, Danzey L, Geange S, Kearney M, Nicotra A, Leigh A
495 (unpublished data) Can NicheMapR predict leaf temperatures of morphologically
496 disparate species across microclimatically distinct alpine sites?

497 Bison NN, Michaletz ST (2024) Variation in leaf carbon economics, energy balance, and heat
498 tolerance traits highlights differing timescales of adaptation and acclimation. *New*
499 *Phytologist* 242(5): 1919–1931

500 Blair EJ, Bonnot T, Hummel M, Hay E, Marzolino JM, Quijada IA, Nagel DH (2019)
501 Contribution of time of day and the circadian clock to the heat stress responsive
502 transcriptome in *Arabidopsis*. *Scientific Reports* 9(1): 4814

503 Blonder B, Michaletz ST (2018) A model for leaf temperature decoupling from air
504 temperature. *Agricultural and Forest Meteorology* 262: 354–360

505 Briceño VF, Arnold PA, Cook AM, Courtney Jones SK, Gallagher RV, French K, Bravo LA,
506 Nicotra AB, Leigh A (2025) Drivers of thermal tolerance breadth of plants across
507 contrasting biomes. *Journal of Ecology* in press

508 Buchner O, Neuner G (2003) Variability of heat tolerance in alpine plant species measured at
509 different altitudes. *Arctic, Antarctic, and Alpine Research* 35(4): 411–420, Article

510 Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) *Arabidopsis Hsa32*, a novel heat shock
511 protein, is essential for acquired thermotolerance during long recovery after
512 acclimation. *Plant Physiology* 140(4): 1297–1305

513 Coast O, Posch BC, Rognoni BG, Bramley H, Gaju O, Mackenzie J, Pickles C, Kelly AM, Lu M,
514 Ruan Y-L, Trethowan R, Atkin OK (2022) Wheat photosystem II heat tolerance:
515 evidence for genotype-by-environment interactions. *The Plant Journal* 111(5): 1368–
516 1382

517 Cook AM, Berry N, Milner KV, Leigh A (2021) Water availability influences thermal safety
518 margins for leaves. *Functional Ecology* 35(10): 2179–2189, Article

519 Cook AM, Rezende EL, Petrou K, Leigh A (2024) Beyond a single temperature threshold:
520 Applying a cumulative thermal stress framework to plant heat tolerance. *Ecology*
521 Letters 27(3): e14416

522 Cox D, Marchin RM, Ellsworth DS, Wujeska-Klause A, Ossola A, Crous KY, Leishman MR,
523 Rymer PD, Tjoelker MG (2025) Thermal Safety Margins and Peak Leaf Temperatures
524 Predict Vulnerability of Diverse Plant Species to an Experimental Heatwave. *Plant,*
525 *Cell & Environment* in press

526 Curtis E (2017) Spatiotemporal dynamics of high-temperature tolerance in australian arid-
527 zone plants. University of Technology, Sydney,

528 Curtis EM, Gollan J, Murray BR, Leigh A (2016) Native microhabitats better predict tolerance
529 to warming than latitudinal macro-climatic variables in arid-zone plants. *Journal of*
530 *Biogeography* 43(6): 1156–1165

531 Danzey LM, Briceño VF, Cook AM, Nicotra AB, Peyre G, Rossetto M, Yap JS, Leigh A (2024)
532 Environmental and Biogeographic Drivers behind Alpine Plant Thermal Tolerance
533 and Genetic Variation. *Plants (Basel)* 13(9)

534 Donat MG, Alexander LV (2012) The shifting probability distribution of global daytime and
535 night-time temperatures. *Geophysical Research Letters* 39(14): e14707

536 Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev
537 V, Plummer N, Jamason P, Folland CK (1997) Maximum and Minimum Temperature
538 Trends for the Globe. *Science* 277(5324): 364–367

539 Faber A, Ørsted M, Ehlers K (2024) Application of the thermal death time model in
540 predicting thermal damage accumulation in plants. *Journal of Experimental Botany*
541 75(11): 3467–3482

542 Fauset S, Freitas HC, Galbraith DR, Sullivan MJP, Aidar MPM, Joly CA, Phillips OL, Vieira SA,
543 Gloor MU (2018) Differences in leaf thermoregulation and water use strategies
544 between three co-occurring Atlantic forest tree species. *Plant, Cell & Environment*
545 41(7): 1618–1631

546 Feeley K, Martinez-Villa J, Perez T, Silva Duque A, Triviño Gonzalez D, Duque A (2020) The
547 Thermal Tolerances, Distributions, and Performances of Tropical Montane Tree
548 Species. *Frontiers in Forests and Global Change* 3, Original Research

549 Gaur S, Drewry DT (2024) Explainable machine learning for predicting stomatal conductance
550 across multiple plant functional types. *Agricultural and Forest Meteorology* 350:
551 e109955

552 Gong M, Chen Bo, Li Z-G, Guo L-H (2001) Heat-shock-induced cross adaptation to heat,
553 chilling, drought and salt stress in maize seedlings and involvement of H2O2. *Journal
554 of Plant Physiology* 158(9): 1125–1130

555 Grinevich D, Stroup K, Duan J, Slabaugh E, Doherty C (2019) Novel transcriptional responses
556 to heat revealed by turning up the heat at night. *Plant Molecular Biology* 101(1): 1–
557 19

558 Harris RJ, Alvarez PR, Bryant C, Briceño VF, Cook AM, Leigh A, Nicotra AB (2024) Acclimation
559 of thermal tolerance in juvenile plants from three biomes is suppressed when
560 extremes co-occur. *Conservation Physiology* 12(1): coae027

561 Hossain MA, Burritt DJ, Fujita M (2016) Cross-Stress Tolerance in Plants: Molecular
562 Mechanisms and Possible Involvement of Reactive Oxygen Species and
563 Methylglyoxal Detoxification Systems. pp 327–380

564 Hossain MA, Li Z-G, Hoque TS, Burritt DJ, Fujita M, Munné-Bosch S (2018) Heat or cold
565 priming-induced cross-tolerance to abiotic stresses in plants: key regulators and
566 possible mechanisms. *Protoplasma* 255(1): 399–412

567 Hüve K, Bichele I, Tobias M, Niinemets U (2006) Heat sensitivity of photosynthetic electron
568 transport varies during the day due to changes in sugars and osmotic potential. *Plant
569 Cell & Environment* 29(2): 212–228

570 Kamran M, Burdiak P, Karpiński S (2025) Crosstalk Between Abiotic and Biotic Stresses
571 Responses and the Role of Chloroplast Retrograde Signaling in the Cross-Tolerance
572 Phenomena in Plants. *Cells* 14(3): 176

573 Kitudom N, Fauset S, Zhou Y, Fan Z, Li M, He M, Zhang S, Xu K, Lin H (2022) Thermal safety
574 margins of plant leaves across biomes under a heatwave. *Science of The Total
575 Environment* 806: 150416

576 Knight C, Ackerly D (2002) An ecological and evolutionary analysis of photosynthetic
577 thermotolerance using the temperature-dependent increase in fluorescence.
578 *Oecologia* 130(4): 505–514

579 Knight CA, Ackerly DD (2003) Evolution and plasticity of photosynthetic thermal tolerance,
580 specific leaf area and leaf size: congeneric species from desert and coastal
581 environments. *New Phytologist* 160(2): 337–347

582 Körner C (2003) Alpine Plant Life: Functional Plant Ecology Of High Mountain Ecosystems.
583 Springer, Germany

584 Körner C (2023) Concepts in Alpine Plant Ecology. *Plants* 12(14): 2666

585 Körner C, Cochrane P (1983) Influence of plant physiognomy on leaf temperature on clear
586 midsummer days in the Snowy Mountains, south-eastern Australia. *Acta Oecologia*
587 4: 117–124

588 Körner C, Hiltbrunner E (2021) Why is the alpine flora comparatively robust against climatic
589 warming? *Diversity* 13(8): 383

590 Kullberg AT, Feeley KJ (2024) Seasonal acclimation of photosynthetic thermal tolerances
591 in six woody tropical species along a thermal gradient. *Functional Ecology* 38(11):
592 2493–2505

593 Laosuntisuk K, Doherty CJ (2022) The intersection between circadian and heat-responsive
594 regulatory networks controls plant responses to increasing temperatures. *Biochem
595 Soc Trans* 50(3): 1151–1165

596 Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in global surface air
597 temperature. vol 41.

598 Leigh A, Sevanto S, Close JD, Nicotra AB (2017) The influence of leaf size and shape on leaf
599 thermal dynamics: does theory hold up under natural conditions? *Plant, Cell &
600 Environment* 40(2): 237–248

601 Leon-Garcia IV, Lasso E (2019) High heat tolerance in plants from the Andean highlands:
602 Implications for paramos in a warmer world. *PLoS One* 14(11): e0224218

603 Li S-L, Xia Y-Z, Liu J, Shi X-D, Sun Z-Q (2014) Effects of cold-shock on tomato seedlings under
604 high temperature stress. *The Journal of Applied Ecology* 25: 2927–2934

605 Li Xe, Song X, Zhao J, Lu H, Qian C, Zhao X (2021) Shifts and plasticity of plant leaf mass per
606 area and leaf size among slope aspects in a subalpine meadow. *Ecology and
607 Evolution* 11(20): 14042–14055

608 Lundquist JD, Pepin N, Rochford C (2008) Automated algorithm for mapping regions of cold-
609 air pooling in complex terrain. *Journal of Geophysical Research: Atmospheres*
610 113(D22)

611 Marchin RM, Backes D, Ossola A, Leishman MR, Tjoelker MG, Ellsworth DS (2022) Extreme
612 heat increases stomatal conductance and drought-induced mortality risk in
613 vulnerable plant species. *Global Change Biology* 28(3): 1133–1146

614 McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat
615 load. *Journal of vegetation science* 13(4): 603–606

616 Mei YQ, Song SQ (2010) Response to temperature stress of reactive oxygen species
617 scavenging enzymes in the cross-tolerance of barley seed germination. *Journal of*
618 *Zhejiang University Science B* 11(12): 965–972

619 Meyer H, Santarius KA (1998) Short-term thermal acclimation and heat tolerance of
620 gametophytes of mosses. *Oecologia* 115(1-2): 1–8

621 Middleby KB, Cheesman AW, Hopkinson R, Baker L, Ramirez Garavito S, Breed MF, Cernusak
622 LA (2025) Ecotypic Variation in Leaf Thermoregulation and Heat Tolerance but Not
623 Thermal Safety Margins in Tropical Trees. *Plant, Cell & Environment* 48(1): 649–663

624 Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. *Front Neurorobot* 7: 21

625 Neuner G, Buchner O (2012) Dynamics of Tissue Heat Tolerance and Thermotolerance of PS
626 II in Alpine Plants. In: Lütz C (ed) *Plants in Alpine Regions: Cell Physiology of Adaption*
627 and Survival Strategies. Springer Vienna, Vienna, pp 61–74

628 Neuner G, Buchner O (2023) The dose makes the poison: The longer the heat lasts, the
629 lower the temperature for functional impairment and damage. *Environmental and*
630 *Experimental Botany* 212(4): 105395

631 Neuner G, Buchner O, Braun V (2000) Short-term changes in heat tolerance in the alpine
632 cushion plant *silene acaulis* ssp. *Excapa* [all.] j. *Braun* at different altitudes. *Plant*
633 *Biology* 2(6): 677–683

634 Niu Y, Xiang Y (2018) An Overview of Biomembrane Functions in Plant Responses to High-
635 Temperature Stress. *Frontiers in Plant Science* 9: 915

636 O'Sullivan O, Heskel M, Reich P, Tjoelker M, Weerasinghe L, Penillard A, Zhu L, Egerton J,
637 Bloomfield K, Creek D, Bahar N, Griffin K, Hurry V, Meir P, Turnbull M, Atkin O (2017)
638 Thermal limits of leaf metabolism across biomes. *Global Change Biology* 23(1): 209–
639 223

640 Pepin NC, Arnone E, Gobiet A, Haslinger K, Kotlarski S, Notarnicola C, Palazzi E, Seibert P,
641 Serafin S, Schöner W, Terzago S, Thornton JM, Vuille M, Adler C (2022) Climate
642 changes and their elevational patterns in the mountains of the world. *Reviews of*
643 *Geophysics* 60(1)

644 Perez TM, Feeley KJ (2020) Photosynthetic heat tolerances and extreme leaf temperatures.
645 *Functional Ecology* 34(11): 2236–2245

646 PlantNET (2024) (The NSW Plant Information Network System). Royal Botanic Gardens and
647 Domain Trust, Sydney

648 Posch BC, Hammer J, Atkin OK, Bramley H, Ruan Y-L, Trethowan R, Coast O (2022) Wheat
649 photosystem II heat tolerance responds dynamically to short- and long-term
650 warming. *Journal of Experimental Botany* 73(10): 3268–3282

651 R Development Core Team (2024) R: A language and environment for statistical computing.
652 R Foundation for Statistical Computing, Vienna, Austria

653 Rahnama A, Salehi F, Meskarbashee M, Mehdi Khanlou K, Ghorbanpour M, Harrison MT
654 (2024) High temperature perturbs physicochemical parameters and fatty acids
655 composition of safflower (*Carthamus tinctorius* L.). *BMC Plant Biology* 24(1): 1080

656 Roces V, Lamelas L, Valledor L, Carbó M, Cañal MJ, Meijón M (2022) Integrative analysis in
657 Pinus revealed long-term heat stress splicing memory. *The Plant Journal* 112(4): 998–
658 1013

659 Ru C, Hu X, Chen D, Wang W, Song T (2022) Heat and drought priming induce tolerance to
660 subsequent heat and drought stress by regulating leaf photosynthesis, root
661 morphology, and antioxidant defense in maize seedlings. *Environmental and*
662 *Experimental Botany* 202: 105010

663 Russell G, Marshall B, Jarvis PG (1989) *Plant canopies: their growth, form and function.*
664 Cambridge University Press, Cambridge & New York

665 Sastry A, Barua D (2017) Leaf thermotolerance in tropical trees from a seasonally dry climate
666 varies along the slow-fast resource acquisition spectrum. *Scientific Reports* 7(1):
667 11246

668 Seemann JR, Downton WJ, Berry JA (1986) Temperature and leaf osmotic potential as
669 factors in the acclimation of photosynthesis to high temperature in desert plants.
670 *Plant Physiology* 80(4): 926–930

671 Sklenář P, Kučerová A, Macková J, Romoleroux K (2016) Temperature microclimates of
672 plants in a tropical alpine environment: how much does growth form matter? *Arctic,*
673 *Antarctic, and Alpine Research* 48(1): 61–78

674 Song G, Wang Q (2023) Coupling effective variable selection with machine learning
675 techniques for better estimating leaf photosynthetic capacity in a tree species (*Fagus*
676 *crenata* Blume) from hyperspectral reflectance. *Agricultural and Forest Meteorology*
677 338: 109528

678 Sumner EE, Williamson VG, Gleadow RM, Wevill T, Venn SE (2022) Acclimation to water
679 stress improves tolerance to heat and freezing in a common alpine grass. *Oecologia*
680 199(4): 831–843

681 Valliere JM, Nelson KC, Martinez MC (2023) Functional traits and drought strategy predict
682 leaf thermal tolerance. *Conservation Physiology* 11(1): coad085

683 Vilas-Boas T, Almeida HAd, Della Torre F, Modolo LV, Lovato MB, Lemos-Filho JP (2024)
684 Intraspecific variation in the thermal safety margin in *Coffea arabica* L. in response to
685 leaf age, temperature, and water status. *Scientia Horticulturae* 337: 113455

686 Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview.
687 *Environmental and Experimental Botany* 61(3): 199–223

688 Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme
689 temperatures: towards genetic engineering for stress tolerance. *Planta* 218(1): 1–14

690 Willits DH, Peet MM (1998) The effect of night temperature on greenhouse grown tomato
691 yields in warm climates. *Agricultural and Forest Meteorology* 92(3): 191–202

692 Yadav R, Juneja S, Kumar R, Saini R, Kumar S (2022) Understanding cross-tolerance
693 mechanism and effect of drought priming on individual heat stress and
694 combinatorial heat and drought stress in chickpea. *Journal of Crop Science and*
695 *Biotechnology* 25(5): 515–533

696 Yang Z, Tian J, Wang Z, Feng K (2022) Monitoring the photosynthetic performance of grape
697 leaves using a hyperspectral-based machine learning model. European Journal of
698 Agronomy 140: 126589

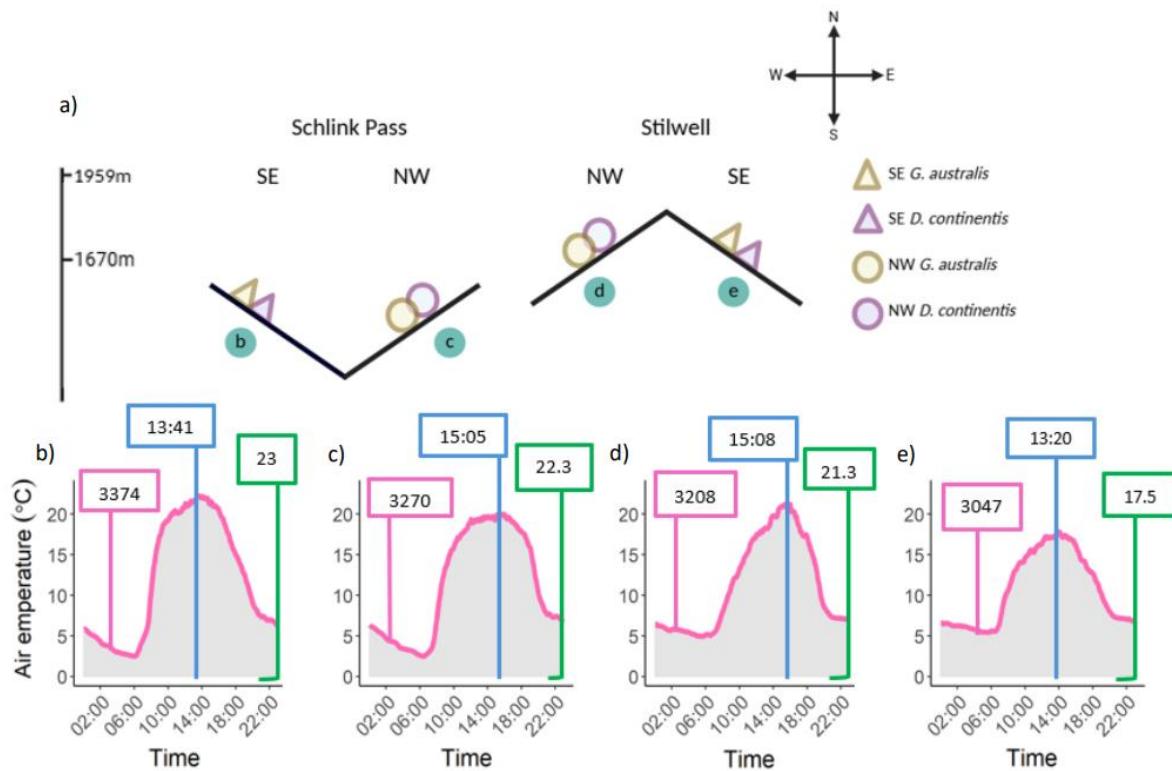
699 Zhang X, Rademacher T, Liu H, Wang L, Manzanedo RD (2023) Fading regulation of diurnal
700 temperature ranges on drought-induced growth loss for drought-tolerant tree
701 species. Nature Communications 14(1): 6916

702 Zhu L, Scafaro A, Vierling E, Ball M, Posch B, Stock F, Atkin O (2024) Heat tolerance of a
703 tropical–subtropical rainforest tree species *Polyscias elegans*: time-dependent
704 dynamic responses of physiological thermostability and biochemistry. New
705 Phytologist 241(2): 715–731

706 Zhu L, Bloomfield KJ, Hocart CH, Egerton JJ, O'Sullivan OS, Penillard A, Weerasinghe LK, Atkin
707 OK (2018) Plasticity of photosynthetic heat tolerance in plants adapted to thermally
708 contrasting biomes. Plant, Cell & Environment 41(6): 1251–1262

709

710 **Figure legends**



711

712 Figure 1. A schematic of the experimental design capturing microclimatic variation. a) site
 713 and aspect contrasts; both species (*Grevillea australis* and *Dracophyllum continentis*) at
 714 study sites contrasting in aspect throughout Schlink Pass and Mt Stilwell. The average
 715 elevation of sites at each location can be seen on the left. Black letters in green circles
 716 correspond with a site type, the air temperature parameters of which are indicated in panels
 717 b, c, d and e. T_{sum}^{air} (°C) represents the daily average sum of degrees above 0°C occurring at
 718 5-minute intervals across a 24-hr period (pink boxes, left); T_{time}^{air} represents the time of day
 719 at which maximum air temperatures occurred (blue boxes, middle) and T_{range}^{air} (°C)
 720 represents the diurnal range of air temperature (green boxes, right). Daily values for all three
 721 parameters were averaged across the month of February 2023 and across the four replicates
 722 of each site type (SchlinkSE, SchlinkNW, StilwellNW and StilwellSE). For full details, see
 723 Tables S1 and S2.

724

725 Table 1. The output of linear mixed models to determine the influence of aspect (NW v SE)
 726 and location (Schlink Pass v Mt Stilwell) on site-specific daily heat sum (T_{sum}^{air}), time of day
 727 that maximum temperatures were reached (T_{time}^{air}) and diurnal temperature range (T_{range}^{air})
 728 across the month of February 2023. The model included the sampling date as a random
 729 factor to account for variation in heat sum caused by differences in weather across days
 730 (Figure S5). Bolded p-values indicate significance at $\alpha = 0.05$.

Response variable	df	Fixed effects	F	p-value
T_{time}^{air}	1, 415	Aspect	29.66	<0.001
	1, 415	Location	0.293	0.589
	1, 415	Aspect x location	0.490	0.484
T_{sum}^{air}	1, 415	Aspect	0.225	0.636
	1, 415	Location	10.467	0.001
	1, 415	Aspect x location	4.971	0.026
T_{range}^{air}	1, 425	Aspect	0.180	0.666
	1, 425	Location	24.79	<0.001
	1, 425	Aspect x location	22.12	<0.001

731

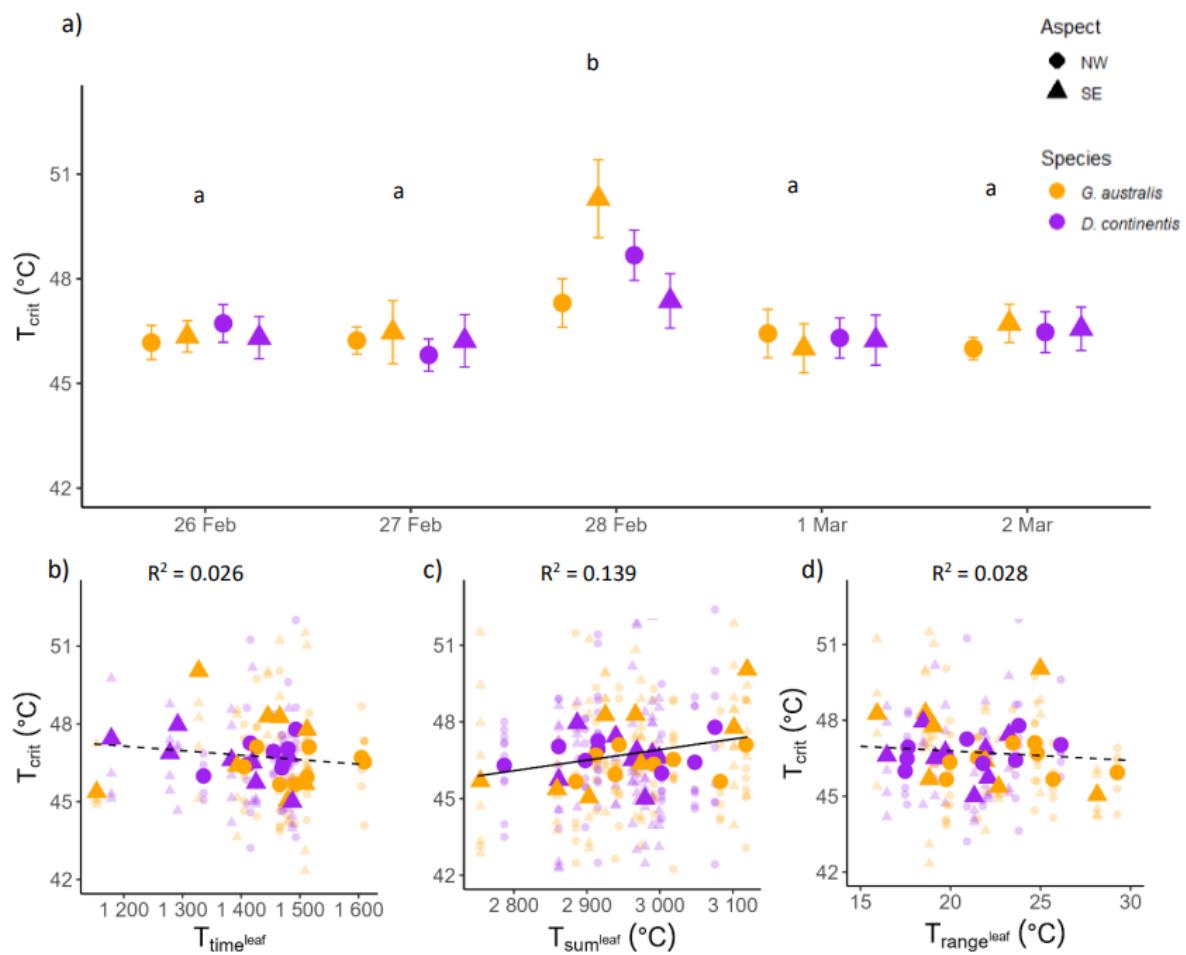
732 Table 2. The output of linear mixed models to determine the effect of leaf temperature
 733 parameters (T_{time}^{leaf} , T_{sum}^{leaf} , and T_{range}^{leaf} ; Figure 2) on photosystem heat thresholds (T_{crit}).
 734 Bolded p-values indicate significance at $\alpha = 0.05$.

Leaf temperature parameter	df	F	p-value
T_{time}^{leaf}	1, 33	0.129	0.72
T_{sum}^{leaf}	1, 27	4.478	0.04
T_{range}^{leaf}	1, 20	0.527	0.47

735

736

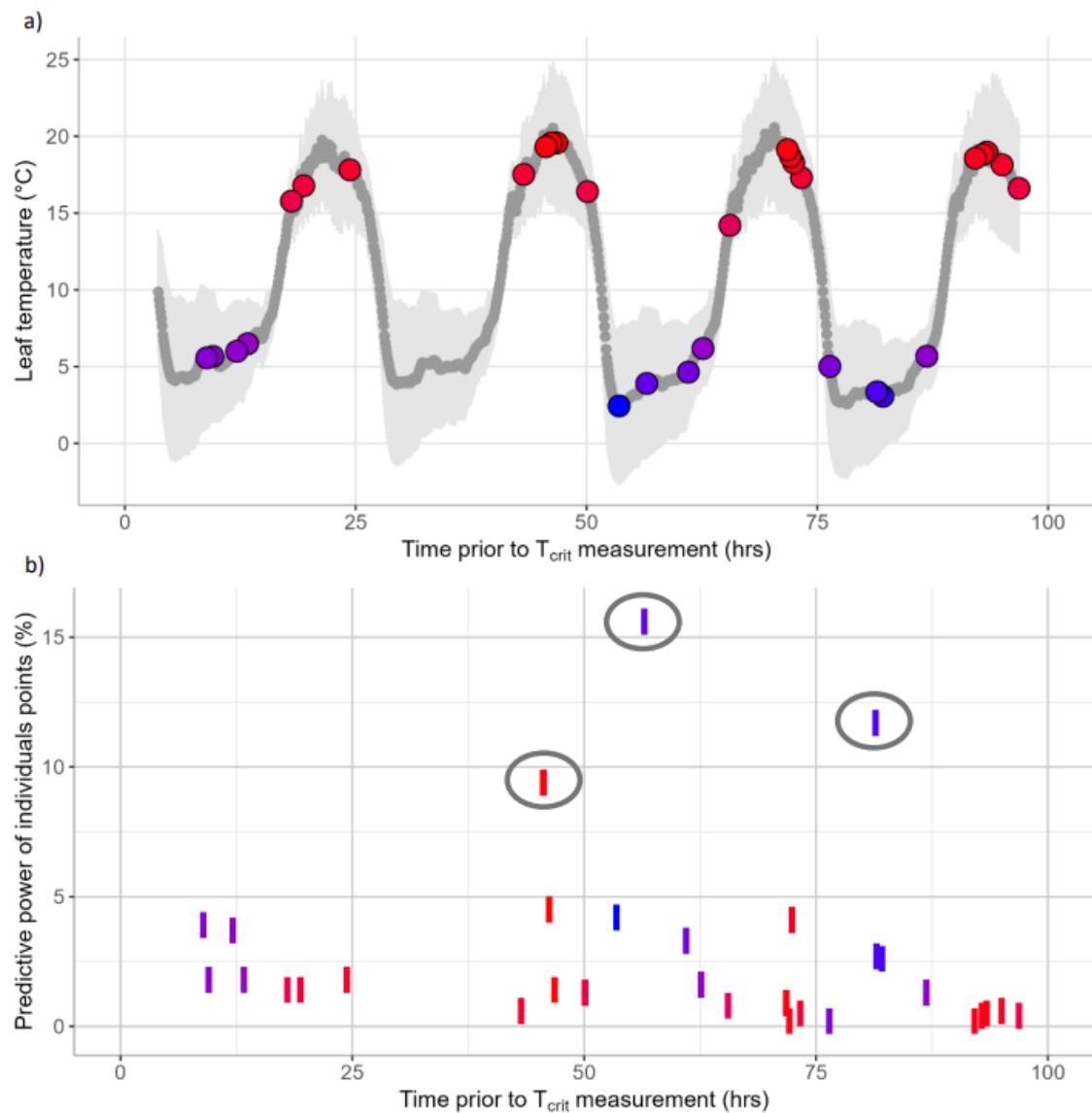
737 Figure 2. a) Variation in heat tolerance thresholds (T_{crit}) across five days of sampling in
 738 summer (26 Feb – 2 Mar). Letters represent significant differences in T_{crit} between days of
 739 sampling. Error bars show the standard error of mean T_{crit} . All daily T^{leaf} parameter values
 740 were averaged across the week of leaf temperatures leading up to and coinciding with T_{crit}
 741 sampling (22 Feb – 28 Feb). b) The relationship between average time of maximum
 742 temperature (T_{time}^{leaf}) and T_{crit} . c) The relationship between average daily heat sum (T_{sum}^{leaf})
 743 and T_{crit} . d) The relationship between average diurnal temperature range (T_{range}^{air}) and T_{crit} .
 744 Solid lines represent statistically significant relationships, and dashed lines represent non-
 745 significant relationships from linear mixed models; conditional R^2 values are shown above
 746 their corresponding relationship.



747

748

749 Figure 3. Snap Boosting Machine Regressor model for predicting the effects of the historical
 750 leaf temperature profiles on heat tolerance thresholds (T_{crit}) based on leaf temperatures
 751 averaged across two species and 16 sites recorded at 5-minute intervals (1,152 time points
 752 per day of T_{crit} measurement). The data shown represent the leaf temperature profile within
 753 the four days preceding each of the five days of T_{crit} measurement. Because T_{crit} was
 754 measured on five consecutive days, a given time point prior to T_{crit} measurement
 755 represented five sets of species-site combinations (32 plants per day totalling to 36,864 leaf
 756 temperatures for each day of T_{crit} measurement, Figure S6). (a) Leaf temperature (°C) over
 757 the four-days, with individual timepoints shown in dark grey and the light grey shadow
 758 indicating the standard deviation for each time point. Machine learning (ML) predictive
 759 features are the 33 points highlighted in colours representing their temperature, with blue
 760 indicating lower and red indicating higher leaf temperatures. The ML predictive points
 761 indicate the times at which leaf temperature had the highest predictive power for T_{crit}
 762 measured. (b) The individual predictive power of each of the 33 ML features, with the total
 763 predictive power of all points taken together explaining 84.9% of the variation in T_{crit} , with
 764 three temperature points having between 10-15% predictive power each (marked with grey
 765 ellipses).



766

1 *Supplementary Materials*

2 **Supporting Information 1.** Selection of sites contrasting in aspect.

3 Selection for each site pair was based on four criteria: 1) whether sites were reasonably
4 matched in elevation (within 10 m), 2) whether their aspects were contrasting (North-West
5 facing vs South-East facing), and 3) whether the distance between the target *G. australis*
6 and *D. continentis* plants was more than 1 m apart. The latter criterion was to ensure that
7 thermocouples were run only a short distance to the datalogger and that microclimatic
8 conditions that the plants were exposed to were comparable.

9
10
11

Table S1. Coordinates, elevation, slope and aspect of study microsites across Schlink Pass and Mt Stilwell in Kosciuszko National Park of South-East New South Wales. Latitude and longitude values are formatted in decimal degrees. The nomenclature of the site names are as follows: the first two letters, 'Sp' and 'St' represent the site location, Schlink Pass and Stilwell, respectively and the last two letters of each abbreviated site name represent the aspect of the site. Although not all sites were directly NW/SE facing, a LMM where date was a random factor revealed highly significant variation in mean air temperatures between sites of opposing aspects across the year 2023 ($p < 0.001$, Bird et al., unpublished data). This justified the grouping of paired sites into NW and SE categories.

Site	Latitude	Longitude	Elevation	Aspect	Slope
	(m a.s.l)				
Stilwell					
St1SE	-36.44111	148.3239	1962	SE 175 °	5 °
St1NW	-36.44111	148.3225	1953	NW 300 °	15 °
St2SE	-36.44778	148.3322	1959	SE 125 °	10 °
St2NW	-36.44222	148.3264	1960	NW 332 °	10 °
St3SE	-36.44583	148.3328	1952	SE 117 °	5 °
St3NW	-36.44194	148.3278	1963	NW 322 °	10 °
St4SE	-36.44472	148.3344	1956	NE 27 °	15 °
St4NW	-36.4428	148.3297	1963	NW 322 °	10 °
Schlink Pass					
Sp1SE	-36.26444	148.3731	1690	E 120 °	25 °
Sp1NW	-36.26477	148.3733	1680	NW 330 °	10 °
Sp2SE	-36.26694	148.3714	1672	E 70 °	20 °
Sp2NW	-36.26719	148.3719	1672	W 270 °	5 °
Sp3SE	-36.26806	148.3711	1667	E 90 °	20 °
Sp3NW	-36.26843	148.3718	1660	SW 240 °	15 °
Sp4SE	-36.26861	148.3708	1665	SE 150 °	5 °
Sp4NW	-36.26889	148.3708	1664	NW 300 °	5 °

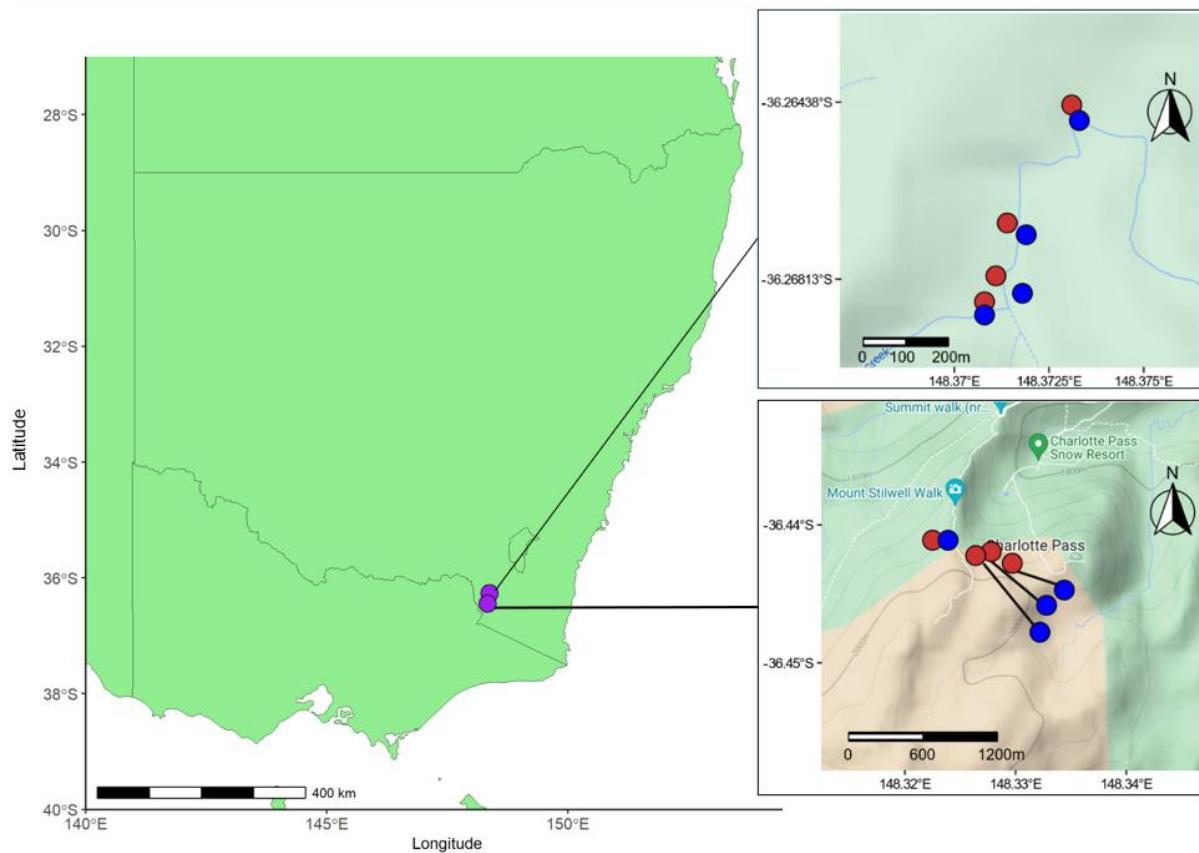


Figure S1: Sixteen study sites throughout Schlink Pass (top) and Mt Stilwell (bottom) in South-Eastern Australia on topographic maps. Red circles indicate N-NW facing sites; blue circles indicate S-SE facing sites. At each location, there were four site pairs, each pair matched in elevation but contrasted in aspect. Thin black lines indicate which sites are paired where unclear. Scale bars and north arrows are on each map. The map products were generated using the “*ggmap*” (Kahle & Wickham, 2013) and “*ggplot2*” (Wickham, 2016) R packages.

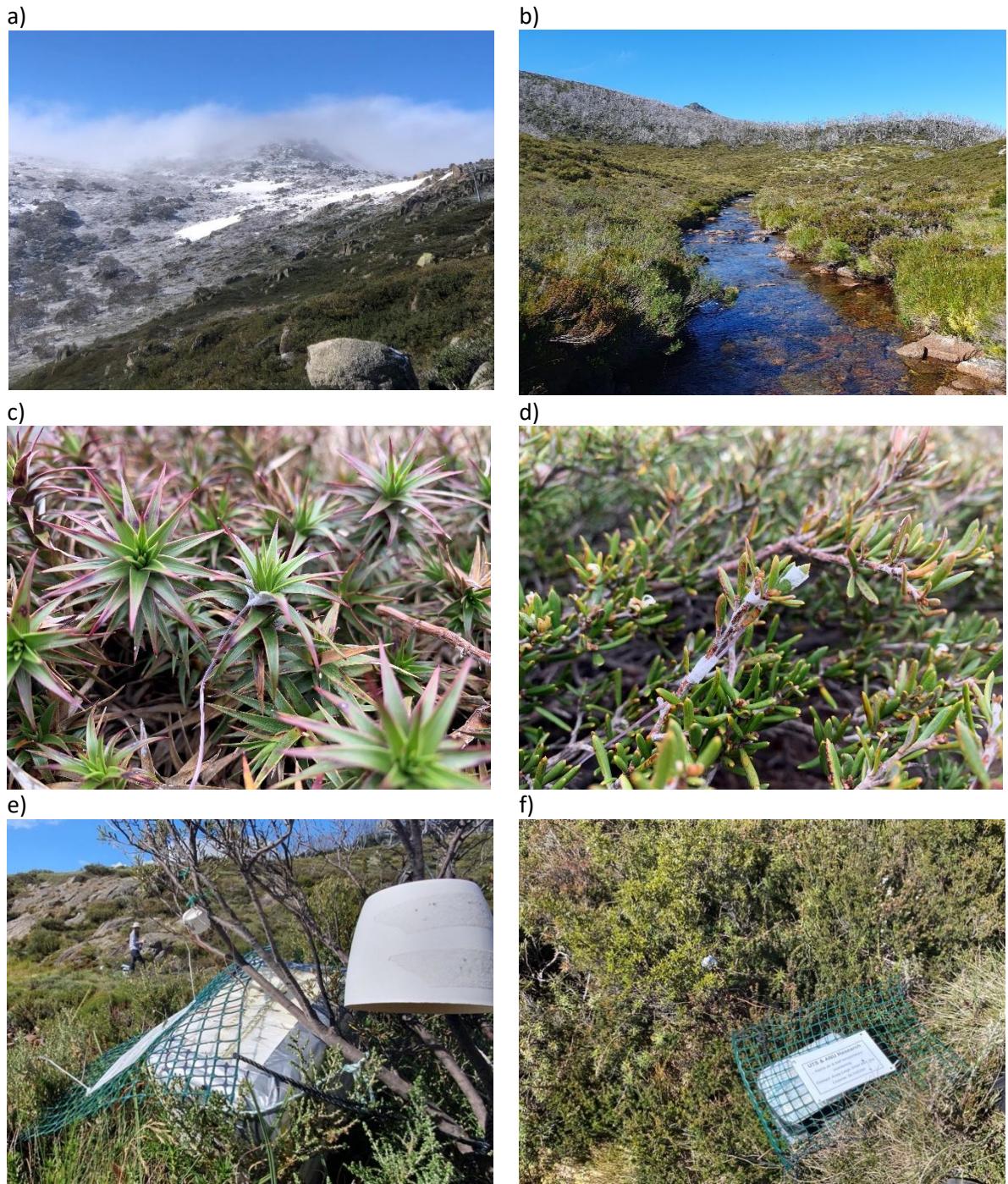


Figure S2. In-field setup of temperature logging stations at study microsites in Kosciuszko National Park, New South Wales across two locations: a) Mount Stilwell and b) Schlink Pass. Thermocouples recording leaf temperature of c) *D. continentis* and d) *G. australis*. e) A Thermocouple recording air temperature protected by a white cap. f) Thermocouples were connected to dataloggers and kept in a waterproof esky, protected using plastic garden netting.

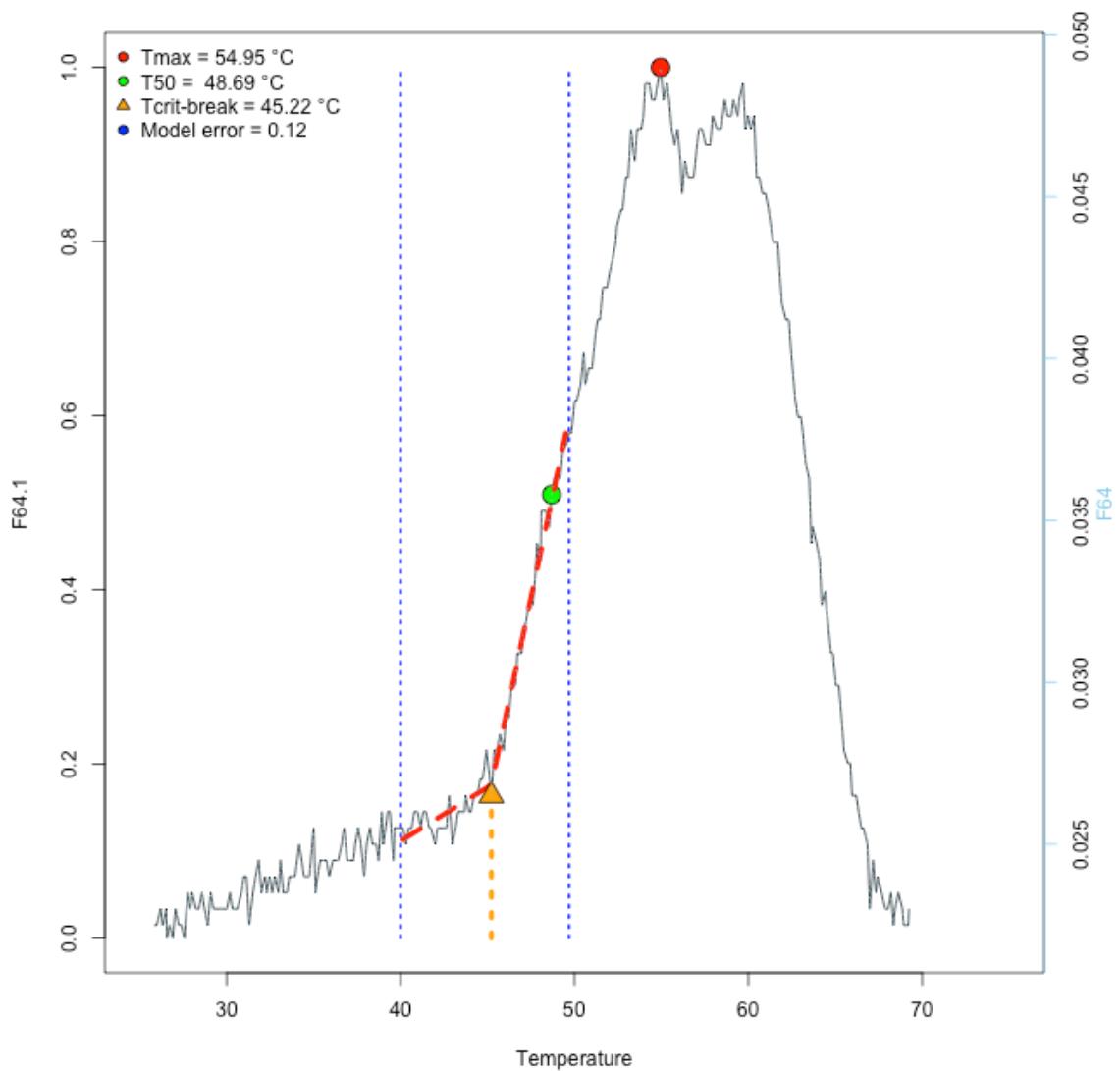


Figure S3. An example of a chlorophyll-fluorescence curve (T-F₀). The curve shows an increase in baseline chlorophyll fluorescence with an increase in temperature. The triangle indicates the T_{crit} threshold.

Table S2. Average maximum and minimum air temperatures, T_{time}^{air} , T_{sum}^{air} and T_{range}^{air} for NW and SE aspects at both study locations. Values for each variable were averaged across the four replicates for each site type and the 28 days of February 2023.

Location	Aspect	Mean maximum air temperature (°C)	Mean minimum air temperature (°C)	T_{time}^{air} (hrs)	T_{sum}^{air} (°C)	T_{range}^{air} (°C)
Schlink Pass	NW	22.5 ± 0.5	0.86 ± 0.3	15.1 ± 0.2	3269 ± 93	22.3 ± 0.7
	SE	24.9 ± 0.6	0.4 ± 0.3	13.7 ± 0.2	3373 ± 101	23.0 ± 0.6
Mt Stilwell	NW	24.3 ± 0.8	3.1 ± 0.3	15.1 ± 0.4	3208 ± 108	21.3 ± 0.8
	SE	20.6 ± 0.9	3.1 ± 0.3	13.3 ± 0.4	3047 ± 128	17.5 ± 0.9

20

Table S3. The output of linear mixed models to determine the influence of aspect (NW v SE) and location (Schlink Pass v Mt Stilwell) on site-specific daily heat sum (T_{sum}^{air}), time of day that maximum temperatures were reached (T_{time}^{air}) and diurnal temperature range (T_{range}^{air}) across the month of February 2023. The model included the sampling date as a random factor to account for variation in heat sum caused by differences in weather across days (Figure S5). Bolded p-values indicate significance at $\alpha = 0.05$.

Response variable	df	Explanatory variables	F	p-value
T_{time}^{air}	1, 415	Aspect	29.66	<0.001
	1, 415	Location	0.293	0.589
	1, 415	Aspect x location	0.490	0.484
T_{sum}^{air}	1, 415	Aspect	0.225	0.636
	1, 415	Location	10.467	0.001
	1, 415	Aspect x location	4.971	0.026
T_{range}^{air}	1, 425	Aspect	0.180	0.666
	1, 425	Location	24.79	<0.001
	1, 425	Aspect x location	22.12	<0.001

21

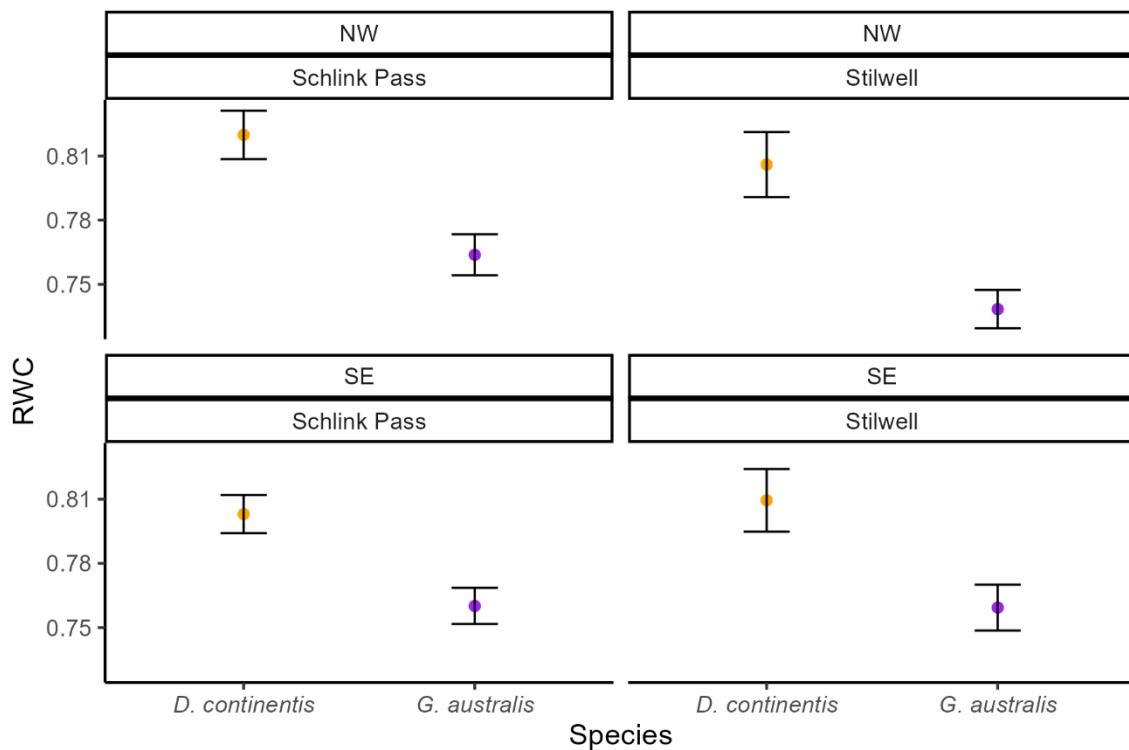
Table S4. The output of linear mixed models to determine the effect of leaf temperature parameters ($T_{\text{sum-day}}^{\text{leaf}}$, and $T_{\text{sum-night}}^{\text{leaf}}$; Figure 2) on photosystem heat thresholds (T_{crit}).

Leaf temperature parameter	df	F	p-value
$T_{\text{sum-day}}^{\text{leaf}}$	1, 27	3.07	0.99
$T_{\text{sum-night}}^{\text{leaf}}$	1, 27	3.1	0.09

22

23

Figure S4. RWC for *G. australis* and *D. continentis* at the four site-types (SchlinkSE, SchlinkNW, StilwellNW, StilwellSE). All data were collected between the 25 Feb and 1 March 2023, overlapping with the T_{crit} sampling period.



24

25

26

27

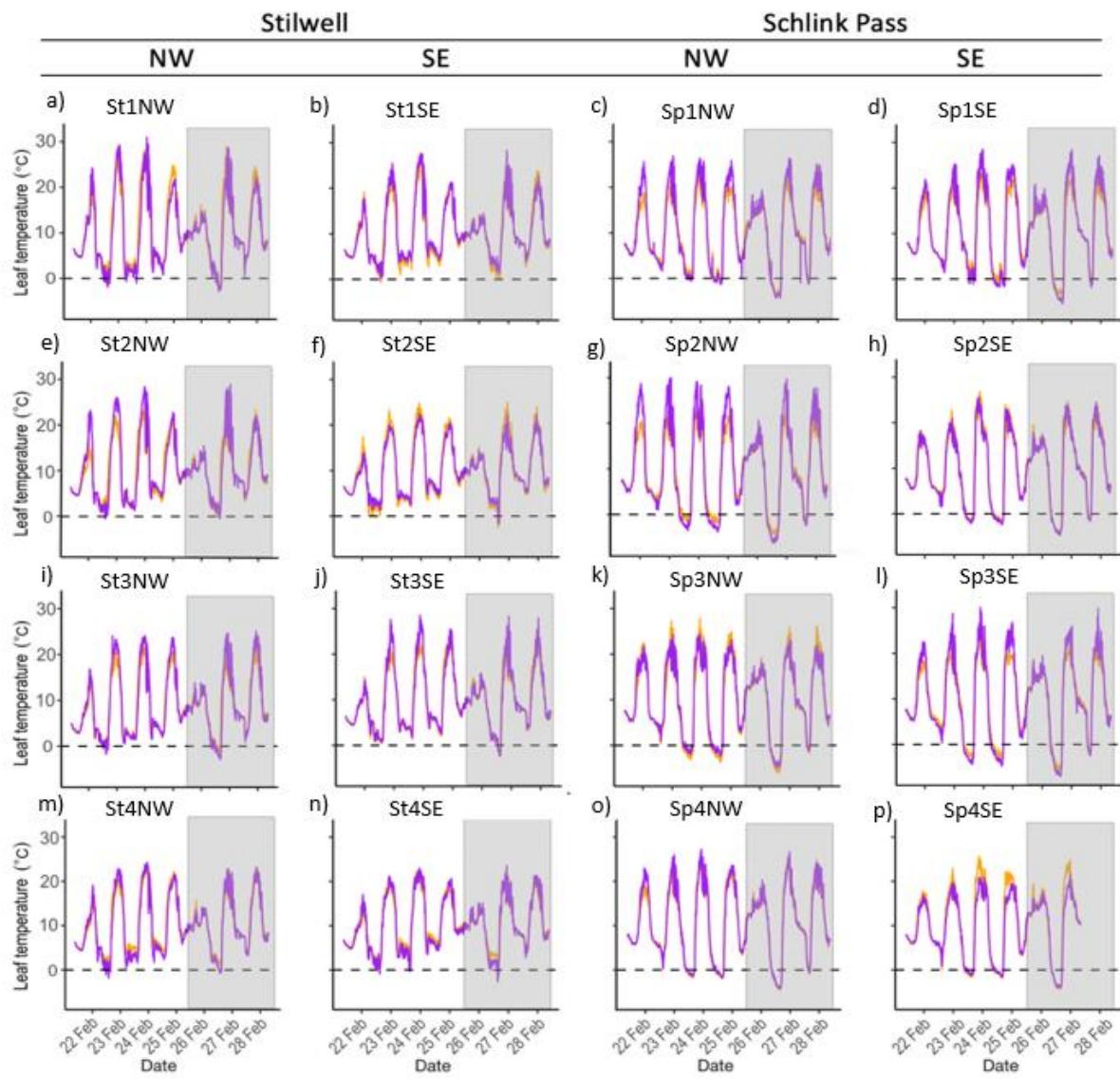


Figure S5. Leaf temperatures ($^{\circ}\text{C}$) of *Dracophyllum continentis* (purple lines) and *Grevillea australis* (yellow lines) across seven days (22–28 Feb) leading up to and coinciding with T_{crit} sampling (26 Feb–2 Mar). Leaf temperatures were measured in situ at 16 sites across two alpine locations (Schlink Pass and Mt Stilwell) that contrasted in aspect (SW v NE). Tick marks on the x-axis align with data recorded at 3 pm on that day. The dashed horizontal lines represent 0°C , and the grey shading represents the first three days of T_{crit} sampling.

22 Feb	23 Feb	24 Feb	25 Feb	26 Feb	28 Feb	1 Mar	2 Mar	Time points	Leaf temperature points
			T_{crit}	T_{crit}	T_{crit}	T_{crit}	T_{crit}		
288	288	288	288					1152	36864
	288	288	288	288				1152	36864
		288	288	288	288			1152	36864
			288	288	288	288		1152	36864
				288	288	288	288	1152	36864
288	576	864	1552	1152	864	576	288	5760	184320

Figure S6. Number of time points and leaf temperatures included in the SnapBoosting Machine Regressor model used to predict the effects of historical leaf temperature profiles on heat tolerance thresholds (T_{crit}). Time points for each four-day period preceding a day of T_{crit} measurements are shown in rows 3–7. The darkest shade represents time points within the 24 hours preceding each day of T_{crit} measurement, while the lightest shade represents time points 72–96 hours prior. Each time point corresponds to 32 unique leaf temperature measurements (recorded from two species across 16 sites). In total, 1,552 time points and 36,864 unique leaf temperature values were used to predict the 32 T_{crit} values for each measurement day. Across all 32 plants and all five T_{crit} measurement days, a total of 5,670 time points and 184,320 leaf temperature values were used to predict T_{crit} in this four-day model.

34
35
36
37
38

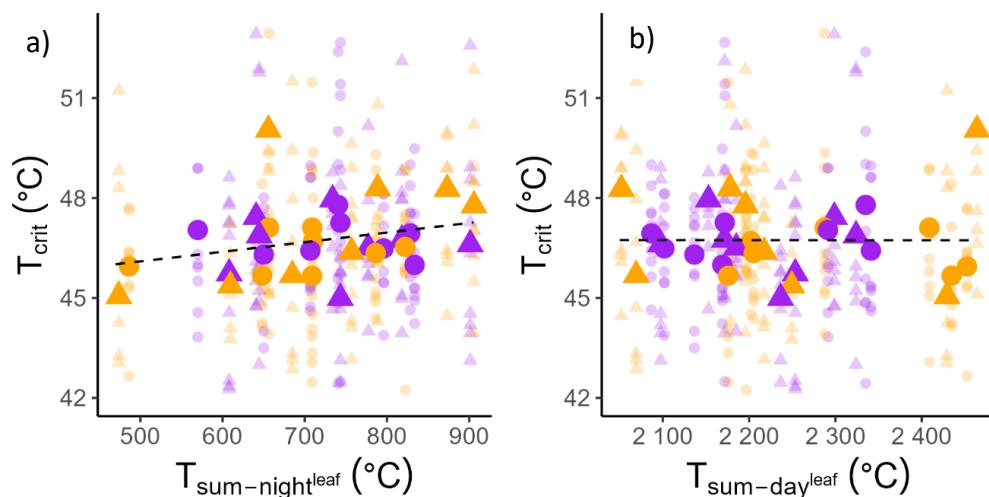


Figure S7. Daily T^{leaf} parameters values were averaged across the week of leaf temperatures leading up to and coinciding with T_{crit} sampling (22 Feb – 28 Feb). a) The relationship between average day time heat sum ($T_{\text{sum-night}}^{\text{leaf}}$) and T_{crit} . b) The relationship between average day time heat sum ($T_{\text{sum-night}}^{\text{leaf}}$) and T_{crit} . Dashed lines represent non-significant relationships from linear mixed models.

39
40
41

42 Bird, M., Pottinger, C., Arnold, P., Danzey, L., Geange, S., Kearney, M., . . . Leigh, A.
43 (unpublished data). Can NicheMapR predict leaf temperatures of morphologically
44 disparate species across microclimatically distinct alpine sites?
45 Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. *The R Journal*,
46 5(1), 144-161.
47 Leon-Garcia, I. V., & Lasso, E. (2019). High heat tolerance in plants from the Andean
48 highlands: Implications for paramos in a warmer world. *PLoS One*, 14(11), e0224218.
49 doi:10.1371/journal.pone.0224218
50 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*: Springer-Verlag New
51 York.
52
53
54