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Abstract

Plant physiological heat tolerance thresholds can acclimate rapidly in response to changing
leaf temperature, which varies considerably across microclimatic space and time. How leaf
temperatures trigger shifts in these heat thresholds has not been established. We aimed to
determine the influence of temporally proximal leaf temperatures (T'®3f) on leaf photosystem
heat tolerance thresholds (Tcit) for two co-occurring plant species in situ in the Australian
Alps. We measured Teit and T'®?f over five days at 16 sites, paired by aspect (northwest,
southeast) across two locations: a cold air drainage valley and a high exposed ridgeline. To
investigate how Tcit was influenced by T'®3f in the days prior, we used traditional statistical
approaches (linear mixed models) and a machine learning technique. While traditional
models found that T'#f parameters explained some variation in Tit, machine learning
identified that 85% of the variation in Tt was explained by both maximum and minimum
leaf temperatures in the four days prior to measurement. This finding illustrates that heat
tolerance acclimation is driven by exposure to not only maximum, but also minimum leaf
temperatures. To uncover complex relationships between fluctuating environmental
conditions and plant acclimatory responses, we recommend integrating machine learning

techniques with traditional statistical methods.
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Introduction

Many of the critical physiological processes of plants, including photosynthesis, tissue repair
and reproduction, are mediated by temperature (Wahid et al. 2007). Ascertaining the
thermal limits to physiological function, or thermal tolerance thresholds, and how they shift
with local temperature, is critical if plant vulnerability to climatic warming is to be
characterised accurately (Cook et al. 2021). It is becoming increasingly clear that coarse
gradient measures of climate do not predict significant variation in heat tolerance thresholds
at a local scale (Curtis et al. 2016, Feeley et al. 2020, Perez and Feeley 2020, Danzey et al.
2024). Indeed, in common garden settings, differences in heat tolerance thresholds are
reduced relative to in situ measurements (Knight and Ackerly 2002, Knight and Ackerly 2003,
Harris et al. 2024, Alvarez et al. 2025), indicating acclimation to local conditions. Heat
tolerance acclimation in plants broadly refers to the reversible physiological and
morphological adjustments that enable plants to modify their thermal limits in according to
prevailing environmental conditions (Wahid et al. 2007, Zhu et al. 2018). Further, leaf
temperatures can strongly decouple from air, exceeding air temperatures by >10°C under
hot conditions (Kérner and Cochrane 1983, Blonder and Michaletz 2018, Fauset et al. 2018);
the extent of this decoupling is mediated by morphological traits that influence leaf
thermodynamics (Leigh et al. 2017, Arnold et al. 2025a). For these reasons, focus has shifted
toward the influence of leaf temperature on thermal tolerance, particularly photosystem
heat tolerance (Perez and Feeley 2020, Cook et al. 2021, Zhu et al. 2024). There is evidence
to suggest that microclimate, through its influence on leaf temperatures, is a strong
predictor of heat tolerance thresholds (Buchner and Neuner 2003, Curtis et al. 2016, Leon-
Garcia and Lasso 2019). This association is particularly important to investigate in places
typified by high microclimatic heterogeneity and temporal variability, such as alpine

environments (Kérner 2003, Kérner and Hiltbrunner 2021, Kérner 2023).

Average temperatures do not necessarily capture the extremes to which plants are exposed.
Nor do they account for the influence of heat load, a function of temperature intensity and
exposure duration, on heat tolerance (Neuner and Buchner 2023, Cook et al. 2024, Faber et
al. 2024). While climate change is bringing warmer daytime temperatures, nighttime
temperatures may be increasing at a greater rate (Easterling et al. 1997, Donat and

Alexander 2012), which has implications on important aspects of plant physiology and
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reproduction (Willits and Peet 1998, Niu and Xiang 2018, Rahnama et al. 2024). Among
these physiological processes, PSIl acclimation is particularly important, as it reflects the
ability of the photosynthetic apparatus to maintain function under increasingly stressful
thermal conditions. This phenomenon has been observed as changes in PSIl heat tolerance
thresholds (Posch et al. 2022, Sumner et al. 2022, Andrew et al. 2023, Cook et al. 2024,
Danzey et al. 2024). Research on heat tolerance thresholds typically focuses on the effect of
increasing or maximum temperatures (Leon-Garcia and Lasso 2019, Perez and Feeley 2020,
Vilas-Boas et al. 2024), while the effect of minimum temperatures has received far less
attention. Further, diurnal temperature amplitude can exert a substantial effect on drought
and freezing tolerance (Zhang et al. 2023). However, the effect of temperature across diurnal
cycles on heat tolerance thresholds under natural conditions remains to be studied.
Regarding the effect of temperature history on heat tolerance, some authors suggest that
acclimation is influenced by mean and maximum daily temperatures in the days prior to
measurement (Huve et al. 2006, Curtis 2017, Bison and Michaletz 2024, Zhu et al. 2024).
Conversely, others have found that acclimation of heat thresholds occurs over longer
temporal scales, across months and seasons (Zhu et al. 2018, Leon-Garcia and Lasso 2019).
It remains unclear as to what temporal scale acclimation of these thresholds occurs across

and the magnitude of the cues that trigger threshold shifts.

The thermal triggers for heat tolerance acclimation are complex. Relationships between
heat tolerance and temperature are not linear, with discrepancies between threshold
relaxation and leaf temperature documented in alpine environments (Buchner and Neuner
2003, Neuner and Buchner 2012). Therefore, traditional statistical methods that rely on
average temperatures to predict heat tolerance present clear limitations, particularly for
data collected under field conditions, where environmental temperatures vary across
microclimates and plants are exposed to rapid temperature fluctuations. Predicting thermal
tolerance necessitates a more nuanced assessment of how temporally proximal
temperatures lead to shifts in heat tolerance thresholds. Machine learning has recently
been used to determine how leaf temperature series predict plant physiological processes
like stomatal conductance (Gaur and Drewry 2024). Others have used such methods for
predicting photosynthetic performance parameters from plant water status and spectral

characteristics (Yang et al. 2022, Song and Wang 2023). A machine learning approach offers
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a potential path for ascertaining how leaf temperature profiles might cue changes in heat

tolerance thresholds.

Here we measured in situ leaf and air temperatures and critical heat tolerance thresholds of
photosystem Il (PSII) of two co-occurring morphologically and phylogenetically distinct
Australian alpine plant species, Grevillea australis and Dracophyllum continentis, at 16 sites
across two locations varying in elevation and landform. By contrasting the aspect and
location of study sites, our design maximised the microclimatic variation in terms of the
average time of day that maximum temperature occurred, the sum of temperatures across a
day and the temperature range of the diurnal cycle. We compared two different approaches
to investigate how leaf temperature affects acclimation of plant heat tolerance thresholds.
First, representing a traditional statistical approach, we used linear mixed models to
determine whether average temperature parameters could explain variations in heat
tolerance thresholds. Second, we sought to explain variation in Tcit by applying a machine
learning (ML) approach, which used the full suite of raw temperature data, representing

5,600 individual leaf temperature points.

Methods

Study site selection and study species

All field and experimental work was conducted on Wolgalu and Monaro Ngarigo lands in
Kosciuszko National Park, New South Wales, Australia. Study sites were situated in
grasslands at two locations representing different topographies and elevations: Schlink Pass,
a sub-alpine, cold air drainage valley along the Munyang River, at 1670 m a.s.l.,, and Mt
Stilwell, an alpine site on the exposed mountain pass above Charlotte Pass Village, 1959 m
a.s.l. Aspect, topography and elevation are design features that influence microclimatic
conditions. There were 16 sites in total: at each location, eight sites were selected, four of
NW aspect and four of SE aspect (Figure 1a; Figure S1; Table S1). Along with the contrasting
landforms represented at the two locations, selecting sites with contrasting aspects
maximised potential microclimatic variation, based on two factors: first, prevailing winds in
the region are from the west to the northwest (AGBoM 2023) and second, incident sunlight
is highest for equatorial-facing vegetation (Russell et al. 1989), i.e., north-northwest in the

southern hemisphere (for more details, see Supporting Information 1).
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The two alpine species, Dracophyllum continentis B.L.Burtt (Ericaceae) and Grevillea australis
R.Br. (Proteaceae), are found in both alpine and subalpine environments throughout South-
East Australia. These species were selected because they co-occur in moist alpine
environments yet are phylogenetically and morphologically distinct. Dracophyllum
continentis is a multi-branched shrub growing to 1 m, with thick, ovate to triangular leaves
(2—4 cm long, 4-7 mm wide), densely packed around the stem; G. australis is a shrub
growing to 1 m, with smaller, oblanceolate, linear, or narrow-elliptic leaves (0.5-3.5 cm long,

0.5-5.5 mm wide) that are spread along its woody branches (PlantNET 2024).

Air and leaf temperature measurements

Site-specific air temperature and leaf temperatures of G. australis and D. continentis were
measured at all 16 sites across Schlink Pass and Mt Stilwell from the start of February 2023
(Figure S2a, b). Leaf temperature was logged in 5-minute intervals using fine-wire type-T
thermocouples (gauge AWG 36, 0.13 mm diameter, Omega Engineering, Norwalk, CT, USA)
connected to four-channel HOBO data loggers (UX120-014M, Onset HOBO® Dataloggers
Onset, Bourne, USA). At each site, one thermocouple was attached to the underside of a D.
continentis leaf and two were attached to G. australis leaves. Thermocouples were affixed to
the leaves using a small piece of surgical tape, sized to one third of the leaf area to minimise
disruption to the leaf boundary layer (Figure S2c, d). All thermocouples measuring leaf
temperature were attached to leaves on the outer, sun-exposed north-facing side of the
canopy. Another thermocouple measured ambient air temperature and was attached to a
branch adjacent to the leaves being measured for temperature. A small white cap covered

each air thermocouple to shield it from direct sunlight (Figure S2e, f).

Collection of leaf material

Sampling of leaves for heat tolerance thresholds took place during mid-summer, between
9am and 12pm every day from 26 February to 2 March 2023. To determine the water status
of the plants sampled for heat tolerance measurement, we also collected leaves RWC
between 25 February and 1 March. The field sites were logistically very challenging to access
on foot, so water potential measurements were not feasible. To ensure that heat tolerance
measurements were not confounded by time of sampling, leaves were collected from all 16
sites each day by two fieldwork teams concurrently, one at Mt Stilwell and the other at

Schlink Pass. At each site, two mature, healthy leaves were collected from the outer sun-
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exposed north side of the canopy for each species. Concurrently, a small stem bearing leaves
of the same description was collected for relative water content (RWC) measurement. On
each day of sampling, leaves were collected from the same plants at each site. After
collection, leaves were placed in zip-lock bags lined with damp paper towels and kept in
darkness until heat tolerance measurements were made in the laboratory the same day.
Leaf samples were measured between five and eight hours after collection (Danzey et al.

2024, Bricefio et al. 2025).
Measurement of heat tolerance thresholds

Photosystem Il heat tolerance thresholds were measured based on the method detailed by
Arnold et al. (2021). Briefly, leaf samples were placed on a thermoelectrically controlled
Peltier plate, with type-T thermocouples attached to the underside of each leaf sample for
continuous leaf temperature measurements during a controlled heating ramp. The
temperature ramp began at 25 °C, increasing at a rate of 0.5 °C per minute until reaching
70 °C. A pulse amplitude modulated imaging fluorimeter (Maxi-Imaging-PAM; Heinz Walz
GmbH, Effeltrich, Germany) took measurements of minimal chlorophyll fluorescence (Fo)
during heating after allowing 30 minutes for leaves to dark adapt. For each experimental
run, 64 T- Fo curves (two replicates from the 16 sites for each species) were produced, from
which the critical heat thresholds (Tit) were determined as the point of transition between

slow-rise and fast-rise in Fo with increasing temperature (Figure S3).
Meausrement of RWC

For relative water content (RWC) determination, leaf samples with petioles removed were
first weighed to obtain fresh weight (FW). Samples were then submerged in water-filled pill
boxes for 3—4 hours to allow rehydration, after which the turgid weight (TW) was recorded.
Subsequently, samples were transported to the laboratory and oven-dried for one week,
after which they were re-weighed to obtain the dry weight (DW). RWC was calculated using

the formula:

RWC = W DWW 00
~ TW-—DW

Traditional statistical approach for ascertaining the effect of leaf temperature on Terit
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To characterise microclimatic variation in thermal profile across study sites, we calculated
three temperature parameters that we expected to reflect the nature, intensity and timing
of thermal load to which plants are exposed. These factors have been shown to influence
plant heat tolerance (Blair et al. 2019, Grinevich et al. 2019, Laosuntisuk and Doherty 2022,
Neuner and Buchner 2023, Cook et al. 2024). Heat stress intensity varies with aspect as it
determines the timing and magnitude of maximum temperatures in each day (McCune and
Keon 2002, Li et al. 2021). Thermal regimes differ markedly between mountain and valley
environments. While air temperatures are typically higher in lower elevation environments
at night, radiative cooling and cold-air drainage promote the formation of cold air pools,
which tend to develop in valleys (Lundquist et al. 2008, Pepin et al. 2022). As such, we chose
to calculate the time of day that maximum air temperature was reached (Ttme?"), the daily
sum of degrees above 0°C (Tsum®"), and the diurnal cycle temperature range (Trange®") at each
of the 16 study sites for the four weeks prior to and coinciding with T¢it measurement (Table

s2).

First, the temperature data for each site were cleaned to remove non-sensible values due to
spurious electrical signals (below -25°C and above 40°C). For calculation of T'? values for G.
australis, raw leaf temperature data collected by the two thermocouples were averaged. To
calculate Tsum values, the average temperatures above 0°C were summed for each five-
minute interval across the 24 hours between 12 am and 11:59 pm for each day. For Teme, the
time at which the maximum temperature occurred on each day was converted into hour
values for ease of analysis (e.g., a 24-hour time value of 13:30 became 13.5). Trange
parameters were calculated by subtracting the minimum temperature occurring each night
(between 7 pm and 6:59 am) from the maximum temperature occurring on the subsequent
day (between 7 am and 6:59 pm). In addition to calculating 24-hour cumulative temperature
above 0 °C (Tsum'®®) on Terit, nightly (Tsum- nignt'®®") and daily temperature (Tsum- day'®?f) sums
were calculated separately so we could differentiate between the effects of day and
nighttime heat load on Terit. Tsum-day'®® and Tsum-nignt '**f were calculated by summing the
temperatures above 0°C for each 5-minute interval between 7 am and 6:59 pm and 7 pm
and 6:59 am respectively. Individual daily values for each T2" parameter at each site were
averaged across all days of February, resulting in 16 levels of each microclimate parameter.

Values for each T'*¥ parameter were averaged at each site and for each species across the
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days preceding and coinciding with Tt sampling (22 Feb — 28 Feb) resulting in 32 levels of

each leaf temperature parameter.

To assess whether plants from these distinct microclimates differed in water status, we fitted
an LMM with the same structure as above, but with RWC as the response variable and plant
ID included as an additional random factor and species as an additional fixed factor. While
RWC differed significantly between species (F1,27 = 52.9, p < 0.001), it did not with location
(F1,27=0.43, p =0.52) or aspect (F1,27 = 0.0059, p = 0.0.94; Figure S4). This analysis enabled
us to exclude variation in plant water status across sites as a factor potentially confounding

microclimatic variation in Terit.

Having established that Teme®", Tsum®" and Trange®" reflect the substantial microclimatic
variation among sites (Table S3), we next sought to determine the influence of the
equivalent leaf temperature versions of these parameters on heat tolerance thresholds. Leaf
temperature parameters (Ttme'®®, Toum'® and Trange'®*) were calculated using the measured
leaf temperatures of G. australis and D. continentis spanning the four days prior to, and first
three days of Tt sampling (Figure S5), which we expected to most closely reflect the
temperature conditions likely to initiate changes in heat tolerance thresholds (Bison and
Michaletz 2024, Zhu et al. 2024). In addition to calculating 24-hour cumulative temperature
above 0 °C (Tsum'®®) on Terit, nightly (Tsum- night'®?) and daily temperature (Tsum- day'®?f) sums
were calculated separately so we could differentiate between the effects of day and
nighttime heat load on Teit.. All temperature parameters were averaged across the seven
days for each of the 16 sites and the resulting values were included as fixed factors in three
separately fitted LMMs, where Tt was the response variable. In each model, date was
included as a random factor to account for weather variation across sampling days. To
prevent boundary fit issues arising from including aspect and location separately, a
categorical variable named ‘site type’ with four levels (SchlinkSE, SchlinkNW, StilwelINW,
StilwellSE) was used as a random factor in these models. Where boundary fit issues
persisted, ‘site type’ was removed from the model. An additional random effect was added
to the models, Plant ID, of which there were 32 levels, to account for variability between leaf
replicates. ‘Species’ was excluded from T'¢ ~ T.;t models as a fixed term because

preliminary analyses determined that Tcit did not differ between species (F1, 286 = 0.087, p =
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0.77). Analyses were conducted using R Statistical Software (v 4.2.1: R Development Core

Team 2024).

Machine learning approach to ascertaining the effect of leaf temperature on Terit

Boosting-based ensemble methods are a class of machine learning algorithms that combine
multiple decision trees into a single strong predictive model. Each decision tree is trained
sequentially, with each subsequent model attempting to correct the residual errors of its
predecessor. This learning process allows boosting models to capture complex, nonlinear
relationships between input, predictive features and response variables (Natekin and Knoll
2013). We utilised the IBM Watson Machine Learning platform to train a Snap Boosting
Machine Regressor model to identify key predictive temperature points leading up to Terit
measurements. For the machine learning model (Python script) see Supplementary File 1.
Five-minute interval leaf temperature data from both species and all sites were pooled
together for training the model. This pooled model resulted in 153 Tt values with their
respective temperature history, which initially encompassed 25 days prior to each Teit
measurement (1 February 2023 — 1 March 2023; 8,532 time points and 267,264 leaf
temperature points for each day of T«it measurement for the initial 29-day model). Based on
this preliminary analysis, we narrowed this down to the four-day temperature history
leading up to each Tcrit measurement (1,152 time points and 36,864 leaf temperatures points
for each day of T.it measurement, Figure S6), as it provided the most relevant predictive
features. This decision was supported by literature on the biochemical processes that govern
heat tolerance; for example, decay of upregulated heat shock proteins has been shown to
occur between 2 and 3 days after heat stress (Charng et al. 2006, Aspinwall et al. 2019).
These findings align with the three days prior to Tt measurement being the best predictive

window for shifts in heat tolerance (Bison and Michaletz 2024, Zhu et al. 2024).

Results

T parameters appear to predict little variation in Terit

Three leaf temperature parameters (Time'®®, Tsum®* and Trange'®?f) were included as fixed
factors in separate LMMs where Teit was the response variable (Table 2). Accounting for site
type (location-aspect combination: SchlinkNW, SchlinkSE, StilwellNW, StilwellSE), Tsum'®®

predicted significant variation in Terit, such that for a 313.5°C increase in Tsum'®®, Teritincreased
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by 1°C (Table 2, Figure 2b). No significant relationship of Ttime'®®, Tsum-day'®®", Tsum-night ¢
Trange'®®" With Terie was found (Table 2, Figure 2c, d; Figure S7; Table S4). The reason that the
positive Tsum'®® ~ Terit relationship was relatively weak might be attributed to the nature of
the variation in Tcit across sampling days. Although date was a strong predictor of variation
in Terit, the only day where Tt was significantly different from the rest was on 28 Feb. Terit
values were on average 2.8 + 0.9°C higher on 28 Feb than the rest but across all other days,
Terit values were relatively uniform (Figure 2a). To assess whether these elevated 28 February
values were driving the significant Tsum'®®" ~ Tcrit relationship, we re-ran the model with these
values excluded. The relationship was no longer significant, indicating that the 28 February

Terit values were indeed responsible for the original significance.
Machine learning reveals that preceding high and low temperatures can predict Tt

The machine learning results highlighted specific temperatures and times within the
temperature histories that were critical for predicting Tt (coloured circles, Figure 3a). A
total of 33 leaf temperature time points within the four-day temperature window, which
were common to all leaves, were identified as collectively contributing 84.9% of the model's
total predictive power. The identified times points were predominantly high and low leaf
temperature values within the four-day period preceding Tcrit measurement. The strength of
predictive power was distributed relatively uniformly across the 4-day period. Three leaf
temperature points, however, one maximum and two minima occurring between 81 and 45
h prior to Tcrit measurement, provided 36.8% of the total predictive power (grey ellipses,

Figure 3b).

Discussion

The current study sought to determine how spatially and temporally varying leaf
temperatures drive changes in Tqit photosystem heat thresholds using two distinct
approaches: linear mixed models (LMMs) and machine learning (ML). Specifically, we were
interested in the insights that each method could provide about the role of prior leaf
temperature history in determining these thresholds, a question that has been explored
little to date. Temperature regimes show considerable spatial variation in alpine
environments, especially as a function of elevation and aspect (Legates and Willmott 1990,

McCune and Keon 2002). In our study, microclimatic variation with aspect and elevation was
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characterised by different times of day that maximum air temperatures were reached, the
sum or load of temperature and the diurnal cycle temperature range. However, LMMs
revealed that the only corresponding leaf temperature parameter that predicted variation in
photosystem heat thresholds was average daily heat sum (Tsum'®®f) and that relationship was
weak. Whereas leaf temperature parameters were not compelling predictors of Tt based
on LMMs, the novel ML approach was able to account for the complexity of the entire
thermal profile. Machine learning revealed that leaf temperature extremes, both high and
low, within the four days preceding heat tolerance measurements explained nearly 85% of

the variation in Terit.
Increases in mean daily heat load weakly correlates with increases in Terit

Mounting evidence suggests that photosystem heat tolerance thresholds respond to local
thermal conditions, varying temporally (Neuner et al. 2000, Coast et al. 2022, Posch et al.
2022) and spatially (Curtis et al. 2016, O'Sullivan et al. 2017, Cook et al. 2021, Danzey et al.
2024, Kullberg and Feeley 2024). While averages of point leaf temperature measurements
are typically used to characterise the conditions to which a plant is exposed, these metrics
do not capture the complex range of thermal conditions, nor the cumulative nature of heat
stress, which have important implications on measuring shifts in physiological tolerance
(Neuner and Buchner 2023, Cook et al. 2024, Faber et al. 2024). The weak Tsum'®® ~ Terit
relationship was driven by high Tt values on 28 Feb. This relationship may have been
weakened due to the relatively benign leaf temperatures in the week leading up to Terit
measurement (22.5°C on average). Interestingly, no significant relationship of Tsum-day'®*" or
Tsum-night®* with Terit was observed. This finding suggests that thermal tolerance cannot be
understood by examining daytime or nighttime conditions in isolation. Given that sites
clearly had different microclimatic profiles through time, these findings suggest that LMM
analytical approaches that average across substantial daily leaf temperature variation

obscure biologically important information.
Machine learning reveals preceding temperature extremes that predict shifts in Terit

Using machine learning, we found compelling evidence that certain daily leaf temperature
points prior to measurement predict subsequent shifts in Tcrit. The extremes of daily
maximum and, importantly, nightly minimum temperatures up to four days prior to heat

threshold measurement predicted a combined 85% of the variation in Tcit. The field of
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cross-tolerance, where exposure to one kind of stress results in tolerance to another
(Hossain et al. 2018), may explain this potentially counterintuitive pattern. Harris et al.
(2024) found that the occurrence of a hot day in concert with a cold night increases heat
tolerance more than a hot day and warm night, suggesting that exposure to cold stress
improves tolerance to heat stress. Indeed, both types of thermal stress can activate similar
response pathways (Mei and Song 2010, Li et al. 2014, Hossain et al. 2018). Heat shock
proteins (HSPs) are known to upregulate in response to both heat and cold stress (Anderson
et al. 1994, Wang et al. 2003), with small HSPs (common in plant chloroplasts) detectable
for up to 72 h after a triggering event (Charng et al. 2006). Further, there is evidence to
suggest that increases in reactive oxygen species and subsequent upregulation of
antioxidant enzymes are involved in the deployment of cross-tolerance (Gong et al. 2001,

Hossain et al. 2016, Hossain et al. 2018).

In the current study, lower nightly temperatures followed by higher daily temperatures
might have had an acclimatory effect on heat tolerance by activating similar response
pathways, which manifested as increased Tt in the days following. Danzey et al. (2024)
foundPSlI cold tolerance thresholds of -10.8 °C for G. australis and -10.3 °C for D.
continentis. In our study, the average of nightly leaf temperatures across the 7-day window
preceding Tqit measurements were —2.8 °C and —3.3 °C for G. australis and D. continentis,
respectively, with leaf temperatures dropping as low as -6.9 °C across this period. While
these temperatures did not surpass the reported cold tolerance thresholds, they
approached this range. Repeated exposure to near cold thresholds likely contributed to the
observed acclimation. Conversely, maximum temperatures approached heat tolerance
thresholds measured in the current study much less closely; average maximum leaf
temperature across sites and both species was 22.5 + 0.26 °C, while average Tcrit was 47.8 +
0.2 °C. Such disparities between maximum temperatures and temperature thresholds have
been observed by others, particularly in cooler climate species (Buchner and Neuner 2003,
Kitudom et al. 2022, Cox et al. 2025). The stress induced by consistent low-grade stress can
equate to that incurred by short, intense temperature stress (Neuner and Buchner 2023,
Cook et al. 2024, Arnold et al. 2025b). In the context of the present study, it is plausible that
the moderate maximum leaf temperatures observed maintained relatively high baseline Tt

values. Further, plants from environments with high seasonal or interannual variability may
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maintain elevated Tt as a buffer against rare but damaging extremes. Although our 5-min
averages showed mid-20 °C maxima, brief spikes (e.g., 30—35 °C) may have been missed yet
sufficient to induce acclimation, especially because induction temperatures can lie well
below damage thresholds (Knight and Ackerly 2002). As well as prior exposure to heat
stress, increased heat tolerance in plants can be induced by priming with other abiotic
stressors, such as drought exposure can also enhance heat tolerance (Ru et al. 2022, Sumner
et al. 2022, Yadav et al. 2022, Kamran et al. 2025). In this study, drought stress was unlikely
to be a confounding factor because relative water content remained consistent across site
types (Figure S4) and rarely declined to levels indicative of water stress during the sampling
period. An alternative explanation for why both maximum and minimum leaf temperature
predict heat threshold shifts is rapid acclimation and subsequent de-acclimation, which
frequently occur in thermally fluctuating alpine environments (Buchner and Neuner 2003).
Rapid acclimatory responses maybe associated with diurnal alterations of sugar
concentrations and osmotic potential (Seemann et al. 1986, Meyer and Santarius 1998,
Coast et al. 2022). Average daily maximum temperatures in alpine environments may not
seem stressful in absolute terms, but a sufficiently large diurnal swing between minima and
maxima could be. In our study, leaf temperature maxima in the days prior to Terit
measurements might have primed leaves for subsequent high temperatures, such that a
cold night followed by another hot day would lead to an acclimatory shift in Tcrit. Plants may
have de-acclimated when exposed to lower day time temperatures on 26 February (Figure
S5). When temperatures rose on 27—28 February, plants likely re-acclimated, reflected in the
higher Tqit measured on 28 February. This sequence of de-acclimation and subsequent re-
acclimation over 27-28 February likely drove the significant Tsum ™ Terit relationship.
Acclimation of Terit within a three-day window has recently been observed by others (Bison
and Michaletz 2024), perhaps underpinned by upregulation of HSPs and changes in
membrane fatty acid composition (Zhu et al. 2024) and/or by expression of genes or
isoforms associated with photosynthesis and solute transport (Roces et al. 2022). Because
the ability of machine learning to identify lag effects of temperature fluctuations on Tt is
not predicated on linear relationships, the approach is well-suited for capturing these
complex acclimation dynamics, especially in field conditions, where environmental

conditions fluctuate frequently.
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Irrespective of how these extreme temperatures triggered shifts in heat tolerance, the same
response was evident for both species. No differences in the predictive points were seen
between species when separate machine-learning analyses were performed for them
(results not shown). Likewise, when testing for the main effects of species using linear mixed
models, no significant effect of species on Tt was found. Growth form and leaf traits,
including but not limited to, leaf angle, leaf mass per area and leaf habit have been reported
as being significant predictors of heat tolerance (Sklenar et al. 2016, Sastry and Barua 2017,
Leon-Garcia and Lasso 2019, Middleby et al. 2025). Further, transpiration rates influence
leaf energy balance and perhaps heat tolerance thresholds (Marchin et al. 2022, Valliere et
al. 2023). It is, therefore, possible that because G. australis and D. continentis are both
evergreen alpine shrubs of similar heights, differences in leaf temperature driven by leaf
structural traits or transpiration (Bird et al. unpublished data) might not have been great
enough to cause differences in Tcrit. We note, however, our restriction to just two species
limits the ability to draw general conclusions about different species responses, something

that warrants further research.
Conclusions and future directions

Our findings indicate that not only temporally proximal leaf temperature maxima, but also
minima play a significant role in triggering shifts in heat tolerance thresholds. Our study also
corroborated the importance of cumulative heat load in determining heat tolerance
thresholds. However, this direct cumulative effect was small, highlighting that average leaf
temperature parameters do not sufficiently capture the temporal variability in thermal
conditions that influence physiological tolerance thresholds. By contrast, machine learning
revealed patterns that traditional statistical methods could not, providing new insights into
acclimatory triggers for shifts in thermal tolerance threshold. The observation that both high
and low temperature extremes are important predictors of Tcrit underscores the importance
of considering both ends of the temperature spectrum when predicting plant responses to
heat stress. Future studies should investigate whether cross tolerance represents a
competitive advantage for species from thermally variable environments. With a larger
sample size and broader range of species, machine learning may reveal the requirements for

thermal cues to induce cross-tolerance responses. Additionally, such an approach may clarify
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whether acclimation to temperatures in the four days preceding threshold measurement is a

consistent and generalisable phenomenon.

In summary, while statistical approaches are useful for understanding broad ecological
patterns, machine learning could be particularly useful when dealing with spatially and
temporally fluctuating environmental conditions and where their relationships with plant
physiology are complex and non-linear. Combining machine learning with more traditional
statistical approaches could enhance predictive accuracy, enabling the development of
robust tools to guide ecosystem management, conservation strategies, and climate

resilience efforts.



455

456
457
458
459

460

461
462
463
464
465

466

467
468

469
470
471

472
473
474
475

476
477
478

479
480
481

482
483
484

485
486
487
488
489

490
491
492
493

Author contributions

CP, AL, PA, SG, AN, AH and LD conceived of and designed the project; CP, MB and LD
conducted site selection and field work; CP conducted physiological measurements; CP, LD,
PA and AH carried out data analyses; CP and AL lead the writing; all authors contributed to
writing.

Acknowledgements

This work was conducted on the traditional lands and waters of the Ngarigo, Walgalu,
Ngunnawal, Ngambri and Gadigal; we acknowledge their Elders, past, present and emerging.
We are grateful for the help of field volunteers: Lisa Danzey, Jeanette Jeffreys, Finn Billyard-
Currey, Jay Nicholson, Michelle Bird and Anne Pottinger. The research was conducted in
association with Australian Research Council Linkage Project grant: LP180100942.

References

AGBoM (2023) Rose of Wind direction versus Wind speed in km/h: Charlotte Pass (Kosciusko
Chalet).

Alvarez PR, Harris RJ, Cook AM, Briceio VF, Nicotra AB, Leigh A (2025) Native Australian
seedlings exhibit novel strategies to acclimate to repeated heatwave events.
Oecologia 207(6): 84

Anderson JV, Li QB, Haskell DW, Guy CL (1994) Structural organization of the spinach
endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and
expression of 70-kilodalton heat-shock genes during cold acclimation. Plant
Physiology 104(4): 1359-1370

Andrew SC, Arnold PA, Simonsen AK, Briceiio VF (2023) Consistently high heat tolerance
acclimation in response to a simulated heatwave across species from the broadly
distributed Acacia genus. Functional Plant Biology 50(1): 71-83

Arnold PA, Bricefio VF, Gowland KM, Catling AA, Bravo LA, Nicotra AB (2021) A high-
throughput method for measuring critical thermal limits of leaves by chlorophyll
imaging fluorescence. Functional Plant Biology 48(6): 634646

Arnold PA, White MJ, Cook AM, Leigh A, Bricefio VF, Nicotra AB (2025a) Plants originating
from more extreme biomes have improved leaf thermoregulation. Annals of Botany
136(1): 199-213

Arnold PA, Noble DWA, Nicotra AB, Kearney MR, Rezende EL, Andrew SC, Bricefio VF,
Buckley LB, Christian KA, Clusella-Trullas S, Geange SR, Guja LK, Jiménez Robles O,
Kefford BJ, Kellermann V, Leigh A, Marchin RM, Mokany K, Bennett JM (2025b) A
Framework for Modelling Thermal Load Sensitivity Across Life. Global Change
Biology 31(7): e70315

Aspinwall MJ, Pfautsch S, Tjoelker MG, Varhammar A, Possell M, Drake JE, Reich PB, Tissue
DT, Atkin OK, Rymer PD, Dennison S, Van Sluyter SC (2019) Range size and growth
temperature influence Eucalyptus species responses to an experimental heatwave.
Global Change Biology 25(5): 1665-1684



494
495
496

497
498
499

500
501
502

503
504

505
506
507

508
509

510
511
512

513
514
515
516

517
518

519
520
521

522
523
524
525

526
527

528
529
530

531
532
533

Bird M, Pottinger C, Arnold P, Danzey L, Geange S, Kearney M, Nicotra A, Leigh A
(unpublished data) Can NicheMapR predict leaf temperatures of morphologically
disparate species across microclimatically distinct alpine sites?

Bison NN, Michaletz ST (2024) Variation in leaf carbon economics, energy balance, and heat
tolerance traits highlights differing timescales of adaptation and acclimation. New
Phytologist 242(5): 1919-1931

Blair EJ, Bonnot T, Hummel M, Hay E, Marzolino JM, Quijada IA, Nagel DH (2019)
Contribution of time of day and the circadian clock to the heat stress responsive
transcriptome in Arabidopsis. Scientific Reports 9(1): 4814

Blonder B, Michaletz ST (2018) A model for leaf temperature decoupling from air
temperature. Agricultural and Forest Meteorology 262: 354—-360

Bricefio VF, Arnold PA, Cook AM, Courtney Jones SK, Gallagher RV, French K, Bravo LA,
Nicotra AB, Leigh A (2025) Drivers of thermal tolerance breadth of plants across
contrasting biomes. Journal of Ecology in press

Buchner O, Neuner G (2003) Variability of heat tolerance in alpine plant species measured at
different altitudes. Arctic, Antarctic, and Alpine Research 35(4): 411-420, Article

Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock
protein, is essential for acquired thermotolerance during long recovery after
acclimation. Plant Physiology 140(4): 1297-1305

Coast O, Posch BC, Rognoni BG, Bramley H, Gaju O, Mackenzie J, Pickles C, Kelly AM, Lu M,
Ruan Y-L, Trethowan R, Atkin OK (2022) Wheat photosystem Il heat tolerance:
evidence for genotype-by-environment interactions. The Plant Journal 111(5): 1368—
1382

Cook AM, Berry N, Milner KV, Leigh A (2021) Water availability influences thermal safety
margins for leaves. Functional Ecology 35(10): 2179-2189, Article

Cook AM, Rezende EL, Petrou K, Leigh A (2024) Beyond a single temperature threshold:
Applying a cumulative thermal stress framework to plant heat tolerance. Ecology
Letters 27(3): e14416

Cox D, Marchin RM, Ellsworth DS, Wujeska-Klause A, Ossola A, Crous KY, Leishman MR,
Rymer PD, Tjoelker MG (2025) Thermal Safety Margins and Peak Leaf Temperatures
Predict Vulnerability of Diverse Plant Species to an Experimental Heatwave. Plant,
Cell & Environment in press

Curtis E (2017) Spatiotemporal dynamics of high-temperature tolerance in australian arid-
zone plants. University of Technology, Sydney,

Curtis EM, Gollan J, Murray BR, Leigh A (2016) Native microhabitats better predict tolerance
to warming than latitudinal macro-climatic variables in arid-zone plants. Journal of
Biogeography 43(6): 1156-1165

Danzey LM, Briceno VF, Cook AM, Nicotra AB, Peyre G, Rossetto M, Yap JS, Leigh A (2024)
Environmental and Biogeographic Drivers behind Alpine Plant Thermal Tolerance
and Genetic Variation. Plants (Basel) 13(9)



534
535

536
537
538

539
540
541

542
543
544
545

546
547
548

549
550
551

552
553
554

555
556
557

558
559
560

561
562
563

564
565
566

567
568
569

570
571
572

573
574
575

Donat MG, Alexander LV (2012) The shifting probability distribution of global daytime and
night-time temperatures. Geophysical Research Letters 39(14): e14707

Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev
V, Plummer N, Jamason P, Folland CK (1997) Maximum and Minimum Temperature
Trends for the Globe. Science 277(5324): 364367

Faber A, @rsted M, Ehlers K (2024) Application of the thermal death time model in
predicting thermal damage accumulation in plants. Journal of Experimental Botany
75(11): 3467-3482

Fauset S, Freitas HC, Galbraith DR, Sullivan MJP, Aidar MPM, Joly CA, Phillips OL, Vieira SA,
Gloor MU (2018) Differences in leaf thermoregulation and water use strategies
between three co-occurring Atlantic forest tree species. Plant, Cell & Environment
41(7): 1618-1631

Feeley K, Martinez-Villa J, Perez T, Silva Duque A, Trivifio Gonzalez D, Duque A (2020) The
Thermal Tolerances, Distributions, and Performances of Tropical Montane Tree
Species. Frontiers in Forests and Global Change 3, Original Research

Gaur S, Drewry DT (2024) Explainable machine learning for predicting stomatal conductance
across multiple plant functional types. Agricultural and Forest Meteorology 350:
109955

Gong M, Chen Bo, Li Z-G, Guo L-H (2001) Heat-shock-induced cross adaptation to heat,
chilling, drought and salt stress in maize seedlings and involvement of H202. Journal
of Plant Physiology 158(9): 1125-1130

Grinevich D, Stroup K, Duan J, Slabaugh E, Doherty C (2019) Novel transcriptional responses
to heat revealed by turning up the heat at night. Plant Molecular Biology 101(1): 1—
19

Harris RJ, Alvarez PR, Bryant C, Bricefio VF, Cook AM, Leigh A, Nicotra AB (2024) Acclimation
of thermal tolerance in juvenile plants from three biomes is suppressed when
extremes co-occur. Conservation Physiology 12(1): coae027

Hossain MA, Burritt DJ, Fujita M (2016) Cross-Stress Tolerance in Plants: Molecular
Mechanisms and Possible Involvement of Reactive Oxygen Species and
Methylglyoxal Detoxification Systems. pp 327-380

Hossain MA, Li Z-G, Hoque TS, Burritt DJ, Fujita M, Munné-Bosch S (2018) Heat or cold
priming-induced cross-tolerance to abiotic stresses in plants: key regulators and
possible mechanisms. Protoplasma 255(1): 399-412

Hive K, Bichele I, Tobias M, Niinemets U (2006) Heat sensitivity of photosynthetic electron
transport varies during the day due to changes in sugars and osmotic potential. Plant
Cell & Environment 29(2): 212—-228

Kamran M, Burdiak P, Karpinski S (2025) Crosstalk Between Abiotic and Biotic Stresses
Responses and the Role of Chloroplast Retrograde Signaling in the Cross-Tolerance
Phenomena in Plants. Cells 14(3): 176

Kitudom N, Fauset S, Zhou Y, Fan Z, Li M, He M, Zhang S, Xu K, Lin H (2022) Thermal safety
margins of plant leaves across biomes under a heatwave. Science of The Total
Environment 806: 150416



576
577
578

579
580
581

582
583

584

585
586
587

588
589

590
591
592

593
594
595

596
597

598
599
600

601
602

603
604

605
606
607

608
609
610

611
612
613

614
615

Knight C, Ackerly D (2002) An ecological and evolutionary analysis of photosynthetic
thermotolerance using the temperature-dependent increase in fluorescence.
Oecologia 130(4): 505-514

Knight CA, Ackerly DD (2003) Evolution and plasticity of photosynthetic thermal tolerance,
specific leaf area and leaf size: congeneric species from desert and coastal
environments. New Phytologist 160(2): 337-347

Koérner C (2003) Alpine Plant Life: Functional Plant Ecology Of High Mountain Ecosystems.
Springer, Germany

Kérner C (2023) Concepts in Alpine Plant Ecology. Plants 12(14): 2666

Korner C, Cochrane P (1983) Influence of plant physiognomy on leaf temperature on clear
midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecologia
4:117-124

Koérner C, Hiltbrunner E (2021) Why is the alpine flora comparatively robust against climatic
warming? Diversity 13(8): 383

Kullberg AT, Feeley KJ (2024) Seasonal acclimation of photosynthetic thermal tolerances
in six woody tropical species along a thermal gradient. Functional Ecology 38(11):
2493-2505

Laosuntisuk K, Doherty CJ (2022) The intersection between circadian and heat-responsive
regulatory networks controls plant responses to increasing temperatures. Biochem
Soc Trans 50(3): 1151-1165

Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in global surface air
temperature. vol 41.

Leigh A, Sevanto S, Close JD, Nicotra AB (2017) The influence of leaf size and shape on leaf
thermal dynamics: does theory hold up under natural conditions? Plant, Cell &
Environment 40(2): 237-248

Leon-Garcia IV, Lasso E (2019) High heat tolerance in plants from the Andean highlands:
Implications for paramos in a warmer world. PLoS One 14(11): e0224218

Li S-L, Xia Y-Z, Liu J, Shi X-D, Sun Z-Q (2014) Effects of cold-shock on tomato seedlings under
high temperature stress. The Journal of Applied Ecology 25: 2927-2934

Li Xe, Song X, Zhao J, Lu H, Qian C, Zhao X (2021) Shifts and plasticity of plant leaf mass per
area and leaf size among slope aspects in a subalpine meadow. Ecology and
Evolution 11(20): 14042-14055

Lundquist JD, Pepin N, Rochford C (2008) Automated algorithm for mapping regions of cold-
air pooling in complex terrain. Journal of Geophysical Research: Atmospheres
113(D22)

Marchin RM, Backes D, Ossola A, Leishman MR, Tjoelker MG, Ellsworth DS (2022) Extreme
heat increases stomatal conductance and drought-induced mortality risk in
vulnerable plant species. Global Change Biology 28(3): 1133-1146

McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat
load. Journal of vegetation science 13(4): 603—-606



616
617
618

619
620

621
622
623

624

625
626
627

628
629
630

631
632
633

634
635

636
637
638
639

640
641
642
643

644
645

646
647

648
649
650

651
652

653
654
655

Mei YQ, Song SQ (2010) Response to temperature stress of reactive oxygen species
scavenging enzymes in the cross-tolerance of barley seed germination. Journal of
Zhejiang University Science B 11(12): 965-972

Meyer H, Santarius KA (1998) Short-term thermal acclimation and heat tolerance of
gametophytes of mosses. Oecologia 115(1-2): 1-8

Middleby KB, Cheesman AW, Hopkinson R, Baker L, Ramirez Garavito S, Breed MF, Cernusak
LA (2025) Ecotypic Variation in Leaf Thermoregulation and Heat Tolerance but Not
Thermal Safety Margins in Tropical Trees. Plant, Cell & Environment 48(1): 649-663

Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Front Neurorobot 7: 21

Neuner G, Buchner O (2012) Dynamics of Tissue Heat Tolerance and Thermotolerance of PS
II'in Alpine Plants. In: Litz C (ed) Plants in Alpine Regions: Cell Physiology of Adaption
and Survival Strategies. Springer Vienna, Vienna, pp 61-74

Neuner G, Buchner O (2023) The dose makes the poison: The longer the heat lasts, the
lower the temperature for functional impairment and damage. Environmental and
Experimental Botany 212(4): 105395

Neuner G, Buchner O, Braun V (2000) Short-term changes in heat tolerance in the alpine
cushion plant silene acaulis ssp. Excapa [all.] j. Braun at different altitudes. Plant
Biology 2(6): 677-683

Niu Y, Xiang Y (2018) An Overview of Biomembrane Functions in Plant Responses to High-
Temperature Stress. Frontiers in Plant Science 9: 915

O'Sullivan O, Heskel M, Reich P, Tjoelker M, Weerasinghe L, Penillard A, Zhu L, Egerton J,
Bloomfield K, Creek D, Bahar N, Griffin K, Hurry V, Meir P, Turnbull M, Atkin O (2017)
Thermal limits of leaf metabolism across biomes. Global Change Biology 23(1): 209—
223

Pepin NC, Arnone E, Gobiet A, Haslinger K, Kotlarski S, Notarnicola C, Palazzi E, Seibert P,
Serafin S, Schéner W, Terzago S, Thornton JM, Vuille M, Adler C (2022) Climate
changes and their elevational patterns in the mountains of the world. Reviews of
Geophysics 60(1)

Perez TM, Feeley KJ (2020) Photosynthetic heat tolerances and extreme leaf temperatures.
Functional Ecology 34(11): 2236—-2245

PlantNET (2024) (The NSW Plant Information Network System). Royal Botanic Gardens and
Domain Trust, Sydney

Posch BC, Hammer J, Atkin OK, Bramley H, Ruan Y-L, Trethowan R, Coast O (2022) Wheat
photosystem Il heat tolerance responds dynamically to short- and long-term
warming. Journal of Experimental Botany 73(10): 3268-3282

R Development Core Team (2024) R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria

Rahnama A, Salehi F, Meskarbashee M, Mehdi Khanlou K, Ghorbanpour M, Harrison MT
(2024) High temperature perturbs physicochemical parameters and fatty acids
composition of safflower (Carthamus tinctorius L.). BMC Plant Biology 24(1): 1080



656
657
658

659
660
661
662

663
664

665
666
667

668
669
670

671
672
673

674
675
676
677

678
679
680

681
682

683
684
685

686
687

688
689

690
691

692
693
694
695

Roces V, Lamelas L, Valledor L, Carbé M, Cafial MJ, Meijon M (2022) Integrative analysis in
Pinus revealed long-term heat stress splicing memory. The Plant Journal 112(4): 998—
1013

Ru C, Hu X, Chen D, Wang W, Song T (2022) Heat and drought priming induce tolerance to
subsequent heat and drought stress by regulating leaf photosynthesis, root
morphology, and antioxidant defense in maize seedlings. Environmental and
Experimental Botany 202: 105010

Russell G, Marshall B, Jarvis PG (1989) Plant canopies: their growth, form and function.
Cambridge University Press, Cambridge & New York

Sastry A, Barua D (2017) Leaf thermotolerance in tropical trees from a seasonally dry climate
varies along the slow-fast resource acquisition spectrum. Scientific Reports 7(1):
11246

Seemann JR, Downton WJ, Berry JA (1986) Temperature and leaf osmotic potential as
factors in the acclimation of photosynthesis to high temperature in desert plants.
Plant Physiology 80(4): 926—930

Sklenar P, Kucerova A, Mackova J, Romoleroux K (2016) Temperature microclimates of
plants in a tropical alpine environment: how much does growth form matter? Arctic,
Antarctic, and Alpine Research 48(1): 61-78

Song G, Wang Q (2023) Coupling effective variable selection with machine learning
techniques for better estimating leaf photosynthetic capacity in a tree species (Fagus
crenata Blume) from hyperspectral reflectance. Agricultural and Forest Meteorology
338: 109528

Sumner EE, Williamson VG, Gleadow RM, Wevill T, Venn SE (2022) Acclimation to water
stress improves tolerance to heat and freezing in a common alpine grass. Oecologia
199(4): 831-843

Valliere JM, Nelson KC, Martinez MC (2023) Functional traits and drought strategy predict
leaf thermal tolerance. Conservation Physiology 11(1): coad085

Vilas-Boas T, Almeida HAd, Della Torre F, Modolo LV, Lovato MB, Lemos-Filho JP (2024)
Intraspecific variation in the thermal safety margin in Coffea arabica L. in response to
leaf age, temperature, and water status. Scientia Horticulturae 337: 113455

Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview.
Environmental and Experimental Botany 61(3): 199-223

Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme
temperatures: towards genetic engineering for stress tolerance. Planta 218(1): 1-14

Willits DH, Peet MM (1998) The effect of night temperature on greenhouse grown tomato
yields in warm climates. Agricultural and Forest Meteorology 92(3): 191-202

Yadav R, Juneja S, Kumar R, Saini R, Kumar S (2022) Understanding cross-tolerance
mechanism and effect of drought priming on individual heat stress and
combinatorial heat and drought stress in chickpea. Journal of Crop Science and
Biotechnology 25(5): 515-533



696
697
698

699
700
701

702
703
704
705

706
707
708

709

Yang Z, Tian J, Wang Z, Feng K (2022) Monitoring the photosynthetic performance of grape
leaves using a hyperspectral-based machine learning model. European Journal of
Agronomy 140: 126589

Zhang X, Rademacher T, Liu H, Wang L, Manzanedo RD (2023) Fading regulation of diurnal
temperature ranges on drought-induced growth loss for drought-tolerant tree
species. Nature Communications 14(1): 6916

Zhu L, Scafaro A, Vierling E, Ball M, Posch B, Stock F, Atkin O (2024) Heat tolerance of a
tropical—subtropical rainforest tree species Polyscias elegans: time-dependent
dynamic responses of physiological thermostability and biochemistry. New
Phytologist 241(2): 715-731

Zhu L, Bloomfield KJ, Hocart CH, Egerton JJ, O'Sullivan OS, Penillard A, Weerasinghe LK, Atkin
OK (2018) Plasticity of photosynthetic heat tolerance in plants adapted to thermally
contrasting biomes. Plant, Cell & Environment 41(6): 1251-1262



710

711

712
713
714
715
716
717
718
719
720
721
722
723

Figure legends

a)
Schlink Pass Stilwell s

|-1959m SE NW NW SE SE G. australis

& SE D. continentis

=1670m NW G. australis

O NW D. continentis

e) 13:20 |

b)

%) 3374 ]

< 20{— 20{ | 3047 |

= |

—

ERE 15

[

| &

ag) 10 10

o 51" 5

o=

< o = 0 0 0
S O OO OO O L L OO &P NS OO OO OO
SELSL LS SETLPLSS SCLELSL S PSP LSS
NN NN N 4 N NN N 2 RN N 2 N NN 1 2

Time Time Time Time

Figure 1. A schematic of the experimental design capturing microclimatic variation. a) site
and aspect contrasts; both species (Grevillea australis and Dracophyllum continentis) at
study sites contrasting in aspect throughout Schlink Pass and Mt Stilwell. The average
elevation of sites at each location can be seen on the left. Black letters in green circles
correspond with a site type, the air temperature parameters of which are indicated in panels
b, ¢, d and e. Tsum®" (°C) represents the daily average sum of degrees above 0°C occurring at
5-minute intervals across a 24-hr period (pink boxes, left); Time?" represents the time of day
at which maximum air temperatures occurred (blue boxes, middle) and Trange®" (°C)
represents the diurnal range of air temperature (green boxes, right). Daily values for all three
parameters were averaged across the month of February 2023 and across the four replicates
of each site type (SchlinkSE, SchlinkNW, StilwelINW and StilwellSE). For full details, see
Tables S1 and S2.



724

725  Table 1. The output of linear mixed models to determine the influence of aspect (NW v SE)
726  and location (Schlink Pass v Mt Stilwell) on site-specific daily heat sum (Tsum®"), time of day
727  that maximum temperatures were reached (Ttime®") and diurnal temperature range (Trange™")
728  across the month of February 2023.The model included the sampling date as a random

729  factor to account for variation in heat sum caused by differences in weather across days
730  (Figure S5). Bolded p-values indicate significance at o = 0.05.

Response df Fixed effects F p-value

variable

Ttime?" 1,415 Aspect 29.66 <0.001
1,415 Location 0.293 0.589
1,415 Aspect x location 0.490 0.484

Tsum®" 1,415 Aspect 0.225 0.636
1, 415 Location 10.467 0.001
1,415 Aspect x location 4971 0.026

Trange®" 1,425 Aspect 0.180 0.666
1,425 Location 24.79 <0.001
1,425 Aspect x location 22.12 <0.001

731

732  Table 2. The output of linear mixed models to determine the effect of leaf temperature
733  parameters (Teme'®®, Tsum'®®, and Trange'®®’; Figure 2) on photosystem heat thresholds (Tcrit).
734  Bolded p-values indicate significance at a = 0.05.

Leaf temperature df F p-value
parameter

Ttime'®3f 1,33 0.129 0.72
Tsum'®f 1,27 4.478 0.04
Trange'®™ 1,20 0.527 0.47
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Figure 2. a) Variation in heat tolerance thresholds (Tcrit) across five days of sampling in
summer (26 Feb — 2 Mar). Letters represent significant differences in Tcrit between days of
sampling. Error bars show the standard error of mean Teit. All daily T'**f parameter values
were averaged across the week of leaf temperatures leading up to and coinciding with Terit
sampling (22 Feb — 28 Feb). b) The relationship between average time of maximum
temperature (Tame'®®) and Terit. ) The relationship between average daily heat sum (Tsum'?)
and Terit. d) The relationship between average diurnal temperature range (Trange®") and Trit.
Solid lines represent statistically significant relationships, and dashed lines represent non-
significant relationships from linear mixed models; conditional R?values are shown above
their corresponding relationship.

a)

Aspect
b ® nw
A se
S
514 pecies
a a a a G. australis
® D confinentis
S e * T
A ]
[ é A é % : § A é é
45
421
26 Feb 27 Feb 28 Feb 1 Mar 2 Mar
b) R?=0.026 c) R?2=0.139 d) R2=0.028
511 51 514
%) (%)
5 484 A 48 A ® o 484 B »
= |4 o % z °
Y ¢ o &0 5 | apatte
- 1’ ) A ' 2 = L Rd
454 . A 451 A 451 A
421 a2z a2{_ ‘ .
1200 1300 1400 1500 1600 2800 2900 3000 3100 15 20 25 30
Ttime|EaT Tsumlual (DC} Trangelear (GC)



749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

766

Figure 3. Snap Boosting Machine Regressor model for predicting the effects of the historical
leaf temperature profiles on heat tolerance thresholds (Tcit) based on leaf temperatures
averaged across two species and 16 sites recorded at 5-minute intervals (1,152 time points
per day of Tcit measurement). The data shown represent the leaf temperature profile within
the four days preceding each of the five days of Tt measurement. Because Terit was
measured on five consecutive days, a given time point prior to Tcit measurement
represented five sets of species-site combinations (32 plants per day totalling to 36,864 leaf
temperatures for each day of Tt measurement, Figure S6). (a) Leaf temperature (°C) over
the four-days, with individual timepoints shown in dark grey and the light grey shadow
indicating the standard deviation for each time point. Machine learning (ML) predictive
features are the 33 points highlighted in colours representing their temperature, with blue
indicating lower and red indicating higher leaf temperatures. The ML predictive points
indicate the times at which leaf temperature had the highest predictive power for Trit
measured. (b) The individual predictive power of each of the 33 ML features, with the total
predictive power of all points taken together explaining 84.9% of the variation in T, with
three temperature points having between 10-15% predictive power each (marked with grey
ellipses).
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Supplementary Materials

Supporting Information 1. Selection of sites contrasting in aspect.

Selection for each site pair was based on four criteria: 1) whether sites were reasonably
matched in elevation (within 10 m), 2) whether their aspects were contrasting (North-West
facing vs South-East facing), and 3) whether the distance between the target G. australis
and D. continentis plants was more than 1 m apart. The latter criterion was to ensure that
thermocouples were run only a short distance to the datalogger and that microclimatic

conditions that the plants were exposed to were comparable.



Table S1. Coordinates, elevation, slope and aspect of study microsites across Schlink Pass
and Mt Stilwell in Kosciuszko National Park of South-East New South Wales. Latitude and
longitude values are formatted in decimal degrees. The nomenclature of the site names
are as follows: the first two letters, ‘Sp’ and ‘St’ represent the site location, Schlink Pass
and Stilwell, respectively and the last two letters of each abbreviated site name represent
the aspect of the site. Although not all sites were directly NW/SE facing, a LMM where
date was a random factor revealed highly significant variation in mean air temperatures
between sites of opposing aspects across the year 2023 (p < 0.001, Bird et al.,
unpublished data). This justified the grouping of paired sites into NW and SE categories.

Site Latitude Longitude Elevation Aspect Slope
(m a.s.l)
Stilwell
St1SE -36.44111 148.3239 1962 SE175° 5°
StINW -36.44111 148.3225 1953 NW300° 15°
St2SE -36.44778  148.3322 1959 SE125° 10°
St2NW -36.44222 148.3264 1960 NW332° 10°
St3SE -36.44583 148.3328 1952 SE117° 5°
St3NW -36.44194  148.3278 1963 NW322° 10°
St4SE -36.44472 148.3344 1956 NE 27 ° 15°
St4ANW -36.4428 148.3297 1963 NW322° 10°
Schlink Pass
Sp1SE -36.26444  148.3731 1690 E120° 25°
SpINW -36.26477 148.3733 1680 NW330° 10°
Sp2SE -36.26694  148.3714 1672 E70° 20°
Sp2NW -36.26719 148.3719 1672 W 270° 5°
Sp3SE -36.26806  148.3711 1667 E90° 20°
Sp3NW -36.26843 148.3718 1660 SW240° 15°
Sp4SE -36.26861 148.3708 1665 SE150° 5°

SpANW -36.26889 148.3708 1664 NW 300 ° 5°
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Figure S1: Sixteen study sites throughout Schlink Pass (top) and Mt Stilwell (bottom) in
South-Eastern Australia on topographic maps. Red circles indicate N-NW facing sites; blue
circles indicate S-SE facing sites. At each location, there were four site pairs, each pair
matched in elevation but contrasted in aspect. Thin black lines indicate which sites are
paired where unclear. Scale bars and north arrows are on each map. The map products
were generated using the “ggmap” (Kahle & Wickham, 2013) and “ggplot2” (Wickham,
2016) R packages.
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study microsites in Kosciuszko’NationaI
Park, New South Wales across two locations: a) Mount Stilwell and b) Schlink Pass. Thermocouples
recording leaf temperature of c) D. continentis and d) G. australis. €) A Thermocouple recording

air temperature protected by a white cap. f) Thermocouples were connected to dataloggers an kept
in a waterproof esky, protected using plastic garden netting.

FigureSZ. In-field etup of temeature logging stations at
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Figure S3. An example of a chlorophyll-fluorescence curve (T-F,). The curve shows an
increase in baseline chlorophyll fluorescence with an increase in temperature. The
triangle indicates the Tqit threshold.
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Table S2. Average maximum and minimum air temperatures, Ttime?", Tsum®" and Trange®" for NW
and SE aspects at both study locations. Values for each variable were averaged across the four
replicates for each site type and the 28 days of February 2023.

Location Aspect Mean maximum Mean minimum  Tyime?" Tsum?' Trange®"
air air (hrs) (c) (c)
temperature (°C) temperature (°C)

Schlink Pass NW 22.5+0.5 0.86+£0.3 151+ 3269 223+
0.2 93 0.7

SE 249+0.6 0.4+0.3 13.7 ¢ 3373 ¢ 23.0+
0.2 101 0.6

Mt Stilwell NW 243 +0.8 3.1+£0.3 151+ 3208 + 213+
0.4 108 0.8

SE 20.6+0.9 3.1+0.3 133+ 3047 + 175+
0.4 128 0.9

Table S3. The output of linear mixed models to determine the influence of aspect (NW
v SE) and location (Schlink Pass v Mt Stilwell) on site-specific daily heat sum (Tsum?"),
time of day that maximum temperatures were reached (Tume®") and diurnal
temperature range (Trange®" ) across the month of February 2023.The model included
the sampling date as a random factor to account for variation in heat sum caused by
differences in weather across days (Figure S5). Bolded p-values indicate significance at

o = 0.05.

Response df Explanatory F p-value

variable variables

Ttime®" 1, 415 Aspect 29.66 <0.001
1, 415 Location 0.293 0.589
1,415 Aspect x location 0.490 0.484

Toum®" 1, 415 Aspect 0.225 0.636
1, 415 Location 10.467 0.001
1,415 Aspect x location 4.971 0.026

Trange™" 1,425 Aspect 0.180 0.666
1,425 Location 24.79 <0.001
1,425 Aspect x location 22.12 <0.001




21

22

Table S4. The output of linear mixed models to determine the effect of leaf temperature
parameters (Tsum-day'®®, and Tsum-night'*?’; Figure 2) on photosystem heat thresholds (Tcrit).

Leaf temperature parameter df F p-value
Tsum-dayleaf 1, 27 3.07 099
Tsum-nightleaf 1, 27 3.1 0.09
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Figure S4. RWC for G. australis and D. continentis at the four site-types (SchlinkSE,
SchlinkNW, StilwelINW, StilwellSE). All data were collected between the 25 Feb and 1
March 2023, overlapping with the T¢it sampling period.
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Figure S5. Leaf temperatures (°C) of Dracophyllum continentis (purple lines) and Grevillea
australis (yellow lines) across seven days (22—28 Feb) leading up to and coinciding with Trit
sampling (26 Feb—2 Mar). Leaf temperatures were measured in situ at 16 sites across two alpine
locations (Schlink Pass and Mt Stilwell) that contrasted in aspect (SW v NE). Tick marks on the x-
axis align with data recorded at 3 pm on that day. The dashed horizontal lines represent 0°C,
and the grey shading represents the first three days of Tcrit sampling.
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22 Feb 23 Feb 24 Feb 25 Feb 26 Feb 28 Feb 1 Mar 2 Mar Time Leaf
points | temperature
points
Tcrit Tcrir Tcr\'t Tcrit Tcrit
288 288 288 1152 36864
288 288 288 1152 36864
288 288 288 1152 36864
288 288 288 1152 36864
288 288 288 1152 36864
288 576 864 1552 1152 864 576 288 5760 184320

Figure S6. Number of time points and leaf temperatures included in the SnapBoosting
Machine Regressor model used to predict the effects of historical leaf temperature
profiles on heat tolerance thresholds (Tcit). Time points for each four-day period
preceding a day of Teit measurements are shown in rows 3—7. The darkest shade
represents time points within the 24 hours preceding each day of T«it measurement,
while the lightest shade represents time points 72—96 hours prior. Each time point
corresponds to 32 unique leaf temperature measurements (recorded from two species
across 16 sites). In total, 1,552 time points and 36,864 unique leaf temperature values
were used to predict the 32 Tt values for each measurement day. Across all 32 plants
and all five T¢it measurement days, a total of 5,670 time points and 184,320 leaf
temperature values were used to predict Teit in this four-day model.
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Figure S7. Daily T' parameters values were averaged across the week of leaf
temperatures leading up to and coinciding with Tcit sampling (22 Feb — 28
Feb). a) The relationship between average day time heat sum (Tsum-night®) and
Terit. b) The relationship between average day time heat sum (Tsym-nignt®®") and
Terit. Dashed lines represent non-significant relationships from linear mixed
models.
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