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Abstract 32 

Plant physiological heat tolerance thresholds can acclimate rapidly in response to changing 33 

leaf temperature, which varies considerably across microclimatic space and time. How leaf 34 

temperatures trigger shifts in these heat thresholds has not been established. We aimed to 35 

determine the influence of temporally proximal leaf temperatures (Tleaf) on leaf photosystem 36 

heat tolerance thresholds (Tcrit) for two co-occurring plant species in situ in the Australian 37 

Alps. We measured Tcrit and Tleaf over five days at 16 sites, paired by aspect (northwest, 38 

southeast) across two locations: a cold air drainage valley and a high exposed ridgeline. To 39 

investigate how Tcrit was influenced by Tleaf in the days prior, we used traditional statistical 40 

approaches (linear mixed models) and a machine learning technique. While traditional 41 

models found that Tleaf parameters explained some variation in Tcrit, machine learning 42 

identified that 85% of the variation in Tcrit was explained by both maximum and minimum 43 

leaf temperatures in the four days prior to measurement. This finding illustrates that heat 44 

tolerance acclimation is driven by exposure to not only maximum, but also minimum leaf 45 

temperatures. To uncover complex relationships between fluctuating environmental 46 

conditions and plant acclimatory responses, we recommend integrating machine learning 47 

techniques with traditional statistical methods.  48 

  49 



Introduction  50 

Many of the critical physiological processes of plants, including photosynthesis, tissue repair 51 

and reproduction, are mediated by temperature (Wahid et al. 2007). Ascertaining the 52 

thermal limits to physiological function, or thermal tolerance thresholds, and how they shift 53 

with local temperature, is critical if plant vulnerability to climatic warming is to be 54 

characterised accurately (Cook et al. 2021). It is becoming increasingly clear that coarse 55 

gradient measures of climate do not predict significant variation in heat tolerance thresholds 56 

at a local scale (Curtis et al. 2016, Feeley et al. 2020, Perez and Feeley 2020, Danzey et al. 57 

2024).  Indeed, in common garden settings, differences in heat tolerance thresholds are 58 

reduced relative to in situ measurements (Knight and Ackerly 2002, Knight and Ackerly 2003, 59 

Harris et al. 2024, Alvarez et al. 2025), indicating acclimation to local conditions. Heat 60 

tolerance acclimation in plants broadly refers to the reversible physiological and 61 

morphological adjustments that enable plants to modify their thermal limits in according to 62 

prevailing environmental conditions (Wahid et al. 2007, Zhu et al. 2018). Further, leaf 63 

temperatures can strongly decouple from air, exceeding air temperatures by >10°C under 64 

hot conditions (Körner and Cochrane 1983, Blonder and Michaletz 2018, Fauset et al. 2018); 65 

the extent of this decoupling is mediated by morphological traits that influence leaf 66 

thermodynamics (Leigh et al. 2017, Arnold et al. 2025a). For these reasons, focus has shifted 67 

toward the influence of leaf temperature on thermal tolerance, particularly photosystem 68 

heat tolerance (Perez and Feeley 2020, Cook et al. 2021, Zhu et al. 2024). There is evidence 69 

to suggest that microclimate, through its influence on leaf temperatures, is a strong 70 

predictor of heat tolerance thresholds (Buchner and Neuner 2003, Curtis et al. 2016, Leon-71 

Garcia and Lasso 2019). This association is particularly important to investigate in places 72 

typified by high microclimatic heterogeneity and temporal variability, such as alpine 73 

environments (Körner 2003, Körner and Hiltbrunner 2021, Körner 2023). 74 

Average temperatures do not necessarily capture the extremes to which plants are exposed. 75 

Nor do they account for the influence of heat load, a function of temperature intensity and 76 

exposure duration, on heat tolerance (Neuner and Buchner 2023, Cook et al. 2024, Faber et 77 

al. 2024). While climate change is bringing warmer daytime temperatures, nighttime 78 

temperatures may be increasing at a greater rate (Easterling et al. 1997, Donat and 79 

Alexander 2012), which has implications on important aspects of plant physiology and 80 



reproduction (Willits and Peet 1998, Niu and Xiang 2018, Rahnama et al. 2024). Among 81 

these physiological processes, PSII acclimation is particularly important, as it reflects the 82 

ability of the photosynthetic apparatus to maintain function under increasingly stressful 83 

thermal conditions. This phenomenon has been observed as changes in PSII heat tolerance 84 

thresholds (Posch et al. 2022, Sumner et al. 2022, Andrew et al. 2023, Cook et al. 2024, 85 

Danzey et al. 2024). Research on heat tolerance thresholds typically focuses on the effect of 86 

increasing or maximum temperatures (Leon-Garcia and Lasso 2019, Perez and Feeley 2020, 87 

Vilas-Boas et al. 2024), while the effect of minimum temperatures has received far less 88 

attention. Further, diurnal temperature amplitude can exert a substantial effect on drought 89 

and freezing tolerance (Zhang et al. 2023). However, the effect of temperature across diurnal 90 

cycles on heat tolerance thresholds under natural conditions remains to be studied. 91 

Regarding the effect of temperature history on heat tolerance, some authors suggest that 92 

acclimation is influenced by mean and maximum daily temperatures in the days prior to 93 

measurement (Hüve et al. 2006, Curtis 2017, Bison and Michaletz 2024, Zhu et al. 2024). 94 

Conversely, others have found that acclimation of heat thresholds occurs over longer 95 

temporal scales, across months and seasons (Zhu et al. 2018, Leon-Garcia and Lasso 2019). 96 

It remains unclear as to what temporal scale acclimation of these thresholds occurs across 97 

and the magnitude of the cues that trigger threshold shifts. 98 

The thermal triggers for heat tolerance acclimation are complex. Relationships between 99 

heat tolerance and temperature are not linear, with discrepancies between threshold 100 

relaxation and leaf temperature documented in alpine environments (Buchner and Neuner 101 

2003, Neuner and Buchner 2012). Therefore, traditional statistical methods that rely on 102 

average temperatures to predict heat tolerance present clear limitations, particularly for 103 

data collected under field conditions, where environmental temperatures vary across 104 

microclimates and plants are exposed to rapid temperature fluctuations. Predicting thermal 105 

tolerance necessitates a more nuanced assessment of how temporally proximal 106 

temperatures lead to shifts in heat tolerance thresholds. Machine learning has recently 107 

been used to determine how leaf temperature series predict plant physiological processes 108 

like stomatal conductance (Gaur and Drewry 2024). Others have used such methods for 109 

predicting photosynthetic performance parameters from plant water status and spectral 110 

characteristics (Yang et al. 2022, Song and Wang 2023). A machine learning approach offers 111 



a potential path for ascertaining how leaf temperature profiles might cue changes in heat 112 

tolerance thresholds.  113 

Here we measured in situ leaf and air temperatures and critical heat tolerance thresholds of 114 

photosystem II (PSII) of two co-occurring morphologically and phylogenetically distinct 115 

Australian alpine plant species, Grevillea australis and Dracophyllum continentis, at 16 sites 116 

across two locations varying in elevation and landform. By contrasting the aspect and 117 

location of study sites, our design maximised the microclimatic variation in terms of the 118 

average time of day that maximum temperature occurred, the sum of temperatures across a 119 

day and the temperature range of the diurnal cycle. We compared two different approaches 120 

to investigate how leaf temperature affects acclimation of plant heat tolerance thresholds. 121 

First, representing a traditional statistical approach, we used linear mixed models to 122 

determine whether average temperature parameters could explain variations in heat 123 

tolerance thresholds. Second, we sought to explain variation in Tcrit by applying a machine 124 

learning (ML) approach, which used the full suite of raw temperature data, representing 125 

5,600 individual leaf temperature points. 126 

Methods 127 

Study site selection and study species 128 

All field and experimental work was conducted on Wolgalu and Monaro Ngarigo lands in 129 

Kosciuszko National Park, New South Wales, Australia. Study sites were situated in 130 

grasslands at two locations representing different topographies and elevations: Schlink Pass, 131 

a sub-alpine, cold air drainage valley along the Munyang River, at 1670 m a.s.l., and Mt 132 

Stilwell, an alpine site on the exposed mountain pass above Charlotte Pass Village, 1959 m 133 

a.s.l. Aspect, topography and elevation are design features that influence microclimatic 134 

conditions. There were 16 sites in total: at each location, eight sites were selected, four of 135 

NW aspect and four of SE aspect (Figure 1a; Figure S1; Table S1). Along with the contrasting 136 

landforms represented at the two locations, selecting sites with contrasting aspects 137 

maximised potential microclimatic variation, based on two factors: first, prevailing winds in 138 

the region are from the west to the northwest (AGBoM 2023) and second, incident sunlight 139 

is highest for equatorial-facing vegetation (Russell et al. 1989), i.e., north-northwest in the 140 

southern hemisphere (for more details, see Supporting Information 1).  141 



The two alpine species, Dracophyllum continentis B.L.Burtt (Ericaceae) and Grevillea australis 142 

R.Br. (Proteaceae), are found in both alpine and subalpine environments throughout South-143 

East Australia. These species were selected because they co-occur in moist alpine 144 

environments yet are phylogenetically and morphologically distinct. Dracophyllum 145 

continentis is a multi-branched shrub growing to 1 m, with thick, ovate to triangular leaves 146 

(2–4 cm long, 4–7 mm wide), densely packed around the stem; G. australis is a shrub 147 

growing to 1 m, with smaller, oblanceolate, linear, or narrow-elliptic leaves (0.5–3.5 cm long, 148 

0.5–5.5 mm wide) that are spread along its woody branches (PlantNET 2024). 149 

Air and leaf temperature measurements 150 

Site-specific air temperature and leaf temperatures of G. australis and D. continentis were 151 

measured at all 16 sites across Schlink Pass and Mt Stilwell from the start of February 2023 152 

(Figure S2a, b). Leaf temperature was logged in 5-minute intervals using fine-wire type-T 153 

thermocouples (gauge AWG 36, 0.13 mm diameter, Omega Engineering, Norwalk, CT, USA) 154 

connected to four-channel HOBO data loggers (UX120-014M, Onset HOBO® Dataloggers 155 

Onset, Bourne, USA). At each site, one thermocouple was attached to the underside of a D. 156 

continentis leaf and two were attached to G. australis leaves. Thermocouples were affixed to 157 

the leaves using a small piece of surgical tape, sized to one third of the leaf area to minimise 158 

disruption to the leaf boundary layer (Figure S2c, d). All thermocouples measuring leaf 159 

temperature were attached to leaves on the outer, sun-exposed north-facing side of the 160 

canopy. Another thermocouple measured ambient air temperature and was attached to a 161 

branch adjacent to the leaves being measured for temperature. A small white cap covered 162 

each air thermocouple to shield it from direct sunlight (Figure S2e, f). 163 

Collection of leaf material  164 

Sampling of leaves for heat tolerance thresholds took place during mid-summer, between 165 

9am and 12pm every day from 26 February to 2 March 2023. To determine the water status 166 

of the plants sampled for heat tolerance measurement, we also collected leaves RWC 167 

between 25 February and 1 March. The field sites were logistically very challenging to access 168 

on foot, so water potential measurements were not feasible. To ensure that heat tolerance 169 

measurements were not confounded by time of sampling, leaves were collected from all 16 170 

sites each day by two fieldwork teams concurrently, one at Mt Stilwell and the other at 171 

Schlink Pass. At each site, two mature, healthy leaves were collected from the outer sun-172 



exposed north side of the canopy for each species. Concurrently, a small stem bearing leaves 173 

of the same description was collected for relative water content (RWC) measurement. On 174 

each day of sampling, leaves were collected from the same plants at each site. After 175 

collection, leaves were placed in zip-lock bags lined with damp paper towels and kept in 176 

darkness until heat tolerance measurements were made in the laboratory the same day. 177 

Leaf samples were measured between five and eight hours after collection (Danzey et al. 178 

2024, Briceño et al. 2025). 179 

Measurement of heat tolerance thresholds 180 

Photosystem II heat tolerance thresholds were measured based on the method detailed by 181 

Arnold et al. (2021). Briefly, leaf samples were placed on a thermoelectrically controlled 182 

Peltier plate, with type-T thermocouples attached to the underside of each leaf sample for 183 

continuous leaf temperature measurements during a controlled heating ramp. The 184 

temperature ramp began at 25 °C, increasing at a rate of 0.5 °C per minute until reaching 185 

70 °C. A pulse amplitude modulated imaging fluorimeter (Maxi-Imaging-PAM; Heinz Walz 186 

GmbH, Effeltrich, Germany) took measurements of minimal chlorophyll fluorescence (F0) 187 

during heating after allowing 30 minutes for leaves to dark adapt. For each experimental 188 

run, 64 T- F0 curves (two replicates from the 16 sites for each species) were produced, from 189 

which the critical heat thresholds (Tcrit) were determined as the point of transition between 190 

slow-rise and fast-rise in F0 with increasing temperature (Figure S3).  191 

Meausrement of RWC 192 

For relative water content (RWC) determination, leaf samples with petioles removed were 193 

first weighed to obtain fresh weight (FW). Samples were then submerged in water-filled pill 194 

boxes for 3–4 hours to allow rehydration, after which the turgid weight (TW) was recorded. 195 

Subsequently, samples were transported to the laboratory and oven-dried for one week, 196 

after which they were re-weighed to obtain the dry weight (DW). RWC was calculated using 197 

the formula: 198 

RWC =  
FW − DW

TW − DW
 x 100 199 

Traditional statistical approach for ascertaining the effect of leaf temperature on Tcrit 200 



To characterise microclimatic variation in thermal profile across study sites, we calculated 201 

three temperature parameters that we expected to reflect the nature, intensity and timing 202 

of thermal load to which plants are exposed. These factors have been shown to influence 203 

plant heat tolerance (Blair et al. 2019, Grinevich et al. 2019, Laosuntisuk and Doherty 2022, 204 

Neuner and Buchner 2023, Cook et al. 2024). Heat stress intensity varies with aspect as it 205 

determines the timing and magnitude of maximum temperatures in each day (McCune and 206 

Keon 2002, Li et al. 2021). Thermal regimes differ markedly between mountain and valley 207 

environments. While air temperatures are typically higher in lower elevation environments 208 

at night, radiative cooling and cold-air drainage promote the formation of cold air pools, 209 

which tend to develop in valleys (Lundquist et al. 2008, Pepin et al. 2022). As such, we chose 210 

to calculate the time of day that maximum air temperature was reached (Ttime
air), the daily 211 

sum of degrees above 0°C (Tsum
air), and the diurnal cycle temperature range (Trange

air) at each 212 

of the 16 study sites for the four weeks prior to and coinciding with Tcrit measurement (Table 213 

S2). 214 

First, the temperature data for each site were cleaned to remove non-sensible values due to 215 

spurious electrical signals (below -25C and above 40C). For calculation of Tleaf values for G. 216 

australis, raw leaf temperature data collected by the two thermocouples were averaged.  To 217 

calculate Tsum values, the average temperatures above 0C were summed for each five-218 

minute interval across the 24 hours between 12 am and 11:59 pm for each day. For Ttime, the 219 

time at which the maximum temperature occurred on each day was converted into hour 220 

values for ease of analysis (e.g., a 24-hour time value of 13:30 became 13.5). Trange 221 

parameters were calculated by subtracting the minimum temperature occurring each night 222 

(between 7 pm and 6:59 am) from the maximum temperature occurring on the subsequent 223 

day (between 7 am and 6:59 pm). In addition to calculating 24-hour cumulative temperature 224 

above 0 °C (Tsum
leaf) on Tcrit, nightly (Tsum- night

leaf) and daily temperature (Tsum- day
leaf) sums 225 

were calculated separately so we could differentiate between the effects of day and 226 

nighttime heat load on Tcrit.  Tsum-day
leaf and Tsum-night 

leaf were calculated by summing the 227 

temperatures above 0C for each 5-minute interval between 7 am and 6:59 pm and 7 pm 228 

and 6:59 am respectively. Individual daily values for each Tair parameter at each site were 229 

averaged across all days of February, resulting in 16 levels of each microclimate parameter. 230 

Values for each Tleaf parameter were averaged at each site and for each species across the 231 



days preceding and coinciding with Tcrit sampling (22 Feb – 28 Feb) resulting in 32 levels of 232 

each leaf temperature parameter. 233 

To assess whether plants from these distinct microclimates differed in water status, we fitted 234 

an LMM with the same structure as above, but with RWC as the response variable and plant 235 

ID included as an additional random factor and species as an additional fixed factor. While 236 

RWC differed significantly between species (F1, 27 = 52.9, p < 0.001), it did not with location 237 

(F1, 27 = 0.43, p = 0.52) or aspect (F1, 27 = 0.0059, p = 0.0.94; Figure S4). This analysis enabled 238 

us to exclude variation in plant water status across sites as a factor potentially confounding 239 

microclimatic variation in Tcrit. 240 

Having established that Ttime
air, Tsum

air
 and Trange

air reflect the substantial microclimatic 241 

variation among sites (Table S3), we next sought to determine the influence of the 242 

equivalent leaf temperature versions of these parameters on heat tolerance thresholds. Leaf 243 

temperature parameters (Ttime
leaf, Tsum

leaf and Trange
leaf) were calculated using the measured 244 

leaf temperatures of G. australis and D. continentis spanning the four days prior to, and first 245 

three days of Tcrit sampling (Figure S5), which we expected to most closely reflect the 246 

temperature conditions likely to initiate changes in heat tolerance thresholds (Bison and 247 

Michaletz 2024, Zhu et al. 2024). In addition to calculating 24-hour cumulative temperature 248 

above 0 °C (Tsum
leaf) on Tcrit, nightly (Tsum- night

leaf) and daily temperature (Tsum- day
leaf) sums 249 

were calculated separately so we could differentiate between the effects of day and 250 

nighttime heat load on Tcrit.. All temperature parameters were averaged across the seven 251 

days for each of the 16 sites and the resulting values were included as fixed factors in three 252 

separately fitted LMMs, where Tcrit was the response variable. In each model, date was 253 

included as a random factor to account for weather variation across sampling days. To 254 

prevent boundary fit issues arising from including aspect and location separately, a 255 

categorical variable named ‘site type’ with four levels (SchlinkSE, SchlinkNW, StilwellNW, 256 

StilwellSE) was used as a random factor in these models. Where boundary fit issues 257 

persisted, ‘site type’ was removed from the model. An additional random effect was added 258 

to the models, Plant ID, of which there were 32 levels, to account for variability between leaf 259 

replicates. ‘Species’ was excluded from Tleaf ~ Tcrit models as a fixed term because 260 

preliminary analyses determined that Tcrit did not differ between species (F1, 286 = 0.087, p = 261 



0.77). Analyses were conducted using R Statistical Software (v 4.2.1: R Development Core 262 

Team 2024).  263 

Machine learning approach to ascertaining the effect of leaf temperature on Tcrit 264 

Boosting-based ensemble methods are a class of machine learning algorithms that combine 265 

multiple decision trees into a single strong predictive model. Each decision tree is trained 266 

sequentially, with each subsequent model attempting to correct the residual errors of its 267 

predecessor. This learning process allows boosting models to capture complex, nonlinear 268 

relationships between input, predictive features and response variables (Natekin and Knoll 269 

2013). We utilised the IBM Watson Machine Learning platform to train a Snap Boosting 270 

Machine Regressor model to identify key predictive temperature points leading up to Tcrit 271 

measurements. For the machine learning model (Python script) see Supplementary File 1. 272 

Five-minute interval leaf temperature data from both species and all sites were pooled 273 

together for training the model. This pooled model resulted in 153 Tcrit values with their 274 

respective temperature history, which initially encompassed 25 days prior to each Tcrit 275 

measurement (1 February 2023 – 1 March 2023; 8,532 time points and 267,264 leaf 276 

temperature points for each day of Tcrit measurement for the initial 29-day model). Based on 277 

this preliminary analysis, we narrowed this down to the four-day temperature history 278 

leading up to each Tcrit measurement (1,152 time points and 36,864 leaf temperatures points 279 

for each day of Tcrit measurement, Figure S6), as it provided the most relevant predictive 280 

features. This decision was supported by literature on the biochemical processes that govern 281 

heat tolerance; for example, decay of upregulated heat shock proteins has been shown to 282 

occur between 2 and 3 days after heat stress (Charng et al. 2006, Aspinwall et al. 2019). 283 

These findings align with the three days prior to Tcrit measurement being the best predictive 284 

window for shifts in heat tolerance (Bison and Michaletz 2024, Zhu et al. 2024).   285 

Results 286 

Tleaf parameters appear to predict little variation in Tcrit 287 

Three leaf temperature parameters (Ttime
leaf, Tsum

leaf and Trange
leaf) were included as fixed 288 

factors in separate LMMs where Tcrit was the response variable (Table 2). Accounting for site 289 

type (location-aspect combination: SchlinkNW, SchlinkSE, StilwellNW, StilwellSE), Tsum
leaf 290 

predicted significant variation in Tcrit, such that for a 313.5°C increase in Tsum
leaf, Tcrit increased 291 



by 1°C (Table 2, Figure 2b). No significant relationship of Ttime
leaf, Tsum-day

leaf, Tsum-night 
leaf  292 

Trange
leaf with Tcrit was found (Table 2, Figure 2c, d; Figure S7; Table S4). The reason that the 293 

positive Tsum
leaf ~ Tcrit relationship was relatively weak might be attributed to the nature of 294 

the variation in Tcrit across sampling days. Although date was a strong predictor of variation 295 

in Tcrit, the only day where Tcrit was significantly different from the rest was on 28 Feb. Tcrit 296 

values were on average 2.8 ± 0.9°C higher on 28 Feb than the rest but across all other days, 297 

Tcrit values were relatively uniform (Figure 2a). To assess whether these elevated 28 February 298 

values were driving the significant Tsum
leaf ~ Tcrit relationship, we re-ran the model with these 299 

values excluded. The relationship was no longer significant, indicating that the 28 February 300 

Tcrit values were indeed responsible for the original significance. 301 

Machine learning reveals that preceding high and low temperatures can predict Tcrit 302 

The machine learning results highlighted specific temperatures and times within the 303 

temperature histories that were critical for predicting Tcrit (coloured circles, Figure 3a). A 304 

total of 33 leaf temperature time points within the four-day temperature window, which 305 

were common to all leaves, were identified as collectively contributing 84.9% of the model's 306 

total predictive power. The identified times points were predominantly high and low leaf 307 

temperature values within the four-day period preceding Tcrit measurement. The strength of 308 

predictive power was distributed relatively uniformly across the 4-day period. Three leaf 309 

temperature points, however, one maximum and two minima occurring between 81 and 45 310 

h prior to Tcrit measurement, provided 36.8% of the total predictive power (grey ellipses, 311 

Figure 3b). 312 

Discussion 313 

The current study sought to determine how spatially and temporally varying leaf 314 

temperatures drive changes in Tcrit photosystem heat thresholds using two distinct 315 

approaches: linear mixed models (LMMs) and machine learning (ML). Specifically, we were 316 

interested in the insights that each method could provide about the role of prior leaf 317 

temperature history in determining these thresholds, a question that has been explored 318 

little to date. Temperature regimes show considerable spatial variation in alpine 319 

environments, especially as a function of elevation and aspect (Legates and Willmott 1990, 320 

McCune and Keon 2002). In our study, microclimatic variation with aspect and elevation was 321 



characterised by different times of day that maximum air temperatures were reached, the 322 

sum or load of temperature and the diurnal cycle temperature range. However, LMMs 323 

revealed that the only corresponding leaf temperature parameter that predicted variation in 324 

photosystem heat thresholds was average daily heat sum (Tsum
leaf) and that relationship was 325 

weak. Whereas leaf temperature parameters were not compelling predictors of Tcrit based 326 

on LMMs, the novel ML approach was able to account for the complexity of the entire 327 

thermal profile. Machine learning revealed that leaf temperature extremes, both high and 328 

low, within the four days preceding heat tolerance measurements explained nearly 85% of 329 

the variation in Tcrit. 330 

Increases in mean daily heat load weakly correlates with increases in Tcrit 331 

Mounting evidence suggests that photosystem heat tolerance thresholds respond to local 332 

thermal conditions, varying temporally (Neuner et al. 2000, Coast et al. 2022, Posch et al. 333 

2022) and spatially (Curtis et al. 2016, O'Sullivan et al. 2017, Cook et al. 2021, Danzey et al. 334 

2024, Kullberg and Feeley 2024). While averages of point leaf temperature measurements 335 

are typically used to characterise the conditions to which a plant is exposed, these metrics 336 

do not capture the complex range of thermal conditions, nor the cumulative nature of heat 337 

stress, which have important implications on measuring shifts in physiological tolerance 338 

(Neuner and Buchner 2023, Cook et al. 2024, Faber et al. 2024). The weak Tsum
leaf ~ Tcrit 339 

relationship was driven by high Tcrit values on 28 Feb. This relationship may have been 340 

weakened due to the relatively benign leaf temperatures in the week leading up to Tcrit 341 

measurement (22.5°C on average). Interestingly, no significant relationship of Tsum-day
leaf  or 342 

Tsum-night
leaf with Tcrit was observed. This finding suggests that thermal tolerance cannot be 343 

understood by examining daytime or nighttime conditions in isolation. Given that sites 344 

clearly had different microclimatic profiles through time, these findings suggest that LMM 345 

analytical approaches that average across substantial daily leaf temperature variation 346 

obscure biologically important information. 347 

Machine learning reveals preceding temperature extremes that predict shifts in Tcrit 348 

Using machine learning, we found compelling evidence that certain daily leaf temperature 349 

points prior to measurement predict subsequent shifts in Tcrit. The extremes of daily 350 

maximum and, importantly, nightly minimum temperatures up to four days prior to heat 351 

threshold measurement predicted a combined 85% of the variation in Tcrit. The field of 352 



cross-tolerance, where exposure to one kind of stress results in tolerance to another 353 

(Hossain et al. 2018), may explain this potentially counterintuitive pattern. Harris et al. 354 

(2024) found that the occurrence of a hot day in concert with a cold night increases heat 355 

tolerance more than a hot day and warm night, suggesting that exposure to cold stress 356 

improves tolerance to heat stress. Indeed, both types of thermal stress can activate similar 357 

response pathways (Mei and Song 2010, Li et al. 2014, Hossain et al. 2018). Heat shock 358 

proteins (HSPs) are known to upregulate in response to both heat and cold stress (Anderson 359 

et al. 1994, Wang et al. 2003), with small HSPs (common in plant chloroplasts) detectable 360 

for up to 72 h after a triggering event (Charng et al. 2006). Further, there is evidence to 361 

suggest that increases in reactive oxygen species and subsequent upregulation of 362 

antioxidant enzymes are involved in the deployment of cross-tolerance (Gong et al. 2001, 363 

Hossain et al. 2016, Hossain et al. 2018).   364 

In the current study, lower nightly temperatures followed by higher daily temperatures 365 

might have had an acclimatory effect on heat tolerance by activating similar response 366 

pathways, which manifested as increased Tcrit in the days following. Danzey et al. (2024) 367 

foundPSII cold tolerance thresholds of -10.8 °C for G. australis and -10.3 °C for D. 368 

continentis. In our study, the average of nightly leaf temperatures across the 7-day window 369 

preceding Tcrit measurements were –2.8 °C and –3.3 °C for G. australis and D. continentis, 370 

respectively, with leaf temperatures dropping as low as -6.9 °C across this period. While 371 

these temperatures did not surpass the reported cold tolerance thresholds, they 372 

approached this range. Repeated exposure to near cold thresholds likely contributed to the 373 

observed acclimation. Conversely, maximum temperatures approached heat tolerance 374 

thresholds measured in the current study much less closely; average maximum leaf 375 

temperature across sites and both species was 22.5 ± 0.26 °C, while average Tcrit was 47.8 ± 376 

0.2 °C. Such disparities between maximum temperatures and temperature thresholds have 377 

been observed by others, particularly in cooler climate species (Buchner and Neuner 2003, 378 

Kitudom et al. 2022, Cox et al. 2025). The stress induced by consistent low-grade stress can 379 

equate to that incurred by short, intense temperature stress (Neuner and Buchner 2023, 380 

Cook et al. 2024, Arnold et al. 2025b). In the context of the present study, it is plausible that 381 

the moderate maximum leaf temperatures observed maintained relatively high baseline Tcrit 382 

values. Further, plants from environments with high seasonal or interannual variability may 383 



maintain elevated Tcrit as a buffer against rare but damaging extremes. Although our 5-min 384 

averages showed mid-20 °C maxima, brief spikes (e.g., 30–35 °C) may have been missed yet 385 

sufficient to induce acclimation, especially because induction temperatures can lie well 386 

below damage thresholds (Knight and Ackerly 2002). As well as prior exposure to heat 387 

stress, increased heat tolerance in plants can be induced by priming with other abiotic 388 

stressors, such as drought exposure can also enhance heat tolerance (Ru et al. 2022, Sumner 389 

et al. 2022, Yadav et al. 2022, Kamran et al. 2025). In this study, drought stress was unlikely 390 

to be a confounding factor because relative water content remained consistent across site 391 

types (Figure S4) and rarely declined to levels indicative of water stress during the sampling 392 

period. An alternative explanation for why both maximum and minimum leaf temperature 393 

predict heat threshold shifts is rapid acclimation and subsequent de-acclimation, which 394 

frequently occur in thermally fluctuating alpine environments (Buchner and Neuner 2003). 395 

Rapid acclimatory responses maybe associated with diurnal alterations of sugar 396 

concentrations and osmotic potential (Seemann et al. 1986, Meyer and Santarius 1998, 397 

Coast et al. 2022). Average daily maximum temperatures in alpine environments may not 398 

seem stressful in absolute terms, but a sufficiently large diurnal swing between minima and 399 

maxima could be. In our study, leaf temperature maxima in the days prior to Tcrit 400 

measurements might have primed leaves for subsequent high temperatures, such that a 401 

cold night followed by another hot day would lead to an acclimatory shift in Tcrit. Plants may 402 

have de-acclimated when exposed to lower day time temperatures on 26 February (Figure 403 

S5). When temperatures rose on 27–28 February, plants likely re-acclimated, reflected in the 404 

higher Tcrit measured on 28 February. This sequence of de-acclimation and subsequent re-405 

acclimation over 27–28 February likely drove the significant Tsum ~ Tcrit relationship. 406 

Acclimation of Tcrit within a three-day window has recently been observed by others (Bison 407 

and Michaletz 2024), perhaps underpinned by upregulation of HSPs and changes in 408 

membrane fatty acid composition (Zhu et al. 2024) and/or by expression of genes or 409 

isoforms associated with photosynthesis and solute transport (Roces et al. 2022). Because 410 

the ability of machine learning to identify lag effects of temperature fluctuations on Tcrit is 411 

not predicated on linear relationships, the approach is well-suited for capturing these 412 

complex acclimation dynamics, especially in field conditions, where environmental 413 

conditions fluctuate frequently. 414 



Irrespective of how these extreme temperatures triggered shifts in heat tolerance, the same 415 

response was evident for both species. No differences in the predictive points were seen 416 

between species when separate machine-learning analyses were performed for them 417 

(results not shown). Likewise, when testing for the main effects of species using linear mixed 418 

models, no significant effect of species on Tcrit was found. Growth form and leaf traits, 419 

including but not limited to, leaf angle, leaf mass per area and leaf habit have been reported 420 

as being significant predictors of heat tolerance (Sklenář et al. 2016, Sastry and Barua 2017, 421 

Leon-Garcia and Lasso 2019, Middleby et al. 2025). Further, transpiration rates influence 422 

leaf energy balance and perhaps heat tolerance thresholds (Marchin et al. 2022, Valliere et 423 

al. 2023). It is, therefore, possible that because G. australis and D. continentis are both 424 

evergreen alpine shrubs of similar heights, differences in leaf temperature driven by leaf 425 

structural traits or transpiration (Bird et al. unpublished data) might not have been great 426 

enough to cause differences in Tcrit. We note, however, our restriction to just two species 427 

limits the ability to draw general conclusions about different species responses, something 428 

that warrants further research. 429 

Conclusions and future directions 430 

Our findings indicate that not only temporally proximal leaf temperature maxima, but also 431 

minima play a significant role in triggering shifts in heat tolerance thresholds. Our study also 432 

corroborated the importance of cumulative heat load in determining heat tolerance 433 

thresholds. However, this direct cumulative effect was small, highlighting that average leaf 434 

temperature parameters do not sufficiently capture the temporal variability in thermal 435 

conditions that influence physiological tolerance thresholds. By contrast, machine learning 436 

revealed patterns that traditional statistical methods could not, providing new insights into 437 

acclimatory triggers for shifts in thermal tolerance threshold. The observation that both high 438 

and low temperature extremes are important predictors of Tcrit underscores the importance 439 

of considering both ends of the temperature spectrum when predicting plant responses to 440 

heat stress. Future studies should investigate whether cross tolerance represents a 441 

competitive advantage for species from thermally variable environments. With a larger 442 

sample size and broader range of species, machine learning may reveal the requirements for 443 

thermal cues to induce cross-tolerance responses. Additionally, such an approach may clarify 444 



whether acclimation to temperatures in the four days preceding threshold measurement is a 445 

consistent and generalisable phenomenon. 446 

In summary, while statistical approaches are useful for understanding broad ecological 447 

patterns, machine learning could be particularly useful when dealing with spatially and 448 

temporally fluctuating environmental conditions and where their relationships with plant 449 

physiology are complex and non-linear. Combining machine learning with more traditional 450 

statistical approaches could enhance predictive accuracy, enabling the development of 451 

robust tools to guide ecosystem management, conservation strategies, and climate 452 

resilience efforts.  453 
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Figure legends 709 

 710 
Figure 1.  A schematic of the experimental design capturing microclimatic variation. a) site 711 
and aspect contrasts; both species (Grevillea australis and Dracophyllum continentis) at 712 
study sites contrasting in aspect throughout Schlink Pass and Mt Stilwell. The average 713 
elevation of sites at each location can be seen on the left. Black letters in green circles 714 
correspond with a site type, the air temperature parameters of which are indicated in panels 715 
b, c, d and e. Tsum

air (°C) represents the daily average sum of degrees above 0°C occurring at 716 
5-minute intervals across a 24-hr period (pink boxes, left); Ttime

air represents the time of day 717 
at which maximum air temperatures occurred (blue boxes, middle) and Trange

air (°C) 718 
represents the diurnal range of air temperature (green boxes, right). Daily values for all three 719 
parameters were averaged across the month of February 2023 and across the four replicates 720 
of each site type (SchlinkSE, SchlinkNW, StilwellNW and StilwellSE). For full details, see 721 
Tables S1 and S2.  722 



 723 

Table 1. The output of linear mixed models to determine the influence of aspect (NW v SE) 724 
and location (Schlink Pass v Mt Stilwell) on site-specific daily heat sum (Tsum

air), time of day 725 
that maximum temperatures were reached (Ttime

air) and diurnal temperature range (Trange
air ) 726 

across the month of February 2023.The model included the sampling date as a random 727 
factor to account for variation in heat sum caused by differences in weather across days 728 
(Figure S5). Bolded p-values indicate significance at  = 0.05. 729 

 

Response  

variable 

df Fixed effects F p-value 

Ttime
air 1, 415 Aspect 29.66 <0.001 

 1, 415 Location 0.293 0.589 

 

 

1, 415 Aspect x location 0.490 0.484 

 

 

 

Tsum
air 1, 415 Aspect 0.225 0.636 

 1, 415 Location 10.467 0.001 

 

 

1, 415 Aspect x location 4.971 0.026 

Trange
air 1, 425 Aspect 0.180 0.666 

 1, 425 Location 24.79 <0.001 

 

 

1, 425 Aspect x location 22.12 <0.001 

 730 

Table 2. The output of linear mixed models to determine the effect of leaf temperature 731 
parameters (Ttime

leaf, Tsum
leaf, and Trange

leaf; Figure 2) on photosystem heat thresholds (Tcrit). 732 
Bolded p-values indicate significance at a = 0.05.  733 

Leaf temperature 
parameter 

df F p-value 

Ttime
leaf 1, 33 0.129 0.72 

Tsum
leaf 1, 27 4.478 0.04 

Trange
leaf  1, 20 0.527 0.47 

  734 



 735 

Figure 2. a) Variation in heat tolerance thresholds (Tcrit) across five days of sampling in 736 
summer (26 Feb – 2 Mar). Letters represent significant differences in Tcrit between days of 737 
sampling. Error bars show the standard error of mean Tcrit. All daily Tleaf parameter values 738 
were averaged across the week of leaf temperatures leading up to and coinciding with Tcrit 739 
sampling (22 Feb – 28 Feb). b) The relationship between average time of maximum 740 
temperature (Ttime

leaf) and Tcrit. c) The relationship between average daily heat sum (Tsum
leaf) 741 

and Tcrit. d) The relationship between average diurnal temperature range (Trange
air) and Tcrit. 742 

Solid lines represent statistically significant relationships, and dashed lines represent non-743 
significant relationships from linear mixed models; conditional R2 values are shown above 744 
their corresponding relationship. 745 

 746 
  747 



Figure 3. Snap Boosting Machine Regressor model for predicting the effects of the historical 748 
leaf temperature profiles on heat tolerance thresholds (Tcrit) based on leaf temperatures 749 
averaged across two species and 16 sites recorded at 5-minute intervals (1,152 time points 750 
per day of Tcrit measurement). The data shown represent the leaf temperature profile within 751 
the four days preceding each of the five days of Tcrit measurement. Because Tcrit was 752 
measured on five consecutive days, a given time point prior to Tcrit measurement 753 
represented five sets of species-site combinations (32 plants per day totalling to 36,864 leaf 754 
temperatures for each day of Tcrit measurement, Figure S6). (a) Leaf temperature (°C) over 755 
the four-days, with individual timepoints shown in dark grey and the light grey shadow 756 
indicating the standard deviation for each time point. Machine learning (ML) predictive 757 
features are the 33 points highlighted in colours representing their temperature, with blue 758 
indicating lower and red indicating higher leaf temperatures. The ML predictive points 759 
indicate the times at which leaf temperature had the highest predictive power for Tcrit 760 
measured. (b) The individual predictive power of each of the 33 ML features, with the total 761 
predictive power of all points taken together explaining 84.9% of the variation in Tcrit, with 762 
three temperature points having between 10-15% predictive power each (marked with grey 763 
ellipses). 764 

 765 



Supplementary Materials 1 

 2 

Supporting Information 1. Selection of sites contrasting in aspect. 3 

Selection for each site pair was based on four criteria: 1) whether sites were reasonably 4 

matched in elevation (within 10 m), 2) whether their aspects were contrasting (North-West 5 

facing vs South-East facing), and 3) whether the distance between the target G. australis 6 

and D. continentis plants was more than 1 m apart. The latter criterion was to ensure that 7 

thermocouples were run only a short distance to the datalogger and that microclimatic 8 

conditions that the plants were exposed to were comparable.  9 

 10 

  11 
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Table S1. Coordinates, elevation, slope and aspect of study microsites across Schlink Pass 
and Mt Stilwell in Kosciuszko National Park of South-East New South Wales. Latitude and 
longitude values are formatted in decimal degrees. The nomenclature of the site names 
are as follows: the first two letters, ‘Sp’ and ‘St’ represent the site location, Schlink Pass 
and Stilwell, respectively and the last two letters of each abbreviated site name represent 
the aspect of the site. Although not all sites were directly NW/SE facing, a LMM where 
date was a random factor revealed highly significant variation in mean air temperatures 
between sites of opposing aspects across the year 2023 (p < 0.001, Bird et al., 
unpublished data). This justified the grouping of paired sites into NW and SE categories. 
 

 

Site Latitude  Longitude  Elevation 

(m a.s.l) 

Aspect  Slope  

Stilwell      

St1SE -36.44111 148.3239 1962 SE 175 ° 5 ° 

St1NW -36.44111 148.3225 1953 NW 300 ° 15 ° 

St2SE -36.44778 148.3322 1959 SE 125 ° 10 ° 

St2NW -36.44222 148.3264 1960 NW 332 ° 10 ° 

St3SE -36.44583 148.3328 1952 SE 117 ° 5 ° 

St3NW -36.44194 148.3278 1963 NW 322 ° 10 ° 

St4SE -36.44472 148.3344 1956 NE 27 ° 15 ° 

St4NW -36.4428 148.3297 1963 NW 322 ° 10 ° 

Schlink Pass      

Sp1SE -36.26444 148.3731 1690 E 120 ° 25 ° 

Sp1NW -36.26477 148.3733 1680 NW 330 ° 10 ° 

Sp2SE -36.26694 148.3714 1672 E 70 ° 20 ° 

Sp2NW -36.26719 148.3719 1672 W 270 ° 5 ° 

Sp3SE -36.26806 148.3711 1667 E 90 ° 20 ° 

Sp3NW -36.26843 148.3718 1660 SW 240 ° 15 ° 

Sp4SE -36.26861 148.3708 1665 SE 150 ° 5 ° 

Sp4NW -36.26889 148.3708 1664 NW 300 ° 5 ° 
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Figure S1: Sixteen study sites throughout Schlink Pass (top) and Mt Stilwell (bottom) in 
South-Eastern Australia on topographic maps. Red circles indicate N-NW facing sites; blue 
circles indicate S-SE facing sites. At each location, there were four site pairs, each pair 
matched in elevation but contrasted in aspect. Thin black lines indicate which sites are 
paired where unclear. Scale bars and north arrows are on each map. The map products 
were generated using the “ggmap” (Kahle & Wickham, 2013) and “ggplot2” (Wickham, 
2016) R packages. 

 

  15 



 16 
a) b) 

  
c) d) 

  
e) f) 

  
Figure S2. In-field setup of temperature logging stations at study microsites in Kosciuszko National 

Park, New South Wales across two locations: a) Mount Stilwell and b) Schlink Pass. Thermocouples 

recording leaf temperature of c) D. continentis and d) G. australis. e) A Thermocouple recording 

air temperature protected by a white cap. f) Thermocouples were connected to dataloggers an kept 
in a waterproof esky, protected using plastic garden netting. 
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Figure S3. An example of a chlorophyll-fluorescence curve (T-Fo). The curve shows an 
increase in baseline chlorophyll fluorescence with an increase in temperature. The 
triangle indicates the Tcrit threshold. 
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Table S2. Average maximum and minimum air temperatures, Ttime
air,  Tsum

air and Trange
air for NW 

and SE aspects at both study locations. Values for each variable were averaged across the four 
replicates for each site type and the 28 days of February 2023.  
 

Location Aspect Mean maximum 
air 
temperature (°C) 

Mean minimum 
air 
temperature (°C) 

Ttime
air 

(hrs) 

Tsum
air 

(°C) 
Trange

air 

(°C) 

Schlink Pass NW 
 
 

22.5 ± 0.5 0.86 ± 0.3 15.1 ± 
0.2 

3269 ± 
93 

22.3 ± 
0.7 

SE 24.9 ± 0.6 0.4 ± 0.3 13.7 ± 
0.2 

3373 ± 
101 

23.0 ± 
0.6 

Mt Stilwell NW 
 
 

24.3 ± 0.8 3.1 ± 0.3 15.1 ± 
0.4 

3208 ± 
108 

21.3 ± 
0.8 

SE 20.6 ± 0.9 3.1 ± 0.3 13.3 ± 
0.4 

3047 ± 
128 

17.5 ± 
0.9 
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Table S3. The output of linear mixed models to determine the influence of aspect (NW 
v SE) and location (Schlink Pass v Mt Stilwell) on site-specific daily heat sum (Tsum

air), 
time of day that maximum temperatures were reached (Ttime

air) and diurnal 
temperature range (Trange

air ) across the month of February 2023.The model included 
the sampling date as a random factor to account for variation in heat sum caused by 
differences in weather across days (Figure S5). Bolded p-values indicate significance at 

 = 0.05. 

 

Response  
variable 

df Explanatory 
variables 

F p-value 

Ttime
air 1, 415 Aspect 29.66 <0.001 

 1, 415 Location 0.293 0.589 

 
 

1, 415 Aspect x location 0.490 0.484 
 
 
 

Tsum
air 1, 415 Aspect 0.225 0.636 

 1, 415 Location 10.467 0.001 

 
 

1, 415 Aspect x location 4.971 0.026 

Trange
air 1, 425 Aspect 0.180 0.666 

 1, 425 Location 24.79 <0.001 

 
 

1, 425 Aspect x location 22.12 <0.001 



 21 

Table S4. The output of linear mixed models to determine the effect of leaf temperature 
parameters (Tsum-day

leaf, and Tsum-night
leaf; Figure 2) on photosystem heat thresholds (Tcrit).  

Leaf temperature parameter df F p-value 

Tsum-day
leaf 1, 27 3.07 0.99 

Tsum-night
leaf 1, 27 3.1 0.09 
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Figure S4. RWC for G. australis and D. continentis at the four site-types (SchlinkSE, 
SchlinkNW, StilwellNW, StilwellSE). All data were collected between the 25 Feb and 1 
March 2023, overlapping with the Tcrit sampling period.  
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Figure S5. Leaf temperatures (°C) of Dracophyllum continentis (purple lines) and Grevillea 
australis (yellow lines) across seven days (22–28 Feb) leading up to and coinciding with Tcrit 

sampling (26 Feb–2 Mar). Leaf temperatures were measured in situ at 16 sites across two alpine 
locations (Schlink Pass and Mt Stilwell) that contrasted in aspect (SW v NE). Tick marks on the x-
axis align with data recorded at 3 pm on that day. The dashed horizontal lines represent 0°C, 
and the grey shading represents the first three days of Tcrit sampling.   
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Figure S6. Number of time points and leaf temperatures included in the SnapBoosting 
Machine Regressor model used to predict the effects of historical leaf temperature 
profiles on heat tolerance thresholds (Tcrit). Time points for each four-day period 
preceding a day of Tcrit measurements are shown in rows 3–7. The darkest shade 
represents time points within the 24 hours preceding each day of Tcrit measurement, 
while the lightest shade represents time points 72–96 hours prior. Each time point 
corresponds to 32 unique leaf temperature measurements (recorded from two species 
across 16 sites). In total, 1,552 time points and 36,864 unique leaf temperature values 
were used to predict the 32 Tcrit values for each measurement day. Across all 32 plants 
and all five Tcrit measurement days, a total of 5,670 time points and 184,320 leaf 
temperature values were used to predict Tcrit in this four-day model. 
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a) b) 



Figure S7. Daily Tleaf parameters values were averaged across the week of leaf 
temperatures leading up to and coinciding with Tcrit sampling (22 Feb – 28 
Feb). a) The relationship between average day time heat sum (Tsum-night

leaf) and 
Tcrit. b) The relationship between average day time heat sum (Tsum-night

leaf) and 
Tcrit. Dashed lines represent non-significant relationships from linear mixed 
models. 
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