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Abstract

Inequalities in reproductive success among females and males shape natural and sexual selection,
as well as genetic diversity. A key mechanism influencing reproductive inequality in humans and
other animals is the social inheritance of privilege. Using a 29-year dataset spanning eight gener-
ations of spotted hyenas (Crocuta crocuta), a species in which social status is maternally inherited,
we show that inheritance of privilege associated with high status not only shapes reproductive
inequality but can reverse its typical sex bias. As in most polygynous species, reproductive ine-
quality was lower among females than males when estimated on an annual basis. When measured
across multiple generations, inequality increased in both sexes but disproportionately so among
females. This effect was strong enough to reverse the sex bias in favor of females after a single
generation. After only a few generations, most individuals thus descended from female ancestors
that held the top-ranking position in their clan. Our study demonstrates the strong impact of the
social inheritance of privilege on reproductive inequality by shaping differences between the sexes.
We outline how reproductive inequality influences female-female and male-male competition and

genetic evolution.
Keywords

Reproductive skew; Intergenerational inequality; Sexual selection; Sex roles; Intrasexual
competition; Expected genetic contribution; Non genetic inheritance; Darwin-Bateman

paradigm; Multinomial M-index.
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Introduction

Reproductive success is often unevenly distributed within animal societies: some individuals
contribute many offspring to the next generation while others leave none. When inequality is high,
only a few individuals pass on their genes, thereby amplifying genetic drift, mitigating the effect
of natural selection, and reducing genetic diversity™2. The extent of reproductive inequality can
also reflect the strength of selection on phenotypic traits®. Since reproductive inequality often
differs between the sexes*®, it can also reveal which sex has a greater opportunity for selection and

provide information on the intensity of intrasexual competition®2.

The Darwin-Bateman paradigm predicts that anisogamy results in stronger sexual selection on
males and greater reproductive inequality in males than in females”®°. Empirical studies that
calculated reproductive success over a short period of time, such as a breeding season or a year,
confirmed this prediction: in most species, males exhibit higher variance in reproductive success®®.
These findings reinforced the view that intrasexual competition is predominantly a male
phenomenon, expressed through male—-male competition for access to seemingly passive

females'?.

However, such short-term measures of reproductive success also reflect biological constraints,
especially in females whose limited reproductive output per breeding event restricts the extent of
inequality. When reproductive success is assessed across lifetimes, reproductive inequality in
females can increase and sex differences in reproductive inequality be reduced and even
disappear'?. Indeed, a growing body of work has emphasized that competition among females is

widespread and can exert strong selection®16,
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Reproductive inequality often results from unequal access to resources such as food and mates?’.
In many animal societies, access to resources is determined by traits that are genetically inherited,
such as body size, strength, or weaponry'®2°, But access to resources can also be determined by
traits and resources that are inherited socially, such as the network of allies and social status
(“relational wealth””?*?%) or materials (“material wealth?5-28). Social inheritance can thus lead to
privilege—the differential access to inherited resources?. Privilege can persist across generations
and is widespread in human and non-human societies, making it a powerful—but often
overlooked— driver of reproductive inequality'”?%%. In some societies, privilege is transmitted
through maternal lines and in others through paternal lines?>®-3* Such sex-specific social
inheritance can modify the reproductive inequality of males and females over generations. A multi-

generational approach is thus needed to capture and study long-term patterns of inequality®’.

To investigate how social inheritance of privilege shapes reproductive inequality, we analyzed
pedigree information from 2,743 individually-known spotted hyenas (Crocuta crocuta), spanning
29 years and eight generations, from a free-ranging population inside Ngorongoro Crater,
Tanzania. This species is well suited for studying social inheritance because individuals live in
clans organized by linear dominance hierarchies, where offspring socially inherit their rank from
their mother and a high rank confers privilege®>*. High-ranking individuals have priority access
to resources and greater social support than low-ranking individuals®*3"28, High-ranking females
enjoy this privilege throughout their lives, resulting in earlier reproduction, shorter interbirth
intervals, higher cub survival and longer lifespan compared to lower-ranking females®*#°. Sons of
high-ranking females also enjoy fitness benefits** but these are more limited because, unlike

daughters, sons typically disperse to another clan at sexual maturity*? (but see*?). Thus, in contrast
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to females, males typically do not retain the privilege of their natal rank and they do not transmit

their rank or privilege to their offspring.

We hypothesized that reproductive inequality across generations is shaped by the social
inheritance of privilege. We expected reproductive inequality to be greater in males than in females
when estimated by the number of offspring produced due to greater reproductive constraints
imposed by the life history of female mammals®?. We further predicted that inequality would rise
faster among females and eventually surpass that among males when including more generations,

due to the maternal inheritance of privilege.

Results

Reproductive success in female and male spotted hyenas

We calculated four measures of reproductive success for 287 females and 205 males that reached
sexual maturity and had lifetime data available: the (1) annual number of offspring, (2) lifetime
number of offspring, as well as the number of (3) grandoffspring and (4) great-grandoffspring. The
mean annual number of offspring was lower in females (0.46 = 0.33; range = 0-1.82; n = 268)
than in males (0.74 + 0.61; range = 0-2.83; n = 188; Wilcoxon rank-sum test: W = 18,695, p <
0.001), based on the analysis of individuals with a minimum reproductive tenure of one year.
During their lifetime, females produced fewer offspring (3.80 £ 3.71; range = 0—19; n = 287) than
males (4.95 £ 4.73; range = 0-26; n = 205; W = 25,817, p = 0.0196) (Fig. S1). A total of 22.3% of
females (n = 64) and 18.5% of males (n = 38) did not produce offspring during their lifetime. On
average, female reproductive tenure exceeded male reproductive tenure by 3.8 months (see
Supplementary Information Section 2). The mean number of grandoffspring was lower for females

(8.23 £ 15.63; range = 0-106; Fig. S2a) than for males (11.29 + 15.77; range = 0-85; Fig. S2b; W
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= 24,236, p < 0.001). A total of 47% of females (n = 135) and 33.7% of males (n = 69) had no
grandoffspring. The mean number of great-grandoffspring was also lower for females (7.55 +
21.18; range = 0-152; Fig. S3a) than for males (10.59 + 22.88; range = 0-155; Fig. S3b; W =
25908, p = 0.00835). A total of 69% of females (n = 198) and 58% of males (n = 119) had no

great-grandoffspring.
Reproductive inequality increases more in females across generations

To quantify reproductive inequality in our four measures of reproductive success, we used the
multinomial index (M-index)**. This index compares observed reproductive success to that
expected under an equal reproductive rate. Reproductive inequality in the annual number of
offspring (Movear) was 0.18 (95% CI: 0.06-0.32) for females and 0.40 (95% CI: 0.25-0.57) for
males (Fig. 1a), indicating greater reproductive inequality in males than in females. Reproductive
inequality in the number of offspring produced per lifetime (Movife) was similar in females (0.76;
95% CI: 0.59-0.94) and males (0.78; 95% CI: 0.60-0.99). Reproductive inequality in the
grandoffspring number (Mg) was 3.53 (95% CI: 3.12-3.97) in females and 1.91 (95% CI: 1.69—
2.15) in males, and reproductive inequality in the great-grandoffspring number (Mgg) was 7.50

(95% CI: 6.80-8.29) in females and 4.41 (95% ClI: 3.97-4.90) in males.

To complement the M-index and provide a traditional representation of inequality, we computed
Lorenz curves® (Fig. 1b). At the level of lifetime counts of offspring, the top 19.49% of females
and 19.8% of males accounted for 50% of all offspring, indicating similar inequality. However,
for grandoffspring, the top 8.22% of females and 12.4% of males produced half of all descendants
and, for great-grandoffspring, these values declined further to 3.96% of females and 6.26% of
males. Gini coefficients corresponding to each Lorenz curve are provided in Supplementary Table

1.
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Thus, reproductive inequality increased across generations in both sexes, but the increase was more

pronounced in females than in males, reversing the sex bias in inequality from male to female

(Fig. 1).
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Fig. 1 | Comparison of reproductive inequality in female and male spotted hyenas (a)
Relationship between male (x-axis) and female (y-axis) M-indices of reproductive inequality for
four measures of reproductive success: annual number of offspring (Movear), lifetime number of
offspring (Movite), grandoffspring (Mg), and great-grandoffspring (Mcg). Filled circles are point
estimates; horizontal and vertical lines around the circles indicate 95% credible intervals. The
dashed diagonal line represents equal M-indices in the two sexes. (b) Lorenz curves depicting the
cumulative distribution of descendant production for females and males, across three
generations: (lifetime) offspring, grandoffspring, and great-grandoffspring. For each sex,
individuals were ordered by their contribution to descendant production, and cumulative
percentages were computed to visualize reproductive inequality. Note that male and female
curves overlap at the offspring generation.
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Stronger intergenerational transmission of reproductive success in females

To clarify why reproductive inequality increases more strongly in females compared to males, we
examined the relationship between the number of offspring and the number of grandoffspring
across sexes. We found that the (log) number of grandoffspring increased more strongly with the
(log) number of offspring in females than in males (zero-inflated negative binomial model; y? =

8.32, df =1, p = 0.00332; Fig. 2; Supplementary Table S2).
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Fig. 2 | Relationship between the number of offspring and the number of grandoffspring
produced by female and male spotted hyenas. Panels show the number of grandoffspring as a
function of the number of offspring in (a) females (n = 223) and (b) males (n = 167); only
individuals who produced at least one offspring are included. Symbols represent individuals,
colored and shaped by maternal standardized social rank (High, Medium, Low), and are slightly
jittered horizontally for visibility. Solid lines show model-predicted mean numbers of
grandoffspring from zero-inflated negative binomial models, with shaded ribbons indicating 95%
confidence intervals. Predictions are displayed on the count scale.
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Among individuals producing a large number of offspring, the correlation between the numbers of
offspring and grandoffspring was particularly strong in females (e.g. for individuals producing 10
or more offspring: Spearman's premaie = 0.679, Ntemate = 21 vs. pmale = 0.313, Nmale = 34 in males; p
= 0.0445). This result reflects the higher proportion of individuals born to mothers of high social
rank (for individuals producing 10 or more offspring: 71.4% of females vs. 41.2% of males; see

Fig. 2).

Numbers of descendants of high-ranking mothers increase more along maternal than

paternal lineages across generations

To explore the long-term, population-level effects of sex-biased rank inheritance, we quantified
the distribution of ordinal ranks across maternal and paternal ancestors (Fig. 3). We calculated the
maternal rank of all individuals with known ancestry (n = 2,743) or ‘generation zero’ (G0). We
then reconstructed genealogical lineages backward in time, identifying the maternal rank of their
mother (G1), their maternal grandmother (G2), and so on. For females, this approach captured the
direct matriline; for males, we traced the maternal rank of each paternal ancestor (i.e., the father,

the father of the father...).

Among females, the proportion of individuals born to top-ranking ‘alpha’ mothers (see darkest red
in Fig. 3a) increased markedly across generations traced backwards from GO. In GO, only 9.48%
of individuals were born to alpha mothers, compared to 21.6% in G1, 25.7% in G2, 34.2% in G3
and 28.5% in G4. Across these five generations, the proportion of alpha-born females increased
1.32-fold per generation on average. Among males, the proportion of individuals born to alpha
mothers showed only a modest, non-monotonic change from GO to G3 (Fig. 3c). Although the
proportion increased from 9.48% in GO to 16.4% in G1, it declined in subsequent generations to

13.8% in G2 and 11.9% in G3, yielding overall a net change of 1.07-fold. Generations G5 & G6



178 for females, and G4 for males, were excluded from the fold-change analysis due to the small sam-

179 ple size (n < 20 individuals).
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182  Fig. 3 | Effect of social rank inheritance: distribution of social ranks among ancestors in
183 maternal and paternal lineages. Stacked bars represent the distribution of ordinal ranks of
184  ancestors within a given generation; ranks 39 and lower were pooled. Generation 0 (GO) contains
185 all individuals with known ancestry — before tracing either maternal or paternal ancestral lines.
186 For the maternal lineage (a), the plot shows the maternal ranks of the mothers (G1), maternal
187 grandmothers (G2), and so on of the individuals of GO. In (b) data were generated by

188 permutation of ancestor identities from (a) under a scenario with rank-related reproduction but
189 no social inheritance of rank. For the paternal lineage (c), the plot tracks the maternal ranks of
190 the fathers (G1), paternal grandfathers (G2), and so on of the individuals of GO. Red colors

191 indicate higher ranks and blue colors indicate lower ranks. Numbers on the right of the bars are
192 the numbers of individuals.
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Social inheritance increases the prevalence of top-ranking females among individuals’

ancestors

Social rank inheritance could increase the proportion of direct descendants of alpha females over
generations. To test this, we conducted a permutation analysis that disrupted lineage continuity
while preserving rank-related production of descendants. For each focal individual, we reassigned
maternal identity by randomly selecting a mother from the same clan who had produced an off-
spring in the two years preceding the focal individual’s birth. This procedure removed social rank
inheritance but retained the empirical variation in maternal reproductive success as high-ranking
females produce more offspring and are more likely to be assigned as mothers. Across 1,000 per-
muted datasets, the mean geometric fold-change in alpha rank frequency was 1.15 (see example
in Fig. 3b), while the observed value in the maternal lineage was 1.32. No simulated values were
equal to, or greater than, the observed values, yielding a permutation p-value < 0.001 (see Fig. S4).
Thus, the increase in the proportion of alpha-born ancestors when going backward in time was
significantly greater than expected under the null model assuming no rank inheritance. These re-
sults demonstrate that social inheritance leads to descendants of alpha females becoming increas-

ingly overrepresented across generations.
Highest share of descendants for alpha females

To evaluate how privilege translates into long-term reproductive success, we determined the social
rank of the most successful females, defined as the females with the largest number of living
descendants as of January 1% 2023, across the history of each clan (Table 1). Within each clan,
most native individuals (between 58% and 100% of clan members) were descendants of the most

successful females, all of which had held the alpha position during some period of their



216 reproductive tenure. Those females were also ancestors of many descendants beyond their natal

217 clan.

218 Table 1| Alphastatus and number of direct descendants of the most successful female spotted
219 hyenas in the eight Ngorongoro Crater clans. All descendant counts and clan characteristics
220 were calculated as of January 1% 2023.

Females Descendants Clan
In population In natal clan
Name Alphat %?;P Total Alive Alive %2 Name Natives Total
A-013 Yes 2011 566 177 61 68.5 | Airstrip 89 102
E-004 Yes 2002 715 164 32 82.1 | Engitati 39 50
F-001 Yes 2002 590 174 31 93.9 | Forest 33 40
L-007 Yes 1996 1,267 283 37 97.4 | Lemala 38 51
M-003 Yes 1996 | 1,052 243 52 100.0 | Munge 52 61
N-005 Yes 2002 577 140 20 62.5 | Ngoitokitok 32 35
S-105 Yes 2013 219 51 43 79.6 | Shamba 54 63
T-014 Yes 2016 89 31 15 57.7 | Triangle 26 33
221

222 !Alphaindicates whether a female ever held the alpha position in the clan. 2The percentage reflects
223 the proportion of a female’s descendants born in and still alive in her natal clan at the end of the
224 study period, relative to the total number of native individuals alive in that clan.

225
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Grandoffspring number better predicts long-term genetic contribution than offspring

number

Given that social inheritance amplifies reproductive inequality over generations, we next asked
whether the number of grandoffspring is a better predictor of long-term genetic contribution than
the number of offspring. For this, we used the population pedigree to quantify the expected number
of copies of a new genetic variant (g;) that an individual i would contribute to the population at
the end of the study period (January 1% 2023). Repeating this computation for 406 individuals (see
Supplementary Table S3) revealed that g; was more strongly correlated with the number of
grandoffspring than with the number of offspring (females: Spearman's pgrandofspring = 0.856 Vs.

Poffspring = 0666, males: Pgrandoffspring = 0.832 vs. Poffspring = 0665, overall: p= 0.856 vs. 0646)

DISCUSSION

Reproductive inequality can arise not only from variation in genetically heritable traits that
influence reproductive success, but also from non-genetic mechanisms such as the social
inheritance of privilege. While the contribution of genetic inheritance to reproductive inequality
has been investigated in some detail*®*¢, much less is known about the effect of social inheritance
of privilege, especially in non-human animals. Here we show that social inheritance of privilege
can be a strong driver of reproductive inequality and that it can reverse typical sex differences in

reproductive inequality when inheritance is biased towards one sex.

In our study population of spotted hyenas, reproductive inequality in terms of number of offspring
produced per year was greater in males than females. This is consistent with previous findings in
another hyena population*® as well as with the general pattern in polygynous human populations
and non-human mammals®. This difference disappeared when reproductive inequality is measured

in terms of lifetime reproductive success, likely reflecting both female short-term reproductive
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constraints (small litter size, and long gestation and lactation periods) and sex differences in social
rank acquisition (females maintain their maternally-inherited rank, whereas dispersing males lose
it).

Over longer timescales, reproductive inequality increased in both sexes, but more markedly in
females than in males, as predicted for a system where privilege is socially inherited through the
maternal line®®. Females with high reproductive success also produced reproductively successful
offspring, as indicated by the stronger offspring-grandoffspring relationship observed in females
than in males. Our simulations demonstrate that the social inheritance of privilege, rather than
rank-related reproductive output alone, led to an over-representation of top-ranking ‘alpha’ female
descendants in the population. Reproductive inequality thus seems to result from privilege. Since
high-ranking females recruit more female offspring into their own clan, and since those offspring
provide kin support that consolidates high status®, privilege also results from reproductive
inequality. Both privilege and reproductive inequality are thus part of the same positive feedback

loop?.

In our study, sex-biased social inheritance leads to a striking sex reversal in reproductive
inequality: while males showed greater inequality in short-term reproductive success, inequality
became greater in females as soon as grandoffspring were considered. Classical sexual selection
theory predicts that the sex with lower parental investment, usually males, competes for access to
the ‘limiting sex’, usually females, and therefore experience a higher reproductive inequality. In
species where females invest more in their offspring than males, females can nevertheless show
greater reproductive inequality than males when one or a few females monopolize a large share of
the reproduction such as in cooperative breeders like the superb starling (Lamprotornis superbus),

or the meerkat (Suricata suricatta)®*>*. Our results extend this observation by showing that even
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when no particular female monopolizes reproduction, social inheritance can lead to a similar sex
reversal in reproductive inequality provided that reproduction is measured in terms of descendants

in future generations.

Such a sex reversal in reproductive inequality is likely to impact both female-female and male-
male competition. The concentration of the reproductive value in a few females intensifies female-
female competition®®. In cooperative breeders, females compete for breeding opportunities®°®, but
what do females compete for in systems shaped by social inheritance of privilege? Our findings
show that sex-biased reproductive inequality results from a stronger relationship between offspring
and grandoffspring numbers in females. This could indicate competition over traits that secure and
maintain high rank, and associated privilege that increase the reproductive success of offspring,
rather than competition over access to male mating partners. In line with that, female hyenas fight
directly over rank, social reversals or ‘coups’ are common®’, and female infanticide—a hallmark
of female-female competition across species®®—is a leading cause of juvenile mortality®® as well

as a behavior that reduces the social support of females whose offspring are killed®?.

Our findings further suggest that social inheritance of privilege reshapes optimal strategies in the
‘competing sex’ and thereby shapes male-male competition: males could achieve higher long-term
fitness by targeting high-ranking females, rather than by maximizing their number of matings or
mating partners. Consistent with this, high-ranking male spotted hyenas allocate more courtship
effort toward high-ranking females and achieve greater reproductive success with them than low-

ranking males do**°,

Changes in reproductive inequality triggered by the social inheritance of privilege inevitably
cascade into genetic consequences at the population level. One immediate consequence is that

high-ranking females contribute ultimately much more to the gene pool than low-ranking ones. By
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hitchhiking on the positive, multigenerational, cascading effect of privilege, the alleles of males
mating with privileged females can also reach high frequencies over a few generations. More
generally, by increasing the variance in reproductive success, the social inheritance of privilege
can have far-reaching repercussions on genetic structure (for a review, see®l). In our study
population, many individuals—particularly females—had no descendants, while a few highly
successful females contributed disproportionately to the gene pool (although the genetic
contribution of any ancestor inevitably gets diluted over generations®?). Similar patterns of extreme
lineages loss driven by high reproductive variance and heritable differences in fitness were
documented in other vertebrates such as cheetahs (Acinonyx jubatus)®®. When reproduction is
concentrated in a small subset of individuals, effective population size declines and this can
decrease the efficiency of natural selection®®+®° accelerate the loss of genetic diversity!, and

elevate inbreeding®.

Certain behaviors may however buffer populations against the genetic risks brought by the social
inheritance of privilege. In spotted hyenas, male-biased dispersal*>%, female mate preferences*?
and female promiscuity®’ are likely to increase gene flow and reduce inbreeding. Whether such
behaviors are sufficient to counter the negative long-term genetic effects, and whether they are
more likely to be present in societies with strong social inheritance of privilege remain open

questions.

Given the potential impact of the social inheritance of privilege upon genetic evolution, one may
wonder, how common is socially inherited privilege a key driver of reproductive inequality? The
situation requires privilege to be present, retained within the lineage over multiple generations,
and to influence reproductive success. Evidence from both human and animal societies suggest

that this situation is not unique to spotted hyenas. For example, among the Gabbra pastoralists,
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livestock is inherited patrilineally and unequally among sons, and it is a key determinant of
marriage opportunities and reproductive success®®. In American red squirrels (Tamiasciurus
hudsonicus), mothers may bequeath their food cache to a single offspring, with consequences for
its survival and future reproduction®®. We expect more examples in system where social

conventions make the effect of privilege and its inheritance consistent over multiple generations.

Importantly, future studies must consider the social inheritance of privilege in its own right.
Indeed, while the social inheritance of privilege shares key features with genetic inheritance (both
can show substantial heritability, influence fitness variation, be sex-biased, and exert large
consequences on the gene pool), important differences remain. For example, unlike genetic
transmission—where all offspring have equal probability of inheriting alleles that enhance the
access to resources—social privilege is typically restricted to particular offspring (e.g., the eldest
son in many human societies®®; youngest in spotted hyenas and cercopithecines?::33%), The social
inheritance of privilege also recalls cultural inheritance since the transmission of the privilege
across generations is not genetic?®. Yet, contrary to cultural traits, privilege is based on social
conventions that seem to vary little across time and space: all spotted hyena clans show linear

dominance hierarchies and probably the same mechanisms of rank inheritance.

In conclusion, our study provides strong evidence that the social inheritance of privilege can shape
reproductive inequality and contributes to the growing recognition that social inheritance has far-
reaching genetic and evolutionary consequences®® ™. Together, these findings highlight the need
to incorporate more complex social dynamics into both theoretical and empirical studies in
evolutionary biology and behavioral ecology. In particular, that both female-biased social
inheritance of privilege and cooperative breeding are strongly tied to female-female competition

calls for research reevaluating the role of females in animal societies.
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Methods

Study species and population

Spotted hyenas live in social groups called clans, which have linear dominance hierarchies and a
high level of female dominance®!. Offspring of both sexes acquire a rank just below their mother
through behavioral mechanisms of social learning and maternal social support?**2, Accordingly,
offspring resemble mothers in social ties, especially in high-ranking lineages®. Female hyenas
typically produce one or two cubs per litter (rarely three), with a lactation period of 12-20 months
and an interbirth interval ranging from 6.6 to 28.7 months, limiting their overall reproductive
output®’4%7172 Reproduction does not follow a marked seasonal pattern, so generations overlap®’.
Dispersal is strongly male-biased with approximately 85% of males leaving their natal clan before
reproducing, and immigrating to a new clan to breed, whereas females are highly philopatric** 3.
In their new clan, immigrant males lack social support and enter at the bottom of the hierarchy.
They progressively increase in rank over time and while they may eventually reach a high rank
among immigrants, they will remain lower ranking than native individuals®->"*, High-born males
do retain their maternal rank and benefit from priority access to resources during excursions to the

territory of their natal clan, but these extended benefits only last up to 2 years after dispersal®.

We studied the spotted hyenas of the eight resident clans of the 300-km2 Ngorongoro Crater in
Tanzania (3°11'S, 35°34'E) between April 121" 1996 and February 21% 2025. All individuals were
individually identified by their unique spot pattern and other individual morphological features
(e.g. ear notches). Most males born in one of the Crater clans choose to breed in a Crater clan®,
which gave us the opportunity to record the reproductive output of philopatric and dispersing males
and allowed us to compare females and males. We classified individuals as adults using sex-spe-
cific reproductive criteria. Females were adults from 2 years of age onwards as high-ranking fe-
males typically start reproducing at that age®. In the rare cases when a female conceived before
the age of 2 years, she was considered as an adult from the date of conception. Dispersing males
were considered adults from their first confirmed sighting in a new clan’s territory followed by
sustained presence and social integration (marking the start of their tenure). For philopatric males,
we considered them as adults from the date they first displayed sexual interest in females and
continued doing so for at least three consecutive months*®. This reflects the longer time males

require entering the breeding pool. The average age at adulthood was 2.0 £ 0.02 years in females
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and 3.38 + 0.76 years in males. The delayed expression of sexual behaviors in males is also re-
flected in reproductive data: the median age at first conception (estimated as offspring birthdate
minus 110 days of gestation) was 3.62 years in females (Interquartile range, IQR =2.9-4.3, n =
239) and 5.28 years in males (IQR = 4.2-6.3, n = 167). Reproductive tenure was defined as the
time from the estimated onset of adulthood until the date of death or the end of the study, whichever

came first.
Sample collection and paternity analysis

Biological samples such as tissue, hair, and feces, were collected opportunistically. Fecal samples
consisted of the epithelial-rich mucus layer surrounding fresh feces, collected directly after
defecation. All biological material was preserved in either ethanol or a dimethyl sulfoxide salt
solution until DNA extraction. Parentage was determined using nine highly polymorphic
microsatellite loci”® with a mean of 11.9 alleles per locus (range: 7-16) and a mean expected
heterozygosity of 0.83. Paternity was assigned using maximum likelihood methods as
implemented in CERVUS 3.0 based on candidate fathers present in the natal clan at the estimated
date of conception. Total exclusionary power was 0.999 and the error rate was 0.44% and set at
1.0%. Paternity was assigned at the 95% confidence level. For full methodological details, see*®

and references therein.
Data analysis

All analyses were conducted in R (version 4.5.0). Data were compiled into a centralized database
and processed using the hyenaR package version 0.10.0.900077. Summary statistics correspond to
means + SD, unless stated otherwise. For the statistical tests, significance was assessed at the
threshold o = 0.05. We fitted all statistical models with the package glmmTMB version 1.1.9 8,
Model diagnostics were assessed using package DHARMa version 0.4.77°. ChatGPT (OpenAl)
was used to assist in improving and debugging code during data analysis; all code and results were

independently verified by the authors.
Reproductive success

We quantified reproductive success as: (1) the mean number of offspring produced per year during
adulthood, (2) the total number of offspring produced over an individual's lifetime (LRS), and the

total number of (3) grandoffspring and (4) great-grandoffspring produced. Reproductive success
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was assessed based on genetically confirmed parent-offspring relationships, using only cubs for
which both maternity and paternity were verified through genetic analysis. Grandoffspring and
great-grandoffspring were included only if they descended from such genetically confirmed off-
spring, ensuring consistent criteria across generations and between sexes. Mean annual reproduc-
tive success was calculated by dividing the LRS by the reproductive tenure. To avoid inflated
estimates due to small denominators, we included only individuals with a reproductive tenure
greater than one year in the mean number of offspring produced per year. To ensure accurate and
comprehensive estimation of LRS, we included only individuals who (1) were born in a study clan,
(2) initiated their reproductive career between April 121" 1996 and January 1% 2023 (the onset of
monitoring of our study population and the study end date for analyses requiring complete genetic
information, respectively), (3) had not been recorded to ever disperse to a clan outside the study
area, and (4) had been genetically typed for parentage analyses. Our data comprised 1,187 known
adult individuals. We excluded 123 individuals not born in a study clan, 66 who initiated repro-
duction before systematic monitoring began on April 12%" 1996, 19 who dispersed to a clan outside
the study area, and 16 without a genetic sample. We assigned a cohort for each individual based
on the year in which they reached adulthood. We computed LRS and the other measures of repro-
ductive success for all individuals who reached adulthood before January 1% 2011 (with the addi-
tional tenure-criterion mentioned above for annual reproduction estimates). Individuals reaching
adulthood during the year 2010 constituted the most recent yearly cohort for which at least 95%
of individuals had died by January 1% 2023, ensuring near-complete reproductive histories. The
resulting sample included 456 potential parents with a minimum tenure of one year, included in a
larger set of 492 individuals with complete or near-complete LRS information. Within this later
set, 487 (98.98%) had an estimated death date by January 1%t 2023, and the remaining 1.02% had
near-complete lifespans. For the lifetime numbers of grandoffspring and great-grandoffspring,
11.7% of offspring (150 of 1,284) and 19.8% of grandoffspring (376 of 1,900) were still alive on
January 1% 2023 and had not yet completed their reproductive careers. To ensure comparability
between female and male reproductive success estimates, and to evaluate the potential impact of
censored data on grandoffspring counts, we therefore assessed the overall degree of completeness

in grandoffspring counts and whether it differed between the sexes (see Supplementary Infor-
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mation Section 1). Although absolute numbers should be interpreted with caution, great-grandoff-
spring counts remain suitable for female vs. male comparisons because all focal individuals

reached adulthood within the same time window.
Reproductive inequality

To quantify reproductive inequality, we first used the multinomial M-index**. This index captures
the extent to which reproductive success is unevenly distributed among a group of individuals.
When all individuals are considered to have equal exposure time (e.g. the entire lifespan), the M-
index reduces to the traditional metric | quantifying the opportunity for selection*. The M-index
is constructed to be robust to differences in sample size and mean reproductive success, enabling
standardized comparisons across populations, sexes, and species. We calculated the M-index for
different measure of reproductive success: (1) the number of offspring produced per year (Movear),
(2) the LRS (Moite), (3) the total number of grandoffspring produced (Mg), and (4) the total num-
ber of great-grandoffspring (Mcec). Mec was highly skewed and to ensure numerical stability in
the Bayesian estimation for this metric, we followed developer guidance for setting priors (mean
= 8 = 0.2) on the concentration term in their model and increased some of the MCMC tuning
parameters (adapt_delta = 0.99, max_treedepth = 14). These adjustments minimized divergent
transitions and improved convergence of the posterior estimates. All M-indices and their 95%
credible intervals were calculated separately for females and males using the R package Skew-

Calc*,

We also computed the Gini coefficient® using the Gini function from the R package DescTools
(version 0.99.60)8! and represented their associated Lorenz curves for offspring, grandoffspring,
and great-grandoffspring, separately for each sex. The Gini coefficient is a widely used metric to
quantify inequality that is bounded between 0 (maximum equality) and 1 (maximum inequality).
For each sex, individuals were sorted by their number of descendants, and cumulative proportions

of individuals and reproductive output were used to construct the Lorenz curves®.
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Maternal dominance rank at birth

Dominance hierarchies were constructed based on observed outcomes of dyadic agonistic
interactions among adults in the same clan at the beginning of the study. Rankings after this initial
period were updated iteratively to reflect the most consistent linear order, based on conventions
such as maternal rank inheritance and social queuing and behavioral observations. For full details
see®’. We defined maternal dominance rank at birth as the ordinal position of an individual’s
mother in the adult female dominance hierarchy on the date of the individual’s birth. Because
systematic dominance data began on April 12t 1996, for individuals born between April 121" 1995
and April 121 1996 (i.e., alive as sub-adult at the start date of the project) we used their mother’s
rank on April 12 1996 as approximation for the unknown rank of their mothers at birth; the same
approximation was applied when assigning standardized ranks. For a few individuals who started
their reproductive career after April 121" 1996 but born before April 121" 1995, we did not assign
them maternal ranks. The maternal dominance rank at birth reflects the maternal social status an
individual was born into and serves as a proxy for early-life social conditions and as a proxy for
privilege. For brevity, we refer to this variable as maternal rank. For visualization purposes in Fig.
2, maternal rank was further divided into categories. Specifically, we calculated the standardized
maternal dominance rank, which ranges from -1 (lowest) to +1 (highest), and partitioned this
continuous measure into three categories: high (0.333 to 1), medium (—0.333 to 0.333), and low (—
1to0-0.333).

Sex differences in the offspring—grandoffspring relationship

We fitted statistical models to investigate the relationship between the number of grandoffspring
and the number of offspring across sexes. The response variable was the number of grandoffspring
produced per individual. We modelled the expected number of grandoffspring as a function of the
log-transformed number of offspring, data completeness, and sex, including interactions between
sex and both predictors. The number of offspring was log-transformed to linearize the relationship.
The variable completeness corresponds to the proportion of an individual’s offspring that were
deceased by the end of the study. Completeness was included as a covariate to account for
differences in the proportion of offspring with full record of reproductive success per individual,

serving as an estimator of how complete the observed grandoffspring counts were. We z-
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transformed this variable to facilitate convergence during the fitting procedure. Individuals with

zero offspring always have zero grandoffspring and were therefore excluded from this analysis.

Given the count nature of the data and an excess of zero values compared to Poisson expectation,
we attempted to fit a series of models with different distributional assumptions: a zero-inflated
Poisson Generalized Linear Model (ZIP), a negative binomial model (NB2), and zero-inflated neg-
ative binomial models (ZINB2). All these models considered the log function as their link function.
We retained the ZINB2 model as this was the only one for which modelling assumptions were
satisfied (as evaluated using DHARMa). For zero-inflated models (including the retained ZINB2
one), we modelled the zero-inflation component (i.e. the logistic regression sub model) with either
an intercept only or with an intercept and a linear effect of completeness, as more incomplete
offspring records could increase the likelihood of zeros grandoffspring. Including completeness in
the formulas of the zero-inflation components improved model fits substantially, so we retained
this formulation in the final ZINB2 we used. The significance of estimates was tested using a series
of likelihood ratio test (LRT) following a type 11 Anova design using the R package car® which
internally calls the method implemented in glmmTMB. For Fig. 2, model predictions and their
associated 95% confidence intervals were plotted on the response scale, corresponding to the ex-
pected number of grandoffspring for a given offspring number at a completeness of one (mean-

centered reference value).

To examine how the relationship between the number of grandoffspring and offspring varied
between sexes at high reproductive output, we restricted the dataset to individuals that produced
ten or more offspring. For each sex, we calculated Spearman’s rank correlation coefficient (p)
between the number of offspring and grandoffspring. Differences between female and male
correlations were tested using the function diffcor.two from the R package diffcor (version 0.8.4)%.
To assess whether maternal rank contributed to observed sex differences, we also calculated for
each sex, the proportion of individuals in the subset that were born to high-ranking mothers

(standardized maternal rank category = High).
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Pedigree construction

We built a multi-generation pedigree for all study individuals using a combination of genetic
parentage assignment and behavioral observations of suckling (consistent mother—cub associations
during lactation).

Intergenerational persistence of social rank: maternal vs. paternal lineage

To test whether sex-specific differences in the intergenerational persistence of maternal rank were
associated with patterns of social rank inheritance, we reconstructed genealogical lineages using
the pedigree for all individuals born during the study period and with at least one known parent.
We identified a total of 2,868 individuals. Of these, 2,743 had a known mother. For maternal
identity, we used the socially assigned mother since we were interested in the effect of the
transmission of social ranks and since cubs inherit the ranks of their social mother. In 58 cases, the
social and genetic mother differed, indicating instances of adoption. Additionally, genetic data

were available to assign paternity for 1,839 individuals.

The 2,743 individuals with a known mother were defined as focal individuals belonging to
generation 0, GO, irrespective of birth year. For each focal individual, we calculated the maternal
rank of their mother (G1), maternal grandmother (G2), and earlier ancestors along the direct
maternal (social) lineage. We also reconstructed an equivalent paternal lineage and identified the
maternal rank of each paternal ancestor—i.e., the focal individual's father (G1), paternal
grandfather (G2), and so on. This approach allowed us to quantify and compare the
intergenerational persistence of maternal rank across sexes. To avoid sparsity in the lower tail of
the distribution of social ranks and facilitate comparisons across generations and sexes, we
grouped individuals that were ranked 39" or below (40", 41%"...) according to their maternal ranks

into one single ordinal class.

To quantify the intergenerational persistence of maternal rank among top-ranking (‘alpha’)
individuals, we calculated, for each generation, the proportion of individuals whose maternal
ordinal rank was equal to one. We then measured the fold-change in the proportion of alpha-ranked
ancestors between successive generations. A geometric mean of these fold-changes was used to
obtain a single summary statistic across all generations including 20 individuals or more to ensure

reliable and informative measures.
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To test whether the observed persistence of maternal rank differed from expectations under a
model with rank-related fitness benefit but without rank inheritance, we performed an analysis by
permutation. For each ancestor in each generation, we reassigned maternal rank by randomly
selecting a mother from the same social clan and cohort window (defined as the two-year period
preceding the birth of the focal ancestor). If the two-year window extended before April 121" 1995,
the corresponding ancestor was excluded from the permutation analysis since no maternal rank
could be inferred with precision. This permutation scheme preserved the demographic and social
structure of the population, including variation in reproductive output and the elevated
reproductive success of high-ranking females, but disrupted lineage continuity by breaking the
parent-offspring inheritance of rank. We repeated this permutation procedure across all
generations and recalculated the geometric mean of fold-changes in the proportion of alpha
individuals between successive generations, for each permutation round, to generate a null
distribution of the summary statistic. As before, fold changes were computed only for generations
with >20 eligible individuals. The observed geometric mean was then compared to this null
distribution to evaluate whether the persistence of high maternal rank across generations exceeded
expectations under the null model. The p-value was calculated as the proportion of permuted

values that were equal to or greater than the observed value, with a standard correction .
Long-term genetic contribution

For each focal individual, we quantified their genetic contribution as the expected number of
copies of their alleles present in the population as of January 1 2023. For each focal individual i
we calculated gi, defined as the sum of pedigree-derived pairwise relatedness coefficients to all

known descendants of i that were alive at that date:

gi = Z?=1 Tijs
where 1;; is the coefficient of relatedness between focal individual i and the descendant j as
calculated from the pedigree, and n is the number of recorded descendants alive at the end date.

To examine how well simple reproductive counts capture genetic representation, we calculated
Spearman correlations between g; and the number of offspring and grandoffspring for each adult
individual included in the reproductive inequality analysis. Because the pedigree used to count

descendants incorporated behavioural observations, we also considered offspring whose mothers
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were assigned behaviorally or genetically without assigned fathers, relaxing the stricter criteria
used in the reproductive-success analyses. Correlation analyses included only individuals with at

least one offspring, resulting in a sample size of 406 adults.
Share of descendants for most successful females

We analyzed females with the highest number of living descendants as of January 1% 2023. This
analysis included all adult females known during the study period. Using the pedigree of the
population, we counted each female’s total number of unique descendants and determined which
of those were alive at the target date. For each female, we recorded: (1) total number of
descendants, (2) number of descendants alive, and (3) number of living descendants that were
present in the female’s natal clan on January 1% 2023. We then identified, within each clan, the
female with the highest number of living descendants. For each of these most successful females,
we determined if they ever reached the alpha position during their lifetime, and we recorded their
year of death. To provide context on lineage persistence, we calculated the proportion of each
female’s living descendants that remained in her natal clan relative to the total number of native
individuals alive in that clan, regardless of whether their ancestry was fully known or not. Clan
size estimated for January 1% 2023 is also reported and includes both native individuals and

immigrant males.
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Supplementary Information S1: Completeness of grandoffspring counts across sexes

Because our reproductive success metrics included the number of grandoffspring, we evaluated
how complete these counts were for each focal individual. We use the term “completeness” to
refer to the degree to which an individual's grandoffspring count could be considered complete at
the end of the study period. This depends on whether their genotyped offspring had died—and thus
had uncensored opportunities to reproduce—or were still alive and potentially reproducing beyond
the study’s end. Incomplete grandoffspring counts may thus underestimate multigenerational

reproductive success.

To test for potential sex-specific biases in data completeness, we first compared the
proportion of individuals with no surviving offspring between females and males using a Fisher
exact test. Among individuals with at least one surviving offspring, we compared the number
living offspring between sexes using a Wilcoxon rank-sum test. Finally, we calculated an
individual-level completeness score, defined as the proportion of an individual’s offspring that
were deceased by the end of the study. Individuals with no offspring were assigned a score of 1.0

(fully complete).

Of all selected individuals (n = 492), 77.4% had no offspring alive at the end of the study
period: 79.8% (n = 229 out of 287) of females and 74.1% of males (n =152 out of 205). This
difference was not significant (Fisher’s exact test; odds ratio = 0.727, 95% CI: 0.465-1.14, p =
0.155). Among individuals with at least one living offspring (n = 111), the number of living
offspring did not differ significantly between sexes (Wilcoxon rank-sum test: W = 1,363, p =
0.258). Completeness scores were generally high (mean = 0.932, SD = 0.162). Females (mean =
0.944, SD = 0.135) and males (mean = 0.914, SD = 0.192) completeness scores did not differ

significantly (Wilcoxon rank-sum test: W = 31,220, p = 0.113).
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Supplementary Information S2: Mean reproductive tenure in females and males

The mean reproductive tenure was significantly higher in females (7.31 £ 4.34 years; range =
0.002-16.46; n = 287) than in males (6.45 £ 3.66 years; range = 0.109-15.30; n = 205; Wilcoxon
rank-sum test: W = 32,684 , p = 0.0356). Among individuals with a minimum tenure of one, mean
reproductive tenure was also significantly higher in females (7.80 + 4.08 years; range = 1.07—
16.46; n = 268) than in males (6.99 * 3.36 years; range = 1.03-15.30; n = 188; Wilcoxon rank-

sum test: W = 27,993, p = 0.043).

Sex Offspring rate  Offspring Grandoffspring Great-grandoffspring
female 0.400 0.517 0.762 0.88
male 0.448 0.514 0.659 0.82

Supplementary Table S1 | Gini coefficients for reproductive success in female and male

spotted hyenas.

Gini coefficients quantify inequality in four measures of reproductive output: (i) offspring
production rate, calculated from individuals with >1 year of reproductive tenure; and (ii) total
number of offspring, grandoffspring, and great-grandoffspring. Gini coefficients range from 0
(perfect equality) to 1 (maximum inequality). While males exhibit greater inequality in offspring
production rates, inequality in lifetime offspring counts is similar between the sexes. Across
generations, however Gini values increase, particularly among females, indicating that

reproductive success becomes increasingly concentrated within a small number of individuals.
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Gini coefficients were calculated using the DescTools package. Note that the offspring production
rate is not directly comparable to the Movear, because it was restricted to individuals with a
minimum reproductive tenure of >1 year to ensure meaningful annual rate estimates, whereas the
Movear includes all individuals regardless of tenure since the M-index computation accounts for

differences in tenure.

Component Term Estimate SE chisq df p-value
cond Intercept -0.099 0.197

cond Sex (male) 0.877 0.266 2687 1 0.101
cond Log number of offspring 1.472 0.107 258.382 1 <0.001
cond Completeness 0.072 0.073 0.290 1 0.59

Sex (male) x Log

cond X -0.424 0.144 8.623 1 <0.01
number of offspring

cond Sex (male) x .0.079 0.095 0.696 1 0.404
Completeness

Zi Intercept -24.191 3,966.872

Zi Completeness 46.893 8,168.936

Supplementary Table S2 | Parameter estimates from the zero-inflated negative binomial
(ZINB) model of grandoffspring count. Results are shown separately for the conditional
(count) and zero-inflation components. Estimates are presented on the model link scale (log for
the count component, logit for the zero-inflation component). Likelihood-ratio test (y?) statistics
and associated p-values are reported in place of z-tests.
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Sex N Mean Median SD Min Max 25th %ile  75th %ile

Female 239 1418 0.262 2789 0 24.109 0 1.672
Male 167 1941 1.000 2525 O 12.875 0 2.692
All 406 1.633 0.609 2.693 0 24.109 0 2.100

Supplementary Table S3 | Descriptive statistics of expected genetic contribution for all
individuals and separated by sex.
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866 Fig. S1 | Frequency distributions of lifetime reproductive success in female and male

867 spotted hyenas.

868 Number of offspring produced (a) by females (n = 287) and (b) by males (n = 205). Lifetime
869 reproductive success was defined as the total number of offspring produced by each individual.
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875 Fig. S2 | Frequency distributions of grandoffspring counts in female and male spotted
876 hyenas.

877 Number of grandoffspring produced (a) by females (n = 287) and (b) by males (n = 205). Y-axis
878 breaks were used to improve readability given the high frequency of individuals with zero
879 grandoffspring.
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Fig. S3 | Frequency distributions of great-grandoffspring counts in female and male spotted
hyenas.

Number of great-grandoffspring produced (a) by females (n = 287) and (b) by males (n = 205).
Y-axis breaks were used to improve readability given the high frequency of individuals with zero
great-grandoffspring.
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902 Fig. S4 | Permutation distribution of geometric means for maternal-line rank transmission.
903 The histogram shows the distribution of geometric means across permutations of maternal

904 identity within clans and two-year retrospective birth cohorts, under a null model excluding

905 social rank inheritance. The solid black line indicates the mean of the permutation distribution,
906 and the dashed red line marks the observed geometric mean from the actual maternal lineages.
907 The observed value lies near the upper tail of the null distribution, suggesting that the

908 intergenerational continuity in rank is stronger than expected by chance. The corresponding

909 permutation p-value is displayed on the plot.
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