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Abstract 7 

Feedback loops govern many processes in the natural world and are ubiquitous in ecology and 8 

evolutionary biology. Despite their prevalence in theory, however, feedbacks and other forms of 9 

reciprocal causation are rarely quantified by empiricists working with observational datasets. This divide 10 

has been brought to the fore by the causal revolution in the natural sciences. When researchers aim to 11 

quantify causal effects, the bi-directional nature of feedbacks seems incompatible with standard tools, 12 

such as regression, which begin by distinguishing between “response” and “predictor” variables. This 13 

seems to leave empiricists in ecology and evolution with few tools, if any, to quantify bidirectional 14 

effects. First, we highlight that, when ignored, feedback can lead to bias in common statistical analyses. 15 

We then present several methods that can help researchers quantify causal effects when feedbacks are 16 

present, including models with discrete cross-lagged effects as well as continuous time models, both of 17 

which are suitable for longitudinal data. We also consider instrumental variables, which can help to 18 

disentangle bidirectional effects from cross-sectional data. Focusing on examples from ecology and 19 

evolutionary biology, our aim is to provide a general primer on the challenges and opportunities for the 20 

quantitative analysis of bidirectional causation. 21 
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1. Introduction 27 

Empiricists in ecology and evolutionary biology typically ask questions that are causal in nature. How 28 

does a predator influence prey behaviour? How is climate change altering community composition? How 29 

does social plasticity drive variation in reproductive success? Though the word “cause” is often not 30 

explicitly used, many observational studies answering questions like these imply causal relationships [1]. 31 

This lack of explicitly causal language stems from the well-engrained fact that correlation does not imply 32 

causation. However, in the past several years there has been a growing consensus that under a given set of 33 

assumptions, specific causal effects can be distinguished from other statistical associations (as is already 34 

very commonly done in the practice of using “control” variables). Sometimes termed “causal statistics” 35 

[2], this approach incorporates and relies on parallel methods for developing causal knowledge, such as 36 

the synthesis of evidence for relevant biological mechanisms. Inferring causation from observational data 37 

is increasingly recognized as an important and legitimate element of analysis in the broad fields of 38 

ecology and evolutionary biology [3–5].  39 

This growing interest in identifying causal effects has important consequences for how empiricists 40 

quantify feedbacks (i.e. phenomena that are in mutual causation). Bidirectional effects are causal by 41 

definition, meaning that they cannot be captured by simple correlations. However, common 42 

methodological approaches to causal inference are often incompatible with bidirectional effects. For 43 

example, an increasingly common tool of causal inference, the directed acyclic graph (DAG), seems to 44 

exclude “cyclic” processes by definition. More generally, there is an incompatibility between feedback 45 

and the implied logic of standard analyses such as regression: that one trait (response) is the result of 46 

another (predictor). Here, it is often implicitly assumed that causation flows in one direction from 47 

predictor to response. Thus, there is a rift between the ubiquity of feedbacks in ecological and 48 

evolutionary theory [6–8], and the dearth of empirical work that quantifies them. Limitations in the ability 49 

to analyze bidirectional causation may be a barrier for understanding and managing natural systems. 50 

Feedbacks have long been recognized as important processes in ecological and evolutionary systems [7]. 51 

They are also key to many new theoretical developments, for example, reciprocal causation between 52 

organisms and their selective environments plays a central role in the “Extended Evolutionary Synthesis” 53 

[8,9], while feedback between cultural and genetic change is the basis of gene-culture coevolution (i.e., 54 

how shared patterns of behaviour influence genotypes and vice-versa; [10]). Feedbacks are important in 55 

eco-evolutionary dynamics, where ecological and evolutionary processes influence each other over time 56 

[11,12]. Bidirectional links between state (e.g., body condition) and behaviour (e.g., boldness when 57 

foraging) are thought to underlie consistent differences in behaviour among individuals, i.e., personality 58 

[13,14]. While the importance of feedbacks in driving ecological and evolutionary dynamics are often 59 
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difficult to quantify, feedback is known to have major impacts on a variety of processes as diverse as the 60 

dynamics of ecological communities [15], links between disturbance and biodiversity [16], and the pace 61 

of evolutionary change [17].  62 

Similarly common in the ecology and evolution literature are calls to address feedbacks empirically [8]. 63 

For example, regarding eco-evolutionary dynamics, quantifying bidirectional causes between ecological 64 

and evolutionary processes has been highlighted as a key goal for future research. But how should one do 65 

this? While research in areas like density-dependent population growth or epidemiological modelling 66 

have incorporated feedback processes as central parts of their quantitative work, bidirectional processes 67 

are widespread and may be overlooked and/or incorrectly accounted for outside of these domains. To the 68 

extent that bidirectional effects drive ecological and evolutionary systems, empiricists face a stark 69 

disconnect between the standard analytic toolkit (such as regression and generalized linear models, which 70 

cannot handle reciprocal causation) and the natural phenomena they seek to explain. Here we apply and 71 

extend the paradigm of causal inference to clarify how bidirectional effects can be quantified. First, we 72 

highlight the pitfalls of ignoring potential feedbacks and how reciprocal causation can induce bias in 73 

standard statistical approaches, i.e., “simultaneity bias”. Next, we provide a primer on how causal 74 

feedbacks can be quantified using observational datasets, with a focus on cases relevant for researchers 75 

working in ecology and evolutionary biology. Our aim is to empower researchers to ask and accurately 76 

answer biological questions in the presence of bidirectional causation. 77 

2. Bidirectional effects and their pitfalls 78 

Defining feedback and other forms of reciprocal causation 79 

Fundamentally, bidirectional (or reciprocal) causation occurs when two or more entities are mutual causes 80 

of one another (See Glossary, Table 1). When causation flows in a loop such that a variable influences 81 

itself at a future time, the system can be considered a feedback loop, though for the purposes of this 82 

article we treat “feedback” and “bidirectional effects” as synonymous with respect to their impact on 83 

statistical analyses. Also encompassed by this is “coevolution”, which is often applied to instances of 84 

reciprocal evolutionary effects across species (e.g., predator-prey coevolution; [17]), but can also refer to 85 

bidirectional effects between sexes or between genes and culture, for example [6]. Feedbacks can be 86 

indirect, mediated through intermediate variables: for example, feedback between social structure and 87 

population density may be mediated through variation in fitness [18]. We also note a distinction between 88 

reciprocal causation and the related idea of reverse causation, when the opposite causal effect than 89 

expected occurs (e.g., when Y causes X) [19]. Feedback processes can be broadly categorized as either 90 

positive or negative, each of which has its own consequences for the dynamics and stability of the system 91 
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[7]. Positive feedbacks involve traits that reinforce each other through time, resulting in acceleration or 92 

exaggeration of change within a system, i.e., “runaway” effects. Note that positive feedback can result 93 

from bidirectional effects with a positive sign (+/+) or negative sign (-/-). Depending on the strength of 94 

the causal effects at hand, this can result in rapid transitions between alternate stable states. Generally, 95 

positive feedback processes will face ceilings or “brakes” that prevent infinite change – for example, 96 

morphological limits may restrict the extent of feedbacks between body size and behavioural traits [20]. 97 

In contrast, negative feedback involves effects of opposite sign (+/-) and often results in more stable 98 

dynamics, as each component of the loop regulates the other, though with time lags cycles can also occur. 99 

Visualizing causal relationships through directed acyclic graphs (DAGs) 100 

Causal diagrams are an important way to visualize and communicate assumptions about causal 101 

relationships in a study system. DAGs, a type of causal diagram, are an increasingly popular tool which 102 

have the additional benefit of helping to assert hypothesized causal relationships and then infer causal 103 

estimates under path analysis or the structural causal model (SCM) framework. In a DAG, variables are 104 

shown as nodes and arrows between them represent directional effects. For example, an arrow from A to 105 

B indicates that A causally affects B. Arrows in DAGs do not indicate the sign (positive vs. negative) of 106 

the effect nor its magnitude but are a key tool for causal inference in that they allow researchers to 107 

visualize confounds and other biases [21,22]. DAGs are theory-driven in that they are created based on 108 

domain knowledge, including expert opinion, previous studies and relevant literature. DAGs should 109 

include both measured and unmeasured variables required to depict the causal question at hand, and are 110 

only considered complete when all “common cause variables” (i.e., any variable that affects two or more 111 

variables in the DAG) are included [23,24]. 112 

Once a candidate DAG is created, researchers can apply the “backdoor criterion” to identify the variables 113 

that need to be controlled for to remove confounding, while also avoiding other forms of bias (see 114 

Glossary, Table 1). This includes overcontrol bias (e.g., including a variable on the causal path from 115 

treatment to outcome) and collider bias (including a common outcome, or “collider”, of the treatment and 116 

outcome in a model; Table 1) [4,20]. In plain language, applying the backdoor criterion means identifying 117 

and blocking non-causal pathways that connect the variables for which one wants to estimate a causal 118 

effect. Software like dagitty can be helpful for computing the graphical rules of the backdoor criterion to 119 

more complex DAGs, where the potential backdoor paths can be less obvious [24].  120 

Consider a hypothetical DAG linking marine protected areas (MPA), fishing activity, fish biomass, and 121 

coral cover (Figure 1; adapted from [25]). Estimating the effect of fish biomass on coral cover (blue 122 

arrow, Figure 1A) would require controlling the “confound” of MPAs, perhaps by including it as a 123 
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covariate in a statistical model, thus “blocking” the backdoor path of association. This could also be 124 

achieved by other methods of controlling for confounding variables, such as matching methods, 125 

propensity scores, and stratification. Experiments with randomized treatments (e.g., randomized control 126 

trials or “RCTs”) remain gold standard of control [26], though even these approaches can be subject to 127 

causal biases [27,28]. Moreover, many studies in ecology and evolution rely on observational (non-128 

experimental) data. Returning to our example, imagine that a researcher wants to estimate the effect of 129 

MPAs on fish biomass (via fishing). Here, including “coral cover” in the statistical model will actually 130 

induce bias, as it is a “collider” variable that opens a backdoor path between the variables of interest if 131 

included (Figure 1B; Glossary, Table 1). Though realistically complex DAGs will often involve more 132 

variables than shown here (see example in [29]), the backdoor criterion can be applied to help identify 133 

causal effects of interest. See [3,4,30] for additional detail. 134 

The situation becomes more complicated if we imagine that fish biomass and coral cover influence each 135 

other reciprocally (Figure 1C). This causal diagram no longer fits the criteria of a DAG, as it includes 136 

simultaneous bidirectional effects. Though they still have a role to play, simple DAGs (e.g., Figures 1A, 137 

1B) and the backdoor criterion alone are unable to provide causal insights about systems with feedback or 138 

other forms of reciprocal causation. To address this gap in methods, we present three widely applicable 139 

approaches for causal inference that can be applied in the presence of bidirectional effects. 140 

 

Figure 1 – Causal diagrams representing hypothetical relationships between marine protected areas 

(MPAs), fishing activity, fish biomass, and coral cover (adapted from [25]). (A) and (B) show 

examples of confounding and collider variables, respectively, contingent on the causal effect of interest 

(blue pathway). Note that (C) is not technically a DAG, as it includes simultaneous bidirectional or 

“cyclic” effects. 
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Bidirectional causation can induce bias in standard analyses 141 

Before considering the ways that researchers can identify bidirectional causation in observational 142 

datasets, we address the issue that bidirectionality, when ignored, can introduce bias into standard 143 

analyses. It remains underappreciated in ecology and evolutionary biology that the presence of reciprocal 144 

causation results in biased estimates of direct, causal effects in regression analyses. For example, imagine 145 

that a researcher is interested in the causal effect of X on Y. Under a hypothetical DAG in which X causes 146 

Y with no other confounding relationships, the simple regression of Y on X will recover the effect (Figure 147 

2A). However, this does not hold if the regression is reversed. In other words, the regression of X 148 

(response) on Y (predictor) will not recover the simulated causal effect of X on Y (Figure 2B). While this 149 

is the expected and correct behaviour of simple regression in this circumstance, the gap between the 150 

regression coefficients and causal effects highlights the importance of ruling out reverse causation even 151 

for even the simplest causal analyses. Correlational approaches are perfectly appropriate when the 152 

scientific question itself is correlational in nature. For example, “are bolder raccoons (Procyon lotor) 153 

larger?” can be answered with a simple correlation coefficient, even if size and boldness are reciprocal 154 

causes of one another. Similarly, “has natural selection occurred in a population?” can be answered 155 

without strict causal thinking – changes in allele frequencies map onto the covariance between fitness and 156 

a given trait regardless of the causes of their association. Quantifying causal relationships is not always 157 

necessary and depends on the scientific question at hand. 158 

However, superficially similar, but causal, scientific questions, e.g., “what is the effect of boldness on 159 

body size in raccoons” will require separate methods. If two variables, X and Y, are reciprocal causes of 160 

one another (i.e., bidirectional causation or feedback), neither of the simple regressions will provide the 161 

direct effect of interest. For some combinations of simulated effects, this can result in effects that are of 162 

opposite sign of direct causes (Figure 2C). This issue has been acknowledged in parallel in other fields: 163 

for example, Paxton et al. emphasize that the social sciences often fail to address biases resulting from 164 

endogeneity (correlations between predictors and unexplained variance) given the presence of feedback 165 

loops [31]. More specifically, endogeneity bias resulting from reciprocal causation is sometimes referred 166 

to as “simultaneity”. Simultaneity raises potential problems for seemingly innocent analyses. While 167 

researchers may sometimes recognize these issues, e.g., proposing cautious interpretation when feedback 168 

might be present, formal discussion of these biases have been largely absent from ecology and 169 

evolutionary biology.  170 
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Figure 2 – Bidirectional effects can muddle standard regression analyses. Here we present a simple 

simulation where variables X and Y are generated from several different causal processes (shown by 

black text near top of each panel). (A) Across a range of simulated causal effects of X on Y, the 

coefficient of the regression of Y on X closely matches the true effect. Each point represents the point 

estimate of a coefficient from a model with a different simulated “true” effect, with grey lines showing 

95% CIs of the estimate. (B) If we reverse the causation such that Y actually causes X, the same 

regression of Y on X often produces a non-zero coefficient even though X has no causal effect on Y. 

While it is unsurprising that the model picks up a statistical association, this example demonstrates the 

risks of failing to consider reverse causation when the aim is to infer causal effects. (C) When X and Y 

are reciprocal causes of one another, neither the regression of Y on X (blue) or the reversed model 

(regression of X on Y; red) reliably recover the direct causal effect of one variable on the other. See 

Section 4 of the supplement for a vignette detailing the code used to create this figure. 

 171 

Table 1 - Glossary of key terms. 172 

Backdoor 

criterion 

A set of graphical rules applied to a DAG to identify sets of variables that, when 

conditioned on, allow for the estimation of specific causal effects. This is done by 

ensuring that all “backdoor paths” (i.e., non-causal paths) between variables of 

interest (e.g., X and Y) are blocked by conditioning on appropriate variables (e.g., 

adjusting for confounds, avoiding colliders). For example, a confound Z that 

affects both X and Y opens a backdoor path between them, which can be blocked 

by including Z in a regression of Y on X.  
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Bidirectional 

causation 

When two measures of interest cause one another. There is no need for these causes 

to be direct, e.g., A and B exhibit bidirectional causation if A causes B (A –> B) 

and B causes C which causes A (B –> C –> A). This is synonymous with 

reciprocal causation. See Feedback. 

Confound A common cause of two variables for which a researcher wants to estimate a causal 

effect. For example, Z is a confound of X and Y if it directly or indirectly causes 

both X and Y. Confounds can be blocked by including them in a model to estimate 

the unbiased effect of X on Y. 

Collider A lesser-known causal pathology which is a common outcome of two variables for 

which a researcher wants to estimate a causal effect. For example, Z is a collider 

for X and Y if both X and Y cause Z. Unlike confounds, colliders should be 

excluded from a model to estimate the unbiased effect of X on Y.  

Cross-sectional 

data 

Data collected during a single period of time. Typically, cross-sectional data are 

collected across multiple sampling units (e.g., populations, sites, individuals). 

Directed acyclic 

graph (DAG) 

Tool for visualizing and analyzing causal relationships. Variables are represented 

by nodes while causal effects are represented by arrows. Being acyclic, DAGs 

cannot accommodate bidirectional arrows, but can represent bidirectional effects if 

they are made temporally explicit. One a DAG has been created, it can be used to 

guide model structure (i.e., which variables must be included and excluded from a 

model to identify a specific causal effect of interest). 

Feedback A special case of bidirectional causation where two or more variables are linked in 

a causal loop, such that a variable A influences itself at a future time. This can be a 

simple instance of bidirectional causation, as above (e.g., A -> B & B -> A at a 

subsequent time), but can also involve many interconnected variables [7]. For the 

purposes of this article however, feedback, bidirectional causation, and reciprocal 

causation are treated as mostly synonymous. See Bidirectional causation. 

Instrumental 

variable 

Variable that can be used to identify a direct causal effect in the presence of 

bidirectional causation, unobserved confounding, or other sources of endogeneity. 

Instrumental variables must satisfy several key criteria (see “Method 3” in main 

text). 

Longitudinal 

data 

Data with repeated measures of the same sampling unit (e.g., population, site, 

individual) over time. Longitudinal data are very useful for inferring bidirectional 
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effects. Depending on the scale of the process of interest, this can include relatively 

short time periods as well as long-term, multiyear studies (e.g., long-term 

ecological research; LTER). 

Reverse 

causation 

When the true direction(s) of causation between variables is the opposite of what 

one expects. The “reversal” is relative to a researcher’s belief about the system. 

This can involve situations of bidirectional causation, where a researcher expects 

solely that A causes B, for example, or situations with unidirectional causation, i.e., 

when a researcher expects that A causes B (A -> B) while in reality B causes A (B 

–> A). 

Structural 

causal modeling 

Framework for identifying causal effects including the formalization of 

assumptions using DAGs and the application of techniques like the backdoor 

criterion [32]. Crucially, this framework can be applied to observational data, 

allowing for causal inference without formal experimentation.  

3. Approaches for inferring bidirectional effects in observational data 173 

Method 1. Temporally explicit models with cross-lagged effects 174 

Though bidirectional arrows cannot be represented in DAGs directly, unfurling the static causal 175 

relationship across time (with time-indexed measures of each variable) opens the door to formal causal 176 

inference in systems where traits cause one another. The resulting diagram will appear structurally similar 177 

to the statistical approach of “cross-lagged panel models” (CPLM; [33]), which are regularly used in the 178 

social sciences, but less commonly applied in ecology and evolution [34]. CPLMs allow one to estimate 179 

“cross-lagged” effects between variables of interest, made possible by expressing one variable (Y) at a 180 

given time (t) as a function of another variable (X) at a previous time (t-1). Simultaneously, X at t can be 181 

represented as a function of Y at t-1 (coloured arrows in Figure 3A). It is important to note that panel 182 

models do not necessarily provide causal insights, and are often used for more descriptive analyses, e.g., 183 

to identify temporal precedence between variables (i.e., if change in one variable tends to precede change 184 

in another). However, with an appropriately specified DAG, in some cases it is possible to interpret cross-185 

lagged effects as causal.   186 

Crucially, this temporally explicit approach means that bidirectional effects can be represented in DAGs 187 

without violating the requirement of unidirectional causes. These temporally explicit models often assume 188 

stationarity, i.e., that causal effects are consistent through time, but one can also allow cross-lagged and 189 

auto-regressive effects to vary at each step (e.g., [35]). Models with cross-lagged effects are especially 190 
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suitable when there are clearly separable phases at which causal effects can be divided in time (e.g., 191 

seasonal effects or studies with consistent repeat measurements). Indeed, the scale of time gaps relative to 192 

causal effects are important for these models and can impact the results [36]. Mismatch between the 193 

timescale of measurements and the process of interest can result both in inaccurate estimates of effect 194 

sizes as well as misidentification of causal effects [37]. 195 

Returning to the example of a state-behaviour feedback, Figure 3A shows a temporally-explicit DAG 196 

where body size and foraging boldness influence one another through time. For illustrative purposes, we 197 

simulated a positive effect of boldness on body size, imagining that bolder raccoons gather more 198 

resources, but a negative effect of body size on boldness – perhaps larger animals are less motivated to 199 

take risks when foraging (See similar examples in [13]). First, “lagged” versions of each variable are 200 

generated, such that size at time 𝑡 can be modelled as a function of size at 𝑡 − 1 (an auto-regressive 201 

effect) and boldness at 𝑡 − 1 (a cross-lagged effect). Reciprocally boldness at time t can be modelled as a 202 

function of boldness at 𝑡 − 1 and size at 𝑡 − 1. These sub-models can be estimated together in a bivariate 203 

framework, allowing for accurate estimation of the bidirectional effects (Figure 3B, 3C). We provide a 204 

simple example of this model implemented in the brms or lavaan packages in R [38–40] in the electronic 205 

supplementary material (Section 1.1). 206 

Of course, more complex biological datasets may involve more challenging DAGs, and may require 207 

conditioning on other covariates, the inclusion of varying or “random” effects, or approaches to deal with 208 

missing data. Crucially, the estimation of cross-lagged effects does not make an analysis immune to more 209 

typical causal issues. For example, if size and boldness (Figure 3) in fact have no causal relationship, but 210 

are each influenced by a time-invariant confound, ignoring this confound in a cross-lagged model will 211 

result in spurious estimates of bidirectional effects. Otherwise, there remains a lack of specific advice on 212 

adjusting for more complex causal pathologies in cross-lagged panel models. Static DAGs (i.e., without 213 

temporally indexed variables) may be a helpful starting point. For example, Heiman et al. apply a DAG to 214 

identify confounds for a cross-lagged panel model [35]. Perhaps the most straightforward approach is 215 

simply to incorporate known confounds into the temporally explicit sub-models (e.g., control for 216 

confound “c” at  𝑡 − 1; see worked example in electronic supplement, Section 1.2.2). 217 

However, generating DAGs with at least two timesteps (and more if effects with lags longer than one time 218 

step are included) may be necessary to identify causal properties (e.g., confounding variables) of a 219 

system. For example, the inclusion of auto-regressive effects may block (i.e., resolve) certain types of 220 

confounding, but not others [41]. Given the potential complexity of temporally explicit causal diagrams, 221 
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we expect that dagitty software, which can be used to evaluate temporally explicit DAGs, and the testing 222 

of simulated data will be most helpful for researchers seeking to infer causation with cross-lagged effects. 223 

 

 

Figure 3 – Bidirectional effects can be identified using longitudinal data. (A) DAG representing 

reciprocal causation between variables X and Y over time. Coloured arrows represent reciprocal cross-

lagged effects, which can be identified in a multivariate model. (B) Posterior of estimated effect of X 

on Y using a multivariate model with lagged effects alongside the true simulated effect (dashed vertical 

line) and coefficient from naive simple regression (grey). (C) Posterior of estimated effect of Y on X 

using a multivariate model with lagged effects alongside the true simulated effect (dashed vertical line) 

and coefficient from naive simple regression (grey). 

Method 2. Continuous time models 224 

A second approach to analyzing patterns of bidirectional causation uses ordinary differential equations to 225 

explain continuous changes in variables over time. Rather than representing how a variable changes over 226 
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a specific time step (as in Method 1), ordinary differential equations express instantaneous change in one 227 

variable with respect to another, i.e., at infinitely small timesteps [42]. A classic ecological example of 228 

how this approach can incorporate bidirectional effects is the Lotka-Volterra equation which expresses 229 

predator (e.g., lynx; Lynx canadensis) and prey (e.g., snowshoe hare; Lepus americanus) populations as 230 

causes of one another. However, this general approach of using ODEs is highly flexible and is widely 231 

applicable for a range of ecological and evolutionary questions. A further benefit of this approach is that it 232 

can include mechanistic or “process” models, where specific biological mechanisms are represented 233 

mathematically. Despite this flexibility, developing differential equations for new research questions is 234 

challenging, and requires a familiarity with both mathematics and the potential mechanisms occurring in a 235 

system. 236 

Once a system of differential equations has been developed to explain relationships between variables 237 

over time, one can use it to simulate possible outcomes, or fit it to data to estimate parameters of interest, 238 

including those representing bidirectional effects. In the first instance, comparing the dynamics of 239 

simulated data from models with and without bidirectional causation may suggest whether bidirectional 240 

causation is occurring (e.g., if cycles are evident, as in systems with negative feedback). For example, 241 

Pantel and Becks show how four alternate hypotheses of trait evolution across species can result in 242 

distinct patterns of biodiversity, which can then be compared to observed data [43]. More direct evidence 243 

for causal effects comes from fitting a continuous time model to observed data, i.e., estimating key 244 

parameters using a fitting algorithm (e.g., Markov chain Monte Carlo). Though this can be challenging, 245 

particularly in regards to the selection of “starting” parameters or priors, we direct the reader to worked 246 

examples based on lynx and hare pelt data [30,44]. 247 

Tools such as the ctsem package, implemented in R, are particularly useful in that they allow users to use 248 

and customize a standard form of continuous time model [45], without needing to “start from scratch” 249 

with novel mathematical expressions. The ctsem package provides a general model framework to fit 250 

dynamic models incorporating auto-regressive effects and random effects. As a type of state-space 251 

models, they include both latent and observed variables that allow for the separation of process error, i.e., 252 

stochasticity that is not captured by deterministic aspects of the model structure, and measurement error, 253 

i.e., imprecision in the data sampling process [46]. Though ctsem can be used to fit models that treat time 254 

as a discrete sequence, as in the cross-lagged model in Method 1, it specializes in the use of differential 255 

equations to represent changes in continuous time. These continuous time methods are preferable when 256 

time lags between measurements vary (see [37] for further discussion on discrete vs. continuous 257 

approaches). The ctsem framework is well-suited for the incorporation of bidirectional effects over time. 258 
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For an illustrative example, we used ctsem to fit a system of differential equations to a simulated, 259 

idealized eco-evolutionary dataset with the primary aim of estimating the “crossed” effects of population 260 

density on trait evolution and vice-versa. For the purposes of this example, we imagine a population 261 

where a trait that influences growth rate (e.g., number of offspring produced) is subject to density-262 

dependent selection. This could occur if selection favors individuals that produce more offspring (i.e., 263 

larger litters, clutches, more eggs or seeds) at lower densities, while at higher densities selection favors 264 

individuals producing fewer, higher-quality offspring, as competition between new recruits becomes 265 

increasingly important. This constitutes the “eco-to-evo” causal process, as an ecological process 266 

(density) influences subsequent evolutionary change (the distribution of the trait across the population). If 267 

these evolutionary changes feed back to influence population density, e.g., if individuals tend to produce 268 

fewer offspring, there will be an “evo-to-eco” effect, and the eco-evolutionary feedback is complete. 269 

First, we simulated variables representing trait values and population densities over multiple timesteps, 270 

incorporating a negative effect of density on trait values, and a positive effect of trait values on density 271 

(See supplement, Section 2). Then, using a continuous time approach, we model dynamics of the 272 

simulated variables over time (Figure 4A), and most importantly, recover the “true” bidirectional effects, 273 

neither of which can be achieved using simple regression-type models (Figure 4D). And though we 274 

highlight an eco-evolutionary example here, continuous time methods are widely applicable to a range of 275 

natural systems where variables are measured over time.   276 

 

Figure 4 – Differential equations can allow for bidirectional effects to be estimated over continuous 

time. (A) Cyclic dynamics of population density (standardized) and a hypothetical life history trait 

from a simulated dataset (points), with fitted model predictions from overlaid on top (lines). Shaded 
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areas around each line represent uncertainty, incorporating both measurement and process error. (B) 

Causal diagram representing bidirectional causation between population density and the distribution of 

phenotypes in a hypothetical population. (C) Simplified equations representing how changes in two 

variables (population density, trait value) with respect to time can be simultaneously modelled as a 

function of each other (𝛼𝑐𝑟𝑜𝑠𝑠) and autoregressive effects (𝛼𝑎𝑢𝑡𝑜). Note that the 𝛽 terms represent 

intercepts specific to each sub-model, and that these equations only represent the deterministic portion 

of the model, excluding additional noise parameters. (D) Posterior distributions of bidirectional effects 

estimated using a continuous time (CT) model (dark grey), which accurately recovers the true values 

(dashed vertical lines). Crucially, these positive and negative bidirectional effects are missed when 

simply regressing the variables on one another (light grey posteriors).  

As in the previously described method, the reliability of inferred causal effects depends on the causal 277 

assumptions that are used to construct the model – potential issues like confounding and omitted variable 278 

bias may be important, depending on the goal of the analysis. For example, incorporating potential 279 

confounds as predictors may be necessary to accurately infer causal effects. Additional predictors can be 280 

specified as time-invariant (e.g., the latitude of a particular study quadrant, the sex of a study animal), or 281 

time-varying (e.g., a hurricane that impacts a subset of longitudinal data). Managing unmeasured 282 

confounding in continuous time models can be challenging, particularly if they are time-varying [37]. One 283 

approach to address unmeasured, time-invariant confounds is to incorporate random effects structures 284 

that can capture stable differences among units (e.g., individuals in a study). More formal links between 285 

ODEs and structural causal modelling have also been proposed, and may help in generating accurate 286 

causal inferences [47]. 287 

Method 3. Instrumental variables – Inferring bidirectional causation without time series 288 

Instrumental variables offer a distinct approach detecting reciprocal causation, and are especially useful in 289 

cross-sectional datasets, i.e., when time series data are unavailable. Instrumental variable techniques can 290 

also be used to identify a specific directional effect of interest when feedbacks are expected (e.g., if a 291 

researcher is only interested in the effect of X on Y but not Y on X). Underappreciated in ecology and 292 

evolution [48], this method requires the identification of “instruments”, which directly influence one 293 

variable of interest, but not the other. More specifically, to recover the direct, causal effect of X on Y, an 294 

effective instrument “I” must cause X, it must only influence Y through X, and it must not be causally 295 

related to any unobserved confounds of X and Y [30]. There are several approaches to fitting instrumental 296 

variable models, including two-stage-least-squares (“2SLS”), and bivariate (multi-response) models.  297 
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For an illustrative example, we draw on existing application of instrumental variable analysis for 298 

understanding the ecology of malaria and its relationship to habitat modification (see [49]). Imagine that a 299 

researcher wants to quantify the effects of deforestation on changes in the prevalence of mosquito-borne 300 

disease (e.g., malaria; Plasmodium sp.). The researcher has cross-sectional data on levels of deforestation 301 

and malaria prevalence at several sites in a given region. In particular, they are concerned that 302 

deforestation may boost levels of malaria, perhaps because the removal of forest ecosystems may create 303 

more suitable habitat for mosquitoes or perhaps reduce populations of their natural predators. If the 304 

researcher can safely assume that deforestation causes changes in malaria and not vice-versa (i.e., 305 

unidirectional causation), a simple regression will provide an unbiased estimate of the effect of habitat 306 

modification on malaria.  307 

However, levels of malaria may also influence levels of deforestation via other mechanisms, for example, 308 

if high levels of disease interrupt or dissuade efforts to remove forest habitat. Without longitudinal data, 309 

these reciprocal causes will occur “simultaneously” to generate the observed data. In this instance, neither 310 

simple regression will reliably produce the desired causal effect. Now, imagine that the researcher also 311 

has access to commodity prices for lumber or downstream agricultural products that could make 312 

deforestation more lucrative. Assuming it satisfies the above criteria for instrumental variables, 313 

commodity prices can be used as an instrument to isolate the causal effect of deforestation on malaria 314 

(Figure 5). Similarly, the reciprocal effect of malaria prevalence on habitat modification can be quantified 315 

using a candidate instrument like temperature, which strongly influences observed levels of malaria. See 316 

Section 3 in the supplement for worked examples using the ivreg or brms packages in R [38,50]. It is 317 

important to note that identifying and reaching consensus on candidate instruments can be challenging – 318 

for example, there has been considerable debate on potential instruments relating to this above case study 319 

[49,51,52].  320 
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 321 

Figure 5 – Instrumental variable analysis can isolate direct effects when feedback is present. Here we 322 

simulate an simplified example where deforestation promotes malaria (“true” effect of +1) while the 323 

prevalence of malaria within a region reduces subsequent deforestation (“true” effect of -1).  (A) First, 324 

commodity prices incentivizing the removal of forest and conversion to agricultural land serve as an 325 

instrument for estimating the effect of deforestation on the prevalence of malaria. While a naive 326 

regression of malaria prevalence on deforestation finds no relationship (grey posterior), the instrumental 327 

variable analysis successfully recovers the true (simulated) positive effect (blue posterior). (B) 328 

Temperature serves as an instrument for estimating the effect of malaria prevalence on deforestation. 329 

While a naive regression of deforestation on malaria prevalence finds no relationship (grey posterior), the 330 

instrumental variable analysis successfully recovers the true (simulated) negative effect (red posterior).  331 

 332 

Beyond the criteria mentioned above, instrumental variables must have a relatively strong causal effect 333 

for accurate inference [48]. Testing for potentially problematic “weak instruments” is straightforward and 334 

simply requires examining the regression of the explanatory variable in question on its putative 335 

instrumental variable [53]. Based on this regression, a commonly used rule-of-thumb is that instruments 336 
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with an F-statistic less than 10 are considered weak [54]. Otherwise, for Bayesian implementations in 337 

particular, standard diagnostics of model convergence and fit are necessary for ensuring accurate 338 

inference. 339 

One advantage of instrumental variable approaches is they inherently adjust for common types of 340 

confounding between two variables of interest, such as the presence of unmeasured confounds (see 341 

worked example in [30]). Returning to our example, any common causes of both deforestation and 342 

malaria prevalence (including unmeasured confounds) would be accounted for by the use of either 343 

instrument, and would not bias the estimates of bidirectional effects. As before, the use of DAGs can help 344 

to guide modelling decisions with instrumental variables. For example, causal diagrams may reveal 345 

“conditional instruments”, variables that satisfies all criteria to be an instrument when controlling for 346 

another variable [56]. Suppose that instrument (I) that causes X also influences the outcome of interest 347 

(Y), but solely through a mediating variable (Z). In this case, (I) can be a valid instrument if Z is included 348 

(i.e., controlled for) in the instrumental variable model [25], assuming other criteria are met. 349 

To summarize, instrumental variables are a powerful tool for uncovering causal effects in the presence of 350 

bidirectionality and other potential sources of bias (e.g., unmeasured confounds). The main challenge in 351 

implementing this approach is the identification of measured (or measurable) instruments that meet all of 352 

the necessary criteria. It is also worth noting that while the instrumental variable approach can identify 353 

reciprocal causation, it may not offer much insight into the dynamics of feedback systems, or into whether 354 

the causal effects themselves vary over time. Nevertheless, wider adoption of this method is likely to be 355 

useful in ecology and evolutionary biology, e.g., for understanding links between biodiversity and 356 

productivity [57]. See also [58] for a worked example where canine distemper serves as an instrument for 357 

predator-prey cycles. This and the other methods we present are summarized in Table 2 and Figure S1, 358 

with code vignettes available in the supplement (Sections 1-4).  359 

4. Special considerations for bidirectional effects in ecology and evolution 360 

Eco-evolutionary feedback loops 361 

One of the most exciting areas of development in ecological and evolutionary theory is eco-evolutionary 362 

feedbacks. Spurred by evidence that evolutionary processes can occur on relatively fast timescales 363 

[59,60], the central idea is that effects of ecological phenomena on traits or gene frequencies (termed 364 

“eco-to-evo”) can occur simultaneously with influences of trait or gene frequencies on ecological 365 

phenomena (“evo-to-eco”), opening the door to bidirectional dynamics. These dynamics are thought to be 366 

an important process shaping genetics and density within populations [61–63]. Eco-evolutionary feedback 367 

can be studied in experimental systems, such as the feedback between population size and genes linked to 368 
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cooperative behaviour in microbes [64]. Most often, eco-evolutionary feedback is inferred from separate 369 

demonstrations of eco-to-evo and evo-to-eco processes, i.e., each half of the reciprocal causal system is 370 

present. While this “two halves” approach can reveal the potential for causal feedback, it offers little 371 

insight into how these effects work together to sculpt the ecological and evolutionary dynamics of wild 372 

organisms. Indeed, it is widely acknowledged that theory on reciprocal dynamics in eco-evolutionary 373 

systems has outweighed empirical evidence, due in part to difficulties in both data collection and analysis 374 

[43,65,66]. Accordingly, it remains difficult to know whether reciprocal influences from evolution to 375 

ecology (termed “evo-to-eco”) are important in natural systems [11]. To the extent that these natural 376 

systems are generally studied using observational data, the methods discussed open new opportunities for 377 

simultaneously estimating effects between ecological and evolutionary phenomena. 378 

Feedbacks across phylogenetic histories 379 

Bidirectional effects can play an important role in macroevolutionary theory, where sets of two or more 380 

traits are expected to influence one another over long periods of time. For example, positive feedback 381 

processes have long been hypothesized to influence trait covariance between species (e.g., coevolution 382 

between plants and pollinators [67,68]), as well as within species (e.g., coevolution of slow life history 383 

and social bonds in cetaceans [69]). This is also an area of research where “what came first” is often an 384 

important question as it pertains to the specific evolutionary pathway in evolutionary history. As with 385 

other standard analyses, traditional comparative methods are unable to disentangle the direction(s) of 386 

causality when traits influence each other over time [70]. Pagel developed one solution for interrogating 387 

this “correlated evolution” which has been applied to coevolution of traits in human populations [71], 388 

including lactose tolerance [72], and systems of inheritance [73]. Less commonly, this method has been 389 

applied to nonhumans, revealing, for example, that sexual size dimorphism evolved first in pinnipeds, 390 

subsequently triggering feedbacks with polygynous group size [74]. This method treats a phylogenetic 391 

tree as a time series to identify temporal patterns of the emergence of different traits in phylogenetic 392 

history. Still, most studies of “coevolution” use techniques that assume unidirectional causation, leaving 393 

possible bidirectional influences as speculative hypotheses (e.g., [75,76]). One reason for this is that 394 

available tests for causal coevolution have been limited to consideration of two binary traits. However, a 395 

recent extension of Pagel’s method provides a highly flexible Bayesian implementation of tests for causal 396 

coevolution for multiple traits of any distribution [77]. Thinking more broadly, applying these methods to 397 

matched genetic and behavioural data may help to understand how genes and culture interact, i.e., a 398 

causal understanding of gene-culture coevolution [10,78]. For example, linking ecotype-specific foraging 399 

strategies of killer whale (Orcinus orca) behaviour with genomic and phylogenetic data would allow one 400 

to test whether genetic changes were a leader or follower in the diversification of behaviour (see [79]).  401 
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5. Concluding remarks 402 

Our goal in this manuscript was to establish that explaining ecological and evolutionary phenomena in the 403 

face of reciprocal causation is challenging but possible, and a worthy target for empiricists. We encourage 404 

researchers to consider both the theoretical and quantitative consequences of potential feedback in their 405 

study systems, and apply methods including those described here when isolating directional causal effects 406 

is necessary. Our review can be synthesized in the following three key points: 407 

1. Bidirectional relationships are common in nature. 408 

2. Common statistical methods (e.g., regression and generalized linear models) can lead to bias in 409 

the presence of bidirectionality. 410 

3. Methods exist that can identify bidirectional effects from both longitudinal and cross-sectional 411 

datasets. 412 

Empiricists in ecology and evolution face a tension between the importance of feedbacks for theory and 413 

practical applications, and the complexity that such analyses entail. Of course, this complexity mirrors the 414 

true complexity of ecological and evolutionary systems. Confronting and quantifying this complexity 415 

(e.g., incorporating an increasing number of causal effects, confounds, etc.) should be done cautiously, as 416 

larger causal diagrams entail more causal assumptions [53], and thus may be more prone to error. 417 

Generally, we suggest that the methods presented here be applied where there is underlying theory that 418 

suggests that reciprocal causation may be occurring or is important to the biological question. 419 

We believe that a better understanding of how to manage and infer bidirectional causation from 420 

observational datasets will enhance the understanding of ecological and evolutionary systems. From an 421 

applied perspective, moving beyond a correlational approach to one in which potentially bidirectional 422 

causes are explicitly quantified is important for successful intervention [80]. Our aim was not to produce 423 

an exhaustive list of methods, but instead to present the most widely applicable theory-driven approaches 424 

towards quantifying bidirectional causes in observational data. This article is intended to serve as a primer 425 

to assist researchers in identifying feedback processes to test, and as data collection allows, to identify the 426 

appropriate branch of methods for quantifying such feedbacks. 427 
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Table 2 - Summary of methods for causal inference in the presence of feedbacks. 428 

Method Description Data requirements Main assumptions Challenges 

Cross-lagged 

effects 

Variables are represented 

in a temporally explicit 

directed acyclic diagram 

(DAG) so that both auto-

regressive and cross-

lagged (reciprocal) effects 

can be estimated.  

Co-inciding 

longitudinal (i.e., time 

series) data of 

variables of interest. 

The simplest implementations 

assume that effects are constant 

over time. However, time-varying 

effects can also be estimated. 

Time gaps between repeated 

measurements fit the expected 

timescale for the study system in 

question [37]. 

May be difficult to collect adequate 

data, particularly for decades-long 

ecological or evolutionary processes. 

 

DAGs may become quite complex 

when confounds or other causal 

pathologies are present. 

Continuous 

time models 

Fit a system of 

differential equations that 

incorporate reciprocal 

causation to data. 

Co-inciding 

longitudinal (i.e., time 

series) data of 

variables of interest. 

Various – assumptions will depend 

on the continuous time equation in 

question. For example, simple 

predator-prey cycle models may 

assume that predators do not switch 

to other prey species when 

abundances are low. 

Estimating parameters (i.e., fitting 

ODEs to data) can be difficult and 

sensitive to choice starting 

parameters. 

Instrumental 

variables 

One or more 

“instrumental variables” 

are used to isolate a direct 

causal relationship 

between two variables 

that are the result of 

reciprocal causal effects. 

Cross-sectional data is 

suitable (i.e., no time 

series needed). 

One instrumental 

variable for each 

causal direction of 

interest. 

An instrument to recover the causal 

effect of X on Y must: 

1. Cause X. 

2. Only cause Y through X 

(some exceptions, see 

below). 

Can be difficult to find variables that 

satisfy all conditions, especially 

independence from secondary 

variable of interest, though the use of 

“conditional instruments”, i.e., 

instruments that satisfy the criteria if 
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Instruments must have 

strong causal effects 

for accurate inference. 

3. Be causally unrelated to 

any unobserved confounds 

of X and Y. 

Note that assumption 2 can be 

relaxed if additional pathways 

from I to Y can be blocked (e.g., 

if I causes W which causes Y, 

conditioning on W will allow for 

I to be used as an instrument). 

an additional covariate is controlled 

for, can help. 

 429 



 

22 

 

Data accessibility  430 

No data were used in this article. All code, including simulations and models used to generate figures, are 431 

available at the following link. Other links (e.g., those at the beginning of the electronic supplement) have 432 

been deactivated for peer review.  433 

https://osf.io/zw84x/?view_only=754ef978586c4e11a7dd47761e5cd296.  434 

  435 

https://osf.io/zw84x/?view_only=754ef978586c4e11a7dd47761e5cd296


 

23 

 

References 436 

1. Hernán MA. 2018 The c-word: Scientific euphemisms do not improve causal inference from 437 

observational data. Am J Public Health 108, 616–619. (doi:10.2105/AJPH.2018.304337) 438 

2. Grace JB. 2024 An integrative paradigm for building causal knowledge. Ecological Monographs 94, 439 

e1628. (doi:10.1002/ecm.1628) 440 

3. Arif S, MacNeil MA. 2022 Predictive models aren’t for causal inference. Ecol Lett 25, 1741–1745. 441 

(doi:10.1111/ele.14033) 442 

4. Laubach ZM, Murray EJ, Hoke KL, Safran RJ, Perng W. 2021 A biologist’s guide to model selection 443 

and causal inference. Proc Biol Sci 288, 20202815. (doi:10.1098/rspb.2020.2815) 444 

5. Siegel K, Dee LE. 2025 Foundations and Future Directions for Causal Inference in Ecological 445 

Research. Ecology Letters 28, e70053. (doi:10.1111/ele.70053) 446 

6. Dixit T. 2024 A synthesis of coevolution across levels of biological organization. Evolution 78, 211–447 

220. (doi:10.1093/evolut/qpad082) 448 

7. Pichon B, Kéfi S, Loeuille N, Lajaaiti I, Gounand I. 2024 Integrating ecological feedbacks across 449 

scales and levels of organization. Ecography , e07167. (doi:10.1111/ecog.07167) 450 

8. Svensson EI. 2018 On reciprocal causation in the evolutionary process. Evol Biol 45, 1–14. 451 

(doi:10.1007/s11692-017-9431-x) 452 

9. Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T. 2011 Cause and effect in biology 453 

revisited: Is Mayr’s proximate-ultimate dichotomy still useful? Science 334, 1512–1516. 454 

(doi:10.1126/science.1210879) 455 

10. Whitehead H, Laland KN, Rendell L, Thorogood R, Whiten A. 2019 The reach of gene–culture 456 

coevolution in animals. Nat Commun 10, 2405. (doi:10.1038/s41467-019-10293-y) 457 

11. Hendry AP. 2017 Eco-evolutionary dynamics. Princeton University Press.  458 

12. Pelletier F, Garant D, Hendry AP. 2009 Eco-evolutionary dynamics. Phil. Trans. R. Soc. B 364, 459 

1483–1489. (doi:10.1098/rstb.2009.0027) 460 

13. Sih A, Mathot KJ, Moirón M, Montiglio P-O, Wolf M, Dingemanse NJ. 2015 Animal personality and 461 

state–behaviour feedbacks: A review and guide for empiricists. Trends in Ecology & Evolution 30, 462 

50–60. (doi:10.1016/j.tree.2014.11.004) 463 

14. Dochtermann NA. 2021 The role of trade-offs and feedbacks in shaping integrated plasticity and 464 

behavioral correlations. (doi:https://doi.org/10.1101/2021.07.26.453877) 465 

15. Patel S, Cortez MH, Schreiber SJ. 2018 Partitioning the effects of eco-evolutionary feedbacks on 466 

community stability. The American Naturalist 191, 381–394. (doi:10.1086/695834) 467 

16. Hughes AR, Byrnes JE, Kimbro DL, Stachowicz JJ. 2007 Reciprocal relationships and potential 468 

feedbacks between biodiversity and disturbance. Ecology Letters 10, 849–864. (doi:10.1111/j.1461-469 

0248.2007.01075.x) 470 



 

24 

 

17. Nair RR, Vasse M, Wielgoss S, Sun L, Yu Y-TN, Velicer GJ. 2019 Bacterial predator-prey 471 

coevolution accelerates genome evolution and selects on virulence-associated prey defences. Nat 472 

Commun 10, 4301. (doi:10.1038/s41467-019-12140-6) 473 

18. Webber QMR, Vander Wal E. 2018 An evolutionary framework outlining the integration of 474 

individual social and spatial ecology. Journal of Animal Ecology 87, 113–127. (doi:10.1111/1365-475 

2656.12773) 476 

19. Leszczensky L, Wolbring T. 2022 How to deal with reverse causality using panel data? 477 

Recommendations for researchers based on a simulation study. Sociological Methods & Research 51, 478 

837–865. (doi:10.1177/0049124119882473) 479 

20. Dehnen T, Arbon JJ, Farine DR, Boogert NJ. 2022 How feedback and feed-forward mechanisms link 480 

determinants of social dominance. Biological Reviews (doi:10.1111/brv.12838) 481 

21. Cinelli C, Forney A, Pearl J. 2022 A crash course in good and bad controls. Sociological Methods & 482 

Research 53, 1–9. (doi:10.1177/0049124122109955) 483 

22. Pearl J, Glymour M, Jewell N. 2016 Causal inference in statistics: A primer. Chichester, United 484 

Kingdom: Wiley & Sons.  485 

23. Greenland S, Pearl J. 2017 Causal diagrams. In Wiley StatsRef: Statistics Reference Online (eds RS 486 

Kenett, NT Longford, WW Piegorsch, F Ruggeri), pp. 1–10. Wiley. 487 

(doi:10.1002/9781118445112.stat03732.pub2) 488 

24. Spirtes PL, Glymour C, Scheines R. 2001 Causation, prediction, and search. 2nd edn. MIT Press.  489 

25. Arif S, MacNeil MA. 2022 Utilizing causal diagrams across quasi-experimental approaches. 490 

Ecosphere 13, e4009. (doi:10.1002/ecs2.4009) 491 

26. Rubin DB. 1974 Estimating causal effects of treatments in randomized and nonrandomized studies. 492 

Journal of Educational Psychology 66, 688–701. (doi:10.1037/h0037350) 493 

27. Arif S, Massey MDB. 2023 Reducing bias in experimental ecology through directed acyclic graphs. 494 

Ecology and Evolution 13, e9947. (doi:10.1002/ece3.9947) 495 

28. Kimmel K, Dee LE, Avolio ML, Ferraro PJ. 2021 Causal assumptions and causal inference in 496 

ecological experiments. Trends in Ecology & Evolution 36, 1141–1152. 497 

(doi:10.1016/j.tree.2021.08.008) 498 

29. Arif S, Graham NAJ, Wilson S, MacNeil MA. 2022 Causal drivers of climate-mediated coral reef 499 

regime shifts. Ecosphere 13, e3956. (doi:10.1002/ecs2.3956) 500 

30. McElreath R. 2020 Statistical rethinking2: A Bayesian course with examples in R and Stan. Boca 501 

Raton, Florida: CRC Press.  502 

31. Paxton P, R.Hipp J, Marquart-Pyatt S. 2011 Nonrecursive models: Endogeneity, reciprocal 503 

relationships, and feedback loops. SAGE Publications, Inc. (doi:10.4135/9781452226514) 504 

32. Arif S, MacNeil MA. 2023 Applying the structural causal model framework for observational causal 505 

inference in ecology. Ecological Monographs 93, e1554. (doi:10.1002/ecm.1554) 506 



 

25 

 

33. Usami S, Murayama K, Hamaker EL. 2019 A unified framework of longitudinal models to examine 507 

reciprocal relations. Psychological Methods 24, 637–657. (doi:10.1037/met0000210) 508 

34. van de Pol M, Brouwer L. 2021 Cross-lags and the unbiased estimation of life-history and 509 

demographic parameters. Journal of Animal Ecology 90, 2234–2253. (doi:10.1111/1365-2656.13572) 510 

35. Heiman SL, Claessens S, Ayers JD, Guevara Beltrán D, Van Horn A, Hirt ER, Aktipis A, Todd PM. 511 

2023 Descriptive norms caused increases in mask wearing during the COVID-19 pandemic. Sci Rep 512 

13, 11856. (doi:10.1038/s41598-023-38593-w) 513 

36. Voelkle MC, Oud JHL, Davidov E, Schmidt P. 2012 An SEM approach to continuous time modeling 514 

of panel data: Relating authoritarianism and anomia. Psychological Methods 17, 176–192. 515 

(doi:10.1037/a0027543) 516 

37. Driver CC. 2025 Inference with cross-lagged effects – problems in time. Psychological Methods 30, 517 

174–202. (doi:https://doi.org/10.1037/met0000665) 518 

38. Bürkner P-C. 2021 Bayesian item response modeling in R with brms and Stan. J. Stat. Soft. 100. 519 

(doi:10.18637/jss.v100.i05) 520 

39. Rosseel Y. 2012 lavaan: An R package for structural equation modeling. Journal of Statistical 521 

Software 48, 1–36. (doi:10.18637/jss.v048.i02) 522 

40. R Core Development Team. 2022 R: A language and environment for statistical computing.  523 

41. Murayama K, Gfrörer T. 2024 Thinking clearly about time-invariant confounders in cross-lagged 524 

panel models: A guide for choosing a statistical model from a causal inference perspective. 525 

Psychological Methods (doi:https://doi.org/10.1037/met0000647) 526 

42. Kokko H. 2024 Who is afraid of modelling time as a continuous variable? Methods in Ecology and 527 

Evolution (doi:10.1111/2041-210X.14394) 528 

43. Pantel JH, Becks L. 2023 Statistical methods to identify mechanisms in studies of eco-evolutionary 529 

dynamics. Trends in Ecology & Evolution 38, 760–772. (doi:10.1016/j.tree.2023.03.011) 530 

44. Stan Development Team, Carpenter B. 2018 Stan modeling language: Users guide and reference 531 

manual.  532 

45. Driver CC, Oud JHL, Voelkle MC. 2021 Continuous time structural equation modelling with R 533 

package ctsem. Journal of Statistical Software 77, 5. 534 

46. Auger-Méthé M et al. 2021 A guide to state–space modeling of ecological time series. Ecological 535 

Monographs 91, e01470. (doi:10.1002/ecm.1470) 536 

47. Mooij JM, Janzing D, Schölkopf B. 2013 From ordinary differential equations to structural causal 537 

models: The deterministic case. (doi:https://doi.org/10.48550/arXiv.1304.7920 Focus to learn more) 538 

48. Grace JB. 2021 Instrumental variable methods in structural equation models. Methods Ecol Evol 12, 539 

1148–1157. (doi:10.1111/2041-210X.13600) 540 

49. MacDonald AJ, Mordecai EA. 2021 Response to Valle and Zorello Laporta: Clarifying the use of 541 

instrumental variable methods to understand the effects of environmental change on infectious 542 



 

26 

 

disease transmission. The American Journal of Tropical Medicine and Hygiene 105, 1456–1459. 543 

(doi:10.4269/ajtmh.21-0218) 544 

50. Kleiber FJ, Zeileis A. 2025 ivreg: Instrumental-Variables Regression by ‘2SLS’, ‘2SM’, or ‘2SMM’, 545 

with Diagnostics.  546 

51. MacDonald AJ, Mordecai EA. 2019 Amazon deforestation drives malaria transmission, and malaria 547 

burden reduces forest clearing. Proceedings of the National Academy of Sciences 116, 22212–22218. 548 

(doi:10.1073/pnas.1905315116) 549 

52. Valle D, Laporta GZ. 2021 A cautionary tale regarding the use of causal inference to study how 550 

environmental change influences tropical diseases. The American Journal of Tropical Medicine and 551 

Hygiene 104, 1960–1962. (doi:10.4269/ajtmh.20-1176) 552 

53. Gelman A, Hill J, Vehtari A. 2020 Regression and other stories. Cambridge University Press.  553 

54. Stock JH, Yogo M. 2001 Testing for weak instruments in linear IV regression. In Identification and 554 

inference for econometric models, pp. 80–108. Cambridge University Press.  555 

55. Textor J, Van Der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GTH. 2017 Robust causal 556 

inference using directed acyclic graphs: the R package ‘dagitty’. Int. J. Epidemiol. , dyw341. 557 

(doi:10.1093/ije/dyw341) 558 

56. Van Der Zander B, Textor J, Liśkiewicz M. 2015 Efficiently finding conditional instruments for 559 

causal inference. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial 560 

Intelligence, pp. 3243–3249. 561 

57. Dee LE et al. 2023 Clarifying the effect of biodiversity on productivity in natural ecosystems with 562 

longitudinal data and methods for causal inference. Nat Commun 14, 2607. (doi:10.1038/s41467-023-563 

37194-5) 564 

58. Larsen AE, Meng K, Kendall BE. 2019 Causal analysis in control–impact ecological studies with 565 

observational data. Methods in Ecology and Evolution 10, 924–934. (doi:10.1111/2041-210X.13190) 566 

59. Bonnet T et al. 2022 Genetic variance in fitness indicates rapid contemporary adaptive evolution in 567 

wild animals. Science 376, 1012–1016. (doi:10.1126/science.abk0853) 568 

60. Grosklos G, Cortez MH. 2021 Evolutionary and plastic phenotypic change can be just as fast as 569 

changes in population densities. The American Naturalist 197, 47–59. (doi:10.1086/711928) 570 

61. Govaert L et al. 2019 Eco-evolutionary feedbacks—Theoretical models and perspectives. Functional 571 

Ecology 33, 13–30. (doi:10.1111/1365-2435.13241) 572 

62. Becks L, Ellner SP, Jones LE, Hairston Jr. NG. 2012 The functional genomics of an eco-evolutionary 573 

feedback loop: linking gene expression, trait evolution, and community dynamics. Ecology Letters 574 

15, 492–501. (doi:10.1111/j.1461-0248.2012.01763.x) 575 

63. Good BH, Rosenfeld LB. 2023 Eco-evolutionary feedbacks in the human gut microbiome. Nat 576 

Commun 14, 7146. (doi:10.1038/s41467-023-42769-3) 577 



 

27 

 

64. Sanchez A, Gore J. 2013 Feedback between population and evolutionary dynamics determines the 578 

fate of social microbial populations. PLOS Biology 11, e1001547. 579 

(doi:10.1371/journal.pbio.1001547) 580 

65. Hendry AP. 2019 A critique for eco-evolutionary dynamics. Functional Ecology 33, 84–94. 581 

(doi:10.1111/1365-2435.13244) 582 

66. Svensson EI. 2019 Eco-evolutionary dynamics of sexual selection and sexual conflict. Functional 583 

Ecology 33, 60–72. (doi:10.1111/1365-2435.13245) 584 

67. Ehrlich PR, Raven PH. 1964 Butterflies and plants: A study in coevolution. Evolution 18, 586–608. 585 

(doi:10.1111/j.1558-5646.1964.tb01674.x) 586 

68. Johnson SD, Anderson B. 2010 Coevolution between food-rewarding flowers and their pollinators. 587 

Evo Edu Outreach 3, 32–39. (doi:10.1007/s12052-009-0192-6) 588 

69. Whitehead H. 2003 Sperm whales: Social evolution in the ocean. Chicago, IL: University of Chicago 589 

Press.  590 

70. Walmsley SF, Morrissey MB. 2021 Causation, not collinearity: Identifying sources of bias when 591 

modelling the evolution of brain size and other allometric traits. 6, 1–11. (doi:10.1002/evl3.258) 592 

71. Pagel M. 1994 Detecting correlated evolution on phylogenies: A general method for the comparative 593 

analysis of discrete characters. Proceedings of The Royal Society - Biological sciences 255. 594 

(doi:https://doi.org/10.1098/rspb.1994.0006) 595 

72. Holden C, Mace R. 2009 Phylogenetic analysis of the evolution of lactose digestion in adults. Human 596 

biology 81, 597–619. (doi:10.3378/027.081.0609) 597 

73. Ji T, Zhang H, Pagel M, Mace R. 2022 A phylogenetic analysis of dispersal norms, descent and 598 

subsistence in Sino-Tibetans. Evolution and Human Behavior 43, 147–154. 599 

(doi:10.1016/j.evolhumbehav.2021.12.002) 600 

74. Krüger O, Wolf JBW, Jonker RM, Hoffman JI, Trillmich F. 2014 Disentangling the contribution of 601 

sexual selection and ecology to the evolution of size dimorphism in pinnipeds. Evolution 68, 1485–602 

1496. (doi:10.1111/evo.12370) 603 

75. Navarrete AF, Reader SM, Street SE, Whalen A, Laland KN. 2016 The coevolution of innovation 604 

and technical intelligence in primates. Philosophical Transactions of the Royal Society B: Biological 605 

Sciences 371, 20150186. (doi:10.1098/rstb.2015.0186) 606 

76. Street SE, Navarrete AF, Reader SM, Laland KN. 2017 Coevolution of cultural intelligence, 607 

extended life history, sociality, and brain size in primates. Proc. Natl. Acad. Sci. U.S.A. 114, 7908–608 

7914. (doi:10.1073/pnas.1620734114) 609 

77. Ringen EJ, Martin JS, Jaeggi AV. 2021 Novel phylogenetic methods reveal that resource-use 610 

intensification drove the evolution of “complex” societies. EcoEvoRxiv 611 

(doi:https://doi.org/10.32942/osf.io/wfp95) 612 

78. Waring TM, Wood ZT. 2021 Long-term gene–culture coevolution and the human evolutionary 613 

transition. Proc. R. Soc. B. 288, 20210538. (doi:10.1098/rspb.2021.0538) 614 



 

28 

 

79. Foote AD et al. 2016 Genome-culture coevolution promotes rapid divergence of killer whale 615 

ecotypes. Nature Communications (doi:10.1038/ncomms11693) 616 

80. Cheng SH et al. 2020 Strengthen causal models for better conservation outcomes for human well-617 

being. PLoS One 15, e0230495. (doi:10.1371/journal.pone.0230495) 618 

 619 


