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Abstract

Feedback loops govern many processes in the natural world and are ubiquitous in ecology and
evolutionary biology. Despite their prevalence in theory, however, feedbacks and other forms of
reciprocal causation are rarely quantified by empiricists working with observational datasets. This divide
has been brought to the fore by the causal revolution in the natural sciences. When researchers aim to
quantify causal effects, the bi-directional nature of feedbacks seems incompatible with standard tools,
such as regression, which begin by distinguishing between “response” and “predictor” variables. This
seems to leave empiricists in ecology and evolution with few tools, if any, to quantify bidirectional
effects. First, we highlight that, when ignored, feedback can lead to bias in common statistical analyses.
We then present several methods that can help researchers quantify causal effects when feedbacks are
present, including models with discrete cross-lagged effects as well as continuous time models, both of
which are suitable for longitudinal data. We also consider instrumental variables, which can help to
disentangle bidirectional effects from cross-sectional data. Focusing on examples from ecology and
evolutionary biology, our aim is to provide a general primer on the challenges and opportunities for the

quantitative analysis of bidirectional causation.
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1. Introduction

Empiricists in ecology and evolutionary biology typically ask questions that are causal in nature. How
does a predator influence prey behaviour? How is climate change altering community composition? How
does social plasticity drive variation in reproductive success? Though the word “cause” is often not
explicitly used, many observational studies answering questions like these imply causal relationships [1].
This lack of explicitly causal language stems from the well-engrained fact that correlation does not imply
causation. However, in the past several years there has been a growing consensus that under a given set of
assumptions, specific causal effects can be distinguished from other statistical associations (as is already
very commonly done in the practice of using “control” variables). Sometimes termed “causal statistics”
[2], this approach incorporates and relies on parallel methods for developing causal knowledge, such as
the synthesis of evidence for relevant biological mechanisms. Inferring causation from observational data
is increasingly recognized as an important and legitimate element of analysis in the broad fields of

ecology and evolutionary biology [3-5].

This growing interest in identifying causal effects has important consequences for how empiricists
quantify feedbacks (i.e. phenomena that are in mutual causation). Bidirectional effects are causal by
definition, meaning that they cannot be captured by simple correlations. However, common
methodological approaches to causal inference are often incompatible with bidirectional effects. For
example, an increasingly common tool of causal inference, the directed acyclic graph (DAG), seems to
exclude “cyclic” processes by definition. More generally, there is an incompatibility between feedback
and the implied logic of standard analyses such as regression: that one trait (response) is the result of
another (predictor). Here, it is often implicitly assumed that causation flows in one direction from
predictor to response. Thus, there is a rift between the ubiquity of feedbacks in ecological and
evolutionary theory [6—8], and the dearth of empirical work that quantifies them. Limitations in the ability

to analyze bidirectional causation may be a barrier for understanding and managing natural systems.

Feedbacks have long been recognized as important processes in ecological and evolutionary systems [7].
They are also key to many new theoretical developments, for example, reciprocal causation between
organisms and their selective environments plays a central role in the “Extended Evolutionary Synthesis”
[8,9], while feedback between cultural and genetic change is the basis of gene-culture coevolution (i.e.,
how shared patterns of behaviour influence genotypes and vice-versa; [10]). Feedbacks are important in
eco-evolutionary dynamics, where ecological and evolutionary processes influence each other over time
[11,12]. Bidirectional links between state (e.g., body condition) and behaviour (e.g., boldness when
foraging) are thought to underlie consistent differences in behaviour among individuals, i.e., personality

[13,14]. While the importance of feedbacks in driving ecological and evolutionary dynamics are often
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difficult to quantify, feedback is known to have major impacts on a variety of processes as diverse as the
dynamics of ecological communities [15], links between disturbance and biodiversity [16], and the pace

of evolutionary change [17].

Similarly common in the ecology and evolution literature are calls to address feedbacks empirically [8].
For example, regarding eco-evolutionary dynamics, quantifying bidirectional causes between ecological
and evolutionary processes has been highlighted as a key goal for future research. But how should one do
this? While research in areas like density-dependent population growth or epidemiological modelling
have incorporated feedback processes as central parts of their quantitative work, bidirectional processes
are widespread and may be overlooked and/or incorrectly accounted for outside of these domains. To the
extent that bidirectional effects drive ecological and evolutionary systems, empiricists face a stark
disconnect between the standard analytic toolkit (such as regression and generalized linear models, which
cannot handle reciprocal causation) and the natural phenomena they seek to explain. Here we apply and
extend the paradigm of causal inference to clarify how bidirectional effects can be quantified. First, we
highlight the pitfalls of ignoring potential feedbacks and how reciprocal causation can induce bias in
standard statistical approaches, i.e., “simultaneity bias”. Next, we provide a primer on how causal
feedbacks can be quantified using observational datasets, with a focus on cases relevant for researchers
working in ecology and evolutionary biology. Our aim is to empower researchers to ask and accurately

answer biological questions in the presence of bidirectional causation.
2. Bidirectional effects and their pitfalls
Defining feedback and other forms of reciprocal causation

Fundamentally, bidirectional (or reciprocal) causation occurs when two or more entities are mutual causes
of one another (See Glossary, Table 1). When causation flows in a loop such that a variable influences
itself at a future time, the system can be considered a feedback loop, though for the purposes of this
article we treat “feedback” and “bidirectional effects” as synonymous with respect to their impact on
statistical analyses. Also encompassed by this is “coevolution”, which is often applied to instances of
reciprocal evolutionary effects across species (e.g., predator-prey coevolution; [17]), but can also refer to
bidirectional effects between sexes or between genes and culture, for example [6]. Feedbacks can be
indirect, mediated through intermediate variables: for example, feedback between social structure and
population density may be mediated through variation in fitness [18]. We also note a distinction between
reciprocal causation and the related idea of reverse causation, when the opposite causal effect than
expected occurs (e.g., when Y causes X) [19]. Feedback processes can be broadly categorized as either

positive or negative, each of which has its own consequences for the dynamics and stability of the system
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[7]. Positive feedbacks involve traits that reinforce each other through time, resulting in acceleration or
exaggeration of change within a system, i.e., “runaway” effects. Note that positive feedback can result
from bidirectional effects with a positive sign (+/+) or negative sign (-/-). Depending on the strength of
the causal effects at hand, this can result in rapid transitions between alternate stable states. Generally,
positive feedback processes will face ceilings or “brakes” that prevent infinite change — for example,
morphological limits may restrict the extent of feedbacks between body size and behavioural traits [20].
In contrast, negative feedback involves effects of opposite sign (+/-) and often results in more stable

dynamics, as each component of the loop regulates the other, though with time lags cycles can also occur.
Visualizing causal relationships through directed acyclic graphs (DAGs)

Causal diagrams are an important way to visualize and communicate assumptions about causal
relationships in a study system. DAGs, a type of causal diagram, are an increasingly popular tool which
have the additional benefit of helping to assert hypothesized causal relationships and then infer causal
estimates under path analysis or the structural causal model (SCM) framework. In a DAG, variables are
shown as nodes and arrows between them represent directional effects. For example, an arrow from A to
B indicates that A causally affects B. Arrows in DAGs do not indicate the sign (positive vs. negative) of
the effect nor its magnitude but are a key tool for causal inference in that they allow researchers to
visualize confounds and other biases [21,22]. DAGs are theory-driven in that they are created based on
domain knowledge, including expert opinion, previous studies and relevant literature. DAGs should
include both measured and unmeasured variables required to depict the causal question at hand, and are
only considered complete when all “common cause variables” (i.e., any variable that affects two or more

variables in the DAG) are included [23,24].

Once a candidate DAG is created, researchers can apply the “backdoor criterion” to identify the variables
that need to be controlled for to remove confounding, while also avoiding other forms of bias (see
Glossary, Table 1). This includes overcontrol bias (e.g., including a variable on the causal path from
treatment to outcome) and collider bias (including a common outcome, or “collider”, of the treatment and
outcome in a model; Table 1) [4,20]. In plain language, applying the backdoor criterion means identifying
and blocking non-causal pathways that connect the variables for which one wants to estimate a causal
effect. Software like dagitty can be helpful for computing the graphical rules of the backdoor criterion to

more complex DAGs, where the potential backdoor paths can be less obvious [24].

Consider a hypothetical DAG linking marine protected areas (MPA), fishing activity, fish biomass, and
coral cover (Figure 1; adapted from [25]). Estimating the effect of fish biomass on coral cover (blue

arrow, Figure 1A) would require controlling the “confound” of MPAs, perhaps by including it as a
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covariate in a statistical model, thus “blocking” the backdoor path of association. This could also be
achieved by other methods of controlling for confounding variables, such as matching methods,
propensity scores, and stratification. Experiments with randomized treatments (e.g., randomized control
trials or “RCTs”) remain gold standard of control [26], though even these approaches can be subject to
causal biases [27,28]. Moreover, many studies in ecology and evolution rely on observational (non-
experimental) data. Returning to our example, imagine that a researcher wants to estimate the effect of
MPAs on fish biomass (via fishing). Here, including “coral cover” in the statistical model will actually
induce bias, as it is a “collider” variable that opens a backdoor path between the variables of interest if
included (Figure 1B; Glossary, Table 1). Though realistically complex DAGs will often involve more
variables than shown here (see example in [29]), the backdoor criterion can be applied to help identify

causal effects of interest. See [3,4,30] for additional detail.

The situation becomes more complicated if we imagine that fish biomass and coral cover influence each
other reciprocally (Figure 1C). This causal diagram no longer fits the criteria of a DAG, as it includes
simultaneous bidirectional effects. Though they still have a role to play, simple DAGs (e.g., Figures 1A,
1B) and the backdoor criterion alone are unable to provide causal insights about systems with feedback or
other forms of reciprocal causation. To address this gap in methods, we present three widely applicable

approaches for causal inference that can be applied in the presence of bidirectional effects.

Bidirectional causation
(Confound)
MPA | —» Fishing —®  Fish MPA —» Fishing —» Fish MPA —— Fishing —® Fish
biomass biomass biomass
Coral cover Coral cover Coral cover
(Collider)

Figure 1 — Causal diagrams representing hypothetical relationships between marine protected areas
(MPAs), fishing activity, fish biomass, and coral cover (adapted from [25]). (A) and (B) show
examples of confounding and collider variables, respectively, contingent on the causal effect of interest
(blue pathway). Note that (C) is not technically a DAG, as it includes simultaneous bidirectional or

“cyclic” effects.
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Bidirectional causation can induce bias in standard analyses

Before considering the ways that researchers can identify bidirectional causation in observational
datasets, we address the issue that bidirectionality, when ignored, can introduce bias into standard
analyses. It remains underappreciated in ecology and evolutionary biology that the presence of reciprocal
causation results in biased estimates of direct, causal effects in regression analyses. For example, imagine
that a researcher is interested in the causal effect of X on Y. Under a hypothetical DAG in which X causes
Y with no other confounding relationships, the simple regression of Y on X will recover the effect (Figure
2A). However, this does not hold if the regression is reversed. In other words, the regression of X
(response) on Y (predictor) will not recover the simulated causal effect of X on Y (Figure 2B). While this
is the expected and correct behaviour of simple regression in this circumstance, the gap between the
regression coefficients and causal effects highlights the importance of ruling out reverse causation even
for even the simplest causal analyses. Correlational approaches are perfectly appropriate when the
scientific question itself is correlational in nature. For example, “are bolder raccoons (Procyon lotor)
larger?” can be answered with a simple correlation coefficient, even if size and boldness are reciprocal
causes of one another. Similarly, “has natural selection occurred in a population?” can be answered
without strict causal thinking — changes in allele frequencies map onto the covariance between fitness and
a given trait regardless of the causes of their association. Quantifying causal relationships is not always

necessary and depends on the scientific question at hand.

However, superficially similar, but causal, scientific questions, e.g., “what is the effect of boldness on
body size in raccoons” will require separate methods. If two variables, X and Y, are reciprocal causes of
one another (i.e., bidirectional causation or feedback), neither of the simple regressions will provide the
direct effect of interest. For some combinations of simulated effects, this can result in effects that are of
opposite sign of direct causes (Figure 2C). This issue has been acknowledged in parallel in other fields:
for example, Paxton et al. emphasize that the social sciences often fail to address biases resulting from
endogeneity (correlations between predictors and unexplained variance) given the presence of feedback
loops [31]. More specifically, endogeneity bias resulting from reciprocal causation is sometimes referred
to as “simultaneity”. Simultaneity raises potential problems for seemingly innocent analyses. While
researchers may sometimes recognize these issues, e.g., proposing cautious interpretation when feedback
might be present, formal discussion of these biases have been largely absent from ecology and

evolutionary biology.
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Figure 2 — Bidirectional effects can muddle standard regression analyses. Here we present a simple
simulation where variables X and Y are generated from several different causal processes (shown by
black text near top of each panel). (A) Across a range of simulated causal effects of X on Y, the
coefficient of the regression of Y on X closely matches the true effect. Each point represents the point
estimate of a coefficient from a model with a different simulated “true” effect, with grey lines showing
95% ClIs of the estimate. (B) If we reverse the causation such that Y actually causes X, the same
regression of Y on X often produces a non-zero coefficient even though X has no causal effect on Y.
While it is unsurprising that the model picks up a statistical association, this example demonstrates the
risks of failing to consider reverse causation when the aim is to infer causal effects. (C) When X and Y
are reciprocal causes of one another, neither the regression of Y on X (blue) or the reversed model
(regression of X on Y; red) reliably recover the direct causal effect of one variable on the other. See

Section 4 of the supplement for a vignette detailing the code used to create this figure.

Table 1 - Glossary of key terms.

Backdoor A set of graphical rules applied to a DAG to identify sets of variables that, when

criterion conditioned on, allow for the estimation of specific causal effects. This is done by
ensuring that all “backdoor paths” (i.e., non-causal paths) between variables of
interest (e.g., X and Y) are blocked by conditioning on appropriate variables (e.g.,
adjusting for confounds, avoiding colliders). For example, a confound Z that
affects both X and Y opens a backdoor path between them, which can be blocked

by including Z in a regression of Y on X.



Bidirectional

causation

Confound

Collider

Cross-sectional

data

Directed acyclic

graph (DAG)

Feedback

Instrumental

variable

Longitudinal
data

When two measures of interest cause one another. There is no need for these causes
to be direct, e.g., A and B exhibit bidirectional causation if A causes B (A — B)
and B causes C which causes A (B —> C — A). This is synonymous with

reciprocal causation. See Feedback.

A common cause of two variables for which a researcher wants to estimate a causal
effect. For example, Z is a confound of X and Y if it directly or indirectly causes
both X and Y. Confounds can be blocked by including them in a model to estimate

the unbiased effect of X on Y.

A lesser-known causal pathology which is a common outcome of two variables for
which a researcher wants to estimate a causal effect. For example, Z is a collider
for X and Y if both X and Y cause Z. Unlike confounds, colliders should be

excluded from a model to estimate the unbiased effect of X on Y.

Data collected during a single period of time. Typically, cross-sectional data are

collected across multiple sampling units (e.g., populations, sites, individuals).

Tool for visualizing and analyzing causal relationships. Variables are represented
by nodes while causal effects are represented by arrows. Being acyclic, DAGs
cannot accommodate bidirectional arrows, but can represent bidirectional effects if
they are made temporally explicit. One a DAG has been created, it can be used to
guide model structure (i.e., which variables must be included and excluded from a

model to identify a specific causal effect of interest).

A special case of bidirectional causation where two or more variables are linked in
a causal loop, such that a variable A influences itself at a future time. This can be a
simple instance of bidirectional causation, as above (e.g., A->B & B->A ata
subsequent time), but can also involve many interconnected variables [7]. For the
purposes of this article however, feedback, bidirectional causation, and reciprocal

causation are treated as mostly synonymous. See Bidirectional causation.

Variable that can be used to identify a direct causal effect in the presence of
bidirectional causation, unobserved confounding, or other sources of endogeneity.
Instrumental variables must satisfy several key criteria (see “Method 3” in main

text).

Data with repeated measures of the same sampling unit (e.g., population, site,

individual) over time. Longitudinal data are very useful for inferring bidirectional



173

174

175
176
177
178
179
180
181
182
183
184
185
186

187
188
189
190

effects. Depending on the scale of the process of interest, this can include relatively
short time periods as well as long-term, multiyear studies (e.g., long-term

ecological research; LTER).

Reverse When the true direction(s) of causation between variables is the opposite of what

causation one expects. The “reversal” is relative to a researcher’s belief about the system.
This can involve situations of bidirectional causation, where a researcher expects
solely that A causes B, for example, or situations with unidirectional causation, i.e.,
when a researcher expects that A causes B (A -> B) while in reality B causes A (B

—> A).

Structural Framework for identifying causal effects including the formalization of
causal modeling assumptions using DAGs and the application of techniques like the backdoor
criterion [32]. Crucially, this framework can be applied to observational data,

allowing for causal inference without formal experimentation.

3. Approaches for inferring bidirectional effects in observational data

Method 1. Temporally explicit models with cross-lagged effects

Though bidirectional arrows cannot be represented in DAGs directly, unfurling the static causal
relationship across time (with time-indexed measures of each variable) opens the door to formal causal
inference in systems where traits cause one another. The resulting diagram will appear structurally similar
to the statistical approach of “cross-lagged panel models” (CPLM; [33]), which are regularly used in the
social sciences, but less commonly applied in ecology and evolution [34]. CPLMs allow one to estimate
“cross-lagged” effects between variables of interest, made possible by expressing one variable (Y) at a
given time (7) as a function of another variable (X) at a previous time (¢-7). Simultaneously, X at ¢ can be
represented as a function of Y at #-1 (coloured arrows in Figure 3A). It is important to note that panel
models do not necessarily provide causal insights, and are often used for more descriptive analyses, e.g.,
to identify temporal precedence between variables (i.e., if change in one variable tends to precede change
in another). However, with an appropriately specified DAG, in some cases it is possible to interpret cross-

lagged effects as causal.

Crucially, this temporally explicit approach means that bidirectional effects can be represented in DAGs
without violating the requirement of unidirectional causes. These temporally explicit models often assume
stationarity, i.e., that causal effects are consistent through time, but one can also allow cross-lagged and

auto-regressive effects to vary at each step (e.g., [35]). Models with cross-lagged effects are especially
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suitable when there are clearly separable phases at which causal effects can be divided in time (e.g.,
seasonal effects or studies with consistent repeat measurements). Indeed, the scale of time gaps relative to
causal effects are important for these models and can impact the results [36]. Mismatch between the
timescale of measurements and the process of interest can result both in inaccurate estimates of effect

sizes as well as misidentification of causal effects [37].

Returning to the example of a state-behaviour feedback, Figure 3A shows a temporally-explicit DAG
where body size and foraging boldness influence one another through time. For illustrative purposes, we
simulated a positive effect of boldness on body size, imagining that bolder raccoons gather more
resources, but a negative effect of body size on boldness — perhaps larger animals are less motivated to
take risks when foraging (See similar examples in [13]). First, “lagged” versions of each variable are
generated, such that size at time t can be modelled as a function of size at t — 1 (an auto-regressive
effect) and boldness at t — 1 (a cross-lagged effect). Reciprocally boldness at time t can be modelled as a
function of boldness at t — 1 and size at t — 1. These sub-models can be estimated together in a bivariate
framework, allowing for accurate estimation of the bidirectional effects (Figure 3B, 3C). We provide a
simple example of this model implemented in the brms or lavaan packages in R [38—40] in the electronic

supplementary material (Section 1.1).

Of course, more complex biological datasets may involve more challenging DAGs, and may require
conditioning on other covariates, the inclusion of varying or “random” effects, or approaches to deal with
missing data. Crucially, the estimation of cross-lagged effects does not make an analysis immune to more
typical causal issues. For example, if size and boldness (Figure 3) in fact have no causal relationship, but
are each influenced by a time-invariant confound, ignoring this confound in a cross-lagged model will
result in spurious estimates of bidirectional effects. Otherwise, there remains a lack of specific advice on
adjusting for more complex causal pathologies in cross-lagged panel models. Static DAGs (i.e., without
temporally indexed variables) may be a helpful starting point. For example, Heiman et al. apply a DAG to
identify confounds for a cross-lagged panel model [35]. Perhaps the most straightforward approach is
simply to incorporate known confounds into the temporally explicit sub-models (e.g., control for

confound “c” at t — 1; see worked example in electronic supplement, Section 1.2.2).

However, generating DAGs with at least two timesteps (and more if effects with lags longer than one time
step are included) may be necessary to identify causal properties (e.g., confounding variables) of a
system. For example, the inclusion of auto-regressive effects may block (i.e., resolve) certain types of

confounding, but not others [41]. Given the potential complexity of temporally explicit causal diagrams,

10
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223 of simulated data will be most helpful for researchers seeking to infer causation with cross-lagged effects.
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Figure 3 — Bidirectional effects can be identified using longitudinal data. (A) DAG representing
reciprocal causation between variables X and Y over time. Coloured arrows represent reciprocal cross-
lagged effects, which can be identified in a multivariate model. (B) Posterior of estimated effect of X
on Y using a multivariate model with lagged effects alongside the true simulated effect (dashed vertical
line) and coefficient from naive simple regression (grey). (C) Posterior of estimated effect of Y on X
using a multivariate model with lagged effects alongside the true simulated effect (dashed vertical line)

and coefficient from naive simple regression (grey).

224  Method 2. Continuous time models

225 A second approach to analyzing patterns of bidirectional causation uses ordinary differential equations to

226  explain continuous changes in variables over time. Rather than representing how a variable changes over
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a specific time step (as in Method 1), ordinary differential equations express instantaneous change in one
variable with respect to another, i.e., at infinitely small timesteps [42]. A classic ecological example of
how this approach can incorporate bidirectional effects is the Lotka-Volterra equation which expresses
predator (e.g., lynx; Lynx canadensis) and prey (e.g., snowshoe hare; Lepus americanus) populations as
causes of one another. However, this general approach of using ODEs is highly flexible and is widely
applicable for a range of ecological and evolutionary questions. A further benefit of this approach is that it
can include mechanistic or “process” models, where specific biological mechanisms are represented
mathematically. Despite this flexibility, developing differential equations for new research questions is
challenging, and requires a familiarity with both mathematics and the potential mechanisms occurring in a

system.

Once a system of differential equations has been developed to explain relationships between variables
over time, one can use it to simulate possible outcomes, or fit it to data to estimate parameters of interest,
including those representing bidirectional effects. In the first instance, comparing the dynamics of
simulated data from models with and without bidirectional causation may suggest whether bidirectional
causation is occurring (e.g., if cycles are evident, as in systems with negative feedback). For example,
Pantel and Becks show how four alternate hypotheses of trait evolution across species can result in
distinct patterns of biodiversity, which can then be compared to observed data [43]. More direct evidence
for causal effects comes from fitting a continuous time model to observed data, i.e., estimating key
parameters using a fitting algorithm (e.g., Markov chain Monte Carlo). Though this can be challenging,
particularly in regards to the selection of “starting” parameters or priors, we direct the reader to worked

examples based on lynx and hare pelt data [30,44].

Tools such as the ctsem package, implemented in R, are particularly useful in that they allow users to use
and customize a standard form of continuous time model [45], without needing to “start from scratch”
with novel mathematical expressions. The ctsem package provides a general model framework to fit
dynamic models incorporating auto-regressive effects and random effects. As a type of state-space
models, they include both latent and observed variables that allow for the separation of process error, i.e.,
stochasticity that is not captured by deterministic aspects of the model structure, and measurement error,
i.e., imprecision in the data sampling process [46]. Though ctsem can be used to fit models that treat time
as a discrete sequence, as in the cross-lagged model in Method 1, it specializes in the use of differential
equations to represent changes in continuous time. These continuous time methods are preferable when
time lags between measurements vary (see [37] for further discussion on discrete vs. continuous

approaches). The ctsem framework is well-suited for the incorporation of bidirectional effects over time.

12



259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276

For an illustrative example, we used ctsem to fit a system of differential equations to a simulated,
idealized eco-evolutionary dataset with the primary aim of estimating the “crossed” effects of population
density on trait evolution and vice-versa. For the purposes of this example, we imagine a population
where a trait that influences growth rate (e.g., number of offspring produced) is subject to density-
dependent selection. This could occur if selection favors individuals that produce more offspring (i.e.,
larger litters, clutches, more eggs or seeds) at lower densities, while at higher densities selection favors
individuals producing fewer, higher-quality offspring, as competition between new recruits becomes
increasingly important. This constitutes the “eco-to-evo” causal process, as an ecological process
(density) influences subsequent evolutionary change (the distribution of the trait across the population). If
these evolutionary changes feed back to influence population density, e.g., if individuals tend to produce

fewer offspring, there will be an “evo-to-eco” effect, and the eco-evolutionary feedback is complete.

First, we simulated variables representing trait values and population densities over multiple timesteps,
incorporating a negative effect of density on trait values, and a positive effect of trait values on density
(See supplement, Section 2). Then, using a continuous time approach, we model dynamics of the
simulated variables over time (Figure 4A), and most importantly, recover the “true” bidirectional effects,
neither of which can be achieved using simple regression-type models (Figure 4D). And though we
highlight an eco-evolutionary example here, continuous time methods are widely applicable to a range of

natural systems where variables are measured over time.
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Figure 4 — Differential equations can allow for bidirectional effects to be estimated over continuous
time. (A) Cyclic dynamics of population density (standardized) and a hypothetical life history trait

from a simulated dataset (points), with fitted model predictions from overlaid on top (lines). Shaded
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areas around each line represent uncertainty, incorporating both measurement and process error. (B)
Causal diagram representing bidirectional causation between population density and the distribution of
phenotypes in a hypothetical population. (C) Simplified equations representing how changes in two
variables (population density, trait value) with respect to time can be simultaneously modelled as a
function of each other (a.,.,ss) and autoregressive effects (aqq¢0). Note that the § terms represent
intercepts specific to each sub-model, and that these equations only represent the deterministic portion
of the model, excluding additional noise parameters. (D) Posterior distributions of bidirectional effects
estimated using a continuous time (CT) model (dark grey), which accurately recovers the true values
(dashed vertical lines). Crucially, these positive and negative bidirectional effects are missed when

simply regressing the variables on one another (light grey posteriors).

As in the previously described method, the reliability of inferred causal effects depends on the causal
assumptions that are used to construct the model — potential issues like confounding and omitted variable
bias may be important, depending on the goal of the analysis. For example, incorporating potential
confounds as predictors may be necessary to accurately infer causal effects. Additional predictors can be
specified as time-invariant (e.g., the latitude of a particular study quadrant, the sex of a study animal), or
time-varying (e.g., a hurricane that impacts a subset of longitudinal data). Managing unmeasured
confounding in continuous time models can be challenging, particularly if they are time-varying [37]. One
approach to address unmeasured, time-invariant confounds is to incorporate random effects structures
that can capture stable differences among units (e.g., individuals in a study). More formal links between
ODE:s and structural causal modelling have also been proposed, and may help in generating accurate

causal inferences [47].
Method 3. Instrumental variables — Inferring bidirectional causation without time series

Instrumental variables offer a distinct approach detecting reciprocal causation, and are especially useful in
cross-sectional datasets, i.e., when time series data are unavailable. Instrumental variable techniques can
also be used to identify a specific directional effect of interest when feedbacks are expected (e.g., if a
researcher is only interested in the effect of X on Y but not Y on X). Underappreciated in ecology and
evolution [48], this method requires the identification of “instruments”, which directly influence one
variable of interest, but not the other. More specifically, to recover the direct, causal effect of X on Y, an
effective instrument “I”” must cause X, it must only influence Y through X, and it must not be causally
related to any unobserved confounds of X and Y [30]. There are several approaches to fitting instrumental

variable models, including two-stage-least-squares (“2SLS”), and bivariate (multi-response) models.
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For an illustrative example, we draw on existing application of instrumental variable analysis for
understanding the ecology of malaria and its relationship to habitat modification (see [49]). Imagine that a
researcher wants to quantify the effects of deforestation on changes in the prevalence of mosquito-borne
disease (e.g., malaria; Plasmodium sp.). The researcher has cross-sectional data on levels of deforestation
and malaria prevalence at several sites in a given region. In particular, they are concerned that
deforestation may boost levels of malaria, perhaps because the removal of forest ecosystems may create
more suitable habitat for mosquitoes or perhaps reduce populations of their natural predators. If the
researcher can safely assume that deforestation causes changes in malaria and not vice-versa (i.e.,
unidirectional causation), a simple regression will provide an unbiased estimate of the effect of habitat

modification on malaria.

However, levels of malaria may also influence levels of deforestation via other mechanisms, for example,
if high levels of disease interrupt or dissuade efforts to remove forest habitat. Without longitudinal data,
these reciprocal causes will occur “simultaneously” to generate the observed data. In this instance, neither
simple regression will reliably produce the desired causal effect. Now, imagine that the researcher also
has access to commodity prices for lumber or downstream agricultural products that could make
deforestation more lucrative. Assuming it satisfies the above criteria for instrumental variables,
commodity prices can be used as an instrument to isolate the causal effect of deforestation on malaria
(Figure 5). Similarly, the reciprocal effect of malaria prevalence on habitat modification can be quantified
using a candidate instrument like temperature, which strongly influences observed levels of malaria. See
Section 3 in the supplement for worked examples using the ivreg or brms packages in R [38,50]. It is
important to note that identifying and reaching consensus on candidate instruments can be challenging —
for example, there has been considerable debate on potential instruments relating to this above case study

[49,51,52].
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Figure 5 — Instrumental variable analysis can isolate direct effects when feedback is present. Here we
simulate an simplified example where deforestation promotes malaria (“true” effect of +1) while the
prevalence of malaria within a region reduces subsequent deforestation (“true” effect of -1). (A) First,
commodity prices incentivizing the removal of forest and conversion to agricultural land serve as an
instrument for estimating the effect of deforestation on the prevalence of malaria. While a naive
regression of malaria prevalence on deforestation finds no relationship (grey posterior), the instrumental
variable analysis successfully recovers the true (simulated) positive effect (blue posterior). (B)
Temperature serves as an instrument for estimating the effect of malaria prevalence on deforestation.
While a naive regression of deforestation on malaria prevalence finds no relationship (grey posterior), the

instrumental variable analysis successfully recovers the true (simulated) negative effect (red posterior).

Beyond the criteria mentioned above, instrumental variables must have a relatively strong causal effect
for accurate inference [48]. Testing for potentially problematic “weak instruments” is straightforward and
simply requires examining the regression of the explanatory variable in question on its putative

instrumental variable [53]. Based on this regression, a commonly used rule-of-thumb is that instruments
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with an F-statistic less than 10 are considered weak [54]. Otherwise, for Bayesian implementations in
particular, standard diagnostics of model convergence and fit are necessary for ensuring accurate

inference.

One advantage of instrumental variable approaches is they inherently adjust for common types of
confounding between two variables of interest, such as the presence of unmeasured confounds (see
worked example in [30]). Returning to our example, any common causes of both deforestation and
malaria prevalence (including unmeasured confounds) would be accounted for by the use of either
instrument, and would not bias the estimates of bidirectional effects. As before, the use of DAGs can help
to guide modelling decisions with instrumental variables. For example, causal diagrams may reveal
“conditional instruments”, variables that satisfies all criteria to be an instrument when controlling for
another variable [56]. Suppose that instrument (I) that causes X also influences the outcome of interest
(Y), but solely through a mediating variable (Z). In this case, (I) can be a valid instrument if Z is included

(i.e., controlled for) in the instrumental variable model [25], assuming other criteria are met.

To summarize, instrumental variables are a powerful tool for uncovering causal effects in the presence of
bidirectionality and other potential sources of bias (e.g., unmeasured confounds). The main challenge in
implementing this approach is the identification of measured (or measurable) instruments that meet all of
the necessary criteria. It is also worth noting that while the instrumental variable approach can identify
reciprocal causation, it may not offer much insight into the dynamics of feedback systems, or into whether
the causal effects themselves vary over time. Nevertheless, wider adoption of this method is likely to be
useful in ecology and evolutionary biology, e.g., for understanding links between biodiversity and
productivity [57]. See also [58] for a worked example where canine distemper serves as an instrument for
predator-prey cycles. This and the other methods we present are summarized in Table 2 and Figure S1,

with code vignettes available in the supplement (Sections 1-4).
4. Special considerations for bidirectional effects in ecology and evolution
Eco-evolutionary feedback loops

One of the most exciting areas of development in ecological and evolutionary theory is eco-evolutionary
feedbacks. Spurred by evidence that evolutionary processes can occur on relatively fast timescales
[59,60], the central idea is that effects of ecological phenomena on traits or gene frequencies (termed
“eco-to-evo”) can occur simultaneously with influences of trait or gene frequencies on ecological
phenomena (“evo-to-eco”), opening the door to bidirectional dynamics. These dynamics are thought to be
an important process shaping genetics and density within populations [61-63]. Eco-evolutionary feedback

can be studied in experimental systems, such as the feedback between population size and genes linked to
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cooperative behaviour in microbes [64]. Most often, eco-evolutionary feedback is inferred from separate
demonstrations of eco-to-evo and evo-to-eco processes, i.c., each half of the reciprocal causal system is
present. While this “two halves” approach can reveal the potential for causal feedback, it offers little
insight into how these effects work together to sculpt the ecological and evolutionary dynamics of wild
organisms. Indeed, it is widely acknowledged that theory on reciprocal dynamics in eco-evolutionary
systems has outweighed empirical evidence, due in part to difficulties in both data collection and analysis
[43,65,66]. Accordingly, it remains difficult to know whether reciprocal influences from evolution to
ecology (termed “evo-to-eco”) are important in natural systems [11]. To the extent that these natural
systems are generally studied using observational data, the methods discussed open new opportunities for

simultaneously estimating effects between ecological and evolutionary phenomena.
Feedbacks across phylogenetic histories

Bidirectional effects can play an important role in macroevolutionary theory, where sets of two or more
traits are expected to influence one another over long periods of time. For example, positive feedback
processes have long been hypothesized to influence trait covariance between species (e.g., coevolution
between plants and pollinators [67,68]), as well as within species (e.g., coevolution of slow life history
and social bonds in cetaceans [69]). This is also an area of research where “what came first” is often an
important question as it pertains to the specific evolutionary pathway in evolutionary history. As with
other standard analyses, traditional comparative methods are unable to disentangle the direction(s) of
causality when traits influence each other over time [70]. Pagel developed one solution for interrogating
this “correlated evolution” which has been applied to coevolution of traits in human populations [71],
including lactose tolerance [72], and systems of inheritance [73]. Less commonly, this method has been
applied to nonhumans, revealing, for example, that sexual size dimorphism evolved first in pinnipeds,
subsequently triggering feedbacks with polygynous group size [74]. This method treats a phylogenetic
tree as a time series to identify temporal patterns of the emergence of different traits in phylogenetic
history. Still, most studies of “coevolution” use techniques that assume unidirectional causation, leaving
possible bidirectional influences as speculative hypotheses (e.g., [75,76]). One reason for this is that
available tests for causal coevolution have been limited to consideration of two binary traits. However, a
recent extension of Pagel’s method provides a highly flexible Bayesian implementation of tests for causal
coevolution for multiple traits of any distribution [77]. Thinking more broadly, applying these methods to
matched genetic and behavioural data may help to understand how genes and culture interact, i.e., a
causal understanding of gene-culture coevolution [10,78]. For example, linking ecotype-specific foraging
strategies of killer whale (Orcinus orca) behaviour with genomic and phylogenetic data would allow one

to test whether genetic changes were a leader or follower in the diversification of behaviour (see [79]).
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5. Concluding remarks

Our goal in this manuscript was to establish that explaining ecological and evolutionary phenomena in the
face of reciprocal causation is challenging but possible, and a worthy target for empiricists. We encourage
researchers to consider both the theoretical and quantitative consequences of potential feedback in their

study systems, and apply methods including those described here when isolating directional causal effects

is necessary. Our review can be synthesized in the following three key points:
1.  Bidirectional relationships are common in nature.

2. Common statistical methods (e.g., regression and generalized linear models) can lead to bias in

the presence of bidirectionality.

3. Methods exist that can identify bidirectional effects from both longitudinal and cross-sectional

datasets.

Empiricists in ecology and evolution face a tension between the importance of feedbacks for theory and
practical applications, and the complexity that such analyses entail. Of course, this complexity mirrors the
true complexity of ecological and evolutionary systems. Confronting and quantifying this complexity
(e.g., incorporating an increasing number of causal effects, confounds, etc.) should be done cautiously, as
larger causal diagrams entail more causal assumptions [53], and thus may be more prone to error.
Generally, we suggest that the methods presented here be applied where there is underlying theory that

suggests that reciprocal causation may be occurring or is important to the biological question.

We believe that a better understanding of how to manage and infer bidirectional causation from
observational datasets will enhance the understanding of ecological and evolutionary systems. From an
applied perspective, moving beyond a correlational approach to one in which potentially bidirectional
causes are explicitly quantified is important for successful intervention [80]. Our aim was not to produce
an exhaustive list of methods, but instead to present the most widely applicable theory-driven approaches
towards quantifying bidirectional causes in observational data. This article is intended to serve as a primer
to assist researchers in identifying feedback processes to test, and as data collection allows, to identify the

appropriate branch of methods for quantifying such feedbacks.
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428  Table 2 - Summary of methods for causal inference in the presence of feedbacks.

Method

Description

Data requirements

Main assumptions

Challenges

Cross-lagged

Variables are represented

Co-inciding

The simplest implementations

May be difficult to collect adequate

time models

differential equations that
incorporate reciprocal

causation to data.

longitudinal (i.e., time
series) data of

variables of interest.

on the continuous time equation in
question. For example, simple
predator-prey cycle models may
assume that predators do not switch
to other prey species when

abundances are low.

effects in a temporally explicit longitudinal (i.e., time | assume that effects are constant data, particularly for decades-long
directed acyclic diagram series) data of over time. However, time-varying ecological or evolutionary processes.
(DAG) so that both auto- | variables of interest. effects can also be estimated.
regressive and cross- Time gaps between repeated DAGs may become quite complex
lagged (reciprocal) effects measurements fit the expected when confounds or other causal
can be estimated. timescale for the study system in pathologies are present.

question [37].
Continuous Fit a system of Co-inciding Various — assumptions will depend | Estimating parameters (i.e., fitting

ODEs to data) can be difficult and
sensitive to choice starting

parameters.

Instrumental

variables

One or more
“instrumental variables”
are used to isolate a direct
causal relationship
between two variables
that are the result of

reciprocal causal effects.

Cross-sectional data is
suitable (i.e., no time
series needed).

One instrumental
variable for each
causal direction of

interest.

An instrument to recover the causal

effect of X on Y must:
1. Cause X.

2. Only cause Y through X
(some exceptions, see

below).

Can be difficult to find variables that
satisfy all conditions, especially
independence from secondary
variable of interest, though the use of
“conditional instruments”, i.e.,

instruments that satisfy the criteria if
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Instruments must have
strong causal effects

for accurate inference.

3. Be causally unrelated to
any unobserved confounds
of XandY.

Note that assumption 2 can be

relaxed if additional pathways

from I to Y can be blocked (e.g.,

if I causes W which causes Y,

conditioning on W will allow for

I to be used as an instrument).

an additional covariate is controlled

for, can help.
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been deactivated for peer review.
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