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Abstract

Beetles (Coleoptera), among the most diverse and ecologically significant insect groups,
play vital roles in ecosystem functioning and service provision. With over 300,000 described
species, their adaptability - driven by traits such as elytra and diverse feeding habits enables them
to occupy nearly all terrestrial niches. Beetles contribute to nutrient cycling, pollination, seed
dispersal, pest regulation, and decomposition, directly supporting ecological balance and human
well-being. However, climate change and anthropogenic activities - including land-use shifts,
pollution, and habitat fragmentation - threaten beetle populations, disrupting their ecological
functions. Despite their exceptional diversity and critical roles in ecosystem functioning, beetles
(Coleoptera) remain disproportionately understudied compared to more charismatic insect orders
such as bees and butterflies, which have long been focal points in ecological research due to their
recognized pollination services. Additionally, most studies examine single stressors, neglecting the
compounded effects of co-occurring global change drivers. Long-term monitoring and
conservation strategies are urgently needed to mitigate biodiversity decline and preserve beetles
as ecosystem engineers. This review synthesizes current knowledge on beetle-mediated ecosystem
services, highlights threats from anthropogenic pressures, and proposes future research directions

to safeguard their ecological contributions.

1. Introduction

A functionally intact ecosystem comprises an interactive tapestry of living organisms and
their immediate surroundings, driven by synergies, relationships, and dependencies developed

over millions of years (Verma et al., 2023). Insects play an integral role in maintaining ecological
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balance, influencing diverse spheres of the Earth’s functioning (Schowalter, 2012; Scudder, 2017).
Ubiquitous in nature, they contribute to nutrient cycling, pollination, decomposition, herbivory,
predation, mutualism, and parasitism (Eggleton, 2020; Crespo-Pérez et al., 2020). These ecological
functions are critical for trophic interactions and regulation, which are essential for ecosystem
stability (Wu et al., 2024). Species diversity is a key determinant of ecosystem health and resilience
(Tilman et al., 2014). The coexistence of diverse insect species reduces herbivory, suppresses
diseases, enhances nutrient cycling, promotes interspecific complementarity, and optimizes

resource use, ensuring stable energy flow (Greenop et al., 2021; Zhou et al., 2023).

Beetles (Coleoptera) are among the most diverse and widely distributed organisms, with
approximately 300,000-450,000 described species (Stork et al., 2015; Muinde & Katumo, 2024).
They inhabit nearly every terrestrial environment, including Antarctica (Ashworth & Erwin, 2016).
Their remarkable diversification is attributed to the evolution of elytra, which protect them from
predation, external pressures, and environmental stress. Some studies suggest that their close
evolutionary relationship with flowering plants also contributed to their diversity. However, this
raises questions about whether beetles merely track biogeochemical patterns controlled by plants
rather than actively driving them (Yang & Gratton, 2014; Sota et al., 2022). Beetles exhibit diverse
feeding habits including omnivory, carnivory, fungivory, florivory, detritivory, coprophagy and
scavenging, highlighting their critical role in terrestrial food webs (Lee et al., 2020). Their broad
dietary flexibility may have facilitated their colonization of nearly all ecological niches (Bradford

et al., 2013; Wislocki, 2021).

Beetles mediate crucial ecosystem functions, including nutrient cycling, bioturbation, plant
growth enhancement, seed dispersal, parasite suppression, pollination, and trophic regulation
(Manning et al., 2016). They also provide essential ecosystem services that directly benefit human
well-being, such as food provision, decomposition of fecal matter (reducing pest fly populations),
nitrogen retention (maintaining forage productivity), soil conditioning, crop productivity
enhancement, and cultural services (Doube, 2018; Bao et al., 2019; Servin-Pastor et al., 2021).
Their economic value is substantial; for example, dung beetles save the UK cattle industry
approximately US$497.8 million (£367 million) annually in conventional and organic systems
(Beynon et al., 2015). Similarly, their introduction in Southwestern Australia increased cattle

revenue from US$14.3-21.8 to per hectare annually (Viera, 2024). Additionally, beetles serve as
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bioindicators, signaling environmental disturbances or changes under ecosystem stress (McGeoch,

2007; Ghannem et al., 2017).

However, climate change and anthropogenic activities in the 21st century have severely
disrupted insect-mediated ecological functions and ecosystem services, including those provided
by beetles (Noriega et al., 2018). This poses challenges in quantifying and valuing ecosystem
services, particularly amid global changes that alter biogeochemical patterns, biodiversity

distribution, and ecological stability.

While bees and butterflies have dominated ecological research due to their charismatic
appeal and recognized pollination roles, beetles remain understudied despite their unparalleled
diversity and ecological significance. This review synthesizes existing knowledge on beetle-
mediated ecosystem services, advocating for their inclusion in ecological research and
conservation agendas. By doing so, we aim to stimulate further investigation into how beetles

support ecosystem stability and resilience in the face of global environmental change.

2. Ecosystem functions

2.1 Beetles as Decomposers

Decomposition involves the biogeochemical cycle of nutrients through the biosphere. This
process is aided by soil invertebrates that breakdown vertebrate excreta and dead plant materials
into simpler forms that are absorbed back to the plants (Crowther et al., 2019; Pausas & Bond,
2020). Plants and animal tissues enter the detritus pool ass litter and excreta/carrion respectively.
The rate at which decomposition occurs is influenced by several factors including the detritus
quality, the environmental factors such as temperature and water availability as well as the
activities of the soil invertebrates (Wu et al.,, 2021; Favila, 2024). The role of macro and
microinvertebrates in litter decomposition is majorly noted between 0-38 days after which fungi
and bacteria facilitate further decomposition (Cardenas & Dangles 2012; Cardenas et al. 2017).
The earliest wood-boring beetles likely emerged as decomposers of decaying plant material and
fungi dates back to early cretaceous period 125-66 MYA (Schmidt et al., 2020; Peris et al., 2021).
Carrion and dung beetles mediate the nutrient cycling through decomposition of freshly deposited
vertebrate excreta and carcasses of dead animals (Nadeau et al., 2015; Sun et al., 2023). Some of

the beetle families associated with dung decomposition belong to the Hydorophilidae,
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Scarabaeidae,

Trogidae.

Geotrupidae,

Beetle families

Cryptophagidae,

associated with carcass

Staphylinidae,

decomposition

Histeridae, Hybosoridae and

includes Silphidae,

Staphylinidae, Histeridae and Dermestidae (Nadeau et al., 2015; Engasser et al., 2021; See table.

1.

Table 1. Summary of the beetle families that play different ecological functions in the ecosystem.

Ecological functions Family References
Decomposition Scarabacidae, Geotrupidae, Silphidae, Trogidae, Crawford 1981; Schuster &
Cerambycidae, Passalidae, Staphylinidae, Schuster 1985; Hansen, 1997; Scott
Tenebrionidae, Curculionidae, Dermestidac, 1998; Bang et al. 2005; Watson &
Hydorophilidae, Cryptophagidae, Histeridae, Carlton 2005; Nichols et al. 2008 &
Hybosoridae Anobiidae, Bostrichidae, Brentidae, Ulyshen, 2018
Buprestidae, Cerambycidae, Lymexylidae &
Zopheridae
Bioturbation Scarabaeidae, Carabidae, Tenebrionidae & Krell et al.,, 2003; Brown et al.,
Staphylinidae 2010; Wharton 2011; Eyre et al.
2013; Johnson et al., 2016 & Wyatt
etal. 2012
Trophic regulation Carabidae, Coccinellidae, Staphylinidae, Obrycki & Kring 1998; Farrell,
Rhipiphoridaec, Meloidae, Chrysomelidae & 1998 Kromp, 1999; Bologna &
Curculionidae Pinto 2002; Blossey et al. 2001 &

Bioindicators

Pest control

Pollination

Scarabaeidae, Lucanidae, Carabidae, Elmidae,
Coccinelidae, Tenebrionidae & Staphylinidae

Coccinellidae, Carabidae, Elateridae,
Staphylinidae & Tenebrionidae
Nitidulidae, Curculionidae, Scarabaeidae,

Mordellidae, Oedemeridae, Ptiliidae, Mordellidae,
Elateridae, Lagriidae, Cleridae, Coccinellidae,
Cryptophagidae,  Corylophidae,  Anthicidae,
Hybosoridae,  Calliphoridae, = Hydrophilidae,
Histeridae, Bostrichidae, Cantharidae, Cetoniidae
& Rutelidae

Louda et al., 2003

Ranius et al. 2005; Thomaes et al.,
2018; Gontijo 2019; Knapp et al.,
2020; Bauernfeind & Moog 2020;
Nervo et al., 2021 & Saito et al.
2022

Roy et al., 2016; Gurr et al. 2017;
Mani & Krishnamoorthy 2020;
Frank et al., 2022; Andersen et al.,
2023; Jeffs & Lewis 2023

Ollerton et al., 2020; Terry et al.,
2021; Liu et al. 2022; Steenhuisen
etal., 2022; Kawakita & Kato 2023;
Muinde & Katumo, 2024.

Based on their nesting strategies, the dung beetles are categorized into Paracoprid

(tunnelers), Telocoprid (ball-rollers) and Endocoprid (dwellers). The Tunneller dung beetles bury

freshly depositing wastes by vertebrates below ground surface within the vicinity of the original
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deposition, the ball-rollers move the nutrient-rich organic materials to distance away and bury it
below the earth surface while the dwellers feed and brood in the dung at the original site of
deposition (Cheng et al., 2022; Anderson et al., 2024). Each of these categories of the dung beetles
have implication on their ecological functions. Burying dung by the tunnelers below earth surface
reduce emission of greenhouse gases into the atmosphere, prevent nitrogen volatilization hence
increasing the available nitrogen for reabsorption by the plants (Cheng et al., 2022). On the other
hand, moving the dung by ball-rollers to a new location instigate microorganisms and chemical
changes on upper soil layers (Shah & Shah, 2022). The dwellers breakdown the vertebrate excreta
at the original deposition site hence enriching the original site (AmbroZzova et al., 2021;).
Contrastingly, the carrion beetles feed on carcasses where just like the dweller dung beetles they
feed on the original site and brood in it. Their larvae also feed on the carcass and further break it
into simpler forms releasing the nutrients to the soil (Englmeier et al., 2023). The decomposition
efficiency of carrion and dung beetles is influenced by several factors such as altitude, seasons,
habitat specificity, soil contents, predation, competition, temperature, sunlight exposure and food

quantity and quality (Biichner et al., 2024).

It is worth noting that dung beetle species and functional diversity jointly sustain the
process of dung decomposition, with even limited beetle species but functionally diverse
assemblages maintaining high activity (Dangles et al., 2012). In addition, the large dung beetle
species disproportionately face the threat of human-driven extinctions, however positive
interactions among functional groups play a great role in maintaining biodiversity-ecosystem
functioning relationships (Franga et al., 2020). Lastly, partial and temporal variability further

modulate decomposition effectiveness (Labidi et al., 2012).

Unlike carrion and dung beetle decomposition, dead wood decomposition can take years
to fully to decompose (Ekstrom et al., 2021). Dead wood is among the major and readily available
detritus and represents 20-30% of total forest biomass in temperate and tropical ecosystems
providing resources for organisms (Weedon et al., 2009; Zumr et al., 2024). Some of the factor
that influence the decomposition of dead wood includes temperature, oxygen, moisture, wood size
and quality, number of decomposing organisms and carbon dioxide (Wijas et al., 2024). Saproxylic
beetles depend on dead wood during some stages of their life cycle (Traylor et al., 2023). Some of

the saproxylic beetle families includes Scolytidae, Cerambycidae, Buprestidae, Bostrichidae,
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Brentidae, Curculionidae, Staphylinidae, Cleridae, Nitidulidae, Histeridae, Rhizophagidae,
Monotomidae, Ciidae, Cucujidae, Erotylidae, Leiodidae, Trogossitidaec (Nadeau et al., 2015;
Deregowski, 2024). Moreover, each of these families contribute uniquely to the decomposition,
for instance, Scolytidae (bark and ambrosia beetles), accelerate wood decay by introducing
symbiotic fungi (e.g., Ophiostoma spp.) that break down lignin and cellulose, Passalidae (bess
beetles) mechanically fragment decaying wood while enhancing microbial activity and
Cerambycidae (longhorn beetles) through larval tunneling, they increases wood surface area for

fungal colonization, (Stokland et al., 2012; Ulyshen, 2016, 2018).

Globally, the impact of beetles as decomposers and their role in nutrient cycling has
attracted a considerable attention from the scientific community (Nichols et al., 2008; Torabian et
al., 2024). Beetles have contributed significantly to the ecosystem maintenance in the Australian
Alps which is inhabited by a wide range of pest animals and is vulnerable to climate change and
mass mortality events has detrimental effects to the ecosystem (Stone et al., 2023). Similarly,
introduction of dung beetles in Australian ecosystem through Dung beetle project helped clear the
dung accumulation problem due to introduction of livestock in absence of native-ruminant adapted
dung beetle fauna (Nichols et al., 2008). The ecological importance of beetles as decomposers
have also been reported in Antipodes and North America (Pokhrel et al., 2021), South America
(Maldaner et al., 2024), and Mexico (Barragan et al., 2021). Globally, decomposer services
provided by beetles and other organisms were estimated at $17 trillion annually, underscoring their
critical role in maintaining ecosystem function (Costanza et al., 1997). Additionaly, dung beetles
in particular enhance soil fertility and pasture productivity for example, in Veracruz, Mexico, their
burial activity generated US$149.1 to us$423.6 per animal unit in economic benefits by improving

forage availability (Lopez-Collado et al., 2017).

2.2 Beetles as Pollinators

Beetle pollinator-plant interactions date back to early cretaceous period (Bao et al., 2019).
Some beetle families such as Chrysomelidae, Curculionidae, Tenebrionidae and Scarabaeidae are
among the early insects that interacted with early angiosperms around 140-100 mya (Thien et al.,
2009; Muinde & Katumo, 2024). Previous studies have highlighted the role of beetle as pollinators,
Sayers et al., (2019) reported beetles as the fourth among insect pollinators and second major

pollinator of the plants in the tropics. Beetles have also been reported as the prominent and
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pollinators of angiosperms such Magnoliaceae, Annonaceae, Cyclanthaceae, Calycanthaceae,
Araceae and Aracaceae (Paz et al., 2021; Muinde & Katumo, 2024). While the global economic
value of beetle pollination remains difficult to quantify due to limited research, recent studies have
identified key economically important plants dependent on beetles, including magnolia, nutmeg,
sugar palms, custard apples, and sugarcane (Sabino et al., 2022). The success to pollination is the
individual beetle pollinator- plant interaction (Macgregor & Scott-Brown, 2020). Therefore, both
the beetles and plants have evolved some mechanisms that facilitates the pollination process. Such
mechanisms range from floral scent (Pereira et al., 2014; Maia et al., 2021), floral morphology (Etl
et al., 2022), thermogenic sensitivity (Seymour et al., 2009; Wang et al., 2017), and floral mimicry
(Gottsberger et al., 2021). Beetles also evolved traits to exploit floral resources such as comb of
setae on the mandibles, palps and forelegs, antennal and mandible pouches, conspicuous eyes and
snout mandibles (Krenn et al., 2005; Muinde & Katumo, 2024). The question of beetle pollination
being a secondary outcome of the flower visitations still remains unresolved since most of the
flower visiting beetles exhibit both florivory and herbivory behaviors and the effectiveness of the

pollination is barely understood.

2.3 Trophic regulation

All living organisms regardless of their size play a very significant in the trophic
interactions (Verma et al., 2023). The multifaceted interactions between organisms such as
mutualism, symbiosis, parasitism, competition and predation are crucial in maintaining ecological
equilibrium (Didham et al., 1998). The research on interspecific and intraspecific interaction of
beetles and other organisms is still at its infancy. Some of the recent studies includes the mutualism
interaction between ambrosia beetles and ambrosia fungi which is one of the well explored beetle-
fungal interactions, the adaptation allows beetles to store and transport their nutrition while the
pathogens depend on the beetle for dispersal and cultivar maintenance (Hulcr & Stelinski, 2017;

Gugliuzzo et al., 2022).

Beetles also tend to host diverse microbial symbionts that play crucial roles in their growth,
survival and reproduction (Favila, 2024; Salazar-Rivera et al., 2024). This includes beetle-bacteria
symbiosis where the bacteria (obligatory and beneficial microbial symbionts) contribution ranges
from plant biomass digestion, conferring defense against predators and pathogens, defense against

plant secondary pathogens, detoxifying enzymes and nutrient supplementation (Fukumori et al.,
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2022). Noteworthy, the beetle-bacterial symbioses occur at both intracellular and extracellular
level. For instance, Nutrition supplementation symbionts target the gut while the defense
symbionts target the extracellular walls (Maire et al., 2020; Salem & Kaltenpoth, 2022). Cassidinae
beetles (Chrysomelidae) are associated with Stammera bacteria, located in the host foregut, whose
genome influence production of pectin-degrading enzymes that assist the beetle in digestion of
food (Fukumori et al., 2022). Additionally, bacterium Nardonella found weevils release tyrosine

for cuticle hardening (Anbutsu et al., 2017).

Competition is a common phenomenon that arise over space availability, food resource and
potential mates (Renahan & Sommer, 2021). Intra and inter-competition in beetles is well exhibited
in decomposition function where decomposers compete over carrion or dung (Matuszewki &
Bielewicza, 2021). Trumbo & Sikes, (2021) reported that interspecific competition between
decomposers appears minimal due to utilization of non-overlapping resources as well as variation
in carcass utilization strategies. Negative competition between beetles and blowflies is reported in
the way both species colonize the carrion, with blowfly’s larvae feeding on carcass much earlier
than beetle larvae which have a longer life cycle. Therefore, enabling the blowflies to monopolize
the greater part of the detritus pool (Charabidze et al., 2021). To reduce the competition dung
beetles have adopted a Sit-and-wait strategy that enable the beetles to reserve time and energy by
flying at perching at strategic position where they can easily perceive the smell of fresh dung. This
strategy ensures optimal foraging of whenever available (Vulinec et al., 2007; Sabu & Nithya,
2016). Competition for food is common exhibited in interspecific interactions while competition
for mates is restricted to conflict with species (Nichols et al., 2008). When competition limits
beetles from getting the high quality and quantity share for available resources, beetles tend to
plastically respond in morphology (colors and size), life history traits and behaviors (dietary habits
and lifestyles) (Renahan & Sommer, 2021; Garcia-Atencia et al., 2024).

Beetles experience significant vertebrate predation pressure across ecosystems (Young,
2015). As a result, beetles have evolved anti-predatory respond in morphology such as improved
sensory traits (Nervo et al., 2023), cryptic and aposematic coloration (Doktorovova et al., 2019),
development of sound emitting stridulatory organs (Giulio et al., 2014), defensive secretion
(Laurent et al., 2003), aggregation strategies (Kowles et al., 2012), change of diel activity (Lobo
& Cuesta, 2021) and geographical shift (Ge et al., 2023). Furthermore, Scholtz et al. (2009)
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proposed that the evolution of distinct nesting strategies in beetles may represent an adaptive
response to larval predation pressures. Lady birds as biological control agents are the epitome of
predation in beetles. They are entomophagous insects that voraciously feed on other insects,
thereby regulating the prey-predators interact and maintaining ecological balance (Rondoni et al.,

2021).

2.4 Bioturbation

Beetles are considered critical players in maintaining soil biota populations and increasing
soil aeration and porosity (Tarhan, 2018). The success of beetles in bioturbation is due to their
diverse nesting strategies that contribute to displacement and mixing of the sediment particles
during burrowing (Leiva & Sobrino-Mengual, 2023). Beetle’s nesting strategies impact the soil
ecosystem through excavation and translocation of soil, formation of nests, chambers and galleries,
and incorporation of dead organic matter deep into the soil (Hsieh et al., 2023). Tunnelers and ball-
rollers produce a higher level of bioturbation due to aggressive digging to bury dung, leading to
deposition of tunnel soil particles on the surface. This displacement may bury large-sized seeds
filtered from dung pats, protecting them from predation and desiccation (Leiva & Sobrino-
Mengual, 2023). However, due to limited research in this area, this argument remains

hypothesized.

Recent review proposes three mechanisms by which soil fauna, including beetles, could
shape POM (Particulate organic matter) and MAOM (Mineral-associated organic matter)
formation, this includes transformation of organic matter, translocation of materials, and grazing
on microorganisms, which alters microbial abundance and composition (Angst et al., 2024).
Beetles likely contribute to all three, particularly through bioturbation-driven translocation and
microbial community shifts via dung burial (Natta et al., 2024). Quantifying these mechanisms in
beetles could resolve unanswered questions about their impact on soil aeration, nitrogen

mobilization, and porosity.

For instance, Natta et al. (2024) reported that tunneling and dung translocation by beetles
significantly affect oxygen concentrations. Dwellers’ bioturbation of dung pats increases surface
oxygen, favoring aerobic decomposition (Brune et al., 2000). Bioturbation also alkalinizes soil pH,

particularly at dung deposition sites (Laverock et al., 2013). Phytophagous beetles, known as
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agricultural pests in adulthood, contribute to bioturbation as rhizophagous larvae (Johnson et al.,
2015). Subterranean nesting adaptations-body size (deCastro-Arrazola et al., 2023), strong jaws
(Alvarez et al., 2018), and reinforced mandibles (Farji-Brener et al., 2024) also facilitate these

processes.

Life stages further modulate bioturbation: larvae exhibit lower activity compared to adults,
which disrupt larval tunnels and construct wider dung-preservation galleries (Wislocki, 2021;
Piccini, 2018). Notably, pupation stages contribute little to the bioturbation process. Cross-
disciplinary studies combining isotopic tracing, physical fractionation, and microbiological assays
are needed to test how beetle ecological strategies directly influence soil organic matter

stabilization, a critical gap for modeling soils as carbon sinks and nutrient stores.

2.5 Seed dispersal

Beetles mediates both endozoochory and diplochory, processes that are important for plant
recruitment and establishment into new localities hence reducing rodent seed predation, pathogen
infection and provision of favorable conditions for germination (Pedersen & Bliithgen, 2022; Leiva
& Sobrino-Mengual, 2023). Diplochory is clearly exhibited in dung beetles where they move and
bury seeds that are embedded in vertebrate fecal deposition (Andresen & Levey, 2004; Manns et
al., 2020). Secondary seed dispersal increases the survival and germination chances. Vulinec,
(2002), reported that tunnel burying of dung decreased seed predation by 95-98%. Biophysical
attributes of the seeds also determine their success in dispersal since dung beetles filter seeds by
size. Pubescent seeds have hairly surface that hold thin layer of dung hence trick beetles into
burying them like dung balls (Pedersen & Bliithgen, 2022). Beetle size also influences seed
dispersal success, large-bodied dung beetles move greater quantities of food hence dispersing more
seeds (Nichols et al., 2008). There is limited evidence on the endozoochory in beetles, which can
be attributed to seed size that limit ingestion by beetles. Nonetheless, Vega et al., (2011) observed
endozoochory in Pimelia costata that feed on Cytinus hypocistis fruits and later defacating the
fully intact seeds. Unlike diplochory, endozoochory is reported to increase the chance of seed

predation due to the release of dung odors that attract seed predators (Sousa-Lopes et al., 2019).

10
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2.6 Pest control

Accumulation of carcass and vertebrate excreta detritus pool overtime pollute the
environment with foul smell and provide breeding sites for pests and parasites (Pokhrel et al.,
2021). This detritus pool attracts diverse groups of beetles that mediates the decomposition process
through breakdown into simpler forms that can easily get reabsorbed into the soil (Wetherbee et
al., 2021). Beetles are among the main contributors of the breakdown of plant and vertebrate
detritus pool (Seibold et al., 2021). During this process, beetles disrupt the breeding habitat for
pest and parasites by mechanical damage of pest eggs, introduction of competition for food with
the pest larvae and disturbance of the micro-habitat that support pest growth (Nichols et al., 2008;
Nichols & Gomez 2014). Beetles also reduce the spread of soil-borne human pathogens (Jones et

al., 2019).

Exotic ladybirds (Coccinelidae) are entomophagous insects and effective biological pest
control agents worldwide (Segura et al., 2024). Globally, it has been used in in control in aphids,
mealybugs, cottony cushion scale, pysllids and whiteflies (Soares et al., 2018). The efficiency of
exotic ladybird is attributed to its close co-evolutionary history to its prey. For instance, exotic
ladybird Iberorhyzobius rondensis, Eizaguirre was reported to achieve its full development only
when fed with its pest prey Matsucoccus feytaudi which forage on Pinus pinaster (Rondoni et al.,
2012). In the 1950s, the use of exotic ladybirds for biological control reached its peak because of
their high effectiveness and alternative to chemical pesticides (Rondoni et al.,2012). However,
there has been concern on their commercialization due to the potential effect on non-target insects
(Rondoni et al., 2024). In some cases, exotic ladybirds lead to loss of native ladybird populations
thereby threatening taxonomic and functional diversity. Notably, most countries have agreed to
assess the risk involved and for balancing benefits and risks before the release of the exotic
ladybirds (van Lenteren et al., 2008; Loomans, 2021). Therefore, it is imperative to ensure proper
assessment and impact of the exotic lady birds to the native species and the surrounding
ecosystems (Grez & Zaviezo, 2024). Globally, the success of introduction of exotic ladybirds as
biological control agents includes Rodolia cardinalis from Australia to California (U.S.A) (Soares
et al., 2018), Coccinella undecimpunctata L. in New Zealand (Michaud, 2012), Rodolia cardinalis
from Australia to Portugal (Amaro, 1999), Harmonia axyridis to South Africa (Stals & Prinsloo,
2007) and Harmonia axyridis (Asian lady beetle) to Britain (Majerus et al., 2006).

11
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2.7 Beetles as pest and disease vectors

Larval and adult beetles are considered as both pests and vectors of plant pathogens since
they directly feed on plants and act as host to plant pathogens that they deliver to plants during
foraging (Zhao et al., 2019;). Notably, beetle-plant pathogens coexist symbiotically whereby
beetles play the host while the pathogens release effectors, proteins and small molecules that
manipulate plant defense response to beetle feeding (Gedling et al., 2018). The beetle-pathogens
interaction is a complex phenomenon such that beetles vectors have developed preference for
pathogen-infected plants (Bhat & Rao, 2020). This is due to the influence of the pathogens on the
vector's host plants to produce plant volatile organic compounds that attract beetle vectors.
Moreover, pathogens can also have a direct effect on beetle sensory behavior to phenotypic

changes of host plants (Chesnais et al., 2020).

According to Smith et al (2017), beetles is a successful vector to approximately 11% of
insect-mediated viruses and with over 70 beetle species in Meloidae, Chrysomelidae, Coccinelidae
and Curculionidae families transmitting viruses to economically important vegetables and grain
crops. Transmission of virus via beetle vectors can be attributed to the fact that beetles are pests to
infected plants, therefore as they feed on plants they come into contact with viruses and ingested
to the gut region or get into the hemolymph region through chewing wounds (Gedling et al., 2018).
Similarly, transmission of bacteria occurs during the feeding process when beetles ingest bacterial
infested host plants and the bacteria is retained in insect gut and later deposited as fecal droppings

into wounds of other plants (Krawczyk et al., 2021).

Some of the plant diseases mediated by beetle vector - bacterial interactions include
bacterial wilts of cucurbits transmitted via Acalymma vittatum and Diabrotica barberi
(Chrysomelidae) and account for upto 80% losses in cucurbit yields (Mitchell & Hanks, 2009).
Stewart's bacterial wilt in maize is transmitted via Chrysomelidae, Elateridae and Scarabaeidae
(Bae et al., 2015). Beetle vector-fungus transmission occurs when beetles feed on plants that are
infected with fungus or its spores. The fungus is ingested and transmitted to other host plants either
directly or via mycangia (Mayers et al., 2020; Rodrigues et al., 2023). Some of the beetle-mediated
fungus diseases include vascular wilt disease of elm trees caused by Ophiostoma ulmi and

Ophiostoma novo-ulmi and transmitted by bark beetles (Willsey et al., 2017). Black-stain root
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disease affecting conifers is caused by Leptographium wageneri that is transmitted by Hylastes
macer and Hylastes nigrinus (Cannon et al., 2016). Moreover, Epitrix papa (Chrysomelidae) is

vector of Pytophtora infestans which cause potato blight (Margus & Lindstrom, 2022).

2.8 Beetles as Bioindicators

Bioindicators are organisms that are utilized in screen the health of natural ecosystem in
the environment (Parmar et al., 2016; Ali et al., 2021). They range from biodiversity, ecological,
environmental and pollution bioindicators (Holt & Miller, 2011; Chowdhury et al., 2023). Beetles
are major biondicators of environmental disturbance and biodiversity loss in terrestrial ecosystem
(Maksimovich et al., 2023). For instance, Saproxylic beetles, one of the most speciose, functionally
diverse groups is used as bioindicator of forest health and biodiversity, this is due to their high
sensitivity to environmental disturbance (Doerfler et al. 2018; Karpinski et al., 2021). Ground-
beetles are great soil heath bioindicators due to their action to soils such as soil aeration and water
porosity (Nichols et al., 2008). The impact of agricultural intensification on biodiversity and
ecological structures cannot be overestimated, therefore beetles as bioindicators are crucial in

assessing the environmental health and sustainability (Maksimovich et al., 2023).

Globally, anthropogenic activities have led to pollution of both land an aquatic ecosystem
(Héder et al., 2020; Priya et al., 2024). Notably, most of the pollutants on land end up in water
bodies and threatening the aquatic biota systems (Okorondu et al., 2022; Mukherjee et al., 2023).
The severity of different pollutants on aquatic biota is based on the extent to which it can be taken
up into organisms and its consequences in the food web (Nilsen et al., 2019). Diving beetles
(Dytiscidae) and whirligig beetles (Gyrinidae) are key players in monitoring the accumulation
level of pollutants in aquatic ecosystem. This is due to their abundance and speciose nature as well

as ingestion of the pollutants during predation (Roth et al., 2020; Jasrotia et al., 2024).

3. Ecosystem services

Ecosystem services are the benefits obtained from ecological interactions and have direct
or indirect ties to the quality of human life such as food, fiber, water, pest and disease control,
improved pasture growth and nutrient cycling (Dangles & Casas, 2019; Brock et al., 2021).
Ecosystem services offered by insects are grouped into four categories; (i) provision of services,

(11) regulation of services, (iii) supporting services and (iv) cultural services (Ahammad et al.,
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2019). The economic valuation of insects is essential for conservation efforts and effective
resource allocation (Hanley et al., 2015). Over time, quantification and economic valuation and
quantification of ecosystem services provided by insects has received a considerable concern from
scientific community. Previous studies have estimated the ecosystem services by insects to be at
least US$361 to 577 billion per year (Lautenbach et al. 2012), with insect pollination services
accounting for US$584 million of crop production in UK (Smith et al., 2011) and US$57 billion
per year in the United States (Lonsdorf et al., 2011). Despite the limited knowledge on the
economic valuation of beetle pollination, recent studies have highlighted their roles in pollination
of some economically important crops (Khalifa et al., 2021; Sabino et al., 2022). While research
on the economic value of beetles remains limited, some studies have measured the worth of dung
beetles in various regions around the world. Using a combination of economic analysis, modelling
and field experiments, Beynon et al., (2015) dung beetles save the UK cattle industry an estimate
of US$498.5 million per year and highlighting a potential increase by US$54.6 million per year if

significant conservation efforts is implemented.

The role of beetles in nutrient cycling cannot be overestimated. Through nutrient cycling
crops are replenished with nutrients thus increasing their health and productivity (Tully & Ryals,
2017). Similarly, livestock pastures also benefit from the nutrient cycling process which improve
grass quality and quantity. The economic benefit of dung degradation by dung beetles to livestock
industry in Mexico was estimated at US$176,709.76 per year (Huerta et al., 2013), US$1.4 million
per year in Florida, United States and US$380 million per year in United States (Losey & Vaughan,
2006; Stanbrook-Buyer at al., 2024). The role of beetles in providing ecosystem services is well
documented in Australian ecosystem. Through their ecological services, dung beetles increased
the income of livestock farmers in Western Australia by approximately US$ 29.4 -1307 per hectare
per year (Vieira, 2024). The decomposition of vertebrate excreta by soil invertebrates among them
beetles decrease the livestock parasites which is a serious threat to livestock health and cost the
Australian livestock farmers around US$ 228.7 million per year (Hansen et al., 2022). Beetles are
major players in secondary seed dispersal contribute to re-establishment of plants leading to
reforestation and restoration of threatened plant species which in turn contribute to timber products

as well as food (Nichols et al., 2008).

14



391

392
393
394
395
396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

4. Effects of global change on beetle-driven ecosystem functions and services

Global change is a complex phenomenon driven by co-occuring and correlated factors such
as climate change and anthropogenic disruptors which includes land-use changes, agricultural
intensification, land fragmentation, biological invasions, urbanization, industrialization (Magura
et al., 2017; Romiti et al., 2021; Rivera & Monteros, 2023). These factors are the leading drivers
of global insect decline (Sanchez-Bayo & Wyckhuys, 2021; Rabitsch & Zulka, 2024). Beetles are
major players in ecosystem service provision, therefore research on their response to global change
is critical for the conservation (Gotcha et al., 2021). Climate change is a key driver of global change
and its direct and indirect effects on beetles is particularly significant (Colares et al., 2021). Climate
change can have serious effects on the structure and dynamic of ecosystems, biodiversity,
interspecific and intraspecific interactions of beetles, male reproductive sterility, abundance and
distribution, population fitness, growth rates metabolism morphology and behavior (Fisher et al.,

2021; Gotcha, 2022).

Beetles are ectotherms and change in temperature subject beetles to unprecented stresss
affecting their performance and efficiency in providing ecosystem services and to adapt to these
changes can result in reduced biological performance and, in severe cases, death (Tseng et al.,
2021; Liu et al., 2023). Notably, tropical beetles may be the most affected by temperature due to
global warming since they exposed to temperature that are close to their upper thermal limits thus
affecting their fitness and ecological roles (Gotcha et al., 2021, 2022; Machekano et al., 2021).
Previous studies have revealed the role of temperature in mediating body size of organisms.
Increased temperature leads to decreased body-sizes of beetles, a phenomenon that is highly
pronounced in large-sized beetles (Tseng et al., 2018). Reduced body size in beetles have a notable
implication in ecosystem function at multiple scales such as competition and dung movement in
ball rolling beetles (Keller et al., 2021). Increased temperature plays as crucial role in beetle
pollination. With increase in temperature, the volatile organic compounds (VOCs) increase
attracting beetles (Riddick, 2020). Although knowledge on the effects of low temperature on
insects is still scanty, recent study by Gotcha et al., (2021) has highlighted the impact of low

temperature on morphology and fitness of beetles in temperate regions.
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Global change has caused change in rain patterns hence changing water availability, which
is a crucial component that influence activity and biodiversity of insects (Khaliq et al., 2014).
Beetles exhibit wide variation in moisture in respect to their immediate environment, as such
increase and decrease in moisture may have varying impacts on performance and fitness of beetles
(Zajicek et al., 2021). For instance, increased moisture due to canopy cover in terrestrial ecosystem

favor the habitat cosmopolitan foragers (Ahuatzin et al., 2019).

Complexity of global change and its effects on Beetles
é@ Co,
“ ° “ ’DCH

) : 7l e

Temperature Precipitation Greenhouse gases Industrialization Population pressure

Increased number of generation

Increase in beetle - mediated
plant diseases

Spatial mismatch between beetles and Change of geographical range Loss of synchrony between predators and
host plants their insect prey

Fig 1. Schematic outline of putative effects climate and anthropogenic activities on ecosystem

functions of beetles

High precipitation benefits aquatic beetles by maintaining essential water bodies, while
increased detritus deposition along shorelines provides additional food resources (Deacon et al.,
2019). Conversely, reduced moisture levels lead to desiccation stress, impairing beetle

performance and survival (Nervo et al., 2021).

The exponential growth of human populations has become a primary driver of global
change. Conversion of natural habitats for industrial and agricultural development significantly
alters beetle communities and species composition (Estrada et al., 2017). Excessive land
fragmentation reduces dung and carrion availability, negatively impacting beetle ecosystem

functions like secondary seed dispersal (Deppe & Fischer, 2023). Climate change combined with
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habitat fragmentation creates spatial-temporal mismatches between beetles and host plants
(Tigreros et al., 2023). Spatial mismatches threaten specialist species through differential range
shifts, while temporal mismatches disrupt ecological synchrony due to varying adaptation rates

(Vitali et al., 2023; see fig.1).

Agricultural intensification has transformed natural landscapes, with forests and grasslands
increasingly converted to croplands (Aune et al., 2018). This habitat loss particularly threatens
specialist beetles through the elimination of host plants (Shi et al., 2024). Monoculture practices
and pesticide use have caused unprecedented declines in beetle abundance and diversity,
compromising their ecosystem services including pollination, pest control, and nutrient cycling
(Rathoure, 2024). However, some agricultural systems may support generalist beetle diversity
through introduced vegetation (Raderschall et al., 2022). Agricultural diversification strategies,
including compositional and configurational heterogeneity, show promise for balancing

conservation and productivity (Kleijn et al., 2019; Aguilera et al., 2020).

Urbanization and industrialization have dramatically altered ecosystems through
impervious surface development, creating environments largely inhabitable to insects (Vaz et al.,
2023). These processes now represent major drivers of biodiversity change in developing nations.
Urban expansion generates heat islands that modify microclimates and hydrology while industrial
activities alter soil chemistry through pH changes, metal accumulation, and structural degradation
(Asha et al., 2022). Such environmental stressors force ecological shifts and local extinctions
among beetle populations. Ground beetles are among the widely studied groups of insects in
urbanization studies. This is due to their speciose nature and well-known taxonomy, ecology and
sensitivity to environmental changes (Vaz et al., 2023). Globally, most of the cities have
maintained relics of urban forests and introduction of decorative plants to increase their anesthetic
nature (Laurian et al., 2022). Nevertheless, studies on other insect groups have reported the
negative effect of urbanization and industrialization especially on poor dispersers and habitat
specialists, however research on the impacts of these relic forests and decorative plants on

biodiversity and ecosystem functioning of beetles is still lacking (Vaz et al., 2023).
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4.1 Strategies to mitigate threats to beetles and their ecosystem services

i. Promote citizen science initiatives, such as iNaturalist, to monitor beetle distribution and

population declines.

ii. Establish ecological networks (e.g., urban green corridors) to facilitate beetle migration in

response to climate change.

iii. Integrate beetle-friendly landscapes into urban planning, including green roofs and native

vegetation, to conserve habitat for native species.

iv. Implement long-term monitoring programs to assess beetle diversity and distribution,

identifying threatened or declining species.

v. Foster collaboration among beetle experts across regions to synchronize data, share

technologies, and improve species tracking.

vi. Increase research funding especially in developing countries to support beetle diversity surveys

and digitization of museum/research records.

vii. With 60-80% of beetle species remaining undescribed (Smith et al., 2022), urgent investment
in taxonomic training, digitization, and accelerated description protocols is critical to address this

fundamental biodiversity knowledge gap.

5. Conclusion

Beetles mediate critical ecological functions that support, regulate, and maintain ecosystem
balance in both natural and human-modified habitats. The services they provide including food
provision, pest regulation, nutrient cycling, and cultural benefits are vital for human well-being.
However, in the 21st century, climate change and anthropogenic activities have emerged as major
drivers of insect decline. Their combined and co-occurring effects exacerbate biodiversity loss
across temporal and spatial scales. Land-use changes have increased pollutant emissions,
accelerating global warming, while urbanization and industrialization drive habitat fragmentation

and agroecosystem degradation. Pollution and urban heat islands further alter beetle ecology.
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Historically, research on beetle-mediated ecosystem functions has disproportionately
focused on dung beetles (Scarabaeidae) and their role in nutrient cycling, creating a knowledge
gap regarding other beetle families. This bias underscores the need for expanded studies on the
ecosystem services provided by diverse beetle groups. Notably, beetle pollination, a crucial yet
understudied contribution to crop production remains poorly understood. Additionally, most
studies examining global change impacts on beetles address individual anthropogenic stressors in
isolation, neglecting their synergistic effects. The rapid acceleration of human activities in the 21st
century has led to complex, often counterintuitive disruptions in beetle ecological functions and
services. In developing countries, anthropogenic changes increasingly outpace research capacity

to document their impacts, raising concerns about unforeseen ecological consequences.

To address these challenges, we must intensify efforts to mitigate climate change while
managing unavoidable anthropogenic impacts. Although studies highlight the global
reorganization of biological communities and associated biodiversity declines, future implications
and solutions remain uncertain. Given the inevitability of ecosystem shifts in the Anthropocene,
scientists must prioritize long-term monitoring projects to assess the extent of these changes and

develop evidence-based conservation strategies to protect these essential ecological engineers.
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