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SUMMARY 19 

There is urgent demand for ecosystem management interventions – targeted actions through 20 

policies and practices – that meaningfully address climate change and biodiversity loss while 21 

sustaining ecosystem delivery of water, food, fibre and fuel. Rigorous quantification of 22 

intervention outcomes is required for decision makers to identify, promote and scale 23 

effective interventions. Yet quantification of intervention effectiveness – i.e. their real-world 24 

impact – is hampered by limited use in ecology of causal approaches that generate 25 

counterfactual, empirical evidence at the scales of policy and practice actions. Here, we 26 

review the historical development of causal approaches and ecological experimentation, and 27 

emerging efforts to reunite the two. Reunification requires ecology to broaden its 28 

philosophical consideration of the validity and generalisability of evidence and to expand its 29 

experimental framework. Such an ‘applied causal ecology’ promises evidence that builds 30 

confidence that policy and practice interventions will sustain ecosystem services and achieve 31 

biodiversity and climate goals. 32 

 33 
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INTRODUCTION 39 

Humans rely on ecosystems for many services, including clean water, food, fibre and fuel. The 40 

continued supply of these services is dependent on sustaining and restoring the health of 41 

ecosystems1. Policy and practice interventions intended to achieve these goals, such as 42 

preventing forest conversion to other land uses and practicing regenerative agriculture, are 43 

viewed as essential for sustainable production and as solutions to help mitigate climate change 44 

and biodiversity losses2. As the human population grows, and quality of life increases demand 45 

more resources for each person, effective ecosystem management – through targeted policy 46 

and practice actions – is increasingly central to sustaining the health of people and the planet. 47 

 Ecosystems are complex entities, comprising a multitude of species and individuals 48 

interacting with one another and the physical environment. Ecologists study this complexity to 49 

understand how causes – such as precipitation amounts, forest fragmentation or species 50 

interactions – shape spatial and temporal changes in ecological populations, communities and 51 

elemental fluxes and stocks. Here, we use cause in a more specific manner, focusing on ‘target 52 

causes’ which we define as those that can be broadly manipulated through policy or practice 53 

interventions. For example, beyond some instances of cloud seeding, precipitation amount is 54 

not manipulable at scale, whereas broad scale policy and practice actions to prevent forest 55 

conversion or promote regenerative agriculture are common. Precipitation amount, however, 56 

may strongly modify or confound the impacts of these target causal interventions on ecological 57 

outcomes, such as soil carbon stocks3,4. ‘Non-target causes’ must then be accounted for in 58 

study design or analysis so that intervention effects are accurately estimated. 59 
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Collectively, quantifying impacts of ecosystem management interventions on ecological 60 

outcomes then demands (1) a focus on causes that are manipulable through policy and practice 61 

interventions, and (2) study designs that account for (a) influential non-target causes and (b) 62 

measurable counterfactual scenarios (e.g. unrealised cases where the intervention is not 63 

enacted). These outcomes include biodiversity, as well as ecosystem services such as crop yields 64 

and water quality. 65 

Ecological outcomes of interest have expanded recently – beyond variables such as 66 

biodiversity, crop yields and water quality1 – to include ecosystem-mediated removals and 67 

avoided emissions of greenhouse gases. This interest has resulted in a push for policy and 68 

practice interventions that manage ecosystems as natural climate solutions5. These 69 

interventions are needed, in addition to aggressive reductions in fossil fuel emissions, to limit 70 

warming2. These climate mitigation goals are increasingly being coupled with nature-71 

restoration goals of ecosystem management across intergovernmental to sub-national levels6. 72 

The coupling recognizes that ecosystem services such as climate mitigation depend upon 73 

biodiversity and the resilience of ecosystems to stressors, which in turn depend on sustainable 74 

management practices1. Ecology is then faced with addressing questions about which policy 75 

and practice interventions are most effective, at real-world scales of ecosystem management, 76 

for sustaining healthy ecosystems and providing climate and other services. 77 

 The need to quantify the effectiveness of ecosystem management interventions to 78 

achieve biodiversity and climate goals has resulted in calls to conduct causal impact studies at 79 

the often massive, real-world scales at which policies and practices are enacted7. Studies of 80 

causal impact at such scales are routine in so-called ‘causal fields’ such as epidemiology, where 81 
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there is a recognized need for quantifying intervention outcomes under real-world conditions8–82 

10. Researchers apply the PICO framework to quantify the effectiveness of interventions at such 83 

large scales. The framework involves defining the population (P) receiving the intervention, the 84 

intervention (I) as a cause that can be managed, control (C; i.e. counterfactual) scenarios which 85 

happen absent the intervention, and the outcome (O) to be measured11,12.  86 

The foundational sciences for mitigating biodiversity loss and climate change – ecology 87 

and biogeochemistry – rarely apply the PICO approach at real-world scales. These sciences 88 

instead favour approaches expressly designed to identify causes and their underlying 89 

mechanisms of action (i.e. causal pathways)13. Whereas such knowledge can inform ecosystem 90 

management, it does not provide direct evidence of the effectiveness of an intervention14. For 91 

example, using small-scale, controlled experiments to test whether genetic engineering results 92 

in more resilient, high-yielding crops uncovers mechanisms – such as how altering root systems 93 

affects plants’ abilities to access soil water under drought conditions15. Yet, by itself, the 94 

approach falls short because it fails to provide understanding of impacts outside of controlled 95 

experimental conditions. Making the research fully policy and management relevant requires 96 

field trials and yield monitoring under commercial agricultural conditions to quantify the real-97 

world effectiveness of population-level interventions14–16. For example, management effects on 98 

yields can differ by as much as 25-80% between controlled small-plot experiments and real-99 

world scales because, in the latter, reduced management intensities and greater environmental 100 

variability may combine to reduce the effectiveness of interventions17. 101 

 The most rigorous evidence for achieving scientific consensus on which interventions 102 

are likely most effective then requires mechanistic understanding and direct quantification18–22. 103 
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That is, it requires knowledge both of important causal factors, including the mechanisms 104 

through which a target cause acts on the outcome, and the extent to which intervening to 105 

change that cause achieves the intended outcome at real-world scales. Ecology’s primary 106 

approach of identifying causes and underlying mechanisms has left it incompletely equipped to 107 

inform policy and management interventions with the high level of confidence needed to affirm 108 

that real-world management interventions will be effective (Fig. 1). 109 

To help redress this shortfall in knowledge generation for real-world effectiveness, we 110 

(1) review key differences in how ecology and causal fields treat core concepts about 111 

generalisability and validity of evidence; (2) present a brief history of how ecology departed, 112 

toward the end of the 1930s, from its roots in experimental causal impact studies; and (3) 113 

consider concepts that ecology must wrestle with to successfully translate the PICO framework. 114 

Such translation will expand the body of ecological knowledge – through development of an 115 

applied causal ecology – to generate the most comprehensive scientific evidence for selecting 116 

policies and practices with the greatest benefits for nature and people. 117 

 118 

VALIDITY AND CAUSAL EVIDENCE 119 

In applied causal inference, research questions address causal interventions that can be 120 

compared to a measurable counterfactual scenario, to quantify if the intervention has the  121 

intended outcome23. Such interventions can take the form of policy or practice changes. For 122 

instance, a causal policy question could ask whether direct payments are effective in 123 

encouraging farmers to adopt regenerative management practices. A causal practice question 124 

could ask how one of the management practices, such as cover cropping, might be best 125 
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adapted (e.g. through species choice) to reduce nitrous oxide – a potent greenhouse gas – 126 

emissions from agricultural soils in different regions. 127 

Different causal disciplines differ in their underlying terminologies, theory, statistical 128 

concerns and objectives11,20,24. Such differences have made it challenging to develop a coherent 129 

causal framework for ecology. For example, economics tends to emphasize the internal validity 130 

of inference, whereas health sciences emphasize external validity20,24. Recent efforts to 131 

translate causal approaches from these disciplines into ecology reflect these different 132 

emphases25,26, with consequent differences for the interpretation of evidence. 133 

Specifically, internal validity is high when the investigator has strong evidence that the 134 

intervention effect has been accurately quantified under the study conditions20,27. The 135 

emphasis here is on correctly resolving the causal pathway – i.e. that the estimated effect on 136 

the treated individuals is solely due to the intervention and not some alternate explanation. 137 

The emphasis on internal validity reflects the challenge in quantitative social sciences on being 138 

able to definitively associate outcomes with specific causal mechanisms in the face of the 139 

complexity of socioeconomic systems. In contrast, external validity is high when there is strong 140 

evidence that the measured effect is generalisable to the broader population, and in some 141 

cases to other populations27. A focus on external validity helps decision makers understand 142 

whether intervention effects are likely substantively meaningful28. Such knowledge is 143 

imperative for public health interventions, such as vaccination campaigns. In health sciences, 144 

controlled work to establish mechanism, followed by real-world trials to show intervention 145 

effectiveness at population scales, are an integral part of regulatory impact assessments28,29. 146 
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The different emphases on validity among causal disciplines are brought into sharp relief 147 

through contrasting definitions of common causal terms, such as ‘selection bias’11. In 148 

economics, with a stronger focus on internal validity, the term relates to selection of individuals 149 

from the study sample into treatment and control groups. Bias, introduced through systematic 150 

differences between treatment and control groups that modify the intervention effect, reduces 151 

the accuracy of the causal estimate for the study sample and hence internal validity that the 152 

effect is caused by the intervention12. In contrast, selection bias in health disciplines such as 153 

epidemiology concerns selection of the study sample before treatment assignment11. The focus 154 

is instead on ensuring the sample is representative of – and hence the causal estimate has high 155 

enough external validity to be generalisable to – the population that receives the intervention. 156 

Here, we minimize use of causal terminology because, as the selection bias example shows, the 157 

same term used differently among causal disciplines can have a decided effect on how policy 158 

makers and practitioners should consider evidence. 159 

 We instead focus on how approaches to experimentation and generalisability affect 160 

how evidence should be considered for decision-making. Ecology’s treatment of internal and 161 

external validity, for example, often departs from that of casual fields27,30,31. In economics, for 162 

example, high internal validity is sought to correctly specify the causal pathway and hence 163 

estimate the causal effect under specific conditions in a real-world context. By contrast, in 164 

ecology high internal validity is sought by conducting experiments that heavily control for or 165 

eliminate non-causal variation30,31. For example, high internal validity would be ascribed to 166 

treatment effects in a greenhouse experiment in which potted wheat plants are grown under 167 

regular versus drought conditions using natural (control) and compost-amended soils, where 168 
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compost is a climate-smart practice intended to build yield resilience to drought. Yet ecological 169 

inference that the compost effect has high internal validity is incompatible with the definition in 170 

a causal field. For the latter, the effect would need to be estimated for a sample of control and 171 

compost-treated commercial farm fields occurring within a nexus of background variation of 172 

non-target causes. 173 

In ecology, external validity tends to be sought through what is often termed 174 

observational studies30,31. For example, one might sample soils across the European Union from 175 

different land uses such as arable fields and forests to identify causes that might explain 176 

observed differences in soil carbon32,33. However, such a study design would not meet the 177 

criteria of a causal study (Fig. 2). Specifically, it would merely explain variation in the outcome 178 

and thus not provide sufficient evidence that a cause – such as land use change from cropland 179 

to forest – would be effective at changing the target outcome20,34–37. In a causal discipline such 180 

as epidemiology, this goal would be addressed by applying the PICO framework to specify the 181 

intervention and population of interest. Applied to the ecological case study, a causal analysis 182 

would need to consider an intervention such as reforestation and the population of arable 183 

fields to which such a treatment will and will not be applied (Box 1). The study would need to 184 

sample a representative subset of these fields, to establish control and intervention fields that 185 

encompass population-level variation in non-target causes. Failure to account for such variation 186 

in the sample could lead to biased quantification of the effectiveness of the reforestation 187 

intervention if the non-target causes overwhelm the outcome disproportionally between the 188 

sample and population, or the control and treated fields38. 189 
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Representativeness ensures that the estimated effect of the intervention has high 190 

external validity. Such validity enables inferences to be generalised to the population of 191 

interest27. But here, again, a key concept – i.e. generalisability – has a different meaning in a 192 

causal discipline versus how it is commonly used in ecology26. Generalisability in ecology 193 

typically refers to whether fundamental mechanistic (i.e. process) understanding – such as 194 

evolution through natural selection – can become a principle that applies across multiple 195 

contexts13. In causal disciplines ‘generalisability’ is rooted in statistical inference—whether the 196 

estimated average treatment effect of the intervention can apply to the broader population 197 

(i.e. generalisability) and/or populations under other contexts (i.e. transferability)26.  198 

The key characteristics of evidence – captured by concepts of internal and external 199 

validity, and generalisability – clearly differ markedly in their general usage between ecology 200 

and causal disciplines. For the latter, concepts of validity and generalisability target the value of 201 

evidence for informing policy and practice actions. In ecology, usage of the same concepts 202 

creates barriers to the translation of approaches from causal disciplines. These barriers may 203 

help to explain why ecology – despite calls and demand for actionable ecological 204 

evidence7,19,25,26,35 – remains limited in its ability to provide robust quantitative estimates that 205 

build confidence that interventions applied at real-world scales will be effective.  206 

 207 

 A BRIEF HISTORY OF ECOLOGY AND CAUSAL PHILOSOPHY 208 

The causal philosophy underpinning accurate estimation of the effects of real-world 209 

interventions is absent from influential texts on the philosophical approaches used for 210 

knowledge generation in modern ecology13. Its absence even from recent ecology papers, 211 
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summarizing inferential approaches used in the discipline39, emphasizes how disconnected 212 

ecology is from approaches to knowledge generation used in those causal disciplines that are 213 

effective at influencing policy and practice. Nascent efforts to connect ecology with these 214 

causal inference approaches reflect demand for rigorous applied evidence of the effectiveness 215 

of ecosystem interventions, at real-world scales, to achieve production, biodiversity and climate 216 

goals40–45. Such efforts have been centred on conservation science, but awareness of the need 217 

to expand causal inference to other ecological fields is growing46–50. For example, ecosystem 218 

ecology, the basis of efforts such as natural climate solutions, would seem an ideal candidate 219 

for approaches that quantify intervention effectiveness. Yet carbon accounting for agricultural 220 

and forest lands is dominated by ‘indirect’ quantification approaches, such as process-based 221 

models that ‘scale’ mechanistic knowledge to predict intervention effectiveness14. We suggest 222 

that the disconnect of ecology from causal inference reflects something much deeper than a 223 

lack of familiarity with the analytical approaches and concepts used in causal disciplines. 224 

Instead, we believe the disconnect is due to a fundamental departure of ecology and causal 225 

disciplines in what are valid ways to generate scientific evidence. 226 

 We trace this departure to the 1930s, when a long-running debate about the validity of 227 

experimental evidence between William Sealy Gosset and Ronald A. Fisher was cut-short by 228 

Gosset’s sudden death in 1937. Gosset, the creator of Student’s t-test and small-sample, causal 229 

analysis, was instrumental in advancing modern causal inference approaches21,22. Fisher, 230 

frequently lauded as the single most important figure in 20th century statistics, guided ecology – 231 

and many other scientific disciplines – away from experimentation at real-world scales to 232 

highly-controlled, small-plot studies53. Under these contrived conditions, Fisher had high 233 
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confidence that the observed effect of an experimental intervention could, from a single 234 

experiment, be differentiated from zero53. This thinking, widely used by science and 235 

amalgamated into the basis for null-hypothesis significance testing54–56, identifies potential 236 

causes but does not quantify the effect of the cause under real-world conditions. 237 

 The debate between the two scientists revolved around agricultural experimentation57, 238 

itself the predecessor of many contemporary experimental approaches used in ecology. In the 239 

first decades of the 20th century, agricultural experimentation and applied statistics were 240 

developing together to address pressing questions about food and beverage production. The 241 

research was reported and discussed in leading statistical and general science journals, 242 

including the Journal of the Royal Statistical Society Series B, Biometrika, and Nature57–60. Fisher 243 

advocated for high levels of experimental control53, likely in response to the lack of control and 244 

replication in the decades of prior research made available to him when he began his tenure in 245 

1919 at the Rothamsted Experimental Station, one of the oldest and renowned agricultural 246 

institutions. Whereas the company Gosset worked for, the then Arthur Guinness, Son & Co., Ltd 247 

– which likely funded at that time much of what was to become modern applied statistics – 248 

made practice decisions only after data were collected under conditions representative of 249 

agricultural operations51,52. 250 

Representative conditions, to Gosset and his employers, meant interventions applied at 251 

the field level and replicated across multiple farms in a growing region. Gosset termed these 252 

representative conditions ‘large scale’, employing study designs that matched weather, soil and 253 

farming conditions to those of commercial-scale production. Gosset viewed such evidence to be 254 

“…necessary as a final demonstration…” because “…large scale conditions cannot be accurately 255 
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produced in a wire cage…”60. By ‘wire cage’ he was referring to small experimental plots. The 256 

inability to recreate ‘large scale conditions’ in small plots meant that the Guinness company 257 

relied on practice-scale scientific evidence – integrated with mechanistic knowledge derived 258 

from controlled work – to make strategic operational decisions, such as those that determined 259 

which dominant barley varieties were grown in Ireland57. 260 

The Guinness company’s return on investment in research was many times higher than 261 

their expenditure61, likely because they developed, designed and practiced archetypal causal 262 

research. It required framing questions in quantitative ways that were specific to the applied 263 

context, asking for example which barley variety grew best on average for making stout (a 264 

combination of higher yield but low nitrogen grain) at the scale of the Irish growing region. 265 

They recognized that variety data for each individual field were too ‘noisy’ to make effective 266 

management decisions. Therefore, they focused on estimating the average treatment effect for 267 

the sample of fields they selected from the farms in the region. 268 

The focus on the sample average was because the Guinness scientists understood that 269 

the influence of barley variety depended on other causes that strongly affected and interacted 270 

with variety to influence grain yield and chemistry. Specifically, within- and between-field 271 

differences in soil fertility, and regional and interannual variability in weather. To account for 272 

spatial variation in soil fertility they balanced the growing of new versus established varieties at 273 

each farm, with fields selected to be representative of conditions across the region60. To 274 

account for temporal variation in weather, they repeated their work across multiple years to 275 

identify which varieties consistently performed best60. Such careful attention to study design 276 

and repetition under different conditions allowed them to tease out the treatment effect of 277 
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barley variety from the effects of soil fertility, weather and chance alone24,25. That is, they 278 

focused on estimating the treatment effect of the cause they could manipulate (i.e. barley 279 

variety) – balanced across the causes they could not (e.g. weather) – in a way that led to high 280 

external validity in the estimated treatment effect of the management practice at the 281 

population-scale of its implementation (i.e. farms across the Irish barley-growing region). 282 

It was perhaps the focus on balanced, as opposed to random, study designs that 283 

contributed to Gosset’s and Fisher’s departure in views about valid ways of knowing57. Both 284 

scientists sought experimental designs that accounted for non-target causes that strongly affect 285 

outcomes. Fisher believed that treatment randomization sufficed to solve this problem and 286 

developed statistical approaches such as ANOVA around this belief. Gosset, in contrast, 287 

favoured manually selecting treatment and control units across the range of variation of non-288 

target causes. Such ‘deterministic balancing’ reflected the costs of large-scale research and the 289 

inherent ‘noise’ of working at that scale. Specifically, because costs necessitated fewer 290 

replicates (<30), Gosset argued that the scientist should use all knowledge of non-target causes 291 

available to them when designing experiments because ‘balancing’ is more precise, powerful 292 

and efficient51,57,64. Pearson, another influential 20th century statistician, commented on the 293 

later emergence in modern statistics of a Gosset-Fisher compromise (i.e. stratified random 294 

designs). He emphasized the value of Gosset’s practical knowledge and how it is, “…too often 295 

forgotten that mathematical models using probability theory [i.e. statistical significance tests] 296 

are there to provide an aid to human judgement.”65 297 

Whether Fisher agreed with such a sentiment is unknown, but he centered statistical 298 

significance tests in his book, “The Design of Experiments”, published in 193553. The book is 299 
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considered foundational to how scientists conduct experiments to this day by introducing ideas 300 

such as null hypothesis significance testing and a P value threshold of <0.05. Fisher’s definition 301 

of the validity of evidence is made clear in this text, where he states that, “…randomization will 302 

suffice to guarantee the validity of the test of significance, by which the result of the experiment 303 

is to be judged” (p. 24). Fisher’s focus was on designing experiments to randomize and minimize 304 

the error (i.e. maximize precision) of the average outcomes under treatment and control 305 

conditions. High precision is more likely to permit rejection of the null hypothesis that the 306 

treatment has an effect not statistically distinguishable from zero. In the book, Fisher does not 307 

consider the accuracy of the average treatment effect at real-world scales, thereby separating 308 

experimental research from quantification of intervention effectiveness. 309 

Indeed, through agricultural examples, the book guided experimentalists toward 310 

reliance on statistical significance – whose shortcomings for reliable knowledge generation are 311 

well understood52,66–69. Less appreciated, however, was Fisher’s related guidance to use 312 

smaller, more homogenous areas for pairing experimental treatments and controls. Such 313 

groups (or ‘blocks’) then had more similar values of non-target causes, increasing precision (but 314 

not necessarily at real-world scales; Fig. 3) of the effect of the agricultural intervention. In 315 

Fisher’s words, “…within so large an area [1 acre] considerably greater soil heterogeneity will be 316 

found, than would be the case if the blocks could be reduced in size to a quarter of an acre or 317 

less” (p.114). This small-plot Fisherian approach has dominated much of ecological 318 

experimentation for at least the last 50 years14, extending beyond agricultural experimentation 319 

to topics such as whether biodiversity begets ecosystem function70. With that dominance, the 320 

validity of evidence sensu Fisher’s definition is detached from Gosset’s (and modern causal 321 
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inference’s) philosophy about internal and external validity and thereby leads to large 322 

uncertainty about ecology’s current ability to inform intervention effectiveness at real-world 323 

scales. 324 

 325 

RE-CONNECTING ECOLOGY WITH CAUSAL INFERENCE 326 

The preconditions for re-connecting ecology with the causal philosophy of Gosset exist. First, 327 

ecologists are generally motivated to develop an understanding that directly informs policies 328 

and practices for ecosystem management that benefit nature and people71–75. There is deep 329 

appreciation that quantitative ecological evidence is increasingly demanded for policy efforts 330 

that require consideration of ecosystem services when evaluating potential costs and benefits 331 

of regulatory action76–78. Second, there is a growing ecological literature aimed at increasing 332 

awareness of causal inference25,26,34–36. Yet challenges to capitalising on this groundwork to 333 

build applied causal ecological knowledge remain. Specifically, different definitions of validity 334 

and generalisability unique to ecology versus causal disciplines are difficult to overcome. This 335 

barrier stems from ingrained differences in philosophies about the value and generation of 336 

knowledge. Overcoming this barrier requires ecologists to wrestle with 1) the value of applied 337 

ecology in producing knowledge, and 2) how to realise the PICO framework in terms of a) 338 

defining Populations (P) and individuals, along with how to measure Outcomes (O), and b) what 339 

constitutes a valid causal Intervention (I) and counterfactual Control (or Comparison: C). 340 

 341 
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Value of applied ecology 342 

Ecology has a rich tradition of basic (or fundamental) knowledge generation about causes and 343 

their mechanisms (Fig. 1). This knowledge is critical for building confidence that policy and 344 

practice interventions are based on a sound understanding of the underlying science18,21,79. But 345 

appropriately translating mechanistic understanding to policy and practice needs further 346 

attention. For example, in the health sciences, poor characterization of the aetiology underlying 347 

Alzheimer’s disease and depression led to development of medications (the intervention) 348 

targeting mechanisms that were not necessarily the primary causal pathways underlying the 349 

conditions80–82. Causal science helped to reveal these shortcomings in presumed strong 350 

fundamental understanding because the expected effectiveness of the medications at real-351 

world scales of practice was not realised80,81. When applying ecological science to policy and 352 

practice, it then seems necessary to question whether knowledge is truly ‘fundamental’ when it 353 

identifies causes and their mechanistic pathways, but not their quantitative impact under real-354 

world conditions.  355 

 Without embracing a truly applied causal ecology, we then suggest that fundamental 356 

knowledge in ecology will remain woefully incomplete for understanding how causal change 357 

affects real-world outcomes (Fig. 2). This synergy between foundational and causal research 358 

belies the claim that stems from a worldview that the generation of new foundational 359 

knowledge will cease if applied research is prioritised over basic83. The claim is rooted in the 360 

ecological definition of generalisability, with its focus on generalising mechanistic principles13. 361 

This worldview holds that efforts to evaluate the effectiveness of a causal (mechanistic) 362 
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intervention at real world scales has limited value for developing general scientific 363 

understanding83,84. The perception of limited value is false.  364 

Indeed, Joshua Angrist, one of three recipients of the Nobel Prize in Economic Sciences 365 

in 2021 for his work on ‘causality’ and natural experiments, argued that “The process of 366 

accumulating empirical evidence is rarely sexy in the unfolding, but accumulation is the 367 

necessary road along which results become more general”84. Moreover, the reduction in basic 368 

knowledge generation has not been observed in health sciences. Instead, the combination of 369 

basic and applied research has driven knowledge generation that produces foundational 370 

mechanistic knowledge that is inherently needed to develop quantitative evidence of 371 

intervention effectiveness at scale80,81. The importance of the two together – the ‘weight of 372 

evidence’ approach – is instrumental today, and has been historically, for informing major 373 

public health interventions29,85,86 and was similarly employed by Guinness to meaningfully 374 

improve agricultural management60. Ecology must wrestle with how it values and conducts 375 

applied versus basic research if it is to incentivize uptake of its scientific knowledge into policy 376 

and practice to produce effective solutions. 377 

For example, most syntheses in ecology now take the form of meta-analyses87 of 378 

Fisherian-style small-scale experiments that are suited to identifying causes and understanding 379 

mechanisms (Fig. 1). In such analyses, the average meta-analytical effect does not provide an 380 

externally valid estimate of the average intervention effect. Yet the ecological estimates are 381 

intended to inform intervention effects for such things as national-to-market level greenhouse 382 

gas accounting2,88–92. In contrast, meta-analyses in causal fields commonly synthesize studies 383 

conducted under real-world conditions that follow the PICO framework (Box 1), generating 384 
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average intervention effects for a comparable set of samples or populations87.  Given the policy 385 

stakes, ecology needs to place greater attention on when and where average effects can be 386 

considered accurate at real-world scales of interventions. Doing so requires that ecology 387 

develop evaluative criteria for the external validity of evidence26,42,87,93,94, so that the value of 388 

evidence can be appropriately considered for informing application. 389 

 390 

Populations and outcomes 391 

In the statistical design of experiments in ecology, the definition of a population and individual 392 

is commonly mismatched with the scale at which interventions are applied. For example, in a 393 

biodiversity-ecosystem function experiment, the population may consist of 120 individual plots 394 

at a research station, with each individual constituting a plot of 2 square metres70
.
 This  395 

definition of a population and individuals does not lend itself well to quantifying the 396 

effectiveness of an intervention, such as row crop diversification, applied at real-world scales78. 397 

In healthcare research, for example, the individual unit of observation is commonly a person or 398 

group of individuals (e.g. a neighbourhood) – sampled from the target population – that will, at 399 

least theoretically, be able to receive and benefit from the intervention (Box 1). In ecology, 400 

then, the designation of the focal population and individual unit should be contingent upon the 401 

organism or the area of land and/or water that could receive an intervention (Table 1). For 402 

agroecosystems, the population may consist of individual agricultural fields within a growing 403 

region, where the field is the scale at which management decisions are commonly applied. For 404 

species of concern, the unit could be an individual organism, a group, or sub population, 405 

sampled from the wider meta-population. Mixing of individuals, such as if a wolf moves from 406 
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one pack to another, or if two fields are combined into a larger one, will complicate the concept 407 

of an individual unit, requiring flexibility in study designs and analyses to deal with such 408 

situations. Hence, just like the modern definition of an ecosystem95, a population and individual 409 

in a causal study need not be of fixed dimensions, but nonetheless it cannot be ambiguous. 410 

Instead, the population and individual must be defined by the intended intervention (Table 1). 411 

That is, experimentally quantifying effects in ways that reliably inform action must be 412 

predicated on first knowing the scales at which practitioners and policymakers enact 413 

interventions. 414 

Translating the spatial scale of management intervention to the individual will not, 415 

however, guarantee valid causal inferences. For example, a common assumption in causal 416 

inference is that an individual’s potential outcome depends only on their treatment assignment 417 

and not assignments of other individuals96. Yet outcomes of some ecosystem interventions do 418 

‘spillover’ from one individual to influence observed outcomes of others (Table 1). For example, 419 

marine protected areas (MPAs) research has designated protected areas and adjacent non-420 

protected areas as treatment and control individuals, respectively97. The measurement 421 

challenge is that MPAs are intended to increase fish stocks, within MPAs and beyond their 422 

borders. Fish abundances in controls are not then independent of treated (i.e. MPA) 423 

individuals36. Various approaches have been proposed to overcome spillover issues69. For 424 

example, one approach compares fish species – in control and MPA locations – that are caught 425 

commercially with those that are not. Compared to pre-MPA conditions, ‘catch’ fish species 426 

should see gains in population abundance disproportionally greater than ‘non-catch’ species in 427 

both control and MPA locations given that the ‘non-catch’ species were presumably not being 428 
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over-fished and so stand to gain less from an MPA99. For valid inferences, ecologists must 429 

define, measure and/or model phenomena, like spillover effects, that result in inaccurate 430 

quantification of intervention effects on outcomes (Table 1). 431 

Outcome (i.e. measurement) challenges also emerge from assumptions about construct 432 

validity100. That is, our ability to translate the concept of the variable we would like to evaluate 433 

into a valid measurement (Table 1). For example, human health is a multidimensional construct 434 

that cannot be directly observed and instead is inferred by measuring indicators such as blood 435 

pressure. Even when the indicator metric is valid, how it is measured may influence construct 436 

validity. Blood pressure, for example, provides different information about a person’s health 437 

when taken in a standing or supine position101. Such considerations are core to the broader 438 

field of ‘relational measurement theory’, which focuses on the consistency and coherence of 439 

what is measured and the theoretical concepts those observations are intended to represent. It 440 

is an area of enquiry little explored in ecology102,103 but with large implications for informing 441 

interventions. 442 

For example, attention to measurement theory in evolution has led to questioning of 443 

the validity of how the concept of fitness is customarily proxied. If observations of fitness 444 

outcomes are mismatched with actual fitness, then scientific evidence gathered to inform 445 

which factors affect viability of animal and plant populations may be flawed100,104. Accordingly, 446 

the flawed estimate will have a strong bearing on whether an intervention based on the 447 

observed ‘fitness outcome’ will reliably translate to recovery of wild populations. 448 

 449 
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Interventions and controls 450 

When quantifying intervention effectiveness, Holland23 defined a causal intervention as 451 

something that could, in principle, be a treatment in an experiment, and hence manipulated. 452 

Following Rubin21, this definition of cause applies to experimental and observational studies, 453 

where in the case of observational studies, manipulation of a causal intervention is not under 454 

the investigator’s control. The inclusion of observational studies—that do not necessarily meet 455 

the ‘gold standard’ of manipulative experiment—expands availability of evidence. Such 456 

evidence may be more immediately available and less costly than generating experimental data 457 

at real-world scales. To quote Rubin21, “…it seems more reasonable to try to estimate the effects 458 

of the treatments from nonrandomized studies than to ignore these data and dream of the ideal 459 

experiment or make “armchair” decisions without the benefit of data analysis.” 460 

Conceiving causes as potentially manipulable – in an externally valid manner – means 461 

that not every cause of interest to ecologists may be amenable to direct quantification of its 462 

‘intervention effect’ under real-world conditions. For example, millions of dollars were spent on 463 

free-air CO2 enrichment (i.e. FACE) experiments to query forest responses to elevated 464 

atmospheric CO2
105. These studies produced valuable knowledge by identifying mechanisms of 465 

plant and microbial response106,107. However, treatment plots received a large step change in 466 

CO2 concentration, emulating projected levels in 2050, rather than the gradual change that 467 

ecosystems are experiencing. Step changes produce different outcomes, in part because 468 

physiological responses to step versus gradual changes are distinct108. Yet implementing a 469 

gradual increase in CO2, along with associated changes (e.g. warming), would not generate 470 

knowledge at a rate faster than what is occurring anyway and a real-world counterfactual 471 
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scenario is not immediately apparent. For projecting ecosystem outcomes under changing 472 

atmospheric CO2, contemporary ecological approaches – such as integrating controlled 473 

experimental knowledge through process-based models (Figs. 1, 2) – then seems necessary. But 474 

in many other policy- and practice-relevant instances, such as in the implementation of wildlife 475 

corridors or regenerative agriculture, ecology is presented with causes that are amenable to 476 

externally valid manipulation and hence opportunities for direct quantification of intervention 477 

effectiveness. 478 

When a valid causal intervention is identified, its effectiveness is estimated by 479 

comparing the treatment with the control condition. The accuracy of this estimate depends on 480 

decisions about what constitutes an appropriate comparison scenario for non-treated 481 

individuals109,110. The scenario provides information on the counterfactual, i.e. what is 482 

presumed to have occurred in the absence of the intervention. The counterfactual need not 483 

come from a simultaneous control group and could be an historical baseline, or a weighted 484 

average of individuals approximating the non-intervention condition (e.g. a synthetic 485 

control111). Confidence in the accuracy of the intervention effect depends on the suitability of 486 

the counterfactual (Table 1). For example, much of the debate about how conservation efforts 487 

affect forest carbon stocks revolves around choice of ‘control’ individuals112. Specifically, 488 

representativeness of the comparison is greatest when the treatment and control individuals 489 

each span the same range in values of non-target causes and are equally likely to have been 490 

assigned the intervention. For example, forest harvest effects on soil carbon stocks are 491 

commonly estimated using forest stands already protected from timber harvest as the 492 

comparison group113. Such stands may be a poor baseline because they have confounding 493 
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characteristics, such as proximity to wetland or access restricted by topography113, that make 494 

them unlikely to be harvested and distinct from treated stands in ways that bias the estimated 495 

effects of the practice intervention. 496 

The comparison group should also receive the policy or practice that would be most 497 

likely to occur absent the intervention. In forest carbon accounting, debate about which non-498 

intervention scenarios are valid determine whether interventions are viewed to create sources 499 

or sinks for greenhouse gases114,115. For instance, if rates of assumed deforestation in the 500 

comparison group are higher than what would have truly occurred absent the intervention, 501 

carbon gains are overestimated112. Such a situation typifies what Holland23 referred to as ‘the 502 

fundamental problem of causal inference’. That is, an individual cannot both receive the 503 

treatment and control, meaning that the true causal effect of the intervention cannot be 504 

determined but instead must be estimated using a valid counterfactual. Confidence in the 505 

validity of the inference emerges when similar treatment effects are estimated for different 506 

sets of reasonable assumptions (Fig. 3) about, for example, what is a suitable baseline for 507 

comparison116–118. Ecology’s rich mechanistic knowledge, when combined with causal 508 

understanding, will be critical for determining these baselines. Consequently, the definition of a 509 

causal intervention (and its comparator), like a population and individual, must emerge from 510 

ecological knowledge about how a system works and how human decisions about interventions 511 

translate to how they are implemented versus when they are not. 512 

 513 
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Conclusions 514 

Adopting a causal framework is not a panacea for generating evidence about all causes of 515 

interest to ecology. Some causes, such as elevated greenhouse gas concentrations and climate 516 

warming, may not be amenable to the PICO framework in ways that generate high external 517 

validity and timely estimates of treatment impact. Yet for those causes that are amenable – 518 

such as natural climate solutions – adoption of a PICO framework is essential if ecologists are to 519 

accurately and reliably estimate the effectiveness of policies and practices centred on 520 

ecosystem management to realise production, biodiversity and climate goals. Connecting this 521 

new knowledge with contemporary ecological understanding, of potential causes and their 522 

mechanistic pathways, will support efforts to achieve expert consensus on which interventions 523 

are likely most beneficial. Guinness scientists showed, at the beginning of the last century, how 524 

such an integrated approach – an ‘applied causal ecology’ – could serve as the basis for 525 

impactful decisions around agricultural practices. If this integrated causal approach can be 526 

resurrected in ecology, we expect it to be instrumental in providing evidence to set policies and 527 

practices that most effectively restore the health of nature. 528 
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 856 
Fig. 1 Conceptualisation of knowledge imbalance in ecology generated by two, distinct 857 

philosophical approaches for developing evidence, with implications for science-based 858 

decision-making. Ecological knowledge is predominantly developed through an ‘identifying 859 

causes’ approach to research. Given that process-based and theoretical models (not shown) 860 

primarily make use of this evidence, they also fit within this body of knowledge (yet could 861 

incorporate knowledge from both philosophies). Applying ‘identifying causes’ evidence to 862 

inform policymakers and practitioners about the likely effectiveness of an intervention requires 863 

many assumptions about how mechanistic knowledge translates to intervention effectiveness 864 

(depicted as indirect evidence: light blue arrow). In contrast, ‘quantifying causes’ research is 865 

designed to robustly estimate the effectiveness of causal interventions under the real-world 866 

scales at which they are applied (direct evidence: dark blue arrow), giving evidence higher 867 

external validity. If ecology broadly adopts ‘quantifying causes’ approaches, the collective 868 

evidence base will comprise knowledge of why (i.e. mechanisms) and how (i.e. effectiveness) 869 

interventions are effective, facilitating more confident science-based decision making.  870 
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 871 

Fig. 2 Flow diagram of two, distinct philosophical approaches for developing scientific 872 

evidence. Ecology is dominated by the ‘identifying causes’ philosophy (black text and lines), 873 

which is typically used in ecology to identify causes by their ability to explain variation in 874 

observed outcomes, and via controlled lab and field experiments that manipulate causal 875 

variables while minimizing variation – through study design – in other causes. In contrast, the 876 

‘quantifying causes’ approach (blue text and lines) focuses on estimating the treatment effect 877 

of a cause (e.g. a policy or practice intervention) for a specified population and timescale and 878 

subsamples individual units to orthogonally and representatively capture variation in other 879 

influential causes on the population-level outcome. Both philosophies employ a range of 880 

approaches to inference, including Bayesian and frequentist statistics, and inductive and 881 

deductive reasoning. Yet the two philosophies are distinct in their questions, study designs and 882 

analytical reasoning. Integration of the evidence (e.g. through process-based modelling) guides 883 

further research under both philosophies (reverse arrows from ‘integrate evidence’ box not 884 

shown). Were ecology to more broadly adopt ‘quantifying causes’ research – perhaps through a 885 

new subfield of ‘applied causal ecology’ – it would dramatically expand the types of knowledge 886 

generated and how they feedback upon one another (blue text boxes and arrows), thereby 887 

leading to a more comprehensive basic and applied knowledge base. 888 
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 889 
Fig. 3 Schematic of the classical (a) and causal (b-e) depiction of accuracy, where under the 890 

latter accuracy cannot be definitively known because conceptions of ‘truth’ emerge from 891 

inference based on evidence of mechanisms and estimates of causal effects. In the classical 892 

depiction (a), accuracy is determined against a known value (the archery target), such as a 893 

census (i.e. all individuals in the population are measured) or a laboratory standard, against 894 

which unknown values are compared. Higher accuracy is depicted by samples nearer to the 895 

centre of the target. Under causal inference, however, confidence in the accuracy of estimated 896 

intervention effectiveness emerges as mechanistic understanding (b,c) and real-world evidence 897 

of intervention effects grows (d,e). Multiple archery targets are depicted for causal conceptions 898 

(b-e) because equally plausible conceptions of ‘truth’ may be suggested by the available 899 

evidence. Confidence that estimated effects are likely accurate (transition from b to e) emerges 900 

as different types of knowledge, and the influence of researcher decisions38,118–122, begin to 901 

constrain the range of plausible effect estimates. Note that confidence in the accuracy of 902 

estimated treatment effects is relatively low with only mechanistic knowledge (b,c), demanding 903 

study designs that yield externally-valid estimates (d,e) to improve confidence that estimated 904 

intervention effects will be realised under real-world conditions123–125.  905 
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Box 1 Causal research designs to quantify the effectiveness of interventions 907 

The Population-Intervention-Control-Outcome (PICO) framework establishes a framework for 908 

causal research designs intended to generate real-world evidence8–10. Such designs are 909 

common in causal fields, such as epidemiology. For example, consider a theoretical 910 

interventional study for a human population to estimate the efficacy of statins at reducing LDL 911 

(or ‘bad’) cholesterol. Such a study would only enrol individuals who would plausibly benefit 912 

from receiving statins as the intervention. Since adults, not children, generally experience 913 

health burdens attributed to high LDL, the target population from which study participants are 914 

selected would not include minors. Similarly, to robustly estimate the effect of statins, other 915 

factors associated with high LDL, such as exercise and diet, must be accounted for in study 916 

design and/or analysis, such as through inclusion of adult participants that span ranges in 917 

exercise and diets representative for the target population. With good baseline and subsequent 918 

follow-up data for high-LDL individuals opting to receive treatment or not, this study design will 919 

allow the investigator to identify variation due to the treatment from variation due to other 920 

causes, resulting in estimation of a plausibly accurate, sample average effect of statins11. Given 921 

the external validity of the design, this average treatment effect (i.e. ATE) could confidently be 922 

expected to approximate the average, population-level benefit of the intervention if it were 923 

adopted as a health intervention for the target population. 924 

Study designs incorporating these principles for ‘ecosystem management interventions’ 925 

are rare in ecology (good examples include43,99,126) but common in causal fields11,20,34,84. Table 1 926 

applies the study design principles from the statin-intervention study to an ecosystem example 927 

of agricultural land to forest conversion at a regional-scale. In contrast, current ecological 928 

studies conducted at this scale, such as the soil module of the European Union (EU) ‘Land 929 

Use/Cover Area frame statistical Survey’32,33, follow designs suited to identifying potential 930 

causes and effects versus quantifying causes (Fig. 2). Yet, the original intent of LUCAS Soil was 931 

to assess soil characteristics in relation to practices (e.g. land use) driven by the presence or 932 

absence of policy instruments33, and hence the effectiveness of interventions that incentivize 933 

change in agricultural practices to improve soil health. For example, resulting studies to address 934 

questions about effects of practices on soil microbial biomass, a variable that is crucial to soil 935 
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health and hence food security127–130, have focused on explaining variation across all measured 936 

fields due to multiple factors, including climate and soil texture131,132. Such knowledge is 937 

important for understanding mechanism but does not directly guide interventions because 938 

climate and soil texture are not causes that can be directly affected by agricultural policies 939 

focused on improving soil health. Furthermore, the inclusion of all fields irrespective of 940 

intended policy interventions means these data are not directly applicable to the population of 941 

interest. For example, for a program promoting reforestation to sequester soil carbon, high-942 

yield fields may be ineligible given the need to produce food and prevent ‘carbon leakage’ 943 

through compensatory conversion of other lands to arable agriculture. Study designs tailored to 944 

quantify intervention effectiveness then require a focus on the subpopulation of fields that are 945 

eligible for the intervention, sampled to account for but not necessarily quantify the effects of 946 

non-target causal variables40.  947 

Ecology is largely depauperate in such causal intervention research designs (see Fig. 1) 948 

but by translating approaches from causal fields (Table 1), would be well positioned to address 949 

many questions that have high value for directly informing policies and practices to achieve 950 

production, biodiversity and climate goals. 951 

  952 
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Table 1.  General components and related principles for studies designed to estimate the 965 

quantitative impacts of ‘ecosystem management interventions’ (see Box 1). The collective 966 

intent of employing these principles is to generate external validity in the estimated average, 967 

population-level benefit (and potential downsides) of an intervention. The principles are 968 

illustrated assuming their application to the Box 1 example of agricultural land to forest 969 

conversion impacts on soil carbon sequestration. Application of the principles centres study 970 

design and knowledge of the system as critical to making valid causal inferences. Such 971 

inferences provide robust quantitative evidence, that policymakers and practitioners can have 972 

high confidence in, for making decisions about the efficacy of interventions to protect and 973 

restore nature. 974 

Component Principle Example of application 
Individual/ 
Population/ 
Outcomes 

- An ‘individual’ (or group – 
see main text) is the unit 
that receives the 
intervention 

- For reforestation of arable land, an agricultural field might be 
considered the individual given that it is the unit of 
management. 
 

 - The population is made up 
of the individuals, under a 
defined context, that are 
eligible to receive the 
intervention  

- The population should consist only of treatment and control 
fields that are eligible to be reforested. Consideration of fields 
as controls that are ineligible for reforestation, perhaps 
because they have high fertility and relatedly crop yields, could 
confound understanding of intervention efficacy. 

 - Measure the individual 
responses (the outcome) in 
a representative manner 

- Agricultural soil studies often measure only a single small 
area within a field. Such designs are inefficient when 
contrasted with taking multiple samples across each field, and 
make estimated effects of interventions unreliable133–136. 
Similarly, the measured outcome variable for the individual 
should be a valid construct for the desired response. For 
example, soil carbon concentrations are not suitable proxies 
for assessing changes in soil carbon stocks. In addition, 
investigators should be aware of ‘spillover effects’ where, for 
example, trees grown immediately adjacent to a control field 
will influence crop yields in that field137 and hence baseline 
carbon removals. 

Causes 
(Interventions) 

- Focus on quantifying a 
specific cause (i.e. the 
intervention) applied as in 
real-world settings 

- The focus should be on quantification of the effects of 
reforestation, and not on ‘causes’ that cannot – at least in 
principle – be manipulated but which might influence the 
outcome (e.g. soil texture). Such a focus shifts study goals from 
explaining variation in the outcome, to quantification of the 
causal effect of interest138. Further, to inform policy and 
practice, the focus should be on evaluating the reforestation 
interventions under the real-world conditions under which 
they are applied. 

 - The process of assignment 
to intervention treatment 
should satisfy – or 

- Fields in the study to be reforested should have an 
approximately equal likelihood of being assigned to the 
‘control’ group21. Such considerations help to avoid 
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approximate – the 
exchangeability criterion 

confounding, for example, where a farmer might choose to 
reforest their least fertile fields, raising questions about the 
suitability of unconverted fields to function as valid 
comparators. 

 - Choose a suitable control/ 
comparison against which to 
estimate the intervention 
effect 

- A causal effect is always estimated relative to a suitable 
comparison group. A suitable control or comparison group 
may, for example, allow consideration of dynamic baselines 
that serve as a plausible counterfactual scenario to estimate 
what would have happened had reforested fields not received 
that treatment. 

External 
validity 

- Select the sample of 
individuals to measure from 
the target population in a 
representative manner 

- Population-level variation in non-target causal variables 
which influence the outcome (e.g. soil texture on soil carbon) 
should ideally be captured across the sampled individuals, and 
be orthogonal to the target cause, in this instance 
reforestation. For example, older farms might have more 
fertile soil (reflecting the original choice of location to establish 
a field), so treatment and control fields might be stratified by 
farm age. Capturing such variation through study design makes 
the sample treatment effect more representative of the likely 
population treatment effect. 

 - The time and spatial scale 
should match with policy 
and practice needs  

- Ecological evidence is often needed on accelerated 
timescales to inform decision makers. However, the impacts of 
those decisions, such as to reforest, are typically longer term 
and realised at broader spatial scales. Such realities require 
study designs that also measure impact once interventions are 
applied at scale to evaluate how nearer-term effects are 
realised at the real-world timescales of intervention impact. 

 - The treatment effects 
should be robust to 
repetition and ideally 
transferable 

- The estimated treatment effect should be approximately 
equal when different reforested and control fields are sampled 
from the same population. Such robustness to study design 
and analysis decisions builds confidence that the efficacy of 
the intervention will be realised when applied to the 
population (i.e. the estimate is generalisable). Testing the 
impact of the intervention under new contexts (e.g. in one 
region of France versus another physiographic province) and 
being able to explain how and why effect sizes compare (or 
don’t) for the same intervention, builds confidence that the 
intervention will be applied only to populations where it is 
effective (i.e. transferability). 
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