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SUMMARY

There is urgent demand for ecosystem management interventions — targeted actions through
policies and practices — that meaningfully address climate change and biodiversity loss while
sustaining ecosystem delivery of water, food, fibre and fuel. Rigorous quantification of
intervention outcomes is required for decision makers to identify, promote and scale
effective interventions. Yet quantification of intervention effectiveness —i.e. their real-world
impact — is hampered by limited use in ecology of causal approaches that generate
counterfactual, empirical evidence at the scales of policy and practice actions. Here, we
review the historical development of causal approaches and ecological experimentation, and
emerging efforts to reunite the two. Reunification requires ecology to broaden its
philosophical consideration of the validity and generalisability of evidence and to expand its
experimental framework. Such an ‘applied causal ecology’ promises evidence that builds
confidence that policy and practice interventions will sustain ecosystem services and achieve

biodiversity and climate goals.

Keywords
applied ecology, counterfactual reasoning, coupled human and natural systems, ecosystem
services, external validity, natural climate solutions, pragmatic studies, research design,

translational research, science for policy.
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INTRODUCTION
Humans rely on ecosystems for many services, including clean water, food, fibre and fuel. The
continued supply of these services is dependent on sustaining and restoring the health of
ecosystems?. Policy and practice interventions intended to achieve these goals, such as
preventing forest conversion to other land uses and practicing regenerative agriculture, are
viewed as essential for sustainable production and as solutions to help mitigate climate change
and biodiversity losses?. As the human population grows, and quality of life increases demand
more resources for each person, effective ecosystem management — through targeted policy
and practice actions — is increasingly central to sustaining the health of people and the planet.
Ecosystems are complex entities, comprising a multitude of species and individuals
interacting with one another and the physical environment. Ecologists study this complexity to
understand how causes — such as precipitation amounts, forest fragmentation or species
interactions — shape spatial and temporal changes in ecological populations, communities and
elemental fluxes and stocks. Here, we use cause in a more specific manner, focusing on ‘target
causes’ which we define as those that can be broadly manipulated through policy or practice
interventions. For example, beyond some instances of cloud seeding, precipitation amount is
not manipulable at scale, whereas broad scale policy and practice actions to prevent forest
conversion or promote regenerative agriculture are common. Precipitation amount, however,
may strongly modify or confound the impacts of these target causal interventions on ecological
outcomes, such as soil carbon stocks®4. ‘Non-target causes’ must then be accounted for in

study design or analysis so that intervention effects are accurately estimated.
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Collectively, quantifying impacts of ecosystem management interventions on ecological
outcomes then demands (1) a focus on causes that are manipulable through policy and practice
interventions, and (2) study designs that account for (a) influential non-target causes and (b)
measurable counterfactual scenarios (e.g. unrealised cases where the intervention is not
enacted). These outcomes include biodiversity, as well as ecosystem services such as crop yields
and water quality.

Ecological outcomes of interest have expanded recently — beyond variables such as
biodiversity, crop yields and water quality! — to include ecosystem-mediated removals and
avoided emissions of greenhouse gases. This interest has resulted in a push for policy and
practice interventions that manage ecosystems as natural climate solutions®. These
interventions are needed, in addition to aggressive reductions in fossil fuel emissions, to limit
warming?. These climate mitigation goals are increasingly being coupled with nature-
restoration goals of ecosystem management across intergovernmental to sub-national levels®.
The coupling recognizes that ecosystem services such as climate mitigation depend upon
biodiversity and the resilience of ecosystems to stressors, which in turn depend on sustainable
management practices’. Ecology is then faced with addressing questions about which policy
and practice interventions are most effective, at real-world scales of ecosystem management,
for sustaining healthy ecosystems and providing climate and other services.

The need to quantify the effectiveness of ecosystem management interventions to
achieve biodiversity and climate goals has resulted in calls to conduct causal impact studies at
the often massive, real-world scales at which policies and practices are enacted’. Studies of

causal impact at such scales are routine in so-called ‘causal fields’ such as epidemiology, where
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there is a recognized need for quantifying intervention outcomes under real-world conditions®
10, Researchers apply the PICO framework to quantify the effectiveness of interventions at such
large scales. The framework involves defining the population (P) receiving the intervention, the
intervention (1) as a cause that can be managed, control (C; i.e. counterfactual) scenarios which
happen absent the intervention, and the outcome (O) to be measured!2,

The foundational sciences for mitigating biodiversity loss and climate change — ecology
and biogeochemistry —rarely apply the PICO approach at real-world scales. These sciences
instead favour approaches expressly designed to identify causes and their underlying
mechanisms of action (i.e. causal pathways)*3. Whereas such knowledge can inform ecosystem
management, it does not provide direct evidence of the effectiveness of an intervention*. For
example, using small-scale, controlled experiments to test whether genetic engineering results
in more resilient, high-yielding crops uncovers mechanisms — such as how altering root systems
affects plants’ abilities to access soil water under drought conditions®>. Yet, by itself, the
approach falls short because it fails to provide understanding of impacts outside of controlled
experimental conditions. Making the research fully policy and management relevant requires
field trials and yield monitoring under commercial agricultural conditions to quantify the real-
world effectiveness of population-level interventions'~1®, For example, management effects on
yields can differ by as much as 25-80% between controlled small-plot experiments and real-
world scales because, in the latter, reduced management intensities and greater environmental
variability may combine to reduce the effectiveness of interventions?’.

The most rigorous evidence for achieving scientific consensus on which interventions

are likely most effective then requires mechanistic understanding and direct quantification®22,
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That is, it requires knowledge both of important causal factors, including the mechanisms
through which a target cause acts on the outcome, and the extent to which intervening to
change that cause achieves the intended outcome at real-world scales. Ecology’s primary
approach of identifying causes and underlying mechanisms has left it incompletely equipped to
inform policy and management interventions with the high level of confidence needed to affirm
that real-world management interventions will be effective (Fig. 1).

To help redress this shortfall in knowledge generation for real-world effectiveness, we
(1) review key differences in how ecology and causal fields treat core concepts about
generalisability and validity of evidence; (2) present a brief history of how ecology departed,
toward the end of the 1930s, from its roots in experimental causal impact studies; and (3)
consider concepts that ecology must wrestle with to successfully translate the PICO framework.
Such translation will expand the body of ecological knowledge — through development of an
applied causal ecology — to generate the most comprehensive scientific evidence for selecting

policies and practices with the greatest benefits for nature and people.

VALIDITY AND CAUSAL EVIDENCE

In applied causal inference, research questions address causal interventions that can be
compared to a measurable counterfactual scenario, to quantify if the intervention has the
intended outcome?3. Such interventions can take the form of policy or practice changes. For
instance, a causal policy question could ask whether direct payments are effective in
encouraging farmers to adopt regenerative management practices. A causal practice question

could ask how one of the management practices, such as cover cropping, might be best
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adapted (e.g. through species choice) to reduce nitrous oxide — a potent greenhouse gas —
emissions from agricultural soils in different regions.

Different causal disciplines differ in their underlying terminologies, theory, statistical
concerns and objectives'??%24, Such differences have made it challenging to develop a coherent
causal framework for ecology. For example, economics tends to emphasize the internal validity
of inference, whereas health sciences emphasize external validity?>?4. Recent efforts to
translate causal approaches from these disciplines into ecology reflect these different
emphases?>?®, with consequent differences for the interpretation of evidence.

Specifically, internal validity is high when the investigator has strong evidence that the
intervention effect has been accurately quantified under the study conditions?%?’. The
emphasis here is on correctly resolving the causal pathway —i.e. that the estimated effect on
the treated individuals is solely due to the intervention and not some alternate explanation.
The emphasis on internal validity reflects the challenge in quantitative social sciences on being
able to definitively associate outcomes with specific causal mechanisms in the face of the
complexity of socioeconomic systems. In contrast, external validity is high when there is strong
evidence that the measured effect is generalisable to the broader population, and in some
cases to other populations?’. A focus on external validity helps decision makers understand
whether intervention effects are likely substantively meaningful?®. Such knowledge is
imperative for public health interventions, such as vaccination campaigns. In health sciences,
controlled work to establish mechanism, followed by real-world trials to show intervention

effectiveness at population scales, are an integral part of regulatory impact assessments?®29,
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The different emphases on validity among causal disciplines are brought into sharp relief
through contrasting definitions of common causal terms, such as ‘selection bias’*!. In
economics, with a stronger focus on internal validity, the term relates to selection of individuals
from the study sample into treatment and control groups. Bias, introduced through systematic
differences between treatment and control groups that modify the intervention effect, reduces
the accuracy of the causal estimate for the study sample and hence internal validity that the
effect is caused by the intervention!?. In contrast, selection bias in health disciplines such as
epidemiology concerns selection of the study sample before treatment assignment!!. The focus
is instead on ensuring the sample is representative of —and hence the causal estimate has high
enough external validity to be generalisable to — the population that receives the intervention.
Here, we minimize use of causal terminology because, as the selection bias example shows, the
same term used differently among causal disciplines can have a decided effect on how policy
makers and practitioners should consider evidence.

We instead focus on how approaches to experimentation and generalisability affect
how evidence should be considered for decision-making. Ecology’s treatment of internal and
external validity, for example, often departs from that of casual fields?”3%31, In economics, for
example, high internal validity is sought to correctly specify the causal pathway and hence
estimate the causal effect under specific conditions in a real-world context. By contrast, in
ecology high internal validity is sought by conducting experiments that heavily control for or
eliminate non-causal variation3%31, For example, high internal validity would be ascribed to
treatment effects in a greenhouse experiment in which potted wheat plants are grown under

regular versus drought conditions using natural (control) and compost-amended soils, where
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compost is a climate-smart practice intended to build yield resilience to drought. Yet ecological
inference that the compost effect has high internal validity is incompatible with the definition in
a causal field. For the latter, the effect would need to be estimated for a sample of control and
compost-treated commercial farm fields occurring within a nexus of background variation of
non-target causes.

In ecology, external validity tends to be sought through what is often termed
observational studies3?31. For example, one might sample soils across the European Union from
different land uses such as arable fields and forests to identify causes that might explain
observed differences in soil carbon3?33. However, such a study design would not meet the
criteria of a causal study (Fig. 2). Specifically, it would merely explain variation in the outcome
and thus not provide sufficient evidence that a cause — such as land use change from cropland
to forest — would be effective at changing the target outcome?%34-37 |n a causal discipline such
as epidemiology, this goal would be addressed by applying the PICO framework to specify the
intervention and population of interest. Applied to the ecological case study, a causal analysis
would need to consider an intervention such as reforestation and the population of arable
fields to which such a treatment will and will not be applied (Box 1). The study would need to
sample a representative subset of these fields, to establish control and intervention fields that
encompass population-level variation in non-target causes. Failure to account for such variation
in the sample could lead to biased quantification of the effectiveness of the reforestation
intervention if the non-target causes overwhelm the outcome disproportionally between the

sample and population, or the control and treated fields:.



190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

Representativeness ensures that the estimated effect of the intervention has high
external validity. Such validity enables inferences to be generalised to the population of
interest?’. But here, again, a key concept —i.e. generalisability — has a different meaning in a
causal discipline versus how it is commonly used in ecology?®. Generalisability in ecology
typically refers to whether fundamental mechanistic (i.e. process) understanding — such as
evolution through natural selection — can become a principle that applies across multiple
contexts®3. In causal disciplines ‘generalisability’ is rooted in statistical inference—whether the
estimated average treatment effect of the intervention can apply to the broader population
(i.e. generalisability) and/or populations under other contexts (i.e. transferability)?°.

The key characteristics of evidence — captured by concepts of internal and external
validity, and generalisability — clearly differ markedly in their general usage between ecology
and causal disciplines. For the latter, concepts of validity and generalisability target the value of
evidence for informing policy and practice actions. In ecology, usage of the same concepts
creates barriers to the translation of approaches from causal disciplines. These barriers may
help to explain why ecology — despite calls and demand for actionable ecological
evidence’192>2635 — remains limited in its ability to provide robust quantitative estimates that

build confidence that interventions applied at real-world scales will be effective.

A BRIEF HISTORY OF ECOLOGY AND CAUSAL PHILOSOPHY

The causal philosophy underpinning accurate estimation of the effects of real-world
interventions is absent from influential texts on the philosophical approaches used for

knowledge generation in modern ecology!3. Its absence even from recent ecology papers,
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summarizing inferential approaches used in the discipline3, emphasizes how disconnected
ecology is from approaches to knowledge generation used in those causal disciplines that are
effective at influencing policy and practice. Nascent efforts to connect ecology with these
causal inference approaches reflect demand for rigorous applied evidence of the effectiveness
of ecosystem interventions, at real-world scales, to achieve production, biodiversity and climate
goals?®4>_ Such efforts have been centred on conservation science, but awareness of the need
to expand causal inference to other ecological fields is growing*®=>°. For example, ecosystem
ecology, the basis of efforts such as natural climate solutions, would seem an ideal candidate
for approaches that quantify intervention effectiveness. Yet carbon accounting for agricultural
and forest lands is dominated by ‘indirect’ quantification approaches, such as process-based
models that ‘scale’ mechanistic knowledge to predict intervention effectiveness!®. We suggest
that the disconnect of ecology from causal inference reflects something much deeper than a
lack of familiarity with the analytical approaches and concepts used in causal disciplines.
Instead, we believe the disconnect is due to a fundamental departure of ecology and causal
disciplines in what are valid ways to generate scientific evidence.

We trace this departure to the 1930s, when a long-running debate about the validity of
experimental evidence between William Sealy Gosset and Ronald A. Fisher was cut-short by
Gosset’s sudden death in 1937. Gosset, the creator of Student’s t-test and small-sample, causal
analysis, was instrumental in advancing modern causal inference approaches?'22, Fisher,
frequently lauded as the single most important figure in 20" century statistics, guided ecology —
and many other scientific disciplines —away from experimentation at real-world scales to

highly-controlled, small-plot studies>?. Under these contrived conditions, Fisher had high
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confidence that the observed effect of an experimental intervention could, from a single
experiment, be differentiated from zero3. This thinking, widely used by science and
amalgamated into the basis for null-hypothesis significance testing®*>¢, identifies potential
causes but does not quantify the effect of the cause under real-world conditions.

The debate between the two scientists revolved around agricultural experimentation®’,
itself the predecessor of many contemporary experimental approaches used in ecology. In the
first decades of the 20™" century, agricultural experimentation and applied statistics were
developing together to address pressing questions about food and beverage production. The
research was reported and discussed in leading statistical and general science journals,
including the Journal of the Royal Statistical Society Series B, Biometrika, and Nature®>’~®°, Fisher
advocated for high levels of experimental control®3, likely in response to the lack of control and
replication in the decades of prior research made available to him when he began his tenure in
1919 at the Rothamsted Experimental Station, one of the oldest and renowned agricultural
institutions. Whereas the company Gosset worked for, the then Arthur Guinness, Son & Co., Ltd
— which likely funded at that time much of what was to become modern applied statistics —
made practice decisions only after data were collected under conditions representative of
agricultural operations®>2,

Representative conditions, to Gosset and his employers, meant interventions applied at
the field level and replicated across multiple farms in a growing region. Gosset termed these
representative conditions ‘large scale’, employing study designs that matched weather, soil and
farming conditions to those of commercial-scale production. Gosset viewed such evidence to be

“...necessary as a final demonstration...” because “...large scale conditions cannot be accurately
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produced in a wire cage...”®°. By ‘wire cage’ he was referring to small experimental plots. The
inability to recreate ‘large scale conditions’ in small plots meant that the Guinness company
relied on practice-scale scientific evidence — integrated with mechanistic knowledge derived
from controlled work — to make strategic operational decisions, such as those that determined
which dominant barley varieties were grown in Ireland>’.

The Guinness company’s return on investment in research was many times higher than
their expenditure®?, likely because they developed, desighed and practiced archetypal causal
research. It required framing questions in quantitative ways that were specific to the applied
context, asking for example which barley variety grew best on average for making stout (a
combination of higher yield but low nitrogen grain) at the scale of the Irish growing region.
They recognized that variety data for each individual field were too ‘noisy’ to make effective
management decisions. Therefore, they focused on estimating the average treatment effect for
the sample of fields they selected from the farms in the region.

The focus on the sample average was because the Guinness scientists understood that
the influence of barley variety depended on other causes that strongly affected and interacted
with variety to influence grain yield and chemistry. Specifically, within- and between-field
differences in soil fertility, and regional and interannual variability in weather. To account for
spatial variation in soil fertility they balanced the growing of new versus established varieties at
each farm, with fields selected to be representative of conditions across the region®. To
account for temporal variation in weather, they repeated their work across multiple years to
identify which varieties consistently performed best®. Such careful attention to study design

and repetition under different conditions allowed them to tease out the treatment effect of
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barley variety from the effects of soil fertility, weather and chance alone?*?>, That is, they
focused on estimating the treatment effect of the cause they could manipulate (i.e. barley
variety) — balanced across the causes they could not (e.g. weather) —in a way that led to high
external validity in the estimated treatment effect of the management practice at the
population-scale of its implementation (i.e. farms across the Irish barley-growing region).

It was perhaps the focus on balanced, as opposed to random, study designs that
contributed to Gosset’s and Fisher’s departure in views about valid ways of knowing®’. Both
scientists sought experimental designs that accounted for non-target causes that strongly affect
outcomes. Fisher believed that treatment randomization sufficed to solve this problem and
developed statistical approaches such as ANOVA around this belief. Gosset, in contrast,
favoured manually selecting treatment and control units across the range of variation of non-
target causes. Such ‘deterministic balancing’ reflected the costs of large-scale research and the
inherent ‘noise’ of working at that scale. Specifically, because costs necessitated fewer
replicates (<30), Gosset argued that the scientist should use all knowledge of non-target causes
available to them when designing experiments because ‘balancing’ is more precise, powerful
and efficient®'°7%%, Pearson, another influential 20" century statistician, commented on the
later emergence in modern statistics of a Gosset-Fisher compromise (i.e. stratified random
designs). He emphasized the value of Gosset’s practical knowledge and how it is, “...too often
forgotten that mathematical models using probability theory [i.e. statistical significance tests]
are there to provide an aid to human judgement.”®>

Whether Fisher agreed with such a sentiment is unknown, but he centered statistical

significance tests in his book, “The Design of Experiments”, published in 1935°3, The book is
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considered foundational to how scientists conduct experiments to this day by introducing ideas
such as null hypothesis significance testing and a P value threshold of <0.05. Fisher’s definition
of the validity of evidence is made clear in this text, where he states that, “...randomization will
suffice to guarantee the validity of the test of significance, by which the result of the experiment
is to be judged” (p. 24). Fisher’s focus was on designing experiments to randomize and minimize
the error (i.e. maximize precision) of the average outcomes under treatment and control
conditions. High precision is more likely to permit rejection of the null hypothesis that the
treatment has an effect not statistically distinguishable from zero. In the book, Fisher does not
consider the accuracy of the average treatment effect at real-world scales, thereby separating
experimental research from quantification of intervention effectiveness.

Indeed, through agricultural examples, the book guided experimentalists toward
reliance on statistical significance — whose shortcomings for reliable knowledge generation are
well understood>2%%9, Less appreciated, however, was Fisher’s related guidance to use
smaller, more homogenous areas for pairing experimental treatments and controls. Such
groups (or ‘blocks’) then had more similar values of non-target causes, increasing precision (but
not necessarily at real-world scales; Fig. 3) of the effect of the agricultural intervention. In
Fisher’s words, “...within so large an area [1 acre] considerably greater soil heterogeneity will be
found, than would be the case if the blocks could be reduced in size to a quarter of an acre or
less” (p.114). This small-plot Fisherian approach has dominated much of ecological
experimentation for at least the last 50 years!*, extending beyond agricultural experimentation
to topics such as whether biodiversity begets ecosystem function’®. With that dominance, the

validity of evidence sensu Fisher’s definition is detached from Gosset’s (and modern causal
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inference’s) philosophy about internal and external validity and thereby leads to large
uncertainty about ecology’s current ability to inform intervention effectiveness at real-world

scales.

RE-CONNECTING ECOLOGY WITH CAUSAL INFERENCE

The preconditions for re-connecting ecology with the causal philosophy of Gosset exist. First,
ecologists are generally motivated to develop an understanding that directly informs policies
and practices for ecosystem management that benefit nature and people’!”>. There is deep
appreciation that quantitative ecological evidence is increasingly demanded for policy efforts
that require consideration of ecosystem services when evaluating potential costs and benefits
of regulatory action’®78, Second, there is a growing ecological literature aimed at increasing
awareness of causal inference?>26343% Yet challenges to capitalising on this groundwork to
build applied causal ecological knowledge remain. Specifically, different definitions of validity
and generalisability unique to ecology versus causal disciplines are difficult to overcome. This
barrier stems from ingrained differences in philosophies about the value and generation of
knowledge. Overcoming this barrier requires ecologists to wrestle with 1) the value of applied
ecology in producing knowledge, and 2) how to realise the PICO framework in terms of a)
defining Populations (P) and individuals, along with how to measure Outcomes (0O), and b) what

constitutes a valid causal Intervention (I) and counterfactual Control (or Comparison: C).
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Value of applied ecology

Ecology has a rich tradition of basic (or fundamental) knowledge generation about causes and
their mechanisms (Fig. 1). This knowledge is critical for building confidence that policy and
practice interventions are based on a sound understanding of the underlying science®2%79, But
appropriately translating mechanistic understanding to policy and practice needs further
attention. For example, in the health sciences, poor characterization of the aetiology underlying
Alzheimer’s disease and depression led to development of medications (the intervention)
targeting mechanisms that were not necessarily the primary causal pathways underlying the
conditions®%82, Causal science helped to reveal these shortcomings in presumed strong
fundamental understanding because the expected effectiveness of the medications at real-
world scales of practice was not realised®%8!, When applying ecological science to policy and
practice, it then seems necessary to question whether knowledge is truly ‘fundamental’ when it
identifies causes and their mechanistic pathways, but not their quantitative impact under real-
world conditions.

Without embracing a truly applied causal ecology, we then suggest that fundamental
knowledge in ecology will remain woefully incomplete for understanding how causal change
affects real-world outcomes (Fig. 2). This synergy between foundational and causal research
belies the claim that stems from a worldview that the generation of new foundational
knowledge will cease if applied research is prioritised over basic®. The claim is rooted in the
ecological definition of generalisability, with its focus on generalising mechanistic principles3.

This worldview holds that efforts to evaluate the effectiveness of a causal (mechanistic)
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intervention at real world scales has limited value for developing general scientific
understanding®*, The perception of limited value is false.

Indeed, Joshua Angrist, one of three recipients of the Nobel Prize in Economic Sciences
in 2021 for his work on ‘causality’ and natural experiments, argued that “The process of
accumulating empirical evidence is rarely sexy in the unfolding, but accumulation is the
necessary road along which results become more general”’8*. Moreover, the reduction in basic
knowledge generation has not been observed in health sciences. Instead, the combination of
basic and applied research has driven knowledge generation that produces foundational
mechanistic knowledge that is inherently needed to develop quantitative evidence of
intervention effectiveness at scale®®21, The importance of the two together — the ‘weight of
evidence’ approach —is instrumental today, and has been historically, for informing major
public health interventions?%8>8¢ and was similarly employed by Guinness to meaningfully
improve agricultural management®. Ecology must wrestle with how it values and conducts
applied versus basic research if it is to incentivize uptake of its scientific knowledge into policy
and practice to produce effective solutions.

For example, most syntheses in ecology now take the form of meta-analyses®’ of
Fisherian-style small-scale experiments that are suited to identifying causes and understanding
mechanisms (Fig. 1). In such analyses, the average meta-analytical effect does not provide an
externally valid estimate of the average intervention effect. Yet the ecological estimates are
intended to inform intervention effects for such things as national-to-market level greenhouse
gas accounting®8892_|n contrast, meta-analyses in causal fields commonly synthesize studies

conducted under real-world conditions that follow the PICO framework (Box 1), generating
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average intervention effects for a comparable set of samples or populations®’. Given the policy
stakes, ecology needs to place greater attention on when and where average effects can be
considered accurate at real-world scales of interventions. Doing so requires that ecology
develop evaluative criteria for the external validity of evidence?64287.9394 sg that the value of

evidence can be appropriately considered for informing application.

Populations and outcomes

In the statistical design of experiments in ecology, the definition of a population and individual
is commonly mismatched with the scale at which interventions are applied. For example, in a
biodiversity-ecosystem function experiment, the population may consist of 120 individual plots
at a research station, with each individual constituting a plot of 2 square metres’® This
definition of a population and individuals does not lend itself well to quantifying the
effectiveness of an intervention, such as row crop diversification, applied at real-world scales’®.
In healthcare research, for example, the individual unit of observation is commonly a person or
group of individuals (e.g. a neighbourhood) — sampled from the target population — that will, at
least theoretically, be able to receive and benefit from the intervention (Box 1). In ecology,
then, the designation of the focal population and individual unit should be contingent upon the
organism or the area of land and/or water that could receive an intervention (Table 1). For
agroecosystems, the population may consist of individual agricultural fields within a growing
region, where the field is the scale at which management decisions are commonly applied. For
species of concern, the unit could be an individual organism, a group, or sub population,

sampled from the wider meta-population. Mixing of individuals, such as if a wolf moves from
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one pack to another, or if two fields are combined into a larger one, will complicate the concept
of an individual unit, requiring flexibility in study designs and analyses to deal with such
situations. Hence, just like the modern definition of an ecosystem®, a population and individual
in a causal study need not be of fixed dimensions, but nonetheless it cannot be ambiguous.
Instead, the population and individual must be defined by the intended intervention (Table 1).
That is, experimentally quantifying effects in ways that reliably inform action must be
predicated on first knowing the scales at which practitioners and policymakers enact
interventions.

Translating the spatial scale of management intervention to the individual will not,
however, guarantee valid causal inferences. For example, a common assumption in causal
inference is that an individual’s potential outcome depends only on their treatment assignment
and not assignments of other individuals®®. Yet outcomes of some ecosystem interventions do
‘spillover’ from one individual to influence observed outcomes of others (Table 1). For example,
marine protected areas (MPAs) research has designated protected areas and adjacent non-
protected areas as treatment and control individuals, respectively®’. The measurement
challenge is that MPAs are intended to increase fish stocks, within MPAs and beyond their
borders. Fish abundances in controls are not then independent of treated (i.e. MPA)
individuals3®. Various approaches have been proposed to overcome spillover issues®. For
example, one approach compares fish species — in control and MPA locations — that are caught
commercially with those that are not. Compared to pre-MPA conditions, ‘catch’ fish species
should see gains in population abundance disproportionally greater than ‘non-catch’ species in

both control and MPA locations given that the ‘non-catch’ species were presumably not being
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over-fished and so stand to gain less from an MPA%. For valid inferences, ecologists must
define, measure and/or model phenomena, like spillover effects, that result in inaccurate
quantification of intervention effects on outcomes (Table 1).

Outcome (i.e. measurement) challenges also emerge from assumptions about construct
validity'®. That is, our ability to translate the concept of the variable we would like to evaluate
into a valid measurement (Table 1). For example, human health is a multidimensional construct
that cannot be directly observed and instead is inferred by measuring indicators such as blood
pressure. Even when the indicator metric is valid, how it is measured may influence construct
validity. Blood pressure, for example, provides different information about a person’s health
when taken in a standing or supine position!°?, Such considerations are core to the broader
field of ‘relational measurement theory’, which focuses on the consistency and coherence of
what is measured and the theoretical concepts those observations are intended to represent. It
is an area of enquiry little explored in ecology!°%19 but with large implications for informing
interventions.

For example, attention to measurement theory in evolution has led to questioning of
the validity of how the concept of fitness is customarily proxied. If observations of fitness
outcomes are mismatched with actual fitness, then scientific evidence gathered to inform
which factors affect viability of animal and plant populations may be flawed'%%1%4, Accordingly,
the flawed estimate will have a strong bearing on whether an intervention based on the

observed ‘fitness outcome’ will reliably translate to recovery of wild populations.
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Interventions and controls

When quantifying intervention effectiveness, Holland?? defined a causal intervention as
something that could, in principle, be a treatment in an experiment, and hence manipulated.
Following Rubin?!, this definition of cause applies to experimental and observational studies,
where in the case of observational studies, manipulation of a causal intervention is not under
the investigator’s control. The inclusion of observational studies—that do not necessarily meet
the ‘gold standard’ of manipulative experiment—expands availability of evidence. Such
evidence may be more immediately available and less costly than generating experimental data
at real-world scales. To quote Rubin??, “...it seems more reasonable to try to estimate the effects
of the treatments from nonrandomized studies than to ignore these data and dream of the ideal
experiment or make “armchair” decisions without the benefit of data analysis.”

Conceiving causes as potentially manipulable —in an externally valid manner — means
that not every cause of interest to ecologists may be amenable to direct quantification of its
‘intervention effect’ under real-world conditions. For example, millions of dollars were spent on
free-air CO; enrichment (i.e. FACE) experiments to query forest responses to elevated
atmospheric CO,1%. These studies produced valuable knowledge by identifying mechanisms of
plant and microbial response!®®1%7. However, treatment plots received a large step change in
CO; concentration, emulating projected levels in 2050, rather than the gradual change that
ecosystems are experiencing. Step changes produce different outcomes, in part because
physiological responses to step versus gradual changes are distinct'%. Yet implementing a
gradual increase in CO,, along with associated changes (e.g. warming), would not generate

knowledge at a rate faster than what is occurring anyway and a real-world counterfactual
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scenario is not immediately apparent. For projecting ecosystem outcomes under changing
atmospheric CO,, contemporary ecological approaches — such as integrating controlled
experimental knowledge through process-based models (Figs. 1, 2) — then seems necessary. But
in many other policy- and practice-relevant instances, such as in the implementation of wildlife
corridors or regenerative agriculture, ecology is presented with causes that are amenable to
externally valid manipulation and hence opportunities for direct quantification of intervention
effectiveness.

When a valid causal intervention is identified, its effectiveness is estimated by
comparing the treatment with the control condition. The accuracy of this estimate depends on
decisions about what constitutes an appropriate comparison scenario for non-treated
individuals!®11% The scenario provides information on the counterfactual, i.e. what is
presumed to have occurred in the absence of the intervention. The counterfactual need not
come from a simultaneous control group and could be an historical baseline, or a weighted
average of individuals approximating the non-intervention condition (e.g. a synthetic
control!!!). Confidence in the accuracy of the intervention effect depends on the suitability of
the counterfactual (Table 1). For example, much of the debate about how conservation efforts
affect forest carbon stocks revolves around choice of ‘control’ individuals!2. Specifically,
representativeness of the comparison is greatest when the treatment and control individuals
each span the same range in values of non-target causes and are equally likely to have been
assigned the intervention. For example, forest harvest effects on soil carbon stocks are
commonly estimated using forest stands already protected from timber harvest as the

comparison group!!3. Such stands may be a poor baseline because they have confounding

23



494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

characteristics, such as proximity to wetland or access restricted by topography!3, that make
them unlikely to be harvested and distinct from treated stands in ways that bias the estimated
effects of the practice intervention.

The comparison group should also receive the policy or practice that would be most
likely to occur absent the intervention. In forest carbon accounting, debate about which non-
intervention scenarios are valid determine whether interventions are viewed to create sources
or sinks for greenhouse gases''*115, For instance, if rates of assumed deforestation in the
comparison group are higher than what would have truly occurred absent the intervention,
carbon gains are overestimated!!?. Such a situation typifies what Holland?3 referred to as ‘the
fundamental problem of causal inference’. That is, an individual cannot both receive the
treatment and control, meaning that the true causal effect of the intervention cannot be
determined but instead must be estimated using a valid counterfactual. Confidence in the
validity of the inference emerges when similar treatment effects are estimated for different
sets of reasonable assumptions (Fig. 3) about, for example, what is a suitable baseline for
comparison!!®118 Ecology’s rich mechanistic knowledge, when combined with causal
understanding, will be critical for determining these baselines. Consequently, the definition of a
causal intervention (and its comparator), like a population and individual, must emerge from
ecological knowledge about how a system works and how human decisions about interventions

translate to how they are implemented versus when they are not.
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Conclusions

Adopting a causal framework is not a panacea for generating evidence about all causes of
interest to ecology. Some causes, such as elevated greenhouse gas concentrations and climate
warming, may not be amenable to the PICO framework in ways that generate high external
validity and timely estimates of treatment impact. Yet for those causes that are amenable —
such as natural climate solutions — adoption of a PICO framework is essential if ecologists are to
accurately and reliably estimate the effectiveness of policies and practices centred on
ecosystem management to realise production, biodiversity and climate goals. Connecting this
new knowledge with contemporary ecological understanding, of potential causes and their
mechanistic pathways, will support efforts to achieve expert consensus on which interventions
are likely most beneficial. Guinness scientists showed, at the beginning of the last century, how
such an integrated approach — an ‘applied causal ecology’ — could serve as the basis for
impactful decisions around agricultural practices. If this integrated causal approach can be
resurrected in ecology, we expect it to be instrumental in providing evidence to set policies and

practices that most effectively restore the health of nature.
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Fig. 1 Conceptualisation of knowledge imbalance in ecology generated by two, distinct
philosophical approaches for developing evidence, with implications for science-based
decision-making. Ecological knowledge is predominantly developed through an ‘identifying
causes’ approach to research. Given that process-based and theoretical models (not shown)
primarily make use of this evidence, they also fit within this body of knowledge (yet could
incorporate knowledge from both philosophies). Applying ‘identifying causes’ evidence to
inform policymakers and practitioners about the likely effectiveness of an intervention requires
many assumptions about how mechanistic knowledge translates to intervention effectiveness
(depicted as indirect evidence: light blue arrow). In contrast, ‘quantifying causes’ research is
designed to robustly estimate the effectiveness of causal interventions under the real-world
scales at which they are applied (direct evidence: dark blue arrow), giving evidence higher
external validity. If ecology broadly adopts ‘quantifying causes’ approaches, the collective
evidence base will comprise knowledge of why (i.e. mechanisms) and how (i.e. effectiveness)

interventions are effective, facilitating more confident science-based decision making.
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871

872  Fig. 2 Flow diagram of two, distinct philosophical approaches for developing scientific

873  evidence. Ecology is dominated by the ‘identifying causes’ philosophy (black text and lines),
874  which is typically used in ecology to identify causes by their ability to explain variation in

875  observed outcomes, and via controlled lab and field experiments that manipulate causal

876  variables while minimizing variation — through study design —in other causes. In contrast, the
877  ‘quantifying causes’ approach (blue text and lines) focuses on estimating the treatment effect
878 of acause (e.g. a policy or practice intervention) for a specified population and timescale and
879  subsamples individual units to orthogonally and representatively capture variation in other
880 influential causes on the population-level outcome. Both philosophies employ a range of

881 approaches to inference, including Bayesian and frequentist statistics, and inductive and

882  deductive reasoning. Yet the two philosophies are distinct in their questions, study designs and
883  analytical reasoning. Integration of the evidence (e.g. through process-based modelling) guides
884  further research under both philosophies (reverse arrows from ‘integrate evidence’ box not
885  shown). Were ecology to more broadly adopt ‘quantifying causes’ research — perhaps through a
886  new subfield of ‘applied causal ecology’ — it would dramatically expand the types of knowledge
887 generated and how they feedback upon one another (blue text boxes and arrows), thereby

888 leading to a more comprehensive basic and applied knowledge base.
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Fig. 3 Schematic of the classical (a) and causal (b-e) depiction of accuracy, where under the
latter accuracy cannot be definitively known because conceptions of ‘truth’ emerge from
inference based on evidence of mechanisms and estimates of causal effects. In the classical
depiction (a), accuracy is determined against a known value (the archery target), such as a
census (i.e. all individuals in the population are measured) or a laboratory standard, against
which unknown values are compared. Higher accuracy is depicted by samples nearer to the
centre of the target. Under causal inference, however, confidence in the accuracy of estimated
intervention effectiveness emerges as mechanistic understanding (b,c) and real-world evidence
of intervention effects grows (d,e). Multiple archery targets are depicted for causal conceptions
(b-e) because equally plausible conceptions of ‘truth’” may be suggested by the available
evidence. Confidence that estimated effects are likely accurate (transition from b to e) emerges
as different types of knowledge, and the influence of researcher decisions3®118-122 pegin to
constrain the range of plausible effect estimates. Note that confidence in the accuracy of
estimated treatment effects is relatively low with only mechanistic knowledge (b,c), demanding
study designs that yield externally-valid estimates (d,e) to improve confidence that estimated

intervention effects will be realised under real-world conditions'23-12>,
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907 Box 1 Causal research designs to quantify the effectiveness of interventions

908 The Population-Intervention-Control-Outcome (PICO) framework establishes a framework for
909 causal research designs intended to generate real-world evidence®1°. Such designs are

910 common in causal fields, such as epidemiology. For example, consider a theoretical

911 interventional study for a human population to estimate the efficacy of statins at reducing LDL
912  (or ‘bad’) cholesterol. Such a study would only enrol individuals who would plausibly benefit
913 from receiving statins as the intervention. Since adults, not children, generally experience

914  health burdens attributed to high LDL, the target population from which study participants are
915  selected would not include minors. Similarly, to robustly estimate the effect of statins, other
916 factors associated with high LDL, such as exercise and diet, must be accounted for in study

917  design and/or analysis, such as through inclusion of adult participants that span ranges in

918 exercise and diets representative for the target population. With good baseline and subsequent
919 follow-up data for high-LDL individuals opting to receive treatment or not, this study design will
920 allow the investigator to identify variation due to the treatment from variation due to other
921  causes, resulting in estimation of a plausibly accurate, sample average effect of statins!l. Given
922  the external validity of the design, this average treatment effect (i.e. ATE) could confidently be
923  expected to approximate the average, population-level benefit of the intervention if it were
924  adopted as a health intervention for the target population.

925 Study designs incorporating these principles for ‘ecosystem management interventions’
926  arerare in ecology (good examples include**°%126) but common in causal fields'12%3484 Table 1
927  applies the study design principles from the statin-intervention study to an ecosystem example
928  of agricultural land to forest conversion at a regional-scale. In contrast, current ecological

929  studies conducted at this scale, such as the soil module of the European Union (EU) ‘Land

930 Use/Cover Area frame statistical Survey’3%33, follow designs suited to identifying potential

931 causes and effects versus quantifying causes (Fig. 2). Yet, the original intent of LUCAS Soil was
932  to assess soil characteristics in relation to practices (e.g. land use) driven by the presence or
933  absence of policy instruments33, and hence the effectiveness of interventions that incentivize
934  change in agricultural practices to improve soil health. For example, resulting studies to address

935 questions about effects of practices on soil microbial biomass, a variable that is crucial to soil
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health and hence food security!?’-13°, have focused on explaining variation across all measured
fields due to multiple factors, including climate and soil texture3132, Such knowledge is
important for understanding mechanism but does not directly guide interventions because
climate and soil texture are not causes that can be directly affected by agricultural policies
focused on improving soil health. Furthermore, the inclusion of all fields irrespective of
intended policy interventions means these data are not directly applicable to the population of
interest. For example, for a program promoting reforestation to sequester soil carbon, high-
yield fields may be ineligible given the need to produce food and prevent ‘carbon leakage’
through compensatory conversion of other lands to arable agriculture. Study designs tailored to
quantify intervention effectiveness then require a focus on the subpopulation of fields that are
eligible for the intervention, sampled to account for but not necessarily quantify the effects of
non-target causal variables®.

Ecology is largely depauperate in such causal intervention research designs (see Fig. 1)
but by translating approaches from causal fields (Table 1), would be well positioned to address
many questions that have high value for directly informing policies and practices to achieve

production, biodiversity and climate goals.
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Table 1. General components and related principles for studies designed to estimate the

guantitative impacts of ‘ecosystem management interventions’ (see Box 1). The collective

intent of employing these principles is to generate external validity in the estimated average,

population-level benefit (and potential downsides) of an intervention. The principles are

illustrated assuming their application to the Box 1 example of agricultural land to forest

conversion impacts on soil carbon sequestration. Application of the principles centres study

design and knowledge of the system as critical to making valid causal inferences. Such

inferences provide robust quantitative evidence, that policymakers and practitioners can have

high confidence in, for making decisions about the efficacy of interventions to protect and

restore nature.

Component Principle Example of application
Individual/ - An ‘individual’ (or group — - For reforestation of arable land, an agricultural field might be
Population/ see main text) is the unit considered the individual given that it is the unit of
Outcomes that receives the management.
intervention
- The population is made up - The population should consist only of treatment and control
of the individuals, under a fields that are eligible to be reforested. Consideration of fields
defined context, that are as controls that are ineligible for reforestation, perhaps
eligible to receive the because they have high fertility and relatedly crop yields, could
intervention confound understanding of intervention efficacy.
- Measure the individual - Agricultural soil studies often measure only a single small
responses (the outcome) in area within a field. Such designs are inefficient when
a representative manner contrasted with taking multiple samples across each field, and
make estimated effects of interventions unreliable!33-1%6,
Similarly, the measured outcome variable for the individual
should be a valid construct for the desired response. For
example, soil carbon concentrations are not suitable proxies
for assessing changes in soil carbon stocks. In addition,
investigators should be aware of ‘spillover effects’ where, for
example, trees grown immediately adjacent to a control field
will influence crop yields in that field**” and hence baseline
carbon removals.
Causes - Focus on quantifying a - The focus should be on quantification of the effects of

(Interventions)

specific cause (i.e. the
intervention) applied as in
real-world settings

- The process of assignment
to intervention treatment
should satisfy — or

reforestation, and not on ‘causes’ that cannot — at least in
principle — be manipulated but which might influence the
outcome (e.g. soil texture). Such a focus shifts study goals from
explaining variation in the outcome, to quantification of the
causal effect of interest!38. Further, to inform policy and
practice, the focus should be on evaluating the reforestation
interventions under the real-world conditions under which
they are applied.

- Fields in the study to be reforested should have an
approximately equal likelihood of being assigned to the
‘control’ group?L. Such considerations help to avoid
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approximate — the
exchangeability criterion

- Choose a suitable control/
comparison against which to
estimate the intervention
effect

confounding, for example, where a farmer might choose to
reforest their least fertile fields, raising questions about the
suitability of unconverted fields to function as valid
comparators.

- A causal effect is always estimated relative to a suitable
comparison group. A suitable control or comparison group
may, for example, allow consideration of dynamic baselines
that serve as a plausible counterfactual scenario to estimate
what would have happened had reforested fields not received
that treatment.

External
validity

- Select the sample of
individuals to measure from
the target populationin a
representative manner

- The time and spatial scale
should match with policy
and practice needs

- The treatment effects
should be robust to
repetition and ideally
transferable

- Population-level variation in non-target causal variables
which influence the outcome (e.g. soil texture on soil carbon)
should ideally be captured across the sampled individuals, and
be orthogonal to the target cause, in this instance
reforestation. For example, older farms might have more
fertile soil (reflecting the original choice of location to establish
a field), so treatment and control fields might be stratified by
farm age. Capturing such variation through study design makes
the sample treatment effect more representative of the likely
population treatment effect.

- Ecological evidence is often needed on accelerated
timescales to inform decision makers. However, the impacts of
those decisions, such as to reforest, are typically longer term
and realised at broader spatial scales. Such realities require
study designs that also measure impact once interventions are
applied at scale to evaluate how nearer-term effects are
realised at the real-world timescales of intervention impact.

- The estimated treatment effect should be approximately
equal when different reforested and control fields are sampled
from the same population. Such robustness to study design
and analysis decisions builds confidence that the efficacy of
the intervention will be realised when applied to the
population (i.e. the estimate is generalisable). Testing the
impact of the intervention under new contexts (e.g. in one
region of France versus another physiographic province) and
being able to explain how and why effect sizes compare (or
don’t) for the same intervention, builds confidence that the
intervention will be applied only to populations where it is
effective (i.e. transferability).
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