

Forest fecundity declines as climate shifts

³ Jessie J. Foest^{*1}, Jakub Szymkowiak^{1,2}, Marcin K. Dyderski³, Dave Kelly⁴, Georges Kunstler⁵, Szymon
⁴ Jastrzębowski⁶, Michał Bogdiewicz¹

5

⁶ ¹Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu
⁷ Poznańskiego 6, 61-614 Poznań, Poland.

8

⁹ Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
¹⁰ Department of Systematic and Environmental Botany, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland.

10

¹¹ J. Lewandowski, *University, Uniwersytetu Poznańskiego 6, 61-014 Poznań, Poland.*
¹² ⁴ *School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.*

13

¹⁴ ⁶Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Lesnei

1

15 Poland.

16

¹⁷ corresponding author: jiffoest articles@protonmail.com

Key words

20 Abstract

21 Tree fecundity underpins regeneration and range tracking, yet may decline when climates exceed reproductive niches. Using
22 34 years of Polish harvests (40,530 observations across 438 districts) spanning oaks (*Quercus robur*, *Q. petraea*), European
23 beech (*Fagus sylvatica*), Scots pine (*Pinus sylvestris*), and silver fir (*Abies alba*), we tested whether climate change has changed
24 fecundity. Viable seed production declined by 32–65% across species (oaks ~65%, pine ~64%, fir ~44%, beech ~32%).
25 Summer warming was the dominant driver, with hotter summers reducing fecundity across species. Growing-season moisture
26 and spring temperature contributed little beyond local fecundity effects. Weather effects varied with climate, indicating diverging
27 within-site (transient) and across-site (equilibrium) sensitivities. This suggests local adaptation or acclimation capacity, offering
28 actionable management leverage. Together, our results show warming-driven fecundity declines, pushing populations beyond
29 optimal ranges of their reproductive niches, and suggest potential scope for mitigation through informed provenance selection.

30 Introduction

31 Tree reproduction governs the renewal of forest ecosystems, shaping composition and structure over long time scales (1; 2; 3).
32 Fecundity can offset mortality and contributes to resilience, determining whether populations recover and how communities
33 restructure after increasingly frequent disturbance (3; 4). Because seed output determines both the supply of new individuals
34 *in situ* and their dispersal potential, it links demography to range dynamics and the capacity of species to track shifting climate
35 niches (5; 6; 7; 8). Fecundity also determines seed supply for nurseries: climate-driven shortfalls and variability in seed years
36 can limit restoration plantings and assisted migration programs that depend on sufficient, provenance-appropriate collections
37 (9; 10). In Europe, accelerating tree mortality and disturbance frequency increase reliance on successful reproduction and a
38 need for reliable seed supply (11; 12; 13; 14). This suggests a central question: is reproduction keeping pace, when it is arguably
39 more sensitive to climate variation than survival or growth (15)?

40 Across the few long-term records available, fecundity shows a generally declining trend that is associated with climatic
41 conditions during key phenological stages, while the disruption of masting dynamics (the characteristic synchronised year-to-
42 year variability in seed production) causes viable seed crops to decline over time despite increased reproductive investment
43 in seeds (Table 1). Positive trends exist but are context-specific. In *Nothofagus solandri*, increasing moisture without strong
44 warming is associated with higher seed production (16). In *Quercus crispula*, warmer springs have increased mast frequency,
45 raising mean seed output while maintaining masting and its benefits (lower predation, sustained pollination) (17). However,
46 if cues occur too regularly, masting can collapse with consequent reductions in viable seeds (18). In *Fagus sylvatica*, warmer
47 summers increased the frequency of flower initiation, resulting in more regular seeding but fewer overall viable seeds (i.e.,
48 successfully pollinated and not predated) because of reduced pollination efficiency and weaker predator satiation (19; 20; 21).
49 In *Picea engelmannii*, an apparent positive trend is driven by an exceptional mast year at the end of the time-series; nonetheless,
50 its stable or positive reproduction likely reflects warming that has not yet moved the species towards a suboptimal region of its
51 reproductive niche (22). Taken together, these cases suggest a coherent pattern: fecundity declines when sustained warming and
52 shifts in moisture push populations away from the historical climatic optimum for reproduction, remains stable where climate
53 change has not yet shifted populations outside the stable region of the fecundity performance curve, and increases when climatic
54 change moves populations towards this optimum. This aligns with the expectation that sustained environmental change reduces
55 fecundity as niche mismatch grows (23).

56 Because reproduction proceeds through successive phenological stages — flower initiation, pollination, and seed maturation

57 — the climatic niche for fecundity is effectively partitioned among these phases, each with its own sensitivity to temperature
58 and moisture (15; 24; 25). In European beech, floral initiation is strongly driven by summer temperatures: cool summers two
59 years prior and hot summers one year prior to flowering promote abundant initiation (26; 27). Once initiation occurs, later stages
60 proceed with relatively little climatic constraint (28). In Norway spruce (*Picea abies*), cone production also correlates positively
61 with summer temperature in the year before (29). Temperate deciduous oaks (*Quercus* spp.) show greater complexity (30; 31).
62 In oceanic climates, seed production is linked to floral initiation, whereas in more continental climates, pollination success
63 has a larger effect and therefore seed crops show a stronger dependence on spring weather (31). Rising spring temperatures
64 can therefore enhance oak fecundity under some conditions (32), but reduced seeding stochasticity may also weaken predator
65 satiation and therefore reduce viable seed counts (33). Other stressors, e.g., drought and late spring frost, further modify
66 reproductive responses. Prolonged drought can reduce reproduction in many species (34; 15; 35), though some maintain seed
67 production at the expense of growth or defence (36; 37; 38). Late spring frosts can eliminate flowers entirely, with impacts
68 varying across species and populations, for instance, through variation in flowering phenology (33; 39). These patterns indicate
69 that climate impacts on fecundity can emerge through stage-specific bottlenecks. Given these stage-dependent sensitivities and
70 the link between masting and seed viability, attributing temporal trends in fecundity requires stage-specific climatic metrics and,
71 where possible, measures of viable rather than total seed output.

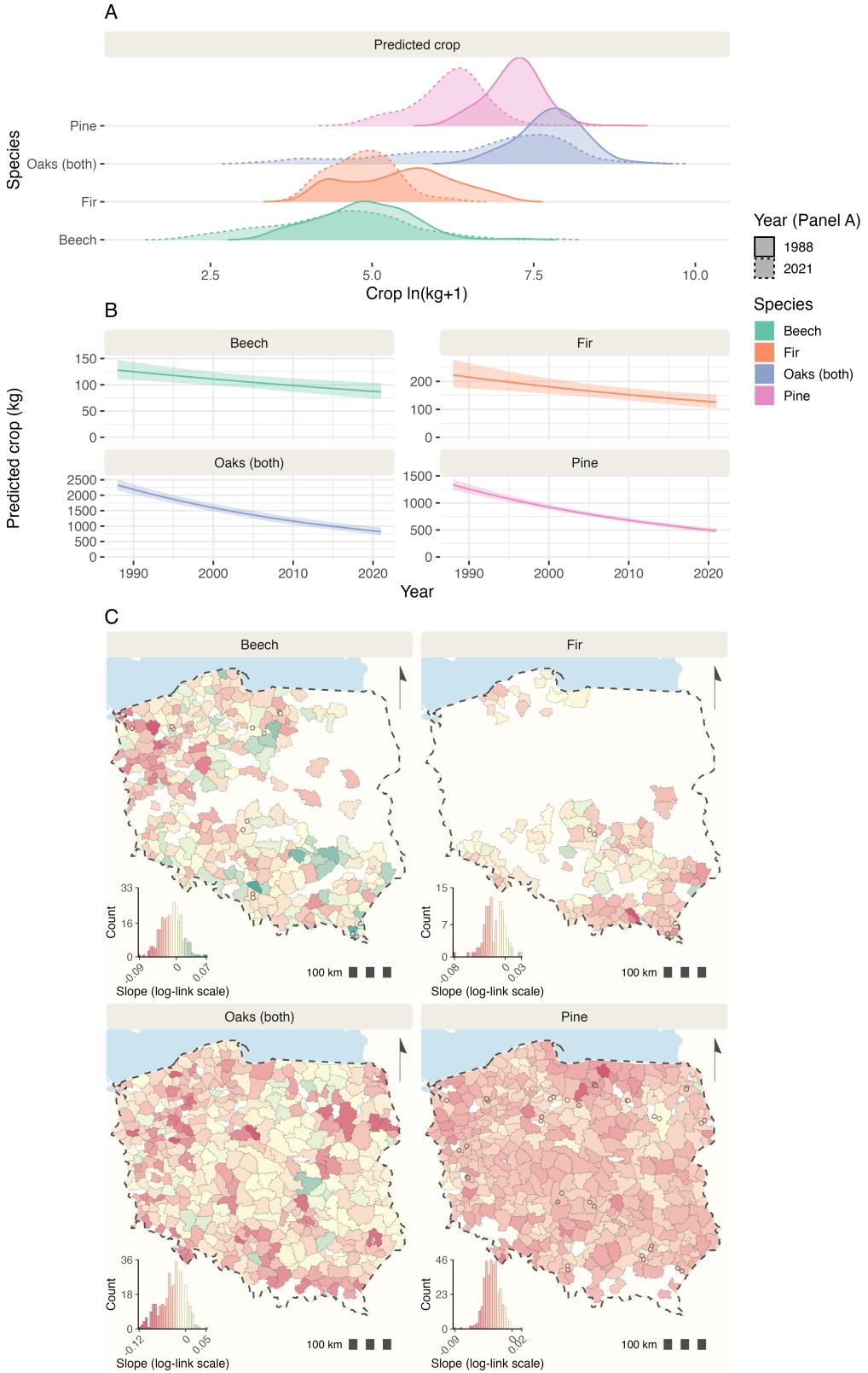
72 As climatic cues and vetoes affecting fecundity at each reproductive stage are episodic and spatially variable, tracking
73 fecundity trends demands observations that are both long-term and extensive. Such data are rarely available, because sustained,
74 community-wide monitoring of seed production exceeds the scope of most research programs. Even if initiated today, new
75 monitoring networks would fail to capture past changes that may already have altered forest reproductive capacity. Harvest
76 records, widely used in ecology when scientific monitoring is not available (53; 54; 55; 56), can provide retrospective insight.
77 In Poland, the state forestry administration funds annual seed collection across all forest districts to supply regeneration and
78 reforestation programs for the main tree species. These records (40,530 observations spanning 34 years, 1988–2021) document
79 both the mass of seed and cone collected (hereafter referred to as seeds for brevity) from seed stands in each district, and
80 the demand driving collection intensity. Importantly, the harvest records comprise only sorted seeds (eliminating empty,
81 underdeveloped, or infested seeds), thereby representing an estimate of viable seed crops as opposed to total seed output.
82 Their interpretation requires caution, as harvests reflect not only seed availability but also reforestation needs and logistical
83 capacity. Because collectors may sample multiple stands within a district, viable seed production might be overestimated
84 when demand is high, while low demand for planting suppresses sampling effort. Since demand for seeds is documented, it
85 can be incorporated into statistical analyses, allowing the separation of demand-driven fluctuations from biological trends in
86 fecundity. With this adjustment, harvest records provide one of the few available windows into multi-decadal, community-wide
87 reproductive dynamics in European forests.

88 Here, we use this nationwide dataset to examine temporal trends in fecundity for five dominant forest-forming species and
89 their links to seasonal climate: European beech (*Fagus sylvatica*), silver fir (*Abies alba*), Scots pine (*Pinus sylvestris*), and
90 oaks (pooled *Quercus petraea* and *Q. robur*). We test whether climatic change has reduced fecundity in European forests by
91 pushing populations beyond the optimum range of the reproductive climatic niches. Specifically, we predict that (i) fecundity
92 has declined across species, (ii) changes in seasonal climate, including summer and spring temperatures during phenologically
93 sensitive stages, explain much of this decline, and (iii) the magnitude and direction of these effects vary across local climates,
94 reflecting population-specific reproductive niches and their thermal optima associated with local adaptations (57). By testing
95 these predictions, we provide a community-wide assessment of long-term fecundity change, quantifying how both temporal

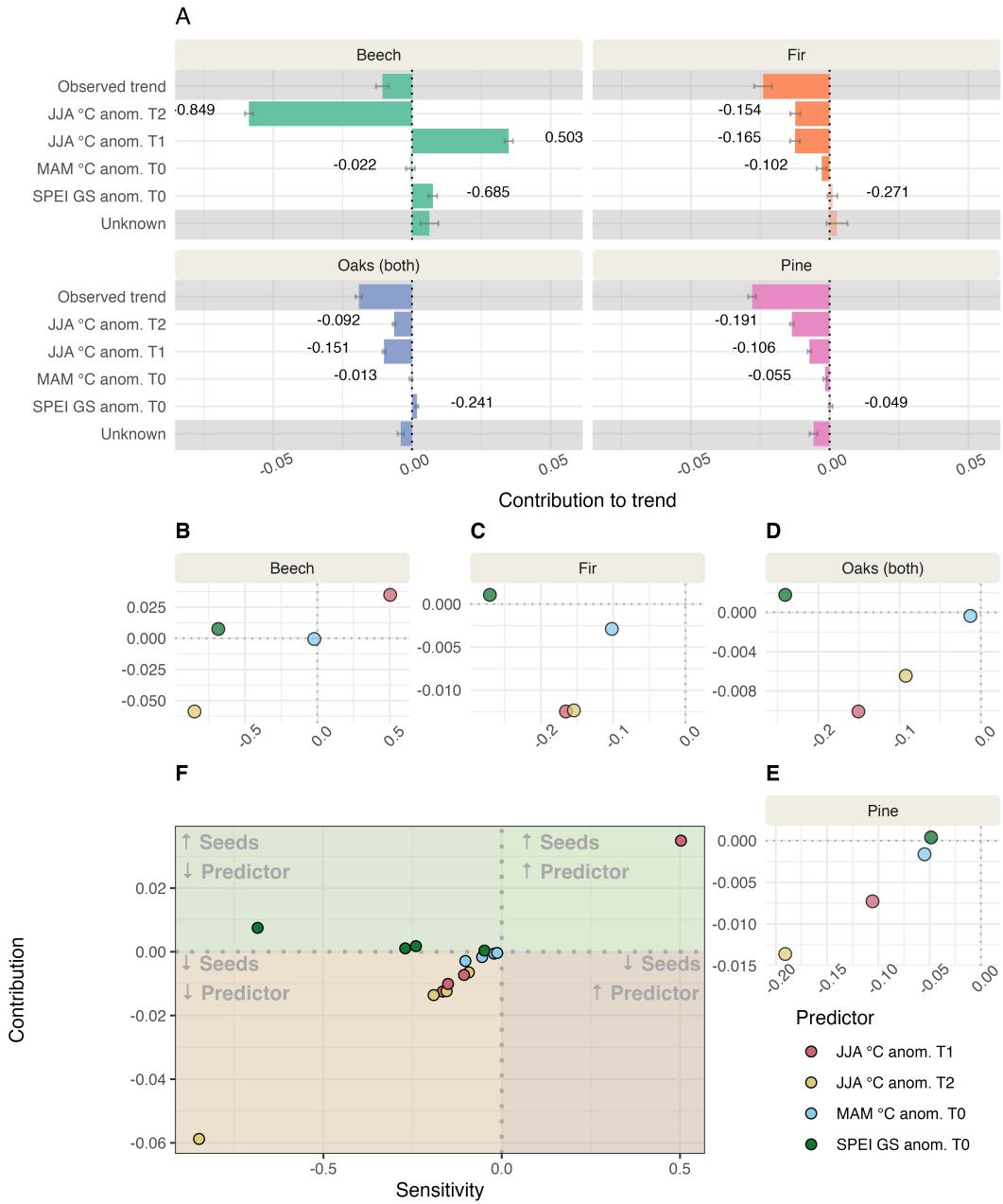
96 trends and local climatic context shape the reproductive response of Europe's dominant tree species to sustained environmental
97 change.

98 **Results**

99 **Fecundity declined across-species.** In agreement with prediction (i), our long-term dataset reveals a consistent decline in
100 mean seed production over the past three decades across all species (Fig. 1, Table S1). The oaks showed a decline of -64.8%
101 (± 0.003 SE), scots pine -63.7% (± 0.004 SE), and silver fir and European beech experienced more moderate declines of
102 -43.7% (± 0.05 SE) and -32.5% (± 0.08 SE) respectively (Fig. 1). Spatially, a consistent pattern of declining fecundity
103 emerges across most populations (Fig. 1C), with the level of spatial heterogeneity varying by species. While many regions
104 show negative trends in seed production, others, particularly in central Poland, exhibit milder declines or even localised increases.
105


106 **Fecundity trends are attributable to climate change.** We used a temporal attribution framework (58) to evaluate how
107 long-term trends in seed production are associated with climatic conditions during the key phenological stages of flower-to-fruit
108 development (prediction ii). Contribution captures how much each climatic predictor drives the fecundity temporal trend, while
109 sensitivity quantifies the effect size of the predictor-response relationship. That is, how much seed production changes per unit
110 change in a climatic predictor (Fig. 2B).

111 Increases in summer temperature two years before seed production (T2) were consistently associated with lower seed
112 output across all species (Fig. 2). Warming in the summer one year before seed production (T1) also predicted lower output
113 for most species; the exception was beech, where warmer T1 summers increased seed production (Fig. 2). Even in beech,
114 however, the negative T2 effect dominated, yielding a net negative effect of summer warming on seed output. Species showed
115 sensitivity to growing season moisture (SPEI) (Fig. 3, 2, Table S2), but its contribution to long-term trends was limited.
116 The modest contribution aligned with the smaller magnitude of change in this climate driver relative to the other variables
117 (Table S3). In other words, SPEI patterns suggested a potential emerging risk factor, although they have not been a primary
118 driver of change to date. Minimum spring temperatures contributed little to temporal trends and showed weak sensitivity overall.
119


120 **Local climate modulates effects of seasonal weather on seed production** To test whether local climate mediates the
121 effects of seasonal weather on fecundity (prediction iii), we fitted species-specific GLMMs with interactions between seasonal
122 climate anomalies and site mean conditions. The resulting effects show that both the magnitude and the sign of weather effects
123 depend on overall climate and season (Fig. 3). All reported coefficients and standard errors are on the model (log-link) scale.

124 For nearly all species, effects of summer temperature in the year before seedfall (T1) varied with site mean summer
125 temperatures (beech: -0.09 ± 0.03 SE, $p = 0.007$; fir 0.08 ± 0.04 SE, $p = 0.03$; oak -0.07 ± 0.03 SE, $p = 0.005$; site conditions
126 are not centred), suggesting moderation by local climate. For instance, the increasing seed production related to high summer
127 temperatures (T1) was stronger in cold sites for beech. Across the observed climate norms, high summer temperature anomalies
128 (T1) reduced seed production in both fir and oak; the decline was strongest at colder sites for fir, but intensified at warmer sites
129 for oak. Pine produced more seeds in warmer sites (0.16 ± 0.04 SE, $p < 0.001$), but not in warmer years (0.48 ± 0.42 SE, $p =$
130 0.25).

131 Temperature anomalies during the summer two years before seed production (T2) generally showed consistent but non-
132 significant negative trends across species. Oak was the exception: seed production was lower following hot summers, especially

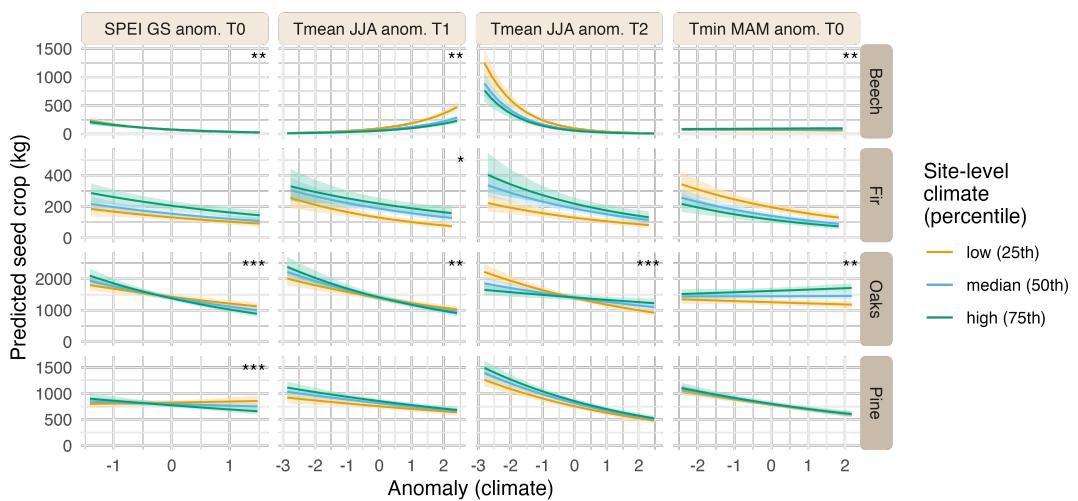


Figure 1: Over three decades, average seed crops have decreased across species. A) Probability density functions of predicted seed crops at the start (solid line) and end (dotted line) of the study period across sites and species show the overall leftward shift in the predicted crop distributions across sites. Predictions are log-transformed for visualisation. B) species-specific panels show the general, across sites, declines in seed production over time. For partial residuals, see Fig. S2. C) Despite the general decline, there is spatial variation in temporal fecundity trends (Local patterns: red = declines, teal = increases. See inset histograms for species-specific legends) across forest district boundaries ('sites'; shown as polygons). Where forest district boundaries changed over time, coloured points mark the trend at each district's historic main administrative location, while the enclosing polygon colour shows the average of these sites. Trends were estimated using species-specific Tweedie-family generalised linear mixed-effects models with site-level random slopes on a log-link scale, and accounted for variation in sampling effort. See Methods for details.

Figure 2: Temporal changes in seasonal weather explain a large portion of observed temporal variation in fecundity.

A) Contribution of changes in seasonal climate variables to observed long-term fecundity trends across species. Lagged summer temperature anomalies were the dominant drivers, while the unexplained component (“unknown”) was comparatively small. Sensitivities of fecundity to each predictor (effect size per unit change) are shown as labels next to the plot bars. (B–E) Species-specific contributions and sensitivities plotted jointly for each seasonal predictor. This highlights potential risks from variables that have shown little temporal change but to which fecundity is highly sensitive such as growing season SPEI. Panel F summarises patterns across species. Abbreviations: GS = growing season; anom. = anomaly relative to site mean climate; Tx = time lag (T0 = year of seed production); Tmean = mean temperature; Tmin = mean minimum temperature; JJA = summer months; MAM = spring months. GS = growing season; anom. = anomaly from mean climate; Tx = time lag, with T0 indicating the year of seed production; Tmean = mean temperature; Tmin = mean minimum temperature; JJA = summer months; MAM = spring months; SPEI = Standardised Precipitation-Evapotranspiration Index.

Figure 3: Weather effects on seed production depend on local climate. Temporal deviations from a site's typical climate during reproductively sensitive phases are linked to variation in seed crop size, but the magnitude and direction of these effects differ across climates and taxa. Predicted seed production (back-transformed) was derived from bootstrapped GLMMs (1000 replicates per species and climate-anomaly combination) across gradients of climate anomalies for three representative site climates (line colours). Shaded ribbons show 95% confidence intervals around the predicted mean response. GS = growing season; anom. = anomaly from mean climate; Tx = time lag, with T0 indicating the year of seed production; Tmean = mean temperature; Tmin = mean minimum temperature; JJA = summer months; MAM = spring months; SPEI = Standardised Precipitation-Evapotranspiration Index. Asterisks show significance levels for site × anomaly interactions: p < 0.001 = ***, p < 0.01 = **, p < 0.05 = *.

133 in cold sites (0.15 ± 0.02 SE, $p < 0.001$; Fig. 3).

134 Spring temperature anomalies and site conditions also influenced seed production. In beech and oak, cooler springs reduced
135 seed production in warmer sites, but these cooler years increased seed production in colder sites (beech: 0.11 ± 0.04 SE, $p =$
136 0.003 ; oak: 0.08 ± 0.022 SE, $p = 0.001$). Fir populations in warmer sites produced fewer seeds (-0.59 ± 0.13 SE, $p < 0.001$).

137 The effect of SPEI growing season anomaly on seed production depended, for most species, on site SPEI levels. For beech,
138 drier sites (low SPEI) experienced stronger decreases in seed production in wet years (higher SPEI anomaly; 4.74 ± 1.55 SE,
139 $p = 0.007$). Conversely, oak and pine showed that wet years in drier sites were associated with higher seed crops (oak $-3.81 \pm$
140 1.09 SE, $p < 0.001$; pine -3.87 ± 0.99 SE, $p < 0.001$). Fir seed crops, moreover, were higher in wetter sites (7.17 ± 1.46 SE, $p <$
141 0.001).

142 Discussion

143 Our analysis of nationwide Polish harvest records reveals broad declines in fecundity across Europe's dominant tree species, with
144 few regions showing stability or increase over the past three decades. These results support our prediction (i) that climatic change
145 is eroding reproductive capacity where populations are pushed beyond their optimal climatic conditions. Declines were strongest
146 in Scots pine and oaks and weaker, though evident, in European beech and silver fir. In European beech, the decline is consistent
147 with disrupted masting, also detected in these populations (59), and an associated reduction in viable seed production due to
148 increased seed predation and reduced pollination. We thereby extend species-level reports of reduced fecundity in temperate
149 and boreal forests to the community scale (44; 16; 2; 45). In Scots pine, marked fecundity declines combined with increasing
150 climate-driven mortality suggest that reproductive output may become insufficient to offset population losses, although further
151 research is needed to quantify downstream demographic consequences (60; 61). Partial buffering in beech and fir likely reflects
152 interspecific differences in reproductive thermal niches and stage-specific climatic sensitivity during flower–fruit development.

153 Because harvest records reflect both biological supply and reforestation demand ('sampling effort'), we accounted for
154 temporal variation in demand to isolate biological trends. The negative trajectories persisted, indicating that declining seed
155 availability cannot solely be attributed to fluctuations in collection effort. Some uncertainty remains when effort and biology
156 share trends, but the direction and magnitude of our declines align with independent evidence of large fecundity losses: a >50%
157 decline in viable seeds in European beech in the UK (21), and a 40% decline in cone production in pinyon pine in New Mexico
158 (44), and an 80% decline in fruit production in Gabon (50). The scale of these changes matches or exceeds contemporary
159 declines in growth and increases in mortality (62; 63; 64), consistent with the view that fecundity is a strongly climate-sensitive
160 demographic rate (15) and an early signal of population stress driving forest restructuring under ongoing environmental change.

161 Consistent with prediction (ii), linking fecundity trends to seasonal climate during phenologically sensitive stages shows
162 that climate change drives long-term declines via stage-specific sensitivities. Across all species, warmer summers two years
163 before seed production were associated with lower seed output, indicating a negative sensitivity of flower initiation to elevated
164 temperature. In beech, seed production declined with summer warming two years before reproduction, consistent with the
165 species' requirement for cool summers during floral initiation (27; 65). Warmer summers one year before reproduction partly
166 offset this decline by promoting flowering initiation (21; 19), yet the net contribution of summer warming remained negative.
167 The magnitude of fecundity decline is comparable to trends associated with masting breakdown, including increased seed
168 predation and reduced pollination success in beech (21). Other species showed no such offset, with both T2 and T1 warming
169 linked to declines in fecundity. While warm springs were locally associated with reduced seed production — potentially due

170 to mismatched pollen release or spring frost damage (66; 67; 33) — long-term declines were not closely linked to spring
171 temperature trends in any species. This aligns with the absence of regional trends in late frost damage (68). Although drought
172 severity (SPEI) has increased, it did not emerge as a consistent driver of fecundity trends. Weak overall effects of spring
173 temperature and SPEI likely reflect opposing site-level responses that cancel out when aggregated regionally, suggesting that
174 these variables may still shape local-scale trends. Together, these results indicate that multiple reproductive stages constrain
175 long-term fecundity, with the dominant bottlenecks differing among species (25).

176 Consistent with prediction (iii), our analyses reveal that local climate modulates how seasonal weather anomalies affect
177 fecundity. By comparing within-site responses to short-term climate anomalies with across-site responses to long-term climatic
178 means, we distinguish fast ecological processes such as phenotypic plasticity and phenological adjustment from slower responses
179 driven by acclimation or local adaptation (69; 57). Temporal sensitivities thus represent “transient” responses to interannual
180 variability, while spatial sensitivities approximate “equilibrium” responses emerging after prolonged exposure to local climatic
181 regimes (57). Such sensitivities often differ in magnitude or sign; for instance, ponderosa pine grows faster in warmer sites
182 but shows reduced growth in unusually hot years (70; 71). Here, fir fecundity was unaffected by short-term drought anomalies
183 but was higher in wetter sites, implying that persistent drying will reduce reproduction not through increasing annual drought
184 damage, but through gradual reorganisation of populations toward a low-fecundity equilibrium. Beech showed the opposite
185 pattern, i.e., higher reproduction in dry years but no advantage at dry sites, suggesting that positive short-term responses to
186 drought will not persist over the long term. This divergence between temporal and spatial patterns is consistent with past
187 studies, which compared beech seed production responses to within-site anomalies and among-site variation in precipitation
188 (72; 73). More generally, across many species–anomaly combinations, spatial effects of climate were modest, suggesting that
189 local adaptation or acclimatisation may help populations maintain similar performance across climate gradients, even if notable
190 site-level differences remain for some species (57). From a management perspective, local adaptation offers near-term buffering
191 capacity. However, climate change mitigation via provenance selection or translocation would require careful, small-scale
192 testing given associated risks of interventions (74).

193 While we focus on fecundity, seedling recruitment is also sensitive to climate variability, particularly to drought and
194 temperature extremes during germination and early establishment (75; 76; 77). For instance, in ponderosa pine (*Pinus ponderosa*)
195 and Douglas fir (*Pseudotsuga menziesii*), recruitment is non-linearly related to moisture, with recent conditions falling below
196 thresholds for successful regeneration in many sites (78). In these systems, increased seed supply can partially buffer negative
197 climate effects on regeneration (79). However, if fecundity declines occur in parallel with decreasing climatic suitability for
198 establishment, these effects will interact, potentially accelerating population decline (80). Recruitment studies that reconstruct
199 past reproductive output from age structures and regeneration records (78; 81; 82; 83) offer a means to test whether reduced seed
200 availability is already constraining forest renewal, and how this interacts with climate effects on seedling establishment. Given
201 the observed declines in fecundity and reports of seedling mortality following increasingly severe drought (61), such analyses
202 are now urgently needed. Other factors, such as changes in forest structure and age, atmospheric CO₂ or nitrogen deposition
203 and air pollution may also influence long-term fecundity patterns and represent important directions for future research.

204 We document a multi-decadal decline in viable seed production across Europe’s dominant temperate forest-forming trees,
205 after adjusting harvest records for sampling effort. The pattern is consistent with our theoretical framework: climatic change
206 reduces fecundity as populations are pushed beyond their reproductive climatic niches (prediction i), with declines largely
207 attributable to seasonal thermal conditions during phenologically sensitive stages, especially summer warming (prediction ii),
208 and with effect sizes moderated by local climate (prediction iii). Because the records reflect sorted (viable) seed crops, the

209 decline indicates reduced effective reproductive output rather than changes in total seed fall alone. Given that reproduction
210 underpins regeneration, community structure, range tracking, and the seed supply required by nurseries (7; 84; 3), continuing
211 declines in fecundity elevate renewal risk (80), especially where establishment is already constrained by drought and heat
212 (78). At the same time, contrasts between spatial and temporal patterns in our results suggest that slow response processes
213 (acclimation and adaptation) may partly offset negative trends if given sufficient time; an outcome that depends critically on the
214 pace of environmental change (57). The next step is to integrate fecundity trends with long-term recruitment and demographic
215 data to determine whether the declines documented here, especially in combination with shifting climatic suitability for seedling
216 establishment, are translating into reduced regeneration.

217 Methods

218 Fecundity data

219 Annual seed harvests were reported by local forest districts (*Nadleśnictwa*, referred to as 'sites') to the Polish State Forests,
220 based on collections from 1988-2021 by contracted crews from the ground or canopy within designated seed stands. However,
221 since analyses were conducted at the species level, results are independent of collection methods. Each site contains one or more
222 seed stands per species, and foresters collect from as many of these stands within site boundaries as needed to meet demand.
223 Before reporting, seeds underwent quality assessment following the nation-wide and unified protocol. Samples of each lot were
224 evaluated for purity, including exclusion of empty seeds, species-specific debris (e.g., husks, needles), foreign material, and
225 seeds damaged or infested by insects. Empty seeds were removed by sorting or air separation; in beech, sorting was typically
226 done by hand to remove infested seeds. The degree of pre-cleaning varied among species, and in some cases small but viable
227 seeds may have been excluded, or empty seeds retained. As a result, reported harvests are post-sorting seed lots (by weight),
228 and reflect an estimate of viable seed yield rather than total seed production.

229 The dataset (438 sites, 40,530 annual observations 'n') records the mass (kg) of seeds (or cones, for conifers; hereafter
230 'seeds') harvested annually for Silver fir (*Abies alba*; 123 sites, n = 4,085), European beech (*Fagus sylvatica*; 290 sites, n
231 = 9,661), Scots pine (*Pinus sylvestris*; 401 sites, n = 13,272), Sessile oak (*Quercus petraea*), and Pedunculate oak (*Quercus*
232 *robur*). Prior to 2007-2008, depending on the site, oak harvests were not reported separately for these two species, and records
233 were therefore pooled (407 sites, n = 13,512). The dataset also includes annual seed demand (kg) at the site level. Demand
234 is calculated by the State Forests administration as the product of the planned artificial regeneration area for each species and
235 fixed, species-specific conversion coefficients that reflect target planting density and standardised nursery sowing rates. These
236 conversion coefficients are used uniformly across Poland and have remained unchanged over time; however, annual demand
237 itself varies spatio-temporally with the planned regeneration area and available seed stocks as demand is reduced when stock
238 levels of previously collected seeds are high. Demand is not influenced by private nurseries. Seed collection from forest stands
239 by third parties is prohibited, and seeds are not exported. Thus, demand can be interpreted as a composite index of sampling
240 effort.

241 We excluded time-series consisting of >90% seed harvest values of zero to avoid model convergence issues. Lowering this
242 threshold to 80% or 50%, does not change the results qualitatively. The proportion of zero values across time-series is provided
243 in Fig. S3. We analysed all time-series of these five species spanning more than a decade (mean: 33.19 years; Fig. S4).
244 Site boundaries for each species are shown in Fig. 1C. If demand values were missing but the recorded seed harvest was zero,
245 demand was set to zero (1,488 observations). If a harvest had taken place but demand was missing, we imputed the site-level

246 mean demand for the focal species (1,625 observations).

247 Climate data

248 We obtained high-resolution (2.5°) historical monthly climate data (1960–2021) for Europe from the WorldClim database
249 (v. 2.1; (85)), including minimum and maximum temperature and precipitation. Mean monthly temperature was calculated
250 by averaging Tmin and Tmax raster layers. For each grid cell, we then calculated mean temperature and total precipitation
251 per season (December–February 'DJF', March–May 'MAM', June–August 'JJA', September–November 'SON') and per year.
252 Potential evapotranspiration (PET) was estimated using the Thornthwaite method based on temperature, and combined with
253 precipitation to compute the Standardised Precipitation-Evapotranspiration Index (SPEI) at a 1-month scale using the SPEI
254 package (v. 1.8.1; (86)). To harmonise seasonal definitions, December was reassigned to the subsequent year, allowing each
255 winter season to span December through February.

256 Data analysis

257 All models were built in R (v. 4.4.1) using glmmTMB (v. 1.1.10) unless indicated differently and validated with DHARMA
258 (v.0.4.7; (87; 88; 89)). Throughout the analyses, we used Tweedie distribution models because they accommodate both zero-
259 inflation and overdispersion, which are common features of reproductive data. The Tweedie family also offers flexibility across a
260 range of data-generating processes, and applying the same distribution across all temporal attribution models (e.g. reproduction
261 trends and climate effects) ensured consistency and comparability, making it the preferred choice.

262 **Spatio-temporal trends in seed crops** *Reproductive trends.* To visualise spatio-temporal variation in seed production
263 for each species we fitted a Tweedie family GLMM with year, $\ln[\text{kg} + 1]$ -transformed demand, and previous-year harvest as
264 fixed effects, and allowed the effect of year to vary by site with a random slope. Including demand yields demand-adjusted
265 fecundity trends and climate effects that are conditional on the observed variation in demand.

266 *Spatial diversity in climate trends.* We mapped spatial variation in long-term trends in climate variables (i.e. summer
267 temperature, spring temperature, growing season SPEI) by calculating per-cell temporal slopes from WorldClim raster stacks
268 (from 1998–2021). For each grid cell, a linear trend was fitted using the stats package to the annual time-series, and the
269 resulting slope ($^{\circ}\text{C year}^{-1}$, SPEI index year^{-1}) was assigned to the cell.

270 **Climate-fecundity relationships** We assessed how seasonal climate influenced seed production for four climatic
271 variables linked to reproduction: mean spring minimum temperature, summer mean temperature at one- and two-year lags, and
272 growing-season (April–September) SPEI.

273 For each species, we fitted Tweedie GLMMs of seed crop size (kg) with fixed effects for the interaction between climate
274 anomalies and their corresponding site-specific long-term means of each time-series. Anomalies were defined as the difference
275 between the observed value of a climatic variable and its site-specific long-term mean. The two-year lagged summer temperature
276 anomaly was interacted with the one-year summer site mean rather than the two-year mean to avoid collinearity between site
277 means (Spearman's $\rho > 0.99$). We controlled for variation in harvesting effort by including log-transformed seed demand ($\ln[\text{kg}$
278 $+ 1]$) as a covariate, and accounted for temporal autocorrelation in seed production by including the previous-year seed crop.
279 Site was included as a random intercept.

280 Uncertainty was quantified using a block bootstrap, which preserves temporal dependence. For each species–anomaly pair,
281 we resampled the data in contiguous 10-year blocks drawn from all sites combined (sampling with replacement from valid site
282 × block-start year combinations) to preserve within-block temporal dependence while allowing site composition to vary among
283 replicates. Each resample was refitted ($N = 1000$). For visualisation, we generated partial-dependence predictions across the
284 observed anomaly range at three levels of the site mean (25th, 50th, and 75th percentiles). For inference, we pooled the 4000
285 bootstrap fits per species to summarise effects.

286 **Temporal attribution modelling** We used a temporal attribution framework (58) to assess how long-term trends in
287 seed production are associated with climatic conditions, using Tweedie log-link GLMMs with site as a random intercept in all
288 models.

289 We first quantified observed temporal trends in seed production by fitting “total trend” models for each species. These
290 models adjusted for previous-year seed crops and $\ln[\text{kg} + 1]$ -transformed seed demand. We also fitted predictor trend models
291 for each climatic anomaly variable.

292 For each species, we then fitted a “process” model as described in [Climate-fecundity relationships](#), to which we added
293 species-specific zero-inflation and dispersion components to ensure model convergence in subsequent models dependent on the
294 model output. For pine, the zero inflation formula included the previous-year seed production. For all other species (i.e., beech,
295 oak), zero inflation depended solely on previous-year seed production. Dispersion was modelled as a function of log-transformed
296 seed demand ($\ln[\text{kg} + 1]$) in all species except pine, where it was held constant to ensure model stability.

297 From the fitted process model, we generated predictions for all observations, and fitted a “full prediction” trend model to
298 these predictions to quantify the overall temporal trend explained by the predictors. For temporal counterfactuals, we held each
299 climate predictor at its site-specific long-term mean (with other variables varying as observed), and refit a “fixed predictor”
300 trend model.

301 We calculated the contribution of that predictor as the log-scale difference between the full-prediction trend and the fixed-
302 predictor trend. Sensitivity was calculated by taking the difference between the full- and fixed-predictor trends on the response
303 scale divided by the predictor’s temporal slope. The “unknown” contribution was the residual difference between the observed
304 “total” temporal trend in seed production and the sum of individual predictor contributions.

305 **Acknowledgements**

306 This study was funded by the European Union (ERC, ForestFuture, 101039066; EC, FECUND, 101244227). Views and
307 opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the
308 European Research Council. Neither the European Union nor the granting authority can be held responsible for them. We
309 would like to express our gratitude to the Directorate-General of State Forests for providing data on the abundance of seeds of
310 major forest-forming species. JJF was also supported by the Foundation for Polish Science (FNP).

311

312 **Contributions**

313 JJF, MB, and JSz designed the study. MKD and JJF performed seed crop data preparation (cleaning), and SJ and MKD
314 provided context on data collection protocols. JJF conducted the formal analysis and visualisation. All authors contributed to
315 the data interpretation. JJF and MB wrote the first draft of the manuscript, and all authors revised the text.

316

317 **Declaration of interests**

318 No competing interests to declare.

319

320 **Data availability statement**

321 The data supporting the results will be archived in a permanent repository upon acceptance.

322 **Code availability statement**

323 The code supporting the results will be archived in a permanent repository upon acceptance.

324 **Methods references**

325 [85] Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas.

326 *International Journal of Climatology* **37**, 4302–4315 (2017).

327 [86] Beguería, S. & Vicente-Serrano, S. M. SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index. URL

328 <https://CRAN.R-project.org/package=SPEI> (2023).

329 [87] R Core Team. *R: A Language and Environment for Statistical Computing*. URL <https://www.R-project.org/> (2024).

330 [88] Brooks, M. E. *et al.* glmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear

331 Mixed Modeling. *The R Journal* **9**, 378–400 (2017). URL <https://journal.r-project.org/archive/2017/RJ-2017-066/index.html>

332 [89] Hartig, F. DHARMA: *Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models* (2024). URL

333 <https://CRAN.R-project.org/package=DHARMA>. R package version 0.4.7.

334 **References**

335 [1] Grubb, P. J. The Maintenance of Species-Richness in Plant Communities: The Importance of the Regeneration Niche. *Biological Reviews* **52**, 107–145 (1977). URL <https://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1977.tb01347.x>.

338 [2] Clark, J. S. *et al.* Continent-wide tree fecundity driven by indirect climate effects. *Nature Communications* **2021** *12*, 1–11 (2021). URL <https://www.nature.com/articles/s41467-020-20836-3>.

340 [3] Seidl, R. & Turner, M. G. Post-disturbance reorganization of forest ecosystems in a changing world. *Proceedings of the National Academy of Sciences* **119**, e2202190119 (2022). URL <https://www.pnas.org/doi/abs/10.1073/pnas.2202190119>. Publisher: Proceedings of the National Academy of Sciences.

343 [4] Clark, J. S. *et al.* Continent-Wide Tree Fecundity Driven by Indirect Climate Effects. *Nature Communications* **12**, 1242 (2021). Publisher: Nature Publishing Group.

345 [5] Clark, J. S., Lewis, M., McLachlan, J. S. & HilleRisLambers, J. Estimating Population Spread: What Can We Forecast and How Well? *Ecology* **84**, 1979–1988 (2003). URL <https://onlinelibrary.wiley.com/doi/abs/10.1890/01-0618>. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1890/01-0618>.

348 [6] Svenning, J. C. & Skov, F. Could the tree diversity pattern in europe be generated by postglacial dispersal limitation?
349 *Ecology Letters* **10**, 453–460 (2007).

350 [7] Nathan, R. *et al.* Spread of north american wind-dispersed trees in future environments. *Ecology Letters* **14**, 211–219
351 (2011).

352 [8] Rogers, B. M., Jantz, P. & Goetz, S. J. Vulnerability of Eastern US Tree Species to Climate Change. *Global Change
353 Biology* **23**, 3302–3320 (2017).

354 [9] Kettle, C. J. *et al.* Mass fruiting in borneo: A missed opportunity. *Science* **330**, 584 (2010). URL <https://www.science.org/doi/10.1126/science.330.6004.584-a>.

355

356 [10] Pearse, I. S., Wion, A. P., Gonzalez, A. D. & Pesendorfer, M. B. Understanding mast seeding for conservation and land
357 management. *Philosophical Transactions of the Royal Society B: Biological Sciences* **376**, 34657466 (2021).

358 [11] Senf, C. *et al.* Canopy Mortality Has Doubled in Europe’s Temperate Forests over the Last Three Decades. *Nature
359 Communications* **9**, 4978 (2018). Publisher: Nature Publishing Group.

360 [12] Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests.
361 *One Earth* **4**, 749–755 (2021). URL [https://www.cell.com/one-earth/abstract/S2590-3322\(21\)00227-X](https://www.cell.com/one-earth/abstract/S2590-3322(21)00227-X).
362 Publisher: Elsevier.

363 [13] George, J.-P. *et al.* Long-term forest monitoring reveals constant mortality rise in European forests. *Plant Biology* **24**, 1108–1119 (2022). URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/plb.13469>. _eprint:
364 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/plb.13469>.

365

366 [14] Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Eu-
367 rope. *Nature Communications* **11**, 6200 (2020). URL <https://www.nature.com/articles/s41467-020-19924-1>.
368 Publisher: Nature Publishing Group.

369 [15] Clark, J. S., Bell, D. M., Hersh, M. H. & Nichols, L. Climate change vulnerability of forest biodiversity: Climate and
370 competition tracking of demographic rates. *Global Change Biology* **17**, 1834–1849 (2011).

371 [16] Allen, R. B., Hurst, J. M., Portier, J. & Richardson, S. J. Elevation-Dependent Responses of Tree Mast Seeding to Climate
372 Change over 45 Years. *Ecology and Evolution* **4**, 3525–3537 (2014).

373 [17] Shibata, M., Masaki, T., Yagihashi, T., Shimada, T. & Saitoh, T. Decadal Changes in Masting Behaviour of Oak Trees
374 with Rising Temperature. *Journal of Ecology* **108**, 1088–1100 (2019).

375 [18] Bogdziewicz, M. *et al.* Evolutionary ecology of masting: mechanisms, models, and climate change. *Trends in Ecology &
376 Evolution* **39**, 851–862 (2024). URL <https://linkinghub.elsevier.com/retrieve/pii/S0169534724001174>.

377 [19] Foest, J. J. *et al.* Widespread Breakdown in Masting in European Beech Due to Rising Summer Temperatures. *Global
378 Change Biology* **30**, e17307 (2024).

379 [20] Hacket-Pain, A. *et al.* Growth decline in european beech associated with temperature-driven increase in reproductive
380 allocation. *PNAS* **122**, e2423181122 (2025).

381 [21] Bogdziewicz, M. *et al.* Reproductive collapse in European beech results from declining pollination efficiency in large
382 trees. *Global Change Biology* **29**, 4595–4604 (2023).

383 [22] Buechling, A., Martin, P. H., Canham, C. D., Shepperd, W. D. & Battaglia, M. A. Climate Drivers of Seed Production in
384 Picea Engelmannii and Response to Warming Temperatures in the Southern Rocky Mountains. *Journal of Ecology* **104**,
385 1051–1062 (2016). Publisher: [Wiley, British Ecological Society].

386 [23] Pearse, I. S., LaMontagne, J. M. & Koenig, W. D. Inter-Annual Variation in Seed Production Has Increased over Time
387 (1900-2014). *Proceedings of the Royal Society B: Biological Sciences* **284**, 1–7 (2017). Publisher: Royal Society.

388 [24] Ibáñez, I., Katz, D. S. & Lee, B. R. The contrasting effects of short-term climate change on the early recruit-
389 ment of tree species. *Oecologia* **184**, 701–713 (2017). URL <https://link.springer.com/article/10.1007/s00442-017-3889-1>.

390

391 [25] Bogdziewicz, M., Kelly, D., Zwolak, R., Szymkowiak, J. & Hacket-Pain, A. Dynamics, mechanisms, and consequences
392 of mast seeding. *Annual Reviews in Ecology, Evolution, and Systematics* (2025).

393 [26] Vacchiano, G. *et al.* Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. *New Phytol-*
394 *ogist* **215**, 595–608 (2017). URL <https://onlinelibrary.wiley.com/doi/full/10.1111/nph.14600>
395 <https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.14600>
396 <https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.14600>.

397 [27] Journé, V. *et al.* Summer solstice orchestrates the subcontinental-scale synchrony of mast seeding. *Nature Plants* **10**,
398 367–373 (2024). URL <https://doi.org/10.21203/rs.3.rs-3369033/v1>.

399 [28] Journé, V., Hacket-Pain, A., Oberklammer, I., Pesendorfer, M. B. & Bogdziewicz, M. Forecasting seed production in
400 perennial plants: identifying challenges and charting a path forward. *New Phytologist* **239**, 466–476 (2023).

401 [29] Ascoli, D. *et al.* Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of
402 tree reproduction. *Nature Communications* **2017 8:1** 8, 1–9 (2017). URL <https://www.nature.com/articles/s41467-017-02348-9>.

403

404 [30] Bogdziewicz, M., Fernández-Martínez, M., Bonal, R., Belmonte, J. & Espelta, J. M. The moran effect and environmental
405 vetoes: phenological synchrony and drought drive seed production in a mediterranean oak. *Proceedings of the Royal*
406 *Society B: Biological Sciences* **284**, 29093224 (2017). URL <https://royalsocietypublishing.org/doi/full/10.1098/rspb.2017.1784>.

407

408 [31] Fleurot, E. *et al.* Oak masting drivers vary between populations depending on their climatic environments. *Current*
409 *Biology* **33**, 1117–1124.E4 (2023).

410 [32] Caignard, T. *et al.* Increasing spring temperatures favor oak seed production in temperate areas. *Scientific Reports* **7**, 8555
411 (2017). URL <https://www.nature.com/articles/s41598-017-09172-7>. Publisher: Nature Publishing Group.

412 [33] Schermer, E. *et al.* Flower phenology as a disruptor of the fruiting dynamics in temperate oak species. *New Phytologist*
413 **225**, 1181–1192 (2020).

414 [34] Pérez-Ramos, I. M., Ourcival, J. M., Limousin, J. M. & Rambal, S. Mast seeding under increasing drought:
415 results from a long-term data set and from a rainfall exclusion experiment. *Ecology* **91**, 3057–3068 (2010). URL
416 <https://onlinelibrary.wiley.com/doi/full/10.1890/09-2313.1>
417 <https://onlinelibrary.wiley.com/doi/abs/10.1890/09-2313.1>
418 [35] Vilà-Cabrera, A., Martínez-Vilalta, J. & Retana, J. Variation in reproduction and growth in declining scots pine populations.
419 *Perspectives in Plant Ecology, Evolution and Systematics* **16**, 111–120 (2014).
420 [36] Lauder, J. D., Moran, E. V. & Hart, S. C. Fight or flight? potential tradeoffs between drought defense and reproduction
421 in conifers. *Tree Physiology* **39**, 1071–1085 (2019). URL <https://academic.oup.com/treephys/article/39/7/1071/5423353>.
422
423 [37] Bogdziewicz, M., Fernández-Martínez, M., Espelta, J. M., Ogaya, R. & Penuelas, J. Is forest fecundity resistant to drought?
424 Results from an 18-yr rainfall-reduction experiment. *New Phytologist* **227**, 1073–1080 (2020).
425 [38] Gonzalez, A. D., Pearse, I. S. & Redmond, M. D. Increased aridity is associated with stronger tradeoffs in ponderosa pine
426 vital functions. *Ecology* **104**, e4120 (2023).
427 [39] Augspurger, C. K. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest.
428 *Functional Ecology* **23**, 1031–1039 (2009). URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2435.2009.01587.x>. _eprint: <https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2435.2009.01587.x>.
429
430 [40] Yukich-Clendon, O. M. M. *et al.* Global change explains reduced seeding in a widespread new zealand tree: indigenous
431 tūhoe knowledge informs mechanistic analysis. *Frontiers in Forests and Global Change* **6**, 1172326 (2023).
432
433 [41] Bogdziewicz, M., Kelly, D., Thomas, P. A., Lageard, J. G. A. & Hacket-Pain, A. Climate Warming Disrupts Mast Seeding
434 and Its Fitness Benefits in European Beech. *Nature Plants* **6**, 88–94 (2020). Publisher: Nature Publishing Group.
435
436 [42] Bogdziewicz, M. *et al.* Reproductive Collapse in European Beech Results from Declining Pollination Efficiency in Large
437 Trees. *Global Change Biology* **29**, 4595–4604 (2023).
438
439 [43] Richardson, S. J. *et al.* Climate and Net Carbon Availability Determine Temporal Patterns of Seed Production by
440 *Nothofagus*. *Ecology* **86**, 972–981 (2005).
441
442 [44] Redmond, M. D., Forcella, F. & Barger, N. N. Declines in Pinyon Pine Cone Production Associated with Regional
443 Warming. *Ecosphere* **3**, art120 (2012).
444
445 [45] Wion, A. P., Pearse, I. S., Broxson, M. & Redmond, M. D. Mast hindcasts reveal pervasive effects
446 of extreme drought on a foundational conifer species. *New Phytologist* **246** (2025). URL <https://nph-1.onlinelibrary-1wiley-1com-110k1lgga01cc.hanamu.edu.pl/doi/10.1111/nph.20321>.
447
448 [46] Mutke, S., Gordo, J. & Gil, L. Variability of Mediterranean Stone pine cone production: Yield loss as response to
449 climate change. *Agricultural and Forest Meteorology* **132**, 263–272 (2005). URL <https://www.sciencedirect.com/science/article/pii/S0168192305001607>.
450

447 [47] Goroshkevich, S., Velisevich, S., Popov, A., Khutornoy, O. & Vasilyeva, G. 30-year cone production dynamics in Siberian
448 stone pine (*Pinus sibirica*) in the southern boreal zone: a causal interpretation. *Plant Ecology and Evolution*
449 **154**, 321–331 (2021). URL <https://www.jstor.org/stable/48631700>. Publisher: [Botanic Garden Meise, Royal
450 Botanical Society of Belgium].

451 [48] Pesendorfer, M. B. *et al.* The ecology and evolution of synchronized reproduction in long-lived plants. *Philosophical Transactions of the Royal Society B: Biological Sciences* **376**, 20200369 (2021). URL <https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2020.0369>.

454 [49] Bin, Y., Huang, Z., Cao, H., Ye, W. & Lian, J. Seed rain composition responds to climate change in a subtropical forest.
455 *Science of The Total Environment* **903**, 166772 (2023). URL <https://www.sciencedirect.com/science/article/pii/S0048969723053974>.

457 [50] Bush, E. R. *et al.* Long-Term Collapse in Fruit Availability Threatens Central African Forest Megafauna. *Science* **370**,
458 1219–1222 (2020). Publisher: American Association for the Advancement of Science.

459 [51] Wright, S. J. & Calderón, O. Seasonal, El Niño and longer term changes in flower and seed production in a moist
460 tropical forest. *Ecology Letters* **9**, 35–44 (2006). URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2005.00851.x>. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2005.00851.x>.

462 [52] Vleminckx, J. *et al.* Seed Production and 22 Years of Climatic Changes in an Everwet Neotropical Forest. *Ecology Letters* **28**, e70019 (2025). URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.70019>. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.70019>.

465 [53] Weinstein, M. S. Hares, lynx, and trappers. *The American Naturalist* **111**, 806–808 (1977).

466 [54] Sakai, S. General flowering in lowland mixed dipterocarp forests of south-east asia. *Biological Journal of the Linnean
467 Society* **75**, 233–247 (2002).

468 [55] Post, E., Forchhammer, M. C. & Schindler, D. W. Spatial synchrony of local populations has increased in association with
469 the recent northern hemisphere climate trend. *PNAS* (2004). URL www.pnas.org/cgi/doi/10.1073/pnas.0305029101.

470 [56] Gamelon, M. *et al.* Making use of harvest information to examine alternative management scenarios: A body weight-
471 structured model for wild boar. *Journal of Applied Ecology* **49**, 833–841 (2012).

472 [57] Stemkovski, M. *et al.* Ecological acclimation: A framework to integrate fast and slow responses to climate change.
473 *Functional Ecology* (2025).

474 [58] Fernández-Martínez, M. *et al.* Global trends in carbon sinks and their relationships with CO₂ and temperature. *Nature
475 Climate Change* **9**, 73–79 (2019). URL <https://www.nature.com/articles/s41558-018-0367-7>. Publisher:
476 Nature Publishing Group.

477 [59] Foest, J. J. *et al.* No refuge at the edge for european beech as climate warming disproportionately reduces masting at
478 colder margins. *Ecology Letters* **28**, e70284 (2025). URL <https://doi.org/10.1111/ele.70284>.

479 [60] Buras, A. *et al.* Are scots pine forest edges particularly prone to drought-induced mortality? *Environmental Research
480 Letters* **13** (2018).

481 [61] Schuldt, B. *et al.* A first assessment of the impact of the extreme 2018 summer drought on central european forests. *Basic*
482 *and Applied Ecology* **45**, 86–103 (2020).

483 [62] Jump, A. S., Hunt, J. M. & Penuelas, J. Rapid climate change-related growth decline at the southern range edge of *Fagus*
484 *sylvatica*. *Global Change Biology* **12**, 2163–2174 (2006).

485 [63] Vacek, Z., Vacek, S. & Cukor, J. European forests under global climate change: Review of tree growth processes, crises
486 and management strategies. *Journal of Environmental Management* **332** (2023).

487 [64] Zuidema, P. A. *et al.* Pantropical tree rings show small effects of drought on stem growth. *Science* **78** (2025). URL
488 <https://www.science.org>.

489 [65] Kelly, D., Szymkowiak, J., Hacket-Pain, A. & Bogdziewicz, M. Fine-tuning mast seeding: as resources accumulate, plants
490 become more sensitive to weather cues. *New Phytologist* (2025). URL <https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.70092>.

492 [66] Poncet, B. N. *et al.* The effect of climate on masting in the european larch and on its specific seed predators. *Oecologia*
493 **159**, 527–537 (2009).

494 [67] Pesendorfer, M. B. *et al.* Investigating the relationship between climate, stand age, and temporal trends in masting behavior
495 of european forest trees. *Global Change Biology* **26**, 1654–1667 (2020). URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14945>.

497 [68] Zohner, C. M. *et al.* Late-spring frost risk between 1959 and 2017 decreased in north america but increased in europe and
498 asia. *Proceedings of the National Academy of Sciences of the United States of America* **117**, 12192–12200 (2020). URL
499 <https://www.pnas.org/content/117/22/12192><https://www.pnas.org/content/117/22/12192.abstract>.

500 [69] Felton, A. J. *et al.* Climate disequilibrium dominates uncertainty in long-term projections of primary productivity. *Ecology*
501 *Letters* **25**, 2688–2698 (2022).

502 [70] Perret, D. L., Evans, M. E. & Sax, D. F. A species' response to spatial climatic variation does not predict its response
503 to climate change. *Proceedings of the National Academy of Sciences of the United States of America* **121**, e2304404120
504 (2024).

505 [71] Evans, M. E. K. *et al.* Reconsidering space-for-time substitution in climate change ecology. *Nature Climate Change* **15**,
506 809–812 (2025). URL <https://www.nature.com/articles/s41558-025-02392-0>.

507 [72] Müller-Haibold, H., Hertel, D., Seidel, D., Knutzen, F. & Leuschner, C. Climate responses of aboveground productivity
508 and allocation in *Fagus sylvatica*: A transect study in mature forests. *Ecosystems* **16**, 1498–1516 (2013).

509 [73] Müller-Haibold, H., Hertel, D. & Leuschner, C. Climatic drivers of mast fruiting in European beech and resulting C and
510 N allocation shifts. *Ecosystems* **18**, 1083–1100 (2015).

511 [74] Stanturf, J. A., Ivetic, V. & Kasten Dumroese, R. Framing recent advances in assisted migration of Trees: A Special Issue.
512 *Forest Ecology and Management* **551**, 121552 (2024). URL <https://www.sciencedirect.com/science/article/pii/S0378112723007867>.

514 [75] Brown, P. M. & Wu, R. Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine
515 landscape. *Ecology* **86**, 3030–3038 (2005).

516 [76] Kueppers, L. M. *et al.* Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine
517 forest. *Global Change Biology* **23**, 2383–2395 (2017).

518 [77] Conklin, E. *et al.* Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with
519 warming. *Journal of Ecology* **105**, 1347–1357 (2017).

520 [78] Davis, K. T. *et al.* Wildfires and climate change push low-elevation forests across a critical climate threshold for tree
521 regeneration. *Proceedings of the National Academy of Sciences* **116**, 6193–6198 (2019). URL <https://www.pnas.org/doi/abs/10.1073/pnas.1815107116>.

522 [79] Davis, K. T. *et al.* Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across
523 the western united states. *Proceedings of the National Academy of Sciences* **120**, e2208120120 (2023). URL <https://www.pnas.org/doi/10.1073/pnas.2208120120>.

524 [80] Ohse, B. *et al.* Demographic Synthesis for Global Tree Species Conservation. *Trends in Ecology & Evolution* **38**, 579–590
525 (2023).

526 [81] Rodman, K. C. *et al.* Limitations to recovery following wildfire in dry forests of southern colorado and northern new
527 mexico, usa. *Ecological Applications* **30** (2020).

528 [82] Maringer, J. *et al.* Drivers of persistent post-fire recruitment in european beech forests. *Science of the Total Environment*
529 **699** (2020).

530 [83] Vieira, S. T., Davis, K. T., Holden, Z. A., Larson, A. J. & Higuera, P. E. Western larch regeneration more sensitive to
531 wildfire-related factors than seasonal climate variability. *Forest Ecology and Management* **565** (2024).

532 [84] Sharma, S. *et al.* North american tree migration paced by climate in the west, lagging in the east. *Proceedings of the
533 National Academy of Sciences* **119**, e2116691118 (2022). URL <https://www.pnas.org/doi/abs/10.1073/pnas.2116691118>.

534

Table 1: Literature summary on temporal trends in tree reproduction across species and regions. Articles were retrieved from Scopus using the query '(fecundity OR "seed production") AND tree* AND trend,' where the asterisk is a truncation wildcard

. The table was supplemented with sources from our own review of the literature. T = temperature, P = precipitation.

Species	Level	Linked to	Direction	Study	Sites	Location	Period
<i>Beilschmiedia tawa</i>	Species	Summer & winter T, P	-	(40)	6	New Zealand	1986-2020
<i>Fagus sylvatica</i>	Species	Summer T, tree size	- - viable, + total	(41; 42)	12	UK	1980-2020
<i>Fagus sylvatica</i>	Species	Summer T	- - viable, + total	(19)	50	Europe	1980-2022
<i>Nothofagus solandri</i>	Species	Summer T & P	+ (great- est at high eleva- tion)	(43; 16)	3	New Zealand	1965-2009
<i>Pinus edulis</i>	Species	Summer T (cone initiation)	-	(44)	9	USA	1969-2012
<i>Pinus edulis</i>	Species	Climatic water deficit, monsoonal	- (hind- cast)	(45)	16	USA	1900-2024
<i>Picea engelmannii</i>	Species	Summer T, spring snow	+	(22)	13	USA	1970-2010
<i>Pinus pinea</i>	Species	T & P throughout cone (harvest)	-	(46)	58	Spain	1960-2000
<i>Pinus sibirica</i>	Species	Spring T, September T	-	(47)	1	Russia	1990 - 2019
<i>Quercus crispula</i>	Species	Growing season T	+	(17)	1	Japan	1980-2017
<i>Quercus petraea</i> (& <i>Q. robur</i> ; ns)	Species	Spring T	+	(32)	28	France	1994-2007
3 <i>Quercus</i> species (<i>Q. chapmanii</i> , <i>Q. geminata</i> , <i>Q. inopina</i>)	Species	Spring P & fire	-	(48)	1	USA	1988-2018
68 plant species	Community	VPD, minimum relative humidity	Shrubs: -, Herbs, vines, trees & palms): NS, Over- all: NS	(49)	1	China	2014-2020
73 tropical tree species	Community	Not tested	-	(50)	1	Gabon	1986-2018
81 tropical tree and liana species	Community	El Niño events	Flowers +, Seeds: NS	(51)	1	Panama	1987-2005
123 tree species	Community	Tree size, Spring minimum T, summer T, moisture deficit	West: -, East: +	(4)	653	North America	~1960-~2020
203 plant species	Community	Night T, Vapour pressure deficit	-	(52)	1	Ecuador	1960-2000
363 plant species	Community	Not tested	-	(23)	205	World	1900-2014

537 **Extended data**

538 **Forest fecundity declines as climate shifts**

539

540 Jessie J. Foest^{*1}, Jakub Szymkowiak^{1,2}, Marcin K. Dyderski³, Dave Kelly⁴, Georges Kunstler⁵, Szymon
541 Jastrzębowski⁶, Michał Bogdziewicz¹

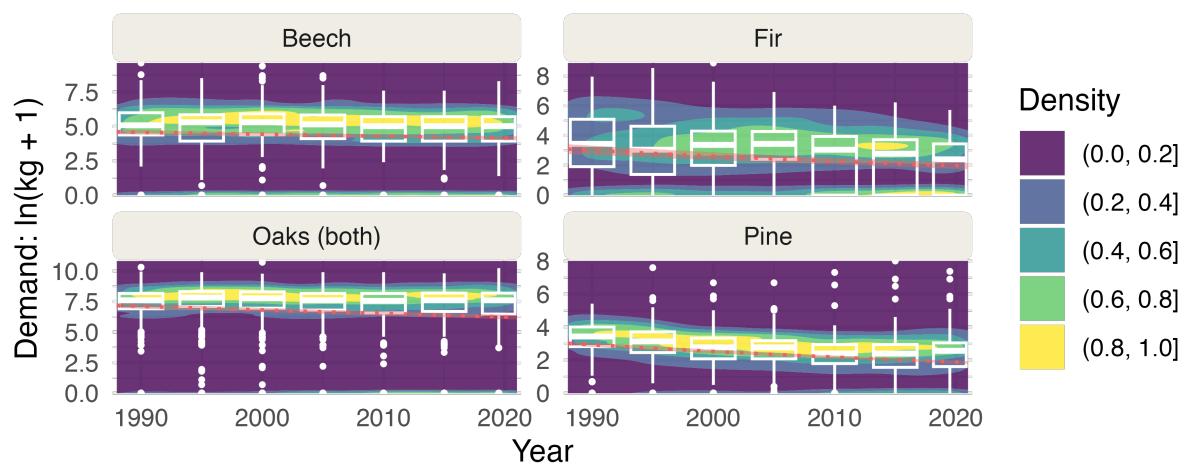
542

543

544 ¹Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwer-
545 sytetu Poznańskiego 6, 61-614 Poznań, Poland.

546 ²Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University,
547 Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

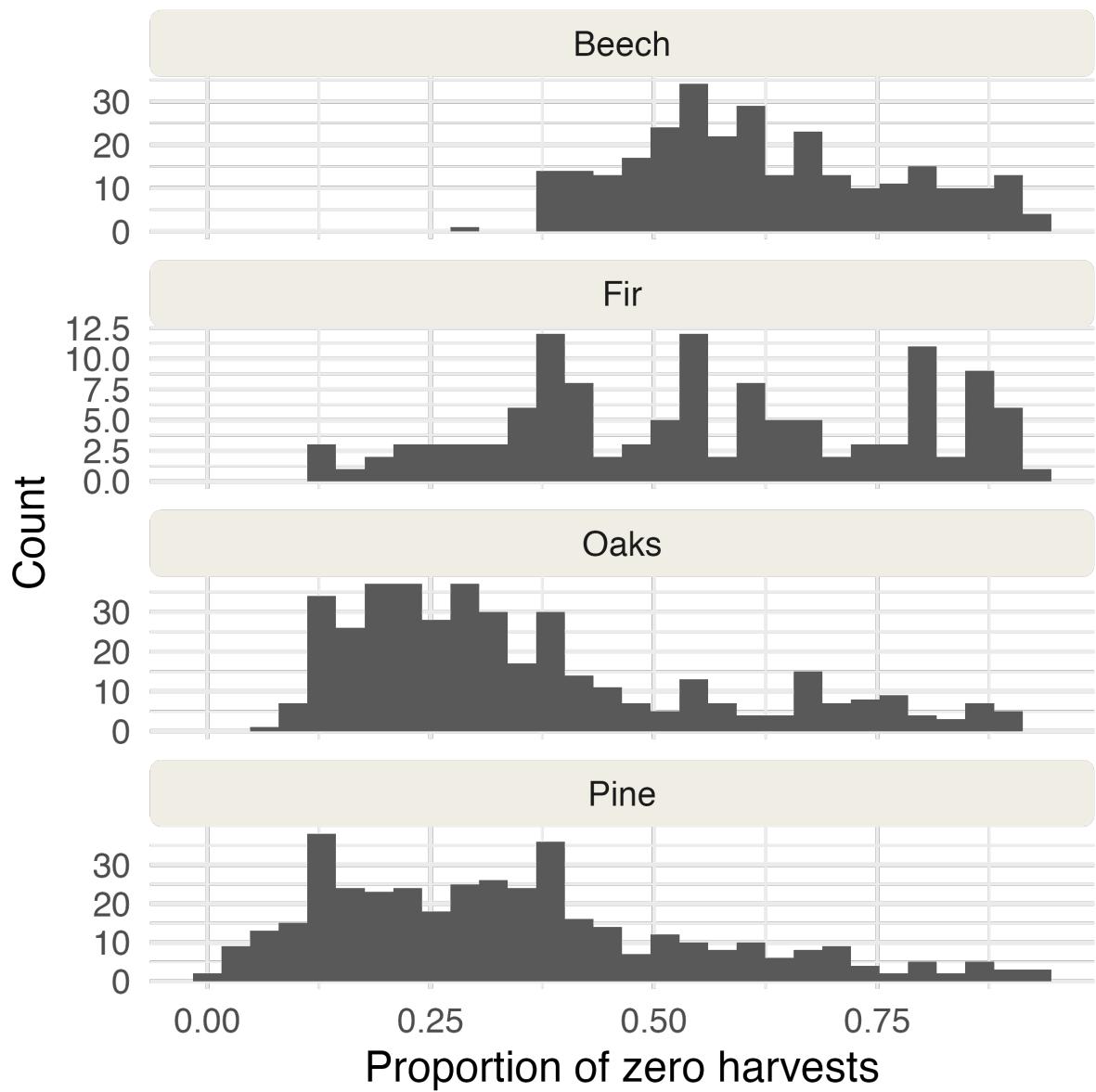
548 ³ Department of Systematic and Environmental Botany, Institute of Environmental Biology, Faculty of Biology, Adam Mick-
549 iewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.


550 ⁴ School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.

551 ⁵ Univ. Grenoble Alpes, INRAE, LESSEM, St-Martin-d'Hères, France


552 ⁶Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090, Raszyn,
553 Poland.

554


555 *corresponding author: jjfoest_articles@protonmail.com

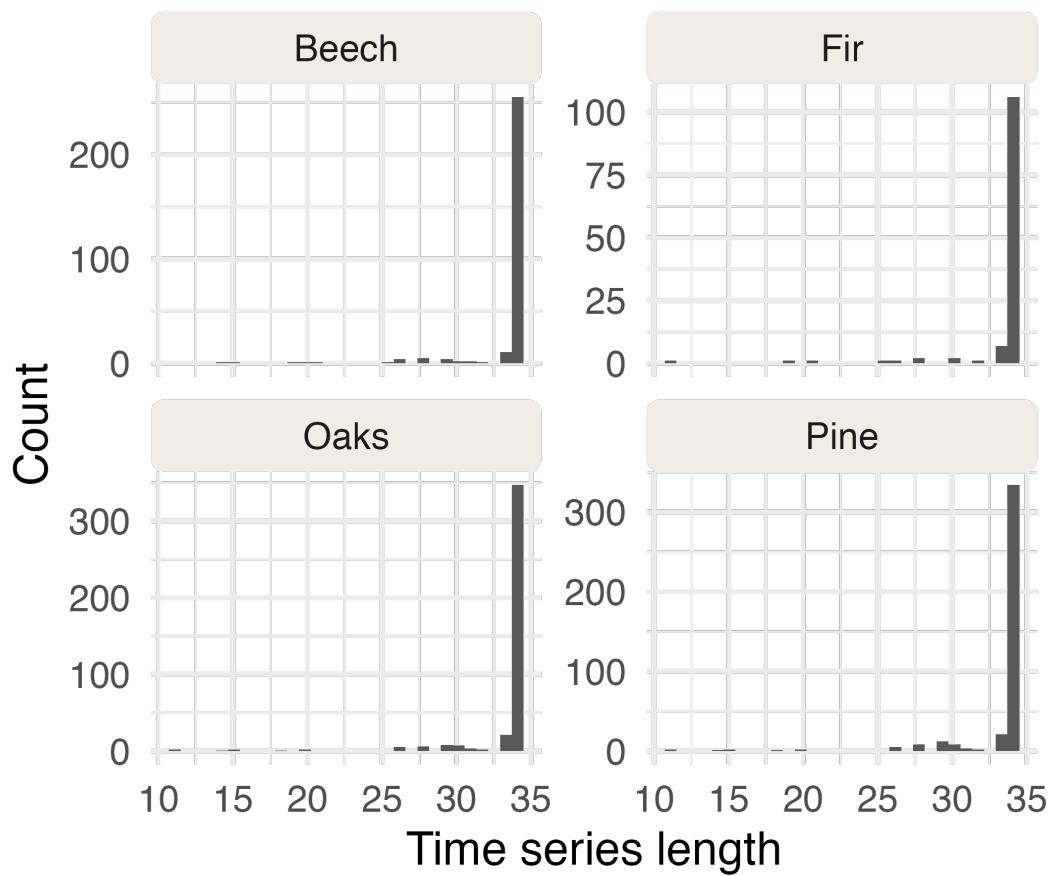

Figure S1: Observed seed crop demand over time. The colour shows the density of seed site-level, annual demand observations (scaled between 0 and 1 to allow for comparison between species). The box plots summarise seed demand observations by 5-year time windows, while red dotted lines show statistically significant linear trends as extracted from species-specific Tweedy family GLMMs of demand as a function of time with site included as a random intercept.

Figure S2: Partial residuals around long-term trend in fecundity Filled contour maps show normalised densities (scaled between 0–1) of partial residuals of seed production over time (i.e. fixed effect of time plus model residuals). Panels are cropped to regions with normalised density > 0.1 to highlight the predominant variation. 5-Year boxplots summarise partial residuals within 5-year windows, and the coloured dashed line reproduces the species-specific predicted trend from Fig. 1B. The results come from species-specific Tweedie-family generalised linear mixed-effects models, including random slopes of time effects by site. See Methods for further detail.

Figure S3: Distribution of the proportion of zero harvests across time series for beech, fir, oak, and pine. Each panel shows the frequency of time series with a given proportion of years with zero harvest.

Figure S4: Distribution of time-series length in years across sites for beech, fir, oak, and pine.

Table S1: Temporal trends in fecundity show decline in harvest crop size for all species. Results were obtained with 4 species-specific Tweedie family GLMMs, showing how harvest crops change with each year since the start of the time-series (1988 = 1). The model accounted for natural log transformed seed demand, and temporal autocorrelation in seed harvests through 1 year lagged harvests (Seeds T1). Site was included as a random effect.

Species	Term	Estimate (SE)	p
Beech	Intercept	3.172 (0.109)	< 0.001
Beech	Year	-0.011 (0.002)	< 0.001
Beech	ln(Demand+1)	0.428 (0.016)	< 0.001
Beech	Seeds T1	-3.673e-04 (5.988e-06)	< 0.001
Fir	Intercept	3.73 (0.129)	< 0.001
Fir	Year	-0.024 (0.003)	< 0.001
Fir	ln(Demand+1)	0.647 (0.024)	< 0.001
Fir	Seeds T1	4.764e-08 (9.034e-06)	0.996
Oaks (both)	Intercept	5.943 (0.071)	< 0.001
Oaks (both)	Year	-0.019 (0.001)	< 0.001
Oaks (both)	ln(Demand+1)	0.253 (0.007)	< 0.001
Oaks (both)	Seeds T1	-1.155e-05 (2.518e-06)	< 0.001
Pine	Intercept	5.817 (0.066)	< 0.001
Pine	Year	-0.028 (0.001)	< 0.001
Pine	ln(Demand+1)	0.512 (0.017)	< 0.001
Pine	Seeds T1	7.279e-05 (3.839e-06)	< 0.001

Table S2: Relationships between fecundity and spatio-temporal climatic variation. Results were obtained with 4 species-specific Tweedie family GLMMs, and show how harvest crops change with spatial ("Site") and temporal ("anom." = Anomaly) variation in climatic conditions during sensitive stages. Anomalies were added in interaction ":" with site-level mean climate. The model accounted for natural log transformed seed demand, and temporal autocorrelation in seed harvests through 1 year lagged harvests. Site was included as a random effect. JJA = June-August, MAM = March-May, GS = Growing season. SPEI = Standardised Precipitation Evapotranspiration Index. Tx indicates lag (e.g. T1 is a variable that was lagged 1 year).

Species	Term	Estimate (SE)	p
Beech	Intercept	11.381 (1.869)	< 0.001
Beech	JJA °C anom. T1	2.256 (0.52)	< 0.001
Beech	Site JJA °C	-0.528 (0.128)	< 0.001
Beech	JJA °C anom. T2	-0.546 (0.489)	0.264
Beech	MAM °C anom. T0	-0.668 (0.132)	< 0.001
Beech	Site MAM °C	0.356 (0.153)	0.02
Beech	SPEI GS anom. T0	0.036 (0.226)	0.874
Beech	Site SPEI GS	3.306 (1.7)	0.052
Beech	ln(Demand+1)	0.404 (0.017)	< 0.001
Beech	Seeds T1	-2.146e-04 (9.397e-06)	< 0.001
Beech	JJA anom. T1:Site JJA °C	-0.092 (0.029)	0.002
Beech	Site JJA °C:JJA anom. T2	-0.013 (0.028)	0.64
Beech	MAM anom. T0:Site MAM °C	0.178 (0.036)	< 0.001
Beech	SPEI GS anom. T0:Site SPEI GS	4.288 (1.509)	0.004
Fir	Intercept	1.132 (2.038)	0.579
Fir	JJA °C anom. T1	-1.902 (0.515)	< 0.001
Fir	Site JJA °C	0.266 (0.144)	0.066
Fir	JJA °C anom. T2	0.047 (0.497)	0.925
Fir	MAM °C anom. T0	-0.189 (0.128)	0.141
Fir	Site MAM °C	-0.396 (0.187)	0.034
Fir	SPEI GS anom. T0	-0.048 (0.187)	0.799
Fir	Site SPEI GS	7.601 (1.656)	< 0.001
Fir	ln(Demand+1)	0.605 (0.024)	< 0.001
Fir	Seeds T1	4.320e-06 (7.885e-06)	0.584
Fir	JJA anom. T1:Site JJA °C	0.097 (0.029)	< 0.001
Fir	Site JJA °C:JJA anom. T2	-0.013 (0.028)	0.645

Fir	MAM anom. T0:Site MAM °C	-0.012 (0.039)	0.754
Fir	SPEI GS anom. T0:Site SPEI GS	0.92 (1.55)	0.553
Oaks (both)	Intercept	3.953 (1.342)	0.003
Oaks (both)	JJA °C anom. T1	0.564 (0.349)	0.106
Oaks (both)	Site JJA °C	0.005 (0.088)	0.95
Oaks (both)	JJA °C anom. T2	-2.433 (0.346)	< 0.001
Oaks (both)	MAM °C anom. T0	-0.29 (0.092)	0.002
Oaks (both)	Site MAM °C	0.323 (0.105)	0.002
Oaks (both)	SPEI GS anom. T0	-0.755 (0.142)	< 0.001
Oaks (both)	Site SPEI GS	0.171 (1.307)	0.896
Oaks (both)	ln(Demand+1)	0.318 (0.011)	< 0.001
Oaks (both)	Seeds T1	-7.080e-06 (2.396e-06)	0.003
Oaks (both)	JJA anom. T1:Site JJA °C	-0.04 (0.019)	0.039
Oaks (both)	Site JJA °C:JJA anom. T2	0.129 (0.019)	< 0.001
Oaks (both)	MAM anom. T0:Site MAM °C	0.072 (0.024)	0.003
Oaks (both)	SPEI GS anom. T0:Site SPEI GS	-3.539 (0.907)	< 0.001
Pine	Intercept	6.012 (0.901)	< 0.001
Pine	JJA °C anom. T1	0.134 (0.349)	0.701
Pine	Site JJA °C	-0.059 (0.058)	0.313
Pine	JJA °C anom. T2	-0.041 (0.338)	0.903
Pine	MAM °C anom. T0	-0.13 (0.088)	0.137
Pine	Site MAM °C	0.157 (0.068)	0.022
Pine	SPEI GS anom. T0	-0.784 (0.165)	< 0.001
Pine	Site SPEI GS	-1.096 (0.911)	0.229
Pine	ln(Demand+1)	0.439 (0.016)	< 0.001
Pine	Seeds T1	6.716e-05 (3.754e-06)	< 0.001
Pine	JJA anom. T1:Site JJA °C	-0.014 (0.019)	0.472
Pine	Site JJA °C:JJA anom. T2	-0.009 (0.019)	0.635
Pine	MAM anom. T0:Site MAM °C	-0.002 (0.023)	0.921
Pine	SPEI GS anom. T0:Site SPEI GS	-4.938 (1.048)	< 0.001

Table S3: Temporal trends in weather during reproductive stages. Results were obtained with 4 species-specific Tweedie family GLMMs (N.B. family was chosen for consistency with the other variables in the temporal attribution framework), showing how each climatic variable ("Predictor") has changed per year since the start of the time-series (1988 = 1). Site was included as a random effect. JJA = June-August, MAM = March-May, GS = Growing season. SPEI = Standardised Precipitation Evapotranspiration Index. Tx indicates lag (e.g. T1 is a variable that was lagged 1 year).

Species	Predictor	Term	Estimate (SE)	p
Beech	JJA °C anom. T1	Intercept	-2.294 (0.034)	< 0.001
	JJA °C anom. T1	Year	0.067 (0.001)	< 0.001
Beech	JJA °C anom. T2	Intercept	-2.35 (0.035)	< 0.001
	JJA °C anom. T2	Year	0.07 (0.001)	< 0.001
Beech	MAM °C anom. T0	Intercept	-1.506 (0.033)	< 0.001
	MAM °C anom. T0	Year	0.026 (0.002)	< 0.001
Beech	SPEI GS anom. T0	Intercept	-1.517 (0.032)	< 0.001
	SPEI GS anom. T0	Year	-0.011 (0.002)	< 0.001
Fir	JJA °C anom. T1	Intercept	-2.445 (0.054)	< 0.001
	JJA °C anom. T1	Year	0.072 (0.002)	< 0.001
Fir	JJA °C anom. T2	Intercept	-2.531 (0.055)	< 0.001
	JJA °C anom. T2	Year	0.077 (0.002)	< 0.001
Fir	MAM °C anom. T0	Intercept	-1.551 (0.05)	< 0.001
	MAM °C anom. T0	Year	0.027 (0.002)	< 0.001
Fir	SPEI GS anom. T0	Intercept	-1.673 (0.052)	< 0.001
	SPEI GS anom. T0	Year	-0.004 (0.003)	0.155
Oaks (both)	JJA °C anom. T1	Intercept	-2.277 (0.029)	< 0.001
	JJA °C anom. T1	Year	0.066 (0.001)	< 0.001
Oaks (both)	JJA °C anom. T2	Intercept	-2.328 (0.03)	< 0.001
	JJA °C anom. T2	Year	0.069 (0.001)	< 0.001
Oaks (both)	MAM °C anom. T0	Intercept	-1.53 (0.029)	< 0.001
	MAM °C anom. T0	Year	0.028 (0.001)	< 0.001
Oaks (both)	SPEI GS anom. T0	Intercept	-1.592 (0.028)	< 0.001
	SPEI GS anom. T0	Year	-0.007 (0.001)	< 0.001
Pine	JJA °C anom. T1	Intercept	-2.268 (0.029)	< 0.001
	JJA °C anom. T1	Year	0.066 (0.001)	< 0.001
Pine	JJA °C anom. T2	Intercept	-2.314 (0.03)	< 0.001

Pine	JJA °C anom. T2	Year	0.068 (0.001)	< 0.001
Pine	MAM °C anom. T0	Intercept	-1.535 (0.029)	< 0.001
Pine	MAM °C anom. T0	Year	0.028 (0.001)	< 0.001
Pine	SPEI GS anom. T0	Intercept	-1.584 (0.028)	< 0.001
Pine	SPEI GS anom. T0	Year	-0.008 (0.001)	< 0.001