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Abstract

Tree fecundity underpins regeneration and range tracking, yet may decline when climates exceed reproductive niches. Using
34 years of Polish harvests (40,530 observations across 438 districts) spanning oaks (Quercus robur, Q. petraea), European
beech (Fagus sylvatica), Scots pine (Pinus sylvestris), and silver fir (Abies alba), we tested whether climate change has changed
fecundity. Viable seed production declined by 32-65% across species (oaks ~65%, pine ~64%, fir ~44%, beech ~32%).
Summer warming was the dominant driver, with hotter summers reducing fecundity across species. Growing-season moisture
and spring temperature contributed little beyond local fecundity effects. Weather effects varied with climate, indicating diverging
within-site (transient) and across-site (equilibrium) sensitivities. This suggests local adaptation or acclimation capacity, offering
actionable management leverage. Together, our results show warming-driven fecundity declines, pushing populations beyond

optimal ranges of their reproductive niches, and suggest potential scope for mitigation through informed provenance selection.

Introduction

Tree reproduction governs the renewal of forest ecosystems, shaping composition and structure over long time scales (1; 2; 3).
Fecundity can offset mortality and contributes to resilience, determining whether populations recover and how communities
restructure after increasingly frequent disturbance (3; 4). Because seed output determines both the supply of new individuals
in situ and their dispersal potential, it links demography to range dynamics and the capacity of species to track shifting climate
niches (5; 6; 7; 8). Fecundity also determines seed supply for nurseries: climate-driven shortfalls and variability in seed years
can limit restoration plantings and assisted migration programs that depend on sufficient, provenance-appropriate collections
(9; 10). In Europe, accelerating tree mortality and disturbance frequency increase reliance on successful reproduction and a
need for reliable seed supply (11; 12; 13; 14). This suggests a central question: is reproduction keeping pace, when it is arguably
more sensitive to climate variation than survival or growth (15)?

Across the few long-term records available, fecundity shows a generally declining trend that is associated with climatic
conditions during key phenological stages, while the disruption of masting dynamics (the characteristic synchronised year-to-
year variability in seed production) causes viable seed crops to decline over time despite increased reproductive investment
in seeds (Table 1). Positive trends exist but are context-specific. In Nothofagus solandri, increasing moisture without strong
warming is associated with higher seed production (16). In Quercus crispula, warmer springs have increased mast frequency,
raising mean seed output while maintaining masting and its benefits (lower predation, sustained pollination) (17). However,
if cues occur too regularly, masting can collapse with consequent reductions in viable seeds (18). In Fagus sylvatica, warmer
summers increased the frequency of flower initiation, resulting in more regular seeding but fewer overall viable seeds (i.e.,
successfully pollinated and not predated) because of reduced pollination efficiency and weaker predator satiation (19; 20; 21).
In Picea engelmannii, an apparent positive trend is driven by an exceptional mast year at the end of the time-series; nonetheless,
its stable or positive reproduction likely reflects warming that has not yet moved the species towards a suboptimal region of its
reproductive niche (22). Taken together, these cases suggest a coherent pattern: fecundity declines when sustained warming and
shifts in moisture push populations away from the historical climatic optimum for reproduction, remains stable where climate
change has not yet shifted populations outside the stable region of the fecundity performance curve, and increases when climatic
change moves populations towards this optimum. This aligns with the expectation that sustained environmental change reduces
fecundity as niche mismatch grows (23).

Because reproduction proceeds through successive phenological stages — flower initiation, pollination, and seed maturation
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— the climatic niche for fecundity is effectively partitioned among these phases, each with its own sensitivity to temperature
and moisture (15; 24; 25). In European beech, floral initiation is strongly driven by summer temperatures: cool summers two
years prior and hot summers one year prior to flowering promote abundant initiation (26; 27). Once initiation occurs, later stages
proceed with relatively little climatic constraint (28). In Norway spruce (Picea abies), cone production also correlates positively
with summer temperature in the year before (29). Temperate deciduous oaks (Quercus spp.) show greater complexity (30; 31).
In oceanic climates, seed production is linked to floral initiation, whereas in more continental climates, pollination success
has a larger effect and therefore seed crops show a stronger dependence on spring weather (31). Rising spring temperatures
can therefore enhance oak fecundity under some conditions (32), but reduced seeding stochasticity may also weaken predator
satiation and therefore reduce viable seed counts (33). Other stressors, e.g., drought and late spring frost, further modify
reproductive responses. Prolonged drought can reduce reproduction in many species (34; 15; 35), though some maintain seed
production at the expense of growth or defence (36; 37; 38). Late spring frosts can eliminate flowers entirely, with impacts
varying across species and populations, for instance, through variation in flowering phenology (33; 39). These patterns indicate
that climate impacts on fecundity can emerge through stage-specific bottlenecks. Given these stage-dependent sensitivities and
the link between masting and seed viability, attributing temporal trends in fecundity requires stage-specific climatic metrics and,
where possible, measures of viable rather than total seed output.

As climatic cues and vetoes affecting fecundity at each reproductive stage are episodic and spatially variable, tracking
fecundity trends demands observations that are both long-term and extensive. Such data are rarely available, because sustained,
community-wide monitoring of seed production exceeds the scope of most research programs. Even if initiated today, new
monitoring networks would fail to capture past changes that may already have altered forest reproductive capacity. Harvest
records, widely used in ecology when scientific monitoring is not available (53; 54; 55; 56), can provide retrospective insight.
In Poland, the state forestry administration funds annual seed collection across all forest districts to supply regeneration and
reforestation programs for the main tree species. These records (40,530 observations spanning 34 years, 1988-2021) document
both the mass of seed and cone collected (hereafter referred to as seeds for brevity) from seed stands in each district, and
the demand driving collection intensity. Importantly, the harvest records comprise only sorted seeds (eliminating empty,
underdeveloped, or infested seeds), thereby representing an estimate of viable seed crops as opposed to total seed output.
Their interpretation requires caution, as harvests reflect not only seed availability but also reforestation needs and logistical
capacity. Because collectors may sample multiple stands within a district, viable seed production might be overestimated
when demand is high, while low demand for planting suppresses sampling effort. Since demand for seeds is documented, it
can be incorporated into statistical analyses, allowing the separation of demand-driven fluctuations from biological trends in
fecundity. With this adjustment, harvest records provide one of the few available windows into multi-decadal, community-wide
reproductive dynamics in European forests.

Here, we use this nationwide dataset to examine temporal trends in fecundity for five dominant forest-forming species and
their links to seasonal climate: European beech (Fagus sylvatica), silver fir (Abies alba), Scots pine (Pinus sylvestris), and
oaks (pooled Quercus petraea and Q. robur). We test whether climatic change has reduced fecundity in European forests by
pushing populations beyond the optimum range of the reproductive climatic niches. Specifically, we predict that (i) fecundity
has declined across species, (ii) changes in seasonal climate, including summer and spring temperatures during phenologically
sensitive stages, explain much of this decline, and (iii) the magnitude and direction of these effects vary across local climates,
reflecting population-specific reproductive niches and their thermal optima associated with local adaptations (57). By testing

these predictions, we provide a community-wide assessment of long-term fecundity change, quantifying how both temporal



96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

trends and local climatic context shape the reproductive response of Europe’s dominant tree species to sustained environmental

change.

Results

Fecundity declined across-species. In agreement with prediction (i), our long-term dataset reveals a consistent decline in
mean seed production over the past three decades across all species (Fig. 1, Table S1). The oaks showed a decline of —64.8%
(£ 0.003 SE), scots pine —63.7% (+ 0.004 SE), and silver fir and European beech experienced more moderate declines of
—43.7% (+ 0.05 SE) and —32.5% (+ 0.08 SE) respectively (Fig. 1). Spatially, a consistent pattern of declining fecundity
emerges across most populations (Fig. 1C), with the level of spatial heterogeneity varying by species. While many regions

show negative trends in seed production, others, particularly in central Poland, exhibit milder declines or even localised increases.

Fecundity trends are attributable to climate change. We used a temporal attribution framework (58) to evaluate how
long-term trends in seed production are associated with climatic conditions during the key phenological stages of flower-to-fruit
development (prediction ii). Contribution captures how much each climatic predictor drives the fecundity temporal trend, while
sensitivity quantifies the effect size of the predictor—response relationship. That is, how much seed production changes per unit
change in a climatic predictor (Fig. 2B).

Increases in summer temperature two years before seed production (T2) were consistently associated with lower seed
output across all species (Fig. 2). Warming in the summer one year before seed production (T1) also predicted lower output
for most species; the exception was beech, where warmer T1 summers increased seed production (Fig. 2). Even in beech,
however, the negative T2 effect dominated, yielding a net negative effect of summer warming on seed output. Species showed
sensitivity to growing season moisture (SPEI) (Fig. 3, 2, Table S2), but its contribution to long-term trends was limited.
The modest contribution aligned with the smaller magnitude of change in this climate driver relative to the other variables
(Table S3). In other words, SPEI patterns suggested a potential emerging risk factor, although they have not been a primary

driver of change to date. Minimum spring temperatures contributed little to temporal trends and showed weak sensitivity overall.

Local climate modulates effects of seasonal weather on seed production To test whether local climate mediates the
effects of seasonal weather on fecundity (prediction iii), we fitted species-specific GLMMs with interactions between seasonal
climate anomalies and site mean conditions. The resulting effects show that both the magnitude and the sign of weather effects
depend on overall climate and season (Fig. 3). All reported coeflicients and standard errors are on the model (log-link) scale.

For nearly all species, effects of summer temperature in the year before seedfall (T1) varied with site mean summer
temperatures (beech: -0.09 = 0.03 SE, p = 0.007; fir 0.08 + 0.04 SE, p = 0.03; oak -0.07 + 0.03 SE, p = 0.005; site conditions
are not centred), suggesting moderation by local climate. For instance, the increasing seed production related to high summer
temperatures (T1) was stronger in cold sites for beech. Across the observed climate norms, high summer temperature anomalies
(T1) reduced seed production in both fir and oak; the decline was strongest at colder sites for fir, but intensified at warmer sites
for oak. Pine produced more seeds in warmer sites (0.16 + 0.04 SE, p < 0.001), but not in warmer years (0.48 + 0.42 SE, p =
0.25).

Temperature anomalies during the summer two years before seed production (T2) generally showed consistent but non-

significant negative trends across species. Oak was the exception: seed production was lower following hot summers, especially
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Figure 1: Over three decades, average seed crops have decreased across species. A) Probability density functions
of predicted seed crops at the start (solid line) and end (dotted line) of the study period across sites and species show the
overall leftward shift in the predicted crop distributions across sites. Predictions are log-transformed for visualisation. B)
species-specific panels show the general, across sites, declines in seed production over time. For partial residuals, see Fig.
S2). C) Despite the general decline, there is spatial variation in temporal fecundity trends (Local patterns: red = declines, teal
= increases. See inset histograms for species-specific legends) across forest district boundaries (’sites’; shown as polygons).
Where forest district boundaries changed over time, coloured points mark the trend at each district’s historic main administrative
location, while the enclosing polygon colour shows the average of these sites. Trends were estimated using species-specific
Tweedie-family generalised linear mixed-effects models with site-level random slopes on a log-link scale, and accounted for
variation in sampling effort. See Methods for details.
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Figure 2: Temporal changes in seasonal weather explain a large portion of observed temporal variation in fecundity.
A) Contribution of changes in seasonal climate variables to observed long-term fecundity trends across species. Lagged summer
temperature anomalies were the dominant drivers, while the unexplained component (“unknown”) was comparatively small.
Sensitivities of fecundity to each predictor (effect size per unit change) are shown as labels next to the plot bars. (B-E)
Species-specific contributions and sensitivities plotted jointly for each seasonal predictor. This highlights potential risks from
variables that have shown little temporal change but to which fecundity is highly sensitive such as growing season SPEI. Panel
F) summarises patterns across species. Abbreviations: GS = growing season; anom. = anomaly relative to site mean climate;
Tx = time lag (TO = year of seed production); Tmean = mean temperature; Tmin = mean minimum temperature; JJA = summer
months; MAM = spring months. GS = growing season; anom. = anomaly from mean climate; Tx = time lag, with TO indicating
the year of seed production; Tmean = mean temperature; Tmin = mean minimum temperature; JJA = summer months; MAM =
spring months; SPEI = Standardised Precipitation-Evapotranspiration Index.
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in cold sites (0.15 + 0.02 SE, p < 0.001; Fig. 3).

Spring temperature anomalies and site conditions also influenced seed production. In beech and oak, cooler springs reduced
seed production in warmer sites, but these cooler years increased seed production in colder sites (beech: 0.11 = 0.04 SE, p =
0.003; oak: 0.08 + 0.022 SE, p = 0.001). Fir populations in warmer sites produced fewer seeds (-0.59 + 0.13 SE, p < 0.001).

The effect of SPEI growing season anomaly on seed production depended, for most species, on site SPEI levels. For beech,
drier sites (low SPEI) experienced stronger decreases in seed production in wet years (higher SPEI anomaly; 4.74 + 1.55 SE,
p = 0.007). Conversely, oak and pine showed that wet years in drier sites were associated with higher seed crops (oak -3.81 +
1.09 SE, p < 0.001; pine -3.87 + 0.99 SE, p < 0.001). Fir seed crops, moreover, were higher in wetter sites (7.17 + 1.46 SE, p <
0.001).

Discussion

Our analysis of nationwide Polish harvest records reveals broad declines in fecundity across Europe’s dominant tree species, with
few regions showing stability or increase over the past three decades. These results support our prediction (i) that climatic change
is eroding reproductive capacity where populations are pushed beyond their optimal climatic conditions. Declines were strongest
in Scots pine and oaks and weaker, though evident, in European beech and silver fir. In European beech, the decline is consistent
with disrupted masting, also detected in these populations (59), and an associated reduction in viable seed production due to
increased seed predation and reduced pollination. We thereby extend species-level reports of reduced fecundity in temperate
and boreal forests to the community scale (44; 16; 2; 45). In Scots pine, marked fecundity declines combined with increasing
climate-driven mortality suggest that reproductive output may become insufficient to offset population losses, although further
research is needed to quantify downstream demographic consequences (60; 61). Partial buffering in beech and fir likely reflects
interspecific differences in reproductive thermal niches and stage-specific climatic sensitivity during flower—fruit development.

Because harvest records reflect both biological supply and reforestation demand (’sampling effort’), we accounted for
temporal variation in demand to isolate biological trends. The negative trajectories persisted, indicating that declining seed
availability cannot solely be attributed to fluctuations in collection effort. Some uncertainty remains when effort and biology
share trends, but the direction and magnitude of our declines align with independent evidence of large fecundity losses: a >50%
decline in viable seeds in European beech in the UK (21), and a 40% decline in cone production in pinyon pine in New Mexico
(44), and an 80% decline in fruit production in Gabon (50). The scale of these changes matches or exceeds contemporary
declines in growth and increases in mortality (62; 63; 64), consistent with the view that fecundity is a strongly climate-sensitive
demographic rate (15) and an early signal of population stress driving forest restructuring under ongoing environmental change.

Consistent with prediction (ii), linking fecundity trends to seasonal climate during phenologically sensitive stages shows
that climate change drives long-term declines via stage-specific sensitivities. Across all species, warmer summers two years
before seed production were associated with lower seed output, indicating a negative sensitivity of flower initiation to elevated
temperature. In beech, seed production declined with summer warming two years before reproduction, consistent with the
species’ requirement for cool summers during floral initiation (27; 65). Warmer summers one year before reproduction partly
offset this decline by promoting flowering initiation (21; 19), yet the net contribution of summer warming remained negative.
The magnitude of fecundity decline is comparable to trends associated with masting breakdown, including increased seed
predation and reduced pollination success in beech (21). Other species showed no such offset, with both T2 and T1 warming

linked to declines in fecundity. While warm springs were locally associated with reduced seed production — potentially due



170

171

172

173

174

176

177

178

179

180

181

182

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

to mismatched pollen release or spring frost damage (66; 67; 33) — long-term declines were not closely linked to spring
temperature trends in any species. This aligns with the absence of regional trends in late frost damage (68). Although drought
severity (SPEI) has increased, it did not emerge as a consistent driver of fecundity trends. Weak overall effects of spring
temperature and SPEI likely reflect opposing site-level responses that cancel out when aggregated regionally, suggesting that
these variables may still shape local-scale trends. Together, these results indicate that multiple reproductive stages constrain
long-term fecundity, with the dominant bottlenecks differing among species (25).

Consistent with prediction (iii), our analyses reveal that local climate modulates how seasonal weather anomalies affect
fecundity. By comparing within-site responses to short-term climate anomalies with across-site responses to long-term climatic
means, we distinguish fast ecological processes such as phenotypic plasticity and phenological adjustment from slower responses
driven by acclimation or local adaptation (69; 57). Temporal sensitivities thus represent “transient” responses to interannual
variability, while spatial sensitivities approximate “equilibrium” responses emerging after prolonged exposure to local climatic
regimes (57). Such sensitivities often differ in magnitude or sign; for instance, ponderosa pine grows faster in warmer sites
but shows reduced growth in unusually hot years (70; 71). Here, fir fecundity was unaffected by short-term drought anomalies
but was higher in wetter sites, implying that persistent drying will reduce reproduction not through increasing annual drought
damage, but through gradual reorganisation of populations toward a low-fecundity equilibrium. Beech showed the opposite
pattern, i.e., higher reproduction in dry years but no advantage at dry sites, suggesting that positive short-term responses to
drought will not persist over the long term. This divergence between temporal and spatial patterns is consistent with past
studies, which compared beech seed production responses to within-site anomalies and among-site variation in precipitation
(72; 73). More generally, across many species—anomaly combinations, spatial effects of climate were modest, suggesting that
local adaptation or acclimatisation may help populations maintain similar performance across climate gradients, even if notable
site-level differences remain for some species (57). From a management perspective, local adaptation offers near-term buffering
capacity. However, climate change mitigation via provenance selection or translocation would require careful, small-scale
testing given associated risks of interventions (74).

While we focus on fecundity, seedling recruitment is also sensitive to climate variability, particularly to drought and
temperature extremes during germination and early establishment (75; 76; 77). For instance, in ponderosa pine (Pinus ponderosa)
and Douglas fir (Pseudotsuga menziesii), recruitment is non-linearly related to moisture, with recent conditions falling below
thresholds for successful regeneration in many sites (78). In these systems, increased seed supply can partially buffer negative
climate effects on regeneration (79). However, if fecundity declines occur in parallel with decreasing climatic suitability for
establishment, these effects will interact, potentially accelerating population decline (80). Recruitment studies that reconstruct
past reproductive output from age structures and regeneration records (78; 81; 82; 83) offer a means to test whether reduced seed
availability is already constraining forest renewal, and how this interacts with climate effects on seedling establishment. Given
the observed declines in fecundity and reports of seedling mortality following increasingly severe drought (61), such analyses
are now urgently needed. Other factors, such as changes in forest structure and age, atmospheric CO, or nitrogen deposition
and air pollution may also influence long-term fecundity patterns and represent important directions for future research.

We document a multi-decadal decline in viable seed production across Europe’s dominant temperate forest-forming trees,
after adjusting harvest records for sampling effort. The pattern is consistent with our theoretical framework: climatic change
reduces fecundity as populations are pushed beyond their reproductive climatic niches (prediction i), with declines largely
attributable to seasonal thermal conditions during phenologically sensitive stages, especially summer warming (prediction ii),

and with effect sizes moderated by local climate (prediction iii). Because the records reflect sorted (viable) seed crops, the
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decline indicates reduced effective reproductive output rather than changes in total seed fall alone. Given that reproduction
underpins regeneration, community structure, range tracking, and the seed supply required by nurseries (7; 84; 3), continuing
declines in fecundity elevate renewal risk (80), especially where establishment is already constrained by drought and heat
(78). At the same time, contrasts between spatial and temporal patterns in our results suggest that slow response processes
(acclimation and adaptation) may partly offset negative trends if given sufficient time; an outcome that depends critically on the
pace of environmental change (57). The next step is to integrate fecundity trends with long-term recruitment and demographic
data to determine whether the declines documented here, especially in combination with shifting climatic suitability for seedling

establishment, are translating into reduced regeneration.

Methods

Fecundity data

Annual seed harvests were reported by local forest districts (Nadlesnictwa, referred to as ’sites’) to the Polish State Forests,
based on collections from 1988-2021 by contracted crews from the ground or canopy within designated seed stands. However,
since analyses were conducted at the species level, results are independent of collection methods. Each site contains one or more
seed stands per species, and foresters collect from as many of these stands within site boundaries as needed to meet demand.
Before reporting, seeds underwent quality assessment following the nation-wide and unified protocol. Samples of each lot were
evaluated for purity, including exclusion of empty seeds, species-specific debris (e.g., husks, needles), foreign material, and
seeds damaged or infested by insects. Empty seeds were removed by sorting or air separation; in beech, sorting was typically
done by hand to remove infested seeds. The degree of pre-cleaning varied among species, and in some cases small but viable
seeds may have been excluded, or empty seeds retained. As a result, reported harvests are post-sorting seed lots (by weight),
and reflect an estimate of viable seed yield rather than total seed production.

The dataset (438 sites, 40,530 annual observations ’n’) records the mass (kg) of seeds (or cones, for conifers; hereafter
’seeds’) harvested annually for Silver fir (Abies alba; 123 sites, n = 4,085), European beech (Fagus sylvatica; 290 sites, n
= 9,661), Scots pine (Pinus sylvestris; 401 sites, n = 13,272), Sessile oak (Quercus petraea), and Pedunculate oak (Quercus
robur). Prior to 2007-2008, depending on the site, oak harvests were not reported separately for these two species, and records
were therefore pooled (407 sites, n = 13,512). The dataset also includes annual seed demand (kg) at the site level. Demand
is calculated by the State Forests administration as the product of the planned artificial regeneration area for each species and
fixed, species-specific conversion coefficients that reflect target planting density and standardised nursery sowing rates. These
conversion coefficients are used uniformly across Poland and have remained unchanged over time; however, annual demand
itself varies spatio-temporally with the planned regeneration area and available seed stocks as demand is reduced when stock
levels of previously collected seeds are high. Demand is not influenced by private nurseries. Seed collection from forest stands
by third parties is prohibited, and seeds are not exported. Thus, demand can be interpreted as a composite index of sampling
effort.

We excluded time-series consisting of >90% seed harvest values of zero to avoid model convergence issues. Lowering this
threshold to 80% or 50%, does not change the results qualitatively. The proportion of zero values across time-series is provided
in Fig. S3. We analysed all time-series of these five species spanning more than a decade (mean: 33.19 years; Fig. S4).
Site boundaries for each species are shown in Fig. 1C. If demand values were missing but the recorded seed harvest was zero,

demand was set to zero (1,488 observations). If a harvest had taken place but demand was missing, we imputed the site-level
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mean demand for the focal species (1,625 observations).

Climate data

We obtained high-resolution (2.5°) historical monthly climate data (1960-2021) for Europe from the WorldClim database
(v. 2.1; (85)), including minimum and maximum temperature and precipitation. Mean monthly temperature was calculated
by averaging Tmin and Tmax raster layers. For each grid cell, we then calculated mean temperature and total precipitation
per season (December-February 'DJF’, March-May "MAM’, June-August JJA’, September-November SON’) and per year.
Potential evapotranspiration (PET) was estimated using the Thornthwaite method based on temperature, and combined with
precipitation to compute the Standardised Precipitation-Evapotranspiration Index (SPEI) at a 1-month scale using the SPEI
package (v. 1.8.1; (86)). To harmonise seasonal definitions, December was reassigned to the subsequent year, allowing each

winter season to span December through February.

Data analysis

All models were built in R (v. 4.4.1) using glmmTMB (v. 1.1.10) unless indicated differently and validated with DHARMa
(v.0.4.7; (87; 88; 89)). Throughout the analyses, we used Tweedie distribution models because they accommodate both zero-
inflation and overdispersion, which are common features of reproductive data. The Tweedie family also offers flexibility across a
range of data-generating processes, and applying the same distribution across all temporal attribution models (e.g. reproduction

trends and climate effects) ensured consistency and comparability, making it the preferred choice.

Spatio-temporal trends in seed crops Reproductive trends. To visualise spatio-temporal variation in seed production
for each species we fitted a Tweedie family GLMM with year, In[kg + 1]-transformed demand, and previous-year harvest as
fixed effects, and allowed the effect of year to vary by site with a random slope. Including demand yields demand-adjusted
fecundity trends and climate effects that are conditional on the observed variation in demand.

Spatial diversity in climate trends. We mapped spatial variation in long-term trends in climate variables (i.e. summer
temperature, spring temperature, growing season SPEI) by calculating per-cell temporal slopes from WorldClim raster stacks
(from 19988-2021). For each grid cell, a linear trend was fitted using the stats package to the annual time-series, and the

resulting slope (°C year™!, SPEI index year™!) was assigned to the cell.

Climate-fecundity relationships We assessed how seasonal climate influenced seed production for four climatic
variables linked to reproduction: mean spring minimum temperature, summer mean temperature at one- and two-year lags, and
growing-season (April-September) SPEIL.

For each species, we fitted Tweedie GLMMs of seed crop size (kg) with fixed effects for the interaction between climate
anomalies and their corresponding site-specific long-term means of each time-series. Anomalies were defined as the difference
between the observed value of a climatic variable and its site-specific long-term mean. The two-year lagged summer temperature
anomaly was interacted with the one-year summer site mean rather than the two-year mean to avoid collinearity between site
means (Spearman’s p > 0.99). We controlled for variation in harvesting effort by including log-transformed seed demand (In[kg
+ 1]) as a covariate, and accounted for temporal autocorrelation in seed production by including the previous-year seed crop.

Site was included as a random intercept.
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Uncertainty was quantified using a block bootstrap, which preserves temporal dependence. For each species—anomaly pair,
we resampled the data in contiguous 10-year blocks drawn from all sites combined (sampling with replacement from valid site
x block-start year combinations) to preserve within-block temporal dependence while allowing site composition to vary among
replicates. Each resample was refitted (N = 1000). For visualisation, we generated partial-dependence predictions across the
observed anomaly range at three levels of the site mean (25th, 50th, and 75th percentiles). For inference, we pooled the 4000

bootstrap fits per species to summarise effects.

Temporal attribution modelling We used a temporal attribution framework (58) to assess how long-term trends in
seed production are associated with climatic conditions, using Tweedie log-link GLMMs with site as a random intercept in all
models.

We first quantified observed temporal trends in seed production by fitting “total trend” models for each species. These
models adjusted for previous-year seed crops and In[kg + 1]-transformed seed demand. We also fitted predictor trend models
for each climatic anomaly variable.

For each species, we then fitted a “process” model as described in Climate-fecundity relationships, to which we added
species-specific zero-inflation and dispersion components to ensure model convergence in subsequent models dependent on the
model output. For pine, the zero inflation formula included the previous-year seed production. For all other species (i.e., beech,
oak), zero inflation depended solely on previous-year seed production. Dispersion was modelled as a function of log-transformed
seed demand (In[kg + 1]) in all species except pine, where it was held constant to ensure model stability.

From the fitted process model, we generated predictions for all observations, and fitted a "full prediction" trend model to
these predictions to quantify the overall temporal trend explained by the predictors. For temporal counterfactuals, we held each
climate predictor at its site-specific long-term mean (with other variables varying as observed), and refit a "fixed predictor"
trend model.

We calculated the contribution of that predictor as the log-scale difference between the full-prediction trend and the fixed-
predictor trend. Sensitivity was calculated by taking the difference between the full- and fixed-predictor trends on the response
scale divided by the predictor’s temporal slope. The “unknown” contribution was the residual difference between the observed

"total" temporal trend in seed production and the sum of individual predictor contributions.
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Table 1: Literature summary on temporal trends in tree reproduction across species and regions. Articles
were retrieved from Scopus using the query ’(fecundity OR "seed production") AND tree* AND trend,’
where the asterisk is a truncation wildcard

. The table was supplemented with sources from our own review of the literature. T = temperature, P =

precipitation.
Species Level Linked to Direction Study Sites  Location Period
Beilschmiedia tawa Species Summer & winter T, P - (40) 6 New Zealand 1986-2020
Fagus sylvatica Species Summer T, tree size - (41;42) 12 UK 1980-2020
viable,
+ total
Species Summer T - (19) 50 Europe 1980-2022
Fagus sylvatica viable,
+ total
Nothofagus solandri Species Summer T & P + (43; 16) 3 New Zealand 1965-2009
(great-
est at
high
eleva-
tion)
Pinus edulis Species Summer T (cone initiation) - (44) 9 USA 1969-2012
Pinus edulis Species Climatic water deficit, - (hind- (45) 16 USA 1900-2024
monsoonality cast)
Picea engelmannii Species Summer T, spring snow + (22) 13 USA 1970-2010
Pinus pinea Species T & P throughout cone - (46) 58 Spain 1960-2000
(harvest)  development
Pinus sibirica Species Spring T, September T - (47) 1 Russia 1990 - 2019
Quercus crispula Species Growing season T + 17) 1 Japan 1980-2017
Quercus petraea (& Q. Species Spring T + (32) 28 France 1994-2007
robur; ns)
3 Quercus species (Q. Species Spring P & fire - (48) 1 USA 1988-2018
chapmanii, Q. geminata,
Q. inopina)
68 plant species Community VPD, minimum relative Shrubs: (49) 1 China 2014-2020
humidity -
Herbs,
vines,
trees &
palms):
NS,
Over-
all: NS
73 tropical tree species Community Not tested - (50) 1 Gabon 1986-2018
81 tropical tree and liana  Community EI Nifio events Flowers (51) 1 Panama 1987-2005
species +,
Seeds:
NS
123 tree species Community Tree size, Spring minimum T, West: “) 653 North America ~1960-~2020
summer T, moisture deficit -, East:
+
203 plant species Community Night T, Vapour pressure - (52) 1 Ecuador 1960-2000
deficit
363 plant species Community Not tested - (23) 205 World 1900-2014
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Figure S1: Observed seed crop demand over time. The colour shows the density of seed site-level, annual demand
observations (scaled between 0 and 1 to allow for comparison between species). The box plots summarise seed demand
observations by 5-year time windows, while red dotted lines show statistically significant linear trends as extracted from species-
specific Tweedy family GLMMs of demand as a function of time with site included as a random intercept.
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Figure S2: Partial residuals around long-term trend in fecundity Filled contour maps show normalised densities (scaled
between 0—1) of partial residuals of seed production over time (i.e. fixed effect of time plus model residuals). Panels are cropped
to regions with normalised density > 0.1 to highlight the predominant variation. 5-Year boxplots summarise partial residuals
within 5-year windows, and the coloured dashed line reproduces the species-specific predicted trend from Fig. 1B. The results
come from species-specific Tweedie-family generalised linear mixed-effects models, including random slopes of time effects by
site. See Methods for further detail.
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Figure S3: Distribution of the proportion of zero harvests across time series for beech, fir, oak, and pine. Each panel
shows the frequency of time series with a given proportion of years with zero harvest.
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Table S1: Temporal trends in fecundity show decline in harvest crop size for all species. Results
were obtained with 4 species-specific Tweedie family GLMMs, showing how harvest crops change with
each year since the start of the time-series (1988 = 1). The model accounted for natural log transformed
seed demand, and temporal autocorrelation in seed harvests through 1 year lagged harvests (Seeds T1).

Site was included as a random effect.

Species Term Estimate (SE) p
Beech Intercept 3.172 (0.109) < 0.001
Beech Year -0.011 (0.002) < 0.001
Beech In(Demand+1) 0.428 (0.016) < 0.001
Beech Seeds T1 -3.673e-04 (5.988e-06) < 0.001
Fir Intercept 3.73 (0.129) < 0.001
Fir Year -0.024 (0.003) < 0.001
Fir In(Demand+1) 0.647 (0.024) < 0.001
Fir Seeds T1 4.764e-08 (9.034e-06) 0.996
Oaks (both) Intercept 5.943 (0.071) < 0.001
Oaks (both) Year -0.019 (0.001) < 0.001
Oaks (both) In(Demand+1) 0.253 (0.007) < 0.001
Oaks (both) Seeds T1 -1.155e-05 (2.518e-06) < 0.001
Pine Intercept 5.817 (0.066) < 0.001
Pine Year -0.028 (0.001) < 0.001
Pine In(Demand+1) 0.512 (0.017) < 0.001
Pine Seeds T1 7.279e-05 (3.839¢-06) < 0.001
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Table S2: Relationships between fecundity and spatio-temporal climatic variation. Results were
obtained with 4 species-specific Tweedie family GLMMSs, and show how harvest crops change with
spatial ("Site") and temporal ("anom." = Anomaly) variation in climatic conditions during sensitive
stages. Anomalies were added in interaction (":") with site-level mean climate. The model accounted
for natural log transformed seed demand, and temporal autocorrelation in seed harvests through 1 year
lagged harvests. Site was included as a random effect. JJA = June-August, MAM = March-May, GS =
Growing season. SPEI = Standardised Precipitation Evapotranspiration Index. Tx indicates lag (e.g. T1

is a variable that was lagged 1 year).

Species Term Estimate (SE) P
Beech Intercept 11.381 (1.869) < 0.001
Beech JJA °C anom. T1 2.256 (0.52) < 0.001
Beech Site JJA °C -0.528 (0.128) < 0.001
Beech JJA °C anom. T2 -0.546 (0.489) 0.264
Beech MAM °C anom. TO -0.668 (0.132) < 0.001
Beech Site MAM °C 0.356 (0.153) 0.02
Beech SPEI GS anom. T0 0.036 (0.226) 0.874
Beech Site SPEI GS 3.306 (1.7) 0.052
Beech In(Demand+1) 0.404 (0.017) < 0.001
Beech Seeds T1 -2.146e-04 (9.397¢-06) < 0.001
Beech JJA anom. T1:Site JJA °C -0.092 (0.029) 0.002
Beech Site JJA °C:JJA anom. T2 -0.013 (0.028) 0.64
Beech MAM anom. TO:Site MAM °C 0.178 (0.036) < 0.001
Beech SPEI GS anom. TO:Site SPEI GS 4.288 (1.509) 0.004
Fir Intercept 1.132 (2.038) 0.579
Fir JJA °C anom. T1 -1.902 (0.515) < 0.001
Fir Site JJA °C 0.266 (0.144) 0.066
Fir JJA °C anom. T2 0.047 (0.497) 0.925
Fir MAM °C anom. TO -0.189 (0.128) 0.141
Fir Site MAM °C -0.396 (0.187) 0.034
Fir SPEI GS anom. T0 -0.048 (0.187) 0.799
Fir Site SPEI GS 7.601 (1.656) < 0.001
Fir In(Demand+1) 0.605 (0.024) < 0.001
Fir Seeds T1 4.320e-06 (7.885e-06) 0.584
Fir JJA anom. T1:Site JJA °C 0.097 (0.029) < 0.001
Fir Site JJA °C:JJA anom. T2 -0.013 (0.028) 0.645
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Fir

Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Oaks (both)
Pine

Pine

Pine

Pine

Pine

Pine

Pine

Pine

Pine

Pine

Pine

Pine

Pine

Pine

MAM anom. TO:Site MAM °C
SPEI GS anom. TO:Site SPEI GS
Intercept

JJA °C anom. T1

Site JJA °C

JJA °C anom. T2

MAM °C anom. TO

Site MAM °C

SPEI GS anom. T0

Site SPEI GS

In(Demand+1)

Seeds T1

JJA anom. T1:Site JJA °C

Site JJA °C:JJA anom. T2
MAM anom. TO:Site MAM °C
SPEI GS anom. TO:Site SPEI GS
Intercept

JJA °C anom. T1

Site JJA °C

JJA °C anom. T2

MAM °C anom. TO

Site MAM °C

SPEI GS anom. T0

Site SPEI GS

In(Demand+1)

Seeds T1

JJA anom. T1:Site JJA °C

Site JJA °C:JJA anom. T2
MAM anom. TO:Site MAM °C

SPEI GS anom. TO:Site SPEI GS

-0.012 (0.039)
0.92 (1.55)
3.953 (1.342)
0.564 (0.349)
0.005 (0.088)
-2.433 (0.346)
-0.29 (0.092)
0.323 (0.105)
-0.755 (0.142)
0.171 (1.307)
0.318 (0.011)
-7.080e-06 (2.396e-06)
-0.04 (0.019)
0.129 (0.019)
0.072 (0.024)
-3.539 (0.907)
6.012 (0.901)
0.134 (0.349)
-0.059 (0.058)
-0.041 (0.338)
-0.13 (0.088)
0.157 (0.068)
-0.784 (0.165)
-1.096 (0.911)
0.439 (0.016)
6.716e-05 (3.754¢-06)
-0.014 (0.019)
-0.009 (0.019)
-0.002 (0.023)

-4.938 (1.048)

0.754

0.553

0.003

0.106

0.95

< 0.001

0.002

0.002

< 0.001

0.896

< 0.001

0.003

0.039

< 0.001

0.003

< 0.001

< 0.001

0.701

0.313

0.903

0.137

0.022

< 0.001

0.229

< 0.001

< 0.001

0.472

0.635

0.921

< 0.001
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Table S3: Temporal trends in weather during reproductive stages. Results were obtained with 4
species-specific Tweedie family GLMMs (N.B. family was chosen for consistency with the other variables
in the temporal attribution framework), showing how each climatic variable ("Predictor") has changed per
year since the start of the time-series (1988 = 1). Site was included as a random effect. JJA = June-August,
MAM = March-May, GS = Growing season. SPEI = Standardised Precipitation Evapotranspiration Index.
Tx indicates lag (e.g. T1 is a variable that was lagged 1 year).

Species Predictor Term Estimate (SE) p
Beech JJA °C anom. T1 Intercept -2.294 (0.034) < 0.001
Beech JJA °C anom. T1 Year 0.067 (0.001) < 0.001
Beech JJA °C anom. T2 Intercept -2.35(0.035) < 0.001
Beech JJA °C anom. T2 Year 0.07 (0.001) < 0.001
Beech MAM °C anom. TO Intercept -1.506 (0.033) < 0.001
Beech MAM °C anom. TO Year 0.026 (0.002) < 0.001
Beech SPEI GS anom. TO Intercept -1.517 (0.032) < 0.001
Beech SPEI GS anom. TO Year -0.011 (0.002) < 0.001
Fir JJA °C anom. T1 Intercept -2.445 (0.054) < 0.001
Fir JJA °C anom. T1 Year 0.072 (0.002) < 0.001
Fir JJA °C anom. T2 Intercept -2.531 (0.055) < 0.001
Fir JJA °C anom. T2 Year 0.077 (0.002) < 0.001
Fir MAM °C anom. TO Intercept -1.551 (0.05) < 0.001
Fir MAM °C anom. TO Year 0.027 (0.002) < 0.001
Fir SPEI GS anom. TO Intercept -1.673 (0.052) < 0.001
Fir SPEI GS anom. TO Year -0.004 (0.003) 0.155
Oaks (both) JJA °C anom. T1 Intercept -2.277 (0.029) < 0.001
Oaks (both) JJA °C anom. T1 Year 0.066 (0.001) < 0.001
Oaks (both) JJA °C anom. T2 Intercept -2.328 (0.03) < 0.001
Oaks (both) JJA °C anom. T2 Year 0.069 (0.001) < 0.001
Oaks (both) MAM °C anom. TO Intercept -1.53 (0.029) < 0.001
Oaks (both) MAM °C anom. TO Year 0.028 (0.001) < 0.001
Oaks (both) SPEI GS anom. TO Intercept -1.592 (0.028) < 0.001
Oaks (both) SPEI GS anom. T0 Year -0.007 (0.001) < 0.001
Pine JJA °C anom. T1 Intercept -2.268 (0.029) < 0.001
Pine JJA °C anom. T1 Year 0.066 (0.001) < 0.001
Pine JJA °C anom. T2 Intercept -2.314 (0.03) < 0.001
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Pine

Pine

Pine

Pine

Pine

JJA °C anom. T2

MAM °C anom. TO

MAM °C anom. TO

SPEI GS anom. TO

SPEI GS anom. TO

Year
Intercept
Year
Intercept

Year

0.068 (0.001)
-1.535 (0.029)
0.028 (0.001)
-1.584 (0.028)

-0.008 (0.001)

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001
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