Forest fecundity declines as climate shifts

2

1

Jessie J. Foest*¹, Jakub Szymkowiak^{1,2}, Marcin K. Dyderski³, Dave Kelly ⁴, Georges Kunstler ⁵, Szymon Jastrzębowski⁶, Michał Bogdziewicz¹

5

- ¹Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu
- 7 Poznańskiego 6, 61-614 Poznan, Poland.
- ⁸ Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University,
- 9 Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland.
- ³Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
- ⁴ School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
- ⁵ Univ. Grenoble Alpes, INRAE, LESSEM, St-Martin-d'Hères, France
- ⁶Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090, Raszyn,
- 14 Poland.

15

corresponding author: jjfoest_articles@protonmail.com

Key words

climate change, seed production, fecundity, forest resilience, tree demography

9 Abstract

Tree fecundity underpins regeneration, range tracking, and seed supply for assisted migration, yet may decline as climates move beyond reproductive niches. Using 34 years of nationwide harvest records from Poland (40,530 observations across 21 438 forest districts) for five dominant taxa — oaks (Quercus robur, Q. petraea), European beech (Fagus sylvatica), Scots 22 pine (Pinus sylvestris), and silver fir (Abies alba) — we tested whether sustained climate change has reduced fecundity after accounting for seed demand. Mean viable seed production declined by 32-65% across species (oaks ~65%, pine ~64%, fir 24 ~44%, beech ~32%). Summer warming was the dominant driver, with hotter summers reducing seed output across all species. 25 Growing-season moisture and spring temperature contributed little to long-term trends, although they shaped local responses. Weather effects varied with background climate, indicating divergence between short-term (within-site, transient) and long-term 27 (across-site, equilibrium) sensitivities. This modulation by local climate indicates substantial capacity for local adaptation 28 or acclimation, offering actionable leverage for management. Together, our results show fecundity declines consistent with warming, pushing populations beyond reproductive climatic niches, but also identify potential to mitigate risk by aligning 30 provenance choice and assisted migration with projected site climates. 31

Tree reproduction governs the renewal of forest ecosystems, shaping composition and structure over long time scales (Grubb,

2 Introduction

33

1977; Clark et al., 2021a; Seidl & Turner, 2022). Fecundity can offset mortality and contributes to resilience, determining whether populations recover and how communities restructure after increasingly frequent disturbance (Seidl & Turner, 2022; Clark et al., 2021b). Because seed output determines both the supply of new individuals in situ and their dispersal potential, it 36 links demography to range dynamics and the capacity of species to track shifting climate niches (Clark et al., 2003; Svenning 37 & Skov, 2007; Nathan et al., 2011; Rogers et al., 2017). Fecundity also determines seed supply for nurseries: climate-38 driven shortfalls and variability in seed years can limit restoration plantings and assisted migration programs that depend on 39 sufficient, provenance-appropriate collections (Kettle et al., 2010; Pearse et al., 2021). In Europe, accelerating tree mortality and disturbance frequency increase reliance on successful reproduction and a need for reliable seed supply (Senf et al., 2018, 2021; George et al., 2022; Senf et al., 2020). This suggests a central question: is reproduction keeping pace, when it is arguably 42 more sensitive to climate variation than survival or growth Clark et al. (2011)? 43 Across the few long-term records available, fecundity shows a generally declining trend that is associated with climatic conditions during key phenological stages, while masting dynamics influence whether declines occur in total or viable seed 45 crops (Table 1). Positive trends exist but are context-specific. In Nothofagus solandri, increasing moisture without strong 46 warming is associated with higher seed production (Allen et al., 2014). In Quercus crispula, warmer springs have increased mast frequency, raising mean seed output while maintaining masting and its benefits (lower predation, sustained pollination) 48 (Shibata et al., 2019). However, if cues occur too regularly, masting can collapse with consequent reductions in viable seeds 49 (Bogdziewicz et al., 2024). In Fagus sylvatica, warmer summers increased the frequency of flower initiation, resulting in more regular seeding but fewer overall viable seeds (i.e., successfully pollinated and not predated) because of reduced pollination 51 efficiency and weaker predator satiation (Foest et al., 2024; Hacket-Pain et al., 2025; Bogdziewicz et al., 2023a,b). In Picea 52 engelmannii, an apparent positive trend is driven by an exceptional mast year at the end of the time-series; nonetheless, its stable or positive reproduction likely reflects a warming that has not yet exceeded the species' reproductive thermal niche (Buechling et al., 2016). Taken together, these cases suggest a coherent pattern: fecundity declines when sustained warming and moisture shifts push populations beyond their reproductive climatic niche; remains stable while climate stays within it; and increases when climate moves populations toward the climatic optimum. This aligns with the expectation that sustained environmental change reduces fecundity as niche mismatch grows (Pearse *et al.*, 2017).

56

57

58

59

60 61

62

63

65

66

68

69

71

72

73

74

75

76 77

78

79

80

81

82

83

84

85

87

88

90

91

92

93

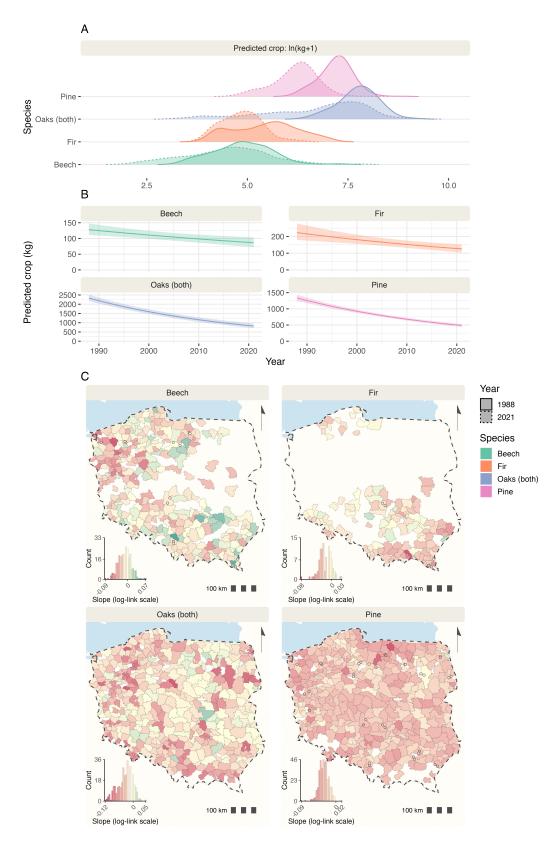
Because reproduction proceeds through successive phenological stages — flower initiation, pollination, and seed maturation — the climatic niche for fecundity is effectively partitioned among these phases, each with its own sensitivity to temperature and moisture (Clark et al., 2011; Ibáñez et al., 2017; Bogdziewicz et al., 2025). In European beech, floral initiation is strongly driven by summer temperatures: cool summers two years prior and hot summers one year prior to flowering promote abundant initiation (Vacchiano et al., 2017; Journé et al., 2024). Once initiation occurs, later stages proceed with relatively little climatic constraint (Journé et al., 2023). In Norway spruce (Picea abies), cone production also correlates positively with summer temperature in the year before (Ascoli et al., 2017). Oaks (Quercus spp.) show greater complexity (Bogdziewicz et al., 2017; Fleurot et al., 2023). In oceanic climates, seed production is linked to floral initiation, whereas in more continental climates, pollination success has a larger effect and therefore seed crops show a stronger dependence on spring weather (Fleurot et al., 2023). Rising spring temperatures can therefore enhance oak fecundity under some conditions (Caignard et al., 2017). Other stressors, e.g. drought and late spring frost, further modify reproductive responses. Prolonged drought can reduce reproduction in many species (Pérez-Ramos et al., 2010; Clark et al., 2011; Vilà-Cabrera et al., 2014), though some maintain seed production at the expense of growth or defence (Lauder et al., 2019; Bogdziewicz et al., 2020a; Gonzalez et al., 2023). Late spring frosts can eliminate flowers entirely, with impacts varying across species and populations, for instance, through variation in flowering phenology (Schermer et al., 2020; Augspurger, 2009). These patterns indicate that climate impacts on fecundity can emerge through stage-specific bottlenecks. Given these stage-dependent sensitivities and the link between masting and seed viability, attributing temporal trends in fecundity requires stage-specific climatic metrics and, where possible, measures of viable rather than total seed output.

As climatic cues and vetoes affecting fecundity at each reproductive stage are episodic and spatially variable, tracking fecundity trends demands observations that are both long-term and extensive. Such data are rarely available, because sustained, community-wide monitoring of seed production exceeds the scope of most research programs. Even if initiated today, new monitoring networks would fail to capture past changes that may already have altered forest reproductive capacity. Harvest records, widely used in ecology when scientific monitoring is not available (Weinstein, 1977; Sakai, 2002; Post et al., 2004; Gamelon et al., 2012), can provide retrospective insight. In Poland, the state forestry administration funds annual seed collection across all forest districts to supply regeneration and reforestation programs for the main tree species. These records (40,530 observations spanning 34 years, 1988–2021) document both the mass of seed and cone collected (hereafter referred to as seeds for brevity) from seed stands in each district, and the demand driving collection intensity. Importantly, the harvest records comprise only sorted seeds (eliminating empty, underdeveloped, or infested seeds), thereby representing an estimate of viable seed crops as opposed to total seed output. Their interpretation requires caution, as harvests reflect not only seed availability but also reforestation needs and logistical capacity. Because collectors may sample multiple stands within a district, viable seed production might be overestimated when demand is high, while low demand for planting could suppress sampling effort. Since demand for seeds is documented, it can be incorporated into statistical analyses, allowing the separation of demand-driven fluctuations from biological trends in fecundity. With this adjustment, harvest records provide one of the few available windows into multi-decadal, community-wide reproductive dynamics in European forests.

Here, we use this nationwide dataset to examine temporal trends in fecundity for five dominant forest-forming species and their links to seasonal climate: European beech (*Fagus sylvatica*), silver fir (*Abies alba*), Scots pine (*Pinus sylvestris*), and

oaks (pooled *Quercus petraea* and *Q. robur*). We test whether sustained climatic change has reduced fecundity in European forests by pushing populations beyond their reproductive climatic niches. Specifically, we predict that (i) fecundity has declined across species, (ii) changes in seasonal climate, including summer and spring temperatures during phenologically sensitive stages, explain much of this decline, and (iii) the magnitude and direction of these effects vary across local climates, reflecting population-specific reproductive niches and their thermal optima associated with local adaptations (Stemkovski *et al.*, 2025). By testing these predictions, we provide a community-wide assessment of long-term fecundity change, quantifying how both temporal trends and local climatic context shape the reproductive response of Europe's dominant tree species to sustained environmental change.

Results


Across-species declines in fecundity In agreement with prediction (i), our long-term dataset reveals a consistent decline in mean seed production over the past three decades across all species (Fig. 1, Table S1). The oaks showed a decline of -64.8% (± 0.003 SE), scots pine -63.7% (± 0.004 SE), and silver fir and European beech experienced more moderate declines of -43.7% (± 0.05 SE) and -32.5% (± 0.08 SE) respectively (Fig. 1).

Spatially, a consistent pattern of declining fecundity emerges across most populations (Fig. 1C), with the level of spatial heterogeneity varying by species. While many regions show negative trends in seed production, others, particularly in central Poland, exhibit milder declines or even localised increases.

Climate change during reproductive stages Climatic conditions shifted across all species and reproductive stages, with the sole exception of SPEI in fir, for which the negative trend was not statistically significant (Table S3). The most pronounced changes occurred in summer temperatures during reproductively sensitive windows (T1, T2), which increased between 0.86 – 0.99 °C during the study period (for temporal slopes per species see Table S3). Spring temperatures exhibited smaller warming, rising by 0.33 °C on average (0.31–0.34 °C). In contrast, changes in water balance were minimal, with SPEI showing a mean decrease of -0.044 (range: -0.065 to -0.022).

Temporal attribution of fecundity trends to climate change We used a temporal attribution framework (Fernández-Martínez *et al.*, 2019) to evaluate how long-term trends in seed production are associated with climatic conditions during the key phenological stages of flower-to-fruit development (prediction ii). Contribution captures how much each climatic predictor drives the fecundity temporal trend, while sensitivity quantifies the effect size of the predictor–response relationship. That is, how much seed production changes per unit change in a climatic predictor (Fig. 2B).

Increases in summer temperature two years before seed production (T2) were consistently associated with lower seed output across all species (Fig. 2). Warming in the summer one year before seed production (T1) also predicted lower output for most species; the exception was beech, where warmer T1 summers increased seed production (Fig. 2). Even in beech, however, the negative T2 effect dominated, yielding a net negative effect of summer warming on seed output. Species showed sensitivity to growing season moisture (SPEI) (Fig. 3, 2, Table S2), but its contribution to long-term trends was limited. The modest contribution aligned with the smaller magnitude of change in this climate driver relative to the other variables (Table S3). In other words, SPEI patterns suggested a potential emerging risk factor, although they have not been a primary driver of change to date. Minimum spring temperatures contributed little to temporal trends and showed weak sensitivity overall.

Figure 1: Over three decades, average seed crops have decreased across species. A) Predicted seed crops at the start (solid line) and end (dotted line) of the study period across sites and species show the overall leftward shift in the predicted crop distributions across sites. Predictions are log-transformed for visualisation. B) species-specific panels show the general, across sites, declines in seed production over time. For partial residuals, see Fig. S2. C) Despite the general decline, there is spatial variation in temporal fecundity trends (Local patterns: red = declines, teal = increases. See inset histograms for species-specific legends) across forest district boundaries ('sites'; shown as polygons). Where forest district boundaries changed over time, coloured points mark the trend at each district's historic main administrative location, while the enclosing polygon colour shows the average of these sites. Trends were estimated using species-specific Tweedie-family generalised linear mixed-effects models with site-level random slopes on a log-link scale, and accounted for variation in seed demand. See Methods for details.

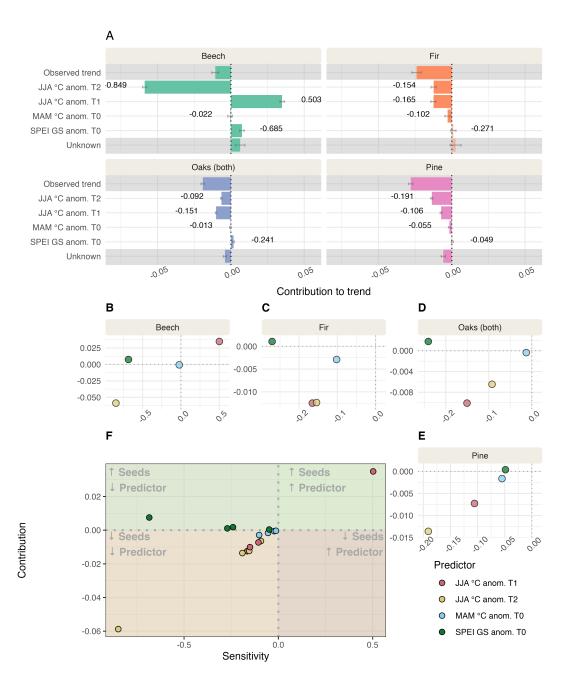
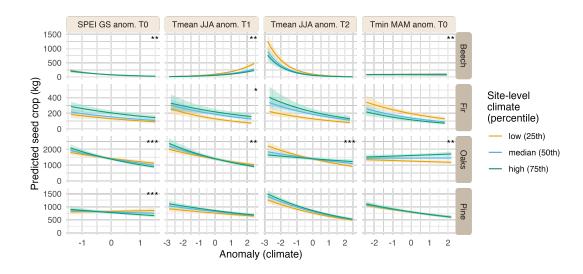



Figure 2: Temporal changes in seasonal weather explain a large portion of observed temporal variation in fecundity. A) Contribution of changes in seasonal climate variables to observed long-term fecundity trends across species. Lagged summer temperature anomalies were the dominant drivers, while the unexplained component ("unknown") was comparatively small. Sensitivities of fecundity to each predictor (effect size per unit change) are shown as labels next to the plot bars. (B–E) Species-specific contributions and sensitivities plotted jointly for each seasonal predictor. This highlights potential risks from variables that have shown little temporal change but to which fecundity is highly sensitive such as growing season SPEI. Panel F) summarises patterns across species. Abbreviations: GS = growing season; anom. = anomaly relative to site mean climate; Tx = time lag (T0 = year of seed production); Tmean = mean temperature; Tmin = mean minimum temperature; Tx = time lag, with T0 indicating the year of seed production; Tmean = mean temperature; Tmin = mean minimum temperature; Tx = time lag, with T0 indicating the year of seed production; Tmean = mean temperature; Tmin = mean minimum temperature; Tx = time lag, with T0 indicating the year of seed production; Tmean = mean temperature; Tmin = mean minimum temperature; Tx = time lag and Tx = time lag.

Figure 3: Weather effects on seed production depend on local climate. Temporal deviations from a site its typical climate during reproductively sensitive phases are linked to variation in seed crop size, but the magnitude and direction of these effects differ across climates and taxa. Predicted seed production (back-transformed) was derived from bootstrapped GLMMs (1000 replicates per species and climate–anomaly combination) across gradients of climate anomalies for three representative site climates (line colours). Shaded ribbons show 95% confidence intervals around the predicted mean response. GS = growing season; anom. = anomaly from mean climate; Tx = time lag, with T0 indicating the year of seed production; Tmean = mean temperature; Tmin = mean minimum temperatur

Local climate modulates effects of seasonal weather on seed production To test whether local climate mediates the effects of seasonal weather on fecundity (prediction iii), we fitted species-specific GLMMs with interactions between seasonal climate anomalies and site mean conditions. The resulting effects show that both the magnitude and the sign of weather effects depend on overall climate and season (Fig. 3). All reported coefficients and standard errors are on the model (log-link) scale.

For nearly all species, effects of summer temperature in the year before seedfall (T1) varied with site mean summer temperatures (beech: -0.09 ± 0.03 SE, p = 0.007; fir 0.08 ± 0.04 SE, p = 0.03; oak -0.07 ± 0.03 SE, p = 0.005; site conditions are not centred), suggesting moderation by local climate. For instance, the increasing seed production related to high summer temperatures (T1) was stronger in cold sites for beech. Across the observed climate norms, high summer temperature anomalies (T1) reduced seed production in both fir and oak; the decline was strongest at colder sites for fir, but intensified at warmer sites for oak. Pine produced more seeds in warmer sites (0.16 ± 0.04 SE, p < 0.001), but not in warmer years (0.48 ± 0.42 SE, p = 0.25).

Temperature anomalies during the summer two years before seed production (T2) generally showed consistent but non-significant negative trends across species. Oak was the exception: seed production was lower following hot summers, especially in cold sites $(0.15 \pm 0.02 \text{ SE}, p < 0.001; \text{ Fig. 3})$.

Spring temperature anomalies and site conditions also influenced seed production. In beech and oak, cooler springs reduced seed production in warmer sites, but these cooler years increased seed production in colder sites (beech: 0.11 ± 0.04 SE, p = 0.003; oak: 0.08 ± 0.022 SE, p = 0.001). Fir populations in warmer sites produced fewer seeds (-0.59 ± 0.13 SE, p < 0.001).

The effect of SPEI growing season anomaly on seed production depended, for most species, on site SPEI levels. For beech, drier sites (low SPEI) experienced stronger decreases in seed production in wet years (higher SPEI anomaly; 4.74 ± 1.55 SE, p = 0.007). Conversely, oak and pine showed that wet years in drier sites were associated with higher seed crops (oak -3.81 \pm 1.09 SE, p < 0.001; pine -3.87 \pm 0.99 SE, p < 0.001). Fir seed crops, moreover, were higher in wetter sites (7.17 \pm 1.46 SE, p < 0.001).

Discussion

Our analysis of nationwide Polish harvest records reveals broad declines in fecundity across Europe's dominant tree species, with few regions showing stability or increase over the past three decades. These results support our prediction (i) that sustained climatic change is eroding reproductive capacity where populations are pushed beyond their reproductive climatic niches. Declines were strongest in Scots pine and oaks and weaker, though evident, in European beech and silver fir. We thereby extend species-level reports of reduced fecundity in temperate and boreal forests to the community scale (Redmond *et al.*, 2012; Allen *et al.*, 2014; Clark *et al.*, 2021a; Wion *et al.*, 2025). In Scots pine, the magnitude of decline approaches the point at which reproduction may no longer offset documented mortality (Buras *et al.*, 2018; Schuldt *et al.*, 2020). Partial buffering in beech and fir likely reflects interspecific differences in reproductive thermal niches and stage-specific climatic sensitivity during flower–fruit development.

Because harvest records reflect both biological supply and reforestation demand, we accounted for temporal variation in demand to isolate biological trends. The negative trajectories persisted, indicating that declining seed availability cannot be attributed to fluctuations in collection effort. Some uncertainty remains when effort and biology co-vary, but the direction and magnitude of our declines align with independent evidence of large fecundity losses: a >50% decline in viable seeds in

European beech in the UK (Bogdziewicz *et al.*, 2023a), and a 40% decline in cone production in pinyon pine in New Mexico (Redmond *et al.*, 2012), and an 80% decline in fruit production in Gabon (Bush *et al.*, 2020). The scale of these changes matches or exceeds contemporary declines in growth and increases in mortality (Jump *et al.*, 2006; Vacek *et al.*, 2023; Zuidema *et al.*, 2025), consistent with the view that fecundity is a strongly climate-sensitive demographic rate (Clark *et al.*, 2011) and an early signal of population stress driving forest restructuring under sustained environmental change.

167

168

169

170

171 172

173

174

175

176

177

179

180

181

182

183

184

185

186

187

188

189

190 191

192

193

194

195

196

198

199

200

201

202

203

204

205

Consistent with prediction (ii), linking fecundity trends to seasonal climate during phenologically sensitive stages shows that sustained climate change drives long-term declines via stage-specific sensitivities. Across all species, warmer summers two years before seed production were associated with lower seed output, indicating a negative sensitivity of flower initiation to elevated temperature. In beech, seed production declined with summer warming two years before reproduction, consistent with the species' requirement for cool summers during floral initiation (Journé et al., 2024; Kelly et al., 2025). Warmer summers one year before reproduction partly offset this decline by promoting flowering initiation (Bogdziewicz et al., 2023a; Foest et al., 2024), yet the net contribution of summer warming remained negative. The magnitude of the decline in seed crops is comparable to trends associated with masting breakdown, including increased seed predation and reduced pollination success in beech (Bogdziewicz et al., 2023a). Oaks and other species showed no such offset, with both T2 and T1 warming linked to declines in fecundity. While warm springs were locally associated with reduced seed production — potentially due to mismatched pollen release or spring frost damage (Poncet et al., 2009; Pesendorfer et al., 2020; Schermer et al., 2020) — long-term declines were not closely linked to spring temperature trends in any species. This aligns with the absence of regional trends in late frost damage (Zohner et al., 2020). Although drought severity (SPEI) has increased, it did not emerge as a consistent driver of fecundity trends. Weak overall effects of spring temperature and SPEI likely reflect opposing site-level responses that cancel when aggregated regionally, suggesting that these variables may still shape local-scale trends. Together, these results indicate that multiple reproductive stages constrain long-term fecundity, with the dominant bottlenecks differing among species (Bogdziewicz et al., 2025).

Consistent with prediction (iii), our analyses reveal that local climate modulates how seasonal weather anomalies affect fecundity. By comparing within-site responses to short-term climate anomalies with across-site responses to long-term climatic means, we distinguish fast ecological processes such as phenotypic plasticity and phenological adjustment from slower responses driven by acclimation or local adaptation (Felton et al., 2022; Stemkovski et al., 2025). Temporal sensitivities thus represent "transient" responses to interannual variability, while spatial sensitivities approximate "equilibrium" responses that emerge after prolonged exposure to local climatic regimes (Stemkovski et al., 2025). These sensitivities often differ in magnitude or sign, as seen in other traits; for instance, ponderosa pine grows faster at warmer sites but shows reduced growth in unusually hot years (Perret et al., 2024; Evans et al., 2025). In our case, fir fecundity was unaffected by short-term drought anomalies but was higher at wetter sites, implying that persistent drying will reduce reproduction not through increasing annual drought damage, but through gradual reorganisation of populations toward a low-fecundity equilibrium. Beech showed the opposite pattern, i.e., higher reproduction in dry years but no advantage at dry sites, suggesting that positive short-term responses to drought will not persist over the long term. This divergence between temporal and spatial patterns is consistent with past studies, which compared beech seed production responses to within-site anomalies and among-site variation in precipitation (Müller-Haubold et al., 2013, 2015). More generally, across many species-anomaly combinations, spatial effects of climate were modest, suggesting that local adaptation or acclimatisation may help populations maintain similar performance across climate gradients, even if notable site-level differences remain for some species (Stemkovski et al., 2025). From a management perspective, local adaptation offers near-term buffering capacity, suggesting that assisted migration using locally-adapted seed sources could help track shifting climate envelopes.

While our focus is on fecundity, seedling recruitment is also sensitive to climate variability, particularly to drought and temperature extremes during germination and early establishment (Brown & Wu, 2005; Kueppers *et al.*, 2017; Conlisk *et al.*, 2017). For instance, in ponderosa pine (*Pinus ponderosa*) and Douglas fir (*Pseudotsuga menziesii*), recruitment is non-linearly related to moisture, with recent conditions falling below thresholds for successful regeneration in many sites (Davis *et al.*, 2019). In these systems, increased seed supply can partially buffer negative climate effects on regeneration (Davis *et al.*, 2023). However, if fecundity declines occur in parallel with decreasing climatic suitability for establishment, these effects will interact, potentially accelerating population decline (Ohse *et al.*, 2023). Recruitment studies that reconstruct past reproductive output from age structures and regeneration records (Davis *et al.*, 2019; Rodman *et al.*, 2020; Maringer *et al.*, 2020; Vieira *et al.*, 2024) offer a means to test whether reduced seed availability is already constraining forest renewal, and how this interacts with climate effects on seedling establishment. Given the observed declines in fecundity and reports of seedling mortality following increasingly severe drought (Schuldt *et al.*, 2020), such analyses are now urgently needed.

We document a multi-decadal decline in viable seed production across Europe its dominant temperate forest-forming trees, after adjusting harvest records for reforestation demand. The pattern is consistent with our theoretical framework: sustained climatic change reduces fecundity as populations are pushed beyond their reproductive climatic niches (prediction i), with declines largely attributable to seasonal thermal conditions during phenologically sensitive stages, especially summer warming (prediction ii), and with effect sizes moderated by local climate (prediction iii). Because the records reflect sorted (viable) seed crops, the decline indicates reduced effective reproductive output rather than changes in total seed fall alone. Given that reproduction underpins regeneration, community structure, range tracking, and the seed supply required by nurseries and assisted migration programs (Nathan *et al.*, 2011; Sharma *et al.*, 2022; Seidl & Turner, 2022), continuing declines in fecundity elevate renewal risk (Ohse *et al.*, 2023), especially where establishment is already constrained by drought and heat (Davis *et al.*, 2019). At the same time, contrasts between spatial and temporal patterns in our results suggest that slow response processes (acclimation and adaptation) may partly offset negative trends if given sufficient time; an outcome that depends critically on the pace of environmental change (Stemkovski *et al.*, 2025). The next step is to integrate fecundity trends with long-term recruitment and demographic data to determine whether the declines documented here, especially in combination with shifting climatic suitability for seedling establishment, are translating into reduced regeneration.

Materials and Methods

Data

234 Reproduction data

Annual seed harvests were reported by local forest districts (*Nadleśnictwa*, referred to as 'sites') to the Polish State Forests, based on collections from 1988-2021@ by contracted crews from the ground or canopy within designated seed stands. Each site contains one or more seed stands per species, and foresters collect from as many of these stands within site boundaries as needed to meet demand. Before reporting, seeds underwent quality assessment following the nation-wide and unified protocol. Samples of each lot were evaluated for purity, including exclusion of empty seeds, species-specific debris (e.g., husks, needles), foreign material, and seeds damaged or infested by insects. Empty seeds were removed by sorting or air separation; in beech, sorting was typically done by hand to remove infested seeds. The degree of pre-cleaning varied among species, and in some

cases small but viable seeds may have been excluded, or empty seeds retained. As a result, reported harvests are post-sorting seed lots and therefore reflect an estimate of viable seed yield rather than total seed production.

The dataset (438 sites, 40,530 annual observations 'n') records the mass (kg) of seeds (or cones, for conifers; hereafter 'seeds') harvested annually for Silver fir (*Abies alba*; 123 sites, n = 4,085), European beech (*Fagus sylvatica*; 290 sites, n = 9,661), Scots pine (*Pinus sylvestris*; 401 sites, n = 13,272), Sessile oak (*Quercus petraea*), and Pedunculate oak (*Quercus robur*). Prior to 2007-2008, depending on the site, oak harvests were not reported separately by these two species, and records were therefore pooled (407 sites, n = 13,512). The dataset also includes annual seed demand (kg), derived from planned artificial regeneration areas and standardised nursery sowing norms.

To ensure continuity, we completed all seed harvest time series for each species × site combination, imputing zeroes for harvest and demand where annual records were absent (i.e. no collection took place and this was not recorded), and excluding series with >90% missing or zero values. We analysed all time series of these five species spanning more than a decade (mean: 33.19 years; range: 11-34). Site boundaries for each species are shown in Fig. 1C.

254 Climate data

We obtained high-resolution (2.5') historical monthly climate data (1960–2021) for Europe from the WorldClim database (v. 2.1; Fick & Hijmans (2017)), including minimum and maximum temperature and precipitation. Mean monthly temperature was calculated by averaging Tmin and Tmax raster layers. For each grid cell, we then calculated mean temperature and total precipitation per season (December-February 'DJF', March-May 'MAM', June-August 'JJA', September-November 'SON') and per year. Potential evapotranspiration (PET) was estimated using the Thornthwaite method based on temperature, and combined with precipitation to compute the Standardised Precipitation-Evapotranspiration Index (SPEI) at a 1-month scale using the SPEI package (v. 1.8.1; Beguería & Vicente-Serrano (2023)). To harmonise seasonal definitions, December was reassigned to the subsequent year, allowing each winter season to span December through February.

Data analysis

All models were built in R (v. 4.4.1) using glmmTMB (v. 1.1.10) unless indicated differently and validated with DHARMa (v.0.4.7; R Core Team (2024); Brooks *et al.* (2017); Hartig (2024)). Throughout the analyses, we used Tweedie distribution models because they accommodate both zero-inflation and overdispersion, which are common features of reproductive data. The Tweedie family also offers flexibility across a range of data-generating processes, and applying the same distribution across all temporal attribution models (e.g. reproduction trends and climate effects) ensured consistency and comparability, making it the preferred choice.

Spatio-temporal trends in seed crops *Reproductive trends.* To visualise spatio-temporal variation in seed production for each species we fitted a Tweedie family GLMM with year, ln[kg + 1]-transformed demand, and previous-year harvest as fixed effects, and allowed the effect of year to vary by site with a random slope.

Spatial diversity in climate trends. We mapped spatial variation in long-term trends in climate variables (i.e. summer temperature, spring temperature, growing season SPEI) by calculating per-cell temporal slopes from WorldClim raster stacks (from 19988-2021). For each grid cell, a linear trend was fitted using the stats package to the annual time series, and the resulting slope (°C year⁻¹, SPEI index year⁻¹) was assigned to the cell.

Climate-fecundity relationships We assessed how seasonal climate influenced seed production for four climatic variables linked to reproduction: mean spring minimum temperature, summer mean temperature at one- and two-year lags, and growing-season (April–September) SPEI.

For each species, we fitted Tweedie GLMMs of seed crop size (kg) with fixed effects for the interaction between climate anomalies and their corresponding site-specific long-term means of each time-series. Anomalies were defined as the difference between the observed value of a climatic variable and its site-specific long-term mean. The two-year lagged summer temperature anomaly was interacted with the one-year summer site mean rather than the two-year mean to avoid collinearity between site means (Spearman's $\rho > 0.99$). We controlled for variation in harvesting effort by including log-transformed seed demand (ln[kg + 1]) as a covariate, and accounted for temporal autocorrelation in seed production by including the previous-year seed crop. Site was included as a random intercept.

Uncertainty was quantified using a block bootstrap, which preserves temporal dependence. For each species—anomaly pair, we resampled the data in contiguous 10-year blocks drawn from all sites combined (sampling with replacement from valid site \times block-start year combinations) to preserve within-block temporal dependence while allowing site composition to vary among replicates. Each resample was refitted (N = 1000). For visualisation, we generated partial-dependence predictions across the observed anomaly range at three levels of the site mean (25th, 50th, and 75th percentiles). For inference, we pooled the 4000 bootstrap fits per species to summarise effects.

Temporal attribution modelling We used a temporal attribution framework (Fernández-Martínez *et al.*, 2019) to assess how long-term trends in seed production are associated with climatic conditions, using Tweedie log-link GLMMs with site as a random intercept in all models.

We first quantified observed temporal trends in seed production by fitting "total trend" models for each species. These models adjusted for previous-year seed crops and ln[kg + 1]-transformed seed demand. We also fitted predictor trend models for each climatic anomaly variable.

For each species, we then fitted a "process" model as described in Climate-fecundity relationships, to which we added species-specific zero-inflation and dispersion components to ensure model convergence in subsequent models dependent on the model output. For pine, the zero inflation formula included the previous-year seed production. For all other species (i.e., beech, oak), zero inflation depended solely on previous-year seed production. Dispersion was modelled as a function of log-transformed seed demand (ln[kg + 1]) in all species except pine, where it was held constant to ensure model stability.

From the fitted process model, we generated predictions for all observations, and fitted a "full prediction" trend model to these predictions to quantify the overall temporal trend explained by the predictors. For temporal counterfactuals, we held each climate predictor at its site-specific long-term mean (with other variables varying as observed), and refit a "fixed predictor" trend model.

We calculated the contribution of that predictor as the log-scale difference between the full-prediction trend and the fixed-predictor trend. Sensitivity was calculated by taking the difference between the full- and fixed-predictor trends on the response scale divided by the predictor's temporal slope. The "unknown" contribution was the residual difference between the observed "total" temporal trend in seed production and the sum of individual predictor contributions.

312 Acknowledgements

- This study was funded by the European Union (ERC, ForestFuture, 101039066). JJF was also supported by the Foundation for
- Polish Science (FNP). Views and opinions expressed are however those of the authors only and do not necessarily reflect those
- of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held
- responsible for them. We would like to express our gratitude to the Directorate-General of State Forests for providing data on
- the abundance of seeds of major forest-forming species.

318

Author Contributions Statement

320

JJF, MB, and JSz designed the study. MKD and JJF performed seed crop data preparation (cleaning), and SJ and MKD provided context on data collection protocols. JJF conducted the formal analysis and visualisation. All authors contributed to the data interpretation. JJF and MB wrote the first draft of the manuscript, and all authors revised the text.

324 325

Declaration of interests

No competing interests to declare.

327

328 Data availability statement

The data supporting the results will be archived in a permanent repository upon acceptance.

References

- Allen, R.B., Hurst, J.M., Portier, J. & Richardson, S.J. (2014). Elevation-Dependent Responses of Tree Mast Seeding to Climate
- Change over 45 Years. Ecology and Evolution, 4, 3525–3537.
- Ascoli, D., Vacchiano, G., Turco, M., Conedera, M., Drobyshev, I., Maringer, J. et al. (2017). Inter-annual and decadal changes
- in teleconnections drive continental-scale synchronization of tree reproduction. Nature Communications 2017 8:1, 8, 1–9.
- Augspurger, C.K. (2009). Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous
- forest. Functional Ecology, 23, 1031–1039. _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-
- 2435.2009.01587.x.
- Beguería, S. & Vicente-Serrano, S.M. (2023). SPEI: Calculation of the standardized precipitation-evapotranspiration index.
- 339 manual.
- Bin, Y., Huang, Z., Cao, H., Ye, W. & Lian, J. (2023). Seed rain composition responds to climate change in a subtropical forest.
- 341 Science of The Total Environment, 903, 166772.
- 342 Bogdziewicz, M., Fernández-Martínez, M., Bonal, R., Belmonte, J. & Espelta, J.M. (2017). The moran effect and environmental
- vetoes: phenological synchrony and drought drive seed production in a mediterranean oak. *Proceedings of the Royal Society*
- 344 *B: Biological Sciences*, 284, 29093224.
- Bogdziewicz, M., Fernández-Martínez, M., Espelta, J.M., Ogaya, R. & Penuelas, J. (2020a). Is forest fecundity resistant to
- drought? Results from an 18-yr rainfall-reduction experiment. *New Phytologist*, 227, 1073–1080.

- Bogdziewicz, M., Kelly, D., Ascoli, D., Caignard, T., Chianucci, F., Crone, E.E. et al. (2024). Evolutionary ecology of masting:
- mechanisms, models, and climate change. *Trends in Ecology & Evolution*, 39, 851–862.
- Bogdziewicz, M., Kelly, D., Tanentzap, A.J., Thomas, P., Foest, J., Lageard, J. et al. (2023a). Reproductive collapse in European
- beech results from declining pollination efficiency in large trees. Global Change Biology, 29, 4595–4604.
- Bogdziewicz, M., Kelly, D., Tanentzap, A.J., Thomas, P., Foest, J., Lageard, J. et al. (2023b). Reproductive Collapse in European
- Beech Results from Declining Pollination Efficiency in Large Trees. Global Change Biology, 29, 4595–4604.
- Bogdziewicz, M., Kelly, D., Thomas, P.A., Lageard, J.G.A. & Hacket-Pain, A. (2020b). Climate Warming Disrupts Mast
- Seeding and Its Fitness Benefits in European Beech. *Nature Plants*, 6, 88–94. Publisher: Nature Publishing Group.
- Bogdziewicz, M., Kelly, D., Zwolak, R., Szymkowiak, J. & Hacket-Pain, A. (2025). Dynamics, mechanisms, and consequences
- of mast seeding. Annual Reviews in Ecology, Evolution, and Systematics.
- Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A. et al. (2017). glmmTMB balances
- speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9, 378–400.
- Brown, P.M. & Wu, R. (2005). Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine
- landscape. Ecology, 86, 3030-3038.
- Buechling, A., Martin, P.H., Canham, C.D., Shepperd, W.D. & Battaglia, M.A. (2016). Climate Drivers of Seed Production
- in Picea Engelmannii and Response to Warming Temperatures in the Southern Rocky Mountains. Journal of Ecology, 104,
- 1051–1062. Publisher: [Wiley, British Ecological Society].
- Buras, A., Schunk, C., Zeitrg, C., Herrmann, C., Kaiser, L., Lemme, H. et al. (2018). Are scots pine forest edges particularly
- prone to drought-induced mortality? Environmental Research Letters, 13.
- Bush, E.R., Whytock, R.C., Bahaa-el din, L., Bourgeois, S., Bunnefeld, N., Cardoso, A.W. et al. (2020). Long-Term Collapse in
- Fruit Availability Threatens Central African Forest Megafauna. Science, 370, 1219–1222. Publisher: American Association
- for the Advancement of Science.
- Caignard, T., Kremer, A., Firmat, C., Nicolas, M., Venner, S. & Delzon, S. (2017). Increasing spring temperatures favor oak
- seed production in temperate areas. Scientific Reports, 7, 8555. Publisher: Nature Publishing Group.
- Clark, J.S., Andrus, R., Aubry-Kientz, M., Bergeron, Y., Bogdziewicz, M., Bragg, D.C. et al. (2021a). Continent-wide tree
- fecundity driven by indirect climate effects. *Nature Communications* 2021 12:1, 12, 1–11.
- Clark, J.S., Andrus, R., Aubry-Kientz, M., Bergeron, Y., Bogdziewicz, M., Bragg, D.C. et al. (2021b). Continent-Wide Tree
- Fecundity Driven by Indirect Climate Effects. *Nature Communications*, 12, 1242, Publisher: Nature Publishing Group.
- Clark, J.S., Bell, D.M., Hersh, M.H. & Nichols, L. (2011). Climate change vulnerability of forest biodiversity: Climate and
- competition tracking of demographic rates. *Global Change Biology*, 17, 1834–1849.
- Clark, J.S., Lewis, M., McLachlan, J.S. & HilleRisLambers, J. (2003). Estimating Population Spread: What Can We Forecast
- and How Well? *Ecology*, 84, 1979–1988. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1890/01-0618.

- 279 Conlisk, E., Castanha, C., Germino, M.J., Veblen, T.T., Smith, J.M. & Kueppers, L.M. (2017). Declines in low-elevation
- subalpine tree populations outpace growth in high-elevation populations with warming. Journal of Ecology, 105, 1347–
- 381 1357.
- Davis, K.T., Dobrowski, S.Z., Higuera, P.E., Holden, Z.A., Veblen, T.T., Rother, M.T. et al. (2019). Wildfires and climate change
- push low-elevation forests across a critical climate threshold for tree regeneration. Proceedings of the National Academy of
- 384 Sciences, 116, 6193-6198.
- Davis, K.T., Robles, M.D., Kemp, K.B., Higuera, P.E., Chapman, T., Metlen, K.L. et al. (2023). Reduced fire severity offers
- near-term buffer to climate-driven declines in conifer resilience across the western united states. Proceedings of the National
- 387 Academy of Sciences, 120, e2208120120.
- Evans, M.E.K., Adler, P.B., Angert, A.L., Dey, S.M.N., Girardin, M.P., Heilman, K.A. et al. (2025). Reconsidering space-for-
- time substitution in climate change ecology. *Nature Climate Change*, 15, 809–812.
- Felton, A.J., Shriver, R.K., Stemkovski, M., Bradford, J.B., Suding, K.N. & Adler, P.B. (2022). Climate disequilibrium
- dominates uncertainty in long-term projections of primary productivity. *Ecology Letters*, 25, 2688–2698.
- Fernández-Martínez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca, S. et al. (2019). Global trends in carbon
- sinks and their relationships with CO2 and temperature. *Nature Climate Change*, 9, 73–79. Publisher: Nature Publishing
- 394 Group.
- Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas.
- International Journal of Climatology, 37, 4302–4315.
- Fleurot, E., Lobry, J.R., Boulanger, V., Debias, F., Mermet-Bouvier, C., Caignard, T. et al. (2023). Oak masting drivers vary
- between populations depending on their climatic environments. Current Biology, 33, 1117–1124.E4.
- Foest, J.J., Bogdziewicz, M., Pesendorfer, M.B., Ascoli, D., Cutini, A., Nussbaumer, A. et al. (2024). Widespread Breakdown
- in Masting in European Beech Due to Rising Summer Temperatures. Global Change Biology, 30, e17307.
- Gamelon, M., Gaillard, J.M., Servanty, S., Gimenez, O., Toïgo, C., Baubet, E. et al. (2012). Making use of harvest information
- to examine alternative management scenarios: A body weight-structured model for wild boar. Journal of Applied Ecology,
- 49, 833-841.
- 404 George, J.P., Bürkner, P.C., Sanders, T.G.M., Neumann, M., Cammalleri, C., Vogt, J.V. et al. (2022). Long-term
- forest monitoring reveals constant mortality rise in European forests. Plant Biology, 24, 1108–1119. _eprint:
- https://onlinelibrary.wiley.com/doi/pdf/10.1111/plb.13469.
- 407 Gonzalez, A.D., Pearse, I.S. & Redmond, M.D. (2023). Increased aridity is associated with stronger tradeoffs in ponderosa pine
- vital functions. Ecology, 104, e4120.
- Goroshkevich, S., Velisevich, S., Popov, A., Khutornoy, O. & Vasilyeva, G. (2021). 30-year cone production dynamics in
- Siberian stone pine (Pinus sibirica) in the southern boreal zone: a causal interpretation. Plant Ecology and
- 411 Evolution, 154, 321–331. Publisher: [Botanic Garden Meise, Royal Botanical Society of Belgium].

- 412 Grubb, P.J. (1977). The Maintenance of Species-Richness in Plant Communities: The Importance of the Regeneration Niche.
- 413 *Biological Reviews*, 52, 107–145.
- 414 Hacket-Pain, A., Szymkowiak, J., Journé, V., Barczyk, M.K., Thomas, P.A., Lageard, J.G.A. et al. (2025). Growth decline in
- european beech associated with temperature-driven increase in reproductive allocation. PNAS, 122, e2423181122.
- 416 Hartig, F. (2024). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package
- version 0.4.7.
- 418 Ibáñez, I., Katz, D.S. & Lee, B.R. (2017). The contrasting effects of short-term climate change on the early recruitment of tree
- species. Oecologia, 184, 701–713.
- 420 Journé, V., Hacket-Pain, A., Oberklammer, I., Pesendorfer, M.B. & Bogdziewicz, M. (2023). Forecasting seed production in
- perennial plants: identifying challenges and charting a path forward. New Phytologist, 239, 466–476.
- Journé, V., Szymkowiak, J., Foest, J., Hacket-Pain, A., Kelly, D. & Bogdziewicz, M. (2024). Summer solstice orchestrates the
- subcontinental-scale synchrony of mast seeding. *Nature Plants*, 10, 367–373.
- 424 Jump, A.S., Hunt, J.M. & Penuelas, J. (2006). Rapid climate change-related growth decline at the southern range edge of Fagus
- sylvatica. Global Change Biology, 12, 2163–2174.
- 426 Kelly, D., Szymkowiak, J., Hacket-Pain, A. & Bogdziewicz, M. (2025). Fine-tuning mast seeding: as resources accumulate,
- plants become more sensitive to weather cues. New Phytologist.
- Kettle, C.J., Ghazoul, J., Ashton, P.S., Cannon, C.H., Chong, L., Diway, B. et al. (2010). Mass fruiting in borneo: A missed
- opportunity. Science, 330, 584.
- Kueppers, L.M., Conlisk, E., Castanha, C., Moyes, A.B., Germino, M.J., de Valpine, P. et al. (2017). Warming and provenance
- limit tree recruitment across and beyond the elevation range of subalpine forest. Global Change Biology, 23, 2383–2395.
- 432 Lauder, J.D., Moran, E.V. & Hart, S.C. (2019). Fight or flight? potential tradeoffs between drought defense and reproduction
- in conifers. Tree Physiology, 39, 1071–1085.
- Maringer, J., Wohlgemuth, T., Hacket-Pain, A., Ascoli, D., Berretti, R. & Conedera, M. (2020). Drivers of persistent post-fire
- recruitment in european beech forests. Science of the Total Environment, 699.
- 436 Mutke, S., Gordo, J. & Gil, L. (2005). Variability of Mediterranean Stone pine cone production: Yield loss as response to
- climate change. Agricultural and Forest Meteorology, 132, 263–272.
- 438 Müller-Haubold, H., Hertel, D. & Leuschner, C. (2015). Climatic drivers of mast fruiting in European beech and resulting C
- and N allocation shifts. *Ecosystems*, 18, 1083–1100.
- Müller-Haubold, H., Hertel, D., Seidel, D., Knutzen, F. & Leuschner, C. (2013). Climate responses of aboveground productivity
- and allocation in Fagus sylvatica: A transect study in mature forests. Ecosystems, 16, 1498–1516.
- Nathan, R., Horvitz, N., He, Y., Kuparinen, A., Schurr, F.M. & Katul, G.G. (2011). Spread of north american wind-dispersed
- trees in future environments. *Ecology Letters*, 14, 211–219.

- Ohse, B., Compagnoni, A., Farrior, C.E., McMahon, S.M., Salguero-Gómez, R., Rüger, N. et al. (2023). Demographic Synthesis
- for Global Tree Species Conservation. *Trends in Ecology & Evolution*, 38, 579–590.
- 446 Pearse, I.S., LaMontagne, J.M. & Koenig, W.D. (2017). Inter-Annual Variation in Seed Production Has Increased over Time
- 447 (1900-2014). Proceedings of the Royal Society B: Biological Sciences, 284, 1–7. Publisher: Royal Society.
- 448 Pearse, I.S., Wion, A.P., Gonzalez, A.D. & Pesendorfer, M.B. (2021). Understanding mast seeding for conservation and land
- management. Philosophical Transactions of the Royal Society B: Biological Sciences, 376, 34657466.
- 450 Perret, D.L., Evans, M.E. & Sax, D.F. (2024). A species' response to spatial climatic variation does not predict its response to
- climate change. Proceedings of the National Academy of Sciences of the United States of America, 121, e2304404120.
- 452 Pesendorfer, M.B., Ascoli, D., Bogdziewicz, M., Hacket-Pain, A., Pearse, I.S. & Vacchiano, G. (2021). The ecology and
- evolution of synchronized reproduction in long-lived plants. Philosophical Transactions of the Royal Society B: Biological
- 454 Sciences, 376, 20200369.
- 455 Pesendorfer, M.B., Bogdziewicz, M., Szymkowiak, J., Borowski, Z., Kantorowicz, W., Espelta, J.M. et al. (2020). Investigating
- the relationship between climate, stand age, and temporal trends in masting behavior of european forest trees. Global Change
- 457 Biology, 26, 1654–1667.
- Poncet, B.N., Garat, P., Manel, S., Bru, N., Sachet, J.M., Roques, A. et al. (2009). The effect of climate on masting in the
- european larch and on its specific seed predators. *Oecologia*, 159, 527–537.
- 460 Post, E., Forchhammer, M.C. & Schindler, D.W. (2004). Spatial synchrony of local populations has increased in association
- with the recent northern hemisphere climate trend. *PNAS*.
- 462 Pérez-Ramos, I.M., Ourcival, J.M., Limousin, J.M. & Rambal, S. (2010). Mast seeding under increasing drought: results from
- a long-term data set and from a rainfall exclusion experiment. *Ecology*, 91, 3057–3068.
- 464 R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
- Vienna, Austria.
- 466 Redmond, M.D., Forcella, F. & Barger, N.N. (2012). Declines in Pinyon Pine Cone Production Associated with Regional
- Warming. *Ecosphere*, 3, art120.
- 468 Richardson, S.J., Allen, R.B., Whitehead, D., Carswell, F.E., Ruscoe, W.A. & Platt, K.H. (2005). Climate and Net Carbon
- 469 Availability Determine Temporal Patterns of Seed Production by Nothofagus. *Ecology*, 86, 972–981.
- 470 Rodman, K.C., Veblen, T.T., Chapman, T.B., Rother, M.T., Wion, A.P. & Redmond, M.D. (2020). Limitations to recovery
- following wildfire in dry forests of southern colorado and northern new mexico, usa. *Ecological Applications*, 30.
- 472 Rogers, B.M., Jantz, P. & Goetz, S.J. (2017). Vulnerability of Eastern US Tree Species to Climate Change. Global Change
- 473 Biology, 23, 3302–3320.
- 474 Sakai, S. (2002). General flowering in lowland mixed dipterocarp forests of south-east asia. Biological Journal of the Linnean
- society, 75, 233–247.

- Schermer, E., Bel-Venner, M.C., Gaillard, J.M., Dray, S., Boulanger, V., Roncé, I.L. et al. (2020). Flower phenology as a
- disruptor of the fruiting dynamics in temperate oak species. New Phytologist, 225, 1181–1192.
- Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A. et al. (2020). A first assessment of the impact of
- the extreme 2018 summer drought on central european forests. Basic and Applied Ecology, 45, 86–103.
- 480 Seidl, R. & Turner, M.G. (2022). Post-disturbance reorganization of forest ecosystems in a changing world. *Proceedings of the*
- National Academy of Sciences, 119, e2202190119. Publisher: Proceedings of the National Academy of Sciences.
- 482 Senf, C., Buras, A., Zang, C.S., Rammig, A. & Seidl, R. (2020). Excess forest mortality is consistently linked to drought across
- Europe. *Nature Communications*, 11, 6200. Publisher: Nature Publishing Group.
- 484 Senf, C., Pflugmacher, D., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M. et al. (2018). Canopy Mortality Has Doubled in
- Europe's Temperate Forests over the Last Three Decades. *Nature Communications*, 9, 4978. Publisher: Nature Publishing
- 486 Group.
- 487 Senf, C., Sebald, J. & Seidl, R. (2021). Increasing canopy mortality affects the future demographic structure of Europe's forests.
- One Earth, 4, 749–755. Publisher: Elsevier.
- Sharma, S., Andrus, R., Bergeron, Y., Bogdziewicz, M., Bragg, D.C., Brockway, D. et al. (2022). North american tree migration
- paced by climate in the west, lagging in the east. Proceedings of the National Academy of Sciences, 119, e2116691118.
- 491 Shibata, M., Masaki, T., Yagihashi, T., Shimada, T. & Saitoh, T. (2019). Decadal Changes in Masting Behaviour of Oak Trees
- with Rising Temperature. *Journal of Ecology*, 108, 1088–1100.
- 493 Stemkovski, M., Bernhardt, J.R., Blonder, B.W., Bradford, J.B., Clark-Wolf, K., Dee, L.E. et al. (2025). Ecological acclimation:
- A framework to integrate fast and slow responses to climate change. Functional Ecology.
- 495 Svenning, J.C. & Skov, F. (2007). Could the tree diversity pattern in europe be generated by postglacial dispersal limitation?
- 496 Ecology Letters, 10, 453–460.
- 497 Vacchiano, G., Hacket-Pain, A., Turco, M., Motta, R., Maringer, J., Conedera, M. et al. (2017). Spatial patterns and broad-scale
- weather cues of beech mast seeding in Europe. New Phytologist, 215, 595–608.
- 499 Vacek, Z., Vacek, S. & Cukor, J. (2023). European forests under global climate change: Review of tree growth processes, crises
- and management strategies. Journal of Environmental Management, 332.
- Vieira, S.T., Davis, K.T., Holden, Z.A., Larson, A.J. & Higuera, P.E. (2024). Western larch regeneration more sensitive to
- wildfire-related factors than seasonal climate variability. Forest Ecology and Management, 565.
- 503 Vilà-Cabrera, A., Martínez-Vilalta, J. & Retana, J. (2014). Variation in reproduction and growth in declining scots pine
- populations. Perspectives in Plant Ecology, Evolution and Systematics, 16, 111–120.
- Vleminckx, J., Hogan, J.A., Metz, M.R., Comita, L.S., Queenborough, S.A., Wright, S.J. et al. (2025). Seed Produc-
- tion and 22 Years of Climatic Changes in an Everwet Neotropical Forest. Ecology Letters, 28, e70019. _eprint:
- https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.70019.

- Weinstein, M.S. (1977). Hares, lynx, and trappers. The American Naturalist, 111, 806-808.
- Wion, A.P., Pearse, I.S., Broxson, M. & Redmond, M.D. (2025). Mast hindcasts reveal pervasive effects of extreme drought on
 a foundational conifer species. *New Phytologist*, 246.
- Wright, S.J. & Calderón, O. (2006). Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical
- forest. Ecology Letters, 9, 35–44. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2005.00851.x.
- Yukich-Clendon, O.M.M., Carpenter, J.K., Kelly, D., Timoti, P., Burns, B.R., Boswijk, G. et al. (2023). Global change explains
- reduced seeding in a widespread new zealand tree: indigenous tūhoe knowledge informs mechanistic analysis. Frontiers in
- Forests and Global Change, 6, 1172326.
- Zohner, C.M., Mo, L., Renner, S.S., Svenning, J.C., Vitasse, Y., Benito, B.M. et al. (2020). Late-spring frost risk between 1959
- and 2017 decreased in north america but increased in europe and asia. Proceedings of the National Academy of Sciences of
- the United States of America, 117, 12192–12200.
- Zuidema, P.A., Groenendijk, P., Rahman, M., Trouet, V., Abiyu, A., Acuña-Soto, R. *et al.* (2025). Pantropical tree rings show
 small effects of drought on stem growth. *Science*, 78.

Table 1: Literature summary on temporal trends in tree reproduction across species and regions. Articles were retrieved from Scopus using the query '(fecundity OR "seed production") AND tree* AND trend,' and the table was supplemented with sources from our own review of the literature. T = temperature, P = precipitation.

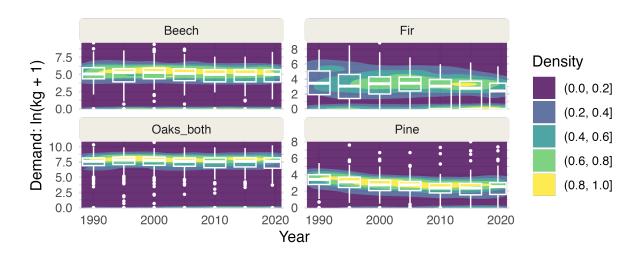
Species	Level	Linked to	Direction	Study	Sites	Location	Period
Beilschmiedia tawa	Species	Summer & winter T, P	-	Yukich- Clendon et al.	6	New Zealand	1986-2020
Fagus sylvatica	Species	Summer T, tree size	- viable,	(2023) Bogdziewicz et al.	12	UK	1980–2020
			+ total	(2020b, 2023b)			
Fagus sylvatica	Species	Summer T	viable,	Foest et al.	50	Europe	1980–2022
Nothofagus solandri	Species	Summer T & P	+ total +	(2024) Richardson et al.	3	New Zealand	1965–2009
			(great- est at high eleva-	(2005); Allen et al.			
Pinus edulis	Species	Summer T (cone initiation)	tion) -	(2014) Redmond et al. (2012)	9	USA	1969–2012
Pinus edulis	Species	Climatic water deficit, monsoonality	- (hind- cast)	(2012) Wion et al. (2025)	16	USA	1900–2024
Picea engelmannii	Species	Summer T, spring snow	+	Buechling et al. (2016)	13	USA	1970–2010
Pinus pinea	Species (harvest)	T & P throughout cone development	-	Mutke <i>et al.</i> (2005)	58	Spain	1960–2000
Pinus sibirica	Species	Spring T, September T	-	Goroshkevich et al. (2021)	1	Russia	1990 - 2019
Quercus crispula	Species	Growing season T	+	Shibata <i>et al</i> . (2019)	1	Japan	1980–2017
Quercus petraea (& Q. robur; ns)	Species	Spring T	+	Caignard <i>et al.</i> (2017)	28	France	1994–2007
3 Quercus species (Q. chapmanii, Q. geminata, Q. inopina)	Species	Spring P & fire	-	Pesendorfer et al. (2021)	1	USA	1988–2018
68 plant species	Community	VPD, minimum relative humidity	Shrubs: -, Herbs,	Bin et al. (2023)	1	China	2014–2020
			vines, trees & palms): NS, Over-				
73 tropical tree species	Community	Not tested	all: NS -	Bush <i>et al</i> . (2020)	1	Gabon	1986–2018
81 tropical tree and liana species	Community	El Niño events	Flowers +, Seeds:	Wright & Calderón (2006)	1	Panama	1987-2005
123 plant species	Community	Tree size, Spring minimum T, summer T, moisture deficit	NS West: -, East:	Clark <i>et al.</i> (2021b)	653	North America	~1960~~2020
203 plant species	Community	Night T, Vapour pressure deficit	-	(2021b) Vleminckx <i>et al.</i> (2025)	1	Ecuador	1960–2000
363 plant species	Community	Not tested	-	Pearse et al. (2017)	205	World	1900–2014

Supporting Information

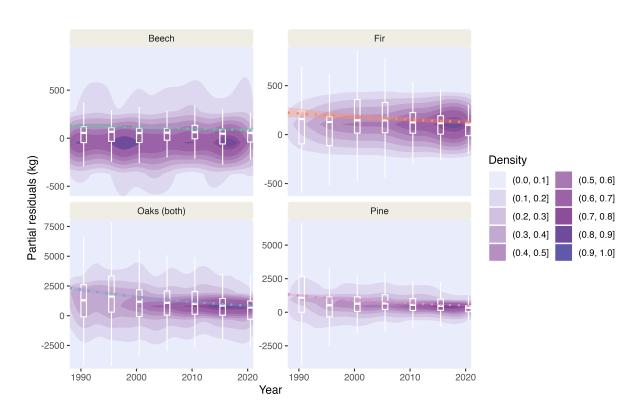
Forest fecundity declines as climate shifts

523 524

521


Jessie J. Foest*¹, Jakub Szymkowiak^{1,2}, Marcin K. Dyderski³, Szymon Jastrzębowski⁴, Michał Bogdziewicz¹

525


- ¹Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwer-
- sytetu Poznańskiego 6, 61-614 Poznan, Poland.
- ²Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University,
- Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland.
- ³Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
- ⁴Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090, Raszyn,
- 532 Poland.
- ⁵Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United King-
- 534 dom.

535

*corresponding author: j.j.foest@protonmail.com

Figure S1: Observed seed crop demand over time. The colour shows the density of seed demand observations (scaled between 0 and 1 to allow for comparison between species). The box plots summarise seed demand observations by 5-year time windows.

Figure S2: Partial residuals around long-term trend in fecundity Filled contour maps show normalised densities (scaled between 0–1) of partial residuals of seed production over time (i.e. fixed effect of time plus model residuals). Panels are cropped to regions with normalised density > 0.1 to highlight the predominant variation. 5-Year boxplots summarise partial residuals within 5-year windows, and the coloured dashed line reproduces the species-specific predicted trend from Fig. 1B. The results come from species-specific Tweedie-family generalised linear mixed-effects models, including random slopes of time effects by site. See Methods for further detail.

Table S1: Temporal trends in fecundity show decline in harvest crop size for all species. Results were obtained with 4 species-specific Tweedie family GLMMs, showing how harvest crops change with each year since the start of the time series (1988). The model accounted for natural log transformed seed demand, and temporal autocorrelation in seed harvests through 1 year lagged harvests. Site was included as a random effect.

Species	Term	Estimate (SE)	p
Beech	Intercept	3.172 (0.109)	< 0.001
Beech	Year since start	-0.011 (0.002)	< 0.001
Beech	ln(Demand+1)	0.428 (0.016)	< 0.001
Beech	Lagged seed crop	0 (0)	< 0.001
Fir	Intercept	3.73 (0.129)	< 0.001
Fir	Year since start	-0.024 (0.003)	< 0.001
Fir	ln(Demand+1)	0.647 (0.024)	< 0.001
Fir	Lagged seed crop	0 (0)	0.996
Oaks (both)	Intercept	5.943 (0.071)	< 0.001
Oaks (both)	Year since start	-0.019 (0.001)	< 0.001
Oaks (both)	ln(Demand+1)	0.253 (0.007)	< 0.001
Oaks (both)	Lagged seed crop	0 (0)	< 0.001
Pine	Intercept	5.817 (0.066)	< 0.001
Pine	Year since start	-0.028 (0.001)	< 0.001
Pine	ln(Demand+1)	0.512 (0.017)	< 0.001
Pine	Lagged seed crop	0 (0)	< 0.001

Table S2: Relationships between fecundity and spatio-temporal climatic variation. Results were obtained with 4 species-specific Tweedie family GLMMs, and show how harvest crops change with spatial ("Site") and temporal ("anom." = Anomaly) variation in climatic conditions during sensitive stages. Anomalies were added in interaction (":") with site-level mean climate. The model accounted for natural log transformed seed demand, and temporal autocorrelation in seed harvests through 1 year lagged harvests. Site was included as a random effect. JJA = June-August, MAM = March-May, GS = Growing season. SPEI = Standardised Precipitation Evapotranspiration Index. Tx indicates lag (e.g. T1 is a variable that was lagged 1 year).

-			
Species	Term	Estimate (SE)	р
Beech	Intercept	11.381 (1.869)	< 0.001
Beech	JJA °C anom. T1	2.256 (0.52)	< 0.001
Beech	Site JJA °C	-0.528 (0.128)	< 0.001
Beech	JJA °C anom. T2	-0.546 (0.489)	0.264
Beech	MAM °C anom. T0	-0.668 (0.132)	< 0.001
Beech	Site MAM °C	0.356 (0.153)	0.02
Beech	SPEI GS anom. T0	0.036 (0.226)	0.874
Beech	Site SPEI GS	3.306 (1.7)	0.052
Beech	ln(Demand+1)	0.404 (0.017)	< 0.001
Beech	Lagged seed crop	0 (0)	< 0.001
Beech	JJA anom. T1:Site JJA °C	-0.092 (0.029)	0.002
Beech	Site JJA °C:JJA anom. T2	-0.013 (0.028)	0.64
Beech	MAM anom. T0:Site MAM °C	0.178 (0.036)	< 0.001
Beech	SPEI GS anom. T0:Site SPEI GS	4.288 (1.509)	0.004
Fir	Intercept	1.132 (2.038)	0.579
Fir	JJA °C anom. T1	-1.902 (0.515)	< 0.001
Fir	Site JJA °C	0.266 (0.144)	0.066
Fir	JJA °C anom. T2	0.047 (0.497)	0.925
Fir	MAM °C anom. T0	-0.189 (0.128)	0.141
Fir	Site MAM °C	-0.396 (0.187)	0.034
Fir	SPEI GS anom. T0	-0.048 (0.187)	0.799
Fir	Site SPEI GS	7.601 (1.656)	< 0.001
Fir	ln(Demand+1)	0.605 (0.024)	< 0.001
Fir	Lagged seed crop	0 (0)	0.584
Fir	JJA anom. T1:Site JJA °C	0.097 (0.029)	< 0.001
Fir	Site JJA °C:JJA anom. T2	-0.013 (0.028)	0.645

Fir	MAM anom. T0:Site MAM °C	-0.012 (0.039)	0.754
Fir	SPEI GS anom. T0:Site SPEI GS	0.92 (1.55)	0.553
Oaks (both)	Intercept	3.953 (1.342)	0.003
Oaks (both)	JJA °C anom. T1	0.564 (0.349)	0.106
Oaks (both)	Site JJA °C	0.005 (0.088)	0.95
Oaks (both)	JJA °C anom. T2	-2.433 (0.346)	< 0.001
Oaks (both)	MAM °C anom. T0	-0.29 (0.092)	0.002
Oaks (both)	Site MAM °C	0.323 (0.105)	0.002
Oaks (both)	SPEI GS anom. T0	-0.755 (0.142)	< 0.001
Oaks (both)	Site SPEI GS	0.171 (1.307)	0.896
Oaks (both)	ln(Demand+1)	0.318 (0.011)	< 0.001
Oaks (both)	Lagged seed crop	0 (0)	0.003
Oaks (both)	JJA anom. T1:Site JJA °C	-0.04 (0.019)	0.039
Oaks (both)	Site JJA °C:JJA anom. T2	0.129 (0.019)	< 0.001
Oaks (both)	MAM anom. T0:Site MAM °C	0.072 (0.024)	0.003
Oaks (both)	SPEI GS anom. T0:Site SPEI GS	-3.539 (0.907)	< 0.001
Pine	Intercept	6.012 (0.901)	< 0.001
Pine	JJA °C anom. T1	0.134 (0.349)	0.701
Pine	Site JJA °C	-0.059 (0.058)	0.313
Pine	JJA °C anom. T2	-0.041 (0.338)	0.903
Pine	MAM °C anom. T0	-0.13 (0.088)	0.137
Pine	Site MAM °C	0.157 (0.068)	0.022
Pine	SPEI GS anom. T0	-0.784 (0.165)	< 0.001
Pine	Site SPEI GS	-1.096 (0.911)	0.229
Pine	ln(Demand+1)	0.439 (0.016)	< 0.001
Pine	Lagged seed crop	0 (0)	< 0.001
Pine	JJA anom. T1:Site JJA °C	-0.014 (0.019)	0.472
Pine	Site JJA °C:JJA anom. T2	-0.009 (0.019)	0.635
Pine	MAM anom. T0:Site MAM °C	-0.002 (0.023)	0.921
Pine	SPEI GS anom. T0:Site SPEI GS	-4.938 (1.048)	< 0.001

Table S3: Temporal trends in weather during reproductive stages. Results were obtained with 4 species-specific Tweedie family GLMMs (N.B. family was chosen for consistency with the other variables in the temporal attribution framework), showing how each climatic variable ("Predictor") has changed per year since the start of the time series (1988). Site was included as a random effect. JJA = June-August, MAM = March-May, GS = Growing season. SPEI = Standardised Precipitation Evapotranspiration Index. Tx indicates lag (e.g. T1 is a variable that was lagged 1 year).

Species	Predictor	Term	Estimate (SE)	p
Beech	JJA °C anom. T1	Intercept	-2.294 (0.034)	< 0.001
Beech	JJA °C anom. T1	Year since start	0.067 (0.001)	< 0.001
Beech	JJA °C anom. T2	Intercept	-2.35 (0.035)	< 0.001
Beech	JJA °C anom. T2	Year since start	0.07 (0.001)	< 0.001
Beech	MAM °C anom. T0	Intercept	-1.506 (0.033)	< 0.001
Beech	MAM °C anom. T0	Year since start	0.026 (0.002)	< 0.001
Beech	SPEI GS anom. T0	Intercept	-1.517 (0.032)	< 0.001
Beech	SPEI GS anom. T0	Year since start	-0.011 (0.002)	< 0.001
Fir	JJA °C anom. T1	Intercept	-2.445 (0.054)	< 0.001
Fir	JJA °C anom. T1	Year since start	0.072 (0.002)	< 0.001
Fir	JJA °C anom. T2	Intercept	-2.531 (0.055)	< 0.001
Fir	JJA °C anom. T2	Year since start	0.077 (0.002)	< 0.001
Fir	MAM °C anom. T0	Intercept	-1.551 (0.05)	< 0.001
Fir	MAM °C anom. T0	Year since start	0.027 (0.002)	< 0.001
Fir	SPEI GS anom. T0	Intercept	-1.673 (0.052)	< 0.001
Fir	SPEI GS anom. T0	Year since start	-0.004 (0.003)	0.155
Oaks (both)	JJA °C anom. T1	Intercept	-2.277 (0.029)	< 0.001
Oaks (both)	JJA °C anom. T1	Year since start	0.066 (0.001)	< 0.001
Oaks (both)	JJA °C anom. T2	Intercept	-2.328 (0.03)	< 0.001
Oaks (both)	JJA °C anom. T2	Year since start	0.069 (0.001)	< 0.001
Oaks (both)	MAM °C anom. T0	Intercept	-1.53 (0.029)	< 0.001
Oaks (both)	MAM °C anom. T0	Year since start	0.028 (0.001)	< 0.001
Oaks (both)	SPEI GS anom. T0	Intercept	-1.592 (0.028)	< 0.001
Oaks (both)	SPEI GS anom. T0	Year since start	-0.007 (0.001)	< 0.001
Pine	JJA °C anom. T1	Intercept	-2.268 (0.029)	< 0.001
Pine	JJA °C anom. T1	Year since start	0.066 (0.001)	< 0.001
Pine	JJA °C anom. T2	Intercept	-2.314 (0.03)	< 0.001

Pine	JJA °C anom. T2	Year since start	0.068 (0.001)	< 0.001
Pine	MAM °C anom. T0	Intercept	-1.535 (0.029)	< 0.001
Pine	MAM °C anom. T0	Year since start	0.028 (0.001)	< 0.001
Pine	SPEI GS anom. T0	Intercept	-1.584 (0.028)	< 0.001
Pine	SPEI GS anom. T0	Year since start	-0.008 (0.001)	< 0.001