Plasticity and scaling through multinucleation: a key adaptation to challenging environments

2 Gautam Dey^{1*}, Markus Ganter², and Marie Jacobovitz^{1*}

- ¹Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg,
- 5 Germany
- 6 ² Heidelberg University, Medical Faculty, Centre for Infectious Diseases Parasitology
- 7 *Correspondence: gautam.dey@embl.de; marie.jacobovitz@embl.de

Abstract

Multinucleate cells, single cells containing multiple nuclei in a shared cytoplasm, are found across the eukaryotic tree of life. Having evolved independently in fungi, plants, protists, and animals, they thrive in environments ranging from nutrient-poor deep-sea sediments to dynamic soil microhabitats and host tissues. Multinucleate organization enables spatial specialization without internal partitions and rapid scaling of metabolic or transcriptional capacity, allowing organisms to forage across patchy resources, withstand physical stress, and respond quickly to environmental fluctuations. Yet multinucleation also brings challenges, including diffusion limits, nuclear coordination, and the potential for genetic conflict. Its repeated emergence, often in lineages that have also evolved multicellularity, points to shared cellular, structural, and regulatory prerequisites shaped by ecological pressures. Here, we integrate perspectives from cell biology, ecology, and evolution to demonstrate that multinucleation is not a rare anomaly but a fundamental organizational strategy. Recognizing these systems as adaptive responses to environmental constraints provides a framework for uncovering general principles of cellular organization, evolution of life cycle strategies, and the diversification of complex life.

Introduction

Multinucleate cells, those containing multiple nuclei within a shared cytoplasm, are a widespread yet underappreciated feature of eukaryotic life. They occur across diverse lineages, including fungi^{1,2}, protists^{3–6}, plants and algae^{7–11}, and animals^{12–14} (Figure 1; Supplementary Table 1). Their repeated, independent origins across the tree of life point to strong selection for cellular architectures that achieve large-scale integration without constructing and maintaining intercellular boundaries. The ecological and functional diversity of multinucleate cells, from terrestrial to marine, parasitic to free-living, underscores their remarkable adaptive capacity.

Despite their breadth, multinucleation is often treated as an exception rather than a robust evolutionary strategy that addresses complex biological demands. Here, we recast multinucleation as a recurrent solution to the challenges of scaling and coordination in diverse living systems. Across lineages in which multinucleation appears, there seems to be a set of core features that confer several functional advantages that help to reconcile the challenges of being large, spatially

heterogeneous, or metabolically active. These features include: (1) enhanced biosynthetic capacity, allowing rapid scaling of transcription and translation; (2) localized control, where spatially distinct nuclei respond to local conditions; (3) capacity for long-range intracellular transport, partially offsetting the diffusion constraints inherent to large cells; (4) life-cycle flexibility, enabling shifts between unicellular, syncytial, and multicellular stages; and (5) economic growth, permitting size increase without the energetic costs of constructing and maintaining cell–cell junctions.

454647

48 49

50 51

5253

54

55

5657

58

59 60

61

39

40 41

42 43

44

Multinucleation is not the only solution to the challenge of expanding biosynthetic capacity beyond the limits of mononucleate, haploid organization. Polyploidy is an alternative solution. While multinucleation distributes genomes among multiple nuclei within a shared cytoplasm, polyploidy concentrates extra genome copies within a single nucleus^{15–17}. Interestingly, these strategies are not mutually exclusive, as polyploid nuclei can be found in multinucleate cells^{18,19}. Despite their shared capacity for genomic amplification, multinucleation and polyploidy differ in organization and control. Polyploidy centralizes regulation within one enlarged nucleus, favoring coordination but limiting spatial specialization, whereas multinucleation enables local transcriptional activity and responsiveness to spatial cues^{16,20–23}. In that regard, multicellularity and aggregative multicellularity might be conceptually closer to multinucleation, as all expand function by combining an increased number of nuclei with spatial control. Yet they do so through different structural solutions: multicellularity partitions nuclei into discrete cells, allowing division of labor and compartmentalized regulation, whereas multinucleation maintains all nuclei within a shared cytoplasm, enabling rapid coordination and resource sharing across large cellular domains. Although these architectures solve similar challenges, each offers distinct advantages and disadvantages.

626364

65

66

67

68 69 This perspective aims to explore the ecological and evolutionary roles of multinucleation, highlight the features that enable persistence of multinucleation across diverse niches, and examine the benefits and trade-offs of multinucleate versus multicellular strategies. By considering the cellular routes by which multinucleation forms and the underlying molecular machinery that enables it (Box 1) and examining the environments in which multinucleation is advantageous (Box 2), we can identify general principles that unify multinucleate cells across the tree of life, ultimately positioning multinucleation as a distinct form of cellular complexity.

707172

73

74

75

76

Unifying principles of multinucleation and their evolutionary significance

Multinucleation has arisen repeatedly across eukaryotes because it provides a set of powerful functional advantages that allow organisms to scale metabolism, regulate spatially distributed processes, coordinate activity across large cytoplasmic domains, and flexibly adjust their architectures in response to environmental and developmental demands. Although the organisms

that use these strategies inhabit strikingly different ecological niches, each feature of multinucleation supports a shared underlying principle: distributing genomic, metabolic, or regulatory capacity across space enables cells to achieve levels of dynamic coordination and performance that would be difficult for uninucleate cells or conventional multicellular organization.

The cellular machinery enabling multinucleation is deeply conserved, drawing on core eukaryotic capacities involving cytoskeletal remodeling, vesicle trafficking, membrane fusion, and transcriptional regulation ^{24–26}. The recurrence of these mechanisms across independent lineages underscores the convergent nature of multinucleation as a versatile and efficient solution to the challenges of scale, coordination, and adaptation. Below, we articulate how each functional principle aligns with specific ecological or developmental contexts.

1. Enhanced biosynthetic capacity and transcriptional scaling

Changes in genome copy number can directly influence RNA and protein abundance ^{27,28}, linking transcriptional output to cellular architecture and biosynthetic capacity. By increasing nuclear number, multinucleate cells amplify genomic and transcriptional output without the cost of constructing additional membranes or intercellular junctions. Additionally, the distribution of multiple nuclei throughout the cytoplasm can permit localized gene expression, allowing different regions of the same cell to have distinct biosynthetic profiles. This spatial organization distinguishes multinucleation from polyploidy, in which transcriptional amplification remains confined to a single region.

The advantages of biosynthetic scaling are realized in strikingly different ecological and developmental contexts. In terrestrial fungi and plasmodial slime molds, dispersed nuclei support rapid expansion across heterogeneous substrates, fuel the metabolism required for extensive exploratory networks, and allow organisms to exploit resource hotspots^{1,29–34}. In animals, myonuclei positioned along the length of a muscle fiber enable localized transcriptional responses and maintain the high protein turnover required for contractility and regenerative capacity ^{23,35,36}. For siphonous algae like *Caulerpa* and *Bryopsis*, which inhabit nutrient-poor and mechanically demanding marine environments, multinucleation provides the biosynthetic capacity necessary to support their remarkable macroscopic growth^{11,37–40}. Despite their ecological differences, these systems illustrate the same core principle: scaling biosynthesis through nuclear multiplication allows organisms to match metabolic output to environmental opportunity, whether for growth or structural maintenance.

2. Distributed spatial regulation within a shared cytoplasm

A feature of many large multinucleate cells is their ability to achieve spatial organization in the absence of physical partitions. Instead, nuclei can act as distributed regulatory hubs, each capable of adopting distinct transcriptional states that respond to local cues^{22,23,41–44}. Additionally, microtubule-based forces help maintain nuclear spacing and organization, coordinating cell cycle progression and spatial independence, as reported in both *Drosophila* embryos and *Ashbya gossypii* fungi ^{24,45}.

Spatial regulation extends beyond transcriptional control. RNA-binding proteins and cytoskeletal transport systems ensure mRNAs are translated where they are needed, while phase-separated RNA-protein condensates fine-tune translation in space and time. In *Ashbya gossypii*, Whi3-dependent condensates position mRNAs near growth zones, linking nuclear division to polarized growth^{46,47}. Localized translation allows selective protein synthesis to defined cytoplasmic regions⁴⁸, a strategy conserved from fungi to mammals and essential for cell-cycle control and polarity^{46,49}.

Post-translational modifications further contribute to spatial control by modulating protein activity in response to local signals. Phosphorylation, ubiquitination, glycosylation, and SUMOylation rapidly alter protein stability or function, contributing to localized responses. In multinucleate trophoblast syncytia, for instance, growth factors such as IGF and LIF integrate MAPK/ERK and JAK/STAT signaling to coordinate proliferation and differentiation⁵⁰.

3. Active transport and circulation in large continuous cells

Growing beyond the scale at which diffusion alone can sustain metabolism requires active transport systems that redistribute metabolites, organelles, and signals over large distances⁵¹. Multinucleate cells meet this challenge by coupling cytoskeletal networks to cytoplasmic streaming, enabling rapid long-range movement within a continuous cytoplasm^{52–54}. Like multinucleate cells, neurons employ motor-driven transport along cytoskeletal tracks; however, microtubule-based kinesin and dynein motors are used for highly directional cargo delivery rather than actin-based bulk flow⁵⁵.

The benefits of long-range transport in multinucleate cells are evident in siphonous algae, such as *Caulerpa, Bryopsis*, and *Halimeda*, where actomyosin-driven streaming moves resources across macroscopic thalli ^{10,11,38,39,53}; in *Physarum* plasmodia, where rhythmic contractions coordinate signaling and nutrient flow over centimeter to meter scales^{54,56,57}; and in xenophyophores and other deep-sea foraminifera, where active transport maintains homeostasis under nutrient-poor, low-temperature, and high-pressure conditions ^{4,58–61}. Such active circulation systems enhance metabolic efficiency and extend cellular function beyond the limits of passive diffusion.

4. Architectural flexibility across life-cycle transitions

Many organisms in multinucleate lineages alternate between uninucleate and multinucleate stages, giving them the ability to reorganize their growth and reproductive strategies in response to environmental conditions. This flexibility buffers against environmental fluctuations such as nutrient scarcity, desiccation, or host limitation. *Physarum* transitions between uninucleate amoebae and multinucleate plasmodia depending on nutrient availability^{62,63}; parasites such as *Plasmodium* spp. generate multinucleate schizonts to maximize progeny within host cells before generating invasive uninucleate stages^{44,64}; and ichthyosporeans, such as *Sphaeroforma arctica*, undergo coenocytic growth (see also Box 1) prior to cellularization and dispersal⁵. Fungi likewise alternate between multinucleate hyphae and uninucleate spores during stress or reproductive transitions ^{32,65}. In each case, this capacity to alternate between architectures allows organisms to balance resilience, reproduction, and resource use across fluctuating environments.

5. Energetic considerations of cytoplasmic continuity

Multinucleation may offer an energetically efficient route to building and maintaining large or spatially complex cellular architectures. By expanding a shared cytoplasm rather than dividing it into multiple smaller cells, multinucleate systems bypass some of the structural and metabolic costs associated with forming membranes, junctions, and extensive intercellular signaling machinery. While the energetic consequences of this organization are not fully resolved across all lineages, several biological systems illustrate how reduced compartmentalization can coincide with rapid growth, structural continuity, or efficient resource allocation.

In aseptate fungal lineages such as Mucoromycota and Glomeromycota, extensive multinucleate networks traverse heterogeneous substrates and fluctuating nutrient microhabitats. Many Glomeromycota form arbuscular mycorrhizal symbioses, exchanging nutrients with over 80% of terrestrial plants, where multinucleation facilitates nutrient exchange with hosts and redistribution within the fungal network ^{29,30,66–68}. In siphonous algae, macroscopic thalli are formed from a single multinucleate cell. These lineages sustain large-scale morphologies, and their continuous cytoplasm supports rapid wound healing and flexible resource transport, features that may reduce the energetic burden associated with constructing multicellular tissues^{37,38,40}. Deepsea xenophyophores, which achieve extraordinary cell sizes in extreme conditions, also exhibit coenocytic organization; the distributed nuclei support localized metabolic control, which is thought to be an energy-efficient strategy that is ideal for survival in such environments ^{4,58,59}.

Multinucleation and multicellularity as alternative scaling strategies

Multinucleation and multicellularity represent two distinct yet functionally overlapping solutions to the problem of biological scale. Multinucleate cells internalize the collective, housing many nuclei within a continuous cytoplasm, while multicellular organisms externalize it, distributing

nuclei across discrete but coordinated cells. In many lineages, they coexist or alternate across life cycles as both achieve division of labor, metabolic efficiency, and coordinated behavior, albeit to different extents^{17,69,70}.

Multinucleate architectures

Multinucleate organization achieves multicellular-like integration without constructing membranes between nuclei or relying exclusively on intercellular signaling. These cells can coordinate activity across large spatial domains and redistribute resources rapidly. Continuous cytoplasm also allows signals, organelles, and metabolites to move freely, supporting cohesive behavior across regions that would otherwise require complex intercellular communication and intercellular transport structures. However, this architecture is not without costs. As cytoplasmic volume increases, diffusion becomes limiting, placing greater demands on active transport systems. Maintaining order across a large, continuous cell requires precise regulation of nuclear activity, cytoskeletal organization, and spatial patterning. Local disturbances, such as infection, can propagate more readily through a shared cytoplasm than in multicellular tissues. Despite these trade-offs, there are specific ecological niches where multinucleation excels, including heterogeneous substrates that require long-range foraging, mechanically strenuous environments, or intracellular niches for immune evasion. In such contexts, the ability to integrate many nuclei within one continuous cytoplasm offers a robust and adaptable solution to challenges that might be difficult for either uninucleate cells or fully partitioned multicellular tissues to meet.

Colonial and aggregative architectures

Colonial and aggregative forms, by contrast, preserve individuality while achieving collective behavior. Independent cells interact through adhesion and chemical signaling, forming transient assemblies that can readily form or dissipate in response to environmental cues. In choanoflagellates, bacterial lipids induce clonal rosette formation; in *Dictyostelium*, starvation triggers chemotaxis-driven aggregation reinforced by kin recognition and policing⁷¹. Such collectives can reduce predation, as seen in *Phaeocystis* mucilaginous colonies, while enhancing resource capture^{72,73}. These systems are flexible and facilitate cooperation without permanent commitment⁷⁴. Their limitations lie in slower and less precise coordination, mechanical fragility, and vulnerability to cheaters, yet they thrive in fluctuating or resource-limited environments where reversible collectives offer adaptive advantages.

Multicellular architectures

Multicellular architectures, meanwhile, allow cooperation through stable connections and differentiation, producing tissues composed of specialized cell types integrated by signaling networks. This strategy supports deep functional specialization, robust homeostasis, and the capacity for complex, scalable body plans^{75–78}. However, these benefits come at a high energetic

cost: maintaining intercellular communication and tissue integrity may slow reproduction, increase energy expenditure to construct such tissues, and reduce reversibility once cells are terminally differentiated. Consequently, multicellularity dominates in stable, structured habitats where the benefits of long-term specialization outweigh the flexibility lost through commitment.

- Evolutionary convergence in organizational strategies
- Together, these architectures illustrate that evolution repeatedly converges on a set of solutions to the same fundamental challenges, e.g., scaling, coordination, and conflict mediation, each balancing autonomy and integration in distinct ways. Multinucleation likely achieves speed and flexibility by connecting processes in a unified cytoplasm; colonial systems favor adaptability through loose cooperation; and multicellularity establishes stability through division of labor. These possibilities remain hypotheses, and comparative work will be essential to test how these architectures truly differ in function and constraint. Nonetheless, the recurrence and coexistence of these strategies across lineages reveal a shared evolutionary logic: the drive to extend the reach of cooperation without forgoing control (Figure 2).

- Phylogenetic distribution of multinucleation and multicellularity
- It is striking that multinucleation is found almost exclusively in eukaryotic lineages that also evolved some form of multicellularity, either true multicellularity or aggregative behaviors (Figure 1; Supplementary Table 2). This co-occurrence suggests that the underlying cellular toolkits required for coordinating multiple nuclei may overlap with those needed for coordinating multiple cells, potentially predisposing certain lineages to both architectures^{69,76,77}. Even groups dominated by unicellular species, such as the Excavata, show this dual potential: *Acrasis kona* exhibits an aggregative life stage capable of collective behavior, while other excavates, *Multisulcus malaysiensis*, can produce multinucleate cells ^{79,80}.

There are a few notable exceptions, however. In Metamonada, which includes diplomonads such as *Giardia duodenalis*, multinucleation occurs despite an apparent lack of multicellular or aggregative forms; the characteristic binucleate state of diplomonads represents a minimal yet genuine multinucleate architecture⁸¹. This deviation from the broader pattern raises interesting questions about why multinucleation can evolve in the absence of multicellular capacity in this lineage. Additionally, it appears that there are only two lineages, Haptophyta and Glaucophyta, that form colonial structures but lack known multinucleate cells. The haptophyte *Phaeocystis* ^{72,73} and the glaucophyte alga *Cyanoptyche gloeocystis*⁸² both form colonies. Together, these exceptions point to important gaps in our understanding and highlight avenues of exploration to test which cellular features enable or constrain these architectures.

Unresolved relationships between multinucleation and multicellularity

Whether multinucleation precedes, parallels, or follows multicellularity remains to be resolved ^{17,83,84}. Both enable coordination and division of labor, yet through contrasting architectures, one continuous, the other compartmentalized. Multinucleation may have served as a functional precursor to multicellularity, allowing spatial patterning to emerge within a shared cytoplasm before the emergence of intercellular junctions. Alternatively, the molecular toolkits for multicellular coordination may facilitate the emergence of multinucleation as a derived trait. Understanding this relationship offers insight into one of life's major evolutionary transitions.

Where multinucleate states arise through fusion events, their relationship to multicellularity is potentially derived rather than ancestral. Formation of syncytia (see also Box 1), such as trophoblasts and skeletal muscle fibers, depends on adhesion proteins like cadherins⁸⁵, which themselves trace back to the earliest holozoans. Choanoflagellates already encode cadherins, C-type lectins, and tyrosine kinases⁸⁶, which could suggest that the molecular toolkits for cell-cell adhesion and communication predate animals and were later co-opted for syncytial fusion. From this perspective, syncytial multinucleation represents a reconfiguration of multicellular organization within a continuous cytoplasm.

By contrast, coenocytic multinucleation, arising from nuclear division without cytokinesis, may offer a more direct route to multicellularity, bypassing adhesion-based mechanisms, but utilizing other shared mechanisms that rely upon the actomyosin network, for example. Notably, ichthyosporeans, close unicellular relatives of animals, display coenocytic growth phases in which nuclei divide synchronously within a shared cytoplasm before cellularization^{5,87,88}. In this regard, multicellularity may represent a reconfiguration of coenocytic multinucleation, in which a continuous cytoplasm containing multiple nuclei became progressively partitioned into discrete, interacting cells.

It remains possible that multinucleation and multicellularity arose, not as successive stages of complexity, but as parallel strategies that independently emerged along routes to the same problem: how to organize genomes and their outputs into a coherent whole. These observations invite further comparative studies into the molecular and physical bases of large-scale coordination across eukaryotes.

Mitotic mechanisms and the evolution of cellular architectures

If multinucleation and multicellularity represent parallel routes to large-scale coordination, the diversity of mitotic mechanisms offers a window into how these architectures evolved. Across eukaryotes, mitosis tends to align with cellular organization, where multinucleate lineages predominantly exhibit closed mitosis, in which the nuclear envelope (NE) remains intact, and uninucleate lineages favor open mitosis, involving NE breakdown^{89–92}. Closed mitosis allows

multiple spindles to operate independently within a shared cytoplasm, preserving local control amid cytoplasmic continuity. In contrast, open mitosis facilitates stronger coupling between nuclear and cytoplasmic processes, an arrangement well suited to uninucleate cells.

Intriguingly, some lineages retain the capacity for both. *Physarum*, for instance, performs open mitosis in its uninucleate amoebal form but closed mitosis in its multinucleate plasmodium ^{62,63}. This dual capacity within a single organism highlights how mitosis can evolve contextually, depending on life-cycle stage and cellular organization. The ability to accommodate both open and closed mitosis may have facilitated evolutionary transitions between uninucleate, multinucleate, and multicellular states, linking the mechanisms of division to the broader challenge of organizing genomes or cells in space and time.

Challenging the notion of individuality

Multinucleate cells challenge the classical view of the uninucleate cell as the fundamental unit of life, revealing that biological individuality can emerge at multiple organizational levels. Selection may act on individual nuclei, genetically identical or distinct, on specific cytoplasmic domains, or on the organism as a whole. This multilevel perspective parallels discussions in evolutionary biology about individuality in colonial organisms, holobionts, and symbiotic systems ^{17,75,78,93–96}.

When genetically distinct nuclei coexist in a shared cytoplasm, as in fungal heterokaryons, cooperation and conflict become central concerns. Such chimeric states can persist for long periods, raising questions about how selection operates within a shared cytoplasm and how policing mechanisms suppress selfish nuclear lineages that might otherwise exploit communal resources. Various control strategies have been reported to suppress such conflicts, including selective nuclear degradation, in which incompatible nuclei are targeted for programmed destruction⁹⁷; compartmentalization through septal plugging, which isolates heterokaryotic cells and prevents the spread of incompatible nuclei⁹⁸; and nucleophagy under starvation, whereby specific nuclei are degraded to redistribute nutrients and ensure colony survival⁶⁸. Together, these mechanisms restrict access to shared cytoplasmic goods and maintain cooperative function within multinucleate cells^{99–102}.

Not all nuclear heterogeneity arises from genetic differences. Nuclei in multinucleate cells can divide asynchronously, occupy distinct transcriptional states, and respond differently to local signals despite sharing cytoplasm^{1,32,41,44}. This nuclear autonomy enables regional specialization, localized mRNA gradients, spatially restricted translation, and the formation of subcellular zones with distinct physiological functions. Such internal patterning demonstrates that discrete cellular partitions are not necessary for spatial complexity.

Conclusion

Multinucleate cells are more than biological anomalies; they are recurrent, versatile solutions to fundamental problems of scale, coordination, and adaptability. Spanning the tree of life, from deep-sea sediments to developing embryos and intracellular parasites, they compel us to reconsider multinucleation as a robust strategy for growth, resilience, and survival. By enabling distributed control, spatial compartmentalization without partitions, and rapid scaling of transcriptional capacity, multinucleation redefines where the line between a single cell and a collective truly lies.

349350351

352

353

354

355

356

357

342

343344

345346

347

348

This makes multinucleate systems uniquely powerful for exploring cooperation and conflict at the subcellular level, testing theories of individuality and evolution, and uncovering organizational principles that illuminate eukaryotic origins to modern biotechnological design. Emerging tools now make it possible to interrogate these questions with unprecedented precision: live imaging and spatial transcriptomics reveal nuclear dynamics in real time, single-nucleus sequencing and multi-omics profiling resolve heterogeneity within a shared cytoplasm, and quantitative modeling and synthetic reconstruction can experimentally test how coordination emerges among many genomes.

358359360

361362

Together, these advances promise to transform our understanding of multinucleate life, not merely as a cellular curiosity, but as a window into the general principles of biological organization. As we begin to investigate and understand these systems in molecular detail, we are invited to rethink not only how cells function, but what it means to be a cell in the first place.

363364365

366

367

368

369

370

371

372

373

374

375

Acknowledgements

We thank Kausthubh Ramachandran for the helpful discussions regarding the generation of the phylogenetic trees. We thank Omaya Dudin and Agathe Chaigne for comments on the manuscript and general feedback. G.D. is funded by the European Union (ERC, KaryodynEVO, 101078291) and supported by the EMBO Young Investigator Programme. M.G. is supported by the Health + Life Science Alliance Heidelberg Mannheim, receiving state funding approved by the State Parliament Baden-Württemberg the German Research Foundation of and (Deutsche Forschungsgemeinschaft, DFG) through SFB 1129, project number 240245660. M.J. was supported by the Health + Life Science Alliance Postdoc Program and is funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Project ID 101110797. G.D. and M.J. acknowledge the support of the European Molecular Biology Laboratory (EMBL).

376377

BOX 1. Mechanisms of multinucleation across eukaryotes

379380381

382 383

384

385

Multinucleation predominantly arises via two mechanisms: (1) nuclear division without cytokinesis and (2) cell–cell fusion, with additional mechanisms occurring under stress or disease, such as failed mitotic exit. Although these processes operate in distinct developmental, ecological, or pathological contexts, they rely on modifications of conserved cellular machinery, including actin and microtubule networks, membrane remodeling complexes, and cell cycle regulators, adapted to the demands of each lineage^{24–26}.

386 387 388

Nuclear division without cytokinesis (coenocytic growth)

389

- 390 Definition:
- 391 Karyokinesis proceeds while cytokinesis is delayed or absent, producing many nuclei within a
- 392 continuous cytoplasm.

393

- 394 Key features:
- Rapid amplification of nuclear number
- Expansion of biosynthetic capacity
- Maintenance of a physically continuous intracellular space

398

- 399 Representative examples:
- Filamentous fungi (e.g., *Aspergillus, Fusarium*): coenocytic hyphae spanning heterogeneous substrates^{32,103,104}.
- Plant endosperm (e.g., *Arabidopsis*): early coenocytic stage supports nutrient provisioning 7,105–107.
- Plasmodial slime molds (e.g., *Physarum*, *Fuligo*): centimeter- to meter-scale multinucleate plasmodia^{62,108–110}.
- Early insect embryos (*Drosophila, Tribolium, Nasonia*): rapid, synchronous nuclear divisions before cellularization^{111,112}.
- Siphonous marine algae (*Caulerpa, Bryopsis, Halimeda*): macroscopic single cells dependent on long-range cytoplasmic transport ^{11,37,113}.

410

Cell—cell fusion (syncytium formation)

411412

- 413 Definition:
- Individual uninucleate cells fuse, merging into a shared cytoplasm with multiple nuclei.

415

416 Key features:

- Rapid increase in cytoplasmic volume
- Combines cells without nuclear proliferation
- Requires fusogens, adhesion proteins, and actomyosin remodeling

- 421 Representative examples:
- Skeletal muscle: myoblast fusion produces elongated, multinucleated myofibers with high contractile output^{13,114}.
- Placenta: trophoblast fusion generates the syncytiotrophoblast, a specialized multinucleate barrier for maternal–fetal exchange^{50,115}.
- Immune system & tissue repair: macrophage fusion produces osteoclasts (bone resorption) and multinucleated giant cells during chronic inflammation 116,117.

428

Failure of mitotic exit or cytokinesis (pathological multinucleation)

429430

- 431 Definition:
- 432 Errors in cell-cycle regulation (e.g., spindle defects, telomere dysfunction, or cytokinetic failure)
- 433 produce multinucleated cells. The same machinery enabling functional multinucleation can also
- 434 generate pathological states when dysregulated.

435

- 436 Key features:
- Typically associated with disease or stress
- 438 Reflect breakdowns in checkpoints rather than adaptive strategies

439

- 440 Representative examples:
- Cancer: multinucleated giant cells indicate genomic instability; may precede clonal evolution or senescence^{118–121}.
- Stress-induced defects: hypoxia, chemotherapeutic agents, or mechanical strain induce cytokinesis failure in mammalian cells^{122,123}.
- Viral infections: viral fusogens induce pathological syncytia (e.g., measles, SARS-CoV-2), disrupting tissue integrity^{124,125}.

447448

Nuclear division dynamics within multinucleate cells

- 450 Definition:
- 451 Once multinucleation is established, nuclear cycles may proceed synchronously,
- 452 parasynchronously, or asynchronously. Division dynamics allow multinucleate cells to balance
- 453 biosynthetic output with energetic constraints, demonstrating that nuclear autonomy is itself an
- 454 adaptive layer of multinucleate organization.

Key features:

- Regulated by local metabolic conditions, cytoskeletal organization, and signaling gradients
- Reflect tuning between global coordination and local autonomy

458 459

457

460 Representative examples:

- Synchronous: early *Drosophila* embryos, generating thousands of nuclei with tight temporal control¹¹².
- Parasynchronous: Aspergillus nidulans nuclei divide in parasynchronous waves¹⁰⁴
- Asynchronous: *Plasmodium falciparum* schizonts, enabling rapid proliferation in nutrient-limited host cells^{44,64}.
- Stress-modulated asynchrony: observed in filamentous fungi and nutrient-limited mammalian cells; divisions desynchronize to spread energetic demand^{100,126}.

468 469

470

471

472

473

474

Summary

Across eukaryotes, multinucleation arises through coenocytic growth, cell—cell fusion, or failed cell-cycle exit. Although mechanistically distinct, these processes rely on conserved cytoskeletal and membrane systems and have been repeatedly adapted to support growth, rapid expansion, performance, immunity, parasitism, and developmental patterning. Together, these mechanisms reveal that multinucleation is not an anomaly but a fundamental and flexible cellular strategy enabling organisms to integrate function across space, time, and environmental complexity.

Box 2. Ecological niches favoring the evolution of multinucleation

The ecological context in which an organism evolves strongly influences the development and persistence of multinucleate cells. Environmental factors such as nutrient availability, substrate structure and heterogeneity, and predation pressure impose selective constraints that can favor shared cytoplasmic organization. In such settings, multinucleation offers a versatile strategy for sustaining growth, coordinating metabolism, and maintaining resilience under fluctuating or resource-limited conditions.

Terrestrial ecosystems

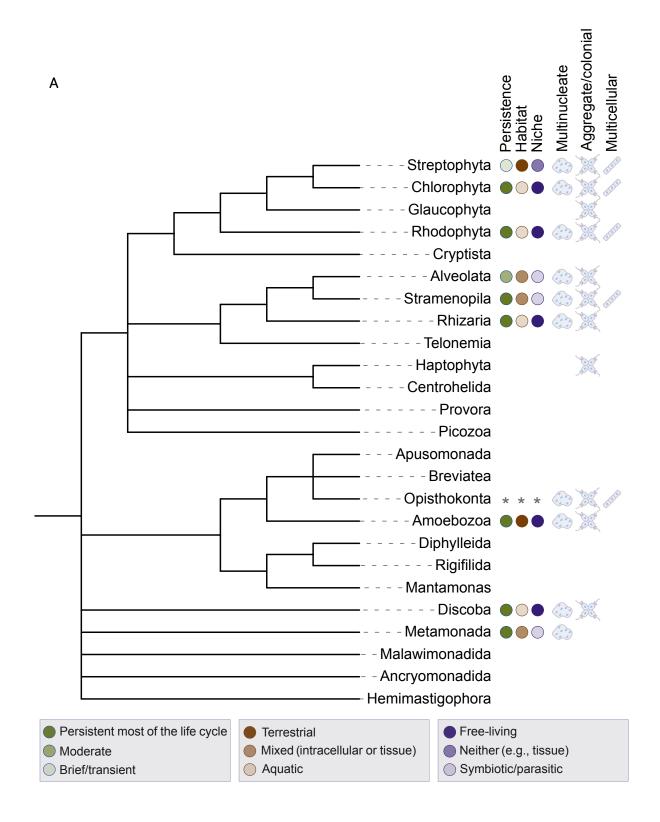
Terrestrial ecosystems, particularly soils and decomposing organic matter, are physically complex, highly heterogeneous environments. Nutrients occur in patchy microhabitats, microbial communities are dense, moisture levels fluctuate, and substrates can be mechanically resistant. Organisms must navigate steep chemical gradients, shifting hydration cycles, and episodic resource pulses. Together, these features create a mosaic landscape where growth depends on continually responding to local and rapidly changing conditions.

Aquatic ecosystems

Aquatic environments, both marine and freshwater, present a very different set of constraints. Water supports large, extended cell shapes but also exposes organisms to turbulence and constantly fluctuating nutrient availability. Many habitats are oligotrophic; others are periodically mixed or disturbed by sediment flow. Deep-sea settings add high pressure, low temperatures, and chronic nutrient scarcity. Across these ecosystems, resource landscapes are shaped by fluid motion rather than substrate structure, and chemical signals disperse quickly, creating dynamic and often unpredictable conditions.

Intracellular parasitic niches

Intracellular parasitic niches are tightly enclosed, nutrient-limited, and under constant immune surveillance. Within spaces like erythrocytes, hepatocytes, or algal cytoplasms, movement is restricted and resource access is finite. Parasites must replicate efficiently within a fixed space while avoiding detection, which, together with spatial confinement, strongly shapes how growth and division are organized in these environments.


Transitional and fluctuating niches

Some organisms occupy habitats that shift rapidly over space or time. Seasonal environments, transient substrates, dispersal phases, and transitions between aquatic and benthic zones all impose fluctuating conditions. In these settings, organisms often benefit from flexible life cycles capable of switching between different cellular architectures. Transitional niches also include

stress-induced states, which can be triggered by desiccation, hypoxia, or chemical damage, in which cells temporarily reorganize their growth dynamics, nuclear behavior, or genome content.

517518 Developmental contexts

Multinucleation also arises in developmental settings where rapid expansion, intense biosynthetic demand, or coordinated activity across large cellular domains is required. Early embryogenesis often involves rapid nuclear divisions before cellularization, specialized tissues must accumulate resources quickly, and contractile or absorptive epithelia rely on coordinated gene expression across extensive cytoplasmic territories. These developmental niches impose tight temporal constraints distinct from those experienced by free-living cells.

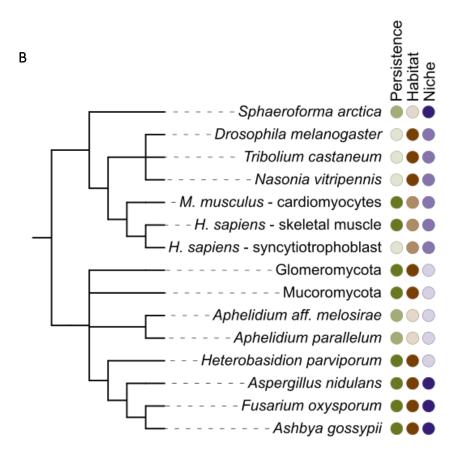


Figure 1. Ecological and organizational distribution of multinucleation across the eukaryotic tree of life.

- (A) A collapsed eukaryotic tree of life illustrating the phylogenetic breadth of multinucleate, colonial/aggregative, and multicellular architectures across major eukaryotic clades. For each lineage, three ecological attributes are annotated using color-coded circles: persistence (green), habitat (brown), and niche (purple). Icons to the right indicate whether the lineage contains multinucleate, aggregate/colonial, and/or multicellular forms. The figure highlights the repeated and phylogenetically widespread emergence of multinucleation across eukaryotes, as well as its co-occurrence with the other architectures.
- (B) Expanded view of Opisthokonta, showing finer-scale annotation of fungi, animals, and closely related protist lineages. The panel highlights the diversity of multinucleate architectures within this clade, from fungal coenocytes to animal syncytia, and illustrates how persistence, habitat, and niche categories vary even among closely related taxa.

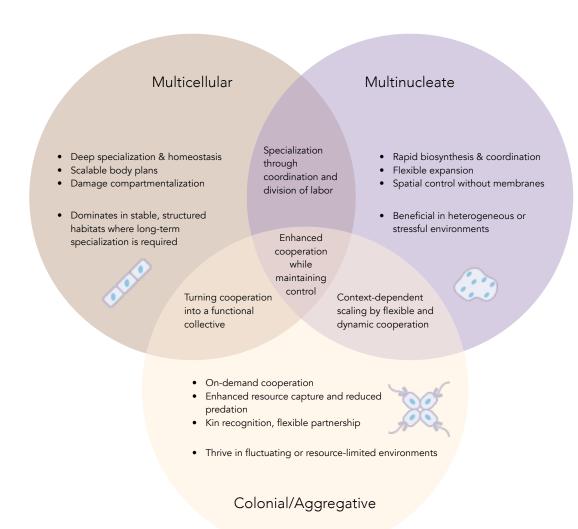


Figure 2 Conceptual relationships among multinucleate, multicellular, and colonial/aggregative organizational strategies.

Venn diagram summarizing the shared and distinct organizational principles of three major eukaryotic architectures that solve problems of coordination and scaling in different ways. Multinucleate cells integrate multiple nuclei within a continuous cytoplasm, achieving rapid coordination and regionalized function. Multicellular organization achieves long-lasting cooperation through stable adhesion, developmental patterning, and division of labor, enabling specialization. Colonial or aggregative forms maintain individuality while coordinating behavior through reversible adhesion and signaling, allowing flexible responses to environmental fluctuations. Overlapping regions highlight convergent strategies: enhanced cooperation while

555 maintaining internal control, specialization through coordinated division of labor, and context-556 dependent scaling via dynamic cooperation.

Group	Species	<u>Niche</u> 1=Symbiotic/Parasitic 2=Neither (e.g., tissue) 3=Free-living	<u>Habitat</u> 1=Aquatic 2=Mixed (intracellular or tissue) 3=Terrestrial	Persistence 1=Transient 2=Moderate 3=Persistent	Justification	
Alveolata	Plasmodium falciparum	1	2	2	Parasitic; internal environment spanning mosquito and vertebrate hosts; multinucleate schizogony is a major proliferative stage	64,127
	Piusmoaium jaiciparum	1	2	Z	Free-living in terrestrial habitats; large multinucleate plasmodium is	
Amoebozoa	Physarum polycephalum	3	3	3	the dominant vegetative stage.	62
					Free-living in terrestrial habitats; large multinucleate plasmodium is	
Amoebozoa	Didymium iridis	3	3	3	the dominant vegetative stage.	128
					Free-living in terrestrial habitats; large multinucleate plasmodium is	
Amoebozoa	Fuligo septica	3	3	3	the dominant vegetative stage.	128
	Arabidopsis thaliana -				Plant tissue (neither free-living nor symbiotic); terrestrial; syncytial	
Streptophyta	endosperm	2	3	1	endosperm is an early, transient stage before cellularization.	7
					Free-living marine siphonous algae; entire thallus is a long-lived	
Chlorophyta	Caulerpa spp.	3	1	3	multinucleate coenocyte.	113
					Free-living marine siphonous green algae; coenocytic organization	
Chlorophyta	Bryopsis spp.	3	1	3	persists throughout the vegetative body.	11
					Free-living marine coenocytic alga; multinucleate siphonous tissues	
Chlorophyta	Halimeda opuntia	3	1	3	form persistent calcified segments.	10
					Free-living marine coenocytic alga; multinucleate structure	
Chlorophyta	Halimeda cuneata	3	1	3	maintained through most of the life cycle.	37
Discoba	Chaos spp. (Chaos				Free-living freshwater amoebae; trophic cells are large,	
	illinoisense)	3	1	3	multinucleate, and persist as such.	80
Metamonada				_	Parasitic/commensal in vertebrate intestines; host-internal	0.1
	Giardia duodenalis	1	2	3	environment; binucleate trophozoite is the main feeding stage.	81
			_	_	Algal parasite; aquatic; multinucleate plasmodium forms during	129
Opisthokonta	Aphelidium aff. melosirae	1	1	2	infection but is not long-term persistent.	- 129
0:11.1	A 1 1:1:	4		2	Algal parasite; aquatic; multinucleate plasmodium forms during	130
Opisthokonta	Aphelidium parallelum	1	1	2	infection but is not long-term persistent.	- 130
0:	Cab	2	1	2	Free-living; aquatic; coenocytic growth spans a notable but not full	5
Opisthokonta	Sphaeroforma arctica	3	1	2	portion of the life cycle.	-
Onisthaleanta	Asporaillus pidulans	3	3	3	Free-living terrestrial filamentous fungus; vegetative hyphae are	104
Opisthokonta	Aspergillus nidulans	3	3	3	long-lived and multinucleate. Soil fungus and plant pathogen but ecologically free-living; hyphae	- 10.
Opisthokonta	Fusarium oxysporum	3	3	3	are persistently multinucleate.	32
Opistriokonta	rusurium oxysporum	3	3	3	Free-living filamentous fungus; highly multinucleate hyphae persist	-
Opisthokonta	Ashbya gossypii	3	3	3	through vegetative growth.	46
Opistilokolita	Asiibyu gossypii	J	J	, , , , , , , , , , , , , , , , , , ,	amough vegetative growth.	-
Opisthokonta	Heterobasidion parviporum	1	3	3	Fungal pathogen; hyphae persist for long periods.	101
					Symbiotic terrestrial fungi with coenocytic hyphae; multinucleation	
Opisthokonta	Mucoromycota	3	3	3	is a stable vegetative condition.	66

					Symbiotic arbuscular mycorrhizal fungi; terrestrial; extensive	
					multinucleate hyphae persist throughout association with host	
Opisthokonta	Glomeromycota	1	3	3	plant.	30
	Drosophila melanogaster -				Embryo (neither free-living nor symbiotic); terrestrial; syncytial	
Opisthokonta	embryo	2	3	1	blastoderm is an early, transient embryonic stage.	111
					Embryo (neither free-living nor symbiotic); terrestrial; syncytial	
Opisthokonta	Tribolium - embryo	2	3	1	blastoderm is an early, transient embryonic stage.	14,111
					Embryo (neither free-living nor symbiotic); terrestrial; syncytial	
Opisthokonta	Nasonia - embryo	2	3	1	blastoderm is an early, transient embryonic stage.	111
	Mus musculus -					
Opisthokonta	cardiomyocytes	2	2	3	Cardiac tissue; multinucleation/bi-nucleation is stable	19
	Homo sapiens - skeletal				Multinucleate muscle fibres within tissue; myofibres are long-lived]
Opisthokonta	muscle	2	2	3	syncytia.	13
	Homo sapiens -				Placental tissue; syncytiotrophoblast remains multinucleate over the	
Opisthokonta	syncytiotrophoblast	2	2	1	course of pregnancy.	115
Rhizaria					Free-living foraminifer; aquatic; extensive multinucleate reticulated	
KIIIZaria	Reticulomyxa filosa	3	1	3	cell body is long-lived.	131
Rhizaria					Free-living deep-sea foraminifera; aquatic; giant multinucleate	
KIIIZaria	Xenophyophores	3	1	3	coenocytes persist for long durations.	58
Dhiasais					Mixotrophic protists with integrated endosymbionts; aquatic;	1
Rhizaria	Chlorarachniophytes	2	1	3	reticulate multinucleate stages are persistent.	132
					Free-living marine red alga; multinucleate cells persist through]
Rhodophyta	Scinaia articulata	3	1	3	vegetative growth.	133
C+					Symbiotic/commensal inhabitant of vertebrate intestines; internal	1
Stramenopila	Protoopalina intestinalis	1	2	3	habitat; multinucleate form persists within host gut.	3

Supplementary Table 1. Ecological and biological attributes of multinucleate taxa shown in Figure 1.

Table summarizes the ecological niche, habitat type, and persistence of multinucleate states for all representative taxa included in Figure 1. Each organism is scored along three categorical axes: Niche (1 = symbiotic/parasitic, 2 = neither (e.g., tissue), 3 = free-living), Habitat (1 = aquatic, 2 = mixed (intracellular or tissue), 3 = terrestrial), and Persistence (1 = transient multinucleate stage, 2 = moderate portion of life cycle, 3 = persistent or dominant life-stage). For each taxon, a brief justification is provided describing the ecological or developmental context in which multinucleation occurs, alongside the relevant citation(s). The table highlights the broad diversity of environments in which multinucleate architectures arise, from free-living coenocytes and filamentous fungi to intracellular parasites and transient developmental syncytia, and provides the dataset underlying the categorical annotations in Figure 1.

	Multinucleate	Multicellular	Aggregate/colonial	
	Phytophthora infestans	Laminaria digitata	Glossomastix chrysoplasta	Example
Stramenopila	Oertel & Jelke 1986 ¹³⁴	Thomas et al. 2014 ¹³⁵	O'Kelly 2002 ¹³⁶	Citation
Alexalete	Plasmodium falciparum	-	Zoothamnium niveum	Example
Alveolata	Klaus et al. 2022 ⁴⁴	-	Clamp & Williams 2006 ¹³⁷	Citation
Rhizaria	Allogromia laticollaris	-	Guttulinopsis vulgaris	Example
KNIZaria	Timmons et al, 2024 ¹³⁸	-	Brown et al. 2012 ¹³⁹	Citation
Telonemia	-	-	-	Example
reionemia	-	-	-	Citation
Haptophyta	-	-	Phaeocystis pouchetii	Example
парторпута	-	-	Estep et al. 1990 ⁷³	Citation
Centrohelida	-	-	-	Example
Centronella	-	-	-	Citation
Cryptophyta	-	-	-	Example
Стурторпута	-			Citation
Katablepharida	-	-	-	Example
катаыерпанца	-	-	-	Citation
Palpitomonas (Cryptista)	-	-	-	Example
Faipitomonas (Cryptista)	-	-	-	Citation
Glaucophyta	-	-	Cyanoptyche gloeocystis	Example
σιαυτομιίγια	-	-	Kies 1989 ⁸²	Citation
	Caulerpa taxifolia	Arabidopsis thaliana	Volvox barberi	Example
Chloroplastida	Menzel 1987 ¹¹³	Sørensen et al. 2022 ⁷	Balasubramanian & McCourt 2021 ¹⁴⁰	Citation
Rhodophyta	Griffithsia monilis	Porphyra umbilicalis	Bangia sp.	Example

	Hong et al. 2023 ¹⁴¹	Brawley et al. 2017 ¹⁴²	Cao et al. 2018 ¹⁴³	Citation
Ancoracysta (Ancoracysta/Provora)	-	-	-	Example
Ancoracysta (Ancoracysta) Frovora)	-	-	-	Citation
Picozoa	-	_	_	Example
1160200	-	-	-	Citation
Apusomonada	-	_	_	Example
Apasomonada	-	-	-	Citation
Breviates	-	-	-	Example
Breviates	-	-	-	Citation
Opisthokonta	Neurospora crassa	Drosophila melanogaster	Fonticula alba	Example
Эржноконц	Roper et al. 2011 ²	Vergasolla et al. 2018 ¹¹²	Toret et al. 2022 ¹⁴⁴	Citation
Amoebozoa	Physarum polycephalum		Dictyostelium discoideum	Example
7.11715 52.525	Burland et al. 1993 ⁶²	Du et al. 2015 ⁷¹		Citation
Diphylleida (Diphyllatea)	-	-	-	Example
	-	-	-	Citation
Rigifilida (CRuMs)	-	-	_	Example
	-	-	-	Citation
Mantamonas (CRuMs)	-	-	-	Example
,	-	-	-	Citation
Discoba	Multisulcus malaysiensis		Acrasis kona	Example
	Prokina et al. 2025 ⁸⁰		Sheikh et al. 2024 ⁷⁹	Citation
Metamonada	Giardia duodenalis			Example
	Sagolla et al. 2006 ⁸¹			Citation
Malawimonadida	-	-	-	Example
	-	-	-	Citation
Ancyromonadida	-	-	-	Example

	-	-	-	Citation
Hamimastiganhara	-	-	-	Example
Hemimastigophora	-	-	-	Citation

Supplementary Table 2. Distribution of multinucleate, multicellular, and aggregate/colonial architectures across major eukaryotic lineages.

Table summarizing the presence or absence of three organizational strategies: multinucleation, multicellularity, and aggregative/colonial architectures across the eukaryotic clades included in Figure 1. Multinucleate encompasses coenocytes and syncytia; Multicellular refers to tissue-forming multicellularity; and Aggregate/colonial includes collectives such as mucilaginous colonies or amoebozoan aggregators. Representative taxa and citations are listed where these architectures are documented.

The table complements the comparative phylogeny in Figure 1, showing that multinucleation and multicellularity commonly co-occur within the same lineages. Several clades deviate from the dominant patterns (e.g., Metamonada, which exhibit multinucleation without known multicellular or colonial states, and Glaucophyta or Haptophyta, which form colonies but lack confirmed multinucleate forms). These exceptions highlight promising avenues for testing which cellular toolkits enable, constrain, or bias the evolution of different large-scale architectures.

580 **References**

- 1. Roberts, S.E., and Gladfelter, A.S. (2015). Nuclear autonomy in multinucleate fungi. Current Opinion in Microbiology *28*, 60–65. https://doi.org/10.1016/j.mib.2015.08.009.
- 2. Roper, M., Ellison, C., Taylor, J.W., and Glass, N.L. (2011). Nuclear and Genome Dynamics in Multinucleate Ascomycete Fungi. Current Biology *21*, R786–R793. https://doi.org/10.1016/j.cub.2011.06.042.
- 586 3. Kostka, M., Hampl, V., Cepicka, I., and Flegr, J. (2004). Phylogenetic position of Protoopalina 587 intestinalis based on SSU rRNA gene sequence. Molecular Phylogenetics and Evolution *33*, 588 220–224. https://doi.org/10.1016/j.ympev.2004.05.009.
- 589 Gooday, A.J., Lejzerowicz, F., Goineau, A., Holzmann, M., Kamenskaya, O., Kitazato, H., Lim, 590 S.-C., Pawlowski, J., Radziejewska, T., Stachowska, Z., et al. (2021). The Biodiversity and 591 Distribution of Abyssal Benthic Foraminifera and Their Possible Ecological Roles: A Synthesis 592 Clarion-Clipperton Front. Across the Zone. Mar. Sci. 8, 634726. 593 https://doi.org/10.3389/fmars.2021.634726.
- 5. Ondracka, A., Dudin, O., and Ruiz-Trillo, I. (2018). Decoupling of Nuclear Division Cycles and Cell Size during the Coenocytic Growth of the Ichthyosporean Sphaeroforma arctica. Current Biology *28*, 1964-1969.e2. https://doi.org/10.1016/j.cub.2018.04.074.
- 597 6. Bailey, J., Anderson, R.W., and Dee, J. Growth and Development in Relation to the Cell Cycle 598 in PhysarumpolycephMum.
- 599 7. Sørensen, M.B., Mayer, U., Lukowitz, W., Robert, H., Chambrier, P., Jürgens, G., Somerville, C., Lepiniec, L., and Berger, F. (2002). Cellularisation in the endosperm of *Arabidopsis thaliana* is coupled to mitosis and shares multiple components with cytokinesis. Development *129*, 5567–5576. https://doi.org/10.1242/dev.00152.
- 8. Motomura, T., Nagasato, C., Komeda, Y., and Okuda, K. (2001). TRANSIENT LOCALIZATION OF γ-TUBULIN AROUND THE CENTRIOLES IN THE NUCLEAR DIVISION OF *BOERGESENIA FORBESII* (SIPHONOCLADALES, CHLOROPHYTA). Journal of Phycology *37*, 783–792. https://doi.org/10.1046/j.1529-8817.2001.01027.x.
- 9. Veselá, V., Malavasi, V., and Škaloud, P. (2024). A synopsis of green-algal lichen symbionts with an emphasis on their free-living lifestyle. Phycologia *63*, 317–338. https://doi.org/10.1080/00318884.2024.2325329.
- 10. Zhang, H., Wang, X., Qu, M., Yu, H., Yin, J., Liu, X., Liu, Y., Zhang, B., Zhang, Y., Wei, Z., et al. (2024). Genome of *Halimeda opuntia* reveals differentiation of subgenomes and molecular bases of multinucleation and calcification in algae. Proc. Natl. Acad. Sci. U.S.A. *121*, e2403222121. https://doi.org/10.1073/pnas.2403222121.

- 614 11. Ochiai, K.K., Hanawa, D., Ogawa, H.A., Tanaka, H., Uesaka, K., Edzuka, T., Shirae-Kurabayashi,
- M., Toyoda, A., Itoh, T., and Goshima, G. (2024). Genome sequence and cell biological toolbox
- of the highly regenerative, coenocytic green feather alga *Bryopsis*. The Plant Journal 119,
- 617 1091–1111. https://doi.org/10.1111/tpj.16764.
- 618 12. Loncar, D., and Singer, S.J. (1995). Cell membrane formation during the cellularization of the
- 619 syncytial blastoderm of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 92, 2199–2203.
- 620 https://doi.org/10.1073/pnas.92.6.2199.
- 621 13. Sampath, S.C., Sampath, S.C., and Millay, D.P. (2018). Myoblast fusion confusion: the
- resolution begins. Skeletal Muscle *8*, 3. https://doi.org/10.1186/s13395-017-0149-3.
- 623 14. Stanley, M.S.M., and Grundmann, A.W. (1970). The Embryonic Development of Tribolium
- 624 confusum1,2. Annals of the Entomological Society of America 63, 1248–1256.
- 625 https://doi.org/10.1093/aesa/63.5.1248.
- 15. Van De Peer, Y., Mizrachi, E., and Marchal, K. (2017). The evolutionary significance of
- 627 polyploidy. Nat Rev Genet 18, 411–424. https://doi.org/10.1038/nrg.2017.26.
- 628 16. Fox, D.T., Soltis, D.E., Soltis, P.S., Ashman, T.-L., and Van De Peer, Y. (2020). Polyploidy: A
- Biological Force From Cells to Ecosystems. Trends in Cell Biology 30, 688–694.
- https://doi.org/10.1016/j.tcb.2020.06.006.
- 631 17. Niklas, K.J., Cobb, E.D., and Crawford, D.R. (2013). The evo-devo of multinucleate cells,
- tissues, and organisms, and an alternative route to multicellularity. Evolution and
- Development 15, 466–474. https://doi.org/10.1111/ede.12055.
- 634 18. Anderson, C.A., Roberts, S., Zhang, H., Kelly, C.M., Kendall, A., Lee, C., Gerstenberger, J.,
- Koenig, A.B., Kabeche, R., and Gladfelter, A.S. (2015). Ploidy variation in multinucleate cells
- changes under stress. MBoC 26, 1129–1140. https://doi.org/10.1091/mbc.E14-09-1375.
- 637 19. Jiang, Y.-H., Wang, H.-L., Peng, J., Zhu, Y., Zhang, H.-G., Tang, F.-Q., Jian, Z., and Xiao, Y.-B.
- 638 (2020). Multinucleated polyploid cardiomyocytes undergo an enhanced adaptability to
- 639 hypoxia via mitophagy. Journal of Molecular and Cellular Cardiology 138, 115–135.
- 640 https://doi.org/10.1016/j.yjmcc.2019.11.155.
- 641 20. Comai, L. (2005). The advantages and disadvantages of being polyploid. Nature Reviews
- Genetics 6, 836–846. https://doi.org/10.1038/nrg1711.
- 643 21. Machado, M., Steinke, S., and Ganter, M. (2021). Plasmodium Reproduction, Cell Size, and
- Transcription: How to Cope With Increasing DNA Content? Front Cell Infect Microbiol 11,
- 645 660679. https://doi.org/10.3389/fcimb.2021.660679.
- 646 22. Gerber, T., Loureiro, C., Schramma, N., Chen, S., Jain, A., Weber, A., Weigert, A., Santel, M.,
- Alim, K., Treutlein, B., et al. (2022). Spatial transcriptomic and single-nucleus analysis reveals

- heterogeneity in a gigantic single-celled syncytium. eLife 11, 1–23. https://doi.org/10.7554/ELIFE.69745.
- 650 23. Kim, M., Franke, V., Brandt, B., Lowenstein, E.D., Schöwel, V., Spuler, S., Akalin, A., and 651 Birchmeier, C. (2020). Single-nucleus transcriptomics reveals functional 652 compartmentalization in syncytial skeletal muscle cells. Nat Commun *11*, 6375.
- https://doi.org/10.1038/s41467-020-20064-9.
- 24. Padilla, J.R., Ferreira, L.M., and Folker, E.S. (2022). Nuclear movement in multinucleated cells. Development *149*, dev200749. https://doi.org/10.1242/dev.200749.
- 656 25. Panstruga, R., Antonin, W., and Lichius, A. (2023). Looking outside the box: a comparative 657 cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular 658 life. Cell. Mol. Life Sci. *80*, 198. https://doi.org/10.1007/s00018-023-04843-3.
- 659 26. McCartney, B., and Dudin, O. (2023). Cellularization across eukaryotes: Conserved 660 mechanisms and novel strategies. Current Opinion in Cell Biology *80*, 102157. 661 https://doi.org/10.1016/j.ceb.2023.102157.
- Torres, E.M., Sokolsky, T., Tucker, C.M., Chan, L.Y., Boselli, M., Dunham, M.J., and Amon, A.
 (2007). Effects of Aneuploidy on Cellular Physiology and Cell Division in Haploid Yeast. Science
 317, 916–924. https://doi.org/10.1126/science.1142210.
- Pavelka, N., Rancati, G., Zhu, J., Bradford, W.D., Saraf, A., Florens, L., Sanderson, B.W., Hattem, G.L., and Li, R. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468, 321–325. https://doi.org/10.1038/nature09529.
- Ropars, J., Toro, K.S., Noel, J., Pelin, A., Charron, P., Farinelli, L., Marton, T., Krüger, M., Fuchs,
 J., Brachmann, A., et al. (2016). Evidence for the sexual origin of heterokaryosis in arbuscular
 mycorrhizal fungi. Nat Microbiol 1, 16033. https://doi.org/10.1038/nmicrobiol.2016.33.
- 30. Jany, J., and Pawlowska, T.E. (2010). Multinucleate Spores Contribute to Evolutionary Longevity of Asexual Glomeromycota. The American Naturalist *175*, 424–435. https://doi.org/10.1086/650725.
- 675 31. Nakagaki, T., Kobayashi, R., Nishiura, Y., and Ueda, T. (2004). Obtaining multiple separate 676 food sources: behavioural intelligence in the *Physarum* plasmodium. Proc. R. Soc. Lond. B 677 271, 2305–2310. https://doi.org/10.1098/rspb.2004.2856.
- 678 32. Shahi, S., Beerens, B., Manders, E.M.M., and Rep, M. (2015). Dynamics of the Establishment 679 of Multinucleate Compartments in Fusarium oxysporum. Eukaryot Cell *14*, 78–85. 680 https://doi.org/10.1128/EC.00200-14.

- 681 33. Matsumoto, K., Takagi, S., and Nakagaki, T. (2008). Locomotive Mechanism of Physarum
- Plasmodia Based on Spatiotemporal Analysis of Protoplasmic Streaming. Biophysical Journal
- 683 94, 2492–2504. https://doi.org/10.1529/biophysj.107.113050.
- 34. Roper, M., Lee, C., Hickey, P.C., and Gladfelter, A.S. (2015). Life as a moving fluid: fate of
- 685 cytoplasmic macromolecules in dynamic fungal syncytia. Current Opinion in Microbiology 26,
- 686 116–122. https://doi.org/10.1016/j.mib.2015.07.001.
- 687 35. Newlands, S., Levitt, L.K., Robinson, C.S., Karpf, A.B.C., Hodgson, V.R.M., Wade, R.P., and
- Hardeman, E.C. (1998). Transcription occurs in pulses in muscle fibers. Genes Dev. 12, 2748–
- 689 2758. https://doi.org/10.1101/gad.12.17.2748.
- 690 36. Prasad, V., and Millay, D.P. (2021). Skeletal muscle fibers count on nuclear numbers for
- 691 growth. Seminars in Cell and Developmental Biology 119, 3–10.
- 692 https://doi.org/10.1016/j.semcdb.2021.04.015.
- 693 37. Bouzon, Z.L., Bandeira-Pedrosa, M.E., and Schmidt, É.C. (2010). Ultrastructure of the
- siphonaceous green alga Halimeda cuneata, with emphasis on the cytoskeleton. Micron 41,
- 695 598–603. https://doi.org/10.1016/j.micron.2010.04.001.
- 696 38. Menzel, D., and Heidelberg, U. How Do Giant Plant Cells Cope with Injury?--The Wound
- Response in Siphonous Green Algae.
- 698 39. Fong, C.R., Ryznar, E.R., Smith, L.L., and Fong, P. (2023). Towards a trait-based framework for
- 699 marine macroalgae: Using categorical data to explore the nature of emergent functional
- 700 groups. Journal of Ecology *111*, 1848–1865. https://doi.org/10.1111/1365-2745.14144.
- 701 40. McNeil, M.A., Nothdurft, L.D., Dyriw, N.J., Webster, J.M., and Beaman, R.J. (2021).
- Morphotype differentiation in the Great Barrier Reef *Halimeda* bioherm carbonate factory:
- 703 Internal architecture and surface geomorphometrics. The Depositional Record 7, 176–199.
- 704 https://doi.org/10.1002/dep2.122.
- 705 41. Gladfelter, A.S. (2006). Nuclear anarchy: asynchronous mitosis in multinucleated fungal
- 706 hyphae. Current Opinion in Microbiology 9, 547–552.
- 707 https://doi.org/10.1016/j.mib.2006.09.002.
- 708 42. Mayer, A., Li, J., McLaughlin, G., Gladfelter, A., and Roper, M. (2024). Mitigating transcription
- 709 noise via protein sharing in syncytial cells. Biophysical Journal 123, 968–978.
- 710 https://doi.org/10.1016/j.bpj.2024.03.009.
- 43. Levin, A.M., De Vries, R.P., Conesa, A., De Bekker, C., Talon, M., Menke, H.H., Van Peij,
- 712 N.N.M.E., and Wösten, H.A.B. (2007). Spatial Differentiation in the Vegetative Mycelium of
- 713 Aspergillus niger. Eukaryot Cell 6, 2311–2322. https://doi.org/10.1128/EC.00244-07.
- 714 44. Klaus, S., Binder, P., Kim, J., Machado, M., Funaya, C., Schaaf, V., Klaschka, D., Kudulyte, A.,
- 715 Cyrklaff, M., Laketa, V., et al. (2022). Asynchronous nuclear cycles in multinucleated

- 716 Plasmodium falciparum facilitate rapid proliferation. Sci Adv 8, eabj5362.
- 717 https://doi.org/10.1126/sciadv.abj5362.
- 718 45. Anderson, C.A., Eser, U., Korndorf, T., Borsuk, M.E., Skotheim, J.M., and Gladfelter, A.S.
- 719 (2013). Nuclear Repulsion Enables Division Autonomy in a Single Cytoplasm. Current Biology
- 720 23, 1999–2010. https://doi.org/10.1016/j.cub.2013.07.076.
- 46. Lee, C., Zhang, H., Baker, A.E., Occhipinti, P., Borsuk, M.E., and Gladfelter, A.S. (2013). Protein
- 722 Aggregation Behavior Regulates Cyclin Transcript Localization and Cell-Cycle Control.
- 723 Developmental Cell *25*, 572–584. https://doi.org/10.1016/j.devcel.2013.05.007.
- 724 47. Geisterfer, Z.M., Jalihal, A.P., Cole, S.J., and Gladfelter, A.S. (2024). RNA-specific local
- 725 translation is patterned by condensates for multinucleate cell growth. Preprint at Cell
- 726 Biology, https://doi.org/10.1101/2024.12.12.628219
- 727 https://doi.org/10.1101/2024.12.12.628219.
- 728 48. Shahbabian, K., and Chartrand, P. (2012). Control of cytoplasmic mRNA localization. Cell. Mol.
- 729 Life Sci. 69, 535–552. https://doi.org/10.1007/s00018-011-0814-3.
- 730 49. Macdonald, P.M. (2011). mRNA localization: assembly of transport complexes and their
- incorporation into particles. Current Opinion in Genetics & Development 21, 407–413.
- 732 https://doi.org/10.1016/j.gde.2011.04.005.
- 733 50. Li, Q., Zhu, Y., Yu, X., Shao, X., and Wang, Y.-L. (2025). Molecular regulation and functional
- benefits of trophoblast syncytialization in optimizing maternal-fetal nutrient allocation.
- 735 Placenta, S0143400425002085. https://doi.org/10.1016/j.placenta.2025.06.003.
- 736 51. Dill, K.A., Ghosh, K., and Schmit, J.D. (2011). Physical limits of cells and proteomes. Proc. Natl.
- 737 Acad. Sci. U.S.A. 108, 17876–17882. https://doi.org/10.1073/pnas.1114477108.
- 738 52. Allen, N.S., and Allen, R.D. (1978). CYTOPLASMIC STREAMING IN GREEN PLANTS. Annu. Rev.
- 739 Biophys. Bioeng. 7, 497–526. https://doi.org/10.1146/annurev.bb.07.060178.002433.
- 740 53. Goldstein, R.E., and Van De Meent, J.-W. (2015). A physical perspective on cytoplasmic
- 741 streaming. Interface Focus. 5, 20150030. https://doi.org/10.1098/rsfs.2015.0030.
- 742 54. Gotoh, K., and Kuroda, K. (1982). Motive force of cytoplasmic streaming during plasmodial
- 743 mitosis of physarum polycephalum. Cell Motility 2, 173–181.
- 744 https://doi.org/10.1002/cm.970020208.
- 745 55. Guillaud, L., El-Agamy, S.E., Otsuki, M., and Terenzio, M. (2020). Anterograde Axonal
- Transport in Neuronal Homeostasis and Disease. Front. Mol. Neurosci. 13, 556175.
- 747 https://doi.org/10.3389/fnmol.2020.556175.
- 748 56. Kamiya, N. (1981). Physical and Chemical Basis of Cytoplasmic Streaming. Annu. Rev. Plant.
- 749 Physiol. *32*, 205–236. https://doi.org/10.1146/annurev.pp.32.060181.001225.

- 750 57. Yoshiyama, S., Ishigami, M., Nakamura, A., and Kohama, K. (2010). Calcium wave for cytoplasmic streaming of *Physarum polycephalum*. Cell Biology International *34*, 35–40. https://doi.org/10.1042/CBI20090158.
- 58. Levin, L.A., and Gooday, A.J. (1992). Possible Roles for Xenophyophores in Deep-Sea Carbon Cycling. In Deep-Sea Food Chains and the Global Carbon Cycle, G. T. Rowe and V. Pariente, eds. (Springer Netherlands), pp. 93–104. https://doi.org/10.1007/978-94-011-2452-2_6.
- 59. Laureillard, J., Méjanelle, L., and Sibuet, M. (2004). Use of lipids to study the trophic ecology of deep-sea xenophyophores. Mar. Ecol. Prog. Ser. *270*, 129–140. https://doi.org/10.3354/meps270129.
- Jahn, T.L., and Rinaldi, R.A. (1959). PROTOPLASMIC MOVEMENT IN THE FORAMINIFERAN,
 ALLOGROMIA LATICOLLARIS; AND A THEORY OF ITS MECHANISM. The Biological Bulletin 117,
 100–118. https://doi.org/10.2307/1539042.
- 762 61. Travis, J.L., Kenealy, J.F., and Allen, R.D. (1983). Studies on the motility of the foraminifera. II.
 763 The dynamic microtubular cytoskeleton of the reticulopodial network of Allogromia
 764 laticollaris. The Journal of cell biology *97*, 1668–1676. https://doi.org/10.1083/jcb.97.6.1668.
- 62. Burland, T.G., Solnicakrezel, L., Bailey, J., Cunningham, D.B., and Dove, W.F. (1993). Patterns of Inheritance, Development and the Mitotic Cycle in the Protist Physarum polycephalum. In Advances in Microbial Physiology (Elsevier), pp. 1–69. https://doi.org/10.1016/S0065-2911(08)60096-X.
- 769 63. Solnica-Krezel, L., Burland, T.G., and Dove, W.F. (1991). Variable pathways for developmental 770 changes of mitosis and cytokinesis in Physarum polycephalum. The Journal of cell biology 771 113, 591–604. https://doi.org/10.1083/jcb.113.3.591.
- 772 64. Francia, M.E., and Striepen, B. (2014). Cell division in apicomplexan parasites. Nat Rev 773 Microbiol *12*, 125–136. https://doi.org/10.1038/nrmicro3184.
- 774 65. Simonin, A., Palma-Guerrero, J., Fricker, M., and Glass, N.L. (2012). Physiological Significance 775 of Network Organization in Fungi. Eukaryot Cell *11*, 1345–1352. 776 https://doi.org/10.1128/EC.00213-12.
- 777 66. Bonfante, P., and Venice, F. (2020). Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biology Reviews *34*, 100–113. https://doi.org/10.1016/j.fbr.2019.12.003.
- 779 67. Voigt, K., James, T.Y., Kirk, P.M., Santiago, A.L.C.M.D.A., Waldman, B., Griffith, G.W., Fu, M., Radek, R., Strassert, J.F.H., Wurzbacher, C., et al. (2021). Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. Fungal Diversity *109*, 59–98. https://doi.org/10.1007/s13225-021-00480-y.

- 784 68. Kokkoris, V., Stefani, F., Dalpé, Y., Dettman, J., and Corradi, N. (2020). Nuclear Dynamics in 785 the Arbuscular Mycorrhizal Fungi. Trends in Plant Science *25*, 765–778. 786 https://doi.org/10.1016/j.tplants.2020.05.002.
- 787 69. Damuth, J., and Heisler, I.L. (1988). Alternative formulations of multilevel selection. Biol Philos *3*, 407–430. https://doi.org/10.1007/BF00647962.
- 70. Grosberg, R.K., and Strathmann, R.R. (2007). The Evolution of Multicellularity: A Minor Major Transition? Annu. Rev. Ecol. Evol. Syst. 38, 621–654. https://doi.org/10.1146/annurev.ecolsys.36.102403.114735.
- 71. Du, Q., Kawabe, Y., Schilde, C., Chen, Z., and Schaap, P. (2015). The Evolution of Aggregative Multicellularity and Cell–Cell Communication in the Dictyostelia. Journal of Molecular Biology 427, 3722–3733. https://doi.org/10.1016/j.jmb.2015.08.008.
- 795 72. Smith, W.O., and Trimborn, S. (2024). *Phaeocystis*: A Global Enigma. Annu. Rev. Mar. Sci. *16*, 417–441. https://doi.org/10.1146/annurev-marine-022223-025031.
- 73. Estep, K., Nejstgaard, J., Skjodal, H.R., and Rey, F. (1990). Predation by copepods upon natural populations of Phaeocystis pouchetii as a function of the physiological state of the prey.

 Marine Ecology Progress Series *67*, 235–249.
- 74. Queller, D.C., and Strassmann, J.E. (2009). Beyond society: the evolution of organismality. Phil. Trans. R. Soc. B *364*, 3143–3155. https://doi.org/10.1098/rstb.2009.0095.
- 75. Clarke, E. (2010). The Problem of Biological Individuality. Biol Theory *5*, 312–325. https://doi.org/10.1162/BIOT_a_00068.
- 76. Parfrey, L.W., and Lahr, D.J.G. (2013). Multicellularity arose several times in the evolution of eukaryotes (Response to DOI 10.1002/bies.201100187). BioEssays *35*, 339–347. https://doi.org/10.1002/bies.201200143.
- 77. Knoll, A.H. (2011). The Multiple Origins of Complex Multicellularity. Annu. Rev. Earth Planet. Sci. 39, 217–239. https://doi.org/10.1146/annurev.earth.031208.100209.
- 809 78. Bonner, J.T. (1998). The origins of multicellularity. Integr. Biol. *1*, 27–36. https://doi.org/10.1002/(SICI)1520-6602(1998)1:1%253C27::AID-INBI4%253E3.0.CO;2-6.
- 811 79. Sheikh, S., Fu, C.-J., Brown, M.W., and Baldauf, S.L. (2024). The Acrasis kona genome and developmental transcriptomes reveal deep origins of eukaryotic multicellular pathways. Nat Commun *15*, 10197. https://doi.org/10.1038/s41467-024-54029-z.
- 80. Prokina, K.I., Yubuki, N., Galindo, L.J., Torruella, G., Inagaki, Y., Iwamoto, K., López-García, P., and Moreira, D. (2025). A Deeply Branching Lineage in Heterolobosea (Discoba) With Multiflagellated and Multigrooved Life Stages. J Eukaryotic Microbiology *72*, e70037.
- 817 https://doi.org/10.1111/jeu.70037.

- 81. Sagolla, M.S., Dawson, S.C., Mancuso, J.J., and Cande, W.Z. (2006). Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite *Giardia intestinalis*. Journal of Cell Science *119*, 4889–4900. https://doi.org/10.1242/jcs.03276.
- 82. Kies, L. (1989). Ultrastructure of Cyanoptyche gloeocystis f.dispersa (Glaucocystophyceae).
 82. Plant Syst Evol *164*, 65–73. https://doi.org/10.1007/BF00940430.
- 83. Brunet, T., and King, N. (2017). The Origin of Animal Multicellularity and Cell Differentiation.

 Bevelopmental Cell 43, 124–140. https://doi.org/10.1016/j.devcel.2017.09.016.
- 825 84. Skejo, J., Garg, S.G., Gould, S.B., Hendriksen, M., Tria, F.D.K., Bremer, N., Franjević, D., Blackstone, N.W., and Martin, W.F. (2021). Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biol Evol 13, evab096. https://doi.org/10.1093/gbe/evab096.
- 85. Getsios, S., and MacCalman, C.D. (2003). Cadherin-11 modulates the terminal differentiation 830 and fusion of human trophoblastic cells in vitro. Developmental Biology *257*, 41–54. 831 https://doi.org/10.1016/S0012-1606(03)00041-1.
- 86. King, N., Hittinger, C.T., and Carroll, S.B. (2003). Evolution of Key Cell Signaling and Adhesion Protein Families Predates Animal Origins. Science *301*, 361–363. https://doi.org/10.1126/science.1083853.
- 87. Dudin, O., Ondracka, A., Grau-Bové, X., Haraldsen, A.A., Toyoda, A., Suga, H., Bråte, J., and Ruiz-Trillo, I. (2019). A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife *8*, e49801. https://doi.org/10.7554/eLife.49801.
- 838 88. Sebé-Pedrós, A., Irimia, M., Del Campo, J., Parra-Acero, H., Russ, C., Nusbaum, C., Blencowe, 839 B.J., and Ruiz-Trillo, I. (2013). Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife *2*, e01287. https://doi.org/10.7554/eLife.01287.
- 89. De Souza, C.P.C., and Osmani, S.A. (2007). Mitosis, Not Just Open or Closed. Eukaryot Cell *6*, 1521–1527. https://doi.org/10.1128/EC.00178-07.
- 90. Shah, H., Olivetta, M., Bhickta, C., Ronchi, P., Trupinić, M., Tromer, E.C., Tolić, I.M., Schwab, Y., Dudin, O., and Dey, G. (2024). Life-cycle-coupled evolution of mitosis in close relatives of animals. Nature *630*, 116–122. https://doi.org/10.1038/s41586-024-07430-z.
- 91. Sazer, S., Lynch, M., and Needleman, D. (2014). Deciphering the Evolutionary History of Open and Closed Mitosis. Current Biology *24*, R1099–R1103. https://doi.org/10.1016/j.cub.2014.10.011.
- 92. Dey, G., and Baum, B. (2021). Nuclear envelope remodelling during mitosis. Current Opinion in Cell Biology *70*, 67–74. https://doi.org/10.1016/j.ceb.2020.12.004.

- 93. Deatherage, F.E. (1975). Cells, the Fundamental Biological Units. In Food for Life (Springer US), pp. 11–30. https://doi.org/10.1007/978-1-4684-0748-8 3.
- 94. Herron, M.D., Rashidi, A., Shelton, D.E., and Driscoll, W.W. (2014). Cellular differentiation and individuality in the "minor" multicellular taxa.
- 95. Pradeu, T. (2016). The many faces of biological individuality. Biol Philos *31*, 761–773. https://doi.org/10.1007/s10539-016-9553-z.
- 96. Gilbert, S.F., Sapp, J., and Tauber, A.I. (2012). A Symbiotic View of Life: We Have Never Been Individuals. The Quarterly Review of Biology *87*, 325–341. https://doi.org/10.1086/668166.
- 859 97. Marek, S.M., Wu, J., Louise Glass, N., Gilchrist, D.G., and Bostock, R.M. (2003). Nuclear DNA 860 degradation during heterokaryon incompatibility in Neurospora crassa. Fungal Genetics and 861 Biology 40, 126–137. https://doi.org/10.1016/S1087-1845(03)00086-0.
- 98. Glass, N.L., and Kaneko, I. (2003). Fatal Attraction: Nonself Recognition and Heterokaryon Incompatibility in Filamentous Fungi. Eukaryot Cell *2*, 1–8. https://doi.org/10.1128/EC.2.1.1-864 8.2003.
- 865 99. Michod, R.E., and Roze, D. Cooperation and conØict in the evolution of multicellularity.
- 866 100. Roper, M., Simonin, A., Hickey, P.C., Leeder, A., and Glass, N.L. (2013). Nuclear dynamics in a
 867 fungal chimera. Proc. Natl. Acad. Sci. U.S.A. 110, 12875–12880.
 868 https://doi.org/10.1073/pnas.1220842110.
- 101. James, T.Y., Stenlid, J., Olson, Å., and Johannesson, H. (2008). EVOLUTIONARY SIGNIFICANCE
 OF IMBALANCED NUCLEAR RATIOS WITHIN HETEROKARYONS OF THE BASIDIOMYCETE
 FUNGUS HETEROBASIDION PARVIPORUM. Evolution 62, 2279–2296.
 https://doi.org/10.1111/j.1558-5646.2008.00462.x.
- 102. Paoletti, M. (2016). Vegetative incompatibility in fungi: From recognition to cell death, whatever does the trick. Fungal Biology Reviews 30, 152–162. https://doi.org/10.1016/j.fbr.2016.08.002.
- 876 103. Rosenberger, R.F., and Kessel, M. (1967). Synchrony of nuclear replication in individual 877 hyphae of Aspergillus nidulans. Journal of bacteriology *94*, 1464–1469. 878 https://doi.org/10.1128/jb.94.5.1464-1469.1967.
- 104. Clutterbuck, A.J. (1970). Synchronous Nuclear Division and Septation in Aspergillus nidulans.

 Journal of General Microbiology *60*, 133–135. https://doi.org/10.1099/00221287-60-1-133.
- 105. Ali, M.F., Shin, J.M., Fatema, U., Kurihara, D., Berger, F., Yuan, L., and Kawashima, T. (2023).
 Cellular dynamics of coenocytic endosperm development in Arabidopsis thaliana. Nat. Plants
 9, 330–342. https://doi.org/10.1038/s41477-022-01331-7.

- 884 106. Brown, R.C., Lemmon, B.E., Nguyen, H., and Olsen, O.-A. (1999). Development of endosperm 885 in Arabidopsis thaliana. Sexual Plant Reproduction *12*, 32–42.
- https://doi.org/10.1007/s004970050169.
- 887 107. Sharma, V., Ali, M.F., and Kawashima, T. (2024). Insights into dynamic coenocytic endosperm
- development: Unraveling molecular, cellular, and growth complexity. Current Opinion in
- Plant Biology *81*, 102566. https://doi.org/10.1016/j.pbi.2024.102566.
- 108. Daniel, J.W., and Aldrich, H.C. (1982). Cell biology of Physarum and Didymium (Academic
- 891 Press).
- 892 109. Glime, J.M. Chapter 3 Slime Molds.
- 893 110. Nygaard, O.F., Güttes, S., and Rusch, H.P. (1960). Nucleic acid metabolism in a slime mold
- 894 with synchronous mitosis. Biochimica et Biophysica Acta 38, 298–306.
- 895 https://doi.org/10.1016/0006-3002(60)91245-2.
- 896 111. Lynch, J.A., El-Sherif, E., and Brown, S.J. (2012). Comparisons of the embryonic development
- of *Drosophila*, *Nasonia*, and *Tribolium*. WIREs Developmental Biology 1, 16–39.
- 898 https://doi.org/10.1002/wdev.3.
- 899 112. Vergassola, M., Deneke, V.E., and Talia, S.D. (2018). Mitotic waves in the early embryogenesis
- of Drosophila: Bistability traded for speed. Proceedings of the National Academy of Sciences
- 901 of the United States of America 115, E2165-F2174.
- 902 https://doi.org/10.1073/pnas.1714873115.
- 903 113. Menzel, D. (1987). The cytoskeleton of the giant coenocytic green algaCaulerpa visualized by
- immunocytochemistry. Protoplasma 139, 71–76. https://doi.org/10.1007/BF01282277.
- 905 114. Kim, J.H., Jin, P., Duan, R., and Chen, E.H. (2015). Mechanisms of myoblast fusion during
- muscle development. Current Opinion in Genetics & Development 32, 162–170.
- 907 https://doi.org/10.1016/j.gde.2015.03.006.
- 908 115. Li, X., Li, Z.-H., Wang, Y.-X., and Liu, T.-H. (2023). A comprehensive review of human
- trophoblast fusion models: recent developments and challenges. Cell Death Discov. 9, 372.
- 910 https://doi.org/10.1038/s41420-023-01670-0.
- 911 116. Helming, L., and Gordon, S. (2008). The molecular basis of macrophage fusion.
- 912 Immunobiology *212*, 785–793. https://doi.org/10.1016/j.imbio.2007.09.012.
- 913 117. Vignery, A. (2005). Macrophage fusion. The Journal of Experimental Medicine 202, 337–340.
- 914 https://doi.org/10.1084/jem.20051123.
- 915 118. Dikovskaya, D., Cole, J.J., Mason, S.M., Nixon, C., Karim, S.A., McGarry, L., Clark, W., Hewitt,
- 916 R.N., Sammons, M.A., Zhu, J., et al. (2015). Mitotic Stress Is an Integral Part of the Oncogene-

- 917 Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest. Cell 918 Reports *12*, 1483–1496. https://doi.org/10.1016/j.celrep.2015.07.055.
- 919 119. Pampalona, J., Frías, C., Genescà, A., and Tusell, L. (2012). Progressive Telomere Dysfunction 920 Causes Cytokinesis Failure and Leads to the Accumulation of Polyploid Cells. PLoS Genet *8*, 921 e1002679. https://doi.org/10.1371/journal.pgen.1002679.
- 922 120. Davoli, T., and De Lange, T. (2011). The Causes and Consequences of Polyploidy in Normal 923 Development and Cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610. 924 https://doi.org/10.1146/annurev-cellbio-092910-154234.
- 925 121. Storchova, Z., and Pellman, D. (2004). From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol *5*, 45–54. https://doi.org/10.1038/nrm1276.
- 927 122. Mittal, K., Donthamsetty, S., Kaur, R., Yang, C., Gupta, M.V., Reid, M.D., Choi, D.H., Rida, P.C.G., and Aneja, R. (2017). Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br J Cancer 116, 1186–1194. https://doi.org/10.1038/bjc.2017.78.
- 123. Liu, P., Wang, L., and Yu, H. (2024). Polyploid giant cancer cells: origin, possible pathways of formation, characteristics, and mechanisms of regulation. Front. Cell Dev. Biol. *12*, 1410637.
 https://doi.org/10.3389/fcell.2024.1410637.
- 934 124. Herschke, F., Plumet, S., Duhen, T., Azocar, O., Druelle, J., Laine, D., Wild, T.F., Rabourdin-935 Combe, C., Gerlier, D., and Valentin, H. (2007). Cell-Cell Fusion Induced by Measles Virus 936 Amplifies the Type I Interferon Response. J Virol *81*, 12859–12871. 937 https://doi.org/10.1128/JVI.00078-07.
- 938 125. Buchrieser, J., Dufloo, J., Hubert, M., Monel, B., Planas, D., Rajah, M.M., Planchais, C., Porrot, 939 F., Guivel-Benhassine, F., Van Der Werf, S., et al. (2020). Syncytia formation by SARS-CoV-2-940 infected cells. The EMBO Journal *39*, e106267. https://doi.org/10.15252/embj.2020106267.
- 126. Ghosh, S., Paweletz, N., and Ghosh, I. (1978). Mitotic asynchrony of multinucleate cells in tissue culture. Chromosoma *65*, 293–300. https://doi.org/10.1007/BF00286409.
- 943 127. Arnot, D.E., Ronander, E., and Bengtsson, D.C. (2011). The progression of the intra-944 erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in 945 asynchronous mitotic division during schizogony. International Journal for Parasitology *41*, 946 71–80. https://doi.org/10.1016/j.ijpara.2010.07.012.
- 947 128. Keller, H.W. Chapter 1 The Myxomycetes: Introduction, Basic Biology, Life Cycles, Genetics, and Reproduction.
- 949 129. Karpov, S.A., Mamkaeva, M.A., Benzerara, K., Moreira, D., and López-García, P. (2014). 950 Molecular Phylogeny and Ultrastructure of Aphelidium aff. melosirae (Aphelida, 951 Opisthosporidia). Protist *165*, 512–526. https://doi.org/10.1016/j.protis.2014.05.003.

- 952 130. Seto, K., Nakada, T., Tanabe, Y., Yoshida, M., and Kagami, M. (2022). *Aphelidium parallelum*,
- sp. nov., a new aphelid parasitic on selenastracean green algae. Mycologia 114, 544–555.
- 954 https://doi.org/10.1080/00275514.2022.2039487.
- 955 131. Koonce, M.P., Euteneuer, U., McDonald, K.L., Menzel, D., and Schliwa, M. (1986). Cytoskeletal
- architecture and motility in a giant freshwater amoeba, *Reticulomyxa*. Cell Motil.
- 957 Cytoskeleton *6*, 521–533. https://doi.org/10.1002/cm.970060511.
- 958 132. Hirakawa, Y. (2017). Chlorarachniophytes With Complex Secondary Plastids of Green Algal
- 959 Origin. In Advances in Botanical Research (Elsevier), pp. 359–393.
- 960 https://doi.org/10.1016/bs.abr.2017.06.006.
- 961 133. Delivopoulos, S.G. (2003). Ultrastructure of post-fertilization development in the red alga
- 962 Scinaia articulata (Galaxauraceae, Nemaliales, Rhodophyta). Biology of the Cell 95, 27–38.
- 963 https://doi.org/10.1016/S0248-4900(03)00003-0.
- 964 134. Oertel, B. Formation of Multinucleate Zoospores in Phytophthora infestans (Mont.) De Bary
- 965 (Oomycetes, PytMaceae).
- 966 135. Thomas, F., Cosse, A., Le Panse, S., Kloareg, B., Potin, P., and Leblanc, C. (2014). Kelps feature
- 967 systemic defense responses: insights into the evolution of innate immunity in multicellular
- 968 eukaryotes. New Phytologist *204*, 567–576. https://doi.org/10.1111/nph.12925.
- 969 136. O'Kelly, C.J. (2002). Glossomastix chrysoplasta n. gen., n. sp. (Pinguiophyceae), a new
- occoidal, colony-forming golden alga from southern Australia. Phycological Res 50, 67–74.
- 971 https://doi.org/10.1111/j.1440-1835.2002.tb00137.x.
- 972 137. Clamp, J.C., and Williams, D. (2006). A Molecular Phylogenetic Investigation of *Zoothamnium*
- 973 (Ciliophora, Peritrichia, Sessilida)¹. J Eukaryotic Microbiology 53, 494–498.
- 974 https://doi.org/10.1111/j.1550-7408.2006.00132.x.
- 975 138. Timmons, C., Le, K., Rappaport, H.B., Sterner, E.G., Maurer-Alcalá, X.X., Goldstein, S.T., and
- 976 Katz, L.A. (2024). Foraminifera as a model of eukaryotic genome dynamism. mBio 15, e03379-
- 977 23. https://doi.org/10.1128/mbio.03379-23.
- 978 139. Brown, M.W., Kolisko, M., Silberman, J.D., and Roger, A.J. (2012). Aggregative Multicellularity
- 979 Evolved Independently in the Eukaryotic Supergroup Rhizaria. Current Biology 22, 1123-
- 980 1127. https://doi.org/10.1016/j.cub.2012.04.021.
- 981 140. Balasubramanian, R.N., and McCourt, R.M. (2021). Volvox barberi (Chlorophyceae) actively
- forms two-dimensional flocks in culture. Journal of Phycology 57, 967–974.
- 983 https://doi.org/10.1111/jpy.13139.
- 984 141. Hong, C.Y., Yun, J.H., Kwak, M., Moon, J.S., Kim, G.H., Hong, C.Y., Yun, J.H., Kwak, M., Moon,
- J.S., and Kim, G.H. (2023). Synchronous nuclear division and the role of the cytoskeleton in

- the multinucleate red alga <italic>Griffithsia monilis</italic>. Algae *38*, 183–190. https://doi.org/10.4490/algae.2023.38.9.6.
- 988 142. Brawley, S.H., Blouin, N.A., Ficko-Blean, E., Wheeler, G.L., Lohr, M., Goodson, H.V., Jenkins, J.W., Blaby-Haas, C.E., Helliwell, K.E., Chan, C.X., et al. (2017). Insights into the red algae and eukaryotic evolution from the genome of *Porphyra umbilicalis* (Bangiophyceae, Rhodophyta). Proc. Natl. Acad. Sci. U.S.A. *114*. https://doi.org/10.1073/pnas.1703088114.
- 992 143. Cao, M., Bi, G., Mao, Y., Li, G., and Kong, F. (2018). The first plastid genome of a filamentous 993 taxon 'Bangia' sp. OUCPT-01 in the Bangiales. Sci Rep *8*, 10688. 994 https://doi.org/10.1038/s41598-018-29083-5.
- 144. Toret, C., Picco, A., Boiero-Sanders, M., Michelot, A., and Kaksonen, M. (2022). The cellular slime mold Fonticula alba forms a dynamic, multicellular collective while feeding on bacteria.
 Current Biology 32, 1961-1973.e4. https://doi.org/10.1016/j.cub.2022.03.018.