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Abstract 9 
Multinucleate cells, single cells containing multiple nuclei in a shared cytoplasm, are found across 10 
the eukaryotic tree of life. Having evolved independently in fungi, plants, protists, and animals, 11 
they thrive in environments ranging from nutrient-poor deep-sea sediments to dynamic soil 12 
microhabitats and host tissues. Multinucleate organization enables spatial specialization without 13 
internal partitions and rapid scaling of metabolic or transcriptional capacity, allowing organisms to 14 
forage across patchy resources, withstand physical stress, and respond quickly to environmental 15 
fluctuations. Yet multinucleation also brings challenges, including diffusion limits, nuclear 16 
coordination, and the potential for genetic conflict. Its repeated emergence, often in lineages that 17 
have also evolved multicellularity, points to shared cellular, structural, and regulatory 18 
prerequisites shaped by ecological pressures. Here, we integrate perspectives from cell biology, 19 
ecology, and evolution to demonstrate that multinucleation is not a rare anomaly but a 20 
fundamental organizational strategy. Recognizing these systems as adaptive responses to 21 
environmental constraints provides a framework for uncovering general principles of cellular 22 
organization, evolution of life cycle strategies, and the diversification of complex life. 23 
 24 
Introduction 25 
Multinucleate cells, those containing multiple nuclei within a shared cytoplasm, are a widespread 26 
yet underappreciated feature of eukaryotic life. They occur across diverse lineages, including 27 
fungi1,2, protists3–6, plants and algae7–11, and animals12–14 (Figure 1; Supplementary Table 1). Their 28 
repeated, independent origins across the tree of life point to strong selection for cellular 29 
architectures that achieve large-scale integration without constructing and maintaining 30 
intercellular boundaries. The ecological and functional diversity of multinucleate cells, from 31 
terrestrial to marine, parasitic to free-living, underscores their remarkable adaptive capacity. 32 
 33 
Despite their breadth, multinucleation is often treated as an exception rather than a robust 34 
evolutionary strategy that addresses complex biological demands. Here, we recast multinucleation 35 
as a recurrent solution to the challenges of scaling and coordination in diverse living systems. 36 
Across lineages in which multinucleation appears, there seems to be a set of core features that 37 
confer several functional advantages that help to reconcile the challenges of being large, spatially 38 
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heterogeneous, or metabolically active. These features include: (1) enhanced biosynthetic 39 
capacity, allowing rapid scaling of transcription and translation; (2) localized control, where 40 
spatially distinct nuclei respond to local conditions; (3) capacity for long-range intracellular 41 
transport, partially offsetting the diffusion constraints inherent to large cells; (4) life-cycle 42 
flexibility, enabling shifts between unicellular, syncytial, and multicellular stages; and (5) economic 43 
growth, permitting size increase without the energetic costs of constructing and maintaining cell–44 
cell junctions. 45 
 46 
Multinucleation is not the only solution to the challenge of expanding biosynthetic capacity 47 
beyond the limits of mononucleate, haploid organization. Polyploidy is an alternative solution. 48 
While multinucleation distributes genomes among multiple nuclei within a shared cytoplasm, 49 
polyploidy concentrates extra genome copies within a single nucleus15–17. Interestingly, these 50 
strategies are not mutually exclusive, as polyploid nuclei can be found in multinucleate cells18,19. 51 
Despite their shared capacity for genomic amplification, multinucleation and polyploidy differ in 52 
organization and control. Polyploidy centralizes regulation within one enlarged nucleus, favoring 53 
coordination but limiting spatial specialization, whereas multinucleation enables local 54 
transcriptional activity and responsiveness to spatial cues16,20–23. In that regard, multicellularity 55 
and aggregative multicellularity might be conceptually closer to multinucleation, as all expand 56 
function by combining an increased number of nuclei with spatial control. Yet they do so through 57 
different structural solutions: multicellularity partitions nuclei into discrete cells, allowing division 58 
of labor and compartmentalized regulation, whereas multinucleation maintains all nuclei within a 59 
shared cytoplasm, enabling rapid coordination and resource sharing across large cellular domains. 60 
Although these architectures solve similar challenges, each offers distinct advantages and 61 
disadvantages. 62 
 63 
This perspective aims to explore the ecological and evolutionary roles of multinucleation, highlight 64 
the features that enable persistence of multinucleation across diverse niches, and examine the 65 
benefits and trade-offs of multinucleate versus multicellular strategies. By considering the cellular 66 
routes by which multinucleation forms and the underlying molecular machinery that enables it 67 
(Box 1) and examining the environments in which multinucleation is advantageous (Box 2), we can 68 
identify general principles that unify multinucleate cells across the tree of life, ultimately 69 
positioning multinucleation as a distinct form of cellular complexity. 70 
 71 
Unifying principles of multinucleation and their evolutionary significance 72 
Multinucleation has arisen repeatedly across eukaryotes because it provides a set of powerful 73 
functional advantages that allow organisms to scale metabolism, regulate spatially distributed 74 
processes, coordinate activity across large cytoplasmic domains, and flexibly adjust their 75 
architectures in response to environmental and developmental demands. Although the organisms 76 



that use these strategies inhabit strikingly different ecological niches, each feature of 77 
multinucleation supports a shared underlying principle: distributing genomic, metabolic, or 78 
regulatory capacity across space enables cells to achieve levels of dynamic coordination and 79 
performance that would be difficult for uninucleate cells or conventional multicellular 80 
organization. 81 
 82 
The cellular machinery enabling multinucleation is deeply conserved, drawing on core eukaryotic 83 
capacities involving cytoskeletal remodeling, vesicle trafficking, membrane fusion, and 84 
transcriptional regulation 24–26. The recurrence of these mechanisms across independent lineages 85 
underscores the convergent nature of multinucleation as a versatile and efficient solution to the 86 
challenges of scale, coordination, and adaptation. Below, we articulate how each functional 87 
principle aligns with specific ecological or developmental contexts.  88 
 89 
1. Enhanced biosynthetic capacity and transcriptional scaling 90 
Changes in genome copy number can directly influence RNA and protein abundance 27,28, linking 91 
transcriptional output to cellular architecture and biosynthetic capacity. By increasing nuclear 92 
number, multinucleate cells amplify genomic and transcriptional output without the cost of 93 
constructing additional membranes or intercellular junctions. Additionally, the distribution of 94 
multiple nuclei throughout the cytoplasm can permit localized gene expression, allowing different 95 
regions of the same cell to have distinct biosynthetic profiles. This spatial organization 96 
distinguishes multinucleation from polyploidy, in which transcriptional amplification remains 97 
confined to a single region. 98 
 99 
The advantages of biosynthetic scaling are realized in strikingly different ecological and 100 
developmental contexts. In terrestrial fungi and plasmodial slime molds, dispersed nuclei support 101 
rapid expansion across heterogeneous substrates, fuel the metabolism required for extensive 102 
exploratory networks, and allow organisms to exploit resource hotspots1,29–34. In animals, 103 
myonuclei positioned along the length of a muscle fiber enable localized transcriptional responses 104 
and maintain the high protein turnover required for contractility and regenerative capacity 23,35,36. 105 
For siphonous algae like Caulerpa and Bryopsis, which inhabit nutrient-poor and mechanically 106 
demanding marine environments, multinucleation provides the biosynthetic capacity necessary to 107 
support their remarkable macroscopic growth11,37–40. Despite their ecological differences, these 108 
systems illustrate the same core principle: scaling biosynthesis through nuclear multiplication 109 
allows organisms to match metabolic output to environmental opportunity, whether for growth 110 
or structural maintenance. 111 
 112 
2. Distributed spatial regulation within a shared cytoplasm 113 



A feature of many large multinucleate cells is their ability to achieve spatial organization in the 114 
absence of physical partitions. Instead, nuclei can act as distributed regulatory hubs, each capable 115 
of adopting distinct transcriptional states that respond to local cues22,23,41–44. Additionally, 116 
microtubule-based forces help maintain nuclear spacing and organization, coordinating cell cycle 117 
progression and spatial independence, as reported in both Drosophila embryos and Ashbya 118 
gossypii fungi 24,45.  119 
 120 
Spatial regulation extends beyond transcriptional control. RNA-binding proteins and cytoskeletal 121 
transport systems ensure mRNAs are translated where they are needed, while phase-separated 122 
RNA–protein condensates fine-tune translation in space and time. In Ashbya gossypii, Whi3-123 
dependent condensates position mRNAs near growth zones, linking nuclear division to polarized 124 
growth46,47. Localized translation allows selective protein synthesis to defined cytoplasmic 125 
regions48, a strategy conserved from fungi to mammals and essential for cell-cycle control and 126 
polarity46,49. 127 
 128 
Post-translational modifications further contribute to spatial control by modulating protein 129 
activity in response to local signals. Phosphorylation, ubiquitination, glycosylation, and 130 
SUMOylation rapidly alter protein stability or function, contributing to localized responses. In 131 
multinucleate trophoblast syncytia, for instance, growth factors such as IGF and LIF integrate 132 
MAPK/ERK and JAK/STAT signaling to coordinate proliferation and differentiation50. 133 
 134 
3. Active transport and circulation in large continuous cells 135 
Growing beyond the scale at which diffusion alone can sustain metabolism requires active 136 
transport systems that redistribute metabolites, organelles, and signals over large distances51. 137 
Multinucleate cells meet this challenge by coupling cytoskeletal networks to cytoplasmic 138 
streaming, enabling rapid long-range movement within a continuous cytoplasm52–54. Like 139 
multinucleate cells, neurons employ motor-driven transport along cytoskeletal tracks; however, 140 
microtubule-based kinesin and dynein motors are used for highly directional cargo delivery rather 141 
than actin-based bulk flow55.  142 
 143 
The benefits of long-range transport in multinucleate cells are evident in siphonous algae, such as 144 
Caulerpa, Bryopsis, and Halimeda, where actomyosin-driven streaming moves resources across 145 
macroscopic thalli 10,11,38,39,53; in Physarum plasmodia, where rhythmic contractions coordinate 146 
signaling and nutrient flow over centimeter to meter scales54,56,57; and in xenophyophores and 147 
other deep-sea foraminifera, where active transport maintains homeostasis under nutrient-poor, 148 
low-temperature, and high-pressure conditions 4,58–61. Such active circulation systems enhance 149 
metabolic efficiency and extend cellular function beyond the limits of passive diffusion. 150 
 151 



4. Architectural flexibility across life-cycle transitions 152 
Many organisms in multinucleate lineages alternate between uninucleate and multinucleate 153 
stages, giving them the ability to reorganize their growth and reproductive strategies in response 154 
to environmental conditions. This flexibility buffers against environmental fluctuations such as 155 
nutrient scarcity, desiccation, or host limitation. Physarum transitions between uninucleate 156 
amoebae and multinucleate plasmodia depending on nutrient availability62,63; parasites such as 157 
Plasmodium spp. generate multinucleate schizonts to maximize progeny within host cells before 158 
generating invasive uninucleate stages44,64; and ichthyosporeans, such as Sphaeroforma arctica, 159 
undergo coenocytic growth (see also Box 1) prior to cellularization and dispersal5. Fungi likewise 160 
alternate between multinucleate hyphae and uninucleate spores during stress or reproductive 161 
transitions 32,65. In each case, this capacity to alternate between architectures allows organisms to 162 
balance resilience, reproduction, and resource use across fluctuating environments. 163 
 164 
5. Energetic considerations of cytoplasmic continuity 165 
Multinucleation may offer an energetically efficient route to building and maintaining large or 166 
spatially complex cellular architectures. By expanding a shared cytoplasm rather than dividing it 167 
into multiple smaller cells, multinucleate systems bypass some of the structural and metabolic 168 
costs associated with forming membranes, junctions, and extensive intercellular signaling 169 
machinery. While the energetic consequences of this organization are not fully resolved across all 170 
lineages, several biological systems illustrate how reduced compartmentalization can coincide 171 
with rapid growth, structural continuity, or efficient resource allocation. 172 
 173 
In aseptate fungal lineages such as Mucoromycota and Glomeromycota, extensive multinucleate 174 
networks traverse heterogeneous substrates and fluctuating nutrient microhabitats. Many 175 
Glomeromycota form arbuscular mycorrhizal symbioses, exchanging nutrients with over 80% of 176 
terrestrial plants, where multinucleation facilitates nutrient exchange with hosts and 177 
redistribution within the fungal network 29,30,66–68. In siphonous algae, macroscopic thalli are 178 
formed from a single multinucleate cell. These lineages sustain large-scale morphologies, and their 179 
continuous cytoplasm supports rapid wound healing and flexible resource transport, features that 180 
may reduce the energetic burden associated with constructing multicellular tissues37,38,40. Deep-181 
sea xenophyophores, which achieve extraordinary cell sizes in extreme conditions, also exhibit 182 
coenocytic organization; the distributed nuclei support localized metabolic control, which is 183 
thought to be an energy-efficient strategy that is ideal for survival in such environments 4,58,59.  184 
 185 
Multinucleation and multicellularity as alternative scaling strategies 186 
Multinucleation and multicellularity represent two distinct yet functionally overlapping solutions 187 
to the problem of biological scale. Multinucleate cells internalize the collective, housing many 188 
nuclei within a continuous cytoplasm, while multicellular organisms externalize it, distributing 189 



nuclei across discrete but coordinated cells. In many lineages, they coexist or alternate across life 190 
cycles as both achieve division of labor, metabolic efficiency, and coordinated behavior, albeit to 191 
different extents17,69,70. 192 
 193 
Multinucleate architectures 194 
Multinucleate organization achieves multicellular-like integration without constructing 195 
membranes between nuclei or relying exclusively on intercellular signaling. These cells can 196 
coordinate activity across large spatial domains and redistribute resources rapidly. Continuous 197 
cytoplasm also allows signals, organelles, and metabolites to move freely, supporting cohesive 198 
behavior across regions that would otherwise require complex intercellular communication and 199 
intercellular transport structures. However, this architecture is not without costs. As cytoplasmic 200 
volume increases, diffusion becomes limiting, placing greater demands on active transport 201 
systems. Maintaining order across a large, continuous cell requires precise regulation of nuclear 202 
activity, cytoskeletal organization, and spatial patterning. Local disturbances, such as infection, can 203 
propagate more readily through a shared cytoplasm than in multicellular tissues. Despite these 204 
trade-offs, there are specific ecological niches where multinucleation excels, including 205 
heterogeneous substrates that require long-range foraging, mechanically strenuous 206 
environments, or intracellular niches for immune evasion. In such contexts, the ability to integrate 207 
many nuclei within one continuous cytoplasm offers a robust and adaptable solution to challenges 208 
that might be difficult for either uninucleate cells or fully partitioned multicellular tissues to meet. 209 
 210 
Colonial and aggregative architectures 211 
Colonial and aggregative forms, by contrast, preserve individuality while achieving collective 212 
behavior. Independent cells interact through adhesion and chemical signaling, forming transient 213 
assemblies that can readily form or dissipate in response to environmental cues. In 214 
choanoflagellates, bacterial lipids induce clonal rosette formation; in Dictyostelium, starvation 215 
triggers chemotaxis-driven aggregation reinforced by kin recognition and policing71. Such 216 
collectives can reduce predation, as seen in Phaeocystis mucilaginous colonies, while enhancing 217 
resource capture72,73. These systems are flexible and facilitate cooperation without permanent 218 
commitment74. Their limitations lie in slower and less precise coordination, mechanical fragility, 219 
and vulnerability to cheaters, yet they thrive in fluctuating or resource-limited environments 220 
where reversible collectives offer adaptive advantages. 221 
 222 
Multicellular architectures 223 
Multicellular architectures, meanwhile, allow cooperation through stable connections and 224 
differentiation, producing tissues composed of specialized cell types integrated by signaling 225 
networks. This strategy supports deep functional specialization, robust homeostasis, and the 226 
capacity for complex, scalable body plans75–78. However, these benefits come at a high energetic 227 



cost: maintaining intercellular communication and tissue integrity may slow reproduction, 228 
increase energy expenditure to construct such tissues, and reduce reversibility once cells are 229 
terminally differentiated. Consequently, multicellularity dominates in stable, structured habitats 230 
where the benefits of long-term specialization outweigh the flexibility lost through commitment. 231 
 232 
Evolutionary convergence in organizational strategies 233 
Together, these architectures illustrate that evolution repeatedly converges on a set of solutions 234 
to the same fundamental challenges, e.g., scaling, coordination, and conflict mediation, each 235 
balancing autonomy and integration in distinct ways. Multinucleation likely achieves speed and 236 
flexibility by connecting processes in a unified cytoplasm; colonial systems favor adaptability 237 
through loose cooperation; and multicellularity establishes stability through division of labor. 238 
These possibilities remain hypotheses, and comparative work will be essential to test how these 239 
architectures truly differ in function and constraint. Nonetheless, the recurrence and coexistence 240 
of these strategies across lineages reveal a shared evolutionary logic: the drive to extend the reach 241 
of cooperation without forgoing control (Figure 2). 242 
 243 
Phylogenetic distribution of multinucleation and multicellularity 244 
It is striking that multinucleation is found almost exclusively in eukaryotic lineages that also 245 
evolved some form of multicellularity, either true multicellularity or aggregative behaviors (Figure 246 
1; Supplementary Table 2). This co-occurrence suggests that the underlying cellular toolkits 247 
required for coordinating multiple nuclei may overlap with those needed for coordinating multiple 248 
cells, potentially predisposing certain lineages to both architectures69,76,77. Even groups dominated 249 
by unicellular species, such as the Excavata, show this dual potential: Acrasis kona exhibits an 250 
aggregative life stage capable of collective behavior, while other excavates, Multisulcus 251 
malaysiensis, can produce multinucleate cells 79,80. 252 
 253 
There are a few notable exceptions, however. In Metamonada, which includes diplomonads such 254 
as Giardia duodenalis, multinucleation occurs despite an apparent lack of multicellular or 255 
aggregative forms; the characteristic binucleate state of diplomonads represents a minimal yet 256 
genuine multinucleate architecture81. This deviation from the broader pattern raises interesting 257 
questions about why multinucleation can evolve in the absence of multicellular capacity in this 258 
lineage. Additionally, it appears that there are only two lineages, Haptophyta and Glaucophyta, 259 
that form colonial structures but lack known multinucleate cells. The haptophyte Phaeocystis 72,73 260 
and the glaucophyte alga Cyanoptyche gloeocystis82 both form colonies. Together, these 261 
exceptions point to important gaps in our understanding and highlight avenues of exploration to 262 
test which cellular features enable or constrain these architectures. 263 
 264 
Unresolved relationships between multinucleation and multicellularity 265 



Whether multinucleation precedes, parallels, or follows multicellularity remains to be resolved 266 
17,83,84. Both enable coordination and division of labor, yet through contrasting architectures, one 267 
continuous, the other compartmentalized. Multinucleation may have served as a functional 268 
precursor to multicellularity, allowing spatial patterning to emerge within a shared cytoplasm 269 
before the emergence of intercellular junctions. Alternatively, the molecular toolkits for 270 
multicellular coordination may facilitate the emergence of multinucleation as a derived trait. 271 
Understanding this relationship offers insight into one of life’s major evolutionary transitions.  272 
 273 
Where multinucleate states arise through fusion events, their relationship to multicellularity is 274 
potentially derived rather than ancestral. Formation of syncytia (see also Box 1), such as 275 
trophoblasts and skeletal muscle fibers, depends on adhesion proteins like cadherins85, which 276 
themselves trace back to the earliest holozoans. Choanoflagellates already encode cadherins, C-277 
type lectins, and tyrosine kinases86, which could suggest that the molecular toolkits for cell-cell 278 
adhesion and communication predate animals and were later co-opted for syncytial fusion. From 279 
this perspective, syncytial multinucleation represents a reconfiguration of multicellular 280 
organization within a continuous cytoplasm. 281 
 282 
By contrast, coenocytic multinucleation, arising from nuclear division without cytokinesis, may 283 
offer a more direct route to multicellularity, bypassing adhesion-based mechanisms, but utilizing 284 
other shared mechanisms that rely upon the actomyosin network, for example. Notably, 285 
ichthyosporeans, close unicellular relatives of animals, display coenocytic growth phases in which 286 
nuclei divide synchronously within a shared cytoplasm before cellularization5,87,88. In this regard, 287 
multicellularity may represent a reconfiguration of coenocytic multinucleation, in which a 288 
continuous cytoplasm containing multiple nuclei became progressively partitioned into discrete, 289 
interacting cells. 290 
 291 
It remains possible that multinucleation and multicellularity arose, not as successive stages of 292 
complexity, but as parallel strategies that independently emerged along routes to the same 293 
problem: how to organize genomes and their outputs into a coherent whole. These observations 294 
invite further comparative studies into the molecular and physical bases of large-scale 295 
coordination across eukaryotes. 296 
 297 
Mitotic mechanisms and the evolution of cellular architectures 298 
If multinucleation and multicellularity represent parallel routes to large-scale coordination, the 299 
diversity of mitotic mechanisms offers a window into how these architectures evolved. Across 300 
eukaryotes, mitosis tends to align with cellular organization, where multinucleate lineages 301 
predominantly exhibit closed mitosis, in which the nuclear envelope (NE) remains intact, and 302 
uninucleate lineages favor open mitosis, involving NE breakdown89–92. Closed mitosis allows 303 



multiple spindles to operate independently within a shared cytoplasm, preserving local control 304 
amid cytoplasmic continuity. In contrast, open mitosis facilitates stronger coupling between 305 
nuclear and cytoplasmic processes, an arrangement well suited to uninucleate cells. 306 
 307 
Intriguingly, some lineages retain the capacity for both. Physarum, for instance, performs open 308 
mitosis in its uninucleate amoebal form but closed mitosis in its multinucleate plasmodium 62,63. 309 
This dual capacity within a single organism highlights how mitosis can evolve contextually, 310 
depending on life-cycle stage and cellular organization. The ability to accommodate both open and 311 
closed mitosis may have facilitated evolutionary transitions between uninucleate, multinucleate, 312 
and multicellular states, linking the mechanisms of division to the broader challenge of organizing 313 
genomes or cells in space and time. 314 
 315 
Challenging the notion of individuality 316 
Multinucleate cells challenge the classical view of the uninucleate cell as the fundamental unit of 317 
life, revealing that biological individuality can emerge at multiple organizational levels. Selection 318 
may act on individual nuclei, genetically identical or distinct, on specific cytoplasmic domains, or 319 
on the organism as a whole. This multilevel perspective parallels discussions in evolutionary 320 
biology about individuality in colonial organisms, holobionts, and symbiotic systems 17,75,78,93–96. 321 
 322 
When genetically distinct nuclei coexist in a shared cytoplasm, as in fungal heterokaryons, 323 
cooperation and conflict become central concerns. Such chimeric states can persist for long 324 
periods, raising questions about how selection operates within a shared cytoplasm and how 325 
policing mechanisms suppress selfish nuclear lineages that might otherwise exploit communal 326 
resources. Various control strategies have been reported to suppress such conflicts, including 327 
selective nuclear degradation, in which incompatible nuclei are targeted for programmed 328 
destruction97; compartmentalization through septal plugging, which isolates heterokaryotic cells 329 
and prevents the spread of incompatible nuclei98; and nucleophagy under starvation, whereby 330 
specific nuclei are degraded to redistribute nutrients and ensure colony survival68.  Together, these 331 
mechanisms restrict access to shared cytoplasmic goods and maintain cooperative function within 332 
multinucleate cells99–102. 333 
 334 
Not all nuclear heterogeneity arises from genetic differences. Nuclei in multinucleate cells can 335 
divide asynchronously, occupy distinct transcriptional states, and respond differently to local 336 
signals despite sharing cytoplasm1,32,41,44. This nuclear autonomy enables regional specialization, 337 
localized mRNA gradients, spatially restricted translation, and the formation of subcellular zones 338 
with distinct physiological functions. Such internal patterning demonstrates that discrete cellular 339 
partitions are not necessary for spatial complexity. 340 
 341 



Conclusion 342 
Multinucleate cells are more than biological anomalies; they are recurrent, versatile solutions to 343 
fundamental problems of scale, coordination, and adaptability. Spanning the tree of life, from 344 
deep-sea sediments to developing embryos and intracellular parasites, they compel us to 345 
reconsider multinucleation as a robust strategy for growth, resilience, and survival. By enabling 346 
distributed control, spatial compartmentalization without partitions, and rapid scaling of 347 
transcriptional capacity, multinucleation redefines where the line between a single cell and a 348 
collective truly lies. 349 
 350 
This makes multinucleate systems uniquely powerful for exploring cooperation and conflict at the 351 
subcellular level, testing theories of individuality and evolution, and uncovering organizational 352 
principles that illuminate eukaryotic origins to modern biotechnological design. Emerging tools 353 
now make it possible to interrogate these questions with unprecedented precision: live imaging 354 
and spatial transcriptomics reveal nuclear dynamics in real time, single-nucleus sequencing and 355 
multi-omics profiling resolve heterogeneity within a shared cytoplasm, and quantitative modeling 356 
and synthetic reconstruction can experimentally test how coordination emerges among many 357 
genomes. 358 
 359 
Together, these advances promise to transform our understanding of multinucleate life, not 360 
merely as a cellular curiosity, but as a window into the general principles of biological organization. 361 
As we begin to investigate and understand these systems in molecular detail, we are invited to 362 
rethink not only how cells function, but what it means to be a cell in the first place. 363 
 364 
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BOX 1. Mechanisms of multinucleation across eukaryotes 379 
 380 
Multinucleation predominantly arises via two mechanisms: (1) nuclear division without cytokinesis 381 
and (2) cell–cell fusion, with additional mechanisms occurring under stress or disease, such as 382 
failed mitotic exit. Although these processes operate in distinct developmental, ecological, or 383 
pathological contexts, they rely on modifications of conserved cellular machinery, including actin 384 
and microtubule networks, membrane remodeling complexes, and cell cycle regulators, adapted 385 
to the demands of each lineage24–26. 386 
 387 
Nuclear division without cytokinesis (coenocytic growth) 388 
 389 
Definition: 390 
Karyokinesis proceeds while cytokinesis is delayed or absent, producing many nuclei within a 391 
continuous cytoplasm. 392 
 393 
Key features: 394 
• Rapid amplification of nuclear number 395 
• Expansion of biosynthetic capacity 396 
• Maintenance of a physically continuous intracellular space 397 
 398 
Representative examples: 399 
• Filamentous fungi (e.g., Aspergillus, Fusarium): coenocytic hyphae spanning 400 

heterogeneous substrates32,103,104. 401 
• Plant endosperm (e.g., Arabidopsis): early coenocytic stage supports nutrient provisioning 402 

7,105–107. 403 
• Plasmodial slime molds (e.g., Physarum, Fuligo): centimeter- to meter-scale multinucleate 404 

plasmodia62,108–110. 405 
• Early insect embryos (Drosophila, Tribolium, Nasonia): rapid, synchronous nuclear divisions 406 

before cellularization111,112. 407 
• Siphonous marine algae (Caulerpa, Bryopsis, Halimeda): macroscopic single cells 408 

dependent on long-range cytoplasmic transport 11,37,113. 409 
 410 
Cell–cell fusion (syncytium formation) 411 
 412 
Definition: 413 
Individual uninucleate cells fuse, merging into a shared cytoplasm with multiple nuclei. 414 
 415 
Key features: 416 



• Rapid increase in cytoplasmic volume 417 
• Combines cells without nuclear proliferation 418 
• Requires fusogens, adhesion proteins, and actomyosin remodeling 419 
 420 
Representative examples: 421 
• Skeletal muscle: myoblast fusion produces elongated, multinucleated myofibers with high 422 

contractile output13,114. 423 
• Placenta: trophoblast fusion generates the syncytiotrophoblast, a specialized 424 

multinucleate barrier for maternal–fetal exchange50,115. 425 
• Immune system & tissue repair: macrophage fusion produces osteoclasts (bone 426 

resorption) and multinucleated giant cells during chronic inflammation116,117. 427 
 428 
Failure of mitotic exit or cytokinesis (pathological multinucleation) 429 
 430 
Definition: 431 
Errors in cell-cycle regulation (e.g., spindle defects, telomere dysfunction, or cytokinetic failure) 432 
produce multinucleated cells. The same machinery enabling functional multinucleation can also 433 
generate pathological states when dysregulated. 434 
 435 
Key features: 436 
• Typically associated with disease or stress 437 
• Reflect breakdowns in checkpoints rather than adaptive strategies 438 
 439 
Representative examples: 440 
• Cancer: multinucleated giant cells indicate genomic instability; may precede clonal 441 

evolution or senescence118–121. 442 
• Stress-induced defects: hypoxia, chemotherapeutic agents, or mechanical strain induce 443 

cytokinesis failure in mammalian cells122,123. 444 
• Viral infections: viral fusogens induce pathological syncytia (e.g., measles, SARS-CoV-2), 445 

disrupting tissue integrity124,125. 446 
 447 
Nuclear division dynamics within multinucleate cells 448 
 449 
Definition: 450 
Once multinucleation is established, nuclear cycles may proceed synchronously, 451 
parasynchronously, or asynchronously. Division dynamics allow multinucleate cells to balance 452 
biosynthetic output with energetic constraints, demonstrating that nuclear autonomy is itself an 453 
adaptive layer of multinucleate organization. 454 



 455 
Key features: 456 
• Regulated by local metabolic conditions, cytoskeletal organization, and signaling gradients 457 
• Reflect tuning between global coordination and local autonomy 458 
 459 
Representative examples: 460 
• Synchronous: early Drosophila embryos, generating thousands of nuclei with tight 461 

temporal control112. 462 
• Parasynchronous: Aspergillus nidulans nuclei divide in parasynchronous waves104 463 
• Asynchronous: Plasmodium falciparum schizonts, enabling rapid proliferation in nutrient-464 

limited host cells44,64. 465 
• Stress-modulated asynchrony: observed in filamentous fungi and nutrient-limited 466 

mammalian cells; divisions desynchronize to spread energetic demand100,126. 467 
 468 
Summary 469 
Across eukaryotes, multinucleation arises through coenocytic growth, cell–cell fusion, or failed 470 
cell-cycle exit. Although mechanistically distinct, these processes rely on conserved cytoskeletal 471 
and membrane systems and have been repeatedly adapted to support growth, rapid expansion, 472 
performance, immunity, parasitism, and developmental patterning. Together, these mechanisms 473 
reveal that multinucleation is not an anomaly but a fundamental and flexible cellular strategy 474 
enabling organisms to integrate function across space, time, and environmental complexity. 475 
  476 



Box 2. Ecological niches favoring the evolution of multinucleation 477 
 478 
The ecological context in which an organism evolves strongly influences the development and 479 
persistence of multinucleate cells. Environmental factors such as nutrient availability, substrate 480 
structure and heterogeneity, and predation pressure impose selective constraints that can favor 481 
shared cytoplasmic organization. In such settings, multinucleation offers a versatile strategy for 482 
sustaining growth, coordinating metabolism, and maintaining resilience under fluctuating or 483 
resource-limited conditions.  484 
 485 
Terrestrial ecosystems 486 
Terrestrial ecosystems, particularly soils and decomposing organic matter, are physically complex, 487 
highly heterogeneous environments. Nutrients occur in patchy microhabitats, microbial 488 
communities are dense, moisture levels fluctuate, and substrates can be mechanically resistant. 489 
Organisms must navigate steep chemical gradients, shifting hydration cycles, and episodic 490 
resource pulses. Together, these features create a mosaic landscape where growth depends on 491 
continually responding to local and rapidly changing conditions. 492 
 493 
Aquatic ecosystems 494 
Aquatic environments, both marine and freshwater, present a very different set of constraints. 495 
Water supports large, extended cell shapes but also exposes organisms to turbulence and 496 
constantly fluctuating nutrient availability. Many habitats are oligotrophic; others are periodically 497 
mixed or disturbed by sediment flow. Deep-sea settings add high pressure, low temperatures, and 498 
chronic nutrient scarcity. Across these ecosystems, resource landscapes are shaped by fluid 499 
motion rather than substrate structure, and chemical signals disperse quickly, creating dynamic 500 
and often unpredictable conditions. 501 
 502 
Intracellular parasitic niches 503 
Intracellular parasitic niches are tightly enclosed, nutrient-limited, and under constant immune 504 
surveillance. Within spaces like erythrocytes, hepatocytes, or algal cytoplasms, movement is 505 
restricted and resource access is finite. Parasites must replicate efficiently within a fixed space 506 
while avoiding detection, which, together with spatial confinement, strongly shapes how growth 507 
and division are organized in these environments. 508 
 509 
Transitional and fluctuating niches 510 
Some organisms occupy habitats that shift rapidly over space or time. Seasonal environments, 511 
transient substrates, dispersal phases, and transitions between aquatic and benthic zones all 512 
impose fluctuating conditions. In these settings, organisms often benefit from flexible life cycles 513 
capable of switching between different cellular architectures. Transitional niches also include 514 



stress-induced states, which can be triggered by desiccation, hypoxia, or chemical damage, in 515 
which cells temporarily reorganize their growth dynamics, nuclear behavior, or genome content. 516 
 517 
Developmental contexts 518 
Multinucleation also arises in developmental settings where rapid expansion, intense biosynthetic 519 
demand, or coordinated activity across large cellular domains is required. Early embryogenesis 520 
often involves rapid nuclear divisions before cellularization, specialized tissues must accumulate 521 
resources quickly, and contractile or absorptive epithelia rely on coordinated gene expression 522 
across extensive cytoplasmic territories. These developmental niches impose tight temporal 523 
constraints distinct from those experienced by free-living cells. 524 
 525 
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 528 

Figure 1. Ecological and organizational distribution of multinucleation across the eukaryotic tree 529 
of life. 530 

(A) A collapsed eukaryooc tree of life illustraong the phylogeneoc breadth of mulonucleate, 531 
colonial/aggregaove, and mulocellular architectures across major eukaryooc clades. For 532 
each lineage, three ecological apributes are annotated using color-coded circles: 533 
persistence (green), habitat (brown), and niche (purple). Icons to the right indicate whether 534 
the lineage contains mulonucleate, aggregate/colonial, and/or mulocellular forms. The 535 
figure highlights the repeated and phylogeneocally widespread emergence of 536 
mulonucleaoon across eukaryotes, as well as its co-occurrence with the other 537 
architectures.  538 

(B) Expanded view of Opisthokonta, showing finer-scale annotaoon of fungi, animals, and 539 
closely related proost lineages. The panel highlights the diversity of mulonucleate 540 
architectures within this clade, from fungal coenocytes to animal syncyoa, and illustrates 541 
how persistence, habitat, and niche categories vary even among closely related taxa.  542 

  543 
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 544 

Figure 2 Conceptual relationships among multinucleate, multicellular, and colonial/aggregative 545 
organizational strategies. 546 

Venn diagram summarizing the shared and distinct organizational principles of three major 547 
eukaryotic architectures that solve problems of coordination and scaling in different ways. 548 
Multinucleate cells integrate multiple nuclei within a continuous cytoplasm, achieving rapid 549 
coordination and regionalized function. Multicellular organization achieves long-lasting 550 
cooperation through stable adhesion, developmental patterning, and division of labor, enabling 551 
specialization. Colonial or aggregative forms maintain individuality while coordinating behavior 552 
through reversible adhesion and signaling, allowing flexible responses to environmental 553 
fluctuations. Overlapping regions highlight convergent strategies: enhanced cooperation while 554 
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maintaining internal control, specialization through coordinated division of labor, and context-555 
dependent scaling via dynamic cooperation. 556 

 557 
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    Niche Habitat Persistence     

Group 

 
Species 

1=Symbiotic/Parasitic 
2=Neither (e.g., tissue) 

 3=Free-living 

1=Aquatic 
2=Mixed (intracellular 

or tissue) 
3=Terrestrial 

1=Transient 
2=Moderate 
3=Persistent 

Justification 

 

Alveolata 
Plasmodium falciparum 1 2 2 

Parasitic; internal environment spanning mosquito and vertebrate 
hosts; multinucleate schizogony is a major proliferative stage 64,127  

Amoebozoa Physarum polycephalum 3 3 3 
Free-living in terrestrial habitats; large multinucleate plasmodium is 
the dominant vegetative stage. 62 

Amoebozoa Didymium iridis 3 3 3 
Free-living in terrestrial habitats; large multinucleate plasmodium is 
the dominant vegetative stage. 128 

Amoebozoa Fuligo septica 3 3 3 
Free-living in terrestrial habitats; large multinucleate plasmodium is 
the dominant vegetative stage. 128 

Streptophyta 
Arabidopsis thaliana - 
endosperm 2 3 1 

Plant tissue (neither free-living nor symbiotic); terrestrial; syncytial 
endosperm is an early, transient stage before cellularization. 7 

Chlorophyta Caulerpa spp. 3 1 3 
Free-living marine siphonous algae; entire thallus is a long-lived 
multinucleate coenocyte. 113 

Chlorophyta Bryopsis spp. 3 1 3 
Free-living marine siphonous green algae; coenocytic organization 
persists throughout the vegetative body. 11 

Chlorophyta Halimeda opuntia 3 1 3 
Free-living marine coenocytic alga; multinucleate siphonous tissues 
form persistent calcified segments. 10 

Chlorophyta Halimeda cuneata 3 1 3 
Free-living marine coenocytic alga; multinucleate structure 
maintained through most of the life cycle. 37 

Discoba Chaos spp. (Chaos 
illinoisense) 3 1 3 

Free-living freshwater amoebae; trophic cells are large, 
multinucleate, and persist as such. 80 

Metamonada Giardia duodenalis 1 2 3 
Parasitic/commensal in vertebrate intestines; host-internal 
environment; binucleate trophozoite is the main feeding stage. 81 

Opisthokonta Aphelidium aff. melosirae 1 1 2 
Algal parasite; aquatic; multinucleate plasmodium forms during 
infection but is not long-term persistent. 129 

Opisthokonta Aphelidium parallelum 1 1 2 
Algal parasite; aquatic; multinucleate plasmodium forms during 
infection but is not long-term persistent. 130 

Opisthokonta Sphaeroforma arctica 3 1 2 
Free-living; aquatic; coenocytic growth spans a notable but not full 
portion of the life cycle. 5 

Opisthokonta Aspergillus nidulans 3 3 3 
Free-living terrestrial filamentous fungus; vegetative hyphae are 
long-lived and multinucleate. 104 

Opisthokonta Fusarium oxysporum 3 3 3 
Soil fungus and plant pathogen but ecologically free-living; hyphae 
are persistently multinucleate. 32 

Opisthokonta Ashbya gossypii 3 3 3 
Free-living filamentous fungus; highly multinucleate hyphae persist 
through vegetative growth. 46 

Opisthokonta Heterobasidion parviporum 1 3 3 Fungal pathogen; hyphae persist for long periods. 101 

Opisthokonta Mucoromycota 3 3 3 
Symbiotic terrestrial fungi with coenocytic hyphae; multinucleation 
is a stable vegetative condition. 66 



Opisthokonta Glomeromycota 1 3 3 

Symbiotic arbuscular mycorrhizal fungi; terrestrial; extensive 
multinucleate hyphae persist throughout association with host 
plant. 30 

Opisthokonta 
Drosophila melanogaster - 
embryo 2 3 1 

Embryo (neither free-living nor symbiotic); terrestrial; syncytial 
blastoderm is an early, transient embryonic stage. 111 

Opisthokonta Tribolium - embryo 2 3 1 
Embryo (neither free-living nor symbiotic); terrestrial; syncytial 
blastoderm is an early, transient embryonic stage. 14,111 

Opisthokonta Nasonia - embryo 2 3 1 
Embryo (neither free-living nor symbiotic); terrestrial; syncytial 
blastoderm is an early, transient embryonic stage. 111 

Opisthokonta 
Mus musculus - 
cardiomyocytes 2 2 3 Cardiac tissue; multinucleation/bi-nucleation is stable 19 

Opisthokonta 
Homo sapiens - skeletal 
muscle 2 2 3 

Multinucleate muscle fibres within tissue; myofibres are long-lived 
syncytia. 13 

Opisthokonta 
Homo sapiens - 
syncytiotrophoblast 2 2 1 

Placental tissue; syncytiotrophoblast remains multinucleate over the 
course of pregnancy. 115 

Rhizaria Reticulomyxa filosa 3 1 3 
Free-living foraminifer; aquatic; extensive multinucleate reticulated 
cell body is long-lived. 131 

Rhizaria 
Xenophyophores 3 1 3 

Free-living deep-sea foraminifera; aquatic; giant multinucleate 
coenocytes persist for long durations. 58 

Rhizaria Chlorarachniophytes 2 1 3 
Mixotrophic protists with integrated endosymbionts; aquatic; 
reticulate multinucleate stages are persistent. 132 

Rhodophyta Scinaia articulata 3 1 3 
Free-living marine red alga; multinucleate cells persist through 
vegetative growth. 133 

Stramenopila Protoopalina intestinalis 1 2 3 
Symbiotic/commensal inhabitant of vertebrate intestines; internal 
habitat; multinucleate form persists within host gut. 3 

Supplementary Table 1. Ecological and biological attributes of multinucleate taxa shown in Figure 1. 559 

Table summarizes the ecological niche, habitat type, and persistence of multinucleate states for all representative taxa included in Figure 560 
1. Each organism is scored along three categorical axes: Niche (1 = symbiotic/parasitic, 2 = neither (e.g., tissue), 3 = free-living), Habitat 561 
(1 = aquatic, 2 = mixed (intracellular or tissue), 3 = terrestrial), and Persistence (1 = transient multinucleate stage, 2 = moderate portion 562 
of life cycle, 3 = persistent or dominant life-stage). For each taxon, a brief justification is provided describing the ecological or 563 
developmental context in which multinucleation occurs, alongside the relevant citation(s). The table highlights the broad diversity of 564 
environments in which multinucleate architectures arise, from free-living coenocytes and filamentous fungi to intracellular parasites 565 
and transient developmental syncytia, and provides the dataset underlying the categorical annotations in Figure 1. 566 



 567 

 Multinucleate Multicellular Aggregate/colonial  

Stramenopila 
Phytophthora infestans Laminaria digitata Glossomastix chrysoplasta Example 

Oertel & Jelke 1986134 Thomas et al. 2014135 O'Kelly 2002136 Citation 

Alveolata 
Plasmodium falciparum - Zoothamnium niveum Example 

Klaus et al. 202244 - Clamp & Williams 2006137 Citation 

Rhizaria 
Allogromia laticollaris - Guttulinopsis vulgaris Example 

Timmons et al, 2024138 - Brown et al. 2012139 Citation 

Telonemia 
- - - Example 

- - - Citation 

Haptophyta 
- - Phaeocystis pouchetii Example 

- - Estep et al. 199073 Citation 

Centrohelida 
- - - Example 

- - - Citation 

Cryptophyta 
- - - Example 

- - - Citation 

Katablepharida 
- - - Example 

- - - Citation 

Palpitomonas (Cryptista) 
- - - Example 

- - - Citation 

Glaucophyta 
- - Cyanoptyche gloeocystis Example 

- - Kies 198982 Citation 

Chloroplastida 
Caulerpa taxifolia Arabidopsis thaliana Volvox barberi  Example 

Menzel 1987113 Sørensen et al. 20227 
Balasubramanian & 
McCourt 2021140 Citation 

Rhodophyta Griffithsia monilis Porphyra umbilicalis Bangia sp.  Example 



Hong et al. 2023141 Brawley et al. 2017142 Cao et al. 2018143 Citation 

Ancoracysta (Ancoracysta/Provora) 
- - - Example 

- - - Citation 

Picozoa 
- - - Example 

- - - Citation 

Apusomonada 
- - - Example 

- - - Citation 

Breviates 
- - - Example 

- - - Citation 

Opisthokonta 
Neurospora crassa Drosophila melanogaster Fonticula alba Example 

Roper et al. 20112 Vergasolla et al. 2018112 Toret et al. 2022144 Citation 

Amoebozoa 
Physarum polycephalum   Dictyostelium discoideum Example 

Burland et al. 199362   Du et al. 201571 Citation 

Diphylleida (Diphyllatea) 
- - - Example 

- - - Citation 

Rigifilida (CRuMs) 
- - - Example 

- - - Citation 

Mantamonas (CRuMs) 
- - - Example 

- - - Citation 

Discoba 
Multisulcus malaysiensis   Acrasis kona Example 

Prokina et al. 202580   Sheikh et al. 202479 Citation 

Metamonada 
Giardia duodenalis     Example 

Sagolla et al. 200681     Citation 

Malawimonadida 
- - - Example 

- - - Citation 
Ancyromonadida - - - Example 



- - - Citation 

Hemimastigophora 
- - - Example 

- - - Citation 
 568 
Supplementary Table 2. Distribution of multinucleate, multicellular, and aggregate/colonial architectures across major eukaryotic 569 
lineages. 570 
Table summarizing the presence or absence of three organizational strategies: multinucleation, multicellularity, and 571 
aggregative/colonial architectures across the eukaryotic clades included in Figure 1. Multinucleate encompasses coenocytes and 572 
syncytia; Multicellular refers to tissue-forming multicellularity; and Aggregate/colonial includes collectives such as mucilaginous colonies 573 
or amoebozoan aggregators. Representative taxa and citations are listed where these architectures are documented. 574 
The table complements the comparative phylogeny in Figure 1, showing that multinucleation and multicellularity commonly co-occur 575 
within the same lineages. Several clades deviate from the dominant patterns (e.g., Metamonada, which exhibit multinucleation without 576 
known multicellular or colonial states, and Glaucophyta or Haptophyta, which form colonies but lack confirmed multinucleate forms). 577 
These exceptions highlight promising avenues for testing which cellular toolkits enable, constrain, or bias the evolution of different 578 
large-scale architectures. 579 
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