

1 **Unravelling the Enigma of Soil Animal Diversity: An Integrated Perspective from**
2 **Functional Traits to Evolutionary History**

3

4 **Ting-Wen Chen***

5 J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen,
6 Germany

7 Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry,
8 Ceské Budějovice, Czech Republic

9 Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan

10 *Correspondence: tchen2@gwdg.de

11 **Abstract**

12 Why does a single square meter of forest soil harbour thousands of animal species? Fifty years
13 after Jonathan M. Anderson raised this question, soil ecology still struggles with a fragmented
14 view on the coexistence of species. Researchers often study taxonomy, functional traits, and
15 phylogeny in isolation. Each approach adds insight but leaves gaps in the picture of soil
16 biodiversity.

17 In this paper, I propose a Community-Trait-Phylogenetic Ecology framework which links
18 evolutionary and ecological views, and explains how soil animal communities form and persist.

19 The framework combines three research fields:

20 - Biogeography – describes species composition across local, regional, and global scales.

21 - Functional traits – divided into α -niche traits (resource use) and β -niche traits (environmental
22 tolerance), showing whether resource partitioning or filtering by environment drives community
23 assembly.

24 - Phylogeny – shapes trait expression and defines the pool of species.

25 Evidence from springtails (Collembola, Hexapoda) and oribatid mites (Oribatida, Acari) shows
26 the value of this framework. Global data synthesis reveals a mismatch between density and
27 diversity, which challenges traditional biogeographic predictions. Trait analyses show that
28 environmental filtering occurs at global scales. At regional and local scales, cryptic species that
29 diverged millions of years ago coexist with distinct habitat preferences. In addition, ancient and
30 recent lineages coexist across elevations. Morphological and physiological traits usually follow
31 phylogenetic constraints. In contrast, trophic traits show high flexibility, which allows closely
32 related species to coexist.

33 This integrative view shifts soil animal ecology from describing patterns to understanding the
34 mechanisms responsible for them. It also supports predictions of community responses to
35 climate change and land-use change. Finally, it guides conservation strategies that protect trait,
36 functional, and evolutionary diversity along with species richness.

37

38 **Keywords:** coexistence mechanisms; community assembly; environmental filtering; evolution;
39 ecology; functional traits; niche; phylogenetic comparative methods; resource partitioning; soil
40 arthropods; soil biodiversity; soil macroecology; species pool

41 Fifty years ago, British ecologist Jonathan M. Anderson posed a deceptively simple yet
42 profoundly difficult question: *Why can a single square meter of forest soil harbour thousands of*
43 *animal species comprising millions of individuals* (Anderson, 1975)? This question challenges
44 our understanding of biodiversity and species coexistence mechanisms, revealing the complex
45 and delicate balance of natural forces.

46

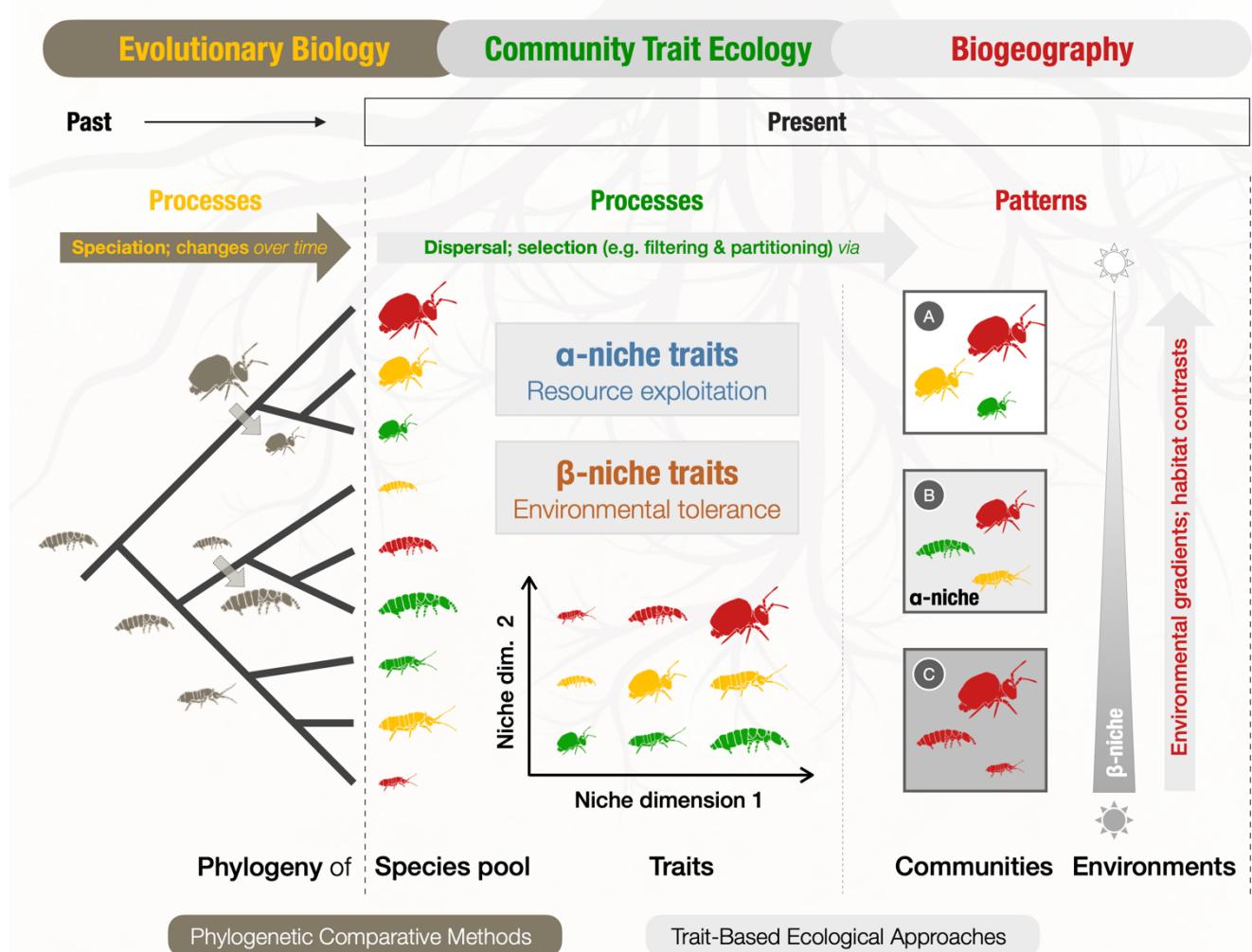
47 **The Astonishing Complexity of Soil Life**

48 In a temperate deciduous forest just one square meter of litter and soil contains 10,000 to
49 200,000 tiny animals. These animals represent 60-200 "mesofauna" species (Petersen and
50 Luxton, 1982). They measure about 0.2mm to 2mm in width and are often overlooked by the
51 naked eye. Nevertheless, these animals are crucial for maintaining the proper functioning of
52 terrestrial ecosystems (Bardgett and van der Putten, 2014). Among mesofauna taxa, springtails
53 (Collembola, Hexapoda) and oribatid mites (Oribatida, Acari) stand out for their remarkable
54 abundance and ecological importance. These two taxa comprise approximately 95% of global
55 soil arthropod abundance (Rosenberg et al., 2023) and are among the most diverse soil animal
56 taxa with >9000 and >11,000 described species, respectively (Potapov et al., 2020; Subías,
57 2022). Despite sharing the same habitat and feeding on similar resources, hundreds of these
58 species coexist without apparent conflict. This is a phenomenon that traditional soil ecology
59 cannot fully explain. How is it possible? The answer requires understanding of soil biodiversity
60 from three complementary perspectives.

61

62 **Limitations and Breakthroughs of Traditional Approaches**

63 **Community ecology and biogeography** take species as the units. They focus on how
64 environmental factors, such as temperature, moisture, and soil pH, correlate with species
65 occurrence, and how species interactions and dispersal limitations shape local community
66 composition (Potapov et al., 2023). Although precise, this taxonomy-based approach is labour-
67 intensive and time-consuming. Species determination requires considerable training. It is also
68 defective because, though it indicates which species adapt to which environments (i.e. habitat
69 niches), it struggles to explain how they adapt to the environment and how species achieve


70 coexistence. Thus, the traditional species-centred perspective describes the patterns of
71 coexistence but not the mechanisms responsible for coexistence.

72 **Functional trait ecology** brought a breakthrough. Rather than treating each species as an
73 independent entity, it identifies niche dimensions based on specific attributes of the organisms
74 (i.e. traits) (Winemiller et al., 2015). Different species differ in multiple traits, such as morphology
75 (body size, colouration), life history (reproductive strategy, development rate), and resource
76 utilization (diet). These traits are assumed to be functional and to affect their fitness (but see
77 Gould and Lewontin, 1979). Through analysing functional traits, it is possible to predict which
78 species are able to coexist and how communities change along environmental gradients
79 (Brousseau et al., 2018). However, even this integrative perspective has shortcomings. In
80 particular, it typically overlooks the profound influence of evolutionary history on traits. Traits do
81 not appear from nowhere but are the result of millions of years of evolution (van Straalen, 2021).

82 **Phylogenetic and comparative methods** reveal the deep shared evolutionary history of
83 species. The evolutionary past of species influences which traits they possess and how
84 ecological roles are constrained. Related species tend to resemble each other, and such a
85 pattern is called "phylogenetic signal" (Silvertown et al., 2005). However, until today evolutionary
86 perspectives are little considered by soil ecologists as it requires specific conceptual and
87 practical skills. As a consequence, soil animal research typically treats ecology and evolution as
88 separate domains (but see Ponge, 2020 and van Straalen, 2021).

89 **An Integrative Perspective: The Community-Trait-Phylogenetic Ecology**
90 **Framework**

91 To overcome the limitations of the three traditional approaches and to better understand soil
92 animal communities, I propose a "Community-Trait-Phylogenetic Ecology" (CTPE) framework
93 (**Figure 1**). This framework attempts a more holistic understanding of the complex mechanisms
94 driving the composition of soil animal communities.

95
96 **Figure 1.** The "Community-Trait-Phylogenetic Ecology" (CTPE) Framework for Studying Soil Animal Diversity.
97 The CTPE framework integrates ecological and evolutionary processes to understand mechanisms driving
98 soil biodiversity across spatial scales. The spatial distribution of soil communities is the central focus of
99 biogeography (right, red panel). Even when species richness remains constant, species composition often
100 changes along environmental gradients, leading to local communities that differ in their trait composition (for

101 example, body size, colour and shape). Functional traits reflect multidimensional ecological niches and help
102 explain species occurrence in particular habitats. For examples, community A occurs at high elevation where
103 solar radiation is strong, while community C is located at low-elevation forest cover with dense canopy cover.
104 By examining functional traits, defined as α -niche traits (associated with resource use and partitioning) and β -
105 niche traits (related to environmental tolerance), this framework can infer the processes shaping community
106 patterns and predict community responses to environmental changes (middle, green panel). In community A,
107 springtail species share a similar body shape but differ in body size and colour, whereas in community C,
108 species are similar in colour but differ in the other two traits. Patterns in trait distributions, when compared to
109 null expectations, reveal the underlying deterministic processes of community assembly. With phylogenetic
110 comparative methods, the CTPE framework also infers the evolutionary processes that have generated
111 present-day trait variation among species, offering a historical context for contemporary ecological patterns
112 (left, yellow panel). Over evolutionary time, species have diversified from common ancestors by shifting traits
113 (for example, from large to small body size, or *vice versa*). Speciation and trait evolution have thus shaped
114 the regional species pool from which local communities assemble under the combined influence of
115 environmental filtering and niche partitioning.

116

117 This framework comprises three elements.

118 The first element is the **species level - multiscale variation in community composition**.
119 Variations in soil animal community is reflected not only in differences in species richness but
120 also in species composition and their distribution across space and time (biogeographic patterns;
121 e.g. Gao et al., 2014; Potapov et al., 2023; Junggebauer et al., 2024). To understand changes
122 in soil animal diversity, it is necessary to ask what patterns characterize communities at local,
123 regional, and global scales.

124 The second element is the **functional level - two niche processes reflected by traits**.
125 Functional traits of species may be divided into two categories, α - and β -niche traits (Ackerly
126 and Cornwell, 2007). Each category refers to different yet complementary community assembly
127 processes (Chen et al., 2017; Noske et al., 2024). The β -niche traits reflect species
128 environmental tolerances, such as body surface pigmentation (affecting thermoregulation and
129 UV resistance; Xie et al., 2022) and temperature-moisture tolerance (Janion-Scheepers et al.,
130 2018). Coexisting species typically resemble each other in these traits, indicating that they
131 tolerate similar environmental conditions. By contrast, the α -niche traits reflect resource

132 utilization strategies of species. Despite sharing the same habitat in soil, springtails and oribatid
133 mites may exploit different food resources, including plant roots and exudates, organic matter,
134 bacteria, fungi, lichens, mosses, algae, and even other soil animals (Potapov et al., 2022).
135 Differences in the use of these resources are likely to reduce competition, thereby allowing to
136 coexist locally. Therefore, the distinction between β - and α -niche traits helps predict which
137 species are able to coexist and how communities change along environmental gradients.

138 Third is the **phylogenetic level – evolutionary constraints and possibilities**. Evolutionary
139 history not only provides context for trait variation but also constrains ecological possibilities.
140 Combining molecular techniques (such as mitochondrial genome sequencing; Xie et al., 2022)
141 with comparative methods (such as phylogenetic signal testing; Revell, 2024), makes it possible
142 to determine the nature of traits. It allows to identify which traits are of ancient evolutionary origin
143 and which evolved recently in response to contemporary selection processes, or which traits are
144 novel or have changed their original functions so that species exploit novel niches. Morphological
145 and physiological traits typically show strong phylogenetic signal; conversely, trophic traits
146 (resource utilization) often lack phylogenetic signal (Chen et al., 2017; Gong et al., 2018; Xie et
147 al., 2022; Noske et al. 2024). This suggests that environmental tolerance is evolutionarily
148 constrained and that resource utilization strategies have evolved independently multiple times.
149 In combination, these allow closely related species to partition resources and coexist.

150

151 **Evidence from Springtails and Oribatid Mites: from Global to Local**

152 The international collaboration, the Global Collembola Initiative (#GlobalCollembola; Potapov et
153 al., 2020), compiled nearly 3000 community composition records. These records cover eight
154 biogeographic regions and 10 biomes from the tropics to the poles (Potapov et al., 2024). This
155 unprecedented dataset reveals a striking mismatch between density and diversity. Polar regions
156 show high density but only moderate species richness, temperate forests are characterized by
157 moderate density yet highest richness, tropical regions show lowest density but highest richness,
158 and arid systems show both low density and low richness (Potapov et al., 2023). This "density-
159 diversity mismatch" challenges traditional perspectives.

160

161

162 Recent compilation of data by the Global Collembola Initiative on 10 different traits from over
163 7000 springtail species and the ongoing global-scale trait distribution analyses, provide evidence
164 for the effect of environment on traits. The compilation indicates that springtail body pigmentation,
165 colour patterns, ommatidia number, furca development, and body size are differentially
166 influenced by habitat type, latitude, biome, and local density (Chen, T.-W. et al., unpubl. data).
167 This suggests that environmental filtering operates at global scales, selecting particular trait
168 combinations.

169 At the regional level, recent biogeographic research on soil animals of Changbai Mountain in
170 Northeast Asia tracked variation in isotomid springtail communities across 1400m of elevation
171 (Xie et al., 2022). This study found that soil nitrogen content, changing with elevation, acts as a
172 key environmental filter selecting particular pigmentation patterns and trait combinations. This
173 mountain study also raises an evolutionary puzzle: are mountains "cradles" of speciation? Or
174 are they "museums" preserving ancient lineages? Linking phylogeny with geological events
175 reveals that both scenarios apply to isotomid springtails. Ancient lineages persist while new
176 species have emerged alongside mountain uplift. These patterns provide the basis for inferring
177 historical speciation and diversification processes that shaped the current species pools from
178 which local communities are assembled (Vasconcelos et al., 2022).

179 At local scales, ongoing research on the winter springtail communities in the wetlands,
180 secondary forests, farmlands, and plantations of northeastern China, revealed different
181 dominant community assembly processes across habitats (Chen, T.-W., unpubl. data). Even
182 within a single community, species are simultaneously influenced by both filtering and
183 partitioning processes, depending on the traits considered. For example, compared to forests,
184 farmland springtails show similarity in furca and eye traits presumably due to environmental
185 filtering, while body size, pigmentation, and colour patterns reveal niche partitioning among
186 coexisting species. This suggests how trait-based perspectives on two niche processes can
187 operate simultaneously within the same community.

188 **The Multidimensional View of Trophic Ecology: Soil Animal Diets are**
189 **Complex**

190 Even though morphological traits can reflect partitioning processes, traits more directly related
191 to the use of food resources (α -niche) are usually derived from food-web methods that
192 characterize soil animal diet or food resources (i.e. trophic niches; Potapov et al., 2021). Gut
193 contents, digestive enzymes, neutral lipid fatty acids, and stable isotopes (^{15}N and ^{13}C), each
194 provide complementary information on the diet of consumers. Most pairwise correlations of
195 trophic niche parameters deduced from these methods are weak, indicating that each method
196 captures different dimensions of the trophic niche (Potapov et al., 2021). Stable isotope values
197 and gut microbiota of winter-active springtails show that they actually feed on resources on snow
198 cover (such as cyanobacteria) rather than from litter (Hao et al., 2020). These results indicate
199 that by combining multiple methods can we truly understand soil animal diets and reveal their
200 realized trophic niches.

201 Furthermore, microbiota associated with soil animals can be viewed as a special type of trait
202 (Gong et al., 2018, 2022; Hao et al., 2025). The study on bacteria and fungi associated with
203 oribatid mites reveal subtle differences in how evolutionary history and trophic ecology of oribatid
204 mites influence their microbial communities (Gong et al., 2018). Variations in fungal communities
205 are better explained by stable isotope differences than by phylogenetic distance between mite
206 species, suggesting fungi as food resources. Bacterial communities, in contrast, are more
207 strongly related to host phylogeny than to trophic niche differences, indicating that closely related
208 mites harbour similar bacteria, presumably shaped by host physiology. This suggests that mite-
209 bacteria associations evolved interdependently. The ancient coevolution between animal hosts
210 and gut symbionts results in a phylogenetic signal of bacterial communities across soil oribatid
211 mite species.

212 Neutral lipid fatty acids also reveal the distinction between trait evolutionary dependence and
213 resource flexibility (Chen et al., 2017). In this study we measured neutral lipid fatty acid
214 composition in springtails and found closely related species to share similar fatty acid profiles.
215 Long-chain polyunsaturated fatty acids, which are related to physiological function (β -niche),
216 show a strong phylogenetic signal, while fatty acid biomarkers representing food resources

217 (bacteria, fungi, and plants; α -niche) show almost no signal. This means that β -niche
218 physiological functions are evolutionarily constrained, whereas α -niche resource utilization is
219 highly flexible, indicating closely related species evolve different feeding strategies.

220

221 **From Deep Time to Present: Multiscale Coupling of Evolution and Ecology**

222 The CTPE framework reveals how evolution and ecology interact across different temporal
223 scales. Springtails and oribatid mites have persisted since the Paleozoic (Schaefer et al., 2010;
224 Yu et al., 2024). At hundred-million-year scales, they diversified alongside plant evolution and
225 geological events (such as continental drift and mountain building), forming regional species
226 pools (Schaefer and Caruso, 2019; Xie et al., 2022). At million-year scales, even cryptic species
227 indistinguishable morphologically have long diverged at the genetic level (Heethoff et al., 2007;
228 Zhang et al., 2018). For example, three lineages of the springtail *Lepidocyrtus lanuginosus*
229 diverged about 15.9 to 9.7 million years ago (Miocene), yet still coexist in the same region today,
230 each preferring different habitats (forest, grassland, or farmland; Zhang et al., 2018),
231 demonstrating that both persistence of old lineages and environmental filtering are at work. At
232 contemporary ecological timescales, in addition to long evolutionary paths, present community
233 composition remains highly determined by current environmental conditions and resource
234 availability. Evolution provides the "toolbox" (traits), while contemporary ecological conditions
235 determine which "tools are selected" (species coexistence). This suggests tight evolutionary-
236 ecological coupling in soil animals: species diverged in deep time yet achieve contemporary
237 coexistence. Trait evolution enables environmental (β -niche) differentiation at large spatial and
238 long evolutionary time scales but resource (α -niche) partitioning at both small spatial and
239 temporal scales.

240

241 **Insights and Significance of the CTPE Framework**

242 This integrative framework brings several novel insights to soil ecology. First, traits reveal
243 processes. Measuring functional traits is not merely for describing patterns. Combinations of
244 traits can reveal which ecological processes dominate in communities. Environmental filtering is
245 usually revealed by similar β -niche traits, while partitioning processes can be shown in different

246 resources (α -niche) used by coexisting species. Second, evolutionary history reveals constraints
247 and opportunities. Physiological functions are usually evolutionarily constrained and exhibit a
248 phylogenetic signal. In contrast, resource utilization strategies are less constrained evolutionarily,
249 with more convergent evolution being reveal. Instead, they display flexibility between (e.g.
250 convergent evolution; Schaefer and Caruso, 2019) and even within species (e.g. trophic
251 plasticity, 2019; Krause et al., 2019; Yang et al., 2025). Contemporary ecological processes then
252 reshape communities under these conditions. Third, coexistence arises from multiple
253 overlapping mechanisms. Evolution adds trait diversity, the environment selects particular traits,
254 and resource differentiation enables local diversity. Finally, soil animals are far more complex
255 than previously recognized, as they are no longer merely microscopic "detritivores" but
256 ecosystem multitaskers (Bonfanti et al., 2025). They occupy diverse soil niches, utilize various
257 sources, and display remarkable adaptability. They are mediators, ensuring ecosystem
258 functioning through redundancy and complementarity.

259

260 **Future Applications: from Understanding to Prediction and Conservation**

261 By integrating species distribution and community patterns, multiple trait measurements, and
262 phylogenetic analyses, we are making progress toward understanding the enigma Jonathan M.
263 Anderson posed fifty years ago (Anderson, 1975). This understanding is essential for predicting
264 consequences of global change: Climate change alters temperature and moisture regimes,
265 thereby changing directions and strengths of environmental filtering and selecting different trait
266 combinations (Ferrín et al., 2023). Land-use change may fragment communities and limit
267 connectivity (Susanti et al., 2021). Invasive species may disrupt the existing functional and
268 phylogenetic structures of communities (Janion-Scheepers et al., 2018). Understanding which
269 traits confer ecosystem resistance and resilience (Bonfanti et al., 2022), and which are shaped
270 by evolution (Noske et al., 2024), enables the prediction of structural and functional changes of
271 soil animal communities under these scenarios, and allows to identify key species and vulnerable
272 taxa, thereby providing the basis for optimizing conservation strategies that maintain
273 multidimensional diversity. The CTPE framework, thus, also emphasizes that protecting soil
274 functioning is not just a matter of species numbers. It requires maintaining multiple levels of
275 diversity including trait diversity, functional diversity, and evolutionary diversity across scales

276 (Véron et al., 2019). Insights gained from the CTPE framework are useful for global soil
277 conservation policy.

278

279 **Why This Matters**

280 Soil animals differ in their sensitivity to environmental stress, making them valuable bioindicators
281 of ecosystem health (Shimano, 2011; Yin et al., 2020). They contribute to essential ecosystem
282 functions by regulating nutrient cycling, supporting plant production, and mediating carbon
283 sequestration (Bonfanti et al., 2025). How can we integrate ecological processes, functional traits,
284 and evolutionary history to better understand and predict biodiversity? Although this question
285 resonates across taxa and ecosystems (Junker et al., 2022; Luza et al., 2023), the “enigma of
286 soil animal diversity” goes beyond academic curiosity. Fifty years after Anderson’s original
287 formulation, researchers now have new tools, new theories, and new frameworks to solve this
288 enigma. Advances in high-throughput sequencing, stable isotope analysis, fatty acid and amino
289 acid profiling, and computational methods now enable unprecedented data integration and
290 synthesis. The coming decade of soil biodiversity research will elucidate the mechanisms that
291 generate and maintain soil biodiversity and help predict how it responds to climate change, land-
292 use alteration, and other global pressures. Soil will no longer be a black box but a kaleidoscope
293 revealing the hidden wealth of life beneath our feet (Andrén and Balandreau, 1999; van Straalen,
294 2023).

295

296 **Concluding Remarks**

297 • The integrated “community-trait-phylogenetic” framework depicts soil biodiversity as a
298 multidimensional pattern shaped by ancient evolutionary processes and maintained by
299 contemporary ecological processes. Community coexistence depends on multiple mechanisms
300 operating in parallel: environmental filtering, resource differentiation, and evolutionary
301 constraints and novelty.

302 • Past environmental conditions shaped ancient lineages with specific traits and their
303 descendants now display unique preferences in contemporary habitats.

304 • β -niche traits (such as morphological and physiological traits which reflect environmental
305 tolerance) often show a strong phylogenetic signal, indicating evolutionary constraints.
306 Coexisting species in communities typically are characterized by trait similarity, reflecting
307 contemporary environmental filtering.

308 • α -niche traits (such as multidimensional trophic niche parameters which reflect resource
309 utilization) can be revealed through complementary diet methods. These traits typically show no,
310 or a weak, phylogenetic signal, highlighting ecological opportunity.

311 • Microbiota associated with soil animals can be viewed as functional traits. Bacteria (especially
312 symbionts) are closely tied to host evolutionary history, while fungi serve primarily as food
313 resources, reflecting the trophic niches of the animals.

314 • Integrating knowledge of community ecology, functional traits, and evolutionary history helps
315 predict soil biodiversity responses to global change and their effects on ecosystem functioning.

316

317 **Acknowledgments**

318 I thank Stefan Scheu, Mark Maraun, Ina Schaefer, Anton M. Potapov, Donghui Wu, Meixiang
319 Gao, Johanna Elisabeth Noske, Md Ekramul Haque, Zhijing Xie, Isma Dwi Kurniawan, Xin Gong,
320 Cao Hao, Yan Zhang, and Jo-Fan Chao for their inspiration, discussions, and comments, Svenja
321 Meyer for the springtail silhouettes and Andrew J. Davis (English Experience Language Services,
322 Göttingen, Germany) for improving the English of the manuscript.

323

324 **Funding**

325 The idea of the paper was developed with support from BEST (Bioenergieregionen stärken)
326 Project, Federal Ministry of Education, Science and Technology (BMBF, Bundesministerium für
327 Bildung und Forschung), Germany; Government Scholarship to Study Abroad, Ministry of
328 Education, Taiwan; CAS-DAAD mobility project (DAAD-19-10/57448388) co-funded by Czech
329 Academy of Sciences (CAS) and German Academic Exchange Service (DAAD, Deutscher
330 Akademischer Austauschdienst); MSM project for research and mobility of starting researchers
331 (MSM200962001) from Czech Academy of Sciences; Short-Term Scientific Mission (STSM)

332 under the European Cooperation in Science & Technology (COST) Action “European Soil-
333 Biology Data Warehouse for Soil Protection” (CA18237); the collaborative German-Indonesian
334 research project CRC990/EFForTS (192626868–SFB 990), German Research Foundation
335 (DFG, Deutsche Forschungsgemeinschaft); and DFG Priority Program 1374 “Biodiversity-
336 Exploratories” (SCHE 376/38-2).

337

338 **References**

339 Ackerly, D.D., Cornwell, W.K., 2007. A trait-based approach to community assembly: partitioning
340 of species trait values into within- and among-community components. *Ecology Letters* 10,
341 135–145. doi:10.1111/j.1461-0248.2006.01006.x

342 Anderson, J.M., 1975. The enigma of soil animal species diversity, in: Vaněk, J. (Ed.), *Progress*
343 in *Soil Zoology: Proceedings of the 5th International Colloquium on Soil Zoology*. Springer
344 Netherlands, Dordrecht, pp. 51–58. doi:10.1007/978-94-010-1933-0_5

345 Andrén, O., Balandreau, J., 1999. Biodiversity and soil functioning - From black box to can of
346 worms? *Applied Soil Ecology* 13, 105–108. doi:10.1016/S0929-1393(99)00025-6

347 Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning.
348 *Nature* 515, 505–511. doi:10.1038/nature13855

349 Bonfanti, J., Hedde, M., Cortet, J., Krogh, P.H., Larsen, K.S., Holmstrup, M., 2022. Communities
350 of Collembola show functional resilience in a long-term field experiment simulating climate
351 change. *Pedobiologia* 90, 150789. doi:10.1016/j.pedobi.2022.150789

352 Bonfanti, J., Potapov, A.M., Angst, G., Ganault, P., Briones, M.J.I., Calderón-Sanou, I., Chen,
353 T.-W., Conti, E., Degrune, F., Eisenhauer, N., Ferlian, O., Hackenberger, D., Hauer, A.,
354 Hedde, M., Hohberg, K., Krogh, P.H., Mulder, C., Perez-Roig, C., Russell, D., Shelef, O.,
355 Zhou, Z., Zuev, A.G., Berg, M.P., 2025. Linking effect traits of soil fauna to processes of
356 organic matter transformation. *Functional Ecology* 39, 446–461. doi:10.1111/1365-
357 2435.14720

358 Brousseau, P.M., Gravel, D., Handa, I.T., 2018. On the development of a predictive functional
359 trait approach for studying terrestrial arthropods. *Journal of Animal Ecology* 87, 1209–1220.

360 doi:10.1111/1365-2656.12834

361 Chen, T.-W., Sandmann, P., Schaefer, I., Scheu, S., 2017. Neutral lipid fatty acid composition
362 as trait and constraint in Collembola evolution. *Ecology and Evolution* 7, 9624–9638.
363 doi:10.1002/ece3.3472

364 Ferrín, M., Márquez, L., Petersen, H., Salmon, S., Ponge, J.-F., Arnedo, M., Emmett, B., Beier,
365 C., Schmidt, I.K., Tietema, A., de Angelis, P., Liberati, D., Kovács-Láng, E., Kröel-Dulay, G.,
366 Estiarte, M., Bartrons, M., Peñuelas, J., Peguero, G., 2023. Trait-mediated responses to
367 aridity and experimental drought by springtail communities across Europe. *Functional
368 Ecology* 37, 44–56. doi:10.1111/1365-2435.14036

369 Gao, M., He, P., Zhang, X., Liu, D., Wu, D., 2014. Relative roles of spatial factors, environmental
370 filtering and biotic interactions in fine-scale structuring of a soil mite community. *Soil Biology
371 and Biochemistry* 79, 68–77. doi:10.1016/j.soilbio.2014.09.003

372 Gong, X., Chen, T.W., Zhang, L., Pižl, V., Tajovský, K., Devetter, M., 2022. Gut microbiome
373 reflect adaptation of earthworms to cave and surface environments. *Animal Microbiome* 4,
374 47. doi:10.1186/s42523-022-00200-0

375 Gong, X., Chen, T.-W., Zieger, S.L., Bluhm, C., Heidemann, K., Schaefer, I., Maraun, M., Liu,
376 M., Scheu, S., 2018. Phylogenetic and trophic determinants of gut microbiota in soil oribatid
377 mites. *Soil Biology and Biochemistry* 123, 155–164. doi:10.1016/j.soilbio.2018.05.011

378 Gould, S.J., Lewontin, R.C., 1979. The spandrels of San Marco and the Panglossian paradigm:
379 a critique of the adaptationist programme. *Proceedings of the Royal Society of London.
380 Series B. Biological Sciences* 205, 581–598. doi:10.1098/rspb.1979.0086

381 Hao, C., Chen, T.-W., Wu, Y., Chang, L., Wu, D., 2020. Snow microhabitats provide food
382 resources for winter-active Collembola. *Soil Biology and Biochemistry* 143, 107731.
383 doi:10.1016/j.soilbio.2020.107731

384 Hao, C., Zhang, B., Guan, P., Xie, Z., Xu, G., Wu, D., Chen, T.-W., 2025. Microbiota as potential
385 functional traits facilitating springtail activity in winter. *Ecology and Evolution* 15, e71448.
386 doi:doi.org/10.1002/ece3.71448

387 Heethoff, M., Domes, K., Laumann, M., Maraun, M., Norton, R.A., Scheu, S., 2007. High genetic

388 divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite
389 *Platynothrus peltifer* (Acari, Oribatida). *Journal of Evolutionary Biology* 20, 392–402.
390 doi:10.1111/j.1420-9101.2006.01183.x

391 Janion-Scheepers, C., Phillips, L., Sgrò, C.M., Duffy, G.A., Hallas, R., Chown, S.L., 2018. Basal
392 resistance enhances warming tolerance of alien over indigenous species across latitude.
393 *Proceedings of the National Academy of Sciences* 115, 145–150.
394 doi:10.1073/pnas.1715598115

395 Junggebauer, A., Bluhm, C., Erdmann, G., Bluhm, S.L., Pollierer, M.M., Stefan, S., 2024.
396 Temporal variation of soil microarthropods in different forest types and regions of central
397 Europe. *Oikos* 2024, e10513. doi:doi.org/10.1111/oik.10513

398 Junker, R.R., Albrecht, J., Becker, M., Keuth, R., Farwig, N., Schleuning, M., 2022. Towards an
399 animal economics spectrum for ecosystem research. *Functional Ecology* 37, 57–72.
400 doi:10.1111/1365-2435.14051

401 Krause, A., Sandmann, D., Bluhm, S.L., Ermilov, S., Widystuti, R., Haneda, N.F., Scheu, S.,
402 Maraun, M., 2019. Shift in trophic niches of soil microarthropods with conversion of tropical
403 rainforest into plantations as indicated by stable isotopes (15N, 13C). *PLOS ONE* 14,
404 e0224520. doi:10.1371/journal.pone.0224520

405 Luza, A.L., Barneche, D.R., Cordeiro, C.A.M.M., Dambros, C.S., Ferreira, C.E.L., Floeter, S.R.,
406 Giglio, V.J., Luiz, O.J., Mendes, T.C., Picolotto, V.A.P., Quimbayo, J.P., Silva, F.C.,
407 Waechter, L., Longo, G.O., Bender, M.G., 2023. Going across taxa in functional ecology:
408 Review and perspectives of an emerging field. *Functional Ecology* 37, 3091–3110.
409 doi:10.1111/1365-2435.14442

410 Noske, J.E., Lu, J.-Z., Schaefer, I., Maraun, M., Scheu, S., Chen, T.-W., 2024. Niche dimensions
411 in soil oribatid mite community assembly under native and introduced tree species. *Ecology*
412 and Evolution 14, e11431. doi:10.1002/ece3.11431

413 Petersen, H., Luxton, M., 1982. A comparative analysis of soil fauna populations and their role
414 in decomposition processes. *Oikos* 39, 288–388. doi:10.2307/3544689

415 Ponge, J.-F., 2020. Move or change, an eco-evolutionary dilemma: The case of Collembola.

416 Pedobiologia 79, 150625. doi:10.1016/j.pedobi.2020.150625

417 Potapov, A., Bellini, B., Chown, S., Deharveng, L., Janssens, F., Kováč, L., Kuznetsova, N.,
418 Ponge, J.-F., Potapov, M., Querner, P., Russell, D., Sun, X., Zhang, F., Berg, M., 2020.
419 Towards a global synthesis of Collembola knowledge: challenges and potential solutions.
420 Soil Organisms 92, 161–188. doi:10.25674/so92iss3pp161

421 Potapov, A.M., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I., Devetter, M., Goncharov,
422 A.A., Gongalsky, K.B., Klärner, B., Korobushkin, D.I., Liebke, D.F., Maraun, M., Mc Donnell,
423 R.J., Pollierer, M.M., Schaefer, I., Shrubovych, J., Semenyuk, I.I., Sendra, A., Tuma, J.,
424 Tůmová, M., Vassilieva, A.B., Chen, T.-W., Geisen, S., Schmidt, O., Tiunov, A. V., Scheu,
425 S., 2022. Feeding habits and multifunctional classification of soil-associated consumers
426 from protists to vertebrates. Biological Reviews 97, 1057–1117.
427 doi:doi.org/10.1111/brv.12832

428 Potapov, A.M., Chen, T.-W., Striuchkova, A. V., Alatalo, J.M., Alexandre, D., Arbea, J., Ashton,
429 T., Ashwood, F., Babenko, A.B., Bandyopadhyaya, I., Baretta, C.R.D.M., Baretta, D.,
430 Barnes, A.D., Bellini, B.C., Bendjaballah, M., Berg, M.P., Bernava, V., Bokhorst, S.,
431 Bokova, A.I., Bolger, T., Bouchard, M., Brito, R.A., Buchori, D., Castaño-Meneses, G.,
432 Chauvat, M., Chomel, M., Chow, Y., Chown, S.L., Classen, A.T., Cortet, J., Čuchta, P., de
433 la Pedrosa, A.M., De Lima, E.C.A., Deharveng, L.E., Doblas Miranda, E., Drescher, J.,
434 Eisenhauer, N., Ellers, J., Ferlian, O., Ferreira, S.S.D., Ferreira, A.S., Fiera, C., Filser, J.,
435 Franken, O., Fujii, S., Koudji, E.G., Gao, M., Gendreau-Berthiaume, B., Gers, C.,
436 Greve, M., Hamra-Kroua, S., Handa, I.T., Hasegawa, M., Heiniger, C., Hishi, T., Holmstrup,
437 M., Homet, P., Høye, T.T., Ivask, M., Jacques, B., Janion-Scheepers, C., Jochum, M.,
438 Joimel, S., Jorge, B.C.S., Juceviča, E., Kapinga, E.M., Kováč, L., Krab, E.J., Krogh, P.H.,
439 Kuu, A., Kuznetsova, N., Lam, W.N., Lin, D., Lindo, Z., Liu, A.W.P., Lu, J.-Z., Luciáñez, M.J.,
440 Marx, M.T., Mawan, A., McCary, M.A., Minor, M.A., Mitchell, G.I., Moreno, D., Nakamori, T.,
441 Negri, I., Nielsen, U.N., Ochoa-Hueso, R., Oliveira Filho, L.C.I., Palacios-Vargas, J.G.,
442 Pollierer, M.M., Ponge, J.-F., Potapov, M.B., Querner, P., Rai, B., Raschmanová, N., Rashid,
443 M.I., Raymond-Léonard, L.J., Reis, A.S., Ross, G.M., Rousseau, L., Russell, D.J.,
444 Saifutdinov, R.A., Salmon, S., Santonja, M., Saraeva, A.K., Sayer, E.J., Scheunemann, N.,
445 Scholz, C., Seeber, J., Shaw, P., Shveenkova, Y.B., Slade, E.M., Stebaeva, S., Sterzynska,

446 M., Sun, X., Susanti, W.I., Taskaeva, A.A., Tay, L.S., Thakur, M.P., Treasure, A.M., Tsiafouli,
447 M., Twala, M.N., Uvarov, A. V, Venier, L.A., Widenfalk, L.A., Widystuti, R., Winck, B.,
448 Winkler, D., Wu, D., Xie, Z., Yin, R., Zampaulo, R.A., Zeppelini, D., Zhang, B., Zoughailech,
449 A., Ashford, O., Klauberg-Filho, O., Scheu, S., 2024. Global fine-resolution data on springtail
450 abundance and community structure. *Scientific Data* 11, 22. doi:10.1038/s41597-023-
451 02784-x

452 Potapov, A.M., Guerra, C.A., van den Hoogen, J., Babenko, A., Bellini, B.C., Berg, M.P., Chown,
453 S.L., Deharveng, L., Kováč, L., Kuznetsova, N.A., Ponge, J.-F., Potapov, M.B., Russell, D.J.,
454 Alexandre, D., Alatalo, J.M., Arbea, J.I., Bandyopadhyaya, I., Bernava, V., Bokhorst, S.,
455 Bolger, T., Castaño-Meneses, G., Chauvat, M., Chen, T.-W., Chomel, M., Classen, A.T.,
456 Cortet, J., Čuchta, P., Manuela de la Pedrosa, A., Ferreira, S.S.D., Fiera, C., Filser, J.,
457 Franken, O., Fujii, S., Koudji, E.G., Gao, M., Gendreau-Berthiaume, B., Gomez-Pamies,
458 D.F., Greve, M., Tanya Handa, I., Heiniger, C., Holmstrup, M., Homet, P., Ivask, M., Janion-
459 Scheepers, C., Jochum, M., Joimel, S., Claudia S. Jorge, B., Jucevica, E., Ferlian, O., Iuñes
460 de Oliveira Filho, L.C., Klauberg-Filho, O., Baretta, D., Krab, E.J., Kuu, A., de Lima, E.C.A.,
461 Lin, D., Lindo, Z., Liu, A., Lu, J.-Z., Lucíañez, M.J., Marx, M.T., McCary, M.A., Minor, M.A.,
462 Nakamori, T., Negri, I., Ochoa-Hueso, R., Palacios-Vargas, J.G., Pollierer, M.M., Querner,
463 P., Raschmanová, N., Rashid, M.I., Raymond-Léonard, L.J., Rousseau, L., Saifutdinov,
464 R.A., Salmon, S., Sayer, E.J., Scheunemann, N., Scholz, C., Seeber, J., Shveenkova, Y.B.,
465 Stebaeva, S.K., Sterzynska, M., Sun, X., Susanti, W.I., Taskaeva, A.A., Thakur, M.P.,
466 Tsiafouli, M.A., Turnbull, M.S., Twala, M.N., Uvarov, A. V, Venier, L.A., Widenfalk, L.A.,
467 Winck, B.R., Winkler, D., Wu, D., Xie, Z., Yin, R., Zeppelini, D., Crowther, T.W., Eisenhauer,
468 N., Scheu, S., 2023. Globally invariant metabolism but density-diversity mismatch in
469 springtails. *Nature Communications* 14, 674. doi:10.1038/s41467-023-36216-6

470 Potapov, A.M., Pollierer, M.M., Salmon, S., Šustr, V., Chen, T.-W., 2021. Multidimensional
471 trophic niche revealed by complementary approaches: Gut content, digestive enzymes, fatty
472 acids and stable isotopes in *Collembola*. *Journal of Animal Ecology* 90, 1919–1933.
473 doi:10.1111/1365-2656.13511

474 Revell, L.J., 2024. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods
475 (and other things). *PeerJ* 12, e16505. doi:10.7717/peerj.16505

476 Rosenberg, Y., Bar-On, Y.M., Fromm, A., Ostikar, M., Shoshany, A., Giz, O., Milo, R., 2023. The
477 global biomass and number of terrestrial arthropods. *Science Advances* 9, eabq4049.
478 doi:10.1126/sciadv.abq4049

479 Schaefer, I., Caruso, T., 2019. Oribatid mites show that soil food web complexity and close
480 aboveground-belowground linkages emerged in the early Paleozoic. *Communications
481 Biology* 2, 387. doi:10.1038/s42003-019-0628-7

482 Schaefer, I., Norton, R. A., Scheu, S., Maraun, M., 2010. Arthropod colonization of land – Linking
483 molecules and fossils in oribatid mites (Acari, Oribatida). *Molecular Phylogenetics and
484 Evolution*, 57, 113-121.

485 Shimano, S., 2011. Aoki's oribatid-based bioindicator systems*. *Zoosymposia* 6, 200–209.
486 doi:10.11646/zoosymposia.6.1.30

487 Silvertown, J., McConway, K., Gowing, D., Dodd, M., Fay, M.F., Joseph, J.A., Dolphin, K., 2005.
488 Absence of phylogenetic signal in the niche structure of meadow plant communities.
489 *Proceedings of the Royal Society B* 273, 39–44. doi:10.1098/rspb.2005.3288

490 Subías, L. S., 2022. Listado sistematico, sinonimico y biogeografico de los acaris oribatidos
491 (Acariformes: Oribatida) del Mundo (except fosiles). *Monografías electrónicas S.E.A.*, no.
492 12.

493 Susanti, W.I., Bartels, T., Krashevska, V., Widayastuti, R., Deharveng, L., Scheu, S., Potapov, A.,
494 2021. Conversion of rainforest into oil palm and rubber plantations affects the functional
495 composition of litter and soil Collembola. *Ecology and Evolution* 11, 10686–10708.
496 doi:10.1002/ece3.7881

497 van Straalen, N.M., 2023. *Soil Invertebrates: Kaleidoscope of Adaptations*. CRC Press.

498 van Straalen, N.M., 2021. Evolutionary terrestrialization scenarios for soil invertebrates.
499 *Pedobiologia* 87–88, 150753. doi:10.1016/j.pedobi.2021.150753

500 Vasconcelos, T., O'meara, B.C., Beaulieu, J.M., 2022. Retiring "cradles" and "museums" of
501 biodiversity. *American Naturalist* 199, 194–205. doi:10.1086/717412

502 Véron, S., Saito, V., Padilla-García, N., Forest, F., Bertheau, Y., 2019. The use of phylogenetic
503 diversity in conservation biology and community ecology: A common base but different

504 approaches. *The Quarterly Review of Biology* 94, 123–148. doi:10.1086/703580

505 Winemiller, K.O., Fitzgerald, D.B., Bower, L.M., Pianka, E.R., 2015. Functional traits, convergent
506 evolution, and periodic tables of niches. *Ecology Letters* 18, 737–751.
507 doi:10.1111/ele.12462

508 Xie, Z., Chen, T.-W., Potapov, M., Zhang, F., Wu, D., Scheu, S., Sun, X., 2022. Ecological and
509 evolutionary processes shape below-ground springtail communities along an elevational
510 gradient. *Journal of Biogeography* 49, 469–482. doi:<https://doi.org/10.1111/jbi.14317>

511 Yang, J., Pu, G., Jüds, M., Erktan, A., Scheu, S., Lu, J.Z., 2025. Microhabitat more than
512 ecosystem type determines the trophic position of springtail species. *Soil Biology and
513 Biochemistry* 209, 109912. doi:10.1016/j.soilbio.2025.109912

514 Yin, R., Kardol, P., Thakur, M.P., Gruss, I., Wu, G.L., Eisenhauer, N., Schädler, M., 2020. Soil
515 functional biodiversity and biological quality under threat: Intensive land use outweighs
516 climate change. *Soil Biology and Biochemistry* 147, 107847.
517 doi:10.1016/j.soilbio.2020.107847

518 Yu, D., Du, S., Wei, X., Zhu, J., Ding, Y., Hu, F., Liu, M., Zhang, F., 2024. Whole-genome-based
519 phylogenetic analyses provide new insights into the evolution of springtails (Hexapoda:
520 Collembola). *Molecular Phylogenetics and Evolution* 200, 108169.
521 doi:doi.org/10.1016/j.ympev.2024.108169

522 Zhang, B., Chen, T.-W., Mateos, E., Scheu, S., Schaefer, I., 2018. Cryptic species in
523 *Lepidocyrtus lanuginosus* (Collembola: Entomobryidae) are sorted by habitat type.
524 *Pedobiologia* 68, 12–19. doi:10.1016/j.pedobi.2018.03.001