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Abstract

Phylogenetic inference is fundamental to modern biology, with applications
spanning evolutionary biology, epidemiology, and comparative genomics. While
maximum likelihood and Bayesian methods remain the gold standard due to
their statistical rigor, they rely on simplifying evolutionary assumptions and
are computationally intensive. Existing machine learning approaches offer speed
advantages, but face several limitations: exclusive reliance on simulated training
data, inadequate handling of gaps, focus primarily on topology rather than
complete tree reconstruction, and sensitivity to input sequence order. Here, we
introduce IQ-NET (Intelligent Quartet NETwork), a machine learning framework
that addresses these limitations through training exclusively on real datasets,
simultaneous inference of topology and branch lengths from gapped alignments
without substitution model assumptions, and robustness to the order of input
sequences. IQ-NET outperforms existing machine learning methods and achieves
both higher accuracy and a 24-fold speedup over the IQ-TREE software. We also
demonstrate IQ-NET’s utility in species tree reconstruction by integrating it with
ASTRAL.

Keywords: Phylogenetic inference, Machine learning, Quartet analysis, Empirical

data training

1 Introduction

Phylogenetic inference reconstructs evolutionary relationships from molecular

sequence data, serving as a cornerstone of modern biology with applications



spanning evolutionary biology, epidemiology, ecology, and comparative genomics
(Felsenstein, [2004; |Grenfell et al., 2004; Delsuc et al. 2005). These methods

have elucidated species origins across diverse taxa and proven essential for

understanding evolutionary history and contemporary challenges, as exemplified
in tracking SARS-CoV-2 emergence and variants during the COVID-19 pandemic
(Li et al., [2020; Hodcroft et al., [2021} |Attwood et al., [2022; Turakhia et al. 2021;
\Gomez-Carballa et al., 2020).

Maximum likelihood and Bayesian inference are the gold standard for

phylogenetic inference due to their statistical rigor and accuracy, as implemented
in software such as IQ-TREE, RAxML, PHYML, MrBayes, and BEAST
et all [2015; [Stamatakis, [2014; |Guindon and Gascuel, 2003} Ronquist and
Huelsenbeck|, [2003; Drummond and Rambaut, 2007)). However, these methods rely
on substitution models with simplifying assumptions - stationarity, reversibility,
and homogeneity (Felsenstein, [2004; [Yang and Rannalal [2012; Jermiin et al., |2016])

- that may fail to present complex evolutionary processes such as incomplete lineage

sorting, hybridization, and recombination. Moreover, they are computationally

intensive (Izquierdo-Carrasco and Stamatakis) [2011; Stamatakis, [2006)), taking days

or even months to analyze large datasets.

Machine learning offers promising alternatives for phylogenetic inference with
potential for rapid analysis once trained. However, existing approaches
et al, [2020; [Zou et all, [2020; [Wang et al.l 2023} [Smith and Hahnl [2023; [Suvorov]
and Schrider} 2024; Kulikov et al., 2024; Nesterenko et al., 2025 still face several

limitations. These methods rely exclusively on simulated training data, potentially

limiting generalization to empirical datasets as demonstrated by |Zhu et al.| (2025]).
Many methods (Kulikov et al., 2024} |Zou et al., 2020)) either ignore or fail to handle

gaps, despite their prevalence in real alignments. Several studies (Suvorov et al.

20205 |Zou et al., 2020; [Wang et al., [2023)) focus primarily on topology inference,

with only one (Suvorov and Schrider, 2024) addressing branch length estimation.

Moreover, most models use neural network architectures originally designed for
image recognition, making their predictions sensitive to the order of input sequences.

To address these limitations, we introduce IQ-NET (Intelligent Quartet
NETwork), a machine learning framework for complete phylogenetic reconstruction
of four-taxon trees directly from multiple sequence alignments. IQ-NET advances
the field through several key innovations: (1) exclusive training and testing on
real datasets with generalization validated on independent TreeBase dataset, (2)
simultaneous inference of both topology and branch lengths from gapped alignments
without assuming any substitution model, (3) inherent permutation invariance for
consistent predictions regardless of sequence order, and (4) superior performance
compared to existing machine learning methods, achieving higher accuracy than
IQ-TREE with a 24-fold speedup that reduces runtime from 2.67 hours to 6.7



minutes when reconstructing over 50,000 quartet trees. We further demonstrate
IQ-NET’s utility for species tree reconstruction by integrating it with ASTRAL
(Mirarab et al., [2014).

2 Materials and Methods

IQ-NET contains two key components: (1) a Tree topology classifier and (2) a
Branch length regressor. This section outlines the development of these components

through four main steps, detailed below.

2.1 Data Generation

To address the limited generalisation of machine learning models trained
on simulated data, as recently highlighted by [Zhu et al| (2025), we
trained and tested IQ-NET on real data from the EvoNAPS database
(https://github.com/Cibiv/EvoNAPS)and conducted extensive tests on the
independent TreeBASE dataset (Piel et al.l 2002).

The Empirical EvoNAPS Database

The EvoNAPS database comprises empirical alignments, their corresponding
phylogenetic  trees, and model parameters inferred with IQ-TREE
(v2.2.0.5). Alignments were collected from published resources, including
BenchmarkAlignments (https://github.com/roblanf/BenchmarkAlignments/),
PANDIT (Whelan et all 2006, OrthoMaM (Scornavacca et all 2019)), and
TreeBASE (Piel et all [2002). EvoNAPS includes both DNA and protein
alignments and represents a diverse range of species, from microbes and fungi to
plants, birds, turtles, and mammals.

The database contains 48,706 DNA alignments. The number of taxa per
alignment ranges from 4 to 2,957, and sequence lengths range from 12 to
127,813 sites. Then we removed 9,998 alignments derived from TreeBASE,
reserving TreeBASE exclusively as an independent dataset for evaluating model
generalisation. Since EvoNAPS includes two versions (v10c and v12a) from the
OrthoMaM database, we also removed all 14,509 alignments from v10c to avoid

duplication with v12a.
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Data Cleaning

To ensure data quality, we applied two filtering criteria. First, we excluded
trees containing branches longer than 9 substitutions per site, as these often
indicate problematic sequence alignments where nucleotides at the same site are
not homologous (Mai and Mirarabl 2018). Second, we excluded alignments shorter
than 200 sites, as these typically lack sufficient evolutionary signal for reliable
phylogenetic inference and may generate erroneous phylogenies that introduce noise
during model training. Additionally, all gap representations in the alignments (‘-’,

‘N’, and “.”) were standardised to ‘-’ for consistency.

Sampling quartet trees and alignments

The remaining phylogenetic trees were divided into independent training,
validation, and testing sets with a ratio of 80:10:10. From each tree with N taxa,
we randomly sampled max(1, min(30, % — 1)) quartet subtrees along with their
corresponding sub-alignments. The factor % represents the maximum number of
unique 4-taxon sets that can be extracted from N taxa, helping to reduce the
chance of repetition. To avoid oversampling from large trees and enhance dataset
diversity, we limited the number of subtrees extracted per original tree to 30. The
final dataset comprised 415,303 training, 51,401 validation, and 51,241 testing

samples.

Feature Extraction

To encode the input alignments, we extracted site pattern frequencies as features,
following the approach proposed in [Leuchtenberger et al. (2020). This encoding
approach is widely adopted in maximum likelihood-based phylogenetic methods,
such as IQ-TREE, RAxML, and PhyML. Specificallyy, DNA sequences are
represented using five characters: the four nucleotides (A, C, G, T) and the gap
(‘). For an alignment of four taxa, this results in 5% = 625 possible site patterns.
We counted the occurrences of each site pattern in the alignment and normalised
them by the alignment length, ensuring that the resulting frequency vector sums

up to one.

2.2 Model Design and Implementation

Let [S4,SB,Sc,Sp] denote the input sequences representing the four taxa A, B,
C, and D; and v denote the data encoder.



AATGA-GACAACTGGACT--ATCGTAC. ..
AACGAACAAAACTAGGCTA-AACGTGC. ..
AAA-AATATAACGAGGTT--AACGATG. ..
ATTGAATTTAACTCG-CTATAATTA-G. ..
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Figure 1: Three possible unrooted topologies for four taxa A, B, C, and D. Topology 1:
AB|CD; Topology 2: AC|BD:; and Topology 3: AD|BC'.
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2.2.1 Tree Topology Classifier

For any four-taxon set { A, B, C, D}, there are three possible unrooted tree topologies
(Figure [I)): Topology 1: AB|CD; Topology 2: AC|BD; and Topology 3: AD|BC.

Sequences within an alignment can appear in any order, creating 4! = 24 possible
permutations representing the same four-taxon alignment. These permutations may
produce different site pattern frequencies, potentially affecting model predictions.
To ensure that the classifier consistently returns the correct topology regardless
of sequence order, we adopted the symmetry-preserving architecture proposed by
Solis-Lemus et al.| (2024).

The Adapted Symmetry-preserving Design

Permuting the input sequences may require tree topology changes to reflect
the new ordering. However, not all permutations alter the underlying topology.
For example, reordering the alignment from [S4, Sp, Sc,Sp] to [Sp,S4,Sc, Sp]
preserves Topology 1: AB|CD.

To account for this, we identified permutation sets that preserve each topology.
Let Py denote the set of permutations that preserve all three topologies; and P,
P, and Ps denote permutations preserving topologies 1, 2, and 3, respectively.

Py ={[Sa,SB,Sc,Spl,[SB,S4,SD,Sc],[Sc,Sp,Sa,SB], [Sp, Sc, SB, Sal}

P, ={[Sa,SB,Sp,Sc],[SB,Sa,Sc,Spl,[Sc, Sp, SB, S4l, [Sp, Sc, Sa, SB|}

Py, ={[Sa,Sp,Sc,SBl,[SB,Sc, Sp, Sal,[Sc,SB,Sa,Spl, [Sp,Sa,SB,Sc]}

Py ={[Sa,Sc,SB,Spl,[SB,Sp,S4,Sc],[Sc,Sa,Sp, SB|, [Sp, SB, Sc, Sal}

The feature representation F; (where 0 < ¢ < 3) is computed by averaging the

encoded features over all permutations in P;:
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Figure 2: The network architecture of (A) the tree topology classifier; and (B) the branch
length regressors.

F; = i ZT/J(P)

peEP;

Let f denote the classifier. The predicted score for Topology ¢ (where 1 < i < 3)
is then obtained by applying f to the average of Fy and Fj:

7= 1 (504 F)

This symmetry-preserving design ensures that the classifier produces consistent

topology scores regardless of the input sequence order.
The Network Architecture

Figure illustrates the architecture of the tree topology classifier, a five-layer
fully-connected neural network. The network takes the feature representation Fj
(see Section - a 625-dimensional vector - as input. That input is processed
through three hidden layers with decreasing dimensionality of 256, 64, 16, before
outputting a prediction score for the Topology i. For each input alignment, the
network is applied three times to predict the scores for all three possible topologies.
Dropout regularization is applied at the first two hidden layers to reduce overfitting.

The hidden layers use rectified linear unit (ReLU) activation functions (Glorot et al.
2011)), while the output layer employs softmax activation to convert raw network

outputs into class probabilities (Goodfellow et al., 2016).

Hyperparameter Tunning

We employed Optuna (Akiba et al., [2019) to fine tune the hyperparameters of

our classifier through 200 trials. Each trial samples one candidate configuration
from predefined parameter ranges. The configuration yielding the lowest validation

loss was selected for final model training. Supplementary Table [ST] summarises the



search ranges and the best values.

2.2.2 Branch Length Regressor

The branch length regressor estimates five non-negative values: one internal and
four external branch lengths. The internal branch length remains unchanged for
any input sequence order, while the external lengths should permute accordingly.
To enforce these constraints, we implemented separate regressors for the internal
and external branches.

Let Q; (where ¢ € {A, B,C, D}) denote the set of sequence permutations where
S; appears first in the alignment. For a four-taxon alignment, each set Q; contains
exactly six permutations. For instance, Q4 = {[Sa, SB, Sc, Spl,[S4a,SB,Sp, Sc],
[Sa,Sc, S, Sp), [Sa,Sc,Sp,SB], [Sa,Sp,SB, Scl, [Sa, Sp, Sc, Sg|}-

The feature representation F; (where ¢ € {A, B,C, D}) is computed by averaging

the encoded features over all permutations in Q);:

FiZ%Z?/)((J)

q€Q;

Let g and h denote the regresors for the internal and external branches,
respectively.

The internal branch length L;,; is predicted as:

1
Lint=91{ 7 > R

i€{A,B,C,D}
The external branch length L; (where i € {A, B,C, D}) is predicted as:

Li = h(F})

This design ensures the predicted branch lengths remain consistent regardless

of the input sequence order.
The Network Architecture

Figure depicts the architecture of the branch length regressors, implemented
as a five-layer fully connected neural network. This design resembles the topology
classifier but with two key differences. The three hidden layers have sizes of 256,
128 (instead of 64), and 16, respectively. ReLU activation functions are applied to
both hidden and output layers.

Hyperparameter Tunning

Similar to the tree topology classifier, we employed Optuna to fine-tune the

hyperparameters of the branch length regressors. The search ranges and the best
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hyperparameter settings are summarised in Supplementary Table

2.3 Model Training

All networks were trained using the Adam optimiser (Kingma and Bal 2014) with
exponentially decaying learning rates. Cross-entropy and mean squared error (MSE)
were used as the loss functions for the tree topology classifier and the branch length
regressor, respectively. To mitigate overfitting, we implemented early stopping,
terminating training if the validation accuracy failed to improve for 5 consecutive
epochs.

Training was conducted on the Gadi supercomputing system at the National
Computational Infrastructure (NCI), Australia (https://nci.org.au/), using an
NVIDIA Tesla V100-SXM2-32GB GPU.

2.4 Evaluation

We conducted an extensive evaluation of IQ-NET through three key assessments.
First, we benchmarked it against IQ-TREE and existing machine learning methods
using the testing set from the EvoNAPS database. Second, we evaluated IQ-NET
on an independent TreeBASE dataset to assess its generalization. Finally, we
demonstrated a practical application of IQ-NET by providing quartet trees to
ASTRAL for species tree reconstruction using the Turtle dataset (Chiari et al.,
2012).

2.4.1 Benchmark IQ-NET against IQ-TREE and Existing Machine
Learning Methods

We benchmarked IQ-NET against IQ-TREE and several state-of-the-art machine
learning methods. For topology prediction, comparisons included Fusang (Wang
et al., 2023)), DeepNNPhylogeny (Kulikov et al., 2024), and the model by [Suvorov
et al.| (2020) (hereafter referred to as ‘Suvorov-topology’). Since DeepNNPhylogeny
does not support gapped alignments, all gapped sites were removed prior to its
evaluation. For branch length estimation, we compared IQ-NET with IQ-TREE.
We did not benchmark the published machine learning model by [Suvorov and
Schrider| (2024), because that study provides a collection of many pretrained
models - each trained on data simulated under specific conditions - rather than
a single general-purpose model. Consequently, no single pretrained model could be
appropriately selected for real datasets.

Benchmarks were performed on the testing dataset extracted from the
EvoNAPS database (see Section [2.1). EvoNAPS contains maximum likelihood
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trees inferred from empirical alignments. We randomly subsampled quartet trees
from these original maximum likelihood trees and used them as ground truth.
This approach leverages additional phylogenetic information from the original
many-taxon alignment to produce more reliable phylogenetic trees compared to
direct inference from four-taxon alignments. In contrast, when IQ-TREE served as a
benchmark method, it directly inferred four-taxon trees from four-taxon alignments;
we refer to this as IQ-TREE-quartet to avoid confusion.

All benchmarks were conducted on Gadi using a single Intel i5-14600 CPU with
4 GB allocated RAM.

2.4.2 Evaluate IQ-NET’s Generalization on the Independent
TreeBASE Dataset

To further assess the generalization of IQ-NET, we evaluated it on an independently
TreeBASE dataset (Piel et al. 2002). Noting that all TreeBASE-derived data were
removed from EvoNAPS during the development of IQ-NET, ensuring complete
independence between our training and testing data. We then downloaded all
TreeBASE studies, but filtered out those containing multiple trees, non-DNA data,
less than four sequences, or more than 40 sequences. The resulting set consists
of 921 trees and their corresponding alignments. For computational feasibility, we
generated three testing subsets by randomly sampling 0.1%, 1%, and 10% of all
possible quartets from each original TreeBASE alignment, yielding 62,494, 234,151,
and 2,336,286 quartets, respectively. Since many TreeBASE trees do not include

branch lengths, we assessed IQ-NET’s performance only on topology prediction.

2.4.3 Reconstruct Species Trees from Quartet Trees using the
Turtle Dataset

We demonstrate the application of IQ-NET for species tree construction using a
phylogenomic data set comprising 16 vertebrate taxa and 248 genes (Chiari et al.,
2012). This data set contains approximately 187,000 base pairs and focuses on
resolving the phylogenetic placement of turtles relative to birds and crocodiles. The
original study demonstrated that the inferred relationships among crocodiles, birds,
and turtles are sensitive to the choice of phylogenetic model: under single-site
homogeneous DNA substitution models, crocodiles and turtles form a clade,
whereas partitioned models group birds and crocodiles as a sister clade to turtles.
Here, we assess 1Q-NET’s ability to recover the relationships among crocodiles,

birds, and turtles.

For the analysis, we subsample 4-taxon alignments from each gene. Given a gene

contains IV species, we consider all possible combinations of 4-taxon alignments (]Z )



and randomly subsample a proportion of these combinations without replacement

ranging from 10% to 100%. Sampling 2% of all possible 4-taxon alignments from
a gene results in 155 X (JX

is used to infer a corresponding quartet tree. The resulting quartet trees are
subsequently provided as input to ASTRAL version 5.7.8 (Mirarab et al., 2014)

for species tree construction. To examine the effect of third codon positions, we

) alignments. For each sub-sampled alignments, IQ-NET

repeated the analysis after removing the third codon position from each gene,
reconstructed quartet trees, and inferred species trees using ASTRAL with these

modified quartet trees.

3 Results

The tree topology classifier converged at epoch 13 and completed training after 18
epochs (Suppl. Figure ), while the branch length regressor converged at epoch
2 and finished training after 7 epochs (Suppl. Figure [SIB).

3.1 Benchmark Results

We first compared the accuracy and runtime of IQ-NET with IQ-TREE-quartet
(IQ-TREE inferring trees directly from quartet alignments) and existing machine
learning methods. This benchmark used the testing set extracted from the
EvoNAPS database, where the ground-truth quartet trees were subsampled from

larger maximum likelihood trees inferred by IQ-TREE from the original multi-taxon
alignments (see Section [2.1)).

3.1.1 IQ-NET Outperforms Existing Methods in Tree Topology

Prediction

IQ-NET achieved the highest accuracy in predicting tree topologies, with an average
accuracy of 82.3%, followed by IQ-TREE-quartet (79.9%), DeepNNPhylogeny
(79.4%), Fusang (76.6%), and Suvorov-topology (57.7%). Moreover, IQ-NET
demonstrated balanced performance across all three topologies (82-83% accuracy)

without bias toward any particular topology (Suppl. Figure .

We also evaluated the impact of internal branch length and sequence length
on prediction accuracy. Generally, increasing either internal branch length or
sequence length tends to improve the accuracy of all methods (Figure [3)), as longer
branches and sequences provide more evolutionary signals (i.e., more mutations).
However, accuracy declined when the internal branch length exceeded 0.24 or

when the sequence length reached 3,950 sites. A possible explanation for this
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Figure 3: Topology prediction accuracy vs. (A) internal branch length; and (B) sequence
length. (*) Sequence length excludes fully gapped sites, which contain no evolutionary
signal.

phenomenon lies in the characteristics of our testing dataset: samples with long
internal branches often derive from short sequences (Suppl. Figure , making
topology reconstruction more difficult. Conversely, long sequences in our dataset
tend to be highly similar, resulting in short internal branch lengths (Suppl. Figure
that also challenge the topology inference. Another explanation is that long
sequences may contain multiple genes that have evolved independently under
different evolutionary processes, potentially supporting multiple tree topologies

rather than a single one.

3.1.2 IQ-NET Excels in Branch Length Prediction

Figure [] shows scatter plots of true versus predicted branch lengths estimated by
IQ-NET and IQ-TREE-quartet. Branch lengths predicted by IQ-NET closely match
the true values, with a Pearson correlation of 0.9007 and a slope of 0.8112, compared
with 0.6754 and 0.6905 for IQ-TREE-quartet.

Supplementary Table presents the estimation errors of IQ-NET and
IQ-TREE-quartet. IQ-NET outperformed IQ-TREE-quartet on most metrics,
achieving lower Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Branch Score Distance (BSD) |[Kuhner and Felsenstein| (1994). However,
IQ-TREE-quartet obtained a lower Mean Relative Error (MRE). Since MRE is

computed by dividing the absolute error by the true value, shorter branches

have a greater influence on this metric. Thus, the lower MRE suggests that
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1Q-TREE-quartet is more accurate at predicting shorter branches.

We also examined the influence of branch length and sequence length on
branch length estimation. Increasing branch length tends to increase prediction
error for both methods (Suppl. Figure ) IQ-NET performs comparably to
1Q-TREE-quartet on short branches but clearly surpasses 1Q-TREE-quartet on
longer ones (> 0.02).

< 0.3.

In contrast, increasing sequence length tends to enhance the accuracy of both
methods (Suppl. Figure ) For short alignments, IQ-NET is more accurate than
IQ-TREE-quartet, while for long alignments (> 1,000 sites), the performance gap

becomes negligible.

3.1.3 IQ-NET Achieves 24-Fold Speedup in Quartet Tree Inference

We compared the runtime of IQ-NET and IQ-TREE-quartet since they are the

only two methods among our benchmarks that can perform complete quartet tree
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inference, including branch length estimation. IQ-NET required 6.7 minutes to
reconstruct 51,241 quartet trees compared with 2.67 hours for IQ-TREE, a 24-fold
speedup.

For fairness, it should be noted that IQ-NET, as a machine learning method,
required initial training, which took 13.75 and 15.37 GPU minutes for the tree

topology classifier and branch length regressors, respectively.

3.2 IQ-NET Demonstrates Strong Generalization on
the Independent TreeBASE Dataset

The prediction accuracy of tree topology of IQ-NET on the TreeBASE dataset are
compareable to that of IQ-TREE-quartet. For example, on 1% TreeBASE dataset,
IQ-NET has 83.7% accuracy, IQ-TREE-quartet has 83.9% accuracy. Fusang and
DeepNNPhylogeny have lower accuracies of 78.2% and 81.7%, respectively. Please
check Table [I] for detail results on 0.1%, 1%, and 10% of TreeBASE dataset.
These results not only demonstrate the superior performance of IQ-NET in quartet
topology prediction but, more importantly, highlight its ability to generalize to an

empirical dataset independent of its training data.

TreeBASE percentage | 0.1% 1% 10%

IQ-NET 86.9% | 83.7% | 82.8%
IQ-TREE-quartet 85.9% | 83.9% | 83.7%
Fusang 82.2% | 78.2% | 78.2%
DeepNNPhylogeny 84.5% | 81.7% | 81.7%
Suvorov-topology 75.7% | 73.2% | 73.2%

Table 1: The topology prediction accuracies of IQ-NET, IQ-TREE-quartet, Fusang,
DeepNNPhylogeny, and Suvorov-topology on the independent TreeBASE dataset. Best
methods are highlighted in bold.

3.3 IQ-NET 4+ ASTRAL Recovers Turtle Phylogeny
Consistent with Existing Studies

We compared species trees inferred using several approaches: (i) IQ-NET +
ASTRAL, (ii) concatenation-based analysis with IQ-TREE, (iii) ASTRAL
using gene trees inferred with IQ-TREE and ModelFinder, and (iv) ASTRAL
using gene trees inferred with IQ-TREE and MixtureFinder. When all three
codon positions were included, the IQ-NET + ASTRAL approach recovered
turtles as the sister group to crocodiles, with this clade forming a sister group

to birds (Supplementary Figure ) This topology was also recovered by the

13



Figure 5:

Out group

(A) Accepted tree for placement of turtles as sister clade to birds and

crocodiles(Chiari et al.,|2012)). (B) Tree constructed under methods of IQ-NET+ASTRAL
after removing third codon positions, ASTRAL using gene trees estimated with IQ-TREE
and MixtureFinder.

concatenation-based method and by ASTRAL when using gene trees inferred under
site-homogeneous models with ModelFinder.

To further examine the effect of codon positions, we repeated the analysis after
removing the third codon position from every gene as recommended by |Chiari et al.
(2012). Quartet trees were estimated with IQ-NET from the reduced alignments,
and a species tree was subsequently inferred with ASTRAL. Under this setting,
turtles were placed as the sister clade to the combined group of birds and crocodiles
(Figure [5B). This topology is congruent with the results obtained from ASTRAL
using gene trees estimated with MixtureFinder, as well as with the conclusions of the
original study (Chiari et al., [2012). Notably, subsampling only 10% of the possible
quartet trees was sufficient to recover this relationship, highlighting the efficiency
of the IQ-NET + ASTRAL approach.

4 Conclusion and Future Work

We present IQ-NET, an end-to-end machine learning framework for quartet
tree reconstruction. Unlike traditional likelihood-based approaches that rely on
explicit substitution models, IQ-NET learns evolutionary relationships directly
from empirical data, enabling joint inference of tree topology and branch
lengths from gapped alignments without model assumptions. By adapting
the symmetry-preserving architecture proposed by Solis-Lemus et al| (2024),
IQ-NET ensures consistent predictions regardless of sequence order. Trained and
tested exclusively on empirical datasets with the generalization validated on the
independent TreeBase benchmark, IQ-NET demonstrates superior accuracy over
existing machine learning methods and outperforms IQ-TREE in both accuracy

and runtime. Notably, IQ-NET reconstructed over 50,000 trees in only 6.7 minutes,
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compared to 2.67 hours with IQ-TREE - a 24-fold speedup.

Despite these advances, there remains room for further development. First,
complex evolutionary processes such as incomplete lineage sorting and introgression
cannot be fully captured by a single phylogenetic tree. Since IQ-NET outputs
scores for all three quartet topologies, these values could potentially serve as support
measures, offering a foundation for detecting signals of incomplete lineage sorting
or introgression. However, systematic validation is required to confirm this utility.

Second, the accuracy and generalization of machine learning methods remain
dependent on training data quality. Expanding training to larger and more diverse
empirical datasets may further improve IQ-NET’s performance.

Third, while we have demonstrated integration with ASTRAL, IQ-NET could
also be combined with other quartet puzzling approaches (Strimmer and von
Haeseler|, {1996; [Schmidt et al., 2002) to scale reconstruction to larger trees.

Finally, alternative machine learning architectures such as transformer, which
are not constrained by fixed input size, may enable direct extension of IQ-NET to
larger tree reconstruction, while ensemble learning could enhance robustness and

stability across diverse evolutionary scenarios.

Data Availability

All source code and scripts used in the development of IQ-NET, including those for
data generation, training, testing, and the pre-trained models, are publicly available
at https://github.com/Clipper1331757/IQ_Net/.

The data underlying this study are available in the Supplementary Material and
the Zenodo Repository, at https://link.com.
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Supplementary

Hyperparameter Description Search Range Sampling Best Setting
Strategy
Learning Rate  Step size for weight le—4,2e—3] Log-uniform 7.844e—4
updates during training
Learning Rate Factor to reduce the 0.85, 1.0] Uniform 0.9044
Decay learning rate over epochs
Dropout Fraction of neurons (0.0, 0.3] Uniform 0.08314

randomly deactivated to
prevent overfitting

f1(Adam) Exponential decay rate for  [0.85, 0.95] Uniform 0.8687
first moment estimates

fo(Adam) Exponential decay rate for  [0.9, 0.999] Uniform 0.9976
second moment estimates

Batch Size Number of samples {8, 16, 32, 64, Categorical 128
processed per training 128, 256, 512}
iteration

Table S1: Hyperparameter search ranges and the best setting for the tree topology
classifier.
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Hyperparameter Description Search Range Sampling Best Setting

Strategy

Learning Rate  Step size for weight [e—5,e—2] Log-uniform 6.297e—4
updates during training

Learning Rate Factor to reduce the [0.85, 1.0] Uniform 0.9667

Decay learning rate over epochs

Dropout Fraction of neurons (0.0, 0.3] Uniform 0.05618
randomly deactivated to
prevent overfitting

Weight Decay Lo regularization to [e—6,e—3] Log-uniform 6.297e—4
prevent large weights

f1(Adam) Exponential decay rate for  [0.85, 0.95] Uniform 0.9281
first moment estimates

Pa(Adam) Exponential decay rate for ~ [0.9, 0.999] Uniform 0.9717
second moment estimates

Batch Size Number of samples {8, 16, 32, 64, Categorical 32
processed per training 128, 256, 512}
iteration

Table S2: Hyperparameter search ranges and the best setting for the branch length
regressor.
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Metric Branch Type IQ-NET IQ-TREE-quartet

MAE Internal branch 0.0322 0.0388
External branch  0.0273 0.042
MSE Internal branch 0.0202 0.0538
External branch  0.0122 0.0442
MRE Internal branch 0.7824 0.6564
External branch 0.2519 0.2286
BSD All branches 0.0946 0.1485

Table S3: Branch length estimation errors of IQ-NET and IQ-TREE-quartet. For
IQ-NET and IQ-TREE, only trees with correct topology prediction were counted. Bold
numbers denote the best results.
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A. Tree topology classifier B. Branch length regressor
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Figure S1: The training and validation loss of (A) the tree topology classifier; and (B) the
branch length regressor. The regressors for internal and external branches were jointly
trained, resulting in a single loss curve. The black dashed vertical line indicates the epoch
at which the best parameters were obtained (epoch 13 for the topology classifier and epoch
2 for the branch length regressor) before training was terminated by early stopping.
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Figure S2: Confusion Matrix of True vs Predicted tree topologies.
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Figure S4: Mean absolute error (MAE), Mean square error (MSE), and Mean relative
error (MRE) of branch length estimated by IQ-NET and IQ-TREE-quartet. (A) MAE
vs branch length; (B) MAE vs sequence length; (C) MSE vs branch length; (D) MSE
vs sequence length; (E) MRE vs branch length; and (F) MRE vs sequence length. (*)
Sequence length excludes fully gapped sites, which contain no evolutionary signal.
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Figure S5: (A) Accepted tree for placement of turtles as sister clade to birds and crocodiles

(Chiari et all) 2012)).

(B) Tree constructed under methods of IQ-NET+ASTRAL,

IQ-TREE with concatenated MSA, ASTRAL using gene trees estimated with IQ-TREE

and ModelFinder.
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