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Abstract

Phylogenetic inference is fundamental to modern biology, with applications

spanning evolutionary biology, epidemiology, and comparative genomics. While

maximum likelihood and Bayesian methods remain the gold standard due to

their statistical rigor, they rely on simplifying evolutionary assumptions and

are computationally intensive. Existing machine learning approaches offer speed

advantages, but face several limitations: exclusive reliance on simulated training

data, inadequate handling of gaps, focus primarily on topology rather than

complete tree reconstruction, and sensitivity to input sequence order. Here, we

introduce IQ-NET (Intelligent Quartet NETwork), a machine learning framework

that addresses these limitations through training exclusively on real datasets,

simultaneous inference of topology and branch lengths from gapped alignments

without substitution model assumptions, and robustness to the order of input

sequences. IQ-NET outperforms existing machine learning methods and achieves

both higher accuracy and a 24-fold speedup over the IQ-TREE software. We also

demonstrate IQ-NET’s utility in species tree reconstruction by integrating it with

ASTRAL.

Keywords: Phylogenetic inference, Machine learning, Quartet analysis, Empirical

data training

1 Introduction

Phylogenetic inference reconstructs evolutionary relationships from molecular

sequence data, serving as a cornerstone of modern biology with applications

1



spanning evolutionary biology, epidemiology, ecology, and comparative genomics

(Felsenstein, 2004; Grenfell et al., 2004; Delsuc et al., 2005). These methods

have elucidated species origins across diverse taxa and proven essential for

understanding evolutionary history and contemporary challenges, as exemplified

in tracking SARS-CoV-2 emergence and variants during the COVID-19 pandemic

(Li et al., 2020; Hodcroft et al., 2021; Attwood et al., 2022; Turakhia et al., 2021;

Gómez-Carballa et al., 2020).

Maximum likelihood and Bayesian inference are the gold standard for

phylogenetic inference due to their statistical rigor and accuracy, as implemented

in software such as IQ-TREE, RAxML, PHYML, MrBayes, and BEAST (Nguyen

et al., 2015; Stamatakis, 2014; Guindon and Gascuel, 2003; Ronquist and

Huelsenbeck, 2003; Drummond and Rambaut, 2007). However, these methods rely

on substitution models with simplifying assumptions - stationarity, reversibility,

and homogeneity (Felsenstein, 2004; Yang and Rannala, 2012; Jermiin et al., 2016)

- that may fail to present complex evolutionary processes such as incomplete lineage

sorting, hybridization, and recombination. Moreover, they are computationally

intensive (Izquierdo-Carrasco and Stamatakis, 2011; Stamatakis, 2006), taking days

or even months to analyze large datasets.

Machine learning offers promising alternatives for phylogenetic inference with

potential for rapid analysis once trained. However, existing approaches (Suvorov

et al., 2020; Zou et al., 2020; Wang et al., 2023; Smith and Hahn, 2023; Suvorov

and Schrider, 2024; Kulikov et al., 2024; Nesterenko et al., 2025) still face several

limitations. These methods rely exclusively on simulated training data, potentially

limiting generalization to empirical datasets as demonstrated by Zhu et al. (2025).

Many methods (Kulikov et al., 2024; Zou et al., 2020) either ignore or fail to handle

gaps, despite their prevalence in real alignments. Several studies (Suvorov et al.,

2020; Zou et al., 2020; Wang et al., 2023) focus primarily on topology inference,

with only one (Suvorov and Schrider, 2024) addressing branch length estimation.

Moreover, most models use neural network architectures originally designed for

image recognition, making their predictions sensitive to the order of input sequences.

To address these limitations, we introduce IQ-NET (Intelligent Quartet

NETwork), a machine learning framework for complete phylogenetic reconstruction

of four-taxon trees directly from multiple sequence alignments. IQ-NET advances

the field through several key innovations: (1) exclusive training and testing on

real datasets with generalization validated on independent TreeBase dataset, (2)

simultaneous inference of both topology and branch lengths from gapped alignments

without assuming any substitution model, (3) inherent permutation invariance for

consistent predictions regardless of sequence order, and (4) superior performance

compared to existing machine learning methods, achieving higher accuracy than

IQ-TREE with a 24-fold speedup that reduces runtime from 2.67 hours to 6.7
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minutes when reconstructing over 50,000 quartet trees. We further demonstrate

IQ-NET’s utility for species tree reconstruction by integrating it with ASTRAL

(Mirarab et al., 2014).

2 Materials and Methods

IQ-NET contains two key components: (1) a Tree topology classifier and (2) a

Branch length regressor. This section outlines the development of these components

through four main steps, detailed below.

2.1 Data Generation

To address the limited generalisation of machine learning models trained

on simulated data, as recently highlighted by Zhu et al. (2025), we

trained and tested IQ-NET on real data from the EvoNAPS database

(https://github.com/Cibiv/EvoNAPS)and conducted extensive tests on the

independent TreeBASE dataset (Piel et al., 2002).

The Empirical EvoNAPS Database

The EvoNAPS database comprises empirical alignments, their corresponding

phylogenetic trees, and model parameters inferred with IQ-TREE

(v2.2.0.5). Alignments were collected from published resources, including

BenchmarkAlignments (https://github.com/roblanf/BenchmarkAlignments/),

PANDIT (Whelan et al., 2006), OrthoMaM (Scornavacca et al., 2019), and

TreeBASE (Piel et al., 2002). EvoNAPS includes both DNA and protein

alignments and represents a diverse range of species, from microbes and fungi to

plants, birds, turtles, and mammals.

The database contains 48,706 DNA alignments. The number of taxa per

alignment ranges from 4 to 2,957, and sequence lengths range from 12 to

127,813 sites. Then we removed 9,998 alignments derived from TreeBASE,

reserving TreeBASE exclusively as an independent dataset for evaluating model

generalisation. Since EvoNAPS includes two versions (v10c and v12a) from the

OrthoMaM database, we also removed all 14,509 alignments from v10c to avoid

duplication with v12a.

3

https://github.com/Cibiv/EvoNAPS
https://github.com/roblanf/BenchmarkAlignments/


Data Cleaning

To ensure data quality, we applied two filtering criteria. First, we excluded

trees containing branches longer than 9 substitutions per site, as these often

indicate problematic sequence alignments where nucleotides at the same site are

not homologous (Mai and Mirarab, 2018). Second, we excluded alignments shorter

than 200 sites, as these typically lack sufficient evolutionary signal for reliable

phylogenetic inference and may generate erroneous phylogenies that introduce noise

during model training. Additionally, all gap representations in the alignments (‘-’,

‘N’, and ‘.’) were standardised to ‘-’ for consistency.

Sampling quartet trees and alignments

The remaining phylogenetic trees were divided into independent training,

validation, and testing sets with a ratio of 80:10:10. From each tree with N taxa,

we randomly sampled max(1,min(30, N4 − 1)) quartet subtrees along with their

corresponding sub-alignments. The factor N
4 represents the maximum number of

unique 4-taxon sets that can be extracted from N taxa, helping to reduce the

chance of repetition. To avoid oversampling from large trees and enhance dataset

diversity, we limited the number of subtrees extracted per original tree to 30. The

final dataset comprised 415,303 training, 51,401 validation, and 51,241 testing

samples.

Feature Extraction

To encode the input alignments, we extracted site pattern frequencies as features,

following the approach proposed in Leuchtenberger et al. (2020). This encoding

approach is widely adopted in maximum likelihood-based phylogenetic methods,

such as IQ-TREE, RAxML, and PhyML. Specifically, DNA sequences are

represented using five characters: the four nucleotides (A, C, G, T) and the gap

(‘-’). For an alignment of four taxa, this results in 54 = 625 possible site patterns.

We counted the occurrences of each site pattern in the alignment and normalised

them by the alignment length, ensuring that the resulting frequency vector sums

up to one.

2.2 Model Design and Implementation

Let [SA, SB, SC , SD] denote the input sequences representing the four taxa A, B,

C, and D; and ψ denote the data encoder.
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Figure 1: Three possible unrooted topologies for four taxa A,B,C, and D. Topology 1:
AB|CD; Topology 2: AC|BD; and Topology 3: AD|BC.

2.2.1 Tree Topology Classifier

For any four-taxon set {A,B,C,D}, there are three possible unrooted tree topologies

(Figure 1): Topology 1: AB|CD; Topology 2: AC|BD; and Topology 3: AD|BC.
Sequences within an alignment can appear in any order, creating 4! = 24 possible

permutations representing the same four-taxon alignment. These permutations may

produce different site pattern frequencies, potentially affecting model predictions.

To ensure that the classifier consistently returns the correct topology regardless

of sequence order, we adopted the symmetry-preserving architecture proposed by

Soĺıs-Lemus et al. (2024).

The Adapted Symmetry-preserving Design

Permuting the input sequences may require tree topology changes to reflect

the new ordering. However, not all permutations alter the underlying topology.

For example, reordering the alignment from [SA, SB, SC , SD] to [SB, SA, SC , SD]

preserves Topology 1: AB|CD.

To account for this, we identified permutation sets that preserve each topology.

Let P0 denote the set of permutations that preserve all three topologies; and P1,

P2, and P3 denote permutations preserving topologies 1, 2, and 3, respectively.

P0 = {[SA, SB, SC , SD], [SB, SA, SD, SC ], [SC , SD, SA, SB], [SD, SC , SB, SA]}
P1 = {[SA, SB, SD, SC ], [SB, SA, SC , SD], [SC , SD, SB, SA], [SD, SC , SA, SB]}
P2 = {[SA, SD, SC , SB], [SB, SC , SD, SA], [SC , SB, SA, SD], [SD, SA, SB, SC ]}
P3 = {[SA, SC , SB, SD], [SB, SD, SA, SC ], [SC , SA, SD, SB], [SD, SB, SC , SA]}
The feature representation Fi (where 0 ≤ i ≤ 3) is computed by averaging the

encoded features over all permutations in Pi:
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Figure 2: The network architecture of (A) the tree topology classifier; and (B) the branch
length regressors.

Fi =
1

4

∑
p∈Pi

ψ(p)

Let f denote the classifier. The predicted score for Topology i (where 1 ≤ i ≤ 3)

is then obtained by applying f to the average of F0 and Fi:

Ti = f

(
1

2
(F0 + Fi)

)
This symmetry-preserving design ensures that the classifier produces consistent

topology scores regardless of the input sequence order.

The Network Architecture

Figure 2A illustrates the architecture of the tree topology classifier, a five-layer

fully-connected neural network. The network takes the feature representation Fi

(see Section 2.2.1) - a 625-dimensional vector - as input. That input is processed

through three hidden layers with decreasing dimensionality of 256, 64, 16, before

outputting a prediction score for the Topology i. For each input alignment, the

network is applied three times to predict the scores for all three possible topologies.

Dropout regularization is applied at the first two hidden layers to reduce overfitting.

The hidden layers use rectified linear unit (ReLU) activation functions (Glorot et al.,

2011), while the output layer employs softmax activation to convert raw network

outputs into class probabilities (Goodfellow et al., 2016).

Hyperparameter Tunning

We employed Optuna (Akiba et al., 2019) to fine tune the hyperparameters of

our classifier through 200 trials. Each trial samples one candidate configuration

from predefined parameter ranges. The configuration yielding the lowest validation

loss was selected for final model training. Supplementary Table S1 summarises the
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search ranges and the best values.

2.2.2 Branch Length Regressor

The branch length regressor estimates five non-negative values: one internal and

four external branch lengths. The internal branch length remains unchanged for

any input sequence order, while the external lengths should permute accordingly.

To enforce these constraints, we implemented separate regressors for the internal

and external branches.

Let Qi (where i ∈ {A,B,C,D}) denote the set of sequence permutations where

Si appears first in the alignment. For a four-taxon alignment, each set Qi contains

exactly six permutations. For instance, QA = {[SA, SB, SC , SD], [SA, SB, SD, SC ],
[SA, SC , SB, SD], [SA, SC , SD, SB], [SA, SD, SB, SC ], [SA, SD, SC , SB]}.

The feature representation Fi (where i ∈ {A,B,C,D}) is computed by averaging

the encoded features over all permutations in Qi:

Fi =
1

6

∑
q∈Qi

ψ(q)

Let g and h denote the regresors for the internal and external branches,

respectively.

The internal branch length Lint is predicted as:

Lint = g

1

4

∑
i∈{A,B,C,D}

Fi


The external branch length Li (where i ∈ {A,B,C,D}) is predicted as:

Li = h(Fi)

This design ensures the predicted branch lengths remain consistent regardless

of the input sequence order.

The Network Architecture

Figure 2B depicts the architecture of the branch length regressors, implemented

as a five-layer fully connected neural network. This design resembles the topology

classifier but with two key differences. The three hidden layers have sizes of 256,

128 (instead of 64), and 16, respectively. ReLU activation functions are applied to

both hidden and output layers.

Hyperparameter Tunning

Similar to the tree topology classifier, we employed Optuna to fine-tune the

hyperparameters of the branch length regressors. The search ranges and the best
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hyperparameter settings are summarised in Supplementary Table S2.

2.3 Model Training

All networks were trained using the Adam optimiser (Kingma and Ba, 2014) with

exponentially decaying learning rates. Cross-entropy and mean squared error (MSE)

were used as the loss functions for the tree topology classifier and the branch length

regressor, respectively. To mitigate overfitting, we implemented early stopping,

terminating training if the validation accuracy failed to improve for 5 consecutive

epochs.

Training was conducted on the Gadi supercomputing system at the National

Computational Infrastructure (NCI), Australia (https://nci.org.au/), using an

NVIDIA Tesla V100-SXM2-32GB GPU.

2.4 Evaluation

We conducted an extensive evaluation of IQ-NET through three key assessments.

First, we benchmarked it against IQ-TREE and existing machine learning methods

using the testing set from the EvoNAPS database. Second, we evaluated IQ-NET

on an independent TreeBASE dataset to assess its generalization. Finally, we

demonstrated a practical application of IQ-NET by providing quartet trees to

ASTRAL for species tree reconstruction using the Turtle dataset (Chiari et al.,

2012).

2.4.1 Benchmark IQ-NET against IQ-TREE and Existing Machine

Learning Methods

We benchmarked IQ-NET against IQ-TREE and several state-of-the-art machine

learning methods. For topology prediction, comparisons included Fusang (Wang

et al., 2023), DeepNNPhylogeny (Kulikov et al., 2024), and the model by Suvorov

et al. (2020) (hereafter referred to as ‘Suvorov-topology’). Since DeepNNPhylogeny

does not support gapped alignments, all gapped sites were removed prior to its

evaluation. For branch length estimation, we compared IQ-NET with IQ-TREE.

We did not benchmark the published machine learning model by Suvorov and

Schrider (2024), because that study provides a collection of many pretrained

models - each trained on data simulated under specific conditions - rather than

a single general-purpose model. Consequently, no single pretrained model could be

appropriately selected for real datasets.

Benchmarks were performed on the testing dataset extracted from the

EvoNAPS database (see Section 2.1). EvoNAPS contains maximum likelihood
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trees inferred from empirical alignments. We randomly subsampled quartet trees

from these original maximum likelihood trees and used them as ground truth.

This approach leverages additional phylogenetic information from the original

many-taxon alignment to produce more reliable phylogenetic trees compared to

direct inference from four-taxon alignments. In contrast, when IQ-TREE served as a

benchmark method, it directly inferred four-taxon trees from four-taxon alignments;

we refer to this as IQ-TREE-quartet to avoid confusion.

All benchmarks were conducted on Gadi using a single Intel i5-14600 CPU with

4 GB allocated RAM.

2.4.2 Evaluate IQ-NET’s Generalization on the Independent

TreeBASE Dataset

To further assess the generalization of IQ-NET, we evaluated it on an independently

TreeBASE dataset (Piel et al., 2002). Noting that all TreeBASE-derived data were

removed from EvoNAPS during the development of IQ-NET, ensuring complete

independence between our training and testing data. We then downloaded all

TreeBASE studies, but filtered out those containing multiple trees, non-DNA data,

less than four sequences, or more than 40 sequences. The resulting set consists

of 921 trees and their corresponding alignments. For computational feasibility, we

generated three testing subsets by randomly sampling 0.1%, 1%, and 10% of all

possible quartets from each original TreeBASE alignment, yielding 62,494, 234,151,

and 2,336,286 quartets, respectively. Since many TreeBASE trees do not include

branch lengths, we assessed IQ-NET’s performance only on topology prediction.

2.4.3 Reconstruct Species Trees from Quartet Trees using the

Turtle Dataset

We demonstrate the application of IQ-NET for species tree construction using a

phylogenomic data set comprising 16 vertebrate taxa and 248 genes (Chiari et al.,

2012). This data set contains approximately 187,000 base pairs and focuses on

resolving the phylogenetic placement of turtles relative to birds and crocodiles. The

original study demonstrated that the inferred relationships among crocodiles, birds,

and turtles are sensitive to the choice of phylogenetic model: under single-site

homogeneous DNA substitution models, crocodiles and turtles form a clade,

whereas partitioned models group birds and crocodiles as a sister clade to turtles.

Here, we assess IQ-NET’s ability to recover the relationships among crocodiles,

birds, and turtles.

For the analysis, we subsample 4-taxon alignments from each gene. Given a gene

contains N species, we consider all possible combinations of 4-taxon alignments
(
N
4

)
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and randomly subsample a proportion of these combinations without replacement

ranging from 10% to 100%. Sampling x% of all possible 4-taxon alignments from

a gene results in x
100 ×

(
N
4

)
alignments. For each sub-sampled alignments, IQ-NET

is used to infer a corresponding quartet tree. The resulting quartet trees are

subsequently provided as input to ASTRAL version 5.7.8 (Mirarab et al., 2014)

for species tree construction. To examine the effect of third codon positions, we

repeated the analysis after removing the third codon position from each gene,

reconstructed quartet trees, and inferred species trees using ASTRAL with these

modified quartet trees.

3 Results

The tree topology classifier converged at epoch 13 and completed training after 18

epochs (Suppl. Figure S1A), while the branch length regressor converged at epoch

2 and finished training after 7 epochs (Suppl. Figure S1B).

3.1 Benchmark Results

We first compared the accuracy and runtime of IQ-NET with IQ-TREE-quartet

(IQ-TREE inferring trees directly from quartet alignments) and existing machine

learning methods. This benchmark used the testing set extracted from the

EvoNAPS database, where the ground-truth quartet trees were subsampled from

larger maximum likelihood trees inferred by IQ-TREE from the original multi-taxon

alignments (see Section 2.1).

3.1.1 IQ-NET Outperforms Existing Methods in Tree Topology

Prediction

IQ-NET achieved the highest accuracy in predicting tree topologies, with an average

accuracy of 82.3%, followed by IQ-TREE-quartet (79.9%), DeepNNPhylogeny

(79.4%), Fusang (76.6%), and Suvorov-topology (57.7%). Moreover, IQ-NET

demonstrated balanced performance across all three topologies (82-83% accuracy)

without bias toward any particular topology (Suppl. Figure S2).

We also evaluated the impact of internal branch length and sequence length

on prediction accuracy. Generally, increasing either internal branch length or

sequence length tends to improve the accuracy of all methods (Figure 3), as longer

branches and sequences provide more evolutionary signals (i.e., more mutations).

However, accuracy declined when the internal branch length exceeded 0.24 or

when the sequence length reached 3,950 sites. A possible explanation for this
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Figure 3: Topology prediction accuracy vs. (A) internal branch length; and (B) sequence
length. (*) Sequence length excludes fully gapped sites, which contain no evolutionary
signal.

phenomenon lies in the characteristics of our testing dataset: samples with long

internal branches often derive from short sequences (Suppl. Figure S3), making

topology reconstruction more difficult. Conversely, long sequences in our dataset

tend to be highly similar, resulting in short internal branch lengths (Suppl. Figure

S3) that also challenge the topology inference. Another explanation is that long

sequences may contain multiple genes that have evolved independently under

different evolutionary processes, potentially supporting multiple tree topologies

rather than a single one.

3.1.2 IQ-NET Excels in Branch Length Prediction

Figure 4 shows scatter plots of true versus predicted branch lengths estimated by

IQ-NET and IQ-TREE-quartet. Branch lengths predicted by IQ-NET closely match

the true values, with a Pearson correlation of 0.9007 and a slope of 0.8112, compared

with 0.6754 and 0.6905 for IQ-TREE-quartet.

Supplementary Table S3 presents the estimation errors of IQ-NET and

IQ-TREE-quartet. IQ-NET outperformed IQ-TREE-quartet on most metrics,

achieving lower Mean Squared Error (MSE), Mean Absolute Error (MAE),

and Branch Score Distance (BSD) Kuhner and Felsenstein (1994). However,

IQ-TREE-quartet obtained a lower Mean Relative Error (MRE). Since MRE is

computed by dividing the absolute error by the true value, shorter branches

have a greater influence on this metric. Thus, the lower MRE suggests that
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Figure 4: Scatter plots of True vs Predicted branch lengths estimated by IQ-NET (Panels
A and B) and IQ-TREE-quartet (Panels C and D). Panels A and C correspond to internal
branches, whereas B and D correspond to external branches.

IQ-TREE-quartet is more accurate at predicting shorter branches.

We also examined the influence of branch length and sequence length on

branch length estimation. Increasing branch length tends to increase prediction

error for both methods (Suppl. Figure S4A). IQ-NET performs comparably to

IQ-TREE-quartet on short branches but clearly surpasses IQ-TREE-quartet on

longer ones (> 0.02).

< 0.3.

In contrast, increasing sequence length tends to enhance the accuracy of both

methods (Suppl. Figure S4B). For short alignments, IQ-NET is more accurate than

IQ-TREE-quartet, while for long alignments (> 1, 000 sites), the performance gap

becomes negligible.

3.1.3 IQ-NET Achieves 24-Fold Speedup in Quartet Tree Inference

We compared the runtime of IQ-NET and IQ-TREE-quartet since they are the

only two methods among our benchmarks that can perform complete quartet tree
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inference, including branch length estimation. IQ-NET required 6.7 minutes to

reconstruct 51,241 quartet trees compared with 2.67 hours for IQ-TREE, a 24-fold

speedup.

For fairness, it should be noted that IQ-NET, as a machine learning method,

required initial training, which took 13.75 and 15.37 GPU minutes for the tree

topology classifier and branch length regressors, respectively.

3.2 IQ-NET Demonstrates Strong Generalization on

the Independent TreeBASE Dataset

The prediction accuracy of tree topology of IQ-NET on the TreeBASE dataset are

compareable to that of IQ-TREE-quartet. For example, on 1% TreeBASE dataset,

IQ-NET has 83.7% accuracy, IQ-TREE-quartet has 83.9% accuracy. Fusang and

DeepNNPhylogeny have lower accuracies of 78.2% and 81.7%, respectively. Please

check Table 1 for detail results on 0.1%, 1%, and 10% of TreeBASE dataset.

These results not only demonstrate the superior performance of IQ-NET in quartet

topology prediction but, more importantly, highlight its ability to generalize to an

empirical dataset independent of its training data.

TreeBASE percentage 0.1% 1% 10%
IQ-NET 86.9% 83.7% 82.8%
IQ-TREE-quartet 85.9% 83.9% 83.7%
Fusang 82.2% 78.2% 78.2%
DeepNNPhylogeny 84.5% 81.7% 81.7%
Suvorov-topology 75.7% 73.2% 73.2%

Table 1: The topology prediction accuracies of IQ-NET, IQ-TREE-quartet, Fusang,
DeepNNPhylogeny, and Suvorov-topology on the independent TreeBASE dataset. Best

methods are highlighted in bold.

3.3 IQ-NET + ASTRAL Recovers Turtle Phylogeny

Consistent with Existing Studies

We compared species trees inferred using several approaches: (i) IQ-NET +

ASTRAL, (ii) concatenation-based analysis with IQ-TREE, (iii) ASTRAL

using gene trees inferred with IQ-TREE and ModelFinder, and (iv) ASTRAL

using gene trees inferred with IQ-TREE and MixtureFinder. When all three

codon positions were included, the IQ-NET + ASTRAL approach recovered

turtles as the sister group to crocodiles, with this clade forming a sister group

to birds (Supplementary Figure S5B). This topology was also recovered by the
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Figure 5: (A) Accepted tree for placement of turtles as sister clade to birds and
crocodiles(Chiari et al., 2012). (B) Tree constructed under methods of IQ-NET+ASTRAL
after removing third codon positions, ASTRAL using gene trees estimated with IQ-TREE
and MixtureFinder.

concatenation-based method and by ASTRAL when using gene trees inferred under

site-homogeneous models with ModelFinder.

To further examine the effect of codon positions, we repeated the analysis after

removing the third codon position from every gene as recommended by Chiari et al.

(2012). Quartet trees were estimated with IQ-NET from the reduced alignments,

and a species tree was subsequently inferred with ASTRAL. Under this setting,

turtles were placed as the sister clade to the combined group of birds and crocodiles

(Figure 5B). This topology is congruent with the results obtained from ASTRAL

using gene trees estimated with MixtureFinder, as well as with the conclusions of the

original study (Chiari et al., 2012). Notably, subsampling only 10% of the possible

quartet trees was sufficient to recover this relationship, highlighting the efficiency

of the IQ-NET + ASTRAL approach.

4 Conclusion and Future Work

We present IQ-NET, an end-to-end machine learning framework for quartet

tree reconstruction. Unlike traditional likelihood-based approaches that rely on

explicit substitution models, IQ-NET learns evolutionary relationships directly

from empirical data, enabling joint inference of tree topology and branch

lengths from gapped alignments without model assumptions. By adapting

the symmetry-preserving architecture proposed by Soĺıs-Lemus et al. (2024),

IQ-NET ensures consistent predictions regardless of sequence order. Trained and

tested exclusively on empirical datasets with the generalization validated on the

independent TreeBase benchmark, IQ-NET demonstrates superior accuracy over

existing machine learning methods and outperforms IQ-TREE in both accuracy

and runtime. Notably, IQ-NET reconstructed over 50,000 trees in only 6.7 minutes,
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compared to 2.67 hours with IQ-TREE - a 24-fold speedup.

Despite these advances, there remains room for further development. First,

complex evolutionary processes such as incomplete lineage sorting and introgression

cannot be fully captured by a single phylogenetic tree. Since IQ-NET outputs

scores for all three quartet topologies, these values could potentially serve as support

measures, offering a foundation for detecting signals of incomplete lineage sorting

or introgression. However, systematic validation is required to confirm this utility.

Second, the accuracy and generalization of machine learning methods remain

dependent on training data quality. Expanding training to larger and more diverse

empirical datasets may further improve IQ-NET’s performance.

Third, while we have demonstrated integration with ASTRAL, IQ-NET could

also be combined with other quartet puzzling approaches (Strimmer and von

Haeseler, 1996; Schmidt et al., 2002) to scale reconstruction to larger trees.

Finally, alternative machine learning architectures such as transformer, which

are not constrained by fixed input size, may enable direct extension of IQ-NET to

larger tree reconstruction, while ensemble learning could enhance robustness and

stability across diverse evolutionary scenarios.

Data Availability

All source code and scripts used in the development of IQ-NET, including those for

data generation, training, testing, and the pre-trained models, are publicly available

at https://github.com/Clipper1331757/IQ_Net/.

The data underlying this study are available in the Supplementary Material and

the Zenodo Repository, at https://link.com.
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Supplementary

Hyperparameter Description Search Range Sampling
Strategy

Best Setting

Learning Rate Step size for weight
updates during training

[e−4, 2e−3] Log-uniform 7.844e−4

Learning Rate
Decay

Factor to reduce the
learning rate over epochs

[0.85, 1.0] Uniform 0.9044

Dropout Fraction of neurons
randomly deactivated to
prevent overfitting

[0.0, 0.3] Uniform 0.08314

β1(Adam) Exponential decay rate for
first moment estimates

[0.85, 0.95] Uniform 0.8687

β2(Adam) Exponential decay rate for
second moment estimates

[0.9, 0.999] Uniform 0.9976

Batch Size Number of samples
processed per training
iteration

{8, 16, 32, 64,
128, 256, 512}

Categorical 128

Table S1: Hyperparameter search ranges and the best setting for the tree topology
classifier.
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Hyperparameter Description Search Range Sampling
Strategy

Best Setting

Learning Rate Step size for weight
updates during training

[e−5, e−2] Log-uniform 6.297e−4

Learning Rate
Decay

Factor to reduce the
learning rate over epochs

[0.85, 1.0] Uniform 0.9667

Dropout Fraction of neurons
randomly deactivated to
prevent overfitting

[0.0, 0.3] Uniform 0.05618

Weight Decay L2 regularization to
prevent large weights

[e−6, e−3] Log-uniform 6.297e−4

β1(Adam) Exponential decay rate for
first moment estimates

[0.85, 0.95] Uniform 0.9281

β2(Adam) Exponential decay rate for
second moment estimates

[0.9, 0.999] Uniform 0.9717

Batch Size Number of samples
processed per training
iteration

{8, 16, 32, 64,
128, 256, 512}

Categorical 32

Table S2: Hyperparameter search ranges and the best setting for the branch length
regressor.
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Metric Branch Type IQ-NET IQ-TREE-quartet
MAE Internal branch 0.0322 0.0388

External branch 0.0273 0.042
MSE Internal branch 0.0202 0.0538

External branch 0.0122 0.0442
MRE Internal branch 0.7824 0.6564

External branch 0.2519 0.2286
BSD All branches 0.0946 0.1485

Table S3: Branch length estimation errors of IQ-NET and IQ-TREE-quartet. For
IQ-NET and IQ-TREE, only trees with correct topology prediction were counted. Bold

numbers denote the best results.
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Figure S1: The training and validation loss of (A) the tree topology classifier; and (B) the
branch length regressor. The regressors for internal and external branches were jointly
trained, resulting in a single loss curve. The black dashed vertical line indicates the epoch
at which the best parameters were obtained (epoch 13 for the topology classifier and epoch
2 for the branch length regressor) before training was terminated by early stopping.

23



Figure S2: Confusion Matrix of True vs Predicted tree topologies.
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Figure S3: Distribution of Internal branch lengths vs Sequence length across testing
samples.
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Figure S4: Mean absolute error (MAE), Mean square error (MSE), and Mean relative
error (MRE) of branch length estimated by IQ-NET and IQ-TREE-quartet. (A) MAE
vs branch length; (B) MAE vs sequence length; (C) MSE vs branch length; (D) MSE
vs sequence length; (E) MRE vs branch length; and (F) MRE vs sequence length. (*)
Sequence length excludes fully gapped sites, which contain no evolutionary signal.

Figure S5: (A) Accepted tree for placement of turtles as sister clade to birds and crocodiles
(Chiari et al., 2012). (B) Tree constructed under methods of IQ-NET+ASTRAL,
IQ-TREE with concatenated MSA, ASTRAL using gene trees estimated with IQ-TREE
and ModelFinder.
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