Hemitaeniochromis pumba, a new species of cichlid fish 1 from Lake Malawi, Africa, with comments on 2 related species. 3 4 5 George F. Turner^{1,2,*} & Amelie Caldon¹ 6 7 ¹School of Natural & Environmental Sciences, Bangor University, Bangor, Gwynedd LL57 8 2UW, United Kingdom 9 10 ²Vertebrates Division, Department of Life Sciences, Natural History Museum, Cromwell 11 Road, London, SW7 5BD, United Kingdom 12 13 *. Corresponding author bss608@bangor.ac.uk 14 15 **Abstract** 16 A new species of haplochromine (Pseudocrenilabrini) cichlid fish, Hemitaeniochromis pumba 17 is described from Lake Malawi, named for its outwardly angled, tusk-like oral jaw teeth, recalling those of a pig or warthog. It is assigned to the genus Hemitaeniochromis Eccles & 18 19 Trewavas 1989 on the basis of its dark horizontal midlateral band, broken anteriorly but 20 continuous posteriorly, with a dotted supralateral band anteriorly, and possessing conical teeth. 21 It is distinguished from *H. urotaenia* by its smaller mouth and the oral teeth in the outer series 22 of the lower jaw, which are very small, deeply embedded in the oral mucosa and angled 23 outwards (labially). Hemitaeniochromis brachyrhynchus and Protomelas spilopterus (which 24 are compared and distinguished) have similar oral teeth, but a more steeply-angled gape. 25 Although nothing is presently known of its diet, the form of the jaws and teeth are similar to 26 species known or believed to be paedophagous among the cichlid assemblages of Lakes 27 Edward, Malawi and Victoria. The species has previously been reported as H. sp. 'insignis' 28 and H. sp. 'deep' and probably also as H. sp. 'insignis mumbo', H. sp. 'urotaenia mumbo', H. 29 sp. 'spilopterus jalo' and H. sp. 'spilopterus kande'. 30 31 Keywords: new species, cichlidae, Lake Malawi, paedophage 32 33

1. INTRODUCTION

34

35

36 37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56 57

58

59

60

61

62 63

64 65

66

African Great Lakes Malawi, Tanganyika and Victoria are known for their extraordinary biodiversity, and particularly for their abundance of cichlid fishes which have evolved in comparatively short time periods (Won et al., 2005; Seehausen 2006; Meier et al., 2023). This has proved valuable for research into African cichlid speciation, ecological differentiation and divergent evolution (Lowe McConnell, 2009; Malinsky & Salzburger, 2016; Salzburger 2018). Among these, Lake Malawi stands out for its exceptional cichlid diversity, with under 400 species formally described and an estimated total of over 1000 species, many of which are endemic (Turner, 2007; Konings, 2016). A major challenge in cichlid taxonomy is the difficulty of distinguishing species, particularly from preserved material. Many cichlid species exhibit minimal morphological differentiation despite significant ecological and genetic divergence, making traditional classification methods challenging (Santos et al., 2014). Increasingly, the export of specimens for basic science or biodiversity-related research has been caught up in well-intended international legislation aimed at ensuring commercialisation of natural products does not occur without benefit local communities in biodiversity-rich, less wealthy countries (Bouchet et al., 2023; Sherman et al., 2026). At the same time, host countries often lack both museum infrastructure and trained personnel able to devote resources to research without obvious immediate socioeconomic benefit, and of course, would still face the problem that the type material of existing species is mostly elsewhere. Thus, there is a persistent taxonomic deficit in taxa such as freshwater fishes, which are among the most critically endangered animal groups (Darwall et al., 2009).

The aim of the present study is to formally describe a new species of Lake Malawi cichlid fish from the genus Hemitaeniochromis Eccles & Trewavas 1989, previously recognised as distinct and referred to as *Hemitaeniochromis* sp. 'insignis' (Turner, 1996; Snoeks, 2004) or H. sp. 'insignis mumbo' (Konings, 2016). The genus Hemitaeniochromis comprises cichlid fishes endemic to Lake Malawi, characterised by distinctive melanic colour patterns and specialised dentition. A defining feature of the genus is a horizontal midlateral stripe that starts behind the operculum, appearing as a series of spots at the front, becoming more continuous towards the rear and extending to the caudal peduncle. A second supralateral stripe above this, broken into a series of spots, is also visible on the anterior part of the flanks (Turner, 1996; Snoeks, 2003; Konings, 2016). The dentition of Hemitaeniochromis is characterised by widely spaced, conical outer teeth (Oliver, 2012). Currently, the genus contains only two recognised species: Hemitaeniochromis urotaenia (Regan, 1922) – the type species of the genus, and Hemitaeniochromis brachyrhynchus Oliver, 2012.

67 68

69

2. MATERIALS AND METHODS

70 71

72

73

Specimens of the new species were obtained from collections at Bangor University obtained in the 1990s (Turner, 1996) and later deposited at the Natural History Museum in London, specimens at the Africa Museum, Tervuren, originally obtained during the Lake Malawi

74 SADC/GEF project in the late 1990s (Snoeks, 2004) and a single specimen at Cambridge 75

University collected in 2016 and subsequently included in a genome sequencing project

76 (Blumer et al., 2025). Specimens were collected in a variety of ways, generally from

77 experimental trawl surveys, and initially fixed in formalin and later preserved in alcohol. 78

Comparative material was sourced from the London and Cambridge collections. Data for

79 Hemitaeniochromis brachyrhynchus was obtained from the species description and

80 illustrations of both types. Counts and measurements were carried out following the methods

- 81 of Snoeks (2004). Gape angles were taken from published values or measured from
- 82 photographs using an online protractor, https://www.ginifab.com/feeds/angle-measurement/,
- with horizontal body plane defined as a line reaching from the tip of snout to the point where 83
- 84 the lower lateral line crosses the line of flexion of the hypurals (H₂ in Barel et al., 1977;
- 85 Arnegard & Oliver, 2010), although this was not possible in specimens where the mouth was
- fixed open. 86

2.1 Ethical statement

- 88 The study did not use live animals. It was carried out on preserved specimens that had been
- 89 collected for other purposes and deposited in museum collections. Specimens were exported
- 90 under legislation and permits relevant at the time.

91

92

87

3. RESULTS

Hemitaeniochromis pumba sp. nov.

94

95

93

urn:lsid:zoobank.org:pub:72171431-97FA-4C0D-A4B7-797CA536C8FB

96 97

3.1 Holotype

98 99

BMNH 2024.7.16.1, unsexed, 132mm SL, collected from experimental trawl at 24-28m depth off Palm Beach-Maldeco, Oct 1991, G.F. Turner.

100 101 102

3.2 Paratypes (9)

103 104

- 105 BMNH 2024.7.16.2, 1 specimen, unsexed, 125m SL, collected from experimental trawl at 126m depth, off Domwe Island, 16th February 1992, G.F.Turner; BMNH 2024.7.16.3, 1 106
- 107 specimen, unsexed, 117mm SL, collected from experimental trawl at 90m depth, off Monkey Bay, 21 May 1992, G.F. Turner; BMNH 2024.7.16.4, 1 specimen, unsexed, 95mm SL, 108
- 109 collected from commercial midwater trawl, 1991, G.F. Turner; BMNH 2024.7.16.5, 1
- 110 specimen, unsexed, 94mm SL, collected from experimental trawl at 74m depth, at Kolowilo
- III trawl station, 28 September 1991, G.F. Turner; UMZC 2016.40.78 (field ID D12-B08), 1 111
- specimen, unsexed 132mm SL, collected from experimental trawl at 85-95m depth, north east 112
- of Monkey Bay (-14.001, 34.975), 2 March 2016, by Malawi Cichlid Genomic Diversity 113
- 114 Survey (MCGDS); MRAC 99-014-P-1747-1749, 3 specimens, unsexed, 122-148mm SL, at -
- 14.01, 34.622 on trawl survey transect Chipoka to Makanjila, 75-85m depth, 18 Nov 1997, 115
- SADC/GEF project; MRAC 99-014-P-1755, 1 specimen, unsexed, 168mm SL, trawled from 116 117
- 79-84m depth, -14.116, 34.722, SW Arm, 18 Dec1996, SADC/GEF project.

118 119

3.3 Etymology

120 121 122

- The specific name 'pumba' is latinized from the Swahili 'pumbaa' meaning foolish, silly or careless, but better known as the personal name of a Warthog character in the 'The Lion King' film and theatre franchise, in reference to the tusk-like outer teeth in the lower jaw.
- 124 125

127

3.4 Diagnosis

128 Among Malawian Pseudocrenilabrini, Hemitaeniochromis can be distinguished by its melanin 129 pattern, with a wide midlateral band arising at least an eye-diameter behind the operculum, 130 generally broken anteriorly and continuous posteriorly, with a broken midlateral band 131 confined to the anterior portion of the flank, with a few dark spots at the base of the dorsal fin, 132 teeth simple in specimens above 100mm SL (Oliver, 2012). Species of the genus *Protomelas* 133 Trewavas, 1935 are the most similar, but generally have a continuous midlateral stripe 134 beginning on or just behind the operculum. Hemitaeniochromis pumba can be distinguished 135 from H. urotaenia by its shorter jaws (lower jaw length 34.8-43.2% head length, v 44.4-53.5% 136 in H. urotaenia) and predorsal length (33.7-37.8% SL v 38.7-41.1%), as well as by its much 137 smaller, labially directed outer lower jaw teeth (v large erect). Hemitaeniochromis pumba is 138 distinguished from *H. brachyrhynchus* by its longer snout (31.1-36.8% head length v 28.2-28.7%), deeper lachrymal bone (18.0-23.4% head length v 12.5-12.8%), smaller eye (23.6-139 30.2% HL v 36.2-38.2%) and less steep gape angle (41-49° v $\sim 60^{\circ}$). The stripe pattern of 140 Protomelas insignis (Trewavas, 1935) is rather variable and can sometimes appear more like 141

143144

145

146

147

148

149

150

151

152

153

154

155156

157

158

159

160

161162

163164

165

166

167

168

169

170

171

172

173

142

3.5 Description

Morphometric ratios and meristic counts are given on Table 1. Whole body proportions can be seen in Figures 1-4, and those of comparator species in Figure 5. Oral dentition is compared in Figure 6.

the Hemitaeniochromis pattern: it tends to have a relatively longer snout (37.5-40.6% head

length v 31.1-36.8% in *H. pumba*) and larger, erect teeth.

Hemitaeniochromis pumba (Figure 1) is a medium sized (up to 168mm SL) moderately laterally compressed (maximum body depth 2.1-2.7 times maximum head width) cichlid fish with a moderately long snout (31.1-36.8% head length) and a concave head profile. Females and immature males have a distinctive melanin pattern shared with other species currently classed in the genus Hemitaeniochromis.

All H.pumba specimens are comparatively deep-bodied and laterally compressed, with the deepest part of the body sitting at around the third dorsal fin spine. The anterior upper lateral profile of the fish is gently curved from the tip of the snout to the vertical plane through the posterior edge of the eye. The slope is gradual and forms an angle of approximately 30 to 35 degrees relative to the horizontal plane, creating a streamlined head shape. The upper head profile ascends at a steeper angle from above the eye, creating a slightly humped look above a noticeable but subtle convexity over the eye. The premaxillary pedicel creates little or no interruption in the contour, giving the head a slightly angular appearance (contrasting to H. urotaenia, Protomelas spilonotus (Trewavas, 1935) and P. insignis, which all appear to have much more smoothly curved heads). The tip of the snout lies above the level of the upper margin of the insertion of the pectoral fin and below the lowest edge of the eye. The lower anterior profile of the fish is nearly straight back to the insertion of the pelvic fins, with a gentle downward angle of around 12-15 degrees relative to the horizontal plane. The transition at the posterior angle of the lower jaw is subtle, maintaining a smooth contour even when the mouth is closed. The lower profile remains mostly horizontal between the pelvic and anal fins, with some curvature along its length. The mouth is moderately sized, but on the smaller side compared to *H. urotaenia*. The caudal peduncle is relatively deep and laterally compressed (1.1 to 1.4 times longer than deep). The pectoral fins are relatively long and extend to the first anal spine, whereas the pelvic fins are shorter. When the dorsal and anal fins are folded, they end just short of the caudal fin

- insertion, except in the mature males, where they may be slightly longer. The caudal fin is truncated and slightly emarginate. The eye is moderate-sized and circular, with some size variation between individuals.

TABLE 1. Morphometric ratios and meristics of Hemitaeniochromis pumba sp. nov.

			Paratypes		
	Holotype	Mean	Minimum	Maximum	
Standard Length (SL, mm)	132.0	127.4	94.2	167.5	
As % SL					
Body Depth	40.3	38.2	35.6	41.8	
Head Length (HL)	32.5	33.5	32.3	34.6	
Dorsal Fin Base Length	57.0	53.2	50.0	56.2	
Anal Fin Base Length	17.7	18.1	15.8	19.8	
Predorsal Length	34.3	36.4	33.7	37.8	
Preanal Distance	69.1	71.3	69.4	73.8	
Prepectoral Distance	33.3	35.9	33.7	42.0	
Prepelvic Distance	42.5	44.7	42.4	48.9	
As % HL					
Head Width	48.3	46.6	42.8	51.9	
Interorbital Width	26.6	25.5	22.6	27.7	
Snout Length	35.0	34.4	31.1	36.8	
Lower Jaw Length	42.0	39.5	34.8	43.2	
Premaxillary Pedicel	29.6	29.5	26.3	31.9	
Cheek Depth	17.0	17.8	12.8	21.0	
Eye Diameter	25.9	27.6	23.6	30.2	
Lachrymal Depth	21.7	20.5	18.0	23.4	
Ratios					
Caudal Peduncle Length/Depth	1.10	1.3	1.1	1.4	
Body Depth/Head Width	2.57	2.5	2.1	2.7	
Counts					
Epibranchial Gillrakers	4		3	5	
Ceratobranchial Gillrakers	13		11	13	
Dorsal Fin Spines	17		16	18	
Dorsal Fin Rays	11		9	10	
Anal Fin Rays	9		8	9	
Longitudinal Line Scales	34		31	35	
Cheek Scales	3		3	4	

FIGURE 1. *Hemitaeniochromis pumba*. Holotype, preserved, BMNH 2024.7.16.1; 132.0mm SL. (Natural History Museum, 2024).

FIGURE 2. *Hemitaeniochromis* sp. pumba. Holotype, freshly collected, Palm Beach, Lake Malawi, 24-28m, October 1991, BMNH 2024.7.16.1; 132.0mm SL (photo by Turner).

FIGURE 3. *Hemitaeniochromis* sp. pumba. Paratype, freshly collected, Monkey Bay, Lake Malawi, 90m, May 1992, BMNH 2024.7.16.3; 116.5mm SL (photo by Turner).

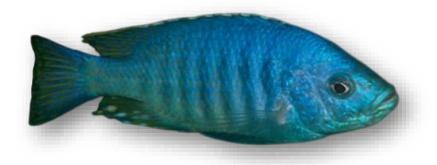
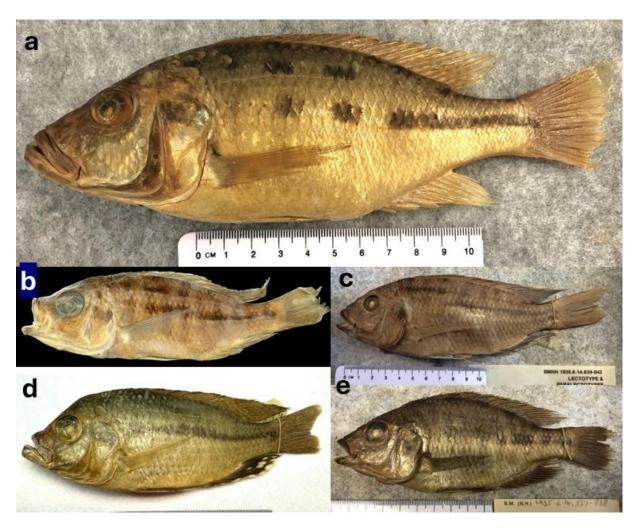
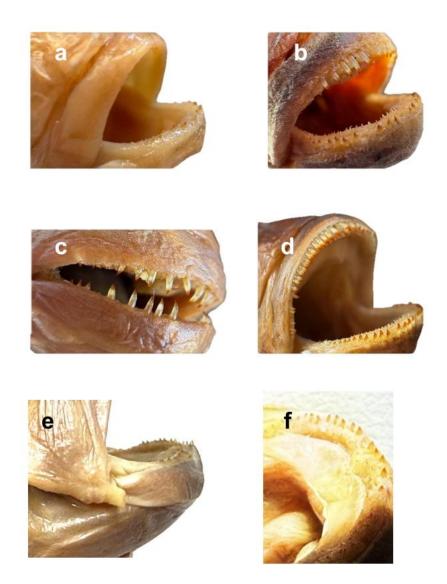



FIGURE 4. Probable *Hemitaeniochromis pumba* apparent male, photographed alive underwater at Boadzulu Island (modified from Konings, 2016, where it is labelled as


195 Hemitaeniochromis sp. 'insignis mumbo').196

The flank scales are weakly ctenoid, with a relatively smooth surface and no prominent spines, becoming more cycloid dorsally. From the flank to the chest, scale size decreases gradually, as is typical in Cyrtocarina (Snoeks, 2003). There are some small scales around the proximal part of the caudal fin. The cephalic lateral line pores are visible but not expanded, and the flank lateral line displays typical cichlid pattern of separate upper and lower segments.

FIGURE 5: Comparator species: (a) *Hemitaeniochromis urotaenia* lectotype; (b) *Hemitaeniochromis brachyrhynchus* holotype; (c) *Protomelas insignis* paralectotype; (d) *Protomelas spilopterus* lectotype; (e) *Protomelas insignis* lectotype. *H. brachyrhynchus* photo modified from image by Mike Oliver.

The mouth is moderate-sized, with both upper and lower jaws of moderate thickness, although the caudal part of the maxilla appears to be dorsoventrally enlarged or 'bullate' (Barel et al., 1977). The teeth are generally small and deeply embedded in the labial mucosa. The teeth in the outer series of the lower jaw (Figure 6A) are small, conical, erect and bent labially (towards the 'lips'). The outer series in both the upper jaw are short, conical, erect, with some unequally bicuspid particularly in smaller specimens. There is also an inner series of smaller, more pointed teeth. Similar teeth are shown by *H. brachyrhynchus* (Oliver 2012) and *P. spilopterus* (Trewavas, 1935) (Figure 6E-F). Other superficially similar species have larger teeth, generally erect with recurved tips (Figures 6B-D), those of *H. urotaenia* being particularly large (Figure 6C), and those of *P. spilonotus* densely packed (Figure 6D).

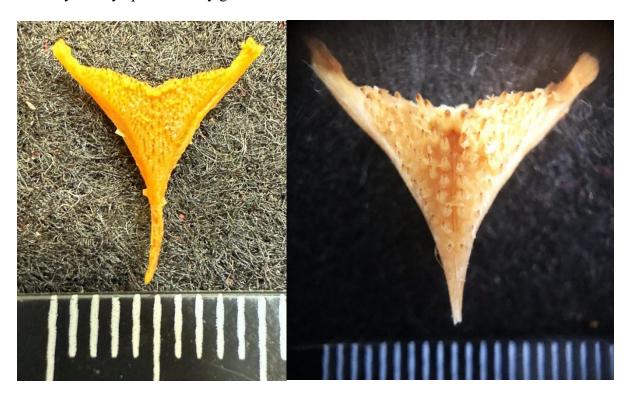


FIGURE 6: Variation in dentition: (a) *Hemitaeniochromis pumba* (Paratype, BMNH 2024.7.16.4) has small labially directed outer teeth in the lower jaw; (b) *Protomelas insignis* (BMNH 1935.6.14.839-43) has larger, triangular, pointed lower jaw teeth and columnar upper jaw teeth; (c) *Hemitaeniochromis urotaenia* (BMNH 1921.9.6.126-128) has very large erect conical teeth with recurved tips; (d) *Protomelas spilonotus* (BMNH 1935.6.14.837-8) has larger triangular pointed lower jaw teeth and closely packed columnar teeth in the upper jaw; (e, f) *Protomelas spilopterus* (164mm paralectotype, 1935.6.14.644-7) has very similar dentition to *H. pumba*.

There are 11-13 simple, unbranched ceratobranchial gillrakers, which are generally stubby and widely-spaced (Figure 7), in contrast to the long closely-packed rakers of *P. insignis* and *P. spilonotus*, and the sharply pointed rakers of *H. urotaenia*. Counts overlap with all comparator species, except *P. spilonotus*, which has 17-19 ceratobranchials (n=2 types). The lower pharyngeal bone is small and slender with relatively small pointed teeth (Figure 8), similar to other presumed paedophages such as *P. spilopterus* and *H. brachyrhynchus* (Oliver 2012), but contrasting with the robust bone and large sharp teeth of the predatory *H. urotaenia* (Figure 8).

FIGURE 7: Outer gill arch (right side) of *H. pumba* paratype 2024.7.16.3, showing relatively widely-spaced stubby gillrakers.

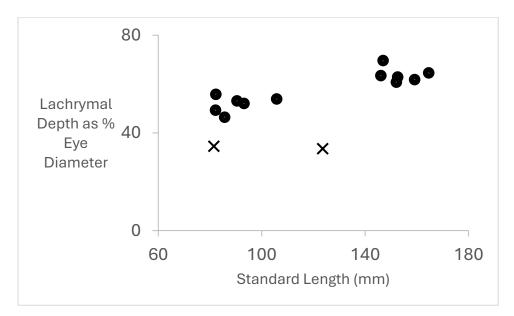
- 246 **FIGURE 8:** Lower pharyngeal bones, contrasting the delicate bone and small teeth of
- 247 Hemitaeniochromis pumba paralectotype 2024.7.16.3, 116.5mm SL (left) with the robust bone
- and larger teeth of Hemitaeniochromis urotaenia BMNH 1935.6.14.625-626, 168mm SL
- 249 (right).

Colour

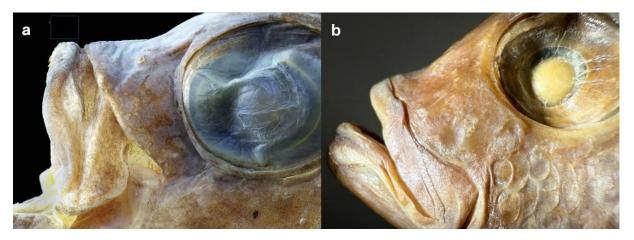
252

- 253 Females and immature males are countershaded, generally metallic grey in colour, with
- distinctive melanic markings showing as two rows of horizontal dark dashes, the lower
- 255 (midlateral) band becoming more continuous posteriorly. They have a pale grey dorsal fin, 256 with spotting on the soft dorsal (Figure 2). Flank scales often show a dark mark anteriorly. A
- mature male paratype photographed fresh from a trawl catch was generally darker, with dark
- mature male paratype photographed fresh from a trawl catch was generally darker, with dark
- fins, broad vertical bars and hints of blue dorsally, and yellow ventrally (Figure 3), but this
- may not be the full breeding dress. A photograph of H. sp. 'insignis mumbo' taken at
- Boadzulu Island by Konings could depict a breeding male *H. pumba*: it is a bright metallic
- blue, with hints of dark vertical bars, and a yellowish green cast towards the abdominal
- region. The dorsal fin has a white margin and there are large pale spots on the anal fin (Figure
- 263 4).

264265


3.6 Ecology

- The species has been collected from trawl catches deeper than 70m, suggesting a preference
- for deep soft-sediment habitats. However, Snoeks & Hanssens (2004) report smaller
- specimens from much shallower waters (7-9m), and the diving observation and illustrations
- by Konings (2016) suggest the species may frequent much shallower clearwater habitats at a
- variety of locations within the lake, assuming these represent the same species. Nothing is
- known of their diet, but the upward-angled gape and form of the dentition suggest that the
- species is a paedophage.


3.7 Notes on Related Species

- 275 Addition of *H. pumba* does not affect the current generic definition. *Hemitaeniochromis*
- 276 urotaenia remains fairly unambiguous and easily identified, with its large mouth and teeth and
- overall predatory facies. During the course of this study, we were rather uneasy about the distinctness of *H. brachyrhynchus* in relation to *Protomelas spilopterus*. The species are
- presently allocated to different genera on the basis of their melanic markings (Oliver, 2012), a
- common practice following Eccles & Trewavas (1989). However, even they made exceptions,
- such as Corematodus Boulenger 1897 where two species with very different melanic patterns
- were included in the same genus on the basis of the similarity of their jaws and teeth.
- 283 Likewise, their own Copadichromis Eccles & Trewavas 1989 included a range of melanin
- 284 patterns- although this has been reduced by the removal of horizontally banded species to
- 285 Nyassachromis Eccles & Trewavas 1989, and some of the largely unmarked species to
- 286 Mchenga Stauffer & Konings 2006 by Stauffer & Konings (2006). Thus, it may be wise not to
- be too dogmatic about these things. Also, melanic markings may be more fluid than is
- apparent from a relatively small sample of specimens: H. brachyrhynchus is known only from
- 289 2 preserved type specimens. Oliver (2012) carefully compared morphology of H.
- 290 brachyrhynchus with congeneric species and those with more ambiguous markings such as P.
- 291 insignis, but not with P. spilopterus, so we examined a number of the types of the latter and
- compared them to the measurements of the types of *H. brachyrhynchus* in the original
- description. We found that there was a clear difference, independent of allometric

relationships over a substantial range of body sizes in the relative sizes of the eye and the lachrymal (Figures 9-10), visible in examination of the specimens: in particular the lachrymal is very narrow posteriorly in *H. brachyrhynchus*. This may not have show up so clearly in the lachrymal measurement method given in the widely followed Snoeks (2004) methods chapter, which follows the anterior end of the bone to give a maximum depth measurement. In our study, we followed the method used by Oliver (2012), taking the midline of the bone. Thus, we feel confident that *H. brachyrhynchus* is indeed distinct from *P. spilopterus* and that we have available an alternative means of distinguishing the species, which will also be useful for specimens in which the melanic markings are not visible (as mature males) or atypical.

FIGURE 9: *Protomelas spilopterus* (●) has a relatively deeper lachrymal bone in comparison to eye diameter than *Hemitaeniochromis brachyrhynchus* (x). There is a weak allometric effect in the *P. spilopterus* data suggesting that the ratio may not be diagnostic in specimens smaller than 50-60mm SL.

FIGURE 10: Comparison of relative sizes of lachrymal bone (midline depth) and eye diameter in (a) *Hemitaeniochromis brachyrhynchus* (holotype) and (b) *Protomelas spilopterus* (lectotype). It is noticeable that the lower/posterior edge of the bone is much shallower in *H. brachyrhynchus*. *H. brachyrhynchus* photo modified from image by Mike Oliver.

3.8 Comparative material examined

- 319 Hemitaeniochromis urotaenia: BMNH 1921.9.6.126-128, lectotype 169.8mm SL;
- 320 paralectotypes (2) 143.4-170.5mm SL; BMNH 1935.6.14.625-26 (2) 159.4-168.0mm SL;
- 321 BMNH 1935.6.14.632-34 (3) 138.5-173.5mm SL. Protomelas insigns: BMNH 1935.6.14.839-
- 322 43, lectotype 150.3mm SL; paralectotypes (2) 120.1-156.7mm SL; BMNH 1986-2.5:115,
- 323 104.9mm SL, UMZC 2016.40.78 (1) 124.3mm SL. Protomelas spilopterus, BMNH
- 324 1935.6.14.648, lectotype, 146.9mm SL; BMNH 1935.6.14.644-7 paralectotypes (3) 151.6-
- 325 164.6mm SL, BMNH 1935.6.14.652-7 paralectotypes (8) 82.2-159.2mm SL. *Protomelas*
- 326 spilonotus, BMNH 1935.6.14.837-838 lectotype 133.2mm SL, paralectotype 106.3mm SL.
- 327 Hemitaeniochromis brachyrhynchus (not physically examined: data from Oliver 2012):
- 328 holotype: YPM 25201, holotype, 123.6mm SL; MRAC 99-41-P-1746, paratype (1), 81.5mm
- 329 SL.

330

4. DISCUSSION

- 331 Hemitaeniochromis pumba represents a third species that fits comfortably within the current
- definition of the genus, as given by Oliver (2012). The species was reported by Turner (1996)
- as Hemitaeniochromis 'insignis', based on examination of specimens now included in the
- 334 type series of *H. pumba*. Turner was uncertain about the relationship of this taxon to
- 335 Protomelas insignis, having not examined the type material of that species at that time.
- 336 Snoeks & Hanssens (2004) believed they were distinct, particularly based on their
- observation of the small labially-angled teeth in the outer series of the lower jaw of H.
- 338 *pumba*. This is consistent with the present study.
- More contentious is the status of various forms illustrated by Konings in the 5 editions of his
- 340 'Malawi Cichlids in their Natural Habitat' (1989-2016). Some of these are known only from
- underwater photographs of live specimens, often showing very different coloration to the
- preserved specimens or illustrations of recently killed individuals in our collections. Snoeks
- & Hanssens proposed that Konings' H. sp. 'urotaenia mumbo' was conspecific with what we
- now know as *H. pumba*. This was later illustrated as *H.* sp. 'insignis mumbo' (Konings 2016;
- see Figure 4 above). This has a very similar overall body shape to *H. pumba*, although the
- male colours are much more vibrant in Konings' illustration than in our dead specimens such
- as Figure 3 above. However, they do not differ qualitatively, showing the same dark vertical
- barring and gradation from blue anterior/upper surface to yellowish belly. Therefore, we feel
- quite confident in regarding them as conspecific.
- 350 Snoeks & Hanssens also suggested that Konings' H. sp. 'spilopterus jalo' and H. sp.
- 351 'spilopterus kande' are more similar to *H. pumba* than to *H. urotaenia*. We suggest that both
- are very likely also *H. pumba*. Konings' (2016; p. 172) illustration (alive, in hand) of *H.* sp.
- 353 'spilopterus jalo' looks like a non-breeding male of *H. pumba*, with the horizontal elements
- 354 suppressed and the vertical bars developing but without any real sign of the blue and yellow
- markings. This could be due to state of reproductive maturity. Konings' illustrations (2016: p.
- 356 354) of H. sp. 'spilopterus kande' also fit well with H. pumba in terms of overall body shape
- and markings. Although the adult male photographed underwater lacks a yellow belly, this
- too could simply represent stages in development of the male breeding colour.
- 359 Konings' Hemitaeniochromis sp. 'spilopterus blue' is now identified as H. brachyrhynchus
- 360 (see Konings 2016, index). Hemitaeniochromis sp. 'urotaenia yellow' appears to represent an
- additional undescribed taxon: we are aware of photographs of a few specimens believed to be

- in collections presently at Bristol University and the Africa Museum, Tervuren, but we have
- not yet examined them fully.
- Molecular phylogenetic analysis (Blumer et al. 2025) indicated that *H. pumba* (under the
- name Hemitaeniochromis sp. 'deep') is closely related to other probable paedophage species,
- 366 H. brachyrhynchus and Naevochromis chrysogaster (Trewavas, 1935) the latter having a very
- different 3-spotted melanin pattern and a more slender body (Eccles & Trewavas 1989;
- Konings 2016). Later unpublished analyses by largely the same team indicates that *P.*
- 369 *spilopterus* is also a member of this group and is sister to *H. brachyrhynchus*. This
- paedophagous group is resolved as the sister group to a clade comprising *H. urotaenia* and
- 371 the sequenced species of the horizontally-striped predatory *Dimidiochromis* Eccles &
- 372 Trewavas, 1989 currently comprising *D. compressiceps* (Boulenger, 1899), *D. kiwinge* (Ahl,
- 373 1926), D. strigatus (Regan, 1922). Sequences for D. dimidiatus (Günther 1864) are not yet
- available. Thus, it appears that a largely horizontally-striped melanin pattern is probably basal
- to this paedophage group, but that the pattern has proved to be evolutionarily plastic within
- 376 the lineage, particularly in relation to *N. chrysogaster*. Whether this level of plasticity is
- 377 unusual among Malawian cichlids awaits a thorough comparative analysis: if so, it may
- indicate that melanic patterns have higher adaptive significance in paedophages either
- through species mimicking their preferred victims or perhaps by benefitting from a
- frequency-dependent effect, for example, by making each distinct colour phenotype
- advantageous when rare, as prey species fail to recognise them. At present, little is known of
- evolutionary ecology of this group.
- Finally, although *H. pumba* was originally confused with *P. insignis* (e.g. Turner 1996), that
- species was also included in the Blumer et al.(2025) analysis and was found to be distantly
- 385 related.

Author Contributions

- 388 GFT: conception and design of study, data collection, analysis, preparation of figures, writing
- paper. AC: data collection, analysis, preparation of figures.

390

391

387

Acknowledgements

- We thank Rupert Collins, Oliver Crimmen, James Maclaine and Diego Vaz at the Natural
- 393 History Museum in London for access to the collection and curating the new specimens, Jos
- 394 Snoeks at the Africa Museum, Tervuren, for loan of specimens, and Matthew Lowe, Natalie
- Jones and Richard Durbin for help with access to the collection at the Cambridge University
- 396 Zoology Museum, Moritz Blumer, Bettina Fischer and Richard Durbin for discussion of
- 397 unpublished phylogenetic studies and Mike Oliver and Ad Konings for permission to use
- 398 illustrations.

399 400

References

- Barel, C. D. N., van Oijen, M. J. P., Witte, F., & Witte-Maas, E. L. (1977). An introduction to
- 403 the taxonomy and morphology of the haplochromine Cichlidae from Lake Victoria.
- *Netherlands Journal of Zoology*, 27, 381–389, figs. 1-65.

- 405
- Bouchet, P., Decock, W., Lonneville, B., Vanhoorne, B. & Vandepitte, L. (2023) Marine
- 407 biodiversity discovery: the metrics of new species descriptions. Frontiers in Marine Science,
- 408 10, 929989.
- Darwall, W., Smith, K., Allen, D., Seddon, M., McGregor Reid, G., Clausnitzer, V. &
- Kalkman, V.J. (2009) Freshwater biodiversity a hidden resource under threat. Wildlife in a
- changing world: an analysis of the 2008 IUCN Red List of Threatened Species (ed. by J.-C.
- 412 Vié, C. Hilton-Taylor and S.N. Stuart), pp. 43–54. IUCN, Gland, Switzerland.
- 413 Eccles, D.H. & Trewavas, E. (1989) Malawian Cichlid Fishes: the Classification of Some
- 414 Haplochromine Genera. West Germany: Lake Fish Movies.
- Genner, M.J. and Turner, G.F. (2005), The mbuna cichlids of Lake Malawi: a model for rapid
- speciation and adaptive radiation. Fish and Fisheries, 6, 1-34.
- 417 Konings, A. (2016). *Malawi Cichlids in Their Natural Habitat*. 5th edn. El Paso, TX: Cichlid
- 418 Press, 431 pp.
- 419 Malinsky, M., & Salzburger, W. (2016). Environmental context for understanding the iconic
- 420 adaptive radiation of cichlid fishes in Lake Malawi. Proceedings of the National Academy of
- 421 Sciences of the United States of America, 113, 11654-11656.
- 422 Meier, J. I., McGee, M. D., Marques, D. A., Mwaiko, S., Kishe, M., Wandera, S., Neumann,
- D., Mrosso, H., Chapman, L. J., Chapman, C. A., Kaufman, L., Taabu-Munyaho, A., Wagner,
- 424 C. E., Bruggmann, R., Excoffier, L., & Seehausen, O. (2023). Cycles of fusion and fission
- enabled rapid parallel adaptive radiations in African cichlids. *Science*, 381, 6665, 13pp.
- Oliver, M.K. (2012). Hemitaeniochromis brachyrhynchus, a new species of cichlid fish from
- 427 Lake Malaŵi, with comments on some other supposed members of the genus (Teleostei:
- 428 Cichlidae). Zootaxa, 3410, 35–50.
- Oliver, M. & Arnegard, M. (2010) A new genus for *Melanochromis labrosus*, a problematic
- 430 Lake Malawi cichlid with hypertrophied lips (Teleostei: Cichlidae). *Ichthyological*
- 431 Exploration of Freshwaters, 21, 209–232.
- 432 Regan, C.T. (1922). The cichlid fishes of Lake Nyassa. *Proceedings of the Zoological Society*
- 433 of London, (Part 4, No. 36), pp. 675–727, Pls. 1–6.
- 434 Salzburger, W. (2018). Understanding explosive diversification through cichlid fish
- 435 genomics. *Nature Reviews Genetics*, 19, 705-717.
- Santos, M. E., Braasch, I., Boileau, N., Meyer, B. S., Sauteur, L., Böhne, A., & Salzburger, W.
- 437 (2014). The evolution of cichlid fish egg-spots is linked with a cis-regulatory change.
- 438 *Nature Communications*, 5, 5149.
- Seehausen, O. (2006). African cichlid fish: a model system in adaptive radiation research.
- 440 Proceedings of the Royal Society B: Biological Sciences, 273, 1987-1998.
- Sherman, K. & Donnelly, K. (2026) Advancing towards Large Marine Ecosystem
- sustainability, *Environmental Development*, 57, 101356.
- 443 Snoeks, J., (2003). The cichlid diversity of Lake Malawi/Nyasa/Niassa: Identification,
- distribution and taxonomy. In: J. Snoeks and A. Konings, eds. *The Cichlid Diversity of Lake*
- 445 *Malawi/Nyasa/Niassa*. Cichlid Press, pp. 12-16, pp. 283-284.

- Snoeks, J. & Hanssens, M. (2004) Identification guidelines to other non-mbuna, in Snoeks, J.
- 447 (ed.) The cichlid diversity of Lake Malawi/Nyasa/Niassa: identification, distribution and
- 448 taxonomy. El Paso, USA: Cichlid Press, pp. 266–310.
- Trewavas, E. (1935). A synopsis of the Cichlid Fishes of Lake Nyasa. *Annals and Magazine*
- 450 of Natural History, 16 (91), 65–118.
- Turner, G. (1996). Offshore Cichlids of Lake Malawi. 1st edn. Cichlid Press, pp. 174.
- Turner, G. F. (2007). Adaptive radiation of cichlid fish. *Current Biology*, 17, R827-R831.
- Won, J., Sivasundar, A., Wang, Y., and Hey, J. (2005). On the origin of Lake Malawi cichlid
- species: A population genetic analysis of divergence. Proceedings of the National Academy of
- 455 Science USA, 102, 6581-6586.